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A B S T R A C T

With trajectory data, a complete microscopic and macroscopic picture of traffic flow operations
can be obtained. However, trajectory data are difficult to observe over large spatiotemporal
regions—particularly in urban contexts—due to practical, technical and financial constraints.
The next best thing is to estimate plausible trajectories from whatever data are available. This
paper presents a generic data assimilation framework to reconstruct such plausible trajectories on
signalized urban arterials using microscopic traffic flow models and data from loops (individual
vehicle passages and thus vehicle counts); traffic control data; and (sparse) travel time mea-
surements from whatever source available. The key problem we address is that loops suffer from
miss- and over-counts, which result in unbounded errors in vehicle accumulations, rendering
trajectory reconstruction highly problematic. Our framework solves this problem in two ways.
First, we correct the systematic error in vehicle accumulation by fusing the counts with sparsely
available travel times. Second, the proposed framework uses particle filtering and an innovative
hierarchical resampling scheme, which effectively integrates over the remaining error distribu-
tion, resulting in plausible trajectories. The proposed data assimilation framework is tested and
validated using simulated data. Experiments and an extensive sensitivity analysis show that the
proposed method is robust to errors both in the model and in the measurements, and provides
good estimations for vehicle accumulation and vehicle trajectories with moderate sensor quality.
The framework does not impose restrictions on the type of microscopic models used and can be
naturally extended to include and estimate additional trajectory attributes such as destination
and path, given data are available for assimilation.

1. Introduction

Vehicle trajectory data provide critically important information for many application areas, ranging from calibration and vali-
dation of microscopic traffic flow models (Kesting and Treiber, 2008; Punzo and Montanino, 2016), traffic state reconstruction (van
Lint and Hoogendoorn, 2010; Wang et al., 2006), travel time estimation (van Lint, 2010; Coifman, 2002), vehicle energy/emissions
estimation (Sun et al., 2015; da Rocha et al., 2015), to name just a few. With trajectory data, a complete picture of traffic flow
operations can be obtained, both microscopically and macroscopically. Trajectory data can be collected using a wide range of sensing
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technologies, such as aerial photography, video, and mobile traffic sensors based on GPS and/or GSM (Montanino and Punzo, 2015;
Sun and Ban, 2013). Whereas reconstructing trajectories from microscopic information (e.g., aerial images, GSM traces) requires
considerable methodological effort in itself (Montanino and Punzo, 2015), there are only a few cases for which comprehensive data
that cover 100% of all vehicle trajectories are available. Collecting such comprehensive trajectory data over large distances (routes,
networks) and long time periods is expensive. With infrastructure based sensors or aerial imaging, the collected data can only cover a
limited spatiotemporal region due to the high installation and maintenance costs, and it will take a few years (if not longer) before
100% of all vehicles/drivers are equipped with location tracking systems or apps that continuously communicate these data for use in
modeling, control or other applications. The next best alternative is to estimate vehicle trajectories from whatever data are available.

1.1. Estimating vehicle trajectories

Many methods for estimating vehicle trajectories from data have been proposed, which in general terms (should) combine three
ingredients: data (from various types of sensors); assumptions (models, equations) that describe the relation between the data and the
underlying vehicle trajectories; and data assimilation techniques that combine these ingredients and in the process address mea-
surement and modeling errors. For example, Coifman (2002) reconstructs vehicle trajectories in order to estimate travel times on
freeways using traffic data from a single dual loop detector. The proposed method exploits basic traffic flow theory to extrapolate
local traffic conditions to an extended freeway link. However, this method will fail when a queue covers the link, which is very
common in signalized arterials. An obvious remedy is to reconstruct vehicle trajectories along a route using multiple loop detectors
(van Lint, 2010), so that the trajectory reconstruction process is based on information from both up- and downstream locations. The
resulting vehicle trajectories are essentially idealized average vehicle trajectories, similar to Lagrangian solutions of kinematic wave
theory. However, the adaptive smoothing method used in van Lint (2010) is not suitable for urban trajectory reconstruction in the
original form (Treiber and Helbing, 2002; van Lint and Hoogendoorn, 2010), because it would smooth speeds over intersections.
Adjusting the method for use in urban settings seems doable in principle, but has not been reported yet. Mehran et al. (2012) propose
a data fusion framework to reconstruct vehicle trajectories on urban arterials by incorporating probe and fixed sensor data and the
signal timing parameters. The proposed method is also based on kinematic wave theory and employs the variational formulation (VF)
(Daganzo, 2005a; Daganzo, 2005b) to solve a dense solution network which is constructed by discretizing the time–space plane. The
key principle of the VF method is that the cumulative number of vehicles at each node in this solution network can be computed by a
shortest path search from nodes where the cumulative numbers are known (boundary conditions). As a result, any curve which
connects nodes with the same cumulative number in the solution network represents an individual vehicle trajectory. Sun and Ban
(2013) also apply the VF method to estimate trajectories by fusing probe vehicle trajectories and the signal timing data. However, in
both papers using the VF method, sensor errors such as miss-counting and over-counting are not considered; whereas these pose
common and difficult problems when using loop detector data (Lu et al., 2008). With these errors, the cumulative numbers at
boundaries will be inaccurate. Worse still, the error resulting from using such erroneous counts in the estimation of the number of
vehicles between these cumulative count stations becomes unbounded (van Lint and Hoogendoorn, 2015). Another problem is that,
due to the use of first order traffic flow theory, the speeds (trajectory slopes) between nodes are piece-wise constant (no acceleration)
yielding piecewise linear vehicle trajectories. As shown by Sun et al. (2015) and da Rocha et al. (2015), in case such piece-wise linear
trajectories are used to estimate energy consumption or emissions, large errors result, since energy consumption and emissions are
influenced largely by the acceleration/deceleration process. This point holds for any traffic state estimation method based on first
order traffic flow theory (e.g., Nantes et al., 2016; Yuan et al., 2012; van Hinsbergen et al., 2012), with which (indirect) also vehicle
trajectories can be estimated.

In general, when the (behavioral) assumptions of these trajectory estimation methods are insufficient for the application at hand,
more elaborate assumptions are required. This could involve estimation methods using higher order macroscopic models (that in-
clude speed dynamics as in Wang et al. (2006)), or methods using microscopic models for driving behavior. Goodall et al. (2016)
present such a microscopic estimation method for vehicle trajectories on freeways. The objective here is to use trajectory estimation
to artificially increase the penetration rate (in sample size as well as frequency) of connected vehicles. The method proposes a
strategy about when and where to add or remove simulated vehicles (called estimated vehicles) in the microscopic simulation in order
to make the actual behavior of the probe vehicles align with their expected behavior predicted by their car-following models. The
results show that the effective penetration rate can be increased by around 20–30% using this method, which turned out beneficial for
a ramp metering application. However, in this approach no principled method to deal with data or modeling errors is discussed.

1.2. Contribution and outline of this paper

The contribution of our paper is a generic data assimilation framework based on particle filters to reconstruct (plausible) vehicle
trajectories on signalized urban arterials, that does systematically address errors both in the measurements and in the model. Like Goodall
et al. (2016), our framework uses microscopic models of driving behavior and it assimilates noisy data from different sensors using
particle filters (Arulampalam et al., 2002; Djurić et al., 2003). The framework does not impose restrictions on the type of microscopic
models used; however, to illustrate the working, in this paper we consider the longitudinal movements of vehicles only. In terms of
data, the method takes in noisy vehicle passages of individual vehicles (and as a result noisy vehicle counts) from loop detectors;
signal timing parameters, and coarsely available travel time observations. By ‘noisy’, we mean that the passage data contains miss-
and over-counts, resulting in counting errors. In this paper, an extensive simulation study is conducted to test the proposed data
assimilation framework for trajectory reconstruction. The results show that the proposed method produces reasonable results for the
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vehicle trajectories; it is also shown that the proposed method is robust to errors both in the model and in the measurements.
The rest of this paper is organized as follows. We first overview the main notation used throughout this paper. Section 2 then

overviews the overall trajectory reconstruction methodology, after which Section 3 details the particle filter based data assimilation
framework and Section 4 discusses data preprocessing methods and assumptions related to error models associated with the different
data sources used. The simulation study to test the framework is presented in Section 5. In Section 6, sensitivity analysis (in terms of
the sensor errors, the model errors and the number of particles) and possible extensions (such as vehicle accumulations and additional
data) are discussed. Finally, the paper is concluded in Section 7.

1.3. Notation

Name Unit Description
TΔ s size of one discrete time step, i.e. the measurement interval

N t( ) veh number of vehicles at time instant t
Nk veh number of vehicles at time step ≡k N N k T, ( Δ )k

Q t( ) veh number of vehicles that have entered the simulation till time instant t
Qk veh number of vehicles that have entered the simulation till time step ≡k Q Q k T, ( Δ )k

x t( )i m location of the i-th vehicle at time instant t

xk
i m location of the i-th vehicle at time step ≡k x x k T, ( Δ )k

i i

v t( )i m/s speed of the i-th vehicle at time instant t

vk
i m/s speed of the i-th vehicle at time step ≡k v v k T, ( Δ )k

i i

s t( )i − state of the i-th vehicle at time instant t

sk
i − state of the i-th vehicle at time step ≡k s s k T, ( Δ )k

i i

Sk − system state at time step k
Ek T,Δ

− vehicle arrivals during the k-th measurement interval −k T k T[( 1)Δ , Δ ]
p − detection accuracy of a sensor
λ −s 1 occurrence rate of over-count
mk

o − measurement at time step k
Ns − number of sensors
L − set of road stretches in the system

Ek
j − observed passages from the j-th ( ⩽ ⩽j N1 s) sensor during −k T k T[( 1)Δ , Δ ]

Nk
l veh observed number of vehicles on road stretch l ( L∈l ) at time step k

Sk
i − system state represented by the i-th particle at time step k

Ek T
i
,Δ

− reconstructed vehicle arrivals for the i-th particle during the k-th measurement interval −k T k T[( 1)Δ , Δ ]

wk
i − weight of the i-th particle at time step k

Nk
i veh number of vehicles in the i-th particle at time step k

Np
− number of particles

x t( )i j, m location of the j-th vehicle in the i-th particle at time instant t

xk
i j, m location of the j-th vehicle in the i-th particle at time step ≡k x x k T, ( Δ )k

i j i j, ,

v t( )i j, m/s speed of the j-th vehicle in the i-th particle at time instant t

vk
i j, m/s speed of the j-th vehicle in the i-th particle at time step ≡k v v k T, ( Δ )k

i j i j, ,

p s m( | )k k0: 1:
− posterior distribution

−p s s( | )k k 1
− system transition density

p m s( | )k k
− conditional probability of measurement mk given state sk

q s m( | )k k0: 1:
− importance density

Ek
i j, − vehicle passing times from the j-th ( ⩽ ⩽j N1 s) sensor during the k-th measurement interval

−k T k T[( 1)Δ , Δ ] when generating the i-th particle

Nk
i l, veh number of vehicles on road stretch l ( L∈l ) at time step k in the i-th particle

Nm − number (random variable) of miss-counts
No − number (random variable) of over-counts
Q t( )i veh cumulative counts from the detector at cross-section xi at time instant t
t n( )i s time instant when the n-th vehicle passes cross-section xi

T n( )r s travel time estimated from the n-th vehicle

T t( )r
obs s travel time observation observed at time instant t

= −p E S({ } | )k
j

j
N

k k
i

1 1:
s − conditional probability of vehicle passages given −Sk k

i
1:

L
= −p N S({ } | )k

l
l k k

i
1 1:

− conditional probability of vehicle accumulation given −Sk k
i

1:
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Enumber
j % average estimation error of the number of vehicle passages at sensor j

Ematch
j % average percentage of passages that are not accurately reconstructed at sensor j

Eflow % average percent error of the traffic flow estimation

Edensity % average percent error of the traffic density estimation

Etr
t % average translation error of the reconstructed trajectories

Etr
v % average distortion error of the reconstructed trajectories

Etr
t v, % average overall error of the reconstructed trajectories

=P X x( ) − discrete probability distribution of random variable X
P X Y( | ) − conditional probability
X − estimation of variable X

2. Overview: a generic data assimilation framework for trajectory reconstruction

In this section we describe the objective and overall ideas of the data assimilation framework. The objective of the framework is to
estimate the most probable system state trajectory (in our case: the most probable set of vehicle trajectories on a roadstretch x x[ , ]1 2
over a time period T), given the available data. The particle filter does this by estimating the posterior distribution with a sufficient
set of support points (particles) spanning this distribution, each of which represents one possible set of vehicle trajectories that is
computed by an arbitrary microscopic simulation model. One can interpret this posterior as a “belief histogram” of the system state
trajectory, that describes a sample of probable sets of vehicle trajectories, given the data. This interpretation, however, is not very
informative in the context of trajectory reconstruction. We do not want many probable sets of vehicle trajectories, but one set that is
most likely given the data. Therefore we output the set of trajectories with the highest weight, although this is not strictly correct
(since we obtain the estimation of interest not by Monte Carlo integration, but by the particle with the highest weight).

