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Urban Objects Classification with an
Experimental Acoustic Sensor Network

Teun H. de Groot, Evert Woudenberg, and Alexander G. Yarovoy, IEEE Fellow

Abstract—This paper proposes feature extraction methods
for object classification with passive acoustic sensor networks
deployed in (sub-)urban environments. We analyzed the emitted
acoustic signals of three object classes: guns (muzzle blast),
vehicles (running piston engine) and pedestrians (several foot-
steps). Based on the conducted analysis, methods are developed
to extract features that are related to the physical nature of
the objects. In addition, localization methods are developed (e.g.
pseudo-matched-filter), because the object location is required for
one of the feature extraction methods. As a result, we developed
a proof-of-concept system to record and extract discriminative
acoustic features. The performance of the features and the final
classification are assessed with real measured data of the three
object classes within sub-urban environment.

Index Terms—classification, localization, acoustic sensors, ur-
ban environment.

I. INTRODUCTION

SURVEILLANCE in urban setting has attracted noticeable
attention and many sensor types exist that can contribute

to this purpose. A new trend it that the required surveil-
lance is not limited anymore to traditional detection and/or
localization, but that it is extended to object classification.
Classification is required to support decision-making (e.g. is
the object unusual/threatening?). As traditional sensors do not
always provide sufficient means to solve this problem on their
own (e.g. electro-optical devices during fog), passive acoustic
sensors are seen as an alternative source of information.

The physical limits and challenges for acoustic surveillance
depend on acoustic wave propagation. This propagation is
investigated in many studies (e.g. [1], [2]), and some even
acuminate their study on urban environments (e.g. [3], [4]).
A few example physical effects are [5], [6]: reflections,
scattering, and diffraction. As some of these effects depend
on the frequency and the medium, the received acoustic
signal depends on the source’s position and on its sound
spectrum. Moreover, the signals can be hampered and altered
by many environmental factors such as interference by wind,
precipitation and other noises.

There are a number of operational advantages with acoustic
surveillance: (i) sound cannot be easily damped or blocked,
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which makes it hard for an object to stay undetected; and (ii)
acoustic sensors do not have to transmit signals and the system
can remain hidden. However, there also remain operational
challenges: (i) objects are usually non-cooperative, and their
transmitted acoustic signals are not optimized for classification
purposes; and (ii) acoustic sensors can potentially be “fooled”
by artificial sounds. Therefore, the use of acoustic sensors in
mission-critical applications is limited. However, adding them
to other types of sensors (e.g. radar systems) within a hetero-
geneous sensor network can improve the overall surveillance.

Many current feature extraction methods for acoustic
surveillance are limited to processing techniques such as the
Fourier transform [7], [8], [9], Wavelet analysis [10], [11], [9]
and Cepstrum [8], [12], [13]. Usually, the recorded signals
are processed with these techniques and the output is given
to a well-known classification method. Next, the processing
techniques or the classification methods are compared with
each other based on the classification performance (e.g. [14],
[15]). The most frequently used method relies on neural
networks to automatically extract the features (e.g. [7], [12],
[16]). Although above mathematical techniques require little
design efforts, they do not provide insight into the relevant
features that are actually related to the nature of the object.

This paper proposes object features that can be extracted
from acoustic recordings and used to discriminate between
object classes. We focus in this study on three object types,
which all produce their own specific sounds: guns, vehicles
and pedestrians. A challenge is that some sound sources are
not acoustically consistent (also discussed in [17]) and the
signals can still differ significantly within the same object
class. To overcome this, we propose features that are related
to the object’s nature and physically explainable. The methods
are tested within a proof-of-concept system that recorded real
data. As a result, we also assess the surveillance performance
of a network of passive microphones to classify (and localize)
objects in urban environment.

