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A B S T R A C T

A marine project consists of series of operations, with each operation subject to a predefined operational limit
and duration. If actual weather conditions exceed the operational limit, the operation cannot be executed and
hence downtime occurs. An accurate assessment of uncertainties and the expected downtime during a marine
project is important in the tender and execution phase. This paper proposes a new probabilistic model for
downtime estimation. It utilizes linked Markov chains that use actual metocean conditions to produce binary
workability sequences for each operation. Synthetic time-series can be generated based on the statistics of the
past observations and more project simulations are realizable, reducing the simulation uncertainty. The cap-
abilities and limitations of the proposed approach are illustrated in a case study for a hypothetical project in the
Tasman Sea.

1. Introduction

Nowadays, there is an increased interest in marine projects, such as
the installation of offshore wind farms and platforms. These are often
large-scale projects with high costs and relatively high levels of un-
certainties associated with offshore weather conditions and marine
operations. It is therefore important to improve the understanding and
characterization of the uncertainties associated with the execution of
marine projects.

A marine project typically consists of a series of operations. For
instance, the installation of an offshore wind turbine foundation in-
volves: sailing to project site, installing a monopile, placing transition
piece and sailing back to harbor. Each operation is subject to a pre-
defined operational limit and net duration, depending on the equip-
ment being used. Operational limits can typically be related to
threshold levels of environmental parameters such as wave height,
wind speed and surface current or relevant combinations. If weather
conditions exceed the operational limit, then the operation cannot be
executed and hence downtime occurs. The net duration of an operation
is defined as the time required to complete an operation without any
delay. This is characterized by means of a deterministic value that
optionally includes a safety margin for contingencies. Marine

contractors try to accurately estimate the uncertainties in the occurring
conditions to obtain the expected downtime. This will be important for
project management during the execution and to estimate the expected
project costs (and the associated bandwidth) in the tender phase.

Currently, various approaches are being used to determine down-
time for marine operations or marine projects. These are summarized in
Table 1 and briefly described below. The most frequently used method
to determine the workability is the wave scatter approach [1]. Work-
ability is defined by the proportion of time that a time series is in the
operable state, i.e. an operation can be executed. However, the wave
scatter approach lacks information regarding the persistency. Persis-
tence is the duration that one or more metocean parameters remain
below or above a certain threshold [2]. The threshold is determined by
the operation with its operational weather limit. Models including
persistency are developed by [3–5] with empirical distribution fits, by
[6] with the Markov theory and by [7] using the Equivalent Storm
Model approach.

However, none of these methods allow to analyze the downtime for
a series of operations, or to incorporate more than two metocean
parameters in a project. The downtime of series of operations can be
either determined analytically by means of a probabilistic network and
evaluation technique [11] or an event tree [12]. However, analytical
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analysis becomes complex in case of a sequence of operations and/or a
lot of metocean parameters dictating the operational limits. It can also
be determined by means of a simulation/sampling study [1] [13]. The
main downside of a simulation is that sufficient metocean data is re-
quired for multiple simulations of a project to reach a reliable solution.
The associated uncertainty is called the ‘simulation uncertainty’ [21]:
the uncertainty related to the number of replications. Simulation un-
certainty can be decreased by increasing the number of realizations.

A simulation study can be performed with real (observed) data or
synthetic data produced by a stochastic model. Since a project is bound
to a start date and weather conditions generally vary over the year, the
number of simulations on observed data is proportional to the number
of years recorded in the data. Metocean datasets are being recorded or
hindcasted for approximately 15–35 years [22], yielding in only 15–35
project simulations. This generally results in a high simulation un-
certainty in the current approaches for downtime estimation, and thus
an uncertain project cost estimation. As far as known by the authors,
current literature does not provide a stochastic model to estimate
downtime of marine projects, consisting of multiple operations which
are defined by its operational limits and durations. Monbet et al. [23]
conducted a survey of stochastic models for wind and sea state time
series. Most models only allow one or two metocean parameters, while
more parameters may influence the operational limit in practice.
Hence, these stochastic models are less applicable for downtime esti-
mation.

To overcome these limitations, this paper introduces a new method
in which synthetic project simulations are generated with Monte-Carlo
Markov Chains based on the statistics of the hindcasted data. Within
this approach there is no limit for the number of metocean parameters
considered. With a synthetic model more project simulations are rea-
lizable, which reduces the simulation uncertainty, i.e. the uncertainty
associated with the number of repetitions.