The main idea and ingredients of our approach are depicted in Fig. 1. Reconstructing vehicle trajectories with this approach thus
implies attempting to reconstruct the correct number of plausible vehicle locations, speeds (and possibly other dynamic attributes).
The italics indicate that this reconstruction involves two aspects:

1. We need to estimate the correct number of vehicles with the correct departure time on the basis of observed vehicle passages. The
key problem to overcome here is that vehicle counts contain errors. Counting errors (caused by miss- or over-counting passages)
have a large effect on reconstructing trajectories. One miss- or over-count may yield errors in all subsequent trajectories. Our
approach to address this problem is to first make the number of vehicle passages (by extension the flows) between two detectors
consistent. To this end we use the method proposed by van Lint and Hoogendoorn (2015), which—similarly to the method
described in Bhaskar et al. (2014)— uses coarsely available individual travel times to periodically correct cumulative curves (at
location x1 and x2 respectively) and as a consequence compute a correct number of vehicles between the detectors.

2. Using these corrected vehicle counts we can now reconstruct plausible vehicle trajectories—potentially aided by either

Fig. 1. The main idea of the data assimilation framework for vehicle trajectory reconstruction ( TΔ is the measurement interval).
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macroscopic speed data or individual trajectory data. As touched upon in the introduction, this can be done by using macroscopic
(first or higher order) traffic flow theory, or by using microscopic traffic flow simulation models (or anything in between). We
choose the latter. In fact, our framework allows the analyst to use whatever microscopic model deemed appropriate (for the
application at hand); that is, a model with longitudinal behavior only, or a full fletched model that includes lane changing,
crossing, etc. Clearly, more degrees of freedom, without associated evidence in the form of microscopic data, may yield more sophisticated
estimations but not necessarily more plausible vehicle trajectories.

Since many of the underlying steps are interrelated, we discuss these aspects in a specific order. In Section 3 we first explain the
particle filtering rationale (aspect 2). This involves the basic particle filtering principle, resampling and the procedure to go from
partial vehicle trajectories (reconstructed whenever new measurements are available) to full trajectories (over consecutive mea-
surement time intervals). Thereafter, in Section 4, we discuss the measurements (including the vehicle accumulation correction
method), and the assumptions related to the errors in each used data source (aspect 1). We then conclude Section 4 with the
computation of particle weights (part of aspect 2), that depends on these error models.

3. Particle filter design for trajectory reconstruction

3.1. Particle filter and resampling design

Consider the following discrete state dynamics

= + = …− −s f s ν k( ) , 1,2, ,k k k k1 1 (1)

in which fk is a (possibly nonlinear) function of the state vector −sk 1, and −νk 1 represents a system noise process. At time k, mea-
surements are available

= + = …m g s ε k( ) , 1,2, ,k k k k (2)

in which gk is a (possibly nonlinear) function that maps the state to the measurements, and εk represents a measurement noise process.
The objective of the particle filter is to estimate the conditional distribution of all states up to time k (i.e. the state trajectory)

given all available measurements up to k, i.e. p s m( | )k k0: 1: , where = = … = = …s s i k m m j k{ , 0,1,2, , }, { , 1,2, , }k i k j0: 1: . Since an analytic
solution of p s m( | )k k0: 1: is usually intractable, we generate a set of Monte Carlo samples (particles) with their associated weights to
approximate this posterior distribution. If the number of particles is sufficiently large, the posterior can be approximated to an
arbitrary accuracy (Arulampalam et al., 2002; Djurić et al., 2003; van Leeuwen, 2009). With this sample of particles all relevant
statistical moments can be obtained using standard Monte Carlo integration techniques.

Let = =χ s w{ , }k k
i

k
i

i
N

0: 1
p represent a random measure that characterizes the posterior distribution p s m( | )k k0: 1: , where =s{ }k

i
i
N

0: 1
p is a set of

support points (particles), and =w{ }k
i

i
N

1
p the set of associated weights. Then p s m( | )k k0: 1: can be approximated as

∑≈ −
=

p s m w δ s s( | ) ( )k k
i

N

k
i

k k
i

0: 1:
1

0: 0:

p

(3)

where δ (·) is the Dirac delta function. For our application, s k
i
0: represents one possible set of vehicle trajectories over time–space

window ×k T x x[0, Δ ] [ , ]1 2 (see Fig. 1), and wk
i is the weight of that set given all observations (vehicle passages, vehicle accumulations).

If we can generate the particles =s{ }k
i

i
N

0: 1
p from p s m( | )k k0: 1: , each of them will be assigned a weight equal to N1/ p. However, direct

sampling from p s m( | )k k0: 1: is usually intractable. An alternative is to generate the particles from a distribution q s m( | )k k0: 1: , known as
importance density (Arulampalam et al., 2002; Djurić et al., 2003; van Leeuwen, 2009), and assign weights according to

=w
p s m
q s m

( | )
( | )

.k
i k

i
k

k
i

k

0: 1:

0: 1:

Based on Bayes’ theorem, p s m( | )k k0: 1: can be expressed as =p s m( | )k k
p s p m s

p m0: 1:
( ) ( | )

( )
k k k

k
0: 1: 0:

1:
. Similarly we have

=− −
− − −

−
p s m( | )k k

p s p m s
p m0: 1 1: 1

( ) ( | )
( )

k k k
k

0: 1 1: 1 0: 1
1: 1

. Therefore we can obtain a sequential update equation as

= ∝− − −

−
− − −p s m

p m s p s s p s m
p m m

p m s p s s p s m( | )
( | ) ( | ) ( | )

( | )
( | ) ( | ) ( | ).k k

k k k k k k

k k
k k k k k k0: 1:

1 0: 1 1: 1

1: 1
1 0: 1 1: 1

In case the importance density is chosen to factorize such that = − − −q s m q s s m q s m( | ) ( | , ) ( | )k k k k k k k0: 1: 0: 1 1: 0: 1 1: 1 , the random measure
=− − − =χ s w{ , }k k

i
k
i

i
N

1 0: 1 1 1
p can be updated sequentially whenever new measurements mk become available. The procedure then becomes:

• Obtain samples ∼s q s m( | )k
i

k k0: 0: 1: by augmenting samples from previous time step ∼− − −s q s m( | )k
i

k k0: 1 0: 1 1: 1 with the new state
∼ −s q s s m( | , )k

i
k k

i
k0: 1 1: ;

• Update weights by

= ∝ =− − −

− − −

−

−
−w

p s m
q s m

p m s p s s p s m
q s s m q s m

p m s p s s
q s s m

w
( | )
( | )

( | ) ( | ) ( | )
( | , ) ( | )

( | ) ( | )
( | , )k

i k
i

k

k
i

k

k k
i

k
i

k
i

k
i

k

k
i

k
i

k k
i

k

k k
i

k
i

k
i

k
i

k
i

k
k
i0: 1:

0: 1:

1 0: 1 1: 1

0: 1 1: 0: 1 1: 1

1

0: 1 1:
1
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If we assume that =− −q s s m q s s m( | , ) ( | , )k k k k k k0: 1 1: 1 , i.e., the importance density depends on −sk 1 and mk only, we have

∝ −

−
−w

p m s p s s
q s s m

w
( | ) ( | )

( | , )k
i k k

i
k
i

k
i

k
i

k
i

k
k
i1

1
1

(4)

A pragmatic choice for the importance density is the system transition density, i.e. =− −q s s m p s s( | , ) ( | )k k k k k1 1 —this is the approach
we choose in this study. As a result, Eq. (4) simplifies to

∝ −w p m s w( | )k
i

k k
i

k
i

1 (5)

A major problem of particle filters is that the discrete random measure degenerates quickly (Arulampalam et al., 2002; Djurić
et al., 2003; van Leeuwen, 2009). In other words, all the particles except for a very few are assigned negligible weights. The solution
is to resample the particles after they are updated. There exist different resampling algorithms and methods to determine when
resampling is necessary (Arulampalam et al., 2002). A simple and often adopted resampling method is to replicate particles in
proportion to their weights. It has been shown that a sufficient large number of particles are able to converge to the true posterior
distribution even in nonlinear, non-Gaussian dynamic systems (Arulampalam et al., 2002; Djurić et al., 2003; van Leeuwen, 2009).
We propose a hierarchical strategy that is tailored to our specific problem.

Recall that the overall objective of our assimilation framework (Fig. 1) is to estimate the most probable number of vehicles;
and—given this number of vehicles—estimate the most probable vehicle trajectories. The rationale of our resampling strategy is
based on these two aspects. We first categorize particles into groups with similar vehicle accumulations, and then resample within
each group. This will ensure there is a sufficient number of particles selected over a range of possible vehicle accumulations. It is
important to note that the weights of particles within such a group do not differ as much compared to when all particles are
considered as a whole. This implies that by sampling within each group, the particles with small weights will have a higher prob-
ability to be selected than in case all particles are resampled together. As a result, this hierarchical resampling method will ensure
that many likely particles are kept for future iterations, whereas a sufficient number of less likely particles are not discarded. The
consequence is a better coverage of the entire state space. Suppose that the particles generated from the sampling step are =S w{ , }k

i
k
i

i
N

0: 1
p ,

the hierarchical resampling method now works as follows:

• Sample based on the vehicle accumulations (number of vehicles) at time k. Suppose that at time k, the vehicle accumulation in the
i-th particle is Nk

i . We categorize particles into groups based on their vehicle accumulation value = …N i N, 1,2, ,k
i

p, such that any two
particles within the same group have the same value of vehicle accumulation. Assume that there are in total ⩽C C N( )p such
groups, and the particles in the c-th group have equal value of vehicle accumulation, which is denoted as = …N c C, 1,2, ,c . Then we
determine how many particles should be selected from the c-th group. This is done in the following way:
♢ We first assign a probability value = = −p P E N N( )c

c
k to the c-th group, where Nk is the real vehicle accumulation at time k,

and P E( ) corresponds to the error model for vehicle accumulation, which will be discussed in Section 4.2. Then we normalize
these probability values such that ∑ == p 1c

C
c1 . Consequently we obtain a discrete probability distribution

= = = …P X c p c C( ) , 1,2, ,c .
♢ We then sample the discrete probability distribution P X( ) Np times, and obtain samples …{ }c c c, , , N1 2 p . The j-th sample cj indicates

that when selecting particles, the j-th selection should select a particle from the cj-th group, where = … ∈ …j N c C1,2, , ; {1,2, , }p j .
Given samples …{ }c c c, , , N1 2 p , we can easily know the number of particles that should be selected from the c-th group, and we

denote this number as = …Nr c c C( ), 1,2, , . Then we have ∑ == Nr c N( )c
C

p1 .

• Sample based on the particle weights within each group. In the c-th group, we draw Nr c( ) particles with probabilities proportional
to their weights (the weights are temporarily normalized within the group for sampling). In this process, if a particle is selected, its
original weight is also associated with that particle. When all groups are sampled, the particles selected from each group form the
resampled particles =S{ }k

i
i
N

0: 1
p , and their associated weights are =w{ }k

i
i
N

1
p .

In this section we elaborated on the sampling and weight updating principles; to actually compute a quantitative value for each
weight, we require a mechanism that takes into account the errors associated with each observation. We therefore return to weight
computation in Section 4.4 after discussing the data error models. In this section we further focus on the trajectory reconstruction
method.

3.2. State dynamics: individual vehicle movements

In this section we specify the generic state dynamics in Eq. (1). In principle we can choose whatever traffic flow model deemed
appropriate for the estimation task at hand, as long as it (endogenously) computes the system state from which measurements (Eq.
(2)) can be constructed. Without loss of generality, in this paper, we consider the longitudinal movements of vehicles only, that is, we
consider models for free-driving and car-following (CF) that describe the acceleration behavior of driver-vehicle units as a function of
stimuli such as headway and speed difference with respect to a leading vehicle, subject to physical considerations, and a wide range
of (behavioral) assumptions. In general terms, (discretized) CF models take on the following form

+ =a t T f η t ζ t( ) ( ( ), ( )),r
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in which ⩾T 0r represents a reaction time, η t( ) is a set of stimuli (headway, speed difference with leader, etc.), and ζ t( ) is a set of
parameters specifying above mentioned behavioral and physical assumptions. For comprehensive reviews of longitudinal models for
driving behavior see e.g., van Wageningen-Kessels et al. (2015), Saifuzzaman and Zheng (2014), Brackstone and McDonald (1999). In
our case, the precise form of the CF models (or the models for lane changing, crossing, etc.) does not matter. Clearly, applying a
microscopic simulation model for state estimation, requires such a model to be well-calibrated. We refer the reader to Punzo and
Montanino (2016), da Rocha et al. (2015), Punzo et al. (2015) for an in-depth treatment of microscopic model calibration, which is
beyond the scope of this paper. For our purposes, it is sufficient to describe the resulting vehicle trajectory by time series of two
variables: longitudinal location x t( )i and speed v t( )i , where i is index of the vehicle, that is

� �= ∈ = ∈ ⩾∞
+s t x t v t t r r( ) { ( ), ( )}, { | 0}.i i i
0, (6)

During the simulation, new vehicles continuously arrive at the system boundary and enter the simulation. These arrivals during a
TΔ length period − = …k T k T k[( 1)Δ , Δ ], 1,2, , are modeled as a list of arrival events, that is,

= …E e e e{ , , , },k T n,Δ 1 2 (7)

where = = …e t A i n{ , }( 1,2, , )i e ei i represents an arrival event of a new vehicle, where tei is the relative arrival time to the beginning of the
period (i.e. −k T( 1)Δ ), and Aei is a set of attributes of the new vehicle, such as speed, destination, route, and vehicle type. Note that in
principle, such additional attributes could be part of the state vector, given observations are available to estimate these. This is
beyond the scope of this paper.