The structure of this paper is as follows. The sound sig-
nals of the selected objects (i.e. gun muzzle blasts, running
piston engines and walking pedestrians) are analyzed in Sec-
tion II. With the gained knowledge, methods are presented
in Section III to extract object features that can be used for
classification. Section IV presents methods to perform object
localization, because the gunshot feature extraction requires
the object distance relative to the sensors. The resulting
performance of the feature extraction process is estimated
within a proof-of-concept system in Section V. Section VI
summarizes the results and concludes this study.
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II. ACOUSTIC ANALYSIS

As recorded signals depend on the used hardware, the
recording hardware is first briefly discussed. Next, we analyze
the acoustic signals of gun muzzle blasts, running piston
engines and walking pedestrians. The findings that are relevant
for feature extraction are summarized after each class analysis.

A. Recording hardware

Four microphones and recording devices were available for
the proof-of-concept system. The FG-3329 microphones that
are omni-directional according to their specifications from
Knowles electronics were each attached to their own amplifier.
The amplifiers amplified with a factor equal to 20 up to 48kHz
with internal noise proportional to 1/f. We used a cap and
windjammer from Raycote Lavaliere. The cap is made from
foam and the jammer from fur, which is an artificial fiber
fixed to a fabric mesh backing. The digital sound card had
a maximum sample frequency of 96 kHz with 24 bit and
dynamic range of 99dB.

B. Muzzle blast

A conventional firearm uses an explosive charge to propel
the bullet out of the gun barrel. The resulting sound is called a
gunshot [18], [19]. We recorded many gunshot signals at two
shooting clubs with different guns, calibers and backgrounds
noises. The first club was indoor and resulted in too much
reverberation effects for an in-depth analysis to present in this
paper, but the second one was outdoor that resulted in better
recordings for analysis.

Fig. 1 shows an example gunshot signal of a shotgun caliber
12 under/over. The Line-of-Sight (LOS) and a reflection signal
are received around 0.01 and 0.02 seconds respectively. We
were surprised of the loud signals at a range of 10 meters:
the used hardware was not able to cope - even after placing
an attenuator over the microphone - as can be seen by an
artifact (i.e. straight 45 angle line) around 0.01 seconds. This
artifact can be identified as clipping in the amplifier. When
the microphone was placed in front of the gun the received
power further increased, but when it was placed behind the
shooter at 10 meters the signal in Fig. 2 was recorded without
any artifact. The spectrogram shows that the bandwidth of the
gunshot goes up to 48 kHz.

Four main gunshot features are observed during the mea-
surements. Firstly, the emitted energy is extremely high, which
resulted sometimes in clipping. Secondly, the received LOS
signal is angle dependent: received power in front of the gun
is the strongest and behind the gun the lowest. A similar
conclusion on angle dependency was made in [19]. Thirdly,
the spectrogram shows that the signal is short in time, but
wide-band in frequency including ultrasound frequencies up
to 48 kHz. Fourthly, with the same ammunition and angle, the
gunshot sounds are very consistent and identical.

C. Running piston engine

Vehicle acoustic signatures depend on the type and dynam-
ics such as engine speed, load and road surface [10]. The
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Fig. 1. Shotgun signal recorded from the left side at 10 meter (with artifact).
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Fig. 2. Shotgun signal recorded from behind at 10 meter (without artifact).

sounds are mainly caused by [8]: rotational parts, vibrations
in the engine, friction between the tires and the pavement,
wind effects, gears and fans. The vehicle sound spectrum can
be analyzed as in [9] and it is suggested by [7] that the main
vehicle features are within the low frequencies.

Acoustic measurements were taken at different distances
from a running piston engine (four-cylinder piston in Renault
Laguna 2.2 liter and Honda Civic Shuttle). The initial mea-
surements showed that the engine signal is wide-band with
frequencies up to 40 kHz, and that most of the power is located
below 10 kHz. The interesting features are located below 400
Hz: Fig. 3 shows a spectrogram of a recording where the driver
(with four cylinders engine) continuously varied the engine
speed. As can be seen, the signal harmonics are changing over
time. Note, also the emitted power varies depending on the
engine speed.

