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2 1. INTRODUCTION

1.1. GENERAL INTRODUCTION

The contact mechanics of solid bodies with rough surfaces is a topic of great practical

importance in tribology, the science of friction. Energy is inevitably dissipated in the

form of friction between any two surfaces that slide relatively to each other. There are

several instances in daily life when friction is advantageous; for instance, the author of

this thesis would be unable to type the document in the absence of friction between his

fingertips and the keyboard. At the same time, friction is detrimental in several applica-

tions; for instance, in passenger cars, one-third of the fuel energy is spent to overcome

friction in the engine, transmission, tires, and brakes. The direct frictional losses, ex-

cluding braking friction, are 28% of the fuel energy. According to a study by Holmberg

et . al . (Holmberg et al., 2012), reductions in frictional losses will lead to a threefold im-

provement in fuel economy, as it will also reduce both the exhaust and cooling losses by

the same ratio. By taking advantage of new technology for friction reduction, frictional

losses could be reduced by 61% in the long term. This would amount to a worldwide

economic savings of 576,000 million euros, and CO2 emission reduction of 960 million

tonnes.

With the inception of nano-technology in the 1980s, there has been a substantial in-

terest in researching the tribological problems at the micro- and nano-scale. However,

despite the success achieved in understanding and regulating the friction of macro-scale

mechanical systems, there is still much room for improvement in understanding the un-

derlying mechanism of friction for micro- and nano-scale systems. Tribological studies

at these scales become important, since with diminishing system size, the surface area

to volume ratio increases and hence the surface forces such as adhesion and friction

become dominant over the inertial and gravitational forces (Bhushan, 2003, 2010, 2012;

de Boer and Mayer, 2001; Komvopoulos, 2003; Mastrangelo, 1998; Tang and Lee, 2001;

Tas et al., 1996). It is already established that the fundamental laws of friction by Amon-

tons and Coulomb ceases to hold true at the micro- and nano-scales; studies have shown

that the tribological properties such as coefficient of friction and wear rates can be dif-

ferent at micro- and nano-scales from macro-scales (Bhushan et al., 1995; Bhushan and

Kulkarni, 1996).

One of the promising areas where tribological solutions can be of great influence is

that of the Micro-Electro Mechanical Systems (MEMS) that have many micro-scale me-
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chanical components such as gears, cantilevers, combs and joints. Due to relatively high

surface forces interacting at the interfaces of these components, it is of great importance

to clearly understand the underlying tribological mechanisms to predict and control

phenomena such as friction and wear for increased durability of MEMS devices. Further-

more, specific applications where micro- and nano- scale tribological solutions are of

great impact include surface micro-machining, chemical-mechanical polishing, probe-

based data storage devices, nano-lithography and semiconductor processing equipment.

Understanding the tribological phenomena at these length scales will ensure enhanced

performance and increased durability and reliability across all spectra of micro- and

nano-scale systems.

It has been observed that most man-made or natural metallic surfaces have rough-

ness spanning several length scales, including micro- and nano- scales, and are self-

affine in nature (Majumdar and Tien, 1990; Mandelbrot et al., 1984; Persson et al., 2004;

Plouraboué and Boehm, 1999). If a self-affine fractal surface is magnified, with differ-

ent magnifications in the perpendicular direction to the surface as compared with the

parallel (in plane) direction, it looks the same; also, the statistical properties remain in-

variant under this scale transformation (see figure 1.1). Given the multi-scale nature of

the rough metal surfaces, the true contact area is only a fraction of the apparent contact

area (Bowden and Tabor, 2001). Being able to predict the size of the resulting contact

spots, the true contact pressure, and the true area of contact would make it possible to

control phenomena such as friction, wear, adhesion, fretting and contact fatigue. Al-

though it is critical to keep track of the deforming asperities and the true contact area

for better insight into the friction phenomenon, the contact is currently inaccessible via

extant characterization techniques. This explains the wide body of analytical and nu-

merical work on contact mechanics.
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ζ = 10 ζ0

ζ = ζ0

ζ = 100 ζ0

ζ = 1000 ζ0

Figure 1.1: Self-affine surface: When a contact region is magnified by ζ, the smaller length scale roughness is
seen and the surface appears to be “invariant".

Earlier studies of rough surfaces in contact involved qualitative description of rough

surface using an ensemble of spherical bumps (Archard, 1957; Greenwood and Williamson,

1966). In the recent past, various approaches have been proposed that include analytical

theories such as (Bush et al., 1975; Majumdar and Bhushan, 1991; Persson, 2001), adap-

tations of the Greenwood and Williamson’s method to fractal surfaces (Ciavarella et al.,

2000; Majumdar and Bhushan, 1991), and direct simulation of experimentally measured

topographies (Hyun et al., 2004; Pei et al., 2005; Polonsky and Keer, 2000; Yastrebov et al.,

2011). Out of all these methods Persson’s theory stands out for its ability to predict elas-

tic contact stress distribution in full contact and approximate the same in partial contact

using a correction factor (Persson, 2006, 2001, 2008).

Numerical calculations of contact between rough surfaces have been made possible

through several methods. Of particular interest are the biconjugate-gradient stabilized

method (Wu, 2006), the boundary-element approach (Ilincic et al., 2011, 2009; Putig-

nano et al., 2012a,b), the fast-Fourier-transform based boundary-value methods (FFT-

BVM) (Polonsky and Keer, 2000; Stanley and Kato, 1997) and Green’s function molec-

ular dynamics (GFMD) (Campañá and Müser, 2007; Campañá et al., 2008; Dapp et al.,

2014; Prodanov et al., 2014). These methods calculate the response of an elastic solid to

an arbitrary boundary value problem by modeling only the surface. This makes these

methods suitable for studying large systems where the surface roughness spans many

orders of length scale. However, these methods are inappropriate for studying contact

deformation of realistic metallic surfaces that easily undergo plastic deformation.
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Friction between two self-affine metallic surfaces in contact involves energy dissi-

pation in the form of near-surface plastic deformation (Bowden and Tabor, 1973). Even

under small loads, local stresses in the contact regions easily exceed the elastic limit, and

local plastic deformation takes place although nominal stresses may be within the elas-

tic range (Dieterich and Kilgore, 1996; Dwyer-Joyce et al., 2001). Although there has been

much progress in the numerical study of elasto-plastic contacts (Almqvist et al., 2007;

Gao and Bower, 2006; Kogut and Etsion, 2002; Pei et al., 2005; Yastrebov et al., 2011), all

these studies are based on continuum plasticity models and provide an appropriate de-

scription of contact between crystalline solids only if the contacts are larger than several

micrometers.

In self-affine surfaces, the asperities span various length scales, and at the micro-

scale their plastic response is size-dependent, with smaller-sized metal objects being

harder to deform than large ones (Fleck et al., 1994; Greer et al., 2005; Ma and Clarke,

1995; Nicola et al., 2003, 2006; Volkert and Lilleodden, 2006). Size-dependent plasticity

can be captured by discrete dislocation plasticity simulations (DDP) (van der Giessen

and Needleman, 1995). The majority of discrete dislocation analyses of contact have

been performed on indentation of a single crystal with a single indenter (Balint et al.,

2006; Widjaja et al., 2007) or a periodic array of flat indenters (Nicola et al., 2007, 2008).

This method has also been used for the analysis of self-affine surfaces in contact, ac-

counting for multi-scale asperity interaction in semi-infinite bodies (Yin and Komvopou-

los, 2012) where each micro-contact was assumed to be Hertzian. It has to be noted that,

so far, only simulations for very simple surface geometries have been carried out using

DDP (Song et al., 2017; Sun et al., 2012; Yin and Komvopoulos, 2012), and that the study

of realistic surface geometries is limited due to the computational bottleneck of accu-

rately modeling the roughness. Consequently, to date, no studies of rough surface con-

tact appear to have been disseminated, in which (size-dependent) plasticity and long-

range elasticity are both accurately modeled for the contact deformation of self-affine

asperities.

The aim of this thesis is to develop a computationally efficient method of analyzing

size-dependent plastic behavior during contact of self-affine surfaces. For contact in-

volving micro-scale asperities, it is expected to display size-dependent behavior, but it

is difficult to estimate apriori how this behavior will affect the evolution of contact pres-
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sure, contact area and interfacial separation. These issues will be the focal point of this

thesis. To this end, we introduce a new computationally efficient method that we name

Green’s function dislocation dynamics (GFDD) (Venugopalan et al., 2017a). It combines

the accurate description of plasticity offered by the traditional discrete dislocation plas-

ticity simulations (van der Giessen and Needleman, 1995) with the fast-converging elas-

tic solution offered by Green’s function molecular dynamics (Prodanov et al., 2014; Venu-

gopalan et al., 2017b). GFDD will be used to study self-affine indentation of a plastic

metal crystal keeping track of the contact area, contact pressure and hardness, gap pro-

file and subsurface stresses, while the roughness of the indenter is changed. One of the

immediate implication of studying self-affine indentation using GFDD is its ability to

capture size-dependent yield stress. This quantity can be used as an input to the Pers-

son’s theory after few modifications to predict the surface observables at much reduced

computational cost.

An improved understanding of the size-dependent plastic deformation of self-affine

surfaces will pave the way to comprehending the contact and friction behavior of real

surfaces.

1.2. OUTLINE OF THESIS

The thesis consists of a general introduction and four chapters, organized as follows:

In Chapter 2, the Green’s function molecular dynamics (GFMD) method for the simu-

lation of incompressible solids under normal loading is extended to apply to finite solids

with generic Poisson’s ratio and boundary conditions. Moreover, the body fields are com-

puted analytically from the tractions and/or surface displacements. This extension al-

lows the GFMD technique to provide the same information that can be obtained through

the FEM, but with a significant reduction in the simulation time. An interesting appli-

cation for the GFMD method, in virtue of the extensions presented in this chapter is the

replacement of the finite element method in discrete dislocation plasticity simulations

of contact. This succeeds to significantly increase the time efficiency of the discrete dis-

location plasticity calculations by extending the applicability of such models to bodies

of larger size, and with a realistic surface profile as will be explained in Chapter 3.

In Chapter 3, I present the new method named Green’s function dislocation dynam-

ics (GFDD). It combines the accurate description of plasticity offered by discrete disloca-
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tion plasticity with the fast elastic solution obtained using the modified Green’s function

molecular dynamics. I demonstrate that my method captures plasticity quantitatively

from single to many dislocations and that it scales more favorably with system size than

conventional methods. I also derive the relevant Green’s functions for elastic slabs of fi-

nite width, allowing arbitrary boundary conditions on the top and bottom surface to be

simulated. The results obtained using GFDD are compared with conventional DDP for

a benchmark problem: periodic indentation of a single crystal by flat punches. The new

GFDD model is shown to have various advantages compared to classical DDP. First, it is

faster and second, it opened up the possibility of studying realistic rough surfaces that

requires surface discretizations of several orders higher. This is demonstrated in Chapter

4.

In Chapter 4, I exploit the power of Green’s function dislocation dynamics to study

the contact deformation of self-affine surfaces. GFDD is used to demonstrate the size-

dependent plastic deformation of the self-affine asperities in contact, keeping track of

the evolution of contact area, contact pressure, contact traction distribution, gap pro-

file and subsurface stresses. Results indicate that plastic deformation is size dependent,

and therefore scaling of observables should not be performed when studying contact

between plastically deforming bodies. Also, contact hardness is much larger than in

classical plasticity studies, is found to increase with decreasing fractal discretization. I

also show that below a given threshold value for the small wavelength, hardness as well

as nominal contact pressure saturate to a constant value with the fragmented contact

patches acting as a ‘super-contact’ of constant length.

In Chaper 5, Persson’s theory for self-affine elastic contacts is shown to have good

agreement with GFMD simulations. The theory that has been extended for plastic con-

tacts is also compared with GFDD simulations. Results show that the area-to-load curves

obtained by theory and simulations are in good agreement when the indenter has a very

small rms height. For larger rms heights, which are more realistic for metal surfaces, I

show that the agreement is no longer good, unless one uses the yield strength obtained

through the dislocation dynamics simulations, which is rms height and resolution de-

pendent. I also show that a modification of this type, i.e. the use of a yield strength

dependent on size, does however not lead to agreement between the probability dis-

tributions of contact stress, which are broader in the simulations than in the theory. A
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possible reason is that the theory only accounts for elastically perfectly plastic bodies

and therefore neglects strain hardening.
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The Green’s function molecular dynamics (GFMD) method for the simulation of incom-

pressible solids under normal loading is extended in several ways: Shear is added to the

GFMD continuum formulation and Poisson numbers as well as the heights of the de-

formed body can now be chosen at will. In addition, we give the full stress tensor inside the

deformed body. We validate our generalizations by comparing our analytical and GFMD

results to calculations based on the finite-element method (FEM) and full molecular dy-

namics simulations. For the investigated systems we observe a significant speed-up of

GFMD compared to FEM. This result indicates that GFMD is a promising candidate to

treat boundary conditions in discrete-dislocation-dynamics based descriptions of plastic-

ity.
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2.1. INTRODUCTION

Green’s function molecular dynamics (GFMD) (Campañá and Müser, 2006; Karpov et al.,

2004; Kong et al., 2009) is a boundary-value method allowing one to simulate the linear-

elastic response of a solid to an external stress or, more generally, to a boundary condi-

tion. So far, GFMD has been used predominantly to describe either non-reflecting (Park

et al., 2005; Pastewka et al., 2012) and thermalizing (Benassi et al., 2010; Kajita et al.,

2012; Karpov et al., 2007) boundaries to which an atomistic region is coupled, or, as a tool

to simulate the contact mechanics of solids with rough surfaces (Campañá and Müser,

2007; Pastewka et al., 2013; Prodanov et al., 2014). One advantage of GFMD is that it only

necessitates knowledge of the displacements in the top layer of a solid and that effective

interactions are block diagonal in Fourier space. Relatively large systems can therefore

be simulated and be quickly relaxed. Typical system sizes in the context of contact me-

chanics range from 4,096×4,096 surface atoms on single CPUs (Campañá and Müser,

2007) to O(105 ×105) on supercomputers (Prodanov et al., 2014).

An additional, conceivable application consists in coupling GFMD to discrete dis-

location dynamics (DDD) (van der Giessen and Needleman, 1995). The idea is to use

GFMD, instead of the finite-element method, to compute the image fields of disloca-

tions in DDD. Towards this end, we generalize the GFMD method in the following ways:

First, we consider the elastic response of a cubic or an isotropic body with arbitrary Pois-

son number and allow for lateral displacements as well as for shear tractions in addition

to normal tractions. Second, we deduce the internal stresses for a given surface bound-

ary condition and do this for solids of arbitrary height. The approaches pursued so far

were limited to either normal displacements and normal tractions in the continuum for-

mulation (Akarapu et al., 2011; Prodanov et al., 2014) or to the full atomistic Green’s func-

tions (Campañá and Müser, 2006; Campañá and Müser, 2007), which do not relate di-

rectly to the continuum limit. While the finite-width elastic continuum problem with

shear was solved by Carbone and Mangialardi (Carbone and Mangialardi, 2008), their

work did not put us into the position to deduce directly the Green’s function coefficients

needed for a numerical implementation. In a later work, in particular appendix A of ref-

erence (Carbone et al., 2009), useful formulae for the GFMD simulations were stated, but

unfortunately only for the frictionless case.

In this work, we present a solution for the Green’s function of finite-height elastic
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slabs having the following advantages: The only required mathematical tools are partial

derivatives, Fourier transforms, and linear algebra, i.e., there is no need to solve Fred-

holm integral equations. All equations needed to implement the approach into com-

puter code are given explicitly in compact form. Moreover, our approach can be readily

modified in various ways. For example, it should be straightforward to extend our so-

lution strategy to layered materials, to materials with gradient or square-gradient cor-

rections to the elastic energy, or to non-isotropic crystals — as long as they remain ho-

mogeneous within each plane. In fact, the most important equations for non-isotropic

crystals are given and tested in this work. Lastly, we validate our solution against numer-

ical data and moreover consider various limiting cases including that of very small slab

heights or that of a vanishing shear modulus characteristic for fluids.

2.2. THEORETICAL CONSIDERATIONS

2.2.1. GENERAL BACKGROUND

In this chapter, we are concerned with the quasi-static loading, in which case the precise

dynamical response of the simulated layer does not play a role, see references (Carbone

et al., 2009; Pastewka et al., 2012; Putignano et al., 2015) for generalizations from the

static to the dynamic case. Moreover, we consider to load the surface of a body that

is translationally invariant within the x y-plane, which, in principle, is allowed to be a

gradient material as long as the gradients are normal to the x y surface plane. One can

then write the linear stress-displacement relation u[σ(r)] as

uα(r) =
∫

d 2r ′Gαβ(r′)σ3β(r+ r′), (2.1)

where Gαβ(r′) is the Green’s function tensor, uα(r) is the α component of the displace-

ment as a function of the (two-dimensional) in-plane coordinate r, and σ3β is the trac-

tion in z-direction. In Fourier space, equation (2.1) reads

ũα(q) = G̃αβ(q)σ̃3β(q). (2.2)

In contact problems, one often knows the displacement of the bodies and wants to

deduce the contact pressure, and thus, one usually does not need to evaluate the Green’s
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function (tensor) itself, but its inverse. Thus, force calculations in GFMD simulations

require one to evaluate

σ̃3α(q) = [
G̃−1(q)

]
αβ ũβ(q). (2.3)

The precise functional form of the (inverse) Green’s function tensor depends on the elas-

tic properties of the deformed material including its height.