Now, we can define the simulation state at time k as

= = …=S s k{ } , 0,1,2, ,k k
i

i
Q

1
k (8)

where ≡s s k T( Δ )k
i i (see Eq. (6)), and ∫= + ∑ ∈Q N q s ds( )k j Inflow

k T
j0 0

Δ is the number of vehicles that have entered the simulation till
time k. N0 is the number of vehicles in the simulation initialization; Inflow is a set of system boundaries that vehicles can flow in, and
q s( )j is the corresponding flow. Notice that Sk still includes the states of vehicles that have left the system. However, once a vehicle
leaves the system (i.e. the simulation study area), we stop updating its state in the simulation. The evolution of the total state of the
simulation (and thereby Eq. (1)) can now be expressed as

= + = …− −S SIM S E ν k( , ) , 1,2, ,k k k T k1 ,Δ 1 (9)

where SIM is the microscopic urban traffic simulation, that contains models for driving behavior and traffic control logic, and S E,k k T,Δ
are defined in Eqs. (8) and (7), respectively.

3.3. Specification of the framework for trajectory reconstruction

Now consider an urban traffic network with Ns sensors deployed at each inflow boundary of a lane and each stop line at signalized
junctions. The objective is to determine time series of every vehicle’s location and speed over all links using sensor data. Below we
first discuss the data we need for our method; then the procedure to estimate partial trajectories during measurement periods of size

TΔ ; and finally the procedure to concatenate vehicle trajectories over multiple measurement periods.

3.3.1. Available data
This data assimilation framework assumes the availability of minimally the following data:

• Vehicle passages. As shown in Fig. 1, sensors are placed at each inflow boundary of a lane and each advanced stop line at
signalized junctions. We assume that the data provided by sensors is event-based data, i.e., a sequence of individual vehicle’s
passage times. We assume these event-based data contain errors such as miss-counts (a vehicle passes by, but the sensor fails to
detect its passage) and over-counts (no vehicles pass by, but the sensor reports a passage).

• Traffic signal timing parameters. These data are input when running the traffic simulation model.

• Periodic travel time observations. These data are used in the correction method to estimate vehicle accumulation.

We assume data are available every TΔ time units. The measurements at time k are denoted by

L= = …= =m E N k{{ } ,{ } }, 1,2, ,k
o

k
j

j
N

k
l

l1 1
s (10)

where Ns is the number of sensors, and Ek
j depicts the passage times obtained from sensor j during time interval −k T k T[( 1)Δ , Δ ]. Note

that vehicle accumulation is not measured directly but estimated from vehicle counts, which will be explained in Section 4.1. The
symbolL denotes a set of road stretches for which such vehicle accumulation is available, and Nk

l depicts the vehicle accumulation
on road stretch l at time k. Traffic signal timing data and travel time observations are not used in weight computation, therefore we
omit them in Eq. (10).

3.3.2. Partial trajectory reconstruction
Recall that particle filtering essentially approximates the posterior distribution p S m( | )k k

o
0: 1: , in which Sk is defined in Eq. (8).

However, Qk (see Eq. (8)) is random, and therefore the dimension S k0: is also random. This randomness results in the so-called
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variable dimension problem (Godsill et al., 2007), which in principle makes the sequential importance sampling algorithm introduced
in Section 3.1 not applicable to our problem. However, it turns out that, in line with Godsill et al. (2007), we can formally prove that
the variable dimension sequence has no tangible effect on weight updating in our case, and we therefore can safely apply the
sequential importance sampling algorithm. Due to space limitations, the proof is put in Appendix A.

Since the measurements (Eq. (10)) are not directly related to a system state at one specific time instant, but are related with a
sequence of system states over a period of time, the measurement model is formalized as

= + = …−m g S ε k( ) , 1,2, ,k
o

k k k k1: (11)

where −Sk k1: represents a sequence of (intermediate) system states from time −k 1 to time k (sampled every ≪δt TΔ time units during
−k T k T[( 1)Δ , Δ ]). Note that −Sk k1: essentially defines a set of (sampled) vehicle trajectories during −k T k T[( 1)Δ , Δ ]. Accordingly, this

also implies that the particle weights should be updated as

∝ − −w p m S w( | ) .k k
o

k k k1: 1

Note that although the state evolution after time k depends on Sk only, the application at hand requires us to store the system state
trajectory for as many time periods as needed to reconstruct trajectories. Algorithm 1 describes in detail how a particle filter is
applied to fulfill the trajectory reconstruction task. The main steps of the proposed algorithm are summarized as below.

• Initialization. In the initialization step (line 2–5 in Algorithm 1), the i-th sample S i
0 is actually a guess of vehicles’ locations and

speeds in the network, i.e., = =S x v{ , }i i j i j
j
N

0 0
,

0
,

1
i
0 , where Ni

0 is the vehicle accumulation (i.e. the number of vehicles) in the i-th sample at
time =k 0.

• Sampling. After initialization, the microscopic traffic simulation model is run for one time step TΔ (i.e. until new measurements
become available) to obtain a sample (line 8 in Algorithm 1). This is done for every particle. To run the simulation, inputs (vehicle
arrivals) are reconstructed from the (noisy) passage times observed by sensors deployed at the inflow boundary. During the run,
intermediate states −Sk k

i
1: are recorded, which represent a set of (sampled) vehicle trajectories that will be used in weight com-

putation and subsequent trajectory reconstruction. Once a sample is generated, its weight is updated based on the newly available
measurements (line 9 in Algorithm 1).

• Resampling. To solve the degeneracy problem, we resample the particles on a regular basis (see Section 3.1).

• Estimation. We reconstruct partial trajectories from the particle with the highest weight. Note that we elaborate in detail in
Section 3.3.3 how these partial trajectories are subsequently concatenated to full trajectories.

Algorithm 1. The particle filter for vehicle trajectory reconstruction.
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3.3.3. Full trajectory reconstruction
The final step is now to concatenate partial trajectories over multiple measurement intervals into full trajectories over the desired

time–space window. This full trajectory reconstruction procedure is graphically illustrated in Fig. 2, in which for illustration pur-
poses, only two particles are considered. The evolutions of particle 1 and particle 2 are depicted respectively at the top and in the
middle of Fig. 2, whereas the reconstructed vehicle trajectories are placed at the bottom part.

At time k, we assume that the first particle has the highest weight (see line 15 in Algorithm 1). Therefore, T T T T T{ , , , , }1,1 1,2 1,3 1,4 1,5 from
particle 1 (these trajectories are recorded when generating the particle; see line 8 in Algorithm 1) now constitute the reconstructed
trajectories (see line 16 in Algorithm 1) in time–space region − ×k T k T x x[( 1)Δ , Δ ] [ , ]1 2 , as shown in the bottom-left plot in Fig. 2.
Among these trajectories, T T,1,1 1,2, and T1,3 have passed cross-section x2, and therefore, they are fully evaluated given all available
evidence. This implies that information estimated by particle 1 (the particle with the highest weight) at boundaries

∈ ∩ = −
= ∩ ∈ − +

distance x x time k T
distance x time k T t T h

{ [ , ] ( 1)Δ }
{ [( 1)Δ , ( ) ]}min

1 2

1 1 1,3 (12)

is already the best estimation of the true boundary information, with t T( )1 1,3 denoting the time instant when the last full trajectory T1,3
crosses x1, and hmin denoting the minimum time headway (we add hmin to t T( )1 1,3 to prevent collisions). We call these boundaries
determined boundaries, as shown in Fig. 2. We temporarily keepT1,4 andT1,5 in our reconstructed results. In case data assimilation stops
at time k, the trajectory set T T T T T{ , , , , }1,1 1,2 1,3 1,4 1,5 is the best estimation based on the observed evidence; whereas in case new data
(passages) are available in the next iteration, information at boundary ∈ ∩ =distance x x time k T{ [ , ] Δ }1 2 (originating from the un-
determined boundary = ∩ ∈ +distance x time t T h k T{ [ ( ) , Δ ]}min1 1 1,3 ) will be re-evaluated.

Since information at the determined boundaries defined in Eq. (12) has been determined, we introduce an intermediate step as

Fig. 2. Illustration of full vehicle trajectory reconstruction (the duration between two consecutive time steps is TΔ ).
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shown in the middle column in Fig. 2. In this step, we check in each particle (except the particle with the highest weight that has
defined the determined boundary) whether there is a trajectory originating from the determined boundaries, i.e., to check if the
trajectory meets the following two conditions:

• does it cross with boundary ∈ ∩ =distance x x time k T{ [ , ] Δ }1 2 ?

• does it originate from boundaries defined in Eq. (12)?

If any trajectory meets these conditions, we delete it. As shown in Fig. 2, we delete T2,2 and T2,3 from particle 2. This step ensures
that in future iterations, newly reconstructed trajectories will not influence trajectories which were reconstructed in past iterations.

At the next time step, i.e. +k 1, we assume that the second particle has the highest weight. Therefore, we now populate
time–space region + ×k T k T x x[ Δ ,( 1)Δ ] [ , ]1 2 with trajectories extracted from particle 2, i.e., T T T{ , , }2,4 2,5 2,6 . Note that we trace back the
trajectories at boundary ∈ ∩ =distance x x time k T{ [ , ] Δ }1 2 to boundary = ∩ = +distance x time t T h k T{ [ ( ) , Δ ]}min1 1 1,3 ; update the re-
construction results in the last iteration by deleting T1,4 and T1,5, and then concatenate the updated trajectories with the newly
reconstructed trajectories (in this case T2,4), as shown in the plot at the bottom-right of Fig. 2. In this case one full trajectory (passing
x2) has been reconstructed, and the determined boundaries are also expanded (see the bottom part in Fig. 2), and we wait for new
evidence in the next iteration.

3.4. Computational complexity

The computational complexity of the particle filter based trajectory reconstruction method can be defined as O N S N( , , )p network veh ,
where Np represents the number of particles, Snetwork defines the scale of the urban network, which can be quantified by the area in the
urban network where vehicles can move, and Nveh indicates the average number of vehicles in the urban network. The computational
complexity grows linearly with the number of particles, but exponentially with the scale of the urban network and the average
number of vehicles in the network.

4. Vehicle count correction method, specification of error models and weight computation

In this section, we discuss the method to estimate vehicle accumulation and we specify our assumptions related to the error
models for the various data sources. On the basis thereof, we then return to the computation of the particle weights.