Next to the simulation uncertainty, two other important un-
certainties are present: ‘parametric’ and ‘model’ uncertainty. The
parametric uncertainty is the uncertainty related to the estimation of
the input parameter(s) of the stochastic model due to the limited data

sample and parameter estimation method [24,21,25]. The lower the
number of input parameters and/or the more data on which the para-
meter estimation is based, the lower the parametric uncertainty. The
model uncertainty is related to non-statistical errors due to abstraction
[24,25]. The more realistic the model, the lower the model uncertainty.
This paper proposes only a quantification for the simulation un-
certainty. In the discussion (Section 3.3) the impact of the other un-
certainties will be qualitatively elaborated. The probabilistic model
framework with linked Markov chains as presented in this paper was
developed in the research report [26] and is further developed by
Bruijn [27].

The remainder of the paper is structured as follows. In Section 2 the
model framework is introduced. The ability of the model to generate
synthetic project simulations from which the downtime can de-
termined, is explained. The model is applied with a hypothetical project
and a metocean hindcasted dataset from the Tasman Sea in Section 3.
The discussion of this research is presented in Section 4. Finally, Section
5 concludes with conclusions and recommendations.

2. Model overview

2.1. General

Markov chains have been used in various fields, such as the mod-
elling of queuing systems, DNA sequences, financial risk, and many
other practical applications [28]. Markov chains may also be used to
model sea states [6,19,20]. In this section the model will be explained
which is able to produce synthetic marine project simulations with
Markov chains. The breakdown structure in Fig. A1 (Appendix A) shows
the process of the model developed in this research.

The model abstracts the actual metocean conditions into workable
states ‘1′ and non-workable states ‘0′ depending on the operational limit
(see Fig. 1). So-called a binary ‘workability-array’ is created from the
hindcasted data and the operational limit(s). Hence, the information
about the actual metocean parameter is lost. Other delay factors apart
from weather conditions are not considered in this paper. Based on the

Table 1
Overview of existing approaches for downtime analysis in marine projects [26].

Method Pros Cons Literature

Analytical
Joint probability distribution / wave

scatter
Simple, fast and gives a quick overview of the
operational limits relative to the prevailing
weather conditions.

Not able to take weather windows or pattern of
transitions between states into account.

[1]

Empirical persistency distribution Lot of literature for Hs application. Not (yet) applied for > 2metocean parameters or
multiple operations, long time series required.

[2,4,8,3,9]

Markov chain theory Shorter time series required. Not (yet) applied for > 2metocean parameters or
multiple operations.

[6,10]

Equivalent Storm Model Simple expressions for downtime and missed
energy

Limited to Hs only [7]

Probabilistic network Analytical downtime distribution for a marine
project.

Duration per path assumed to be normal distributed
and operation duration assumed to be independent
(not always true).

[6,11]

Event / decision tree Closed-form expression for downtime. Trees might become too large for marine projects. [12]

Simulation
No stochastic model (direct use of

hindcast data)
Easy (no model construction), no parametric
uncertainty and relatively low model
uncertainty.

Confidence bounds on downtime distribution large
due to limited sample size (high simulation
uncertainty)

[1,13,14,15,16]

Stochastic models:
• Resampling No parameter estimation required. Persistency patterns can appear. [16]
• Multivariate distribution Exact values of metocean parameters modelled. High parametric and model uncertainty for 2+

metocean parameters.
[17,18]

• Markov (discretized metocean
parameter values as states)

CDF of metocean parameters and persistence
statistics successful reproduced.

High parametric uncertainty for 2+ metocean
parameters.

[19,20]

• Markov (workability states) Any combination of metocean parameters
possible, relatively low simulation uncertainty.

Relatively higher parametric and model
uncertainty.

[6], this research for multiple
sequential operations.
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statistics of the hindcasted 2-state workability-array, the model is able
to produce binary ‘workability sequences’ stochastically for each op-
eration. Also when an operation is limited to two or more metocean
parameters, the model can still produce binary time-series for the
specific operation without modelling dependencies between the para-
meters.

From the hindcasted workability-array Markov transition prob-
abilities between the states can be estimated with the maximum like-
lihood estimate (MLE) [29] in Eq. (1).

=P
N
N

i j Sˆ , ,ij
ij

i
* (1)

Where Nij is the number of observed transitions from state i to j and Ni
*

is the number of transitions starting from state i
( =N N i j S, ,i j ij

* ). The limiting probability j is the probability
that a process will be in state j after a large number transitions, and it
can be computed with Eq. (2) [30].
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+
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The workability sequence consist of time steps t = 0,1,…,T, where
discrete random variables X0,X1,…,Xt represent the ‘state’ or ‘work-
ability’ of the process at each time step t. If the process is in state 0 at
time step t (i.e. Xt= 0), the operational limit is violated and the op-
eration cannot be executed. Vice versa, a state of 1 is assigned if the
operation can be executed. The proposed model is therefore a discrete
time, discrete state space Markov chain. The following equation holds if
a future state depends on the past u states in a Markov chain [30]:
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2.2. Assumptions

The following requirements and assumptions have been set:
Requirements: The synthetic dataset should show the same char-

acteristics as the original data:

• Seasonality is respected.
• Persistency of sequential workable time steps is respected.
• Overall workability is respected.
• Dependencies between operations are respected.
Assumptions

• There are no long-term trends in the data (assumption of no climate
change), only seasonal inhomogeneity is considered.
• The operational limit is strict: a time step is either workable or not.
• The net duration of an operation is deterministic.