In its simplest form, usually used in the context of (continuum) contact mechan-

ics (Persson, 2001), one is only interested in normal displacements induced by normal

tractions applied to a semi-infinite, isotropic body. In this case, if the body is incom-

pressible, ν = 0.5, all quantities in equation (2.3) can be considered as scalars and the

equation reduces to

σ̃(q) = qE∗ũ(q)/2, (2.4)

where E∗ = E/(1−ν2) is the contact modulus, E being the Young’s modulus and ν the

Poisson number. However, as mentioned in the introduction, we wish to generalize

GFMD to give the elastic response of a body with generic Poisson’s ratio, and therefore,

we can no longer use a scalar to describe surface displacement. Moreover, we intend to

consider problems where contact loading is not restricted to be in normal direction, i.e.

tractions and/or displacement can be applied in normal or tangential directions, every-

where on the body surface. Therefore, we can no longer rely on equation (2.4) end need

to find a form for the Green’s function tensor in equation (2.3), which has to depend on

the Poisson’s ratio and on the height of the slab. Towards this end, we next calculate the

analytical solutions for the displacement in linearly elastic slabs of finite height, from

which the stresses can be deduced in a straightforward fashion. The stress distribution

underneath the contact are of particular interest in problems as fretting fatigue, to deter-

mine whether a possible tensile loading underneath the contact would give rise to crack

nucleation and propagation.

2.2.2. ANALYTICAL SOLUTIONS FOR THE DISPLACEMENT IN FINITE-HEIGHT,

LINEARLY ELASTIC SLABS

We consider a linearly elastic body of cubic or higher symmetry in a slab geometry with

a fixed bottom, i.e., the displacement reads u(x, z = 0) = 0 rather than u(x, z →−∞) → 0

as for semi-infinite solids. Moreover, we assume that no body forces are exerted, which
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implies the usual equilibrium condition ∂ασαβ(r) = 0, where σαβ(r) is the stress at the

point r inside the body and ∂α ≡ ∂/∂rα. For isotropic bodies or cubic bodies with their

(100) surface facing up often considered in DDD simulations (Nicola et al., 2004; Robert-

son and Fivel, 1999; van der Giessen and Needleman, 1995; Weygand et al., 2002) the

equilibrium condition is given by

C11∂
2
1u1 +C44∂

2
3u1 + (C12 +C44)∂1∂3u3 = 0 (2.5)

C11∂
2
3u3 +C44∂

2
1u3 + (C12 +C44)∂1∂3u1 = 0, (2.6)

where we have restricted our attention to (1+1)-dimensional solids so that in-plane wavevec-

tors are now scalars, and where the Ci j ’s denote coefficients of the elastic tensor in Voigt

notation.

Assuming an in-plane undulation of the top layer with the real-valued wavenumber

q , equations (2.5) and (2.6) can be solved with the factorization

uα(x, z) = u0
α exp(i qx)exp(i kz), (2.7)

where k is a complex wavenumber satisfying

(k/q)2 =−b ±
√

b2 −1 (2.8)

with

b = C 2
11 +C 2

44 − (C12 +C44)2

2C11C44
. (2.9)

Thus, we obtain solutions for the displacements either oscillating exponential functions

for b < 1 or purely exponential functions for b > 1. The nature of the solution changes

at b = 1, which automatically holds for isotropic media as these satisfy the isotropy con-

dition C44 = (C11 −C12)/2. The solutions for b = 1 are proportional to exp(±qz), and, in

addition, proportional to z exp(±qz), i.e., similar to those of critically damped harmonic

oscillators. The decaying solutions can usually be ignored when the z-position of the top

layer zm satisfies zm À 1/q but not for a finite-slab geometry.

In the remainder of this section, we focus on the isotropic case, because this is a

common approximation made, for example, in DDD simulations. In the result section,

we also consider the case of a cubic solid violating the isotropy condition to demonstrate
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the correctness of our approach. At this point, it may suffice to state that metallic cubic

crystals tend to have a relatively small shear modulus, in which case b > 1, while non-

metals rather correspond to b < 1.

Due to the nature of the differential equations (2.5) and (2.6), the solutions of the in-

plane cosine transform of the lateral u1 displacement field couples to the in-plane sine

transform of the normal u3 displacement, and vice versa. Thus, we can write

uc
1(x, z) = cos(qx)ũc

1(q, z) (2.10)

us
3(x, z) = sin(qx)ũs

3(q, z). (2.11)

Solutions satisfying the boundary condition u(x,0) = 0 and the differential equation for

isotropic media are then obtained after some algebra to satisfy

 ũc
1(q, z)

ũs
3(q, z)

=
 f1(qz) − f2(qz)

f2(qz) f3(qz)

 A1

A2

 (2.12)

with

f1(qz) = sinh(qz)+ 1− s

1+ s
qz cosh(qz) (2.13)

f2(qz) = 1− s

1+ s
qz sinh(qz) (2.14)

f3(qz) = sinh(qz)− 1− s

1+ s
qz cosh(qz), (2.15)

where s ≡C44/C11. The latter ratio has allowed values of 0 < s < 1 for stable, two-dimensional

isotropic solids (Born and Huang, 1998). The coefficients A1,2 follow from equation (2.12)

once ũc
1(q, z) and ũs

3(q, z) are given at z = zm, where zm is the height of the undeformed

solid. Lastly, the in-plane sine transform of u1 and cosine transform of u3 can be calcu-

lated in a similar fashion via: ũs
1(q, z)

ũc
3(q, z)

=
 f1(qz) f2(qz)

− f2(qz) f3(qz)

 B1

B2

 . (2.16)

In summary, for an arbitrary surface displacement field u(x, zm), the in-plane Fourier

transform is taken to yield ũ(q, zm). The real and imaginary parts can be associated with

left-hand sides of equations (2.12) and (2.16), which allow one to determine the perti-
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nent coefficients A1,2 and B1,2 for each wavenumber q by evaluating them at z = zm.

The knowledge of these coefficients then allows one to deduce the displacement inside

the body.

2.2.3. FINITE-HEIGHT-SLAB STRAIN, STRESS, AND ENERGY DENSITY

Not only the displacement but also the strain and thus the stress field on the surface

or inside the body can be deduced as soon as the coefficients A1,2 and B1,2 have been

determined for a given surface topography, obtained by perturbation of an initially flat

surface. For reasons of simplicity, we first restrict our attention to the case of a perturba-

tion by a single wave number q and B1,2 = 0. The elements of the infinitesimal Cauchy’s

strain tensor (in Voigt notation) are then given by

ε1(x, z) ≡ ∂1u1(x, z)

= −q sin(qx)ũc
1(q, z) (2.17)

ε3(x, z) ≡ ∂3u3(x, z)

= sin(qx)∂3ũs
3(q, z) (2.18)

ε5(x, z) ≡ ∂1u3(x, z)+∂3u1(x, z)

= cos(qx)
{

qũs
3(q, z)+∂3ũc

1(q, z)
}

(2.19)

These expressions can now be used to compute the stresses inside the body as well as

on its surface with the usual stress-strain relations. Knowledge of the latter suffices to

determine the work per unit area needed to deform the body – assuming small surface

slopes and thus the surface normal to be approximately parallel to the z-axis – via

vel = 1

L

∫ L

0
d x

[∫ u1(x,zm)

0
σ31(x, zm)du1(x, zm)

+
∫ u3(x,zm)

0
σ33(x, zm)du3(x, zm)

]
. (2.20)

This yields

vel = C44

2
ε̃c

5(q, zm)ũc
1(q, zm)+

{
C11

2
ε̃s

3(q, zm)+ C12

2
ε̃s

1(q, zm)

}
ũs

3(q, zm) (2.21)
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with

ε̃s
1(q, z) = −qũc

1(q, z) (2.22)

ε̃s
3(q, z) = ∂3ũs

3(q, z) (2.23)

ε̃c
5(q, z) = ∂3ũc

1(q, z)+qũs
3(q, z). (2.24)

Thus, for the surface layer

ε̃s
1(q, zm) = −qũc

1(q, zm) (2.25)

ε̃s
3(q, zm) = r

cosh2(qzm)− r (qzm)2 −1

|| f (zm)|| qũc
1(q, zm)

+(1− r )
cosh(qzm)sinh(qzm)+ r qzm

|| f (zm)|| qũs
3(q, zm) (2.26)

ε̃c
5(q, zm) = (1+ r )

cosh(qzm)sinh(qzm)− r qzm

|| f (zm)|| qũc
1(q, zm)

+ (1− r )sinh2(qzm)−2(r qzm)2

|| f (zm)|| qũs
3(q, zm) (2.27)

where

r ≡ 1− s

1+ s
(2.28)

and

|| f (qz)|| ≡ f1(qz) f3(qz)+ f 2
2 (qz)

= cosh2(qz)− (r qz)2 −1. (2.29)

Gathering all expressions entering the elastic energy leads to

vel =
q

2

[
ũc

1(q, zm), ũs
3(q, zm)

]  M11(qzm) M13(qzm)

M13(qzm) M33(qzm)

 ũc
1(q, zm)

ũs
3(q, zm)

 (2.30)
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with

M11(qzm) = (1− r )
cosh(qzm)sinh(qzm)− r qzm

|| f (qzm)|| C11 (2.31)

M13(qzm) = 1− r

1+ r

(1− r )sinh2(qzm)−2(r qzm)2

|| f (qzm)|| C11 (2.32)

M33(qzm) = (1− r )
cosh(qzm)sinh(qzm)+ r qzm

|| f (qzm)|| C11, (2.33)

which is a central result for GFMD simulations in which both normal and shear stresses

are considered.

For reasons of completeness, we state the general elastic energy density

vel =
∑

q

q

2

[
ũ∗

1 (q), ũ∗
3 (q)

] M11(qzm) −i M13(qzm)

i M13(qzm) M33(qzm)

 ũ1(q)

ũ3(q)

 , (2.34)

where ũ(q) is now the complete, complex Fourier transform of the displacement of wavevec-

tor q. For zero shear (normal) stress, the elastic energy is minimized with respect to the

lateral (normal) displacement and thus becomes

vel = q

2

{
M11(qzm)− M 2

13(qzm)

M33(qzm)

}
|ũ1(q)|2 (zero normal stress) (2.35)

vel = q

2

{
M33(qzm)− M 2

13(qzm)

M11(qzm)

}
|ũ3(q)|2 (frictionless contact). (2.36)

ASYMPTOTIC ANALYSIS

It is instructive to consider various limits. First, for large wavevectors, the problem re-

duces to that of a semi-infinite solid. In this case, the quotients in equations (2.31)-(2.33)

with || f (qzm)|| in the denominator can be set to one and the elastic energy is essen-

tially q times an effective modulus times a squared displacement. More specifically, the

Mi j (qzm) become

M11(qzm À 1) = 2

1+ s
C44 (2.37)

M13(qzm À 1) = 2s

1+ s
C44 (2.38)

M33(qzm À 1) = 2

1+ s
C44. (2.39)
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In the second limit, i.e. that of short wavevectors, we find

qM11(qzm ¿ 1) = C44

zm
(2.40)

qM13(qzm ¿ 1) = 0 (2.41)

qM33(qzm ¿ 1) = C11

zm
(2.42)

so that we may write for center-of-mass displacements

vel(q = 0) = C44

2zm
ũ2

1(0)+ C11

2zm
ũ2

3(0). (2.43)

This corresponds to the elastic energy — per unit area — of an isotropically deformed

(and periodically repeated) solid being glued to a rigid substrate.

As a brief side aspect, let us also discuss the limiting case of C44 = 0 (⇒ r = 1) which

describes a compressible fluid. Given the prefactors in equations (2.31)-(2.33), one might

have been tempted to set all Mi j (qzm) to zero. However, the just-presented asymptotic

analysis reveals that this would not have lead to the correct result for M33(qzm → 0),

which remains finite even for a vanishingly small shear modulus. Thus, the only mode

necessitating elastic energy when altering the shape of the “top layer” of a fluid is that

which leads to a volume reduction, i.e., the ũ3(q = 0) mode.

We conclude this section by making the link of our results to the contact modulus

E∗ introduced in equation (2.4). For semi-infinite solids, or large qzm, the expression in

the curly brackets in equation (2.36) reduces to 2(1− s)C44, which indeed can be shown

to be half E∗. This implies that equation (2.36) is consistent with (2.4) in the limit of a

frictionless semi-infinite contact.

2.3. NUMERICAL RESULTS

2.3.1. DISPLACEMENTS IN NON-ISOTROPIC SOLIDS

To model a non-isotropic solid, we consider a cubic crystal with its (100) surface fac-

ing up. To make the comparison of continuum theory to full molecular dynamics (MD)

simulations as transparent as possible, we furthermore restrict ourselves to a simple cu-

bic lattice in which each atom (which one may also see as a grid point) is connected to

its nearest neighbors with a spring of stiffness k1 and to next-nearest neighors with a
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spring of stiffness k2 = k1. Mechanical equilibrium of the springs is assumed at a dis-

tance a0 between nearest neighbors and
p

2a0 for next-nearest neighbors. With these

definitions, it is readily seen that the elastic tensor — fully defined by C11 = (k1 +k2)/a0

and C12 = C44 = k2/a0 — violates the isotropy condition for the given choice of k1 = k2,

since in this case C44 > (C11−C12)/2. Here, the stiffness is divided by a0 so that the elastic

constants have the usual units.

In our example, we consider a slab of height Lz = Lx /2, where Lx = 40a0 is the lateral

length of the domain, which is repeated periodically along the x−direction. The just-

defined system is solved with a self-written MD code, in which individual atoms are also

coupled to damping linear in velocity. The mass of atoms is set to unity, the time step to

0.1 and damping to 0.25. Two cases of displacements in the top layer are treated: normal

loading for which u1(x, zm) = 0, u3(x, zm) = A0 cos(2πx/Lx ) and shear loading for which

u1(x, zm) = A0 cos(2πx/Lx ), u3(x, zm) = 0. To justify the assumption of linear elasticity,

the maximum displacement amplitude is set to A0 = a0/100. Top and bottom layer are

kept fixed. The system relaxes after a few thousand time steps.
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Figure 2.1: Lateral (red circles) and normal (blue squares) displacements u1,3 at selected cross sections for
shear (left) and normal (right) loading as obtained from MD simulations. The displacements are given in
units of the maximum displacement A0, which is valid at the top layer of the solids located at the normal

coordinate z = zm = Lx /2. The displacements are set to zero at the bottom layer (z = 0). Full lines represent
the continuum solutions used to obtain internal stresses in GFMD simulations.

Agreement between full MD and the analytical expressions for the displacement fields

is clearly revealed.



2.3. NUMERICAL RESULTS

2

27

2.3.2. DISPLACEMENT AND STRESS FIELDS IN ISOTROPIC SOLIDS

As a benchmark problem to compare GFMD to FEM we here consider the indentation

of an isotropic elastic two-dimensional slab by an array of flat rigid punches. Contact

between punches and slab is taken to be fully sticking. The analysis is performed on a

periodic unit cell with fixed bottom as shown schematically in figure 2.2(a).
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z
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Figure 2.2: (a) Periodic unit cell of an isotropic slab indented by a flat rigid sticking punch. (b) The normalized
tangential surface displacement ū1/Lx obtained using GFMD and FEM.

Normal displacement is prescribed at the contact of length Lp
x :

u3(x, zm) = u0
3 for

Lx −Lp
x

2
< x < Lx +Lp

x

2
. (2.44)

The slab is indented to u0
3/Lx = 2.5×10−4. Outside the contact region, the top surface is

traction free. The aspect ratio of the slab, which is taken to have the elastic properties of

aluminum, C11 = 105 GPa and s =C44/C11 = 0.25, is a = zm/Lx = 1/4, and the rigid punch

is Lp
x /Lx = 1/4. For the finite-element analysis the slab is discretized using a uniform

mesh of square elements. The number of degrees of freedom is ndof = 2nnx×nnz, where

nnx is the number of nodes in x–direction, and nnz the number of nodes in z–direction.

For the GFMD simulation the surface is discretized using nx equispaced grid points,

with nx = nnx. Contact between the rigid indenters and the slab is modeled through a

hard-wall potential. The static solution is found in GFMD using damped dynamics as
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described in (Prodanov et al., 2014). The damping factor η used in this simulations is

ηx = ηz = η0
1

τ
p

nx
, (2.45)

where η0 is the damping prefactor and τ is the time step. The damping prefactor is se-

lected such that the slowest mode is slightly under-damped in z-direction. The number

of MD iterations used to reach convergence scales as nit ∼ O(
p

nx) and the time step is

τ=0.25. The normalized lateral surface displacement ū1/Lx obtained by the two meth-

ods is shown for nnx = nx = 1024 in figure 2.2(b). The over bar indicates the value of the

variable at the surface. No differences can be seen by the naked eye.

The displacement and stress fields inside the body for the GFMD simulations are

calculated using equations (12-16) and (25-27). For a better comparison with FEM, the

fields are evaluated at all locations inside the body corresponding to the nodes in the

FEM calculation. The body fields hence obtained are compared with those obtained

using FEM in figures 2.3 and 2.4.

(a) (b)

(c) (d)

Figure 2.3: Displacement fields obtained using: (a), (c) GFMD and analytical solution; (b), (d) and FEM.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Stress fields obtained using: (a), (c), (e) GFMD and analytical solution; (b), (d), (f) and FEM.

2.3.3. CONVERGENCE RATE AND SIMULATION TIME

The convergence rate is studied considering the calculation of the L2 norm of the surface

displacement,

∥ū1∥L2 =
√

nx∑
i=1

u1(xi , zm)2. (2.46)

Following (Szabo and Babuška, 1991), the error in the norm obtained using FEM as a

function of the degrees of freedom in the simulation can be written as:

∥(ū1/Lx )∥FEM
L2

−∥(ū1/Lx )∥exact
L2

≈ κ

nβ

dof

. (2.47)
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The exact solution, the asymptotic rate of convergence β, and the prefactor κ, are ob-

tained by linearly fitting three data points corresponding to nnx = 256, 512, 1024. As

expected (Szabo and Babuška, 1991), given that the mesh refinement is uniform and the

order of the interpolating polynomial for the shape functions is one, the asymptotic rate

of convergence is found to be 0.5:

∥(ū1/Lx )∥L2 =
(

0.692− 2.552

n0.5
dof

)
×10−5. (2.48)

Since the finite-element mesh has square elements, it follows that

1

nnx
=

(
2a

ndof

)0.5

. (2.49)

We can therefore rewrite the L2 norm as

∥(ū1/Lx )∥L2 =
(
0.692− 2.552

(2a)0.5

1

nnx

)
×10−5, (2.50)

which allows for direct comparison with GFMD (see figure 2.5(a)). The order of con-

vergence with respect to the discretization of the two methods is found to be the same,

while the prefactors are favorable for GFMD, i.e. κ/Lx = −3.609× 10−5 for FEM while

κ/Lx = −1.653×10−5 for GFMD. Figure 2.5(b) shows the simulation time as a function

of the surface discretization. The results are all obtained on a single Intel Xeon(R) 3.10

GHz processor with 31.3 Gbytes of RAM. The GFMD simulations are found to be faster

than FEM, and the computational advantage increases with increasing system size. In

addition to this, a smaller number of grid points are needed in GFMD to obtain the

same results as in FEM. For the simulation reported here, if we decide to tolerate an

error e = 0.005 in the L2 norm of lateral surface displacement, the GFMD simulations

require nx =128 grid points while the FEM simulations need nnx =1024 surface nodes.