It is known that every cylinder of a four-stroke engine
sparks every two revolutions. Thus, two explosions occur at
every revolution with four cylinders. For example, with 1000
Revolutions Per Minute (RPM) and two explosions every
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Fig. 3. Spectrogram of piston engine that is varying speed.

revolution, the explosion frequency is around 33 Hz. In fact,
this fundamental frequency is found in our recordings, for
example, in Fig. 3. Beside this feature, no distinguishable
sharp time features were found which could be extracted (e.g.
we also thought about gearbox sounds). Therefore, it is hard
to unambiguously estimate the beginning (or ending) of the
received signal (e.g. for time-based localization).

Altogether, the following three conclusions were made.
Firstly, the emitted engine signal is a wide-band signal includ-
ing ultrasound frequencies, and transmitted power depends on
the engine speed. Secondly, no significant signal difference
was observed when the recording angle was changed: only
some little attenuation, but that is caused by the vehicle
components and distance between the engine and microphone.
For example, we did not find any special exhaust signals.
Thirdly, the fundamental harmonic frequency is, as explained
above, understandable linked to the engine speed.

D. Walking pedestrian

The sound of a person’s footstep is determined by three
dominant conditions [20], [11]: footwear (e.g. sneakers, bare
foot), ground surface (e.g. concrete, wood) and gait (e.g.
personal motion, speed). The main difficulty for feature ex-
traction is the change in these three conditions. Although even
identification based on footsteps is suggested [11], during our
measurements it became clear that the signal depends too
much on the footwear and that the received power is very
low for footstep classification even at small distances (e.g. 2
meters). Fig. 4 shows an example recording of a few footsteps
at 1 meter. As can be seen, it is barely observable.

To improve the footstep sound analysis we selected the best
ground, shoes and environment (indoor) to increase transmit
power and decrease environmental noise. Fig. 5 shows the
best recorded signal. In this recording two separate signals
were received. First from the heel bone and second from the
metatarsus which is located between the toes and mid-foot.
Value tfootstep is the time between these two signals. We
also discovered that the left and right footstep sounds are not
identical. Furthermore, a left or right footstep is not necessary
identical to its previous one.

Four conclusions are derived from the footsteps analysis.
Firstly, the signal strongly depends on gait, shoes and ground:
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Fig. 4. Instantaneous power and spectrogram of multiple poor footsteps.
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each composition produces a unique sound. Moreover, even
with the same composition, the footstep signals are unpre-
dictable and not consistent. The practical use of individual
footstep sounds is therefore limited for classification. Sec-
ondly, the striking force signal is the strongest and wide-
band. Depending on composition, ultrasound frequencies up
to 40 kHz are present due to the striking and friction. Thirdly,
the received signal power is low. Poor footsteps are barely
detectable at 1 meter, but also good footsteps at 6 meters are
problematic to detect. Fourthly, walking is a periodic activity
and the time between two footsteps, which can be used as a
feature, does not vary that much among the pedestrians.

III. FEATURE EXTRACTION

The key behind successful object classification is to con-
struct signatures that are sufficiently different between objects
of different classes, and, at the same time, that they are similar
for objects of the same class. In order to build such signature,
a specialized feature extractor is developed for each object
type. The combination of all extracted features compose the
final acoustic signature.
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TABLE I
FEATURE EXTRACTION FOR RUNNING ENGINE

Number Feature Expected value

E1 Harmonic 25 ≤ f0 ≤ 120

E2 Peak ratio 1 1.9 ≤ f1
f0

≤ 2.1

E3 Peak ratio 2 2.9 ≤ f2
f0

≤ 3.1

E4 Harmonic derivative 0 ≤
∣∣ d
dt
f0
∣∣ ≤ 40

A. Extracting Emitted-Spectrum

The exact emitted gunshot sounds differ over the different
gun types. However, the transmitted power-spectrum could
be a good feature to classify a gunshot (i.e. muzzle blast),
because it can show if the emitted power is high enough and
if the signal is wide-band. The transmitted spectrum can be
reconstructed based on the received spectrum, object distance
and propagation loss model:

