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A B S T R A C T

This study focuses on the clustering of the indentation-induced interlaminar and intralaminar damages in
carbon/epoxy laminated composites using Acoustic Emission (AE) technique. Two quasi-isotropic specimens
with layups of [60/0/-60]4S (is named dispersed specimen) and [604/04/-604]S (is named blocked specimen)
were fabricated and subjected to a quasi-static indentation loading. The mechanical data, digital camera and
ultrasonic C-scan images of the damaged specimens showed different damage evolution behaviors for the
blocked and dispersed specimens. Then, the AE signals of the specimens were clustered for tracking the evolution
behavior of different damage mechanisms. In order to select a reliable clustering method, the performance of six
different clustering methods consisting of k-Means, Genetic k-Means, Fuzzy C-Means, Self-Organizing Map
(SOM), Gaussian Mixture Model (GMM), and hierarchical model were compared. The results illustrated that
hierarchical model has the best performance in clustering of AE signals. Finally, the evolution behavior of each
damage mechanism was investigated by the clustered AE signals with hierarchical model. The results of this
study show that using AE technique with an appropriate clustering method such as hierarchical model could be
an applicable tool for structural health monitoring of composite structures.

1. Introduction

Carbon Fiber Reinforced Polymer (CFRP) composites are increas-
ingly utilized in many industries due to their high specific strength and
stiffness [1–3]. One of the important issues that affected the function-
ality of these materials is their high susceptibility to damage under out-
of-plane loading. This type of load can induce different kinds of inter-
laminar and intralaminar damages in the composite structure such as
delamination, matrix cracking, and fiber failure [4–6]. It will be more
critical when the damages occur inside the structure without any evi-
dence on the structure surface [7]. However, the adverse effects of these
damage mechanisms on the structural integrity of the composite
structures are not equal. For example, delamination reduces the stiff-
ness of the structure considerably while the matrix cracking does not
have a significant effect on the stiffness of the composite structures
individually. Knowing some information about the type and also
amount of the different damage mechanisms in a damaged composite
structures is necessary to damage tolerance analysis of the structure.

Thus, using a practical method to detect and classify different damage
mechanisms in a composite structure is a valuable tool to damage tol-
erance analysis.

Structural Health Monitoring (SHM) has attracted many attentions
to itself during the last decades [8,9]. Non-Destructive Evaluation
(NDE) techniques are capable tools for examining the integrity of la-
minated composite structures [10–12]. Among the NDE techniques,
Acoustic Emission (AE) is widely utilized for health monitoring of the
composite structures [13–18]. AE is defined as the propagation of a
transient elastic wave within the material caused by a sudden release of
strain energy which can be due to the occurrence of a damage [19].
Detecting, analyzing and clustering of the originated AE signals from a
damaged structure lead to obtaining some valuable information about
the damage such as the damage location, damage type, amount of da-
mage, etc. Ai et al. [20] used b-value method to analyze the AE signals
of carbon/epoxy specimens under three-point bending test. The b-value
parameter is an indicator that shows the state of damage in the mate-
rial. They tracked the evolution of different damage mechanisms in the
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specimens by this method. Fotouhi et al. [21] classified damage me-
chanisms in glass/epoxy composites using analyzing of AE signals by
Fuzzy C-Means (FCM) clustering. They partitioned three different da-
mages, i.e. matrix cracking, fiber breakage, and fiber/matrix de-
bonding. Pashmforoush et al. [22,23] used Genetic k-Means algorithm
to cluster AE signals of the damage mechanisms in glass/epoxy and
sandwich laminates under three-point bending and mode I loading
conditions. As will be mentioned in the next sections, the drawback of
these works is that the performance of FCM and Genetic k-Means
methods to data clustering dependents on the selecting of the initial
cluster centers and they often get stuck in local minima. Thus, it seems
that these methods are not appropriate tools to create a robust and
reliable SHM system based on AE technique.