4.1. Estimating vehicle accumulation

Consider two detectors installed at x1 (upstream) and x2 (downstream) on a closed roadstretch (no entry or exits), both measuring
flow =q t i( ), 1,2i . Vehicle accumulation between x1 and x2 at any time instant t is equal to

= −N t Q t Q t( ) ( ) ( ),1 2 (13)

where ∫=Q t q s ds( ) ( )i
t

i0 is the cumulative curve of the detector installed at =x i, 1,2i . The travel time from x1 to x2 of the nth vehicle
equals = −T n t n t n( ) ( ) ( )r 2 1 , where = =−t n Q n i( ) ( ), 1,2i i

1 . In case of FIFO (first in, first out), Tr is exact, otherwise an approximation;
N t( ) is exact in both cases. Unfortunately, if the detectors miss or over-count vehicle passages, that is = +q t q t β t( ) ( ) ( )i

true
i
detector

qi
,

with β t( )qi
an arbitrary noise term, both N t( ) andTr will contain errors. Since N t( ) integrates consecutive flow counts (Eq. (13)) this is

an additive error that—regardless of the precise form of β t( )qi
—yields an unbounded estimation bias for N t( ). In van Lint and

Hoogendoorn (2015) a method is proposed which uses travel time observations to correct the flows and thereby the cumulative
counts to estimate the vehicle accumulation. This method works along the same lines as the CUPRITE method proposed in Bhaskar
et al. (2014). The basic idea is shown in Fig. 3. Suppose the n th

2 vehicle passes x2 at time t2, the estimated travel time given by the
cumulative curves is

Fig. 3. Vehicle accumulation estimation using the correction mechanism.
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̂ = = − = −∗ −T t T n t t t Q n( ) ( ) ( )r r2 2 2 2 1
1

2

Assume at t2, we observe a travel time T t( )r
obs

2 . The travel time error will be

̂= −ε t T t T t( ) ( ) ( )T r
obs

r2 2 2

We can now use this travel time error to correct the error in the flows (and thus cumulative curves). We have two equivalent
options (one error and two degrees of freedom), as shown in Fig. 3. The first is to rotate the cumulative curve Q t( )1 such that

→ ∗Q t Q t( ) ( )1 1 and the second is to rotate the cumulative curveQ t( )2 such that → ∗Q t Q t( ) ( )2 2 , in both cases by an amount ε t( )N 2 . Let us
assume we correct Q t( )1 and that the previous correction took place for cumulative count =Q t n( )1 0 0. Some straightforward algebra
leads to

= + −
−

∗Q t Q t t t
t t

ε t( ) ( ) ( )N1 1
0

1 0
2 (14)

with

= −
−∗ε t n n

t t
ε t( ) ( )N T2

2 0

0
2

substituting (14) in (13) then gives

 = −∗N t Q t Q t( ) ( ) ( )1 2

This method yields very good results in terms of estimating vehicle accumulation, even when limited travel time measurements
are available. Note that since =q t( ) dQ

dt , this correction implies that all flow measurements q t( ), with ∈t t t[ , ]0 1 are effectively adjusted
by this correction. However, since we have two degrees of freedom (up- and downstream flows) to adjust for one error, these adjusted
flows may not be more accurate than before the correction. To generate vehicles on the roadstretch we therefore use the estimated
vehicle accumulation N t( ) only, and not these corrected flows. Further below we detail how vehicles are generated and how the
corrected cumulative counts of vehicles is used in our framework.

4.2. Error models for the different data sources

4.2.1. Vehicle accumulation
Although the method proposed above is able to remove the bias due to the additive errors in consecutive flow measurements, the

resulting vehicle accumulations will still contain errors, which we can now assume to be zero mean (van Lint and Hoogendoorn,
2015). For the simulation case later on we approximate the discrete probability distribution of this estimation error by the histogram:

= = =P E e Nr e t e
N

( ) ( ( ) )

in which e t( ) is the vehicle accumulation estimation error defined as

= − = … −e t N t N t t t t t( ) ( ) ( ), , , , N0 1 1

where N t( ) is the ground truth value (obtained in the simulation) of the vehicle accumulation at time instant t, and N t( ) is its
corresponding estimation. =Nr e t e( ( ) ) is the number of time instants when =e t e( ) , and N is the number of time instants when the
vehicle accumulation is estimated. Clearly, when applied in practice we need to assume a parameterized (discrete) distribution, for
example fitted to this histogram.

4.2.2. Vehicle passages
There are two types of errors in vehicle passages, i.e., miss-counts and over-counts, and we model these two types of errors using

two parameters:

• detection accuracy ∈p [0,1], depicting the probability that a sensor successfully detects a vehicle passage. Conversely, the prob-
ability that the sensor misses the passage equals −p1 .

• occurrence rate of over-count λ. The number of over-counts during a time interval can be regarded as a Poisson distribution, and we
define its occurrence rate as λ. As a result, the time between two consecutive over-count events is an Exponential distribution,
with mean λ1/ .

4.3. Arrival reconstruction

Assume that at time k, the available (noisy!) passage times from an inflow sensor are = …E t t t{ , , , }k
j

m1 2 , where j is the index of the
inflow sensor (see Eq. (10)). The problem we are going to solve in this section is to reconstruct a possible passage sequence based on
the observation and the error model. We first apply a few simple rules to ‘clean’ the data from obvious errors. For example, if the time
headway between two consecutive passage times on a single lane is (much) smaller than the minimum time headway, one of them is
likely an over-count. A passage observed at the stop-line of an intersection during the red phase is over likely an over-count. In both
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cases, we can clean the data by deleting these unlikely passage times. After this preprocessing step, we reconstruct a possible passage
sequence Ek

j that is probable under the assumed error models for miss- and over-counts.
To this end, we first define a two-dimensional random variable: =X N N( , )m o , where Nm represents the number of miss-counts, and

No the number of over-counts. We compute the joint probability distribution p X( ) using Algorithm 2. Once p X( ) is available, we draw
n n( , )m o from p X( ) to reconstruct a possible passage sequence. Then we reconstruct passage times as follows:

• randomly delete no elements in Ek
j;

• randomly generate nm time instants between −k T k T[( 1)Δ , Δ ], until the time headways meet some predefined requirements (i.e.,
resultant time headway is larger than the minimum time headway); insert them into Ek

j.
Algorithm 2. Compute the joint probability distribution of miss-count and over-count.

4.4. Weight computation: utilizing the error models

We can now return to the computation of the particle weights, which depends on the error models we introduced above. Recall
that when a sample is generated, its weight is updated based on newly available measurement L= = =m E N{{ } ,{ } }k

o
k
j

j
N

k
l

l1 1
s (see detailed

definition in Section 3.3.1). Since the two types of data are conditionally independent given −Sk k
i

1: (the intermediate states recorded
when generating the i-th particle; see detailed explanation in Section 3.3.2), we have L=− = − = −p m S p E S p N S( | ) ({ } | ) ({ } | )k

o
k k
i

k
j

j
N

k k
i

k
l

l k k
i

1: 1 1: 1 1:
s .

Since measurements from different sensors are conditionally independent given −Sk k
i

1: , we have = ∏= − = −p E S p E S({ } | ) ( | )k
j

j
N

k k
i

j
N

k
j

k k
i

1 1: 1 1:
s s .

Similarly we have L
L

= ∏= − ∈ −p N S p N S({ } | ) ( | )k
l

l k k
i

l k
l

k k
i

1 1: 1: , since vehicle accumulations on different road segments are conditionally
independent given −Sk k

i
1: . Consequently, the weight of the i-th particle is computed by

L     
∏ ∏= = × ×− − = − ∈ − −w p m S w p E S p N S w( | ) ( | ) ( | ) ,k

i
k
o

k k
i

k
i

j

N
k
j

k k
i

l k
l

k k
i

k
i

1: 1 1 1:

vehicle passages

1:

vehicle accumulation

1
s

which boils down to the computation of −p E S( | )k
j

k k
i

1: and −p N S( | )k
l

k k
i

1: . Based on −Sk k
i

1: , we can easily obtain (e.g., by linear
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interpolation) the estimated vehicle passages at sensor j, which is denoted as Ek
i j, ; similarly we can quickly get (e.g., by counting) the

estimated vehicle accumulation on road stretch l, which is denoted by Nk
i l, . Consequently, the computation of −p E S( | )k

j
k k
i

1: and

−p N S( | )k
l

k k
i

1: boils down to the computation of p E E( | )k
j

k
i j, and p N N( | )k

l
k
i l, , respectively, i.e.,

= =− −p E S p E E p N S p N N( | ) ( | ), ( | ) ( | )k
j

k k
i

k
j

k
i j

k
l

k k
i

k
l

k
i l

1:
,

1:
, . Therefore, in the rest of this section, we show how to compute p E E( | )k

j
k
i j, and

p N N( | )k
l

k
i l, based on the error assumptions.

Assume that at time k, the available observation from the j-th sensor is = …E t t t{ , , , }k
j

m1 2 ; at the same time, the estimated value from
the i-th particle is = ′ ′ … ′E t t t{ , , , }k

i j
m

,
1 2 i . To compute p E E( | )k

j
k
i j, , we need to figure out which passages in Ek

i j, are miss-counted, and which
passages in Ek

j are over-counts. To this end, a match procedure is applied, which is essentially the same with that in Wang and Hu
(2015), where the authors use it to match two groups of agents (without identity information) based on their locations. The match
procedure works in the following way. Given set = …X x x x{ , , , }m1 2 , set = …Y y y y{ , , , }n1 2 , and a threshold value threshold, we first calculate
the distances between all possible pairs 〈 〉 ∀ ∈ ∈x y x X y Y, , ,i j i j . We then sort the pairs 〈 〉x y,i j in ascending order based on the distance
(defined by a distance function d (·,·)) between xi and yj, and store the sorted pairs in a list L. After that, we recursively select the first
element 〈 〉x y,i j1 1

in L (i.e. the pair with the smallest distance), and if the distance <d x y threshold( , )i j1 1
, we store 〈 〉x y,i j1 1

in a set MS
(referred to as the matched set), and then delete all the pairs in L that contains xi1 or yj1. This continues until L is empty or the first pair
in L has a distance larger than or equal to the predefined threshold value threshold. We formally denote this match procedure as

=MS match X Y threshold( , , ).
We apply the match procedure on Ek

i j, and Ek
j, with the distance function defined as ′ = − ′d t t t t( , ) | |, where ∈ ′ ∈t E t E,k

j
k
i j, , and the

threshold value chosen as the minimum time headway hmin. After the match, passages in Ek
i j, that are not matched will be regarded as

miss-counts, while passages in Ek
j that are not matched will be regarded as over-counts, which are shown in Fig. 4. Then p E E( | )k

j
k
i j, is

calculated as follows:

  
  ⏟= × × − ×− −

−

−

−

p E E e p p λ T e
n

( | ) (1 ) ( Δ )
!

,k
j

k
i j d m n n

n λ T

o

,

penalty miss count

Δ

over count

m i m m
o

where = ′ 〈 ′〉 ∈ =d max d t t t t MS match E E h m{ ( , )| , ( , , )},m k
j

k
i j

min i
, is the number of passages in E n,k

i j
m

, is the number of miss-counts, and no
is the number of over-counts. Among these numbers, the relation = − = −MS n n m n| | o i m holds, where n is the number of passages in
Ek

j. The term −e dm acts as a penalty function, which means that we favor those particles that have smaller distance to the observation.

The term × −−p p(1 )m n ni m m computes the probability of miss-counts, while the term
−λ T e

n
( Δ )

!

no λ T

o

Δ
computes the probability of over-

counts.
The computation of p N N( | )k

l
k
i l, finally yields

= = −p N N P E N N( | ) ( ),k
l

k
i l l

k
i l

k
l, ,

where Nk
l is the vehicle accumulation on road segment l at time k estimated by the correction method, while Nk

i l, is the corresponding
value estimated by the i-th particle. P E( )l is the discrete probability distribution of the estimation error of the vehicle accumulation
on road segment l.

5. Simulation study

5.1. Experimental setup

To test the framework we consider the area shown in Fig. 5, which consists of two signalized intersections and six sensors
(represented by green bars) that can detect individual vehicle passages. Each traffic light (TLB and TLD) has a fixed cycle time of 60 s,
and the splits for red and green are 30 s each (as shown in the right part of Fig. 5). The vehicle arrivals obey a Poisson process, and the
mean of inter-arrival time is 6 s (undersaturated condition). When generating a vehicle, the probabilities that it goes to Sink 1, Sink 2
and Sink 3 are 60%,20% and 20%, respectively.

In this paper, we use the Intelligent Driver Model (IDM) (Treiber et al., 2000) as our car-following model. The IDM defines a
vehicle’s acceleration as

Fig. 4. Determine the miss-counts and over-counts.
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where the parameters are assigned with typical values for city traffic (Treiber and Kesting, 2013), which are listed in Table 1.
The objective is to apply the proposed data assimilation framework to reconstruct the trajectories of vehicles entering from A and

leaving from D. To this end, we run the simulation for 1800 s (30 cycles), and record (ground truth) vehicle trajectories at 1 Hz along
with (ground truth) passage times across each sensor. We allow for a warm up time of 240 s, and use 14 cycles (from =t 240 s to

=t 1080 s) for study, in which the passages from each sensor were processed into different datasets with different detection accuracy
(p) and occurrence rate of over-count (λ), in order to imitate different sensor qualities. Travel time is measured every 3min. We set
the measurement interval to =TΔ 60 seconds, i.e. passage times become available every 60 s.

5.2. Evaluation criteria

We assess the data assimilation framework in line with the two aspects shown in Fig. 1: correctness of the reconstructed vehicle
passages at each sensor; and agreement of the reconstructed vehicle trajectories with the ground truth.

5.2.1. Vehicle passages and departure times per cycle and over multiple cycles
Let = …E t t t{ , , , }i

j
n1 2 i and  ̂ ̂ ̂ ̂= …E t t t{ , , , }i

j
n1 2 i depict the ground truth and estimated passing times at sensor j during the i-th cycle

respectively. We define the estimation error of the number of vehicle passages as

̂= × −E n n n100% ( )/ ,number i
j

i i i,

and the departure time error as

̂= × −E n n n100% ( )/ ,match i
j

i i
m

i,

in which ̂ni
m is the number of time instants in Ei

j that are matched with certain time instants in Ei
j
using the match procedure

introduced in Section 4.4. In this procedure we use a threshold value for the minimum time headway hmin to determine which ground
truth and estimated departure times most likely coincide. Ematch i

j
, essentially defines the percentage of passages in Ei

j that are not
accurately reconstructed.