P0(f) =
Pn(f)

Gn(f)Aα(dn, f)A(dn)
(1)

where P0(f) is the transmitted power as a function of fre-
quency f , Pn(f) is the received power at microphone n,
Gn(f) is the gain of microphone n, Aα(dn, f) the sound
absorption function, A(dn) the attenuation function due to
geometric spreading of sound and dn the distance between
the object and microphone n.

The object position is required for this feature extraction,
and therefore, object localization is presented in Section IV.
Note that it is not known which frequencies are emitted.
Therefore, a potential drawback of this approach is that noises,
which were not emitted by the object, are also amplified and
considered part of the emitted-spectrum.

B. Extracting Harmonic-Formation

A large variety of vehicles exist, but eventually it is just
a vibrating object due to a running engine with periodic
explosions. Therefore, the signal harmonics can be used for
classification. We derived the four features of Table I.

The fundamental frequency f0, which is directly linked to
the engine speed, is the first engine feature. However, one
peak within the spectrum range of roughly 20Hz to 150Hz is
only enough for an indication. The second and third features
appoint the constellation of the multiple spectrum peaks and is
needed to confirm that indeed the peaks are multiple harmonics
(e.g. ratio between the frequencies f0, f1 and f2). The last
feature is the derivative of the fundamental frequency and can
be used to confirm that a driver is changing the RPM.

C. Extracting Time-Intervals

The variety of sounds created by the footstep force or
friction is in practice too large for one-footstep recognition.
However, detection of walking is possible and less dependent
on the exact composition of shoes, ground and gait. Fig. 5

TABLE II
FEATURE EXTRACTION FOR PEDESTRIAN

Number Feature Expected value

P1 Walking time 0.45 ≤ twalking [k] ≤ 1.0

P2 Walking ratio 0.7 ≤ twalking [k]

twalking [k−1]
≤ 1.3

P3 Footstep time 0.05 ≤ twalking [k] ≤ 0.2

P4 Footstep ratio 0.8 ≤ twalking [k]

twalking [k−1]
≤ 1.2

shows useful time-intervals that can be extracted. The chosen
features are outlined in Table II.

The walking time twalking is the first pedestrian feature. The
second feature is the ratio between the last two walking times.
The third feature is the footstep times tfootstep and the fourth
feature the ratio between the last two footstep times. Due to
the fact that the second peak within a footstep is frequently
not present, the last two features are mainly intended for
confirmation. The first and third features dependent on a
particular gait, but the second and fourth features are less
dependent on this and indicating the continuity of the walk
(e.g. not injured).

IV. OBJECT LOCALIZATION

The gunshot feature extraction requires the object position.
There are two methods available for passive position esti-
mation: time-based localization using the propagation time
model (i.e. Time Difference Of Arrival), and power-based
localization using the propagation loss model (i.e. Received
Signal Strength). This section presents techniques to extract
the required information for time-based localization purposes.

A. Time of Arrival

The geographical object position can be estimated based on
the arrival times of the LOS signals at the nodes, because the
propagation time model is a function of object-node distance:

TOAn = TOE +
dn
cair

+ TEn (2)

where TOAn is the time of arrival at node n, TOE the time of
emission, dn the distance between the object and node n, cair
the speed of sound in air and TEn the time error for node n
due to modeling error and observation noise. The three object
position coordinates and one TOE can be estimated by using
minimal four TOAn and minimizing the value TEn.

B. Pseudo-matched-filter

A matched-filter, based on the original transmitted signal,
would be ideal for estimating TOAn to get a high time
accuracy. However, the transmitted signal is not available.
Therefore, a mask is extracted ‘on-the-run’ from one of
the recorded signals to filter (i.e. cross-correlation) all the
other received signals. This ‘pseudo-matched-filter’ method is
comparable with other techniques for TDOA (e.g. [21], [22]),
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but a difference is that only a small part of the signal is selected
to filter the much longer signals.