By literature review, it is found that there are many studies on the
numerical, analytical, and experimental investigation of the damage
mechanisms in laminated composites under indentation and low-velo-
city impact loadings [24–29]. However, there is only a few research on
AE-based study of the indentation and low-velocity impact-induced
damages in laminated composites. Suresh Kumar et al. [30] char-
acterized the indentation damage resistance of hybrid composite la-
minates using AE monitoring. They used the felicity effect and the
sentry function for monitoring the damage state of the material under
repeated indentation loading. However, they did not perform the
clustering of damage mechanisms. Boominathan et al. [31] used AE to
characterize the effect of temperature on the falling weight impact
damage in carbon/epoxy laminates. They did not directly analyze the
impact-induced damages and instead, the impacted damaged specimens
were subjected to the quasi-static flexural loading and the AE behavior
of them was studied. Also, they classified AE signals of the specimens
based on their frequency content without using any clustering method.
Mahdian et al. [32] investigated the indentation-induced damages in
glass/epoxy laminated composites by AE. They clustered the damage
mechanisms by FCM method. Their study has some drawbacks, one is
that the layup of their specimens was unidirectional ([08] layup) which
is a non-practical layup and therefore no delamination occurred in the
specimens. Also, as will be shown in the next sections, FCM clustering is
not a reliable and repeatable clustering method to classify the AE sig-
nals of the damage mechanisms. Petrucci et al. [33] investigated the
effect of hybridization of laminated composites on the impact and post-
impact damages. They only used the AE technique to localize the da-
maged region without any furthermore AE signals analysis.

As been mentioned, there is a lack in AE-based study of indentation
and low-velocity impact-induced damages in laminated composites.
Also, a few conducted studies on this subject have not used an appro-
priate clustering method to classify AE signals of damage mechanisms.
Therefore, the aim of this study is the clustering of the indentation-
induced interlaminar and intralaminar damages in carbon/epoxy la-
minated composites using AE technique. To achieving the in-plane
isotropic properties, most of the real composite structures are fabricated
with the quasi-isotropic layup. Also, in order to investigate the effect of
ply-thickness on the induced damages, two quasi-isotropic carbon/
epoxy laminated composites with [60/0/-60]4S and [604/04/-604]S
layups were fabricated and subjected to a quasi-static indentation
loading. The load-displacement results and the digital camera and ul-
trasonic C-scan images of the interlaminar and intralaminar damages
showed different damage behaviors for the specimens. Then, the AE
signals of the damaged specimens were classified to investigate the
damage behavior of the specimens. In order to select the best clustering
method, the performance of six different clustering methods that mostly
have been used in literature consisting of k-Means, Genetic k-Means,
FCM, Self-Organizing Map (SOM), Gaussian Mixture Model (GMM), and
hierarchical model were compared. Based on the obtained results, the
AE signals of the specimens were finally clustered by hierarchical model
and the evolution behavior of the different damage mechanisms during
indentation loading was studied. The obtained results show that the
combination of AE technique with an appropriate clustering method

such as hierarchical model can be used as a valuable tool for structural
health monitoring of the composite structures.

2. Experimental procedures

2.1. Description of the materials

The specimens were fabricated from 24 layers of Hexcel IM7/8552
unidirectional prepregs sheets (from Hexcel® Corporation) curried ac-
cording to the manufacturer's offered procedure [34]. The physical
properties of unidirectional carbon fibers, IM7, and epoxy resin, 8552,
and also the mechanical properties of the laminate are represented in
Tables 1 and 2.

2.2. Test method

The specifications of the rectangular specimens are presented in
Table 3. The quasi-static indentation tests were conducted by forcing a
Φ16mm spherical-head indenter against the specimen which is simply
supported over a 125×75mm2 hollow window (see Fig. 1). The load
was applied under displacement control mode at a constant feed rate of
0.5 mm/min and the temperature of 25 °C by an INSTRON servo-hy-
draulic testing machine. The applied load and vertical displacement
were continuously recorded during all the tests by the machine. Ac-
cording to Fig. 1, four AE sensors which are placed on the face of the
specimen capture the originated AE signals during the tests.

2.3. AE system

The utilized AE sensors, WD, were broadband, resonant-type, and
single-crystal piezoelectric transducers from Physical Acoustics
Corporation (PAC). The optimum operating frequency range of the AE
sensors was [100–900 kHz]. The AE events were recorded by the AE
software, AEWin, and a data acquisition system PAC-PCI-2 with a
maximum sampling rate of 40MHz. Vacuumed silicon grease was used
as the acoustical coupling. The recorded AE signals were enhanced by a
2/4/6-AST preamplifier. The gain selector of the preamplifier and the
threshold of receiving AE signals were set to 40 dB. The test-sampling
rate was 5MHz with 16 bits of resolution between 10 and 100 dB. The
threshold of receiving AE signals was adjusted to 40 dB. A pencil lead
break procedure was used to calibrate the data acquisition system and
ensure good conductivity between the specimen surface and the sensors
[36]. In order to record the AE signals during the tests, four AE sensors
were placed on the front face of the specimens. Then, some features of
these signals such as amplitude, frequency, and absolute energy (the
integral of the squared voltage signal above the threshold which is di-
vided by a reference resistance over the AE signal duration) were ex-
tracted to study the damage state of the specimens.