This results in a GFMD simulation being 1650 times faster than FEM.

It is to be noted here that: (1) we have not searched for the optimal meshing scheme

to solve the finite-element problem, simply used a mesh with squared elements for ease

of comparison with the equi-spaced surface grid points used in GFMD; (2) the speed of

the finite-element simulation depends heavily on the solver used. Here we have used

a direct sparse solver with skyline storage, where the time consuming step is the fac-
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Figure 2.5: (a) The L2 norm of tangential surface displacement obtained using GFMD and FEM are plotted as
a function of 1/nx (b) Simulation time for GFMD compared with FEM.

torization of the skymatrix. The order of factorization in a skyline solver is generally

O((nnx B)2) (Synn and Fulton, 1995) where B is the mean bandwidth, which cannot ex-

ceed nnx. We are aware that for large systems, an iterative solver would be much more

cost-effective. In GFMD, the computational complexity scales with O(nx
p

nx lognx), (3)

the speed of the GFMD simulation depends on the choice of the damping factors, which

in general are different in the x and z-direction. The optimal damping factor to obtain

critical damping of the system depends on the loading, the height of the slab and the

elastic constants. We here simply considered a single damping factor that would criti-

cally damp the modes in z-direction, and thus under-damp the modes in x-direction.

2.4. CONCLUSIONS

Green’s function molecular dynamics, a fastly converging boundary value method used

to compute contact pressures and surface displacements of incompressible continuum

semi-infinite solids, is here extended to apply to finite solids with generic Poisson’s ra-

tio. Moreover, the body fields can now be computed analytically from generic tractions

and/or surface displacements. This extension allows the GFMD technique to provide the

same information that can be obtained through the FEM, but with a significant gain in

simulation time. An additional advantage of GFMD is that for typical contact problems,
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where the contact area evolves during the simulation, the contact can be easily captured

and described by means of an interaction potential. We have here used a hard-wall po-

tential, but one can also model the bodies in contact explicitly and apply an interaction

potential, as the Xu-Needleman (Xu and Needleman, 1993), where the contact response

in normal direction is coupled to that in tangential direction.

An interesting application that can be envisaged for the GFMD method, in virtue of

the extensions presented in this chapter, is the replacement of the FEM in discrete dis-

location plasticity simulations of contact. This has the potential to significantly increase

the time efficiency of the discrete dislocation plasticity calculations by that allowing to

extend the applicability of such models to bodies of larger size, and with a realistic sur-

face profile.
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Metals deform plastically at the asperity level when brought in contact with a counter

body even when the nominal contact pressure is small. Modeling the plasticity of solids

with rough surfaces is challenging due to the multi-scale nature of surface roughness

and the length-scale dependence of plasticity. While discrete-dislocation plasticity (DDP)

simulations capture size-dependent plasticity by keeping track of the motion of individ-

ual dislocations, only simple two-dimensional surface geometries have so far been stud-

ied with DDP. The main computational bottleneck in contact problems modeled by DDP

is the calculation of the dislocation image fields. We address this issue by combining

two-dimensional DDP with Green’s function molecular dynamics (GFMD). The resulting

method allows for an efficient boundary-value-method based treatment of elasticity in

the presence of dislocations. We demonstrate that our method captures plasticity quan-

titatively from single to many dislocations and that it scales more favorably with system

size than conventional methods. We also derive the relevant Green’s functions for elastic

slabs of finite width allowing arbitrary boundary conditions on top and bottom surface to

be simulated.
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3.1. INTRODUCTION

Modeling the contact mechanics of solid bodies assuming realistic surface roughness is

highly relevant to tribology, the science of friction. This is a demanding task, because

the height spectra of most surfaces, even polished ones, have non-negligible magnitude

over several decades of wavelengths, typically from the atomic scale to several dozen or

even hundreds of microns (Plouraboué and Boehm, 1999; Simonsen et al., 2002), i.e.,

the root-mean-square heights are determined by the longest-wavelength height fluctu-

ations (relevant for sealing and lubricant flow) while the root-mean-square gradients

(relevant for typical contact stresses, at least in the elastic limit) are determined by the

shortest wavelengths. In the past years, various theories of rough surface contact have

been presented (Archard, 1957; Bush et al., 1975; Greenwood and Williamson, 1966; Pers-

son, 2006, 2001, 2008). Persson’s contact-mechanics theory (Persson, 2006, 2001, 2008)

appears particularly promising to us, because it accounts for long-range elastic deforma-

tions, unlike traditional approaches such as those inspired by Greenwood and Williamson

(Greenwood and Williamson, 1966), who pursued local bearing models. In fact, Pers-

son theory reproduces quite well experiments and numerical results on relative contact

area, interfacial stress distribution functions, stress spectra, and gap distribution func-

tions, although it requires a fitting parameter of order unity. However, the validity of

Persson’s analysis of plastic contacts (Persson, 2006) in the range where plasticity is size-

dependent (Fleck et al., 1994; Greer et al., 2005; Ma and Clarke, 1995; Nicola et al., 2006a)

has not yet been shown.

Numerical simulations of contact between elastic rough surfaces are made possi-

ble through several techniques. Of particular interest are the boundary-element based

approaches such as BEM (Putignano et al., 2012a,b; Stanley and Kato, 1997) and Green’s

function molecular dynamics (GFMD) (Campañá and Müser, 2007; Campañá et al., 2008;

Kajita, 2016; Wagner et al., 2004, 2005), which calculate the response of a solid to contact

loading by modeling only the surface. These methods are suitable to study large systems

where the surface roughness is described by many orders of length scale (Campañá and

Müser, 2007; Dapp et al., 2014; Prodanov et al., 2014). In this work, we choose GFMD

over BEM, since it is a simpler method, which does not involve solving the Fredholm

integral equations. In GFMD, the equilibrium positions of the interfacial grid points

are found by means of damped dynamics in Fourier space, where the individual modes
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decouple. This allows for large systems to be quickly brought to equilibrium. While

the computational complexity of BEM scales with O(n2), where n is the number of dis-

cretization nodes, GFMD scales as O(n
p

n log(n). Furthermore, it is straightforwad in

GFMD to employ non-holonomic boundary conditions and/or interaction potentials

between the contacting bodies and hence it is cost-effective in studying problems where

the contact area is not known a pr i or i . Conventional FEM or BEM methods typically

require several iterations as well as incremental updating of the boundary conditions in

order to converge to a final contact area. Additionally, GFMD has the advantage that

it can be extended to a multi-scale method (Pastewka et al., 2012) where the surface

layer can be described atomistically and the substrate underneath be treated within the

harmonic approximation. Pastewka et al. (Pastewka and Robbins, 2014; Pastewka et al.,

2012) have shown that the elastic Green’s function can be quickly computed from inter-

atomic potentials and a seamless coupling to the atomic region can be derived even for

interactions going beyond nearest-neighbor interactions. GFMD has been successfully

used to model the contact response of semi-infinite elastic solids (Campañá et al., 2007;

Pastewka et al., 2013; Prodanov et al., 2014), while plasticity was neglected.

There has also been much progress in the numerical study of elasto-plastic contacts.

These, however, are either based on continuum plasticity (Almqvist et al., 2007; Kogut

and Etsion, 2002; Pei et al., 2005), or, limited to single-wavelength roughness (Song et al.,

2017), or, based on brute-force all-atom approaches (Mo et al., 2009; Spijker et al., 2011).

To date, no studies of rough surface contact appear to have disseminated, in which (size-

dependent) plasticity and long-range elasticity were both accurately modeled. Our work

aims at building such a model.

Size-dependent plasticity in metal crystals has been successfully predicted by dis-

crete dislocation plasticity (DDP) (van der Giessen and Needleman, 1995) simulations,

which for simple problems, as the tensile response of free–standing metal films, give re-

sults in quantitative agreement with experiments (Nicola et al., 2006b). In the context

of contact mechanics, DDP has been used to study indentation of flat surfaced single

crystals with single indenters (Balint et al., 2006; Widjaja et al., 2007), periodic inden-

ters (Nicola et al., 2007, 2008), as well as an indenter with self-affine surface modeled as

a collection of Hertzian contacts (Yin and Komvopoulos, 2012). The only DDP studies,

in which the plastically deforming bodies were not approximated to be flat, involved the
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flattening of simple sinusoidal surfaces (Ng and Nicola, 2016a,b; Sun et al., 2012). Re-

sults showed that the contact area is not continuous, but serrated, as a consequence of

dislocations exiting the surface through discrete slip planes and leaving crystallographic

steps. Due to the serrated nature of the contact area, the local contact pressure pre-

sented high spikes, at odds with the pressure profiles predicted by continuum plasticity.

The study of size-dependent plasticity for realistic surface geometries is computation-

ally very expensive. In order to being able to study indentation using realistic surface

geometries, we here combine the accurate description of plasticity offered by DDP with

the fastly converging elastic solution delivered by GFMD, in a modeling technique which

we name Green’s function dislocation dynamics (GFDD). This is not the first attempt to

combine dislocation dynamics with a boundary element method (El-Awady et al., 2008,

2009; Zhou et al., 2011, 2010). However, for realistic surface geometries coming into con-

tact, which require a fine discretization, GFDD should be more cost-effective. This is be-

cause the method relies on fast Fourier transform (FFT) and employs damped dynamics

to quickly equilibrate large systems.

We briefly introduce DDP in section 3.2 and GFMD in section 3.3. We then present

the methodology of the new model in section 5.2.2. The results obtained using the new

GFDD model are compared with DDP in section 3.5 and 3.6. Section 4.4 summarizes the

advantages and potentials of the new method.

3.2. DISCRETE DISLOCATION PLASTICITY

Discrete dislocation plasticity is a numerical technique to solve boundary-value prob-

lems (b.v.p), which treats plasticity as the collective motion of discrete dislocations (van der

Giessen and Needleman, 1995). The dislocations are modeled as line defects in an elastic

continuum. The solution at each time step of the simulation is obtained by the superpo-

sition of two linear elastic solutions: The elastic fields for dislocations in a homogeneous

infinite solid, and the solution to the complementary elastic b.v.p., which corrects for

the boundary conditions. The methodology is illustrated for the indentation of a single

crystal by an array of flat rigid indenters in figure 3.1. The elastic dislocation fields are

represented by a superscript (d), the fields solving the complementary b.v.p. by a su-

perscript (ˆ). The elastic dislocation fields are given analytically. The dislocation in the

repetitive cell and its periodic replicas are treated as an infinite array of dislocations. The



3

40 3. GFMD MEETS DDP

solution to the b.v.p. is traditionally obtained using the finite-element method FEM. The

rigid indenter is modeled implicitly by imposing boundary conditions on the deformable

body.

= +

S
u

S
u

S
t

S
t

Figure 3.1: Schematic representation of the DDP methodology: The boundary-value problem for a body
containing dislocations is decomposed into two parts: the fields of the dislocations in an infinite medium and

the solution to the elastic boundary-value problem which corrects for the boundary conditions.

The total stress and displacement fields obtained at a given time increment are used,

along with a set of constitutive rules, to describe the evolution of the dislocation struc-

ture. The constitutive rules are based on the Peach-Koehler force and control dislocation

glide, nucleation, annihilation and pinning at obstacles. At the beginning of the simula-

tion, the crystal is dislocation-free, but contains a density of point sources and obstacles

that mimic Frank-Read sources and precipitates, respectively. The density of sources and

obstacles is constant during the simulation. A dislocation pair is generated by a point

source when the resolved shear stress acting on the source exceeds a critical nucleation

strength, τnuc. The dislocation then glides on a plane with a velocity proportional to

the Peach-Koehler force. Two dislocations with opposite Burgers vector annihilate when

they come closer to each other than a threshold length, set to 6b, where b is the magni-

tude of the Burgers vector. Whenever a dislocation meets an obstacle it gets pinned. It is

released by the obstacle only when the Peach-Koehler force acting on the dislocation ex-

ceeds the critical strength of the obstacle, τobs. Dislocations can exit the domain through

the free surface leaving behind a displacement step of ±b/2 along the slip direction.

The aim of this work is to replace the FEM solution to the complementary b.v.p. with

GFMD, while the constitutive rules that control the dislocation dynamics remain un-
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changed and similar to those proposed in reference (van der Giessen and Needleman,

1995).

3.3. GREEN’S FUNCTION MOLECULAR DYNAMICS

GFMD is also a boundary-value method to study the elastic response of a body subjected

to contact loading. In GFMD, only the surface of the deformable body is modeled explic-

itly and discretized using equi-spaced grid points as seen in figure 3.2. The grid points,

under the influence of an external load, are displaced from their initial position, causing

an increase in the areal elastic energy of the system. The new equilibrium positions are

then calculated using damped dynamics in Fourier space. The advantage of damping

the system in Fourier space is that the different modes describing the surface are un-

coupled, and the stress-displacement relationship, when applying a load in z−direction,

simply reads:

ũα(q) = G̃αβ(q)σ̃zβ(q), (3.1)

where Gαβ(q) is the Green’s function tensor, uα(q) is the α component of the displace-

ment and and σzβ(q) is the traction in β−direction corresponding to wavenumber q.

The Green’s function tensor depends on the elastic properties and size of the body.

(a) (b)

x

z
F 

ext

F 
ext

x

z zpunch

z=zm z=zm

zsubstrate

Figure 3.2: Schematic representation of a rigid punch indenting a flat deformable body: (a) the undeformed
configuration and (b) the deformed configuration.

Here, the load is applied in an incremental manner by means of a rigid flat indenter,

which is modeled by a hard wall potential. To satisfy static equilibrium at each incre-

mental change of the loading, the following condition must hold:

F̃ ext
(q)+ F̃ el

(q)+ F̃ if
(q) = 0, (3.2)

where F̃ ext
(q) is the external force; F̃ if

(q) is the interfacial force ensuring the non-overlap

constraint, which are imposed “by hand” after each time step, in real space; F̃ el
(q) is the
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elastic restoring force that can be written as:

F̃ el
(q)/A0 = G̃

−1
(q)ũ(q) =∇ũ vel, (3.3)

where A0 is the total surface area and G̃
−1

(q) is the inverse Green’s function, which can

be evaluated from the areal elastic energy density vel. The areal elastic energy was de-

rived for a slab with deformable top and fixed bottom in previous works (Carbone and

Putignano, 2013; Venugopalan et al., 2017b). In section 4.1, we extend the derivation to

the case where the bottom surface can be exposed to arbitrary stress, displacement, or

mixed boundary condition. This is necessary for the coupling to dislocation dynamics,

as should become clear in the following section.

The damping force has the form:

F̃ damp
(q) = η(ũn−1(q)− ũn(q)) (3.4)

where η is the damping factor, chosen such to critically damp the slowest mode, i.e., the

center of mass mode, corresponding to q = 0, for quick convergence. Various further im-

provements can be applied to speed up convergence, such as, mode-dependent masses

or damping. However, this was not pursued in this work, because even without these op-

timizations, the main computational time is related to the DDD part of the simulations.

The damping force is used in the position-Verlet algorithm to solve for the displace-

ment fields at each increment (n +1),

ũn+1(q) = 2ũn(q)− ũn−1(q)+
(
F̃ el

(q)+ F̃ ext
(q)+ F̃ damp

(q)
)
τ2, (3.5)

where τ is the non-dimensional discrete time step used in the simulation.

The hard-wall potential is employed at the end of each iteration to ensure there is no

inter-penetration, i .e., in real space,

zpunch(x) ≥ zsubstrate(x), (3.6)

where zpunch and zsubstrate are the z- coordinates of the punch and substrate surface,

respectively as seen in the figure 3.2. Notice that the method is not bound to use a hard-

wall potential. Finite interactions can be accounted for, however, we have here chosen
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for a hard-wall potential for the sake of comparison to conventional DDP.

When the surface equilibrates to the final deformed configuration, the body fields are

calculated from the discrete surface fields using closed-form analytical solutions (Venu-

gopalan et al., 2017b).

3.4. GREEN’S FUNCTION DISLOCATION DYNAMICS

The Green’s function dislocation dynamics method is based on the same decomposition

concept as used in DDP except that, now, the image fields are found using GFMD instead

of FEM. The methodology is schematically presented in figure 3.3 for the case of a layer

indented using a flat rigid punch. Note that GFDD can solve generic boundary value

problems where both top and bottom boundaries are arbitrarily partitioned into traction

and displacement boundaries.

= +

Figure 3.3: Decomposition of the problem for the dislocated body similar to figure 3.1 except for the
complementary problem, which is solved using GFMD.

When solving the complementary b.v.p., both tractions and displacements caused

by the dislocations on the top and bottom boundary of the body need to be simultane-

ously prescribed at a given time increment. Tractions are imposed in Fourier space as

described in the previous section by using t̂ (q) as external force F̃ ext
(q) before stepping

forward in time. Here t̂ (q) is the Fourier transformation of the discontinuous function

t̂ (r ) at point r = (x, z):

t̂ (r ) = t (r )− t d(r ) if r ∈ St,

t̂ (r ) = 0 if r ∈ Su,
(3.7)



3

44 3. GFMD MEETS DDP

where St and Su are traction- and displacement-prescribed boundaries, respectively.