We simulated the pseudo-matched-filter approach to esti-
mate its performance. Assume one clean signals s based on
a square or triangle shape. Next, two input signals y1, y2 are
created by adding (pink) noise signals n1, n2 to the signal
s: y1 = s + n1 and y2 = s + n2. An appropriate filter-
mask is constructed based on a searched within signal y1.
This mask is used to filter signal y2, and then, the time-
of-arrival is estimated and compared with the actual time-
of-arrival. The averaged distance error (i.e. time error TE
multiplied with speed of sound cair) as functions of Signal-
to-Noise-Ratio (SNR) is given in Fig. 6. Although multi-path
(i.e. multiple pulses in y1 and y2) and signal alteration (e.g.
sound absorption as function of frequency) is not considered
in this analysis, it gives an initial performance indication.

C. Rejection of non-LOS signals

In order to extract the correct TOAn values, the following
has to be considered: the suppression of non-LOS signals.
A trivial strategy that selects the signal with the highest
amplitude is not a successful one, because the LOS signals did
not always have the highest amplitude during our experiments.
Therefore, a strategy based on rating is implemented.

Fig. 7 shows an example of time of arrival extraction with
four received signals using the pseudo-matched-filter. The
upper plot shows the recorded signals and the mask-selection.
As can be seen, the signal which was selected for the mask did
not have the highest peak (signal two has the highest peak), but
this signal was received earlier which indicates less mutations.
The mask-selection method is based on the principle to give
signal peaks points for their time properties (illustrated by the
sloped dotted lines) and their amplitude:

ks = argmax
k

(Wa [yp(k)] +Wb [tp(k)− tp(k = 1)]) (3)

where Wa and Wb are the weight functions to rate the
amplitude yp(k) and moment tp(k) of peak k respectively.
yp(k) and tp(k) include all extracted peaks of all the nodes
ordered in time. The area around the peak with the highest
score is selected for the mask to filter all the recorded signals.

A similar approach (e.g. [23]) is used for arrival time
estimation in the filtered signals as shown in the lower plot
of Fig. 8. Again, the peaks receive points for their time and
amplitude properties:

TOAn = tn(argmax
k

W1 [yn(k)] +W2 [tn(k)− tn(1)]

+W3 [tn(k)− tp(ks)]) (4)

where W1, W2 and W3 are the weight functions (illustrated by
dotted curves) for peak k. yn(k) and tn(k) are the extracted
peaks from the filtered signal n. The time of the peak with
the highest score is used to estimate TOAn.

Above rating-method is flexible, able to cope with many
types of incoming signals, and was successful in selecting
the LOS signals and ignoring the reflections. With a SNR of
15dB the method was always successful in our experiments.
The method sometimes works with lower SNR (e.g. with very
silent footsteps), but the probability of incorrect positions will
increase and the position error will probably not be Gaussian.

V. EXPERIMENTAL EVALUATION

A proof-of-concept system is developed to investigate the
surveillance performance of an acoustic sensor network in
(sub-)urban environments. The experimental setup with the
hardware as discussed in Section II is shown in Fig. 8.
Note that the microphones are mounted on different heights
to robustly estimate three-dimensional positions and extract
features from different angles. We recorded 90 seconds without
objects, 42 (toy-gun)shots of 3 seconds, 12 walks that lasted
12 seconds of 6 different pedestrians and 200 seconds of 2
different vehicles. Each recording was partitioned into 0.5
seconds long recordings that have a 10% overlap with their
previous recording. The classifier should determine if an
object(-class) is presented in the environment based on such a
partitioned recording, and it can use information that is saved
during the analysis of the previous recordings (e.g. a pedestrian
walk takes longer than 0.5 seconds). The signal processing is
implemented with MATLAB.
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A. Localization performance