3. The proposed methods

In this section, a brief description of the utilized clustering methods
in this study is represented. The aim is partitioning a set of AE signals,
{A1, A2, …, An}, which each signal has p features, A1=[a1, a2, …, ap]),
into k clusters (k≤ n), {C1, C2, …, Ck}.

Table 1
The physical properties of IM7/8552 [34].

Parameter Value

Fiber density (g/cm3) 1.77
Resin density (g/cm3) 1.30
Fiber volume (%) 57.70
Laminate density (g/cm3) 1.57

M. Saeedifar et al. Composites Part B 144 (2018) 206–219

207



3.1. k-Means clustering

k-Means is an iterative clustering method that attempts to partition
a set of data so that the sum of distance (similarity) between with-in
cluster data to clusters centroid be minimized. The k-Means algorithm
consists of two phases [37]:

Assignment phase: Assigns each data to the cluster with the nearest
cluster centroid.
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These two phases are iterated until the clusters do not change
anymore. There is no guarantee that the algorithm converges to an
optimum solution because the performance of the algorithm depends on
the initial randomly selected clusters centroid [23,38].

3.2. Genetic k-Means clustering

In order to reduce the probability that k-Means get stuck in local
minima, the Genetic algorithm could be linked to k-Means to establish
an equilibrium between local exploitation and global exploration. It
could lead to finding a near-optimum solution. The details of this al-
gorithm can be found in our previous study [23].

3.3. FCM clustering

Although FCM clustering is similar to k-Means, however, they have
some differences. The most significant difference is that in FCM clus-
tering, a data point does not definitely belong to only one cluster and it
can appertain to some other clusters concurrently, with different values
of membership parameter between 0 and 1 [21]. If the membership
value of a data point for a cluster is close to 1, this data is closer to that
cluster. The FCM attempts to minimize the following objective function
[39]:
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As can be seen, this objective function is very similar to the objec-
tive function of k-Means with two main differences: addition of mem-
bership value (γij) and fuzzier (α) that determines the level of fuzziness
of the clustering. The objective function will be minimized if [39]:
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The FCM algorithm has three phases:

1. Specifying the cluster centers by Eqs. (5) and (6).
2. Calculating the distance by Eq. (4).
3. Updating of the objective function by Eq. (3).

Although the performance of FCM is much better than k-Means,
however, it is still possible that FCM gets stuck in local minima, because
its performance depends on the selection of the initial cluster centers
or/and the initial membership values [40].

3.4. SOM clustering

SOM is a type of Neural Networks (NN) that can be trained by an
unsupervised learning technique to be utilized as a data partitioning

Table 2
The mechanical properties of IM7/8552 [35].

E1 (MPa) E2 (MPa) E3 (MPa) ν12 ν23 G12 (MPa) G13 (MPa) G23 (MPa)

161000 11400 11400 0.300 0.436 5170 5170 3980

Table 3
The specifications of the specimens.

Specimens Dimensions (mm) Lay-up Ply thickness (mm)

SD 150×100×3 [60/0/-60]4S 0.125
SB 150×100×3 [604/04/-604]S 0.125

Fig. 1. a) The composite specimen, and b) the indentation test setup.
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method. In this method, there is a lattice consisting of some neurons
with random initial weights. When a data is fed into the network, the
similarity of the data with the weight vector of all neurons is checked
and finally, the weight vectors of the winning neuron (Wv) and its
neighborhood neurons are updated by the following equation [41]:

+ = + ⋅ −W t W s θ u v t A W t( 1) ( ) ( , , ) ( ( ))v v i v (7)

⎜ ⎟= ⎛
⎝

− ⎞
⎠

θ u v t r r
σ t

( , , ) exp
2 ( )
u v

2

2 (8)

where t is the time (step) index, u is the index of the winning neuron for
data Ai, θ u v t( , , ) is the neighborhood function which specifies the
distance between neuron u and v at step t, ru and rv are the positions of
neurons u and v, and σ t( ) is the width of the neighborhood function. By
time proceeding, the SOM lattice gets the shape of the data space and
data are clustered.

3.5. GMM clustering

GMM is a probabilistic model that assumes the data are a weighted
sum of a finite number of Gaussian densities with unknown parameters
[42]:
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where A is data, wk is the mixture weight function, and g is the Gaussian
density function with mean vector μk and covariance matrix Ʃk.

The GMM algorithm consists of three steps [42]:

1. The algorithm starts with some initial estimation for mean vectors
and covariance matrixes. Then, it calculates the weight function for
all data and all mixture combinations.