• The statistics within the original dataset are assumed to represent
reality.
• Only 1metocean dataset is used, thus sailing hours are projected
only for this location.

2.3. Metocean data and project planning

A project planning consists of a sequence of operations, where each
operation is defined by its operational limit and net duration. Also, the
relationship between operations are included, as some operations must
start directly after the preceding operation is completed and others do
not.

Hindcasted datasets of metocean parameters near project locations
are used as input data for the model. These datasets consist of ap-
proximately 15–35 years of data, with generally 1-hour, 3-hour or 6-
hour intervals. With the dataset and the operational limits the binary
workability sequences are created. The probabilities can be calculated
more accurately when more data is available. Therefore, one should
always strive to use the largest available dataset near the project lo-
cation.

2.4. Seasonality

Metocean conditions are subject to seasonality, hence two ap-
proaches are introduced to incorporate these. The first approach is
called ‘piecewise time-homogeneous’ and the second approach is called
‘non time-homogeneous’.

In the piecewise time-homogeneous approach the year is divided
into periods (e.g. seasons or months) and the transition probabilities are
estimated separately for these periods with equation (1) and are as-
sumed to be constant over the periods.

In the non-time-homogeneous approach the transition probabilities
vary over the year depending on the day of the year. A discrete non-
parametric kernel estimator is applied to estimate the P t( )ij [31], which
gives generally more weight to transitions near the calendar day of
interest and the ones further away lower weightage. The resulting
kernel estimators for transition probabilities P tˆ ( )01 and P tˆ ( )10 are given:
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Where in Eq. (4) N01 = the number of transitions from state 0 to 1 in the
workability-array; N0

* = the number of transitions starting from state 0;
K ( ) = the kernel function (Eq. (5)); h01 = a kernel bandwidth; t = a
calendar day; t k01 = the day indices of transitions from 0 to 1 in the
data; t k0 = the day indices of transitions starting from 0. The estimates
on calendar day t are hence obtained by using the information of the
days in the range of +t h t h[ , ]. Since the Markov chain is ergodic the
other probabilities can be obtained by =P Pˆ 1 ˆ00 01 and =P Pˆ 1 ˆ11 10.
The discrete kernel function is given by Rajagopalan et al. [31]:

=K x h
h

x for x( ) 3
1 4

(1 ), | | 12
2

(5)

By means of a least squared cross validation procedure the kernel
bandwidths are determined:

=
=

LSCV h
N

P t P t( ) 1 ( ( ) ˆ ( ))
i

N

init i t i01
0
*

1
01, 01,

2
i

01

(6)

=
=

LSCV h
N

P t P t( ) 1 ( ( ) ˆ ( ))
i

N

init i t i10
1
*

1
10, 10,

2
i

10

(7)

Where P tˆ ( )t i01, i = the estimate of the transition probability on day ti,
dropping the information on day ti. =P t( )init i

N t
N t01,

( )
( )

i
i

01

0
* , where N t( )i01 and

N t( )i0
* are the number of transitions from 0 to 1 on day ti and the

number of transitions starting from 0 on day index ti respectively. The

Fig. 1. An example of how to obtain the workability-array from the significant
wave height time series and an operational limit (Hs ≤2m) [26].
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bandwidth is investigated for periods from 7 to 30 days. It is considered
that for a smaller bandwidth too little data is used to make a justified
estimate, and for a larger bandwidth the estimates become too
‘smoothed’ as can be seen in Fig. 2 with bandwidth of 60 days. In Fig. 2
the transition probability P10 is presented over the year calculated with
both seasonality approaches and with different bandwidths is given.
This is done based on a measured dataset by National Oceanic and
Atmospheric Administration (NOAA) over the period 1990–2011 with a
temporal resolution of 1 h at a longitude of 78.493 °W and a latitude of
28.872 °N.