Over multiple cycles we take the mean absolute percent error, that is,

∑ ∑= =
= =

E
n

E E
n

E1 | |, 1 | |number
j

cycles i

n

number i
j

match
j

cycles i

n

match i
j

1
,

1
,

cycles cycles

(15)

5.2.2. Generalized flow and density
To assess the quality of vehicle trajectory reconstruction at the macroscopic level, we compare the generalized flow q and density

k for a time–space region using Edie’s well known definitions (Edie, 1963):

=
∑

=
∑

q
d

XT
k

r
XT

, ,i i i i

which, using the variables in Fig. 6a, can be computed as

Table 1
The parameters for the IDM.

Name Maximum acceleration Comfortable deceleration Minimum distance Safe time headway Desired speed
a (m/s )2 b (m/s )2 s (m)0 T (s) v (m/s)0

Value 1.0 1.5 2.0 1.0 15.0

Fig. 5. A road stretch with two signalized intersections.
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where na is the number of arrivals at cross-section X n, v0 is the number of departures at cross-section X m, b1 is the vehicle accumulation
atT0, and me is the vehicle accumulation atT1. The corresponding estimation errors for flow and density in the i-th cycle are defined as
percent errors:

̂
̂

= × −

= × −

E q q q

E k k k

100% ( )/

100% ( )/
flow i i i i

density i i i i

,

,

where q k,i i are the ground truth values of flow and density in the i-th cycle, respectively, and ̂ ̂q k,i i are their corresponding estimated
values. Finally, again over multiple cycles we take the mean absolute percent error, that is,

∑ ∑= =
= =

E
n

E E
n

E1 | |, 1 | |flow
cycles i

n

flow i density
cycles i

n

density i
1

,
1

,

cycles cycles

(17)

5.2.3. Agreement between estimated and ground-truth trajectories
To assess how well a single reconstructed vehicle trajectoryTraj fits to the ground truth Traj, we consider two error measures that

capture the error in location and the error in (local) speed, that we term translation and distortion error respectively. The so called
translation error quantifies how much effort is needed to shift Traj along the time axis to obtain Traj. The less effort, the better the
estimation. We define it as

 ̂∑= − ×
=

E Traj Traj
N

t x t x
TT Traj

( , ) 1 | ( ) ( )|
( )

100%tr
t

δx i

N
i i

1

δx

(18)

where ̂t x t x( ), ( ) are the time instants when trajectory Traj and its estimationTraj cross location x, respectively; Nδx is the number of
discretized locations that Traj andTraj crosses;TT Traj( ) is the total travel time from the upstream to the downstream, measured from
the ground truth trajectory Traj.

The so-called distortion error quantifies how much effort is needed to distort Traj to obtain Traj. The less effort, the better the
estimation. This distortion is the result of errors in speed along the trajectory. We define it as

 ̂∑= − ×
=

E Traj Traj
N

v x v x
v Traj

( , ) 1 | ( ) ( )|
( )

100%tr
v

δx i

N
i i

1

δx

(19)

where ̂v x v x( ), ( ) are the speeds when trajectory Traj and its estimationTraj cross location x, respectively; v Traj( ) is the mean speed
measured from the ground truth trajectory Traj (i.e., total traveled distance divided by total travel time within the time–space
region).

Fig. 6b illustrates a case where a trajectory is perfectly estimated safe for a translation error. Fig. 6c shows a case in which there is
a distortion error (and by implication also a translation error). We finally also consider an overall error which combines the two
effects (we arbitrarily give both error components equal weight):


 

=
+

E Traj Traj
E Traj Traj E Traj Traj

( , )
( , ) ( , )

2tr
t v tr

t
tr
v

,
(20)

Finally, we define error measures for two sets of trajectories. Prior to definition, we need to figure out which trajectory in the set of
ground truth trajectories =TS Traj{ }i is estimated by which trajectory in the set of reconstructed trajectories =TS Traj{ }j . To this end,

we denote the start point of trajectory ∈Traj TSi as t x( , )i i0, 0, , and for a trajectory  ∈Traj TSj , as ̂ ̂t x( , )j j0, 0, . If the two start points are close

enough,Trajj is regarded as the estimation of Traji. By ‘close enough’, we mean that one of the following conditions is met:

Fig. 6. Evaluation of vehicle trajectory reconstruction.

X. Xie et al. Transportation Research Part C 92 (2018) 364–391

378



• ̂ ̂= = ∩ − <x x X t t h| |i j i j min0, 0, 0 0, 0, or

• ̂ ̂= ∩ − <t t x x s| |i j i j min0, 0, 0, 0, ,

where hmin and smin are the minimum time headway and the minimum space headway, respectively. As a result we now define the
following three error measures for set =TS Traj{ }i being estimated by set  =TS Traj{ }j :
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where  ∈Traj TSji
is the estimation of ∈Traj TSi , and n is the number of vehicle trajectories in TS which have corresponding esti-

mations in TS.
Finally note that since v Traj( ) appears in the denominator of Eq. (19), both the distortion error (Eq. (19)) and the overall error

(Eq. (20)) are sensitive to very low speeds. Therefore, the distortion error is not informative when average speeds are small, e.g. in
oversaturated traffic conditions. We will return to this point further below (Section 5.4).

5.3. Results

In this section, we use a fixed detection accuracy of =p 0.9; an occurrence rate of over-counts = −λ 1/300 s 1; and we assume that
travel time observations are available every 3min. Due to space limitations, we restrict the presentation to road stretch AB in Fig. 5.

5.3.1. Reconstructed vehicle passages per cycle
The vehicle accumulation estimation results for the roadstretch between sensors A and B are shown in Fig. 7, where the left plot

shows the estimated vehicle accumulation, while the right plot depicts the associated histogram of—indeed approximately zero-
mean!—estimation errors. Fig. 8 shows the ground-truth, observed, estimated and matched numbers of vehicle passages at upstream
sensor (A) and downstream sensor (B) for a sequence of 14 cycles, in blue, red, green, and yellow, respectively.

Table 2 lists the average errors (Eq. (15)) over 14 cycles, which are 7.43% and 5.60% for sensor A; and 2.70% and 5.63% for sensor B,
respectively. This implies that our method is able to reconstruct ca. 95% of the vehicle passages, which is a promising result, con-
sidering our dataset contains around 10% miss-counts and over-counts ( = = −p λ0.9, 1/300 s 1).

5.3.2. Generalized flow and density
The estimation results for flow q and density k on roadstretch AB are shown in Fig. 9a and b, respectively. The average estimation

error over 14 cycles (computed with Eq. (17)) for flow q and density k are 5.26% and 5.23%, respectively.
It is insightful to analyze a few results in detail. For example, flow q and density k are overestimated in the 6-th cycle (300–360 s)

while underestimated in the 13-th cycle (720–780 s). The (large) error in the 6-th cycle is mainly a result of the errors in the vehicle
accumulation. As shown in the left plot in Fig. 7, vehicle accumulation is overestimated in the end of the cycle ( =t 360 s). Based on
the definitions of q and k in Eq. (16), these errors will lead to overestimations of q and k. In the 13-th cycle, the (large) error is
probably due to the miss-counts of sensor A, as shown in Fig. 10. The vehicles missed at sensor A are also not fully observed at
downstream sensors. In this case, the chance to successfully reconstruct their trajectories is very low. Consequently, the flow q and
the density k will be underestimated because the missed vehicles do not show up at sensor B (nv thus has a smaller value in the
computation of q) and their travel times are not included in the computation of k as shown in Eq. (16).

In the 7-th cycle (360–420 s), the flow q is largely underestimated, which is mainly due to the overestimation of vehicle accu-
mulation at =t 360 s. This overestimation in vehicle accumulation leads to a smaller number of vehicle arrivals upstream (sensor A)

Fig. 7. The vehicle accumulation estimation results for the roadstretch between sensors A and B using the correction method (the left plot shows the
estimated vehicle accumulation, while the right plot depicts the histogram of the estimation errors).
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Fig. 8. Number of vehicle passages per cycle.

Table 2
The estimation error of the number of vehicle passages and the percentage of passages that are not accurately reconstructed as defined in Eq. (15)
computed over 14 cycles at sensors A and B respectively.

Enumber
A Ematch

A Enumber
B Ematch

B

Performance 7.43% 5.60% 2.70% 5.63%

Fig. 9. The estimated flow q and density k on roadstretch AB

Fig. 10. Vehicle trajectories in the 13-th cycle.
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in order for the simulated passages to match the observed passages downstream (sensor B). As a consequence, q is assigned a smaller
value (see the definition in Eq. (16)).

5.3.3. Translation error and distortion error
In the time–space region on roadstretch AB, i.e., ×[0 s,840 s] [0 m,100 m], there are 131 vehicle trajectories in the ground truth

dataset; our method reconstructs 128 trajectories in the same region, and 123 of them can be matched with trajectories in the ground
truth dataset. The translation error Etr

t (Eq. (18)), distortion error Etr
v (Eq. (19)), and overall error Etr

t v, (Eq. (20)) for each pair of
trajectories (123 pairs) are computed, and the histograms of these errors are depicted in Fig. 11(a), (b), and (c), respectively. The
average values for the translation error, the distortion error, and the overall error are = =E E2.56%, 6.98%tr

t
tr
v , and =E 4.77%tr

t v, ,
respectively. Again these averages of about 5% are promising given the degree of sensor errors we imposed. Since the overall error
Etr

t v, is a linear combination of Etr
t and Etr

v , its histogram follows the shape of the histogram of Etr
v .

We make two general observations based on the results. First, the histograms in Fig. 11 do illustrate that some pairs of trajectories
have large errors (15% and more). These pairs of trajectories mainly lie in the 6-th cycle (300–360 s) and the 7-th cycle (360–420 s),
which are depicted in Fig. 12. As shown in the left plot in Fig. 7, the corresponding vehicle accumulation is overestimated in the end
of the 6-th cycle ( =t 360 s). This results in the (false) reconstruction of two trajectories (originating from ≈t 330 s and ≈t 340 s) in
order to match the vehicle accumulation at =t 360 s. Essentially the method falsely reconstructs a queue, yielding strongly sloped
trajectories after ≈t 350 s until that queue is resolved. This discrepancy in trajectory shape leads to a large translation and distortion
error.

Second, and related to this point, the results indicate that the distortion errors are in general larger than the translation errors.
This makes intuitively sense: the data (passages and accumulation) give direct information on how much vehicles we expect where
and when. This information, however, can be reconstructed with an—in principle—infinite number of individual speed profiles. The
simulation models applied constrain this large solution space to those trajectories that are plausible. We take the last pair of tra-
jectories (originating from ≈t 405 s) in Fig. 12d as an example. We redraw this pair of trajectories in the left plot of Fig. 13, and we
show their time differences (see Eq. (18)) in the middle of Fig. 13, and we depict their speed differences (see Eq. (19)) in the right plot
of Fig. 13. The translation error and distortion error for this pair are =E 5.97%tr

t and =E 31.16%tr
v , respectively. From Fig. 13, we can

see that ̂−v x v x v| ( ) ( )|/ is less robust to a small trajectory discrepancy than ̂−t x t x TT| ( ) ( )|/ . For example, at ∈x [0,50] where the
estimated trajectory is very close to the ground truth trajectory, the speed difference ̂−v x v x v| ( ) ( )|/ can reach above 20%, while time
difference ̂−t x t x TT| ( ) ( )|/ is only around 1%. Therefore, the distortion errors are in general larger than the translation errors. This also
explains why the translation errors are not as large as the distortion errors for the last three pairs of trajectories in Fig. 12d.

5.4. Oversaturated traffic conditions

We also tested the data assimilation framework in oversaturated traffic conditions, in which the mean of inter-arrival time is set to
4 s. The results (obtained from 10 independent runs) are shown in Table 3. As expected, we see very high distortion errors (and thus
large overall errors), since the average speed is very small in oversaturated conditions. However, since the traffic shows less
variability (thus less uncertainty) in oversaturated conditions, on each of the other error measures we find similar or even better
results when comparing with those (obtained from a single run in Section 5.3) in undersaturated conditions, which are 7.43%
(Enumber

A ), 5.60% (Ematch
A ), 2.70% (Enumber

B ), 5.63% (Ematch
B ), 5.26% (Eflow), 5.23% (Edensity), 2.56% (Etr

t ), 6.98% (Etr
v), and 4.77% (Etr

t v, ),
respectively.