2. Using the membership weight and the data to calculate the new
parameters. If the sum of membership weight for kth component is
defined as NK= Ʃwik, the new mixture weight can be calculated by:

= ≤ ≤w N
N
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The new mean vector and covariance matrix for Gaussian dis-
tributions are updated as follows:
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3. Repeating steps 1 and 2 to satisfy the stopping criterion.

3.6. Hierarchical model

Hierarchical model partitions data by creating a cluster tree or
dendrogram. This method usually is used under one of two following
procedures: 1) divisive, and 2) agglomerative.

Divisive: In this procedure, 4 steps must be passed to achieve an
appropriate clustering [43]:

1. Each data is considered as a cluster and the distance between clus-
ters are calculated.

2 Merging of two closest clusters.
3. Calculation of the distance between the new cluster and the previous

clusters (The number of clusters has been reduced as one unit)
4. Repeating steps 2 and 3 to achieve the desired clusters number.

Due to the top-down structure of this method, it does not get stuck
in local minima.

Agglomerative: It is completely reverse of the divisive approach.

4. Results and discussions

The results are presented in two sections. At first section, the da-
mage behavior of the specimens is studied based on the mechanical
data, the digital camera and ultrasonic C-scan images. At the second
section, the AE signals are used to study the damage mechanisms.

4.1. The mechanical data, digital camera and ultrasonic C-scan images

Fig. 2 shows the load-displacement curve of the specimens. The load
curve of the specimens have different behaviors. In the first region,
where there is a linear relationship between the load and displacement,
the flexural rigidity (the slope of the load-displacement curve) of spe-
cimen SD is about 27% higher than specimen SB which it is consistent
with the theoretical calculation result (24%) [44]. The linear part of the
curve is extended up to load 3 kN for specimen SD. It is then followed by
a big load drop which is continued by a significant load-carrying re-
covery up to about 2.6 times of the load magnitude at the first load
drop, i.e. 7.8 kN, where, the final failure occurs. The behavior of the
load curve of specimen SB differs from specimen SD. The linear part of
the curve is finished earlier than specimen SD (i.e. 1.3 kN against 3 kN).
In contrast to specimen SD, the linear part of the load curve of specimen
SB is followed by a smooth reduction of the flexural rigidity without any
significant load drop. This nonlinearity is continued up to load 4 kN,
where, a big load drop occurs. After this region, there is another load
recovery part. The ratio of the maximum load to the load at the end of
the linear region is 2.6 and 3.1 for specimens SD and SB, respectively.
Therefore, the load recycling capability of specimen SB is higher than
specimen SD. While, based on the resistance against the occurrence of
the initial significant damage (the end of the linear region in the load-
displacement curve), specimen SD has a better performance in com-
paring with specimen SB (3 kN vs. 1.3 kN). Also, the maximum load of
specimen SD is about 1.7 times of maximum load of specimen SB.

In order to fully description of the behavior of the damages, in ad-
dition to mechanical data, ultrasonic C-scan and digital camera were
employed and pictures were taken at different stages of the loading

Fig. 2. The load-displacement curve of the specimens.

M. Saeedifar et al. Composites Part B 144 (2018) 206–219

209



process. To this aim, the state of the interlaminar and intralaminar
damages have been studied at three points specified on the load curve
as follows (see Fig. 3): point 1 near to the end of the linear elastic
region, point 2 just after the linear elastic region, and point 3 at the final
failure of the specimens. Fig. 3 shows the digital camera images of the
front and back faces of the specimens at these three points. As can be

seen, there is no matrix cracking at the first state for both specimens. At
the end of the linear elastic region (point 1) some matrix cracking has
occurred at the front face of the specimens, just under the punch sur-
face. However, there is no matrix cracking at the back side of the
specimens at this point. At point 2, in addition to the front face matrix
cracking, some matrix cracking is observed at the back face of the

Fig. 3. The damages at the front and back faces of the specimens at different load levels.

M. Saeedifar et al. Composites Part B 144 (2018) 206–219

210



specimens. At point 3, the size of matrix cracking in the front face does
not change significantly but the size of the matrix cracking at the back
face obviously has been increased. The damages at the back face of
specimen SD are almost locally and some fiber breakage is even seen,
while the damages at the back face of specimen SB are located inside a
wider region and no fiber breakage is also seen. It may show that the
dominant loading mode for specimen SD is penetration, while the
dominant loading mode of specimen SB is bending. As will be explained
in the next paragraph, the number of delaminations for specimen SD is
bigger than specimen SB and the distance between two adjacent dela-
minations in specimen SD is also less. Thus, by progressing the loading
process and the occurrence of transverse matrix cracks, these delami-
nations connect to each other and consequently the punch can pene-
trate to specimen SD easier than specimen SB.