Unlike tractions, displacements are imposed in real space by setting the equilibrium po-

sition of the hard-wall to the required position:

û(r ) = u(r )−ud(r ) if r ∈ Su . (3.8)

The hard-wall is not applied to the boundaries where traction is prescribed St.

Notice that the elastic energy required for the evaluation of the Green’s function,

which is needed in the calculation of the restoring elastic force, was derived in (Venu-

gopalan et al., 2017b) but only for the case of an isotropic slab with an undulated top

layer and a fixed bottom. This allows a b.v.p. to be solved for a mixed boundary condi-

tion at the top, however, with the restriction of the bottom displacement to be zero. Here,

however, we need to impose mixed boundary conditions also at the bottom. To this end,

the areal elastic energy is required for a solid with both top and bottom undulation as

seen in figure 3.4. This will be dealt with in the subsequent section.

3.4.1. ELASTIC ENERGY OF AN ELASTIC LAYER LOADED AT BOTH SURFACES

A linear elastic isotropic body in a slab geometry is considered. The equilibrium condi-

tion for the case of no body forces can be written as ∂ασαβ(r ) = 0, where σαβ(r ) is the

stress at point (x, z) represented by vector r and ∂α ≡ ∂/∂rα. This can be written as:

[C11∂
2
x +C44∂

2
z ]ux (r )+ (C44 +C12)∂x∂z uz (r ) = 0,

[C11∂
2
z +C44∂

2
x ]uz (r )+ (C44 +C12)∂z∂x ux (r ) = 0,

(3.9)

where Cij denotes the coefficients of the elastic tensor. The in-plane wavenumber q is a

scalar for the two-dimensional body considered here.

It is shown in A that for the system of differential equations (3.9) the solutions of the

in-plane cosine transform of the lateral ux displacement field couples to the in-plane

sine transform of the normal uz displacement and vice versa. Thus, we can write:

uc
x (x, z) = cos(qx)ũc

x (q, z),

us
z (x, z) = sin(qx)ũs

z (q, z).
(3.10)
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Figure 3.4: Periodic unit cell of an isotropic slab of height zm represented by the shaded region is undulated at
the top and bottom surfaces in lateral and normal directions.

Solutions satisfying the following boundary conditions:

ũc
x (q,0) = ubot

x ,

ũs
z (q,0) = ubot

z ,

ũc
x (q, zm) = utop

x ,

ũs
z (q, zm) = utop

z

(3.11)

and equation (3.9) are then obtained to satisfy

ũc
x (q, z)

ũs
z (q, z)

=
h1(q, z) h2(q, z) −h3(q, z) −h4(q, z)

h3(q, z) h4(q, z) h5(q, z) h6(q, z)




A1

A2

A3

A4

 (3.12)

with

h1(q, z) = (1− r )cosh(qz)+ r qzsinh(qz),

h2(q, z) = sinh(qz)+ r qzcosh(qz),

h3(q, z) = r (qzcosh(qz)− sinh(qz)),

h4(q, z) = r qzsinh(qz),

h5(q, z) = (1+ r )cosh(qz)− r qzsinh(qz),

h6(q, z) = sinh(qz)− r qzcosh(qz),

(3.13)
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where r = 1− s

1+ s
and s = C44/C11. Ai can be found by applying the boundary conditions

in equation (3.11):


A1

A2

A3

A4

= 1

f (q, zm)



f (q, zm)

(1− r )
0 0 0

k1(q, zm) k2(q, zm) k3(q, zm) k4(q, zm)

0
f (q, zm)

(1+ r )
0 0

k5(q, zm) k6(q, zm) k7(q, zm) k8(q, zm)




ũc

x (q,0)

ũs
z (q,0)

ũc
x (q, zm)

ũs
z (q, zm)

 (3.14)

with

k1(q, zm) = r qzm − sinh(qzm)cosh(qzm),

k2(q, zm) =− r

1+ r
(cosh2(qzm)−1+ r (qzm)2),

k3(q, zm) = h6(q, zm),

k4(q, zm) = h4(q, zm),

k5(q, zm) = r

1− r
(cosh2(qzm)−1− r (qzm)2),

k6(q, zm) =−r qzm − sinh(qzm)cosh(qzm),

k7(q, zm) =−h4(q, zm),

k8(q, zm) = h2(q, zm),

(3.15)

and

f (q, zm) = cosh2(qzm)− (r qzm)2 −1

= 1

2

{
cosh(2qzm)−2(r qzm)2 −1

}
.

(3.16)

Similarly, the in-plane sine transform of ux and cosine transform of uz can be obtained

from:

ũs
x (q, z)

ũc
z (q, z)

=
 h1(q, z) h2(q, z) h3(q, z) h4(q, z)

−h3(q, z) −h4(q, z) h5(q, z) h6(q, z)




B1

B2

B3

B4

 (3.17)
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with


B1

B2

B3

B4

= 1

f (q, zm)



f (q, zm)

(1− r )
0 0 0

k1(qzm) −k2(qzm) k3(qzm) −k4(qzm)

0
f (q, zm)

(1+ r )
0 0

−k5(qzm) k6(qzm) −k7(qzm) k8(qzm)




ũs

x (q,0)

ũc
z (q,0)

ũs
x (q, zm)

ũc
z (q, zm)

 . (3.18)

From equation (3.12), the strains are calculated as:

ε̃s
xx (q, z) =−qũc

x (q, z),

ε̃s
zz (q, z) = ∂z ũs

z (q, z),

ε̃c
xz (q, z) = ∂z ũc

x (q, z)+qũs
z (q, z).

(3.19)

Stresses are then obtained as usual through Hooke’s law:

σi =Ci j ε j . (3.20)

Gathering all contributions to the elastic energy leads to

vel =
C11q

2
[sε̃c

xz (q, zm)ũc
x (q, zm)+{

ε̃s
zz (q, zm)+ (1−2s)ε̃s

xx (q, zm)
}

ũs
z (q, zm)

+ sε̃c
xz (q,0)ũc

x (q,0)+{
ε̃s

zz (q,0)+ (1−2s)ε̃s
xx (q,0)

}
ũs

z (q,0)]

= C11q

2

[
ũc

x (q,0) ũs
z (q,0) ũc

x (q, zm) ũs
z (q, zm)

][
Hi j (q, zm)

]


ũc
x (q,0)

ũs
z (q,0)

ũc
x (q, zm)

ũs
z (q, zm)

 (3.21)
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with

H11(q, zm) = H33(q, zm) = (1− r )
sinh(qzm)cosh(qzm)− r qzm

f (q, zm)

−H12(qzm) = H34(qzm) = 1− r

1+ r

(1− r )sinh2(qzm)−2(r qzm)2

f (q, zm)
,

H13(q, zm) = (1− r )
r qzmcosh(q, zm)− sinh(qzm)

f (q, zm)
,

−H14(q, zm) = H23(q, zm) = (1− r )
r qzmsinh(qzm)

f (q, zm)
,

H22(q, zm) = H44(q, zm) = (1− r )
sinh(qzm)cosh(qzm)+ r qzm

f (q, zm)
,

H24(q, zm) =−(1− r )
r qzmcosh(q, zm)+ sinh(qzm)

f (qzm)
.

(3.22)

The complete elastic energy density containing the complex Fourier transform of the

displacement with wavenumber q reads

vel =
∑
q

C11q

2

[
ũ∗

x (q,0) ũ∗
z (q,0) ũ∗

x (q, zm) ũ∗
z (q, zm)

][
Hi j (q, zm)

]


ũx (q,0)

ũz (q,0)

ũx (q, zm)

ũz (q, zm)



(3.23)

with

[
Hi j (q, zm)

]
=


H11(q, zm) −i H12(q, zm) −i H13(q, zm) −i H14(q, zm)

i H21(q, zm) H22(q, zm) −i H23(q, zm) −i H24(q, zm)

i H31(q, zm) i H32(q, zm) H33(q, zm) −i H34(q, zm)

i H41(q, zm) i H42(q, zm) i H43(q, zm) H44(q, zm)

 . (3.24)

The body fields are obtained through the closed-form analytical expressions in equa-

tion (3.12) and (3.17). The displacement fields hence obtained are compared with those

obtained by FEM in figures 3.5 and 3.6. The relative difference in the displacement field

obtained using both methods are found to be below 0.25 %. It has to be noted that peri-
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odic boundary conditions in GFMD are intrinsically enforced through the periodicity of

the Fourier transforms. In FEM, periodicity can be imposed using various methods, in-

cluding the penalty method, as done in this study, or Lagrangian multipliers, but is never

exact.

(a) (b)

Figure 3.5: Lateral displacement ux in an elastic layer with undulations ubot
x /Lx = 0, ubot

z /Lx = 0.5×10−4

12 ,

u
top
x /Lx = 0 and u

top
z /Lx = 1×10−4

12 obtained using (a) GFMD and (b) the relative difference map with

urd
x =

(
uGFMD

x −uFEM
x

u
top
z

×100

)
%.

(a) (b)

Figure 3.6: Normal displacement uz in an elastic layer with undulations ubot
x /Lx = 0, ubot

z /Lx = 0.5×10−4

12 ,

u
top
x /Lx = 0 and u

top
z /Lx = 1×10−4

12 obtained using (a) GFMD and (b) the relative difference map with

urd
z =

(
uGFMD

z −uFEM
z

u
top
z

×100

)
%.

The elastic energy density in equation (3.23) is extended to the case of a semi-infinite

half-space in B. This opens up the possibility of modeling the plastic contact response of

a semi-infinite body using dislocation-dynamics simulations. This is beneficial to study
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the plastic response of a body under contact loading without the effect of its bottom,

i .e., an increase in contact pressure caused by dislocations piling up at the bottom of the

body.

3.5. PRELIMINARY RESULTS: A SIMPLE STATIC SOLUTION

In this section, the new GFDD model is compared to DDP when computing the image

fields for the simplest case scenario: a single dislocation pinned in an isotropic slab with

Young’s modulus E = 70 GPa and Poisson’s ratio ν= 0.33. The magnitude of the Burger’s

vector is b = 0.25 nm.

Simulations are carried out for a unit cell with the bottom fixed and a traction free

top surface, i .e.,

ux (x,0) = uz (x,0) = 0,

σxz (x, zm) =σzz (x, zm) = 0.
(3.25)

The stress distribution obtained using GFDD is compared with DDP in figure 3.7. The

displacements at the top surface, where tractions are zero, and the tractions at the bot-

tom surface, where displacement are zero, are shown in figure 3.8 and figure 3.9.

(a) (b)

Figure 3.7: Stress fields for a dislocated elastic layer with a traction free top surface obtained using (a) GFDD
and (b) DDP.

It is found that the tractions at the surface obtained using GFDD suffer from ringing,

also known as Gibb’s phenomenon (see figure 3.10). This is because the discontinuities

in the displacement imposed at the surfaces cause the higher harmonics of the traction
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(b)

Figure 3.8: (a) Normal displacement uz and (b) lateral displacement ux at the traction free surface of an
elastic layer containing a pinned edge dislocation obtained using GFDD and DDP.
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Figure 3.9: (a) Lateral traction tx and (b) normal traction tz at the bottom surface of the elastic layer
containing a pinned edge dislocation obtained using GFDD and DDP.
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Figure 3.10: Lateral traction tx at the bottom surface (a) before and (b) after the removal of ringing artifacts.

to have higher amplitudes than the lower harmonics. To remove the ringing artifacts the

results displayed in figure 3.9 are obtained after multiplying the traction t (q) with a sinc

function sinc(qa0), where a0 is the discretization length. This is equivalent to convolving

in real space the traction suffering from ringing with a rectangular box of unit height

and width equal to the discretization length. Notice, however, that ringing affects only

surface tractions, not surface displacements, from which the body fields are calculated.

3.6. INDENTATION BY AN ARRAY OF FLAT RIGID PUNCHES

This benchmark problem is used to compare GFDD to classical DDP. The simulations

are carried out for a unit cell that is indented by a rigid punch as in figure 3.11.

x

z

Lx

Lx

uz

z
m

0

p

Figure 3.11: Boundary-value problem.
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3.6.1. BOUNDARY-VALUE PROBLEM

The indentation is prescribed by specifying the normal displacement rate along the con-

tact of length Lp
x :

u̇z (x, zm) =−u̇0
z , x ∈

[
Lx −Lp

x

2
,

Lx +Lp
x

2

]
.

A sticking contact is modeled in DDP by taking the lateral displacement ux = 0 in

the contact region. In GFDD, the lateral movement in the contact region is constrained

horizontally through the hard-wall potential. The non-contact part of the top surface of

the unit cell is taken to be traction-free,

σxz (x, zm) =σzz (x, zm) = 0.

This is achieved in GFDD by letting the contact points relax to equilibrium without any

constraints. Finally, the bottom of the unit cell, z = 0 is fixed:

ux (x,0) = uz (x,0) = 0.

In GFDD, this is implemented by constraining the lateral and normal motion of grid

points at the bottom surface using the hard-wall potential.

3.6.2. CHOICE OF PARAMETERS

Calculations are carried out for crystals with aspect ratio a = zm/Lx = 1/2, contact frac-

tions Lp
x /Lx = 1/12 and Lx = 12 µm. The elastic constants are chosen to represent alu-

minum: the Young’s modulus is E = 70 GPa and Poisson’s ratio ν= 0.33.

For the DDP simulations, the slab is discretized using a uniform mesh of square ele-

ments. The number of degrees of freedom is ndof = 2nnx ×nnz, where nnx is the num-

ber of nodes in x-direction, and nnz the number of nodes in z-direction. For the GFDD

simulations, the surface is discretized using nx equi-spaced grid points, with nx = nnx.

In GFDD, the center-of-mass mode is critically damped or slightly under-damped for

quick convergence. The damping factor η is

η∝ 1

τ
p

nx
, (3.26)
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where τ is the non-dimensional time step shown earlier in equation (3.5) that is used

in the position-Verlet algorithm in GFMD to solve for the unknown displacement fields

and it is taken to be τ=0.25. The number of iterations used to reach convergence scales

as nit ∝
p

a nx.

The dislocations can glide on three sets of parallel slip planes, with slip plane ori-

entations: 0◦, 60◦ and 120◦ to the top surface. The discrete slip planes are spaced at

200b where b = 0.25 nm is the length of the Burger’s vector. The Frank-Read sources

and obstacles are randomly distributed in the crystal with a density ρnuc = 30 µm−2 and

ρobs = 30 µm−2 in an initially dislocation free crystal. The strength of the sources fol-

lows a Gaussian distribution with mean strength τnuc = 50 MPa and standard deviation

of 10 MPa. The critical time for nucleation is tnuc = 1 ns. The strength of the obstacles

is taken to be 150 MPa. Dislocations of opposite sign in the same slip plane annihilate

when the distance between them is below Lann = 6b. The time step in both DDP and

GFDD simulations is taken to be ∆t = 2.5 ns.

3.6.3. A SIMPLE DISLOCATION DYNAMIC SIMULATION: A SINGLE FRANK-

READ SOURCE

In this section, a simple problem is considered where a rigid flat punch indents a crystal

containing a single Frank-Read source as shown in figure 3.12(a). In order to observe

appreciable plastic deformation in the material, the magnitude of the Burger’s vector

is magnified four times, i .e., b = 1.0 nm. The mean contact pressure obtained using

both methods is displayed in figure 3.12(b). While the flat rigid punch indents the layer,

the source keeps generating dislocation dipoles, causing periodic kinks in the pressure-

displacement curve. The difference in mean contact pressure in figure 3.12(b) is not seen

to the naked eye.

The surface fields obtained using both methods at uz = 0.01µm are shown in fig-

ure 3.13. The displacement steps formed due to the exiting of dislocations can be clearly

seen close to x/Lx = 0.6.

Note that in figure 3.13(a) the curves for the uz displacement overlap since in z–

direction displacement boundary conditions are imposed. The difference between the

curves representing ux stems from the numerical difference in calculating the resolved

shear stress acting on the source and the location of the dislocations in the two numeri-
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Figure 3.12: (a) Schematic representation of the problem with a single Frank-Read source lying on a slip plane
at an angle θ with the surface of the crystal. (b) Mean contact pressure for nx = nnx = 256. The dislocation
structure and stress distribution is shown at three different depth of indentations: (1) when the first pair of

dislocation is nucleated, (2) when the first dislocation exits and (3) when the second dipole is nucleated.

cal schemes. The calculated stress field depends not only on boundary conditions when

the simulation is elastic, but also on the location of other dislocations in the crystal when

there is plasticity. Therefore, the differences builds up with increasing dislocation den-

sity. However, relative differences between contact pressure claculated in 3.13(b) with

two methods remain below 0.45%.

3.6.4. DISLOCATION DYNAMICS SIMULATION WITH MANY SOURCES AND OB-

STACLES

In this section the indented crystals contain a density of Frank-Read sources ρnuc =
30 µm−2 and a density of obstacles ρobs = 30 µm−2. The simulations are carried out with

DDP and GFDD on crystals containing the same realization of sources and obstacles,

i .e., the location as well as the strength of sources and obstacles are identical. Figure 3.15

shows the stress state and dislocation distribution at final indentation depth. Note that

there is no one-to-one correspondence between the dislocations and therefore also not

in terms of stress distribution. This is not surprising given that a tiny difference in the

evolution of the dislocation structure, like a small delay in the nucleation of a dislocation

or in the formation of a junction, would trigger an avalanche of differences in the follow-

ing dislocation dynamics (Deshpande et al., 2001). The overall features such as the shear
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Figure 3.13: (a) Displacement at the top surface and (b) traction at the bottom surface obtained using GFDD
and DDP at the final indentation depth uz = 0.01 µm. The green curve in (a) overlaps with the blue-dashed

curve since displacement boundary conditions are prescribed in the z–direction.

bands emitted by the contact are captured by both methods in the same way. This is also

testified by the mean contact pressure in figure 3.14(a) for the simulation presented in

figure 3.15 and for a different realization. While DDP and GFDD do not produce identi-

cal mean pressures as a function of displacement for a given realization of Frank-Read

sources, differences tend to be larger within one method from one realization to the next.