In order to determine which seasonality approach most accurately
describes the hindcasted data, the homogeneity test is performed. The
transition probabilities per week within a month should be more or less
the same, if the assumption of monthly piecewise stationarity is correct
[32]. The monthly workability sequences are subdivided into Y= 4
different sub-intervals (weeks per month). The transition probabilities
per week (sub-interval) are tested with the transition probabilities per
month. The following hypotheses are defined:

• = = = …H P y P m i j S y m: ( ) ( ) , , 1,2, 3,4, 1,2, , 12ij ij0

• = = …H P y P m i j S y m: ( ) ( ) , , 1,2, 3,4, 1,2, ,12ij ij1

Where P y( )ij denotes the transition probability from state i at time t
to state j at time t + 1 during sub-interval y (week). This transition
probability holds for +t t y[ , ]y y , where ty is defined as the first time
step in sub-interval y with length y. P m( )ij denotes the transition
probability from state i at time t to state j at time t + 1 during interval m
(month). This transition probability holds for +t t[ , m]m m , where tm is
defined as the first time step in interval m with length m. The tran-
sition probabilities during sub-interval y or interval m are calculated
with the maximum likelihood estimate from Eq. (1).

The Chi-square test is used to test the null-hypothesis [29]:

=
=

N y P y P m
P m

i j SX
( )( ˆ ( ) ˆ ( ))

ˆ ( )
, , (9)i

y

Y

j S

ij ij ij

ij

2

1

2

(8)

The limiting Xi
2 distribution has n Y( 1)s

u degrees of freedom (u is
the order of the Markov chain and ns is defined as the number of states).
Summing over all Xi

2, the total test statistic Xi
2 has a limiting Xi

2 dis-
tribution with n Y n( 1)s

u
s
u degrees of freedom. A small number

(10−10) is added to the number of transitions for smoothing to avoid
=P yˆ ( ) 0ij . If the null hypothesis is true, the hindcasted data is con-

sidered to be piecewise time-homogeneous. Alternatively, the non-time-
homogeneity is assigned to the model.

2.5. Time-dependency

All metocean conditions are subject to autocorrelation, which can
be captured in the time-dependency of a Markov chain. In a first-order

Markov chain the value of Xt+1 only depends on the value of Xt. By
using a higher Markov chain order the value of Xt+1 depends on the
value of Xt, Xt-1,…,Xt-(u-1) with u denoting the order. The maximum
likelihood estimate can be obtained by:

= ……
…

…
P

N
N

i k Sˆ , , ,ij kl
ij kl

ij k
* (9)

Where …Nij kl denotes the number of observed transitions from state ij…k
to state l and …Nij k

* denotes the number of observed transitions that start
from state ij…k ( =… …N N i j k S, , ,ij k j ij k

* ). The additional history
of a higher order can make the predictions more accurate, but on the
other hand more parameters need to be estimated which grows ex-
ponentially with n n( 1)s s

u. Where ns = the number of states and u =
the Markov chain order. Additionally, the limiting probabilities are
calculated differently for higher orders:

=…
=

= = … =+ +T u
ˆ 1 1jk l

t

T u

X j X k X l
1

{ , , , }t t x u1 1
(10)

where

= = = … =
= = … =

+ +
+ +

if X j X k X l
otherwise

1 1
0

, , ,
X j X k X l

t t t u
{ , , , }

1 1
t t x u1 1 (11)

To show how the Markov chain order influences the persistency, a
North sea dataset is used. This dataset is collected by Boskalis at
(53.91 °N, 2.15 °E), consisting of 23 years (from 1992 till 2015) sampled
with an interval of 3 h. In Fig. 3 a cumulative distribution function
(CDF) of the persistency is displayed of the North sea dataset with an
operational limit of H m2s . The most upper line (blue) shows the
cumulative persistency distribution of the hindcasted data. It can be
noticed that the cumulative persistency distribution of the synthetic

Fig. 2. Comparison between first order monthly constant transition probabilities (blue) and the non-time-homogeneous transition probabilities with different kernel
bandwidths. NOAA dataset with an operational limit of H m U m s2.5 & 10 /s [26].

Fig. 3. Increasing the Markov chain order the cumulative distribution of per-
sistency of Hs remaining below 2m at the North sea location converges to the
hindcasted data. The red markers indicate the splitting points where the gen-
erated dataset splits off the hindcasted dataset [27].
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datasets converges to the hindcasted data by applying a higher Markov
chain order. In other words, it can be stated that a higher Markov chain
order better preserves the persistency distribution. The red markers
indicate the splitting points where the synthetic datasets split off the
hindcasted data. It can be seen that the persistency distribution is
preserved until the duration of the persistency (hours) is equal to the
Markov chain order. From this point the curve of the synthetic dataset
releases from the hindcasted data curve, and persistency is over-
estimated. An even higher Markov chain order than 13 is needed to
preserve a more accurate persistency distribution of the North sea da-
taset with operational limit of H m2s . This increases the risk that the
model will tend to replicate the exact hindcasted data, leading to no
new information and making the model of no added value. However,
the model-user should analyze which order and which seasonality ap-
proach should be used per location and per project. It is recommended
not to use a higher Markov chain order than the longest net duration (in
hours) of all operations in the project, since longer persistency windows
are not being used.