Fig. 4 illustrates the detected interlaminar damages in the speci-
mens by the ultrasonic C-scan at points 2 and 3. No delamination was
detected by the ultrasonic C-scan at point 1 for both specimens, thus the
images of point 1 have not been shown. The C-scan images at point 2
show some delamination. Area of the delaminated region was obtained
by calculating area of the delaminated region's pixels by image pro-
cessing technique and it is reported in Table 4. The area of the dela-
minated region at point 2 for specimen SB is 4.5 times of specimen SD
while the number of delaminated interfaces for specimen SD is higher
than specimen SB. In order to specify the number of delaminated in-
terfaces, some damaged specimens were cutted at the midplane of the
longitudinal direction by a cutting machine with a very sharp circular
blade. Fig. 5 shows the magnified cross-section overview of the da-
maged specimens at points 2 and 3. As can be seen, at point 2, at least 7
interfaces of specimen SD are delaminated while only 2 delaminated
interfaces are seen in specimen SB. The higher number of the delami-
nated interfaces for specimen SD is due to the higher number of

dissimilar interfaces in this specimen in comparison with specimen SB
(22 dissimilar interfaces for SD against 4 dissimilar interfaces for SB).
The C-scan images at point 3 show that the area of the delaminated
region for specimen SB gets much bigger than specimen SD (i.e. 6.9
times), while the number of delaminations for specimen SD is more than
specimen SB (22 delaminated interfaces for SD against 4 delaminated
interfaces for SB). The higher area of the delaminated region for spe-
cimen SB in comparison with specimen SD is due to the higher value of
the interfacial shear stress between two adjacent dissimilar plies in this
specimen. In other words, the blocking leads to increasing of the in-
terlaminar shear stress at the dissimilar interfaces [45].

4.2. AE-based study of damage mechanisms

Load and cumulative AE absolute energy versus displacement
curves of the specimens are presented in Fig. 6. The AE activity of
specimen SB initiates earlier than specimen SD. The first significant
damage in the specimens is well defined by a jump in the cumulative AE
energy curve. The total AE energy of specimen SB is about 7 times of the
total AE energy of specimen SD that it shows the occurrence of more
damages in this specimen.

One of the appropriate tools for characterization of damage evolu-
tion in composite materials which was utilized in literature, is the
sentry function. The sentry function is defined as the logarithm of
mechanical energy introduced to the structure/specimen to AE energy
due to damage [46]:

Fig. 4. Delamination contours obtained from ultrasonic C-scan of a) SD-point 2, b) SD-point 3, c) SB-point 2, d) SB-point 3.

Table 4
The area of the delamination region for the specimens.

Specimen Load level Delamination area (mm2)

SD Point 2 135.6
Point 3 556.5

SB Point 2 615.2
Point 3 3847.4

Table 5
The value of AE events and cumulative AE energy of the damage mechanisms.

Specimen Damage mechanisms Total

Matrix
cracking

Delamination Fiber
failure

SD Events number 14,352 3960 1698 20,010
71.7% 19.8% 8.5% 100%

Cum. AE
energy (aJ)

3.26e9 2.46e9 7.57e8 6.48e9
50.3% 38.0% 11.7% 100%

SB Events number 51,245 24,699 24,842 100,785
50.8% 24.5% 24.7% 100%

Cum. AE
energy (aJ)

3.54e10 7.59e9 2.94e9 4.59e10
77.1% 16.5% 6.4% 100%
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Fig. 5. A cross-section overview of midplane of the longitudinal direction for a) SD-point 2, b) SD-point 3, c) SB-point 2, d) SB-point 3.

Fig. 6. Load and cumulative AE absolute energy versus displacement curves of the spe-
cimens.

Fig. 7. The different trends of sentry function.

Fig. 8. The sentry function of the specimens.
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where ES(x), Ea(x) and x are the mechanical energy (area beneath the
load-displacement curve), the cumulative AE events energy and the
displacement, respectively.

According to the state of the damage in the material, it may show
four different trends as follows (see Fig. 7): S1: increasing trend; that
shows there is no any considerable damage in the material. S2: sud-
denly drop; which shows that a considerable damage has been occurred
in the material. S3: gradually decreasing; which illustrates the material
is losing its load carrying capability. S4: constant trend; which shows
that there is a balance between the occurrence of damages and some
stiffening phenomena such as fiber bridging in the material.