In figure 3.14(b) are presented the average between the two realizations.

3.6.5. SIMULATION TIME

The computational complexity involved in solving the elastic b.v.p. using GFDD is only

O(nx
p

nx lognx) (Venugopalan et al., 2017b), while it is O(nx2B 2) (Synn and Fulton,

1995) in DDP, where B is the mean bandwidth of the stiffness matrix, which cannot ex-

ceed nx.

The time consuming part in 2D dislocation dynamics is the calculation of the re-

solved shear stress τres at the location of objects, i .e., sources, dislocations and obsta-

cles. In DDP, this requires searching the element where the object is located and sub-

sequently calculating the stress and interpolating it to the location of the object. This

procedure scales as O(nx2). In GFDD, instead, the resolved shear stress can be evalu-
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Figure 3.14: Mean contact pressure Pm obtained using GFDD and DDP for nx = nnx =512 are plotted for (a)
two different initial realizations of dislocation structure and (b) average of three different realizations.
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Figure 3.15: Stress and dislocation distribution in the crystal for the first realization obtained using (a) GFDD
and (b) DDP for an indentation depth uz = 0.1 µm and nx = nnx = 512.
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ated directly at the points of interest, i .e., at dislocations, sources and obstacles, which

requires a smaller computational effort, scaling with O(nx). This is because the body

field is calculated based on surface displacements ũ(q) using nx/2 modes.

The simulation time required for elasticity and for the calculation of the resolved

shear stress is displayed in figure 3.16, and shows in both cases how the computational

advantage of using GFDD increases with increasing discretization. It has to be noted that

we use a skyline solver for FEM. The computational time using this solver was found to

be of the same order as that of iterative solvers. The simulations performed on a single

Intel Xeon(R) 3.10 GHz processor with 31.3 GB of RAM.

The dislocation dynamics is computed using the same algorithm in both methods

and takes therefore the same amount of time and resources. The time required for the

dynamics is independent of the discretization and increases with dislocation density. For

the DDP simulations performed here, the time consumed by the dislocation dynamics

is a negligible fraction of the time required to compute the resolved shear stress. GFDD

is thus computationally more efficient than DDP independently of dislocation density.
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Figure 3.16: (a) Simulation time (in seconds) for the elastic boundary-value problem and calculating resolved
shear stress τres are plotted separately, (b) total simulation time including dislocation dynamics for GFDD vs

DDP for the full simulation.

It has to be noted that the maximum number of surface nodes chosen for this study

is only 29. If one intends to study the contact response of a realistic self-affine surface

where roughness scales over three orders of magnitude ranging in scale from 50 nm to



3.7. CONCLUDING REMARKS

3

59

100 µm (Plouraboué and Boehm, 1999), the surface has to be discretized by at least 213

points (or even more depending on the thermodynamic and continuum limit (Prodanov

et al., 2014)). For such large systems, and small strain simulations, as typically used in

dislocation dynamics, the computational complexity for elastic b.v.p. was found to al-

ways dominate in comparison to the dislocation dynamics. In this case the computa-

tional advantage of GFDD becomes even more appreciable.

Notice also that the benchmark problem chosen in this work involves a constant

contact area. For contact problems where the area is not constant, DDP becomes even

slower since finding the correct contact area by means of the FEM requires many iter-

ations as well as updating the boundary conditions at each time increment. GFDD is

inherently impervious to such issues since it employs an interaction potential between

the contacting surfaces.

3.7. CONCLUDING REMARKS

In this work, we propose a modeling technique, Green’s function dislocation dynamics,

which combines Green’s function molecular dynamics with discrete dislocation plastic-

ity. We firstly extended the existing Green’s function molecular dynamics model such

that it can simulate an elastic layer with arbitrary loading at both the top and bottom

surfaces. To this end we derived the areal elastic energy for the case of an isotropic layer

with sinusoidal loading at both ends. In addition, we derived the body fields required to

capture the evolution of the dislocation structure. The results obtained using GFDD are

compared with conventional DDP for a benchmark problem: periodic indentation of a

single crystal by flat punches.

The mean contact pressure during indentation using the two methods is found to

differ less than two different realizations using the same method. Here by realization

is intended a given initial distribution of dislocation sources and obstacles. The differ-

ences between the two methods stems from the evaluation of the fields using different

discretizations: GFDD discretizes only the surface, DDP also the body.

The new GFDD model has various advantages compared to classical DDP. First, it is

faster and opens up the possibility of studying realistic rough surfaces by exploiting a

larger number of degrees of freedom. Next, GFDD employs an interaction potential be-

tween the contacting bodies, and does not involve time-consuming algorithms to keep
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track of the evolution of the contact area. Also, the periodicity in GFDD is intrinsically

enforced through Fourier transforms, making it a better candidate than DDP to study

contact problems by exploiting the periodicity of the unit cell on which the analysis is

performed. Obviously, this is also a limitation of the GFDD model, which is currently not

suitable to study non-periodic problems. Extension of the model to overcome this lim-

itation seems an interesting avenue for future research. Additionally, the GFDD model

has the potential to serve as a platform for multi-scale modeling where the surface has

an explicit atomistic description and the bulk can be treated as a dislocated continuum.
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Although indentation of elastic bodies by self-affine rough indenters has been studied ex-

tensively, little attention has so far been devoted to plasticity. This is mostly because mod-

eling plasticity as well as contact with a self-affine rough surface is computationally quite

challenging. Here, we succeed in achieving this goal by using Green’s function dislocation

dynamics, which allows to describe the self-affine rough surface using wavelengths span-

ning from 5 nm to 100 µm. The aim of this work is to gain understanding in how plastic

deformation affects the contact area, contact pressure and hardness, gap profile and sub-

surface stresses, while the roughness of the indenter is changed. Plastic deformation is

found to be more pronounced for indenters with larger root-mean-square height and/or

Hurst exponent, and to be size dependent. The latter means that it is not possible to scale

observables, as typically done in elastic contact problems. Also, at a given indentation

depth (interference) the contact area is smaller than for the corresponding elastic con-

tact problem, but gap closure is more pronounced. Contact hardness is found to be much

larger than what reported by classical plasticity studies. Primarily, this is caused by lim-

ited dislocation availability, for which the stiffness of the deforming crystal is in between

that of a linear elastic and an elastic-perfectly plastic material. When calculating hard-

ness and nominal contact pressure, including very small wavelength in the description of

the surface is not necessary, because below a given wavelength the subsurface stresses be-

come invariant to a further decrease in true contact area. This is true for both elastic and

plastic materials. Considering small wavelengths is instead required to capture accurately

roughening and contact stress distribution.
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4.1. INTRODUCTION

Contact between surfaces under moderate load involves only a fraction of the surface as-

perities, given that most surfaces, even when visually flat, have a self-affine fractal char-

acter (Bouchaud, 1997; Bouchaud et al., 1990; Dauskardt et al., 1990; Imre et al., 1992;

Krim and Palasantaz, 1995; Lechenault et al., 2010; Majumdar and Tien, 1990; Mandel-

brot et al., 1984; Plouraboué and Boehm, 1999). The change in contact area and local

stress distribution when the surfaces are pressed into contact determines phenomena

such as friction, wear, adhesion, fretting and contact fatigue. However, experimentally,

it is very challenging to measure local changes in contact area, especially when the sur-

faces are non transparent, as in the case of metals, which is the material of interest in

this study.

Recently, much effort has been devoted to the numerical modeling of rough surface

contacts. In virtue of advances in numerical techniques it is now possible to model

the self-affinity of surfaces incorporating a wide range of length scales. These mod-

eling techniques include the biconjugate-gradient stabilized method (Wu, 2006), the

boundary-element approach (Ilincic et al., 2011, 2009; Putignano et al., 2012a,b), the

fast-Fourier-transform based boundary-value methods (FFT-BVM) (Polonsky and Keer,

2000; Stanley and Kato, 1997) and Green’s function molecular dynamics (GFMD) (Cam-

pañá and Müser, 2007; Campañá et al., 2008; Dapp et al., 2014; Prodanov et al., 2014).

Studies using these methods have so far mostly focused on describing contact between

bodies that behave elastically. However, the assumption that bodies behave elastically

during contact is only valid as long as the stress in the body is mostly hydrostatic, i.e.

when the bodies are nearly in full contact, or when the root-mean-square (rms) height of

the rough surface or its Hurst exponent are very small. All these conditions are not met

by metal surfaces, which require extremely high loads to reach full closure, have rms

height ranging from 0.3 µm to 2.5 µm (Plouraboué and Boehm, 1999) and have Hurst

exponent ranging from 0.3 to 0.9 (Bouchaud et al., 1990; Dauskardt et al., 1990; Imre

et al., 1992; Lechenault et al., 2010; Plouraboué and Boehm, 1999), depending on the

finishing. Rough metal bodies are therefore expected to deform plastically under rather

moderate load. The main objective of this work is to study the plastic response of metal

crystals indented by a self-affine rigid surface and investigate how their behavior differs

from that of elastically deforming bodies. To this end we will use a modeling technique,
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Green’s function dislocation dynamics, which accurately captures deformation of the

rough surface, as well as dislocation plasticity in a two-dimensional framework (Venu-

gopalan et al., 2017a).

While there is a broad literature dealing with elastic deformation of rough surfaces,

much less work has been devoted to plastic deformation (see Ghaednia et . al . (Ghaed-

nia et al., 2017) for a recent review). The first elasto-plastic contact model was proposed

by Chang, Etsion and Bogy (Chang et al., 1987) and was based on the conservation of

volume of the plastically deforming asperities. At a critical interference value, the mate-

rial would switch from the fully elastic to the fully plastic regime. The model, although

improved by Zhao et . al . (Zhao et al., 2000) to include an intermediate elasto-plastic

regime, has the drawback that ignores interaction between asperities. The interaction is

naturally captured in the work of Gao et . al . (Gao et al., 2006; Gao and Bower, 2006), who

studied elasto-plastic contact between sinusoidal surfaces and surfaces with a Weier-

strass profile. These studies showed that the pressure to cause complete contact be-

tween surfaces can reach a value 5.8 times larger than the yield strength of the bulk ma-

terial, thus larger than the hardness of an isolated asperity modeled by classical plasticity

(about 3σy). This is in consistence with the findings of Pei et . al . (Pei et al., 2005) who

modeled indentation of a flat body, deforming according to J2 plasticity, indented by a

self-affine fractal rigid surface. They argued that it is the interaction between asperities

that brings the mean contact pressure pm above the single asperity hardness. Both the

work of Gao et . al . (Gao et al., 2006) and of Pei et . al . (Pei et al., 2005) were based on

classical plasticity and therefore ignored size effects, which are found to play an impor-

tant role at the micro-scale (Fleck et al., 1994; Greer et al., 2005; Ma and Clarke, 1995;

Nicola et al., 2003, 2006; Volkert and Lilleodden, 2006). Due to size-dependent plasticity,

metals are found to be harder to indent for decreasing size of the indenter and of the

indentation depth (Nix and Gao, 1998; Swadener et al., 2002; Zong and Soboyejo, 2005).

One can therefore expect that size-dependent plasticity would also affect the response of

rough metal surfaces upon contact, especially when interference is small. Discrete dislo-

cation dynamics simulations can well capture size effects and will enable us in this work

to assess their influence on the contact response of rough surfaces. Also, the simulations

provide the subsurface stress fields, which are of great importance in determining where

are the critical locations where dislocation-driven failure mechanisms can occur.
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Discrete dislocation plasticity simulations of contact were already performed for very

simple surfaces: indentation or shearing by isolated indenters in two- (Balint et al., 2006;

Deshpande et al., 2007; Sun et al., 2016; Widjaja et al., 2007) and three-dimensions (Curtin

and Miller, 2003; Fivel, 2008), periodic arrays of flat indenters (Nicola et al., 2007, 2008)

and flattening of sinusoidal surfaces (Deshpande et al., 2007; Ng Wei Siang and Nicola,

2017; Sun et al., 2015, 2012). These simulations confirm that for these very simple geom-

etry the plastic response is size dependent. Dislocation dynamics simulations of con-

tact are computationally rather expensive even in two dimensions, therefore the con-

tact problem between self-affine surfaces, which require a fine discretization to capture

a broad range of wavelength, was not attempted so far. However, Yin et . al .(Yin and

Komvopoulos, 2012) presented dislocation dynamics simulations for an indenter made

of Hertzian asperities of different size, to simulate the effect of multi-scale roughness and

showed that rougher asperities induce more plasticity than smooth ones, and that sub-

surface stresses and dislocation densities strongly increase with interference. Recently,

we presented a new version of two-dimensional discrete dislocation plasticity based on

the formulation of Van der Giessen and Needleman (van der Giessen and Needleman,

1995) that uses Green’s function molecular dynamics to compute the image fields, and

by that provides a significant gain in computational speed (Venugopalan et al., 2017a).

Thanks to this method we can now model indentation with a self-affine rough indenter

of a crystal deforming by dislocation plasticity to gain a better understanding of the ef-

fect of roughness parameters such as rms height, Hurst exponent, and short wavelength

cut-off, by keeping track of the evolution of the contact area, of the tractions and subsur-

face stresses.

The remainder of the chapter starts with the formulation of the problem in sec-

tion 5.2. Then the GFDD methodology is briefly presented in 5.2.2, more details can

be found in (Venugopalan et al., 2017a). The way in which the surfaces are generated

is given in section 4.2.2. The parameters chosen for the GFDD simulations are listed in

section 4.2.3. In section 4.3.1, the loading rate is determined at which the GFDD simula-

tions can be considered quasi-static. In section 4.3.2 the size dependence of self-affine

plastic indentation is demonstrated. The effect of rms height and Hurst exponent on the

contact pressure and area are presented in section 4.3.3. The effect of short wavelength

cut-off on the contact deformation of elastic and plastic crystals is shown in section 4.3.4.
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The area–load dependency for the elasto-plastic crystal is presented in section 4.3.5.

4.2. FORMULATION OF THE PROBLEM

The schematic representation of the metal crystal indented by a rigid rough indenter is

shown in figure 4.1. Indentation is performed by specifying the displacement rate of the

θ

*

τ

Frank-Read source Dislocation

+b

-b

uz

Obstacle
*

*

*

*

* *
*

*

*

Figure 4.1: Schematic representation of the metal crystal indented by a rough surface.

rigid indenter u̇z . The top surface of the crystal is taken to be frictionless at the points of

contact,σxz (xc, zc) = 0, and traction-free elsewhere,σxz (xnc, znc) =σzz (xnc, znc) = 0. The

subscripts ‘c’ and ‘nc’ stand for ‘points in contact’ and ‘points not in contact’, respectively.

The bottom of the unit cell, z = 0 is fixed: ux (x,0) = uz (x,0) = 0.

Following van der Giessen and Needleman (1995) the crystal is initially dislocation

free, and contains a given density of slip planes, dislocation sources, and obstacles. When

the stress in the body is sufficiently high, dislocation dipoles are nucleated from the

sources and glide on the slip planes, by that reducing the stress in the body. Each dislo-

cation source nucleates a dipole when subjected to a resolved shear stress exceeding its

critical strength, τnuc, for a given amount of time, tnuc. Each dislocation source can emit

multiple dipoles. The velocity with which dislocations glide is controlled by the Peach-

Koehler force acting on them. Dislocations are stopped by the obstacles, but released

when the resolved shear stress on them exceeds the critical strength associated to the

obstacle, τobs.
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4.2.1. SOLUTION THROUGH GREEN’S FUNCTION DISLOCATION DYNAMICS

The solution at each time step of the simulation is obtained by the superposition of two

linear elastic solutions: The elastic analytical fields for dislocations in a homogeneous

infinite solid, and the solution to the complementary elastic boundary-value problem,

which corrects for the boundary conditions (van der Giessen and Needleman, 1995). The

latter is obtained through Green’s function molecular dynamics (GFMD)(Prodanov et al.,

2014). The methodology is illustrated in figure 4.2 for the indentation of a single crystal

by a rigid indenter with self-affine surface topography. The elastic dislocation fields are

represented by the superscript (d ), the fields solving the complementary boundary-value

problem by the superscript (ˆ).

= +

Figure 4.2: (a) Schematic representation of the dislocated crystal indented by a rigid rough body. The bottom
of the crystal is fixed while the indenter is pressed into contact by applying a constantly increasing

displacement which gives rise to interfacial tractions, F . The solution is obtained by superposing (b) the
elastic fields of the dislocations in an infinite medium and (c) the solution to the elastic boundary-value

problem which corrects for the boundary conditions.

GFMD is a boundary-value method to study the elastic response of a body subjected

to contact loading (Prodanov et al., 2014; Venugopalan et al., 2017a,b). In GFMD, only

the surface of the deformable body is modeled explicitly and discretized using nx equi-

spaced grid points. The rough surface is assumed to obey the small slope approximation.

The interfacial interaction adopted here is the simplest possible: in normal direction a

hard-wall constraint is imposed to avoid inter-penetration, and in tangential direction

the contact is assumed to be frictionless. This is achieved by letting the contact points
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oscillate laterally to equilibrium without any constraint. It is possible to use more so-

phisticated interfacial interactions, for instance traction–separation laws that allow for

the coupling between normal and tangential separation, but in this work we have chosen

to focus on plasticity instead of on the interfacial behavior.

The unknown surface displacement fields ũ(q) = (ũ1(q), ũ3(q)) for each mode with

wavenumber q are calculated in Fourier space using damped dynamics. The advan-

tage of damping the system in Fourier space is that the different modes describing the

surface are uncoupled. The static solution is found using damped dynamics, while the

body fields are calculated from the surface fields using closed-form analytical solutions

(Venugopalan et al., 2017a).