6. Sensitivity analysis and extensions

In this section, we test the framework in undersaturated traffic conditions (mean of inter-arrival time is 6 s) by varying with
several factors which will likely influence the data assimilation results. These factors include sensor data quality, modeling errors, the
number of particles employed. We also discuss a few possible extensions to the framework. For each set of parameters, we run the
experiment 10 times with different random seeds.

Fig. 11. The histogram of translation error Etr
t , distortion error Etr

v , and overall error = +E E E( )/2tr
t v

tr
t

tr
v, (123 pairs of trajectories in total; the width

of each bin is 1.0%).
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6.1. Sensitivity analysis

6.1.1. The difference between estimated and error-free vehicle accumulations
Vehicle accumulations are key in the trajectory reconstruction method, but difficult to come by. In this paper, we used a cor-

rection method to estimate vehicle accumulations through cumulative counts and coarsely available travel time observations.
Although this method yields good results, the estimates are certainly not error free. Table 4 summarizes the results when error-free
vehicle accumulations are assimilated. Although the original results (top row in Table 4) are acceptable and around 10% or less, these

Fig. 12. The trajectories whose translation/distortion error is larger than 15%.

Fig. 13. Time differences and speed differences of a pair of trajectories (the plot in the left shows the pair of trajectories, the plot in the middle
depicts the time series of ̂× −t x t x TT100% | ( ) ( )|/ , and the plot in the right depicts the time series of ̂× −v x v x v100% | ( ) ( )|/ ; for this pair of trajec-
tories, = =E E5.97%, 31.16%tr

t
tr
v ).
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results confirm that indeed all error measures (number of passages, departure times, flow, density and the three trajectory errors,
respectively) decrease significantly, also in the statistical sense. By investing in vehicle counting (better loops, or via radar or other
sensing devices), around 40% more accurate cumulative counts ( ∈E E j A B, , { , }number

j
match
j ); around 25–30% more accurate macroscopic

estimates (E E,flow density); and also more accurate microscopic vehicle dynamics (trajectories) can be estimated, particularly when it
comes to the correct location of the trajectories (38% improvement in Etr

t versus 10% improvement in Etr
v respectively).

6.1.2. Effect of sampling rate of travel time observations
The experiment in Section 5 assumes that the travel time observations are available every 3min. In this section, we explore how

the sampling rate of the travel time observations affect the data assimilation results. This effect is essentially predictable. On the one
hand, van Lint and Hoogendoorn (2015) shows that more frequent travel time observations leads to more accurate vehicle accu-
mulation estimations. On the other hand, the results in Table 4 reveal that with more accurate vehicle accumulations, we can
reconstruct more accurate vehicle trajectories. Therefore, we can predict that with more frequent travel time observations, the data
assimilation results will be improved. This prediction is confirmed by the experiment results shown in Table 5, which tell that the
trajectory reconstruction results become more accurate as the travel time observations are fed more frequently, but this trend is below
proportional.

Table 3
The data assimilation results in oversaturated traffic conditions (mean of inter-arrival time is 4 s). For all simulations we have

= = =−p λ N0.9, 1/300 s , 1000p
1 (i.e. 1000 particles). In each table cell the median error over the 10 simulations is shown along with (in brackets

underneath) the 25th and 75th percentiles.

Traffic conditions Reconstructed vehicle passages Generalized flow and density Translation/distortion errors

E (%)number
A E (%)match

A E (%)number
B E (%)match

B E (%)flow E (%)density E (%)tr
t E (%)tr

v E (%)tr
t v,

Oversaturation 8.33 9.62 0.00 8.97 2.30 5.99 4.92 53.41 29.17
(8.33, 9.62) (8.97, 9.62) (0.00, 0.00) (8.97, 9.62) (1.60, 2.78) (4.82, 7.05) (3.76,

5.24)
(45.38,
59.63)

(24.57,
32.43)

Table 4
Data assimilation results when accurate vehicle accumulations are available. For all simulations we have = = =−p λ N0.9, 1/300 s , 1000p

1 (i.e. 1000
particles). In each table cell the median error over the 10 simulations is shown along with (in brackets underneath) the 25th and 75th percentiles.

Estimated
accumulations

Reconstructed vehicle passages Generalized flow and
density

Translation/distortion errors

E (%)number
A E (%)match

A E (%)number
B E (%)match

B E (%)flow E (%)density E (%)tr
t E (%)tr

v E (%)tr
t v,

Inaccurate
accumulations

9.37 10.47 5.90 9.97 8.37 9.48 3.57 10.49 7.04
(7.70, 11.18) (7.81, 11.02) (5.09, 6.64) (7.15, 10.18) (7.17, 9.65) (7.64, 11.84) (3.14,

3.73)
(10.16,
11.05)

(6.77, 7.37)

Error-free
accumulations

5.84 7.71 5.09 6.62 6.65 7.36 2.19 9.39 5.76
(5.20, 6.86) (6.56, 8.45) (4.43, 6.41) (5.74, 7.14) (6.22, 7.23) (6.95, 8.10) (2.01,

2.27)
(8.75, 9.84) (5.48, 6.20)

Table 5
The influence of the sampling rate of the travel time observations. For all simulations we have = = =−p λ N0.9, 1/300 s , 1000p

1 (i.e. 1000 particles).
In each table cell the median error over the 10 simulations is shown along with (in brackets underneath) the 25th and 75th percentiles.

Sampling rate
(minutes)

Reconstructed vehicle passages Generalized flow and
density

Translation/distortion errors

E (%)number
A E (%)match

A E (%)number
B E (%)match

B E (%)flow E (%)density E (%)tr
t E (%)tr

v E (%)tr
t v,

9 11.21 11.48 7.43 11.06 10.40 14.11 4.49 14.37 9.52
(10.35, 11.94) (10.31, 13.98) (6.16, 8.13) (9.87, 11.86) (9.65, 10.88) (11.21, 17.03) (3.81,

4.82)
(12.25,
15.50)

(8.00,
10.16)

6 10.00 11.50 7.91 10.51 9.50 15.19 3.92 12.45 8.22
(9.27, 11.62) (10.75, 11.92) (6.14, 9.20) (9.81, 12.58) (8.22, 10.33) (10.85, 18.44) (3.56,

4.20)
(11.90,
12.91)

(7.60, 8.56)

3 9.37 10.47 5.90 9.97 8.37 9.48 3.57 10.49 7.04
(7.70, 11.18) (7.81, 11.02) (5.09, 6.64) (7.15, 10.18) (7.17, 9.65) (7.64, 11.84) (3.14,

3.73)
(10.16,
11.05)

(6.77, 7.37)
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6.1.3. Effect of sensor quality
In this paper, the sensor quality is characterized by two parameters: detection accuracy p and occurrence rate of over-count λ.

When varying one of the two, the other is assigned a perfect value, i.e. when varying p, we set λ to ∞ −1/ s 1 (no over-counts); when
varying λ, we set =p 1 (no miss-counts). For all experiments we set =N 1000p . The results are shown in Tables 6 and 7, respectively.
The results are in line with our expectations that the performance improves as the sensors become more accurate. We can conclude
that the proposed method is quite robust to data errors. Even with 40% miss-counts or one over-count every two minutes, all esti-
mation errors are (well) within a 20% range.

6.1.4. Effect of model errors
In previous sections, the model we used to carry out data assimilation is the same with that we used to generate the ground truth

data, which implies that we have a perfect model of the reality. This is a very strong assumption. In this section, we investigate the
data assimilation results in case the model has errors. Specifically, we test two cases: (1) assimilating data generated by the IDM using
the IDM with 5% calibration errors on the minimum spacing s0 and the desired time headway T; (2) assimilating data generated by the
IDM using a different car-following model, the Improved Full Velocity Difference Model (IFVDM) (Treiber and Kesting, 2013), which
defines a vehicle’s acceleration as

= ⎧
⎨⎩

⎫
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= −

− +
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−

v s max v
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( ) 0,
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1 tanh
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0

Table 6
The influence of p on the data assimilation results ( = ∞ =−λ N1/ s , 1000p

1 ). In each table cell the median error over the 10 simulations is shown
along with (in brackets underneath) the 25th and 75th percentiles.

p Reconstructed vehicle passages Generalized flow and density Translation/distortion errors

E (%)number
A E (%)match

A E (%)number
B E (%)match

B E (%)flow E (%)density E (%)tr
t E (%)tr

v E (%)tr
t v,

0.6 14.15 17.67 6.65 18.32 11.96 19.77 7.49 16.05 11.94
(12.85, 15.01) (16.89, 18.49) (6.51, 7.69) (16.34, 19.39) (10.49, 13.31) (17.88, 21.43) (6.79, 8.75) (15.52, 17.64) (11.33, 12.97)

0.7 10.64 12.12 7.93 13.21 8.00 12.22 5.80 16.10 11.15
(8.94, 12.11) (10.48, 15.49) (5.25, 10.86) (10.60, 14.54) (7.39, 8.70) (10.96, 16.42) (5.37, 6.91) (14.01, 17.64) (9.59, 11.89)

0.8 7.99 7.99 5.55 7.85 7.10 12.54 4.72 13.19 8.72
(6.45, 9.45) (7.71, 9.09) (4.19, 7.36) (7.37, 9.37) (5.60, 7.53) (10.00, 15.30) (4.27, 5.06) (11.97, 14.49) (8.36, 9.78)

0.9 5.71 2.96 6.87 3.73 6.29 12.11 3.20 12.18 7.67
(4.42, 7.64) (2.10, 3.35) (6.44, 7.20) (2.28, 4.12) (4.88, 7.09) (11.09, 14.32) (2.37, 3.97) (10.99, 12.86) (6.68, 8.68)

1.0 0.00 0.00 0.00 0.79 0.30 1.38 1.24 4.95 3.09
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.79) (0.13, 0.68) (1.31, 1.43) (1.21, 1.27) (4.84, 5.28) (3.02, 3.28)

Table 7
The influence of λ on the data assimilation results ( = =p N1.0, 1000p ). In each table cell the median error over the 10 simulations is shown along
with (in brackets underneath) the 25th and 75th percentiles.

−λ s( )1 Reconstructed vehicle passages Generalized flow and density Translation/distortion errors

E (%)number
A E (%)match

A E (%)number
B E (%)match

B E (%)flow E (%)density E (%)tr
t E (%)tr

v E (%)tr
t v,

1/120 10.33 12.17 10.08 12.60 10.64 17.83 3.78 13.25 8.42
(9.21, 13.14) (11.05, 14.34) (8.93, 12.61) (10.76, 14.26) (8.89, 12.44) (16.59, 19.78) (3.52, 4.00) (12.73, 15.28) (8.25, 9.79)

1/180 7.94 8.57 6.81 8.24 7.49 13.25 3.45 12.08 7.81
(6.39, 9.33) (7.17, 11.14) (5.58, 8.66) (6.90, 9.99) (5.85, 9.09) (11.18, 17.10) (2.97, 3.80) (9.67, 13.37) (6.32, 8.51)

1/240 6.79 6.79 6.19 6.83 6.91 14.92 3.11 11.99 7.56
(5.88, 7.31) (5.88, 7.31) (5.73, 6.92) (6.23, 7.44) (6.36, 7.78) (14.38, 18.16) (2.94, 3.24) (10.85, 12.76) (6.89, 8.15)

1/300 4.59 4.19 5.05 6.01 5.03 8.11 2.35 9.21 5.83
(4.37, 6.58) (3.67, 6.00) (4.52, 5.91) (4.79, 6.90) (4.56, 6.09) (6.29, 10.21) (2.05, 2.52) (7.51, 9.98) (4.82, 6.22)

∞1/ 0.00 0.00 0.00 0.79 0.30 1.38 1.24 4.95 3.09
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.79) (0.13, 0.68) (1.31, 1.43) (1.21, 1.27) (4.84, 5.28) (3.02, 3.28)
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where sΔ is the transition width, β is the form factor, v0 is the desired speed, τ is the adaption time, T is the time gap, and γ is the
speed difference sensitivity. These parameters are assigned with the typical values of city traffic (Treiber and Kesting, 2013) as shown
in the last row in Table 8. The parameters of the IDM which generates the ground truth data are

= = = = =a b T v1.0 m/s , 1.5 m/s , s 2.0 m, 1.0 s, 15.0 m/s2 2
0 0 . The results are summarized in Table 9.

The results in Table 9 reveal that the proposed method is robust with respect to model errors, although with the two cases
involved, we cannot claim to have tested this exhaustively. In the case that the model has 5% calibration errors, the overall per-
formance is not significantly different with a perfect model; in the case that a different model is applied, the performance does not
degenerate except for the distortion error Etr

v , which is likely a result of different acceleration processes between the two models.
Clearly, this will result in larger differences in individual speed dynamics and thus larger distortion errors. Since the overall error Etr

t v,

is a linear combination of Etr
t and Etr

v , we also observe large error in the last column (Etr
t v, ) of the last row in Table 9. This result does

emphasize an important underlying point. Clearly, unless we have actual evidence (data), either macroscopically in the form of queue
dynamics, or (even better) microscopically in the form of sample trajectories, the quality of the reconstruction completely depends on
the validity of the microscopic models used in the framework for the specific case. Further below we show that such evidence can be
naturally incorporated in the framework as well, and that it indeed improves the results.