Fig. 8 shows sentry function curve of the specimens. For both spe-
cimens, there is an increasing trend (S1) at the end of the elastic region.
Some oscillations and slope reduction in S11 may be due to the in-
finitesimal matrix cracking. Because matrix cracking cannot con-
siderably degrade the stiffness of the structure individually, it usually
does not lead to S2 type of the sentry function. The first S1, S11, is then
followed by a sudden drop (S21) which is due to delamination. After
this point, the sentry function behavior of specimen SD can be explained
by some S1 type trends that each of them is followed by one S2 trend.
However, the slope of S1 trends gradually decreases due to the accu-
mulation of damages and reducing the load carrying capability of the
material with load proceeding. The sentry function of specimen SB has a
similar trend with specimen SD with this difference that after two in-
creasing and suddenly drop trends, two constant trends are observed
which is followed by a gradually decreasing of the sentry function (S31)
that shows the specimen is losing its load carrying capability. Thus,
sentry function shows that specimen SB is lost its load carrying cap-
ability earlier than specimen SD.

4.3. Damage classification by AE

In order to characterize the induced damages at various load levels,
the AE signals of different damages should be differentiated and be
classified. Many researchers have used different clustering methods to
classify AE signals of damaged composite laminates. However, they did
not perform a thorough study about the limitation and repeatability of
the utilized clustering methods. Thus, in order to establish a reliable
SHM system based on AE, it is necessary to compare the performance of
different clustering methods to classify AE signals. To this aim, six
different clustering methods that mostly have been used in literature
containing k-Means, Genetic k-Means, FCM, SOM, GMM, and hier-
archical model are utilized to cluster AE signals of specimens SD and SB.
Prior to clustering, the optimum number of clusters should be specified.
To this aim, four criteria consisting of Calinski-Harabasz [47], Silhou-
ette [48], Gap [41], and Davies-Bouldin [49] were utilized to specify
the optimum clusters number. These methods do an iterative procedure
to find the optimum clusters number, but their performances are a little
different. The Calinski-Harabasz criterion is based on a ratio of the
between-cluster variance to the within-cluster variance. The best solu-
tion has the largest between-cluster variance and the smallest within-
cluster variance. The silhouette criterion measures the similarity of one
point with its own cluster. The values of silhouette criterion are varied
from −1 to +1 and the highest value of silhouette criterion shows that
the point has a good similarity to its own cluster and is poorly matched
to other clusters. The Gap criterion analyzes the change in within-
cluster dispersion with the expected value of this parameter for the
reference distribution. The highest value of Gap criterion illustrates the
optimum solution. The Davies-Bouldin criterion is opposite to the Ca-
linski-Harabasz criterion and it is defined as the ratio of within-cluster
to between-cluster distances. Thus, the lowest value of Davies-Bouldin
criterion shows the best clusters number. Thus, the highest value of

Fig. 9. The optimum clusters number for AE signals of specimens SD and SB.
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Calinski-Harabasz, Silhouette, and Gap indices and the lowest value of
Davies-Bouldin index show the best clusters number. Fig. 9 represents
the values of these indices for the specimens. For specimen SD, the best
clusters number according to Calinski-Harabasz, Silhouette, and Gap
criteria is 3 while Davies-Bouldin offers 2 as the optimum clusters
number. Because most of the criteria suggest 3 clusters and also Davies-
Bouldin index for 3 clusters is near to the index of 2 clusters, thus the
optimum clusters number is considered 3. In the case of specimen SB,
Silhouette, Gap, and Davies-Bouldin criteria suggest 3 classes and Ca-
linski-Harabasz suggests 6 classes. Because the Calinski-Harabasz index
for 3 clusters is near to index for 6 clusters and also most of the criteria
suggest 3, thus the optimum clusters number is considered 3.

According to literature review, the best parameters for AE signals
clustering in composite materials are frequency and amplitude [21–23].
Thus these two parameters are selected as the features of the AE signals.
Then, AE signals of specimens SD and SB are classified using the

clustering methods. Fig. 10 shows the clustered AE signals of specimen
SD by different clustering methods. As can be seen, Genetic k-Means,
FCM, SOM, and hierarchical methods partitioned data into three classes
with frequency ranges [50–150 kHz], [150–400 kHz], and above
400 kHz, which has a good consistency with the data appearance.
While, k-Means method divides the first partition, [50–150 kHz], into
two clusters and combines two next clusters, i.e. [150–400 kHz] and
above 400 kHz. In addition, GMMmethod partitions two first clusters in
a wrong manner. This fault is due to the fact that the performance of k-
Means clustering depends on the initial randomly selected cluster
centroids and there is no guarantee that the algorithm converges to the
optimum solution every times [23,38]. Also, the performance of GMM
depends on the initially selected Gaussian parameters and they may be
changed during each iteration [42].