4.2.2. GENERATION OF THE ROUGH SURFACE

The periodic self-affine surface topography for an indenter with Gaussian height distri-

bution is generated with the power spectral density method (Campañá et al., 2008). The

self-affine surfaces are constructed by generating the Fourier coefficients of the height

profile as:

h̃(q) = h0 ∆̃G(q)
√

Ch(q) = h0
∆̃G(q)

q

(
1
2+H

) , (4.1)

where h0 is a real-valued constant which can be adjusted to obtain the aspired rms

slope of the surface, ∆̃G(q) is a Gaussian random variable with random phase such that

〈∆̃G(q)〉 = 0, Ch(q) is the surface height spectrum corresponding to a wave number q ,

and H is the Hurst exponent. The real and imaginary parts of the Gaussian random

variable ∆̃G(q) =R{∆̃G(q)}+iI {∆̃G(q)} are found from a real-valued Gaussian sequence

G[n] of finite length nx as:

R{∆̃G(q)} = 1

nx

nx∑
n=0

G[n]cos qn,

I {∆̃G(q)} = 1

nx

nx∑
n=0

G[n]sin qn.

(4.2)

The power-law scaling for the surface height spectrum applies between cut-offs at long

and short wave numbers q0 < q < qs, where q0 = 2π/λl and qs = 2π/λs are the wavenum-

bers corresponding to the long and short wavelengths λl and λs (see figure 4.3). The rms
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height h̄ and rms gradient ḡ of the surface are

h̄2 = 1

nx

∑
q
| h̃(q) |2

ḡ 2 = 1

nx

∑
q

q2 | h̃(q) |2 .
(4.3)

q0=2π/λl

slope = 0.5+H 

qs=2π/λs

Figure 4.3: Power spectral density with Gaussian distribution generated numerically for a given realization.

For different realizations of the rough surface, all parameters, including the cut-off

values, are kept fixed except the Gaussian random variable ∆̃G(q) whose phase is ran-

domly varied.

Before starting the simulation the surfaces so generated are shifted such that the low-

est point touches the substrate at zero interfacial pressure.

4.2.3. CHOICE OF PARAMETERS

In this section the default parameters used in the simulations are listed.

The height of the crystal is chosen to be zm = 10 µm, which is sufficiently large that

dislocations do not interact with the bottom of the crystal and sufficiently small to guar-

antee that plastic deformation occurs at small interference.

The elastic constants are taken to represent aluminum: the Young’s modulus is E =
70 GPa and Poisson’s ratio ν = 0.33. The dislocations can glide on three sets of parallel

slip planes, orientated at: 0◦, 60◦ and 120◦ with the bottom surface. The discrete slip
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planes are spaced at 100b where b = 0.25 nm is the length of Burger’s vector. The Frank-

Read sources and obstacles are randomly distributed in the crystal with a density ρnuc =
40 µm−2 and ρobs = 40 µm−2. The average source spacing Lave =

√
1/ρnuc = 158 nm. The

strength of the sources follows a Gaussian distribution with mean strength τnuc = 50 MPa

and standard deviation of 10 MPa. The critical time for nucleation is tnuc = 10 ns. The

strength of the obstacles is taken to be τobs = 150 MPa. Dislocations of opposite sign in

the same slip plane annihilate when the distance between them is below Lann = 6b. The

time step required to properly capture the dislocation interactions is found to be ∆t =

2.5 ns.

In GFMD, the center-of-mass mode is critically damped or slightly under-damped

for quick convergence. The damping factor is

η∝ 1

τ

√(
E

2(1+ν)

)(
Lx

zm nx

)
, (4.4)

where τ= 0.25 is the dimensionless time step used for the damped dynamics. The num-

ber of iterations to reach convergence scales as

nit ∝
√(

2(1+ν)

E

)(
zm nx

Lx

)
. (4.5)

The values for the thermodynamic, fractal and continuum (TFC) discretizations, un-

less otherwise stated, are εt = 2−1, εf = 512−1 and εc = 32−1. The fractal discretization,

εf = λs/λl, defines the number of wavelengths used to describe the surface. Here, the

long wavelength cut-off is kept constant, i.e. λl = 10 µm and the short wavelength cut-

off varied to assess the effect of small features on the plastic response of the crystal. The

thermodynamic discretization is defined as εt = λl/Lx , where Lx is the width of the pe-

riodic unit cell. In the limiting case of εt → 0, which corresponds to the thermodynamic

limit, the surface is no longer periodic since Lx →∞. Finally, the continuum discretiza-

tion is defined as εc = a0/λs where a0 is the spacing between the grid points that dis-

cretize the surface of the substrate. In the limiting case of εc → 0, the grid spacing a0 → 0

and hence the surface has a continuum representation, therefore the solution must con-

verge to the continuum mechanics solution.
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4.3. RESULTS AND DISCUSSION

4.3.1. LOADING RATE

Firstly, we determine for which loading rate the simulations can be considered quasi-

static. To this end, the crystal is indented at different loading rates to a depth of 0.01 µm.

The indenter is then held at constant depth until t = 125× u̇0
z /u̇z ns, where u̇0

z = 4 ×
105 µm/s is the reference loading rate. Figure 4.4 shows the change in nominal contact

pressure pn = F /Lx , where F is the total contact force. It can be seen that, upon loading,

the response of the substrate is stiffer for higher loading rates. This is caused by the

fact that the generation of dislocations is controlled by the nucleation time tnuc. If the

loading is fast compared with the rate of dislocation nucleation, Lnuc/tnuc, dislocations

do not have the time to nucleate, glide, and relax the pressure as much as needed. This

is why for the faster loading rate used here, u̇0
z = 4×105 µm/s, the loading curve is close

to the elastic limit. Only when the indenter is kept fixed at final indentation depth, the

dislocations have the time to be nucleated also in the crystals that where subjected to fast

loading, leading to a decrease of the contact pressure. A loading rate of u̇0
z = 4×103 µm/s

is chosen for all our simulations since it results in a negligible relaxation of the contact

pressure at constant loading.
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Figure 4.4: Nominal contact pressure upon indentation to a depth of 0.01 µm and subsequent relaxation.

4.3.2. SIZE EFFECT

To assess the occurrence of plasticity size effects in self-affine indentation we scale both

the size of the crystal and the rough surface topography equally in x− and z− direction,

while keeping the realization of the rough surface unaltered. The scaling ensures that the
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elastic response of all crystals is identical, such that differences in the plastic response

are highlighted. The smallest crystal has width Lx = 10 µm and height zm = 5 µm. It is

indented by a rough surface with rms height h̄ = 0.05 µm. The dimensions of the other

two crystals are scaled up by two and four, so is the rms roughness height of the indenter.

All crystals are indented to the same strain, uz /zm = 0.002.

As expected, the curves representing nominal contact pressure versus strain are found

to be indistinguishable for all elastic crystals, as can be seen in figure 4.5(a). On the con-

trary, a size effect is observed for the plastically deforming crystals. The thinner crystals,

indented by a surface with smaller rms height, have a stiffer response upon indentation.

Also, the contact area they form is larger and closer to the elastic limit (figure 4.5(b)). The

relative contact area in figure 4.5(b) is defined as ar = A/A0, where A is the real contact

area and A0 is the apparent contact area. The kink in the curves in figure 4.5(a) indicates

that a new cluster of asperities has come into contact.

It is important to note here, that for a given displacement of the indenter, the con-

tact area is smaller for plastic crystals compared to their elastic counterparts. Since the

occurrence of plastic deformation reduces the interfacial force, a larger interference is

required to reach the same contact area that would be reached elastically. This findings

are in contradiction with the early elasto-plastic models (Chang et al., 1987; Zhao et al.,

2000), where contact area was expected to increase with plasticity. This is because those

models are based on the incorrect assumption that the plastic contact area is given by

the geometric intersection between crystal and indenter.

The normal traction tz profiles at final strain are shown in figure 4.6. As expected, the

elastic profiles overlap again, while the traction profiles become closer to the elastic so-

lution for smaller rms height. The high peaks that characterize the profile for larger rms

height are a consequence of the serrated nature of plastically deforming surfaces: the exit

of dislocations leads to crystallographic steps at the surface which become more pro-

nounced when several dislocations leave the body from the same slip plane Ng Wei Siang

and Nicola (2017). The difference between contact pressure profiles for elastically and

plastically deformed surfaces is rather pronounced: plasticity does not only lead to a

smaller nominal contact pressure and true contact area, but to a very different distri-

bution of the contact stresses. Locally the surface stresses are an order of magnitude

larger than what predicted by earlier classical plasticity study (the nucleation strength
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Figure 4.5: (a) Nominal contact pressure and (b) relative contact area as a function of strain for crystals with
scaled height indented by a rough profile with scaled rms height.

on which the tractions are magnified is of the same order as the yield strength). Con-

sequently, also the subsurface stresses are much affected by plasticity, as shown in fig-

ure 4.7, where the stress distribution in crystals of different size are compared. Here, one

can see that the size dependence is caused by dislocation source starvation in the smaller

crystals: the reduced contact area is the same as in larger crystals, but the actual contact

area is smaller. Therefore, the contact pressure gives rise to a smaller region affected by

high stresses, where dislocations can nucleate. Because of limited source availability, the

crystal with smaller dimensions exhibits less plasticity.
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Figure 4.6: Normal traction tz profiles at strain uz /zm = 0.002 for crystals with scaled dimensions, indented
by a rough surface with scaled rms height.

An important implication of the size-dependent response just demonstrated is that–
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Figure 4.7: Stress and dislocation distribution in two crystals with (a) zm = 5 µm, h̄ = 0.05 µm and (b)
zm = 20 µm, h̄ = 0.2 µm at strain uz /zm = 0.002. The rms height of the indenter is also scaled with zm, and

magnified by a factor of 10 in z−direction for better visualization.

for plastically deforming bodies–it is not possible to scale observables such as the con-

tact pressure, the contact area, and the gap, with crystal size or rms height of the in-

denter, as typically done for elastic contact problems Müser et al. (2017); Prodanov et al.

(2014).

4.3.3. EFFECT OF RMS HEIGHT AND HURST EXPONENT

Here, differently from the previous section, we keep the crystal size constant and we

search for the rms height that causes appreciable plasticity: a small rms height is ex-

pected to mostly induce a hydrostatic stress state in the subsurface, while a deviatoric

stress component is needed to induce plasticity.

Figure 4.8(a) displays the nominal contact pressure, normalized on τnuc ḡ , as a func-

tion of indentation depth uz , normalized on rms height h̄. The normalization allows for

the overlapping of the elastic curves. Again, the plastic response cannot be scaled, and

one can observe that the larger the rms height the larger the reduction in mean contact

pressure assisted by plasticity. Although elastically at a given uz /h̄ the reduced pres-

sure is the same for all cases considered, the subsurface stresses induced by different

rms height differ. This is because a small rms height corresponds to various small and

closely spaced contact patches, which induce an almost hydrostatic subsurface stress

state. A large rms height corresponds instead to few larger but more isolated contacts,
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which lead to a larger deviatoric stress component. For a rms height of 1 µm the plastic

response is mostly pronounced as seen in the dislocation density plots in figure 4.8(b).

We select h̄ = 0.1 µm for all simulations in the subsequent sections, since a lower

value of rms height - as generally chosen in the literature of elastic contacts Hyun et al.

(2004); Persson (2001); Polonsky and Keer (2000); Prodanov et al. (2014)- is unrealistic

for metals and, as we just saw, induces a mostly hydrostatic stress state. A larger value of

rms height violates the assumption of small-slope approximation on which the GFMD

model is based, already at small indentation depth. It is however noteworthy, that metal

contacts with rms height larger than what selected here are common, and they will have

an even larger plastic contribution than what presented in this work.

u
z

/h

p
n
/(

τ
n
u

c


g
)

0 0.1 0.2 0.3 0.4 0.5

10
­2

10
­1

10
0

10
1

h=1 µm

h=0.1 µm

h=0.01 µm

h=0.001 µm

elastic (all)

(a)

u
z

/h

ρ
d

is
l
(µ

m
­2

)

0.5 1 1.5

0.0

0.5

1.0

1.5

2.0

h=1 µm

h=0.1 µm

h=0.01 µm

h=0.001 µm

(b)

Figure 4.8: (a) Normalized nominal contact pressure for different rms heights. All elastic curves overlap. Also,
the curve corresponding to the plastic response of the crystal with rms height h̄ = 0.001 µm overlaps with the
elastic curve, but will deviate at larger indentation depth. (b) Dislocation density ρdisl in the crystal is plotted

for different rms heights.

Next, we analyze the effect of varying Hurst exponent of the indenting surface on

the plastic response of the crystals, while all other surface parameters are kept constant.

Experimentally measured values of the Hurst exponent for metals fall in the range of

H = 0.3 to H = 0.9 depending on the material and its finishing Bouchaud et al. (1990);

Dauskardt et al. (1990); Imre et al. (1992); Lechenault et al. (2010); Plouraboué and Boehm

(1999).

The change in nominal contact pressure, relative contact area and dislocation den-

sity for indentation with surfaces with three different Hurst exponents H = 0.3, 0.5, 0.8

are presented in figure 4.9. It can be seen that for the elastic crystals, the resistance to
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indentation is larger for increasing values of the Hurst exponent since for a given inden-

tation depth the smoother indenter profiles form a larger contact area with the crystal.

However, for plastically deforming crystals, the contact pressure curves corresponding to

different Hurst exponents tend to converge at large indentation depth such that plastic-

ity acts as a grand equalizer, consistently to what Pei et. al. Pei et al. (2005) had observed.

This implies that the contribution of plasticity increases with the Hurst exponent (see

for confirmation figure 4.9(c)). This is to be expected, considering that the larger contact

area induced by the indenters with larger H (see figure 4.9(b)) is related to a broader sub-

surface stressed region and therefore a greater availability of active dislocation sources.

The shear bands that form during plastic flow can be seen for H = 0.3 and H = 0.8

in figure 4.10(a) and 4.10(b). One can see that the crystal indented by the surface with

H = 0.3 has more, but smaller, areas of contact than the other crystal. The shear bands

that form are therefore more but shorter, since they form later and they intersect, ob-

structing each others propagation. The crystal indented by the surface with larger Hurst

exponent has a very long shear band that extends deep in the material. Notice, that these

shear bands could not be captured by classical plasticity. The capability of capturing the

subsurface stress distribution is very important, since it can signal initiation of failure in

the material, for instance the initiation of cracks.

In all subsequent simulations, we choose a Hurst exponent H = 0.8 as observed on

most metallic surfaces (Bouchaud et al., 1990; Dauskardt et al., 1990).

4.3.4. THE SHORT WAVELENGTH CUT-OFF

In this section we investigate the effect of including fine roughness features on the plas-

tic contact response, by comparing simulations in which the indenter is described using

various fractal discretizations εf = λs/λl. The fractal discretization is varied by keep-

ing the long wavelength cut-off constant and equal to 10 µm and changing the short

wavelength cut-off. The largest fractal discretization εf = 1 corresponds to a sinusoidal

indenter and the smallest fractal discretization εf = 512−1 to wavelengths down to λs =
19.5 nm.

Figure 4.11 shows the deformed surface after indentation to uz = 0.05 µm for elastic

and plastic crystals. Surface profiles for λs = 19.5 nm and λs = 156 nm are compared and

contrasted with those obtained by indenting with a sinusoidal surface. For the sinusoidal
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Figure 4.9: (a) Nominal contact pressure (b) relative contact area, and (c) dislocation density during
indentation with a rigid rough surface with various Hurst exponents.
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Figure 4.10: Deformed surface profile (top); stress and dislocation distribution (bottom) for (a) H = 0.3 and (b)
H = 0.8.
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indentation, the contact occurs elastically over a single large patch whereas for the self-

affine indenter, the contact is formed by several smaller patches. As a result, the real

contact area for λs = 156 nm is found to be at least an order of magnitude smaller than

that of sinusoidal indentation.

With plasticity, there is a pronounced material pile up in the zones surrounding the

contact. This results in the surface conforming more to the indenter and hence into a

significantly smaller interfacial separation. This is relevant for problems concerning the

leakage of seals, where the gap between surfaces controls percolation of the fluid (Dapp

et al., 2012; Pérez-Ràfols et al., 2016).
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Figure 4.11: Deformed surface profile at an indentation depth of 0.05 µm for (a) sinusoidal indenter and
fractal indenters with (b) λs = 156 nm and (c) λs = 19.5 nm.

Despite interfacial separation is smaller for plasticity than for elasticity, the contact area
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is smaller for the plastic case, given that, at a given indentation depth, the contact pres-

sure is reduced by plasticity. Figure 4.12 shows the relative contact area at final inden-

tation depth afin
r for different fractal discretizations. It is seen that the contact area de-

creases with fractal discretization for both elastic and plastic crystals with approximately

the same rate. Smaller fractal discretization is characterized by asperities with smaller

length scales that form contact over several smaller patches. In the case of sinusoidal

indentation, the difference between elastic and plastic contact area is less. This is due to

the fact that when the surface deforms plastically, dislocations exit the free surface leav-

ing crystallographic displacement steps. This gives rise to small protrusions that make

additional contact with the indenter (see figure11).
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Figure 4.12: Contact area at final indentation depth for different fractal discretizations.

The increase of contact pressure with loading is shown in figure 4.13(a) for various

values of fractal discretization. A sudden increase in pressure is observed every time

a new cluster of asperities comes into contact. For the two larger discretizations, the

nominal contact pressure are very close, although not overlapping, neither for the elastic

nor for the plastic simulations.

The results for final nominal contact pressure, normalized on source strength, are

reported in figure 4.13 for various values of the fractal discretization, i.e. various λs, for

elastic and plastic simulations. The results lead to three main observations: (1) the data

obtained with dislocation dynamics is just shifted with respect to the data obtained with

elastic simulations, with plastic values being approximately 85% (for the dislocation pa-

rameters chosen in this work) smaller than the elastic values; (2) Below a threshold wave-

length, λs = 156 nm (for the roughness parameters used in these simulations), the nomi-

nal contact pressure is unaffected by a further reduction of the short wavelength cut-off.