6.1.5. Effect of number of particles
The influence of the number of particles (Np) employed on the data assimilation results is summarized in Table 10. As expected,

the overall performance has an upward tendency as the number of particles increases. With more particles, the proposed method can
explore more possibilities on the entering times & speeds of individual vehicles and vehicle dispersion in the network, which leads to
a better coverage of the system state space.

The good news, however, is that the trend is far below proportional, which becomes apparent when looking at results in a graph,

Table 8
The models used to assimilate the data generated by the IDM
( = = = = =a b T v1.0 m/s , 1.5 m/s , s 2.0 m, 1.0 s, 15.0 m/s2 2

0 0 ).

Model Parameters

IDM (benchmark) = = = = =a b T v1.0 m/s , 1.5 m/s , s 2.0 m, 1.0 s, 15.0 m/s2 2 0 0
IDM ( −s 5%0 ) = = = = =a b T v1.0 m/s , 1.5 m/s , s 1.9 m, 1.0 s, 15.0 m/s2 2 0 0
IDM ( +s 5%0 ) = = = = =a b T v1.0 m/s , 1.5 m/s , s 2.1 m, 1.0 s, 15.0 m/s2 2 0 0
IDM ( −T 5%) = = = = =a b T v1.0 m/s , 1.5 m/s , s 2.0 m, 0.95 s, 15.0 m/s2 2 0 0
IDM ( +T 5%) = = = = =a b T v1.0 m/s , 1.5 m/s , s 2.0 m, 1.05 s, 15.0 m/s2 2 0 0

IFVDM = = = = = = −s β v τ T γΔ 8.0 m, 1.5, 15.0 m/s, 5.0 s, 1.2 s, 0.6 s0 1

Table 9
The influence of model errors on the data assimilation results ( = = =−p λ N0.9, 1/300 s , 1000p

1 ). In each table cell the median error over the 10
simulations is shown along with (in brackets underneath) the 25th and 75th percentiles.

Model type Reconstructed vehicle passages Generalized flow and density Translation/distortion errors

E (%)number
A E (%)match

A E (%)number
B E (%)match

B E (%)flow E (%)density E (%)tr
t E (%)tr

v E (%)tr
t v,

IDM (benchmark) 9.37 10.47 5.90 9.97 8.37 9.48 3.57 10.49 7.04
(7.70, 11.18) (7.81, 11.02) (5.09, 6.64) (7.15, 10.18) (7.17, 9.65) (7.64, 11.84) (3.14,

3.73)
(10.16,
11.05)

(6.77, 7.37)

IDM ( −s 5%0 ) 8.86 10.06 6.20 9.52 7.65 10.67 3.69 11.29 7.51
(8.57, 10.24) (9.50, 11.05) (5.41, 6.41) (8.02, 10.92) (6.96, 8.86) (9.22, 12.08) (3.27,

3.84)
(10.53,
12.34)

(6.98, 7.81)

IDM +s( 5%)0 9.31 9.49 5.67 8.94 8.42 8.67 2.93 10.40 6.77
(8.74, 10.45) (7.38, 10.41) (4.94, 6.42) (7.66, 9.63) (7.14, 8.91) (7.67, 9.85) (2.51,

3.65)
(9.54,
11.45)

(6.09, 7.37)

IDM −T( 5%) 9.45 10.31 5.69 9.29 8.01 9.83 3.41 10.93 7.27
(8.69, 10.05) (8.35, 10.60) (5.36, 7.41) (8.10, 9.47) (7.48, 9.29) (8.23, 10.90) (2.95,

3.63)
(9.34,
12.57)

(6.24, 8.10)

IDM +T( 5%) 9.64 9.98 6.82 9.69 8.32 10.77 3.60 11.14 7.46
(8.53, 11.38) (9.56, 11.73) (5.65, 7.61) (8.88, 11.11) (7.90, 9.48) (10.20, 13.09) (3.38,

4.09)
(10.70,
11.77)

(7.33, 7.74)

IFVDM 13.04 11.79 9.46 12.49 10.42 14.06 5.72 30.66 18.14
(10.53, 13.57) (9.89, 13.24) (8.99, 12.06) (9.98, 13.65) (9.00, 11.86) (12.57, 15.62) (5.59,

5.82)
(28.57,
31.20)

(17.12,
18.54)
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as presented in Fig. 14(a) by means of absolute numbers (similar to those in Table 10) and in Fig. 14(b) by dividing all the error
measures by the corresponding performance at =N 1000p (the ensemble size chosen in this paper). What Fig. 14(b) shows, is that a
reduction in ensemble size from =N 1000p to =N 100p (i.e. 1000%) leads to an increase in error metrics ranging from less than 10%
(cumulative count at location B) to slightly over 50% (error in density); whereas doubling the ensemble size (to =N 2000p ) improves
the performance no more than between 5 and 25%. Although relatively such gains may seem worthwhile, Fig. 14(a) shows the actual
gains are small. In our view, the increased error measures in the case of =N 100p (Table 10 top row) are well within acceptable
bounds; and it seems we could have safely decreased the number of particles in our experiment from =N 1000p to =N 700p without a
significant loss of accuracy in terms of all error measures.

Table 10
The influence of Np on the data assimilation results ( = = −p λ0.9, 1/300 s 1). In each table cell the median error over the 10 simulations is shown
along with (in brackets underneath) the 25th and 75th percentiles.

Np Reconstructed vehicle passages Generalized flow and density Translation/distortion errors

E (%)number
A E (%)match

A E (%)number
B E (%)match

B E (%)flow E (%)density E (%)tr
t E (%)tr

v E (%)tr
t v,

100 12.03 11.78 7.83 10.87 10.60 14.54 4.17 13.46 8.78
(11.18, 12.64) (10.58, 12.37) (7.42, 9.28) (10.51, 11.60) (10.45, 10.71) (12.79, 15.10) (4.02, 4.37) (12.83, 13.84) (8.47, 9.12)

400 10.41 10.35 6.67 9.61 9.06 11.73 3.65 11.99 7.85
(10.13, 10.74) (9.76, 11.21) (6.32, 6.90) (9.31, 10.12) (8.79, 9.69) (10.09, 13.49) (3.44, 3.93) (11.31, 12.19) (7.26, 7.99)

700 9.52 9.23 5.79 8.57 7.81 10.36 3.38 10.82 6.94
(8.23, 10.42) (8.47, 9.82) (5.13, 6.41) (7.47, 8.99) (7.35, 8.67) (9.37, 11.41) (3.15, 3.51) (10.34, 11.60) (6.70, 7.44)

1000 9.37 10.47 5.90 9.97 8.37 9.48 3.57 10.49 7.04
(7.70, 11.18) (7.81, 11.02) (5.09, 6.64) (7.15, 10.18) (7.17, 9.65) (7.64, 11.84) (3.14, 3.73) (10.16, 11.05) (6.77, 7.37)

2000 7.87 7.24 4.84 6.70 7.09 7.64 3.03 9.89 6.57
(6.61, 9.10) (6.52, 8.70) (3.47, 5.88) (6.21, 7.72) (6.14, 7.55) (6.25, 9.17) (2.72, 3.24) (9.52, 10.24) (6.36, 6.73)

Fig. 14. The influence of Np on the data assimilation results ( = = −p λ0.9, 1/300 s 1).
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6.2. Incorporating probe vehicle data into the framework

The proposed data assimilation framework relies on the vehicle accumulation and vehicle passages to reconstruct vehicle tra-
jectories, but it is also open to other types of data if they are available. In this final section, we briefly sketch how, for example, we can
assimilate probe vehicle data (sampled vehicle trajectories) in the framework. To demonstrate this we consider the case where one
such a sampled vehicle trajectory in each cycle is available, see Fig. 15. For each sampled trajectory, we assume we have available its
position every second. Accordingly, we need to adjust the weight computation presented in Section 4.4 by adding a process in which
we consider three facts: (1) is there a trajectory in the particle which has a similar entering time (i.e. passing time at sensor A) with
that of the sampled trajectory? By ‘similar’, we mean that the difference between the two entering times is smaller than the minimum
time headway; (2) if the first condition is met, we check if the corresponding trajectory in the particle passes the same sequence of
sensors as the sampled trajectory does; (3) if the first two conditions are both met, we finally look at their average position difference
over all sampled time instants. Combining the three facts (differences), we assign a reasonable weight for each particle; since the
vehicle passages and the probe vehicle data are independent with each other, the final weight is updated by simply multiplying the
weight computed in Section 4.4 by the weight obtained from the probe vehicle data.

The results are shown in Table 11. Clearly, probe vehicle data improves the performance in terms of most metrics, and expectedly,
the most significant improvements relate to the translation & distortion errors, and number of reconstructed vehicle passages.
Sampled trajectories are direct samples of what happens between two locations, the accuracy of individual vehicle trajectory re-
construction can thus be improved; furthermore, sampled trajectories contain information of passing times by any locations, which
can help to detect miss-counts and remove over-counts, therefore we can reconstruct more accurate number of vehicle passages.

Fig. 15. The sampled trajectories.

Table 11
The data assimilation results when sampled trajectories are available ( = = =−p λ N0.9, 1/300 s , 1000p

1 ). In each table cell the median error over the
10 simulations is shown along with (in brackets underneath) the 25th and 75th percentiles.

Assimilate sampled
trajectories?

Reconstructed vehicle passages Generalized flow and
density

Translation/distortion errors

E (%)number
A E (%)match

A E (%)number
B E (%)match

B E (%)flow E (%)density E (%)tr
t E (%)tr

v E (%)tr
t v,

No 9.37 10.47 5.90 9.97 8.37 9.48 3.57 10.49 7.04
(7.70, 11.18) (7.81, 11.02) (5.09, 6.64) (7.15, 10.18) (7.17, 9.65) (7.64, 11.84) (3.14,

3.73)
(10.16,
11.05)

(6.77, 7.37)

Yes 7.33 8.43 4.45 7.18 6.90 8.25 2.79 9.11 6.08
(7.12, 8.91) (8.03, 8.94) (3.17, 5.83) (6.92, 8.36) (5.88, 8.48) (6.73, 9.56) (2.49,

2.91)
(8.39,
10.02)

(5.44, 6.42)
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7. Conclusions and outlook

In this paper, we proposed a generic data assimilation framework to reconstruct plausible trajectories of vehicles on signalized
urban arterials, and as a result also infer relevant macroscopic variables (flow, density). The framework uses a particle filter to
assimilate noisy data into a microscopic traffic simulation model. These data include vehicle passage times, traffic signal timings, and
coarsely available travel time observations. Particularly errors in vehicle counts are notoriously difficult to address and when ignored
or “untreated” these yield unbounded errors in vehicle accumulation (density), which make many methods from literature difficult to
apply. Our framework does systematically address all types of observation errors and is generic in the sense that any (ensemble of)
microscopic simulation models (that implement car following, lane changing, crossing, etc.) can be used. We have tested this fra-
mework on a simple simulated case that allowed us to analyze in detail the characteristics of the method and its sensitivity to a
number of important parameters that relate to the errors in the data and in the simulation model used.

7.1. Conclusions

Our overall conclusion is that the framework is indeed able to reconstruct plausible vehicle trajectories under realistic error
assumptions yielding good performance on both macro- and microscopic error measures. The overall absolute percent errors on
reconstructing passage counts are around 7%; whereas reconstructing the departure sequences over stop lines (e.g., getting the actual
timestamps correct) is done around a 5% error. Given a 10% probability of miss- and over-counts for all sensors this is a very
promising result—recall that without assimilation, these errors are unbounded! The errors in density and flow (using Edie’s defi-
nitions) are around 5% as well. Also the quality of the reconstructed trajectories in terms of matching locations and speeds was
satisfactory, although here we observe a (small) sample of large(r) errors. These, however, are a direct consequence of errors in
passage counts and departure sequence, causing a few non-existing queues and thus large trajectory errors.

Sensitivity analysis showed that the framework is quite robust to error assumptions. The (macroscopic) estimation errors are
consistently about half the percentages of miss- and over-counts. Even with 40% miss-counts or one over-count every two minutes, all
estimation errors are (well) within a 20% range. Similarly, the method is robust to model errors (i.e. differences between the ground-
truth driving process and the models used in the framework), although we cannot claim to have tested this exhaustively. Both
applying different parameter settings (compared to the car following models generating the ground-truth) or a different car following
model altogether does not more than marginally affect the results. This result does, however, emphasize an important underlying
point. Clearly, unless we have actual evidence (data), either macroscopically in the form of queue dynamics, or (even better) mi-
croscopically in the form of sample trajectories, the quality of the reconstruction largely depends on the validity of the microscopic
models used in the framework for the specific case at hand. In our case, this validity is evident, since the ground-truth trajectories are
produced by a similar model. In real life, when also lateral and crossing behavior enter the equation, it stands to reason that the
resulting trajectories will be farther away from the ground truth.