The aim is selecting the best clustering method among Genetic k-
Means, FCM, SOM, and hierarchical methods. Most of the clustering

Fig. 10. The functionality of the different clustering methods for clustering AE signals of specimen SD.
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methods get stuck in local minima when there are some dense regions
in the space of data, where huge amount of data aggregate there. In
order to examine the performance of the clustering methods in this
situation, one artificial cluster with the frequency range of [0–50 kHz]
is added to the AE signals of specimen SD. To create this artificial
cluster, the cluster with the frequency range of [50–150 kHz] is copied

and the number of its data is increased to three times by duplication of
data in this cluster. The best clusters number which was evaluated for
the new data set is 4. In order to ensure the repeatability of the results
of the clustering methods, the clustering process is repeated several
times for each clustering method. Fig. 11 shows the results of different
clustering methods for the new AE data. As can be seen, SOM method

Fig. 11. The performance of the different clustering methods for clustering of the artificial AE signals.
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detects the artificial cluster in all iterations but it does not classify other
AE data correctly. For example, it combines a part of signals with the
frequency less than 300 kHz with the signals that have the frequency
higher than 500 kHz. This is due to the fact that because of defining a
neighborhood function between lattice neurons, most of the lattice
neurons usually aggregate in the dense regions of the data [41]. Thus,
because a considerable number of AE data has been located in the
frequency range of [0–50 kHz], therefore neurons try to aggregate in
this region. Although FCM and Genetic k-Means could classify the data
appropriately, but their results do not have repeatability for the next
iterations. Therefore, although the combination of Genetic and Fuzzy
methods with k-Means clustering could considerably improve the per-
formance of this method, however, they do not still have a unique result
at each iteration for more complicated situations. Thus, these methods
are not reliable methods to be used in a SHM system. Finally, the only
method which gives a unique optimum result at each iteration is hier-
archical model clustering. Due to the top-down structure of hierarchical
clustering method, it does not get stuck in local minima and gives a
unique result at each iteration [43]. Thus, hierarchical model clustering
is utilized for the final clustering of AE signals of specimens SD and SB.

Fig. 12 shows the clustered AE data for specimens SD and SB by
hierarchical model. The next step is assigning these clusters to the in-
terlaminar and intralaminar damage mechanisms. Fig. 13 shows the
reported frequency ranges in literature for different damage mechan-
isms in carbon/epoxy laminated composites under different loading
conditions. All of these damages usually do not occur simultaneously
and only some of these damages may occur in the material depending
on the loading conditions. For example, Boominathan et al. [31] re-
ported the occurrence of three damage mechanisms in carbon lami-
nated composites under low-velocity impact, consisting of matrix
cracking, fiber failure, and delamination which are in accordance with
the observed damages in specimens SD and SB. Although there are
considerable differences between the reported frequency range of dif-
ferent damage mechanisms in literature (see Fig. 13), however, most of

Fig. 12. The clustering of the AE signals of specimens SD and SB using hierarchical
method.

Fig. 13. The frequency content reported in literature for different damage mechanisms in carbon/epoxy laminated composites under different loading conditions [50–52,31,53,54].
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the researchers reported that matrix cracking has the lowest frequency
content, fiber failure has the highest frequency, and the frequency of
delamination signals is located between these two damages [31,50,53].
Therefore, the clusters in Fig. 12 are dedicated to these three damage
mechanisms as follows: Cluster 1 which has the lowest frequency
content is dedicated to matrix cracking, cluster 3 with the highest fre-
quency content is devoted to fiber failure, and cluster 2 with the fre-
quency content between these clusters is allocated to delamination.

The cumulative number of AE events for each cluster was calculated
and it is shown in Fig. 14. As can be seen, for specimen SD, matrix
cracking signals initiate a little before the first load drop which has a
good consistency with the observed first matrix cracking at point 1 of
Fig. 3, while the delamination and fiber failure signals initiate after
matrix cracking, at the moment of the first load drop. In the case of
specimen SB, matrix cracking and fiber failure start a little before the
nonlinearity point and delamination initiates a little after them. Also,
the total number of damage's AE events for specimen SB is much higher
than specimen SD (about 5 times) that it shows the damage of specimen
SB is more than specimen SD. This is consistent with the fact that the
load carrying capacity of specimen SB is less than specimen SD (see
Fig. 2). Also, as it was mentioned previously, the dominant loading
mode of specimen SD is penetration, thus most of damages occur in a
small region around the loading point, while the dominant loading
mode of specimen SB is bending that leads to increasing the area that is
susceptible to damage.