2.5.1. Order test
The order-test can be used to determine which Markov chain order

describes the workability sequences most accurate for the piecewise
time homogeneous approach. In this paper the non-time-homogeneous
approach is given with a first-order Markov chain, therefore this test
will only be performed if the homogeneity test is accepted. Transition
probabilities for Markov chain order u and Markov chain order u+1
should be more or less the same, if the assumption of Markov chain
order u is correct [29]. In other words, the last state before u states
should not have an significant influence on the transition probabilities.

• H :0 The Markov chain order is of order u, implying that
=… …P P i j S, ,ij kl j kl (the workability sequence …ij k covers the

last +u 1 states and the workability sequence …j k covers the last u
states, l is the next state)
• H :1 The Markov chain is not order u, hence … …P Pij kl j kl

A Chi-squared test can be used to test the null hypothesis, which is
defined as:

= ……
… … …

…

N P P
P

i j k SX
( ˆ ˆ )

ˆ , , , .,j k
i S l S

ij k ij kl j kl

j kl

2
* 2

(12)

Where …P̂ij kl and …P̂j kl are calculated with Eq. (10) using order u and
order u 1 respectively. The limiting X2 distribution has n( 1)s

2 de-
grees of freedom. Summing over all X2, the total test statistic X2 has a
limiting X2 distribution with n n( 1)s s

u2 degrees of freedom. A small
number (10 10) is added to the number of transitions for smoothing to
avoid =P̂ 0ij . If the null-hypothesis is true, then the workability se-
quence has a Markov chain order u.

2.6. Linking Markov chains

With the previously described theory the model is able to produce
time-series for single operations. However, marine operations consist of
multiple sequential operations and therefore the Markov chains of these
individual operations have to be linked. For that purpose two concepts
are introduced: the ‘influence period’ and the ‘cross-transition prob-
ability’.

2.6.1. Influence period
The general idea of the influence periods is to ensure that the speed

at which a sea regime changes in the synthetic data is physically fea-
sible. For example, a workable time step t in an operation with opera-
tional limit Hs ≤ 0.5 m followed by a non-workable time step t + 1 in
an operation with limit Hs ≤ 3 m implies a change from Hs ≤ 0.5 m to
Hs>3 m in 1 h, which is very unlikely. Hence, a minimum duration of
required workable time steps need to be implemented in the second
operation q after the completion of the first operation p, this duration is
called the workable influence period D1(p,q). Vice versa, a change from
Hs>3 m to Hs ≤ 0.5 m in 1 h is unlikely as well, hence the non-
workable influence period D°(p,q) is introduced. This is the minimum
required non-workable time steps that need to be implemented in the
second operation q after the crossing of non-workable time step to a
workable time step in operation p.

The workable influence period is determined by collecting the
duration where operation p crosses from a workable time step to a non-
workable time step, till operation q crosses from a workable time step to
a non-workable time step. From this collection the influence periods
corresponding to an exceedance probability of 0.98 are implemented,
as it is assumed that no more than 2% in the data contains errors and
extreme events are avoided. The workable influence periods are im-
plemented for all succeeding operations after the completion of op-
eration p.

Fig. 4. Example how the workable influence periods for an operational limit Hs ≤ 1m following operational limit Hs ≤ 0.5 m are determined [26].

Fig. 5. Exceedance probability of the workable influence period D1(Hs ≤ 1m,
Hs ≤ 2.5 m) with a red marker at an exceedance probability of 0.98 corre-
sponding with an influence period of approximately 5 h [27].
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Unlike the workable influence period, the non-workable influence
period is scheduled for each operation that follows after a 0/1 crossing
in the workability sequence of operation p. Similarly to the workable
influence period, the collection of non-workable influence periods
happens in the same way and non-workable influence periods corre-
sponding with an exceedance probability of 0.98 are used when op-
eration p crosses from a non-workable to a workable time step.

In Fig. 4 an example is given for the D1 values for an operation with
a limit H m0.5s , followed by an operation with a limit H m1s . Such
time periods from passing the 1/0 boundary of operation p, to the
passing of the 1/0 boundary of operation q are collected in an empirical
exceedance probability curve. Fig. 5 presents the empirical exceedance
probability curve of the workable influence periods determined by
operations p and q with operational limits of H m1s and H m2.5s
respectively. This not only applies for the first following operation, but
for all the following operations an exceedance probability curve is de-
termined. After operation p is completed the influence periods corre-
sponding with an exceedance probability equal to 0.98 are scheduled
for each operation that follows. After the implementation of the
workable influence periods, the Markov chain continues with the reg-
ular transition probabilities for the next operation.