A non-linear least square estimator is used to estimate
the object position based on the extracted information and
propagation models. The Root Mean Square Error (RMSE)
and Standard Deviation (SD) performance is measured with
toy-gunshots. A toy-gunshot provides a similar sound as a real
gunshot, but its emitted energy is lower and the exact signal
varies (signals of real gunshots do not vary noticeable with the
same gun, ammunition and recording angle). Thus, localizing
a toy-gunshot is slightly more difficult than localizing a real
(unsilenced-)gunshot, but the retrieved SNR of the sounds
was still above 15dB at each microphone. The time-based
localization (based on a 1 millisecond sized mask in the
pseudo-matched-filter) was quite accurate: RMSE3D = 0.29m
and SD3D = 0.04m. The difference between the RMSE
and SD even indicates that there is room for performance
improvements (e.g. calibrate node positions).

B. Advantage of sensor network

The system consists of several sensors. To benefit from the
spatially distributed microphones, a fusion strategy is used
for each feature extraction. The final emitted-spectrum feature
is constructed by taking the mean spectrum of the multiple
emitted-spectra, that were estimated with the multiple micro-
phones. The final harmonic-formation features are estimated
by the weighted mean of the extracted engine features at each
microphone, where the weights are proportional to the received
power. The final time-intervals are estimated by constructing
the peak information based on one microphone that recorded
the signal with the highest received power.

Although more sophisticated solutions exist for information
fusion, the above methods already make the feature extraction
more robust. For instance, the footstep time-interval extraction
may require only one microphone, but the difficulty is that
two/three good footsteps in a row are required. We experienced
that when footsteps of the same walk were received by
different sensors, and their information was fused, the object
was still successfully classified as a pedestrian.

Another example can be given related to engine detection.
A vehicle recording of four nodes is shown in Fig. 9 where it
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Fig. 9. Parallel feature extraction for vehicle classification.

TABLE III
DETECTION PERFORMANCE INCLUDING FALSE POSITIVES

Actually Recorded
D

et
ec

te
d

Fe
at

ur
e(

s)
Nothing Gunshot Engine Pedestrian

G(16-24kHz) 0% 100% 0% 0%
G(0-48kHz) 0% 100% 0% 0%

E1 & E2 6% 19% 100% 9%
E1, E2 & E3 0% 7% 97% 0%

P1 0% 2% 2% 65%
P1 & P2 0% 0% 0% 35%

is difficult to cope with a too low SNR. As can be seen, the
spectra differ from each other because the sensors recorded
the vehicle from different angles and distances. As a result,
the spectrum peaks were not always correctly selected in each
recording. However, based on the fused information, the object
could still be classified as a vehicle, which confirms the added
value of sensor networks.

C. Class-detection performance

Several detectors can be developed based on the extracted
features. One feature is in principle enough to construct such
a detector for determining the presence of a particular object
class, but the performance may not be satisfactory. Adding
extra features can reduce the false positive, but it can also
increase the false negative. Table III provides an overview of
the detection performance of the extracted features. The two
gun features G present both the total energy in the specified
frequency range. The detection thresholds for the engine and
pedestrian are based on the expected feature values in Table I
(e.g. the feature(s) should be within the expected value range
before a feature is detected). Note, no detectors are shown
based on E4, P3 and P4, because the engine was not changing
speed and almost all footstep sounds did not have the second
footstep peak. To conclude, a detector is fully successful if it
detects 100% of its own class (i.e. no false negatives) and 0%
of other classes (i.e. no false positives).
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Fig. 10. Performance of extracted features for engine and pedestrian.

The (toy-)gunshot detector is very successful, because the
transmitted energy of a gunshot is well separated from the
ones of other classes. Vehicles can be detected with only two
features, but the third feature can be add to reduce the false
alarms. The pedestrian detection performs the least: the ma-
jority is only detected as pedestrian when one feature is used.
Adding a second pedestrian feature reduces the detection rate
significantly, because receiving three usable footstep signals
in a row is in practice rare.