Therefore, if one is interested in nominal contact pressure, it is not worth using a dis-
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cretization smaller than this threshold value, irrespectively of whether the simulations

include or not plasticity; (3) Despite true contact area always decreases with decreasing

fractal discretization (see figure 4.12) nominal contact pressure does not. This means

that below a given threshold for λs the mean contact pressure, which can be interpreted

as hardness of the contact, would increase rather significantly, only because the real con-

tact area decreases. As we will see in more detail shortly, this increase in hardness does

not really reflect the physics of the problem.
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Figure 4.13: (a) Evolution of contact pressure with indentation depth and (b) contact pressure at final
indentation depth, for elastic and plastically deformed crystals and various values of the fractal discretization.

Notice that we have distinguished three different domains in figure 4.13(b), indicated

with A, B, and C. Zone A represents the large wavelength zone, including as upper limit

the sinusoidal wave. In this region the contact occurs at a single protrusion of the inden-

ter, which becomes thinner while decreasing lambda and therefore indents the crystal

meeting less resistance. There is only a continuous single contact area. In zone B, an ad-

ditional decrease in wavelength is accompanied by roughening of the protruding peak

which makes contact with the crystal through a couple of closely spaced contact patches,

who interact elastically and effectively act as a super-contact with end-to-end distance

larger than the true contact area, which always decreases with λs. This gives an increase

in the resistance to indentation and therefore of contact pressure. In zone C, decreasing

wavelength further, corresponds to additional fragmentation of the already very small

and closely spaced contact patches. This fragmentation decreases the true contact area

further, but does not affect the stressed region in the subsurface, and does therefore not

change the nominal contact pressure. This is demonstrated in figure 4.14 forλs = 156 nm
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and 19.5 nm. It can be seen that, although the true contact areas are different, in virtue

of the elastic interactions, the subsurface stresses are comparable. This implies that (1)

measuring or calculating true contact area below a critical threshold wavelength is not

useful to determine the mechanical response (even elastic response) of the contact and

(2) the quantity that is important to determine the mean contact pressure (or contact

hardness) is not the the true contact area, but the effective contact area, indicated in

figure 4.14 as AB, which is invariant below the threshold value λs = 156 nm.

(a) (b)

Figure 4.14: Indenters and surface profiles (top) and stress distribution (bottom) for indentation using (a)
λs = 156 nm and (b) λs = 19.5 nm.

We choose therefore the threshold value λs = 156 nm to present the change of mean

contact pressure pm = F /A for different source densities in figure 4.15(a). Here F is the

interfacial force and A is the true contact area. The mean contact pressure depends

rather mildly on the range of source densities chosen, and even for the largest source

density considered here it is significantly larger, 35 τnuc, than what found in simulations

based on classical plasticity theory Gao et al. (2004); Pei et al. (2005), where pm ≈ 6 σY.
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Here σY is the yield strength on tension, which for the material parameters used in our

simulations, is 60 MPa, thus of the same order as the nucleation strength, τnuc = 50 MPa.

The reason for the difference between the prediction in mean contact pressure of Green’s

function dislocation dynamics and the classical plasticity simulations Gao et al. (2004);

Pei et al. (2005) is twofold: the most important is that while in classical plasticity, plastic

deformation occurs at any location where the yield strength is exceeded, in dislocation

dynamics plasticity is limited by the availability of dislocation sources; also, the fractal

discretization considered in this work, although cut off, is smaller than that considered

in Gao et al. (2004); Pei et al. (2005). The hardness increases as finer roughness is added

to the indenter as seen in figure 4.15(b), where the mean contact pressure at uz = 20 nm,

which we will call hardness σh in the following, is presented as a function of the short

wavelength cut-off for ρnuc = 40 /µm2. The increase in hardness is mainly due to the

decrease in contact area with the decrease in λs (see figure 4.12). Since the decrease in

true contact area below λs ≤ 156 nm was shown to not affect the subsurface stress dis-

tribution, the contact hardness should be cut off below this threshold, and the constant

value σeff
h used, as indicated in figure 4.15(b).
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Figure 4.15: (a) Mean contact pressure as a function of strain uz /zm for different values of source densities
ρnuc. (b) Asperity hardness σh calculated at 0.2 % strain is plotted as a function of λs.

The results of this section lead us to the following conclusions that hold for both elas-

ticity and plasticity: If one is interested in real contact area, contact traction distribution,

or gap geometry, the surface must be described with great accuracy, including the short-

est wavelength observed in the self-affine surface under study. This corresponds to a

fractal discretization of the surface of the order of 103 /µm (λs ≈ 10 nm). If one is instead
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investigating the nominal contact pressure, mean contact pressure, or residual stress

distribution inside the substrate, the fractal discretization of the surface can be an order

less, i.e., 102/µm, value at which the results converge.

4.3.5. AREA-LOAD DEPENDENCY

A quantity that has attracted much attention in the contact mechanics community is

the proportionality coefficient κ, defined as κ= ar/p∗, where p∗ is the reduced pressure

expressed as p∗ = pn/E∗ ḡ . So far, the study of κ has been mostly limited to self-affine in-

dentation of elastic bodies. It was shown that κ in elastic bodies follows a power law with

respect to fractal discretization, i.e., κ∝ ε0.67
f (Prodanov et al., 2014). Pei et . al . (Pei et al.,

2005) performed simulations of rough surface contact using J2 plasticity with isotropic

hardening and found a larger value for κ for plasticity than for elasticity. Here we are

interested to see how κ found for elastic simulations compares to that found by our dis-

location dynamics simulations for various values of the fractal discretization, namely

2048−1 < εf < 1, and whether our findings are in line with those of Pei et . al . Pei et al.

(2005). Notice that the simulations in this work are two-dimensional, but it was shown

that the difference in κ between 2D and 3D simulations is only about 10% (van Dokkum

et al., 2018). Here we can unfortunately not compare directly our κwith that of Pei et . al .

(Pei et al., 2005), because κ depends on various factors that are different in our simula-

tions: Pei et al. (Pei et al., 2005) consider a softer material, a larger rms roughness, a

significantly larger indentation depth, and they do not report the value of fractal dis-

cretization.

We present the evolution of relative contact area ar with respect to the reduced pres-

sure p∗ in figure 4.16. The results are separated in two figures, one which includes the

initial non-linear response and the other for the linear response at larger load. In fig-

ure 4.16(b) the curves for the plastically deforming crystals stop when the load reaches

its maximum value, i.e. an additional increase in displacement will not lead to an in-

crease in nominal contact pressure. Notice that, in accordance with the findings of Pei

et . al . Pei et al. (2005), the values of the slope κ are found to be larger for plastic than

elastic crystals. Thus, for a given pressure, the contact area is larger if the crystal de-

forms plastically. Be reminded that for a given indentation depth, the opposite holds

true: the contact area is larger if the bodies deform elastically (see figure 4.12).
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Figure 4.16: Contact area vs. reduced pressure for (a) p∗ < 0.0002 and (b) p∗ > 0.0002.

The dependency of the contact area fraction to the reduced pressure is found to be

non-linear at the beginning of indentation (p∗ < 0.0002) because the reduced pressure

p∗ = pn

E∗ ḡ
is here normalized, as usual, by the gradient of the indenter ḡ whereas it is

the gradient of the deformed surface ḡc during indentation the quantity that determines

the change of contact area with load. Therefore in the following we will use the actual

gradient of the surface ḡc calculated as:

ḡ 2
c = 1

nc

(
nx∑
i=1

(
zi+1

s − zi
s

a0

)2

. (1−δ0,t i
z
)

)
, (4.6)

where zi
s is the location of the i th grid point and the number of contacting points is cal-

culated as nc = ∑nx
i=1(1−δ0,t i

z
), where δαβ is the Kronecker delta and t i

z is the normal

traction at the i th grid point. It can be seen from figure 4.17(a) that ḡ /ḡc is large at small

loading, causing the initial non-linear dependency. Also, the difference between ḡ and

ḡc is larger for plastically deforming surfaces.1

In figure 4.17(b) one can see that using ḡc instead of ḡ results in a linear dependency

of contact area on reduced pressure and all curves almost overlap leading to a univer-

sal value of κc = 1.67± 10%. It is noteworthy that this overlap does not indicate that

there is no difference between elasticity and plasticity in terms of load-area dependency,

just that this difference is now reflected in the actual gradient of the contact (see fig-

ure 4.17(a)).

1The difference in local and overall gradient for elastic contacts is significant only for linear contacts, while for
surface contacts it is negligible (Müser, 2017; van Dokkum et al., 2018).



4.3. RESULTS AND DISCUSSION

4

91

a
r


g

c/


g

0 0.001 0.002 0.003
0

0.1

0.2

0.3

elastic

plastic

(a)

λ
s
=625 nm

λ
s
=156 nm

λ
s
=20 nm

p
c

*

a
r

0 0.001 0.002 0.003 0.004 0.005 0.006
0

0.005

0.01

elastic plastic

(b)

Figure 4.17: (a) Evolution of local gradient with respect to contact area for indentation of an elastic and plastic
crystal using an indenter with λs = 156 nm. (b) Contact area vs. reduced pressure p∗

c for different values of λs.

In figure 4.18 the results for κ and κc are compiled for one of the realizations (a given

set of sources and obstacle distribution). It can be seen that the difference in κ for the

plastic and elastic crystals is lower with smaller fractal discretization. This is because

the smaller the contact area the more plasticity is source limited. Here, we have also

indicated a curve for κeff, which differs from κ only below the threshold εf = 64−1, since,

as previously demonstrated, the effective contact area which determines the stress state

in the body does not change below the threshold. It is seen that κeff
plas/κeff

elas → 2.4.
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Figure 4.18: κ and κc are plotted for different fractal discretization.
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4.4. CONCLUDING REMARKS

We modeled indentation of a metal single crystal by means of a self-affine rigid surface

using Green’s function dislocation dynamics (GFDD). The method provides an accurate

description of plasticity by accounting for the collective glide of discrete dislocations

as well as a detailed description of the self-affine roughness. Indentation is performed

with a loading rate of u̇z = 4× 103 µm/s, which is found to be slow enough to ensure

that the simulations are quasi-static. The simulations keep track of the changing contact

area, the roughening of the metal surface, the pressure distribution, and of sub-surface

plastic deformation. The results of the simulations lead us to the following observations

and conclusions:

- By comparing the contact response of crystals with scaled dimensions indented

by self-affine rough surfaces with similarly scaled topography, it is found that, al-

though the elastic behavior is identical, the plastic response is not. Plasticity brings

in a size effect, for which larger systems (thicker crystals indented deeper by sur-

faces with larger dimensions) deform plastically more than smaller systems, for

which dislocation nucleation is source limited. This entails that the scaling of ob-

servables typically performed for elastic contact problems is not appropriate for

plastically deforming crystals.

- At a given indentation depth a body that deforms plastically forms a smaller con-

tact area with the indenter than one that deforms elastically. However, if the com-

parison is made at the same nominal contact pressure, the opposite holds true.

- Plastic deformation induces material pile-up. As a consequence, although at a

given interference the contact area is smaller than that of a corresponding elastic

crystal, the surface is more conforming to the indenter, for which the gap closure

is larger. This is of relevance in problems related to leakage.

- The rms height is an important length in contact problems involving plasticity: the

larger it is, the stronger the effect of plasticity. This is because a larger rms height

induces a larger deviatoric stress component in the subsurface, and therefore ear-

lier plasticity, although the elastic reduced contact pressure is the same.

- Although for elastic crystals the resistance to indentation increases with Hurst ex-
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ponent, plasticity is marginally affected by H . At rather small interference the

pressure–displacement curves for various H become indistinguishable. This en-

tails that plasticity is more effective when the Hurst exponent is large.

- Indentation to an interference of 50 nm for various values of the fractal discretiza-

tion has indicated that, although the actual contact area decreases with decreasing

fractal discretization, the nominal contact pressure is constant below a threshold

value for λs. We have shown that below that value, due to elastic interaction, the

fragmented contact area acts as a continuous effective contact, whose length does

not change with further decreasing true contact area and which causes a constant

subsurface stress distribution. We conclude that if one is interested in either nom-

inal or mean contact pressure at a given indentation, for either elastic or plastic

contacts, it is not worthwhile to describe the surface with wavelengths below the

threshold. In fact considering λs below the threshold is not only useless but dele-

terious: since true contact area decreases so does hardness, despite the subsurface

stresses are invariant. On the contrary, when one is interested in real contact area,

contact traction distribution, or gap geometry, the surface must be described with

great accuracy, including the shortest wavelength present in the self-affine surface

under study.

- The mean contact pressure (or contact hardness) at 20 nm is found to be signifi-

cantly larger than in previous plasticity studies, up to 40σY, for the threshold value

λs = 156 nm. The contact stiffness found with dislocation dynamics simulations is

in between the elastic stiffness and the stiffness found by classical plasticity.

- The proportionality coefficient κ = ar/p∗ strongly depends on fractal discretiza-

tion. However, we find that κeff
plas/κeff

elas → 2.4 for our choice of continuum and ther-

modynamic discretizations εc = 32−1 and εt = 2−1.

It is finally to be noted that the results presented in this work are based on a two-dimensional

representation of the contact problem and cannot capture the dislocation structures

that could form in three-dimensions. It is therefore not possible to estimate the effect

of dislocation double cross-slip, which might be promoted by the large stresses acting

in the contact regions and is observed in simulations of indentation modeled by three-

dimensional dislocation dynamics (Gagel et al., 2016). Other limitations are that the
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model only considers small deformations and studies the behavior of a pure single crys-

tal.
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Persson’s theory allows for a fast and effective estimate of contact area and contact stress

distributions when a flat and a self-affine rough surface are pressed into contact. For elas-

tic bodies, the theory was shown to give results in very good agreement with rather costly

simulations. The theory has also been extended to plastic bodies. Here, we compare the

results of Persson’s theory with those of discrete dislocation plasticity simulations. Re-

sults show that the area–to–load curves obtained by theory and simulations are in good

agreement when the indenter has a very small rms height. For larger rms heights, which

are more realistic for metal surfaces, the agreement is no longer good, unless one uses in

the theory, instead of the size independent material strength the yield strength obtained

through the dislocation dynamics simulations, which is rms height and resolution de-

pendent. A modification of this type, i.e. the use of a yield strength dependent on size,

does however not lead to agreement between the probability distributions of contact stress,

which are broader in the simulations than in the theory. A possible reason is that the the-

ory only accounts for elastically perfectly plastic bodies and therefore neglects strain hard-

ening.
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5.1. INTRODUCTION

In the past decades, numerous experiments have confirmed that surfaces have a self-

affine fractal character down to the nanoscale (Bouchaud, 1997; Bouchaud et al., 1990;

Dauskardt et al., 1990; Imre et al., 1992; Krim and Palasantaz, 1995; Lechenault et al.,

2010; Majumdar and Tien, 1990; Mandelbrot et al., 1984; Plouraboué and Boehm, 1999).

To account for this, Persson (Persson, 2001a) developed a contact model that includes

the presence of roughness on successive length scales. His theory can predict at a given

nominal pressure the contact area, contact stress distribution and interfacial separation

of elastic bodies in good agreement with experiments (Lorenz and Persson, 2009a,b;

Persson, 2001a). Persson’s theory has also been extended to study plasticity (Persson,

2001b). However, to the best of the authors knowledge, the validity of Persson’s theory

has never been tested for metal surfaces that deform plastically. Here, we intend to test

the theory by comparing its results with those of two-dimensional discrete dislocation

plasticity simulations.

Metallic rough surfaces span various orders of length scales, with asperities as small

as a few nano-meters. Already at the micro-scale, plasticity has been experimentally

found to be size-dependent (Fleck et al., 1994; Greer et al., 2005; Ma and Clarke, 1995;

Nicola et al., 2006; Volkert and Lilleodden, 2006). The size dependence entails that, dif-

ferently from the elastic response, the plastic response does not scale with size. Although

the size effect cannot be captured by classical plasticity which does not contain any ma-

terial length scale it is captured by non-local plasticity theories (Nix and Gao, 1998; Song

et al., 2017) and by numerical simulations of the type of discrete dislocation plasticity

(DDP) (Nicola et al., 2007, 2008, 2003; Venugopalan and Nicola, 2019). The latter con-

tains various length scales, including the dislocation Burgers vector, and the average

spacing between dislocation sources and dislocation obstacles. Recently, (Venugopalan

and Nicola, 2019) preformed dislocation dynamics simulations to study indentation of

metal crystals by self-affine rigid indenters with various roughness parameters. Results

showed indeed a size dependence when scaling the dimensions of the rough body: the

pressure-displacement response does not scale and smaller bodies are stronger. This

phenomenon is mostly caused by limited dislocation availability, i.e. when the stressed

subsurface regions become too small, they no longer contain a sufficient amount of dis-

location sources to sustain the plastic deformation. The same phenomenon is observed
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in (Venugopalan and Nicola, 2019) when indenting a crystal with constant size with a

surface with smaller root mean square roughness: if pressure is normalized on the root

mean square slope and interference by the root mean square height, the results are elas-

tically identical, but not plastically. The crystal indented by the largest rms-height is

subjected to a broader stressed region underneath the surface and is more susceptible

to plastic deformation and therefore softer.

In order to include size-dependent plasticity in his theory, Persson suggested to re-

place the constant material yield strength with a resolution-dependent yield strength,

i.e. a yield strength that increases with decreasing the short wavelength cut-offλs(Persson,

2006). The exact dependence of yield strength on resolution was not specified and it

might be inferred by comparison with dislocation dynamics simulations, if the results

are otherwise in agreement.

Before proceeding with the comparison it is important to note that the DD simula-

tions are based on the small strain and small slope approximation. This means that for

rms heights realistic for metals one can only reach partial closure of the contact. Pers-

son’s original theory is instead exact at full contact and requires a correcting factor at par-

tial contact (Dapp et al., 2014; Manners and Greenwood, 2006; Wang and Müser, 2017).