2.6.2. Cross-transition probability
If no influence period is scheduled, the cross-transition probability

P̂ij
pq is used to capture the dependency between the operations. The

cross-transition probability characterizes the likelihood that the next
state in operation q is either workable or non-workable based on the
previous state of operation p. Similarly as the regular transition prob-
abilities, the cross-transition probabilities can be derived from the ob-
served transitions as follows:

=P
N
N

i j Sˆ , ,ij
pq i j

i
*

p q

p (13)

Where Ni jp q is the number of observed transitions from state i in the
workability-array of operation p to state j in the workability-array of
operation q and Ni

*p is the number of transitions that start from state i in
operation p ( =N N i j S, ,i j i j

p q*p p p q ). This equation can be ex-
tended for higher orders as well and piecewise stationarity is assumed
for this approach.

2.7. Coupled operations

When an operation must start directly after the preceding operation
has completed, i.e. if no delay is allowed between two successive op-
erations, only the preceding operation is called a coupled operation. In
order to find a weather window which allows a coupled operation and
the successive operations to be performed, the model generates the
workability sequences for both operations simultaneously. Therefore, 4
states are defined as shown in Table 2, and their transition probabilities
are derived with Eq. (1) with S = {0,1,2,3}. The same approach is
applied when there are more sequentially coupled operations, resulting
in a higher value for S.

2.8. Simulation uncertainty

The simulation uncertainty is determined by the number of project
simulations: increasing the number of project simulations, the simula-
tion uncertainty decreases. The outcome of the model is the distribution
of the project duration or downtime duration. These can be derived by
an empirical cumulative distribution function (ECDF), which is defined
as:

=
=

F x
n

X xˆ ( ) 1 1{ },n
i

n

i
1 (14)

where

=X x if X x
otherwise

1{ } 1
0i

i

(15)

In this equation n determines the number of project simulations. The
simulation uncertainty is quantified by the Dvoretzky-Kiefer-Wolfowitz
(DKW) inequality, which determines the confidence bounds for F̂n. With
F̂n the lower (L) and upper (U) confidence bounds are defined as [33]:

=L x F x
n

( ) max ˆ ( ) 1
2

ln 2 , 0n
(16)

= +U x F x
n

( ) min ˆ ( ) 1
2

ln 2 , 1n
(17)

Then, for any CDF F and all n

P L x F x U x x( ( ) ( ) ( )) 1 (18)

Where 1 is the probability at each point x that F(x) lies within the
confidence bounds. Fig. 6 shows that increasing the sample size n re-
sults in smaller maximum distances between F xˆ ( )n and L x( ) andU x( ) in
order ofO ( )n

1 . Note that, the larger the sample size n develops, the less
important the -value gets as the lines converge. It is recommended to
generate in the order of 1000 project simulations, because this reduces
the probability that an outcome lies outside the confidence bounds to a
value below of 5%, which is commonly accepted.

2.9. Validation

For validation purposes, the workability percentage and persistency
distribution of the generated and hindcasted workability sequences can
be compared. To check whether the workability is respected, the root
mean squared error (RMSE) can be computed of the monthly generated
workability sequences (indicated by Ŵm) compared to the monthly
workability of the hindcasted workability sequences (Wm):

Table 2
The workability states for a coupled operation and the succeeding operation.

Coupled operation Subsequent operation Modelled state value

0 0 0
0 1 1
1 0 2
1 1 3 Fig. 6. Relationship of the maximum distance between F x^ ( ), lower bound L x( )

and upper bound U x( ) versus sample size n for multiple α-values [26].
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= =RMSE
W W( ˆ )

12workability
m m m1
12 2

(19)

To check whether the persistency of the hindcasted is respected in
the generated workability sequences, the mean, standard deviation and
the two-sample Kolmogorov-Smirnoff test can be computed for each
operation. Suppose …L L, , n1 are the lengths of subsequent 1 s in the
workability sequence. The ECDF is then computed by using Eq. (11),
with Xi replaced by Li. The two-sample Kolmogorov-Smirnoff test is as
follows calculated [34]:

=D F x F xmax| ˆ ( ) ˆ ( )|L
x

L obs L model, , (20)

2.10. Schematization

The model described in the previous sections has been implemented
in MATLAB code. This allows a relatively short run time (order of 1 h)
on a standard computer for a project consisting of 18 operations where
1000 stochastic project simulations are generated.

In Fig. 7 a schematization of a single hypothetical project simulation
is depicted, where the blue numbers correspond with the numbered list
below. In this small project 1st order Markov chain is applied.

1 The first symbol is produced with the limiting probabilities for op-
eration A, as can be calculated with Eq. (2).

2 The workability sequence continues with the transition probabilities
of operation A, which are calculated with Eq. (1), until the net
duration of two hours is reached. The initiation and completion of
the operation is framed with a black rectangle.

3 In case the crossing from a non-workable (0) to workable (1) state
occurred in the workability sequence, the model will generate the
non-workable influence periods D p q( , )0 for the next operation. In
this project there were no non-workable influence periods.