The number of events is not an appropriate parameter to char-
acterize damages in the specimens, because an event does not offer any
information about the intensity of the corresponded damage. For

example, both an infinitesimal delamination growth and a big delami-
nation growth introduce one event, while the energy content of the
event of the big delamination growth is much higher than the event of
the infinitesimal delamination growth. Thus, in order to compare the
behavior of different damage mechanisms, the cumulative AE energy of
the AE events is calculated. Fig. 15 illustrates the cumulative AE energy
of the damage mechanisms in the specimens. The cumulative AE energy
curves of specimen SD have an unstable behavior (jumping behavior)
while the curves of specimen SB are smoother. Although matrix
cracking signals initiates before the first load drop in specimen SD, but
the energy content of these signals is not considerable until displace-
ment 2.5 mm, while, the energy of delamination signals at the first load
drop is considerable. This is due to occurring of many delaminations at
this point in specimen SD. The energy of fiber failure signals also starts
increasing after other damage mechanisms. The unstable behavior of
cumulative AE energy curves of specimen SD is due to inducing new
delamination at different interfaces with the load proceeding. In the
case of specimen SB, because the number of induced delamination at the
end of linear region is low, thus there is not a significant jump in cu-
mulative AE energy curve of delamination at this point, while matrix
cracking shows a jump at there. Fiber failure is also the last mechanism
that activates in this specimen.

Table 5 represents the number of events and cumulative AE energy
of each damage mechanisms for the specimens. The total number of
events and cumulative AE energy of specimen SB are 5 and 7 times of
specimen SD, respectively. It shows that amount of the damages in
specimen SB is higher than specimen SD. Comparing of the load carrying

Fig. 14. The AE events of different damage mechanisms of specimens SD and SB. Fig. 15. The cumulative AE energy curves of damage mechanisms for specimens SD and
SB.
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capacity of the specimens (see Fig. 2) also confirms this claim.
As been mentioned above, to characterize the state of damages in

the specimens, cumulative AE energy is a better parameter in com-
paring with the number of AE events. The dominant damage me-
chanism in both specimens is matrix cracking with 50.3% and 77.1% of
AE energy of damage's signals for specimens SD and SB, respectively.
The second damage mechanism in the specimens is delamination. The
percentage of delamination in specimen SD (38.0%) is higher than
specimen SB (16.5%). The lower value of matrix cracking percentage
and higher value of delamination percentage in specimen SD is due to
the higher number of dissimilar interfaces that susceptible to delami-
nation in SD. Thus, amount of matrix cracking reduces while delami-
nation increases in this specimen. Also, the higher percentage of fiber
failure in specimen SD refers to the penetration of indenter through the
specimen SD that leads to fiber fracture at the back face of this specimen
(see Figs. 3 and 5).

5. Conclusion

This study was devoted to the clustering of the indentation-induced
interlaminar and intralaminar damages in carbon/epoxy laminated
composites using AE technique. To this aim, two quasi-isotropic
carbon/epoxy laminated composites with dispersed ([60/0/-60]4S) and
blocked ([604/04/-604]S) layups were fabricated and subjected to a
quasi-static indentation loading. First, the load-displacement curve and
the digital camera and ultrasonic C-scan images used to study the in-
tralaminar and interlaminar damages of the specimens. The results
showed the load carrying capability of dispersed specimen is 1.7 times
of blocked specimen and also the area of delaminated region for this
specimen is 0.14 times of the delaminated area for blocked specimen.
However, the number of delaminated interfaces for the dispersed spe-
cimen is higher than the blocked specimen (22 delaminated interfaces
for SD against 4 delaminated interfaces for SB). Then, the AE signals
were clustered to identify different damage mechanisms in the speci-
mens. In order to select the best clustering method, the performance of
six different clustering methods consisting of k-Means, Genetic k-
Means, FCM, SOM, GMM, and hierarchical model were compared. The
results showed that the best clustering method which has a reliable and
repeatable performance is hierarchical model. Thus, the AE signals of
the specimens were clustered by hierarchical model and the evolution
behavior of different damage mechanisms during loading was studied.
The obtained results show that the combination of AE technique with
an appropriate clustering method such as hierarchical model can be a
valuable tool for structural health monitoring of composite structures.
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