It turns out that such additional data can be easily incorporated in this framework. We show that probe vehicle data (providing
sampled trajectories) indeed improve the estimation results in terms of all micro- and macroscopic error measures.

7.2. Assumptions and limitations

We illustrated the working and characteristics of the particle filter based vehicle trajectory reconstruction method with extensive
simulation studies and sensitivity analysis. However, in doing so we necessarily made many assumptions, and by far did not cover all
aspects needed to make this approach suitable for large scale implementation.

First of all, in this paper we vary with sensor and model error characteristics under the assumption of ideal sensor placement, i.e.,
we assume that sensors are deployed at both the inflow boundary and the advanced stop line. This assumption will not likely hold in
real-life applications, e.g., some sensors may be placed such that not all vehicles are counted, and some roadstretches may not have
both inflow and stop line sensors installed. We can, however, formulate some informed hypotheses on the effects of missing or
inaccurate boundary measurements on the basis of the many analyses in this paper and some common (traffic flow theory) sense. In
the case of systematically biased inflow measurements (due to placement problems or others) the correction method actually still
performs well, given travel time measurement sampling rates are not too long (van Lint and Hoogendoorn, 2015). The reason is that
the method is assumption-free with respect to counting errors, which may come from any distribution (zero mean or others). As
shown in Section 6.1.2, larger travel time sampling rates deteriorate vehicle accumulation accuracy and as a result trajectory re-
construction accuracy. Generally speaking, more bias in flow measurements can be counter-effected by other complementary data
(evidence). We do suspect, however, that with very large bias (say an underestimation of 30% or more), the amount of additional
evidence needed will increase sharply. Clearly, without inflow measurements altogether, we have to resort to other methods for
vehicle accumulation estimation, based on whatever data is available. The literature offers some directions, and we demonstrated in
Section 6.2 that incorporating floating car data may counter-effect this problem at least partially. We show that our method degrades
gracefully under adverse conditions (increasing sensor errors, model errors), but there are limits beyond which the problem becomes
too underdetermined. The bottom line is that there is a minimum set of (minimum quality) sensor data required to reconstruct
plausible vehicle trajectories using micro-simulation. An extensive investigation is needed to determine what these minimum re-
quirements are under a range of different circumstances (topology, control, etc.).

Secondly, to illustrate our rather elaborate data assimilation rationale, we study a small-scale network only, in which we per-
mitted longitudinal driving behavior only. Clearly, we would very much like to extend the method to larger scale urban networks in

X. Xie et al. Transportation Research Part C 92 (2018) 364–391

388



which we incorporate all aspects of operational driving. This brings about two large challenges: a methodological challenge and a
computational challenge. The methodological challenge relates to the huge increase in the number of degrees of freedom in large
traffic networks that need to be estimated in order to use microscopic models in the data assimilation. Think of origin destination
demand patterns, route choice patterns, multi-lane queuing, complex intersection control, etc. As mentioned above, the microscopic
data assimilation framework we propose in this paper requires a sufficient coverage of sensors to estimate these degrees of freedom
within reasonable bounds of certainty, so that plausible trajectories can be reconstructed. The more underdetermined and potentially
wrong we initialize the simulation models (particles), the more wrong the reconstructed trajectories will be. Next to this metho-
dological challenge, the computational burden will increase tremendously since the required number of particles will increase ex-
ponentially (see Section 3.4) to ensure good coverage of the increased size of the state space. In this case, a parallel and distributed
version of our framework needs to be developed to deal with large urban networks, and this is certainly possible (e.g., Marinică et al.,
2013). The network topology can be a very useful heuristic to help partition the large urban network to achieve load balancing.

Third, in the sensitivity analysis, we adopted the OAT approach, i.e., we change one-factor-at-a-time, to see what effect this
produces on the output. The OAT approach is very simple, and has the benefits that first, any change observed in the output will
unambiguously be due to the single variable changed; second, the results can be easily compared, since when we change one variable
at a time, we can keep all other variables fixed to their baseline values. Therefore, the OAT approach has been used in many data
assimilation research, e.g., Xue et al. (2012), Wang and Hu (2015). However, the OAT approach does not fully explore the input
space, since it does not take into account the simultaneous variation of input variables, and more importantly, the nonlinear effects
that occur due to the interaction of these input variables. As a result, the OAT approach may hide an even larger variability of the
error measures with the inputs/parameters.

7.3. Future research directions

The discussion above gives rise to many future research efforts. These relate to application over larger and more complex traffic
networks with more variations in sensor availability and quality, and in driving behavior itself (e.g. lateral behavior and crossing).
They also relate to a more thorough sensitivity analysis (rather than the OAT approach we used) over the entire input space using e.g.
Monte Carlo techniques. Accordingly, the following directions will be explored in future studies. First and foremost, we need to find
an appropriate real-life testbed (which includes ground-truth observations!) and apply the method. Clearly, we (then) need to look at
incorporating more realistic and more complex behavior (i.e. full fletched simulation models in the framework, instead of just car
following models) and also more realistic sensor deployment schema. This makes sense only if—at the same time—we can assimilate
richer (e.g., probe vehicle) data to “cover” these extra degrees of freedom. Second, and related, a particular concern (then) is
computational complexity. We tested the sensitivity of the method with respect to the amount of particles (i.e. ensemble size of
parallel running simulation models). It turned out that our initial choice of 1000 particles was very conservative; with a (much)
smaller ensemble an acceptable deterioration of performance would have been achieved. However, with increased complexity of
behavior modeled on a much larger urban network, the number of particles required will likely increase exponentially. Therefore, a
parallel and distributed version of our framework should be developed. We certainly believe this is possible. Alternatively, one may
look into more efficient sampling or assimilation methods (e.g. ensemble Kalman filtering). Third, more advanced sensitivity analysis
approach (e.g. Monte Carlo techniques) needs to be utilized to fully analyze the characteristics of the proposed data assimilation
framework by exploring the entire joint inputs/parameters space. Additionally, given information on route or destination choice is
available, the method could also be extended to estimate unobserved (destination-specific) turn fractions and/or route choices, the
quality of which would be subject of course to the route choice models implemented in the simulation model.

As a final note, the objective of this framework is to reconstruct plausible vehicle trajectories on the basis of the available data. As
noted, these trajectories—although now consistent with the measurements—are as good as the validity of the underlying models
applied. Arguably the most important line of research for our community therefore is the development of simulation models which
can make more valid predictions for urban traffic.
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Appendix A. Particle filtering in open urban traffic systems

Suppose vehicles can enter the urban traffic system at a set of inflow boundaries, i.e. Inflow; the number of vehicles that have
entered the system until time step ∈ …k {1,2, } can be defined as

∫∑= +
∈

Q N q s ds( )k
j Inflow

k T
j0 0

Δ

where N0 is the number of vehicles in the system in the beginning, q s( )j is the flow at the boundary ∈j Inflow, and TΔ is the
measurement interval. The state of all vehicles (including those that have left the study area) can be defined as = =S s{ }k Q k

i
i
Q

, 1k
k (the

same with Eq. (8), but to highlight its dimension, we put Qk in its subscript), which can be further separated as
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(A.1)

in which Outflow is a set of boundaries where vehicles leave the system. =
−s{ }k

i
i
Q N

1
k k represents the states of vehicles that have left the

system. Once a vehicle leaves the system, we stop updating its state in the simulation. Nk is actually the number of (active) vehicles in
the system at time k. Since the arrivals of vehicles usually obey certain stochastic process (e.g., Poisson process), Qk is a random
variable. S Q k Q0, : , k0 thus captures the vehicle trajectories on the time–space region ×k T x x[0, Δ ] [ , ]1 2 , where x x[ , ]1 2 is the study area in the
traffic simulation.

The objective of particle filtering is to approximate p S m( | )Q k Q k0, : , 1:k0 given all measurements till time k. Based on Bayes’ theorem,
we have

=p S m
p S p m S

p m
( | )

( ) ( | )
( )Q k Q k

Q k Q k Q k Q

k
0, : , 1:

0, : , 1: 0, : ,

1:
k

k k
0

0 0

A recursive update equation can thus be obtained:

= ×− −
−

−
−

−p S m p S m
p m S p S S

p m m
( | ) ( | )

( | ) ( | )
( | )Q k Q k Q k Q k

k k Q k Q k Q

k k
0, : , 1: 0, : 1, 1: 1

, , 1,

1: 1
k k

k k k
0 0 1

1

Since Qk is a random variable, the dimension of S Q k Q0, : , k0 is also random. Therefore, we cannot use the standard sequential
importance sampling algorithm to update the posterior distribution p S m( | )Q k Q k0, : , 1:k0 due to the variable dimension of S Q k Q0, : , k0 . This
variable dimension problem is addressed in a similar way with that in Godsill et al. (2007), i.e., we first make S Q k Q0, : , k0 to have a fixed
dimension with certain extensions, and then we prove that the extensions have no influence on the weight update. To this end, we
define a state with fixed dimension as follows

= ∪ −S S Vk K k Q k K Q, , ,k k

where Sk Q, k is defined in Eq. (A.1); =− = +V s{ }k K Q k
j

j Q
K

, 1k k defines a set of virtual vehicles that make Sk K, to have fixed dimension K, which
is a sufficient large constant such that ⩾ = …K Q k span T, 0,1,2, , /Δk , where span is the length of the simulation study period. These
virtual vehicles have no influence on the evolution of Sk Q, k. Since Sk K, has a fixed dimension, the state trajectory S K k K0, : , will have a
fixed dimension, and as a result, we can use the sequential importance sampling algorithm to update p S m( | )K k K k0, : , 1: , which is first
factorized as

= − −p S m p S m π V S( | ) ( | ) ( | )K k K k Q k Q k K Q k K Q Q k Q0, : , 1: 0, : , 1: 0, : , 0, : ,k k k0 0 0

where the conditional distribution π complements the state trajectory with variable dimension to a fixed dimension. π can be chosen
arbitrarily.

Suppose we have a set of random samples −χk 1 to approximate − −−p S m( | )Q k Q k0, : 1, 1: 1k0 1 :

=− − − =−{ }χ S w,k Q k Q
i

k
i

i
N

1 0, : 1, 1 1k
p

0 1 (A.2)

We then update the samples based on certain importance density q (·). We can assume that q (·) can be factorized as

= − − −− −q S m q S S m q S m( | ) ( | , ) ( | )Q k Q k k Q Q k Q k Q k Q k0, : , 1: , 0, : 1, 1: 0, : 1, 1: 1k k k k0 0 1 0 1

Then the particles in Eq. (A.2) are updated in two steps. First, these particles are updated to time k by sampling according to

− −q S S m( | , )k Q Q k Q k, 0, : 1, 1:k k0 1

Second, the updated particles are complemented to a fixed dimension by drawing samples from

=− − − −q V S π V S( | ) ( | )K Q k K Q Q k Q K Q k K Q Q k Q0, : , 0, : , 0, : , 0, : ,k k k k0 0 0 0

The weights in Eq. (A.2) are updated as follows:

=

=

∝

= × −

− − − − −

− − − − − −

− −

− −

− −
− −

− − −

− − −

− −
− −

w

w

k
p S m
q S m

p m S p S S p S m
p m m q S S m q S m

π V S
π V S

p m S p S S
q S S m

p S m
q S m

p m S p S S
q S S m k

( | )
( | )

( | ) ( | ) ( | )
( | ) ( | , ) ( | )

( | )
( | )

( | ) ( | )
( | , )

( | )
( | )

( | ) ( | )
( | , ) 1

K k K k

K k K k

k k Qk k Qk k Qk Q k Qk k

k k k Qk Q k Qk k Q k Qk k

K Q k K Qk Q k Qk
K Q k K Qk Q k Qk

k k Qk k Qk k Qk
k Qk Q k Qk k

Q k Qk k

Q k Qk k

k k Qk k Qk k Qk
k Qk Q k Qk k

0, : , 1:

0, : , 1:

, , 1, 1 0, 0: 1, 1 1: 1

1: 1 , 0, 0: 1, 1 1: 0, 0: 1, 1 1: 1

0, 0: , 0, 0: ,

0, 0: , 0, 0: ,

, , 1, 1
, 0, 0: 1, 1 1:

0, 0: 1, 1 1: 1

0, 0: 1, 1 1: 1

, , 1, 1
, 0, 0: 1, 1 1:

which is again independent of the states of the virtual vehicles. If the system transition density is chosen as the importance density,
the weight computation will be simplified to = ×− −−w p m S w( | )k k k Q k Q k1, : , 1k k1 .
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