4 For all succeeding operations the influence period D p q( , )1 of op-
eration A is determined. Only operation B is influenced with 6
workable time steps due to its less strict operational limit. The other
operations are not influenced at all, because of the different op-
erational limits. The net duration of operation B fits within the
scheduled influence period, and from this time step the project si-
mulation continues.

5 For all succeeding operations the influence periods of operation B
are determined, which are calculated to be zero. Since no influence
period is scheduled for operation C and D and operation C is defined
as a coupled operation (operation D has to start directly after
completing operation C), the simulation continues with the cross-
transition probability Pij

BCD. The cross-transition probability is cal-
culated with Eq. (10).

6 The workability sequence of operation C and D continue with the
transition probabilities Pij

C*
, which generates states simultaneously

for operation C and operation D until the net duration for both
operations is reached without downtime in between them. Note that
operation C could not start any earlier because of the non-workable
states in operation D.

These time steps summarize how one project is simulated, which
resulted in a project duration of 17 time steps (hours) in this example.
The downtime is calculated by subtracting the total net duration of the
project duration which is 17 – 10=7 time steps (hours).

3. Application and results

3.1. Model configuration

The model requires two input files, namely a metocean hindcasted
dataset and a project planning. In this paper a metocean dataset from
the Tasman Sea gathered at a longitude of 148 °E and a latitude of
38.5 °S is used. This dataset has been obtained by Boskalis and it

Fig. 7. Visual schematization of the model procedure of a hypothetical project consisting of 4 operations.

Fig. 8. Scatterplot of the significant wave height [m] and the wind speed [m/s]
in the Tasman sea.

W.E.L. Bruijn, et al. Applied Ocean Research 86 (2019) 257–267

263



consists of 24 years of data (1992 – till 2016) sampled with an interval
of 3 h. Figs. 8 and 9 depict a scatterplot of the significant wave height
(Hs) and wind speed (U), and the dependency between these variables
with the Tawn T2 copula.

The other input file is the hypothetical project planning for an in-
stallation of a foundation of a wind turbine from Table 3. Operation 3b
and 5 are not considered in the simulation, because operation 3b has no
operational limit and operation 5 requires the water depth which is not
measured.

The non-time-homogeneity approach with first-order Markov chain
is applied for the simulation. January 1 is chosen to be the project start
date.

3.2. Model performance

As explained in Section 2.8 the outcome of the model is the dis-
tribution of the project duration or downtime. Fig. 10 shows the
downtime of the hypothetical project. The results indicated in red are
determined with the model configurations of Section 3.1 and a sample
size n (project simulations) of 1000. The results indicated in blue are
determined by simulating the hypothetical project of Table 3 on the
hindcasted data of 23 years, thus 23 project realizations. The

confidence bounds indicate the simulation uncertainty, calculated with
Eq. (15). A further discussion of the results is given in the next section.

3.3. Discussion of results

With the new model the simulation uncertainty is significantly re-
duced, this is shown by the decrease of bandwidth in Fig. 6. On the
other hand, parametric and model uncertainty are introduced which are
not quantified. The model settings determine the degree of uncertainty,
for example, the non-time homogeneity method results in a higher
parametric uncertainty (because more transition probabilities need to
be determined) and lower model uncertainty (due to more accurate
estimations). The model and parametric uncertainty work in different
directions, when one increases the other one decreases. For this simu-
lation the non-time homogeneity approach is used, because it describes
the probabilities more accurate than the piecewise time-homogeneous
approach according to the homogeneity test. On the other hand, the
non-time homogeneous method works with a 1st-order Markov chain
which overestimates the persistency distribution, making it less accu-
rate. Also, it is noted from Fig. 10 that there are substantial differences
in expected outcomes between the two models, especially for downtime
values between 3 and 12 days. This shows how the choice of the
modelling concept can influence outcomes. Also, the original model
(based on 23 years of data) shows very large bandwidth in project time
for a given probability value (e.g. between 6 and 21 days for an 80th

percentile value), making probabilistic planning difficult. The new
model is in that respect more suitable for probabilistic project planning.

There were no coupled operations scheduled for this hypothetical
project. The parametric uncertainty increases significantly when (se-
quentially) coupled operations are scheduled, because the number of
transition probabilities that need to be calculated increases ex-
ponentially. Hence, the model-user should be aware when multiple
coupled operations in a project are scheduled or when a higher Markov
chain order is applied.

Furthermore, the workability percentage per operation is validated
with the RMSE, which resulted in very low values, concluding that the
model preserves the workability percentage accurately. The persistency
per operation is validated with the two-sample Kolmogorov-Smirnoff
test, which was not accepted for all operations. For the not-accepted
operations the model generated too optimistic weather windows com-
pared to the hindcasted weather windows. But this overestimation can
be controlled to some extend by increasing the Markov chain order, as
illustrated in Section 2.5. The increase of the Markov chain order
should be limited, else the model will replicate the hindcasted data. The
slight overestimation in persistency is acceptable in terms of influence
on downtime.