A more detailed performance analysis of the extracted
features for engine and pedestrian can be found in Fig. 10 (i.e.
receiver operating characteristic). The curves are plotted by
varying the detection thresholds, which then results in different
probabilities of true positives and false positives. The detection
improves when the true positive rate increases for the same
false positive rate or when the false positive rate decreases for
the same true positive rate. In other words, when the curve
moves toward the top-left corner. As can been seen, this is the
case when more features are involved in the detection process.

D. Classification performance

A final classifier is constructed by combining three detec-
tors. This classifier checks first if a gunshot is detected with
the total emitted-power in the frequency band 16-24kHz. If
a gunshot is not detected, then the engine detector is used
based on features E1, E2 and E3. If also a vehicle is not
detected, then the signal is checked for a pedestrian based
only on feature P1. Thus, this tree-classifier is based on five
features in total. The resulting classification performance is
given in Table IV (i.e. confusion matrix). Because this simple
classifier is able to provide this performance, it is certain that
the discriminative information is available in the developed
acoustic signature. Possibly the performance can be further
improved with more sophisticated classification methods (e.g.
improve detection-thresholds with machine learning).

To conclude, the proposed features, which are discriminative
and physically understandable, allow a simple classifier to
distinguish between the classes. Note that the SNR is crucial
for feature extraction, and sometimes it was just too low to
detect an object. Nevertheless, when the SNR was above 15dB,

TABLE IV
CLASSIFICATION PERFORMANCE BASED ON FIVE FEATURE INPUTS

Actually Recorded

Pr
ed

ic
te

d
C

la
ss Nothing Gunshot Engine Pedestrian

Nothing 100% 0% 3% 35%
Gunshot 0% 100% 0% 0%
Engine 0% 0% 97% 0%

Pedestrian 0% 0% 0% 65%

the emitted powers, harmonics and footstep intervals could be
successful extracted in our experiments and used as features
for robust classification.

VI. CONCLUSION

Feature extraction methods are developed for urban object
classification based on passively recorded acoustic signals.
Three different classes of object sounds are studied: gun
muzzle blasts, running piston engines and walking pedestrians.
Sound analysis resulted in novel features for discrimination
between the classes: acoustic emitted power spectrum, acoustic
harmonic formation and acoustic peak time intervals. Further,
an adaptable pseudo-matched-filter is developed for object
localization. All methods are evaluated with an experimental
acoustic sensor network and real measured data to obtain
a performance indication. We are quite satisfied with the
final classification performance, because it is reasonable good
considering that no sophisticated information fusion and clas-
sification techniques are used in this experiment.

Above gives an indication of the usability of the proposed
features for urban objects classification. The acoustic surveil-
lance of pedestrians has the least potential, because the SNR
of most pedestrian footsteps - even after selecting them - is too
low. The use of seismic sensors may result in a better SNR. In
contrary, acoustic surveillance of vehicles has higher potential,
but more robustness can be required for real operation (e.g.
increase SNR by environmental noise reduction). Gunshot
signals are received with the highest SNR, and therefore,
gunshot localization is robust and its classification is feasible.
Future research can focus on extending the number of objects
(e.g. pedestrian together with vehicle) and adding object-
classes (e.g. speech, dogs, mini-drones). Because the proposed
features differ between the considered classes, simultaneous
detection of multiple objects of different classes can work.
It is also interesting to study new classes, their features and
SNR, and relation/overlap with the proposed features.

To conclude, the operational opportunities of using solely
a passive acoustic sensors for surveillance in complex urban
environments is still a long way off and remains a technical
challenge. However, acoustic sensors can definitely be used as
an additional source of information in heterogeneous sensor
networks, improve the classification process, and eventually,
enhance the situational awareness.
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