Table 3
Planned installation cycle with the net durations and operational limits of a hypothetical wind turbine foundation installation project [26].

No. Description Operational limit Net duration

1 Load up to 5MPs and TPs from quay wall onto installation vessel U m s12 / 19 h
2 Sail to project site & jack-up H m U2,5 , 13s

m
s

19 h

Installation (5x per cycle)
3a Handle MP and place in gripper frame H m U1 , 13s

m
s

4 h

3b Pile MP & remove hammer 4 h
4a Place TP H m1.5s , U 13 m

s
4 h

4b Grout TP H m2s 4 h
5 On-site relocation & jack-up m10 keel clearance 1 h

6 Sailing back to port H m U2,5 , 13s
m
s

17 h

Fig. 9. Tawn T2 copula density plot of the significant wave height and wind
speed in the Tasman sea.
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4. Discussion

This research introduces a discrete-time 2-state-Markov model to
stochastically simulate sequential operations in a marine project. The
proposed model shows promising results for analyzing the downtime
risk of marine projects. Especially for large cyclic projects more accu-
rate downtime estimations are possible, since the variation in project
duration of the current simulation methods is larger than for smaller
projects. However, it should be kept in mind that the hindcasted data
used as input for the downtime estimation is assumed to represent
reality, which is not certain. If in the hindcasted data a once in 1000-
year storm occurred, then the model will treat it as it happens every 20
years (if the dataset length is 20 years).

This model only incorporates downtime related to weather condi-
tions, while in reality more uncertainties can influence the project
downtime: the operational limit may be too restrictive, the net dura-
tions depend on the available crew and their learning curves, break-
downs of the equipment can occur. Additionally, the significant wave
height is used in the calculations, but every single wave can be dif-
ferent. And in the end, the captain or project manager has the final
responsibility on which decision is made. It is very complex to take all
of these factors into account in a simulation model. Nevertheless, the
proposed model makes a first step to at least quantify the caused delay
by weather conditions. Therefore, it is expected that the proposed
strategy can help tender teams to make decisions about the project
duration they will put in tender.

In this paper only the simulation uncertainty is quantified, but in
order to get a complete picture of the total uncertainty situation it is
recommended to quantify the model and parametric uncertainties as
well.

5. Conclusions

For offshore marine projects it is important to identify and map the
uncertainties related to weather conditions. These weather conditions
may delay certain operations, which goes hand in hand with additional
financial costs. Current models to estimate marine project durations are
making use of hindcasted data to perform their simulations: for each
year in the data one realization of project duration is found. The upside

is that this metocean data is ‘real’ data (as if these project durations
actually happened in the past), but there is a high simulation un-
certainty in the prediction because it is made based on a small (gen-
erally ≤ 35 years) number of samples. A new model was proposed
which is able to produce synthetic marine projects with linked Markov
chains based on statistics of the metocean data near the project loca-
tion.

In this paper the model was applied to a location in the Tasman sea
with a hypothetical project (Table 3). It is demonstrated that the si-
mulation uncertainty in the bandwidth is significantly reduced, as an
unlimited number of years of project simulations can be generated.
Also, the workability percentage is well preserved in the synthetic data
compared to the original data. The persistency of sequential workable
time steps is a slightly less well preserved, but this can be controlled to
some extent by increasing the Markov chain order. Also, the de-
pendencies between operations are well incorporated in the model and
show promising results. It is recommended to consider the model at
more locations with different projects, as it could lead to more general
conclusions.

Any project and any location can be used to estimate the downtime
in this model. Further application to other projects is recommended and
the optimal settings of the model (e.g. choice of homogeneity and
Markov chain order) will depend on local conditions. Optimal model
settings can be determined with the homogeneity and order test, which
influence the parametric and model uncertainty, and these should be
minimized.

The added value of the model regarding downtime analysis in
general, is that there was no stochastic model in current literature to
simulate marine projects. The proposed model is an innovative and
realistic way of modelling, because of the use of concepts as persistency,
influence periods, n-order Markov chain, etcetera. Thus, it a promising
alternative for existing project planning tools.

Acknowledgements

The contribution of Oswaldo Morales – Napoles and George
Leontaris to this research is gratefully acknowledged. We thank
Boskalis for supplying metocean data to perform the simulations.

Fig. 10. The cumulative probability distributions of the downtime on the Tasman sea project with January-1 as start date. Downtime durations in blue are calculated
with the original (23 years) and in red are calculated with the synthetic (1000 years) datasets [27].
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Appendix A

.

Fig. A1. Breakdown of proposed model for marine projects [26].
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