Therefore, for the sake of comparison, we will start by showing results of DD simula-

tions for a very small rms height, that allows to reach closure, but that is not observed in

typical metal surfaces. This is the case for which the best agreement is found between

simulation and theory. We will then see that for surfaces with rms height more realistic

for metals, the agreement is much poorer.

5.2. FORMULATION OF THE PROBLEM

A rigid indenter with self-affine roughness is pressed into contact against a metallic slab

of finite height, see figure 5.1.

The power spectrum of the indenter is

C (q) =C0

(
q

q0

)−2(H+ 1
2 )

if q0 < q < qs,

C (q) = 0 else,

(5.1)

where q0 = 2π/λl and qs = 2π/λs are the wavenumbers corresponding to the long and
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z = 0

z = zm

σ0

Figure 5.1: Schematic representation of the metal slab indented by a rough surface.

short wavelengths cut-offs, i.e. λl and λs, respectively. C0 is determined by the root-

mean-square (rms) height h̄ as

h̄2 = 2
∫ qs

q0

C (q)dq. (5.2)

Assuming qs >> q0 implies that

C0 = Hh̄2

q0
, (5.3)

where H is the Hurst exponent. The power-law scaling for the surface height spectrum

applies between cut-offs at long and short wave numbers q0 < q < qs.

The slab is taken to be elastically isotropic with Young’s modulus E = 70 GPa and

Poisson’s ratio ν = 0.33, representative values for aluminium. Moreover, it has a finite

height zm. The top surface of the crystal is frictionless at the points of contact,σxz (xc, zc
m) =

0, and traction-free elsewhere, σxz (xnc, znon
m ) = σzz (xnon, znon

m ) = 0. The superscripts ‘c’

and ‘non’ stand for points ‘in contact’ and points ‘not in contact’, respectively. Further-

more, the bottom of the substrate is kept fixed: ux (x,0) = uz (x,0) = 0.

5.2.1. PERSSON’S THEORY FOR LINE CONTACTS IN SOLIDS WITH FINITE HEIGHT

Under the assumption that at resolution q the contact is full, Persson’s theory (Persson,

2001a,b) states that on all length scales the distribution of contact stress σ is

P (σ, q) = 〈δ(σ−σnom)〉. (5.4)
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Here,σnom is the nominal contact stress when the surface roughness with wavenumbers

larger than q have been smoothed out and 〈...〉 stands for ensemble averaging over differ-

ent surface roughness profiles. As finer roughness features are added, the contact stress

distribution becomes P (σ, q +∆q) = 〈δ(σ−(σnom+∆σ))〉. By expanding this equation to

linear order in ∆q
∂P

∂q
= k(q)

∂2P

∂σ2 , (5.5)

where

k(q) = 〈∆σ2〉
2∆q

. (5.6)

The partial differential Eq. 5.5 can be solved by imposing the following boundary condi-

tions:

P (0, q) = 0, (5.7a)

P (σ,0) = δ(σ−σ0), (5.7b)

P (σY, q) = 0. (5.7c)

The boundary conditions enforce that (5.7a) when the local contact stress reaches zero,

contacting surfaces detach; (5.7b) at the lowest resolution, the stress distribution is a

delta function; (5.7c) the contact stress does not exceed the yield strength σY. Pers-

son’s theory for plasticity applies indeed to ideal elasto-plastic solids that display no

work hardening. Notice that solving an elastic contact problem is equivalent to imposing

σY →∞ in Eq.5.7c.

Following (Persson, 2001a,b), the solution to Eq. (5.5) with boundary conditions (5.7a)-

(5.7c) can be written as

P (σ, q) =
∞∑

n=1
An(q) sin

(
nπσ

σY

)
. (5.8)

Substituting the expression above in Eq. (5.5) leads to the following partial differential

equation:
dAn

dq
=−k(q)

(
nπ

σY

)2

An , (5.9)
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which after solution leads to

An(q) = 2

σY
sin(αn) exp

[
−

(
nπ

σY

)2 ∫ q

q0

k(q ′)dq ′
]

. (5.10)

The full expression of the contact stress distribution is then given by

P (σ, q) = 2

σY

∞∑
n=1

sin(αn) exp
[−α2

n L(q)
]

sin

(
nπσ

σY

)
, (5.11)

where αn = nπσ0

σY
and L(q) = ∫ q

q0

k(q ′)
σ2

0

dq ′. In order to solve Eq. (5.5), one must obtain

k(q) from∆σ(q). It was shown by (Wang and Müser, 2017) that for elastic substrates with

a finite height, ∆σ is given by

∆σ(q) =
√

W (ar)

(
qE∗ f (q)

2

)
| h̃(q) |, (5.12)

where ar is the relative contact area, and E∗ is the effective elastic modulus. Moreover,

W (ar) is the correction introduced by (Wang and Müser, 2017) for the low load regimes,

i.e. when contact is partial. Furthermore, for frictionless elastic contacts, a substrate of

height zm, and a fixed bottom, f (q) is given as (Venugopalan et al., 2017b)

f (q) = cosh(2qzm)+2(qzm)2 +1

sinh(2qzm)−2qzm
. (5.13)

and

k(q) = 〈∆σ2〉
2∆q

= 1

2
W [ar(q)]

(
qE∗ f (q)

2

)2

| h̃(q) |2 . (5.14)

Finally, for the power spectrum C (q) in this work

k(q) = Hh̄2q0

8
W (ar)

(
E∗ f (q)

)2
(

q

q0

)1−2H

. (5.15)

Having found k(q), we may then proceed to solve the partial differential Eq. (5.5).

Subsequently, from the contact stress distribution P(σ, q), one can obtain the follow-

ing quantities (Persson, 2001a,b):

(i) The fractions of macro-contact area which are not in contact Anon, which are in plastic
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contact Apl, and in elastic contact Ael:

Anon =
∫ q

q0

k(q ′)
∂P

∂σ
(0, q ′)dq ′

= 2

π

∞∑
n=1

sin(αn)

n

(
1−exp

[−α2
n L(q)

])
,

Apl =−
∫ q

q0

k(q ′)
∂P

∂σ
(σY, q ′)dq ′

=− 2

π

∞∑
n=1

(−1)n sin(αn)

n

(
1−exp

[−α2
n L(q)

])
,

Ael = 1− Apl − Anon.

(5.16)

(ii) The total relative contact area ar, comprising both the area in elastic and plastic con-

tact:

ar = 1− Anon. (5.17)

5.2.2. GREEN’S FUNCTION DISLOCATION DYNAMICS

The solution of the boundary value problem in figure 5.1 at each time step of the sim-

ulation is obtained by the superposition of two linear elastic solutions: The elastic an-

alytical fields for dislocations in a homogeneous infinite solid, and the solution to the

complementary elastic boundary-value problem, which corrects for the boundary con-

ditions. The methodology is similar to (van der Giessen and Needleman, 1995), however,

the solution to the complementary elastic boundary-value problem is obtained through

Green’s function molecular dynamics (GFMD) (Venugopalan et al., 2017a).

The schematics of the indented single crystal is shown in figure 5.2. Indentation is

performed by applying the displacement Uz on top of the rigid indenter from which the

value of the equivalent applied pressure σ0 is obtained.

Following (van der Giessen and Needleman, 1995), the dislocation dynamics are con-

trolled by constitutive rules inspired by atomic scale phenomena that control the nucle-

ation and glide of the dislocations. The crystal is initially dislocation free, and contains

a given density of slip planes, dislocation sources, and obstacles that are randomly dis-

tributed. When the stress in the body reaches the nucleation strength τ̄nuc on a disloca-

tion source for a given amount of time tnuc, a dislocation dipole is nucleated from the
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z = 0

z = zm

τ
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+

Uz

Dislocation ObstacleFrank-Read source

Figure 5.2: Schematic representation of the metal crystal indented by a rough surface.

sources and glides on the slip plane resulting in plastic deformation. The velocity with

which dislocations glide is controlled by the Peach-Koehler force acting on them. Dis-

locations are stopped by the obstacles, but released when the resolved shear stress on

them exceeds the critical strength associated to the obstacle, τobs.

CHOICE OF PARAMETERS FOR THE SIMULATIONS

Dislocations are nucleated from randomly distributed nucleation sources on slip planes

oriented atφ= 60◦, −60◦, and 90◦ with respect to the loading direction. The simulations

are performed for a nucleation source density ρnuc = 40µm−2. In both cases, the sources

have a Gaussian strength distribution with the mean strength being τ̄nuc = 50 MPa. The

nucleation time tnuc = 10 ns. The density of obstacles is ρobs = 40µm−2 and the obstacle

strength is τobs = 150 MPa. The drag coefficient for glide is B = 10−4 Pas and the critical

distance for annihilation is Le = 6b, where b = 2.5× 10−4 µm is the magnitude of the

Burgers vector. Moreover, in all calculations a time step of ∆t = 2.5 ns is employed. The

GFDD simulations are performed for 10 realizations of nucleation source and obstacle

distributions. In the following, the presented results are obtained by averaging over these

10 realizations.

The roughness of the indenter is obtained using the power spectral density method (Cam-

pañá et al., 2008). The power spectrum C (q) is used to construct a periodic self-affine

surface with a Gaussian height distribution. The Fourier transform of the height profile
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h(r ) of the indenter is given as:

h̃(q) = h0 ∆̃G(q)
√

C (q) = h0
∆̃G(q)

q

(
1
2+H

) , (5.18)

where h0 is a real-valued constant which can be adjusted to obtain the required rms

slope of the surface, ∆̃G(q) is a Gaussian random variable with random phase such that

〈∆̃G(q)〉 = 0, and H is the Hurst exponent. For different realizations of the rough sur-

face, all parameters, including the cut-off values, are kept fixed except the Gaussian

random variable ∆̃G(q) whose phase is randomly varied. Furthermore, before starting

the simulations the surfaces so generated are shifted such that the lowest point touches

the substrate at zero interfacial pressure. The thermodynamic, fractal, and continuum

discretizations are set to ε−1
t = 2 and ε−1

c = 32, respectively. We selected for the Hurst

exponent the value H = 0.8, as observed for most metallic surfaces (Bouchaud et al.,

1990; Dauskardt et al., 1990). The long wavelength cut-off λl is kept constant and equal

to 10 µm. The short wavelength cut-off is changed in the simulations, to represent

a change in the resolution in Persson’s theory. The rms height values considered are

h̄ = 0.001, 0.01, and 0.1µm, the latter being the most realistic for metal surfaces.

5.2.3. THE YIELD STRENGTH

While in Persson’s theory the yield stress is an input to the calculation, in discrete dis-

location plasticity it is an output. To calculate it, we perform a uniaxial tensile loading

simulation on a single crystal with the material properties mentioned above. The di-

mensions of the crystal are L = 12.5 µm and W = 5 µm are selected to be large enough

to not experience size effects. The schematics of the uniaxial tensile test is shown in

figure 5.3(a). The predicted nominal tensile stress versus applied strain ε = 2Ux /L is

presented in figure 5.3(b). This figure shows that the tensile yield strength of the crystal

is σTensile
Y = 60 MPa. It is important to highlight that the yield strength identified with

σTensile
Y here and in all the manuscript is a size-independent quantity.
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Figure 5.3: (a) Schematics of the uniaxial tensile test. (b) Uniaxial tensile stress-strain (σ−ε) curve from
discrete dislocation plasticity.

5.3. PERSSON’S THEORY: CORRECTING FACTOR AT LOW LOADS

FOR VARIOUS FRACTAL DISCRETIZATIONS

The expression for the elastic energy in Persson’s theory was corrected by (Wang and

Müser, 2017) to hold at low loads. The correcting factor in the fractal limit, λs → 0, was

given by the authors as

W [ar(σ∗
0 )] = 1+ c1(1−ar(σ∗

0 )2)+ c2(1−ar(σ∗
0 )4), (5.19)

where σ∗
0 = σ0

E∗ ḡ
is the reduced pressure, σ0 is the applied pressure and ḡ is the root-

mean-square gradient of the indenter. Selecting the values of 2/9 and -2/3 for the con-

stants c1 and c2 leads to good correspondence between Persson’s theory and GFMD sim-

ulations.

In this work, we intend to consider fractal discretizations also far from the limit,

namely εf = 64−1,32−1,or 16−1. To this end, we first proceed to check to which extent the

correction factor is independent of fractal discretization, by comparing in figure 5.4(a)

the results of Persson’s theory with our GFMD calculations for an indenter with rms

height h̄ = 0.001 µm. The results of the relative contact area ar versus applied load in

figure 5.4(a) show that there is a small discrepancy between GFMD and Persson’s theory

at intermediate load. This corresponds for the larger discretization to a non-negligible

difference in the probability distribution of the contact stress P(σ∗), as shown in fig-

ure 5.4(b).

To assure that at least our elastic simulations well compare with Persson’s theory, we
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Figure 5.4: (a) Relative contact area ar against reduced applied pressure σ∗
0 for indenters with h̄ = 0.001 µm

and three fractal discretizations εf. (b) Probability distribution of reduced contact stress σ∗ for an indenter
with εf = 16−1 at three instances of applied pressure σ∗

0 = 0.1, 0.5 and 1.3.

proceed to search for the c1 and c2 coefficients that minimize the difference between

the area–load curves for theory and simulations. The values are listed in table 5.1 and

lead to the correction factors in figure 5.5(a) and to the contact stress distributions in

figure 5.5(b).

Table 5.1: Coefficients c1 and c2 in Eq. (5.19)

εf = 16−1 εf = 32−1 εf = 64−1

c1 -2.3 -0.6 0.19
c2 1.9 0.2 -0.6

We have verified that the correction factors W (ar) found for indenters with rms height

h̄ = 0.001 µm are appropriate also for the other rms heights used in this work, and are

therefore used throughout the manuscript.

5.4. COMPARISON BETWEEN THEORY AND SIMULATIONS FOR

INDENTERS WITH SMALL RMS HEIGHT

We start by comparing Persson’s theory with DD simulations for the indentation of a

metal crystal by a rigid indenter with surface roughness with h̄ = 0.001 µm and fractal

discretization ε−1
f = 64. This allows to reach almost full closure with dislocation dynam-

ics simulations while still obeying the small strain and small slope approximations. In
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Figure 5.5: (a) The correction factor W (ar) for three different fractal discretizations εf.(b) Probability
distribution of reduced contact stress σ∗ for an indenter with εf = 16−1 at three instances of applied pressure

σ∗
0 = 0.1, 0.5 and 1.3.

Persson’s plasticity theory, the yield strength σY is an input parameter, which has been

interpreted as either the tensile yield strength of the material σTensile
Y or the macroscopic

indentation hardness, estimated by (Johnson, 1987) to be 3σTensile
Y . Through compari-

son with the simulations we check which of the two definitions is most appropriate and

found from figure 5.6(a) that there is a much better agreement between the area–load

curves when hardness is used for the definition of σY.
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Figure 5.6: Relative contact area ar calculated using GFDD and modified-Persson’s theory. In the latter, yield
stresses σY =σTensile

Y and 3σTensile
Y were applied as an input.

Figure 5.6(b) shows, together with the total contact area, also how the elastic aelas
r

and plastic contact areas aplas
r change with load. It is thus possible to see that the por-
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tion of contact undergoing elastic deformations aelas
r initially increases with loadσ∗

0 and

then decreases with increasing plasticity. The relative plastic contact area aplas
r , instead,

continues to increase with load until the external load reaches σ∗
0 = 1.3. This load corre-

sponds to the point at which the contact stress is everywhere plastic and equal toσ=σY.

Notice that the contact in dislocation dynamics simulations never reach full closure, as

can be seen from the decrease of the interfacial gap in figure 5.7(a) and a snapshot of the

interface atσ∗
0 = 1.3 in figure 5.7(b). The depth of the valleys formed during deformation

can be as large as the rms height h̄ of the indenter. This is in agreement with the observa-

tion of Bowden (Bowden and Tabor, 2001) according to whom full closure is impossible

for rough metal surfaces due to work hardening.
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Figure 5.7: (a) The average interfacial separation ū/h̄ are plotted against reduced applied pressure σ∗
0 for the

case of an indenter with h̄ = 0.001 µm and ε−1
f = 64. The input yield stress to Persson’s theory is

σY = 3σTensile
Y . (b) The snapshot of the contact between the indenter and the substrate at σ∗

0 = 1.3.

Figure 5.8 presents the distribution of contact stress for three instances of the ap-

plied pressure, σ∗
0 = 0.1, 0.5, and 1.3. The probability distribution function representing

the plastic part of the contact is a delta peak at σ∗ = σ∗
Y . The other delta peak at σ∗ = 0

represents the part of the surface which is out of contact. Hence, according to Persson’s

theory, the area under the probability distribution curve is the elastic fraction of the con-

tact area aelas
r . This is different from the distribution function obtained through GFDD

simulations, where the area under the curves represents the total area in contact ar: elas-

tic and plastic contact areas are not distinguished, nor distinguishable, deformation is

everywhere at the contact only ‘partially plastic’. Therefore, agreement between the con-

tact stress distribution obtained by Persson’s theory and by the GFMD simulations ceases

to be good when plasticity becomes relevant. The simulations predict a much broader
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stress distribution, with contact stresses larger and smaller than the macroscopic hard-

ness. The reason for this discrepancy can be partly attributed to the fact that Persson’s

plasticity theory does not account for material hardening. A better agreement with the

simulations would be found, in our opinion, if the theory would be slightly modified by

makingσ∗
Y increase with plastic deformation. The plastic peak will then shift to the right

during indentation and the elastic contribution would become more pronounced than

it is now.

σ*=3σY

E*g
Y

Tensile

Figure 5.8: Probability distribution of contact stress σ∗ at three instances of loading, σ∗
0 = 0.1, 0.5, and 1.3, for

an indenter with h̄ = 0.001 µm and ε−1
f = 64.

5.4.1. SIZE DEPENDENCE

It was shown by (Venugopalan and Nicola, 2019) that, although it is well known that in-

denters with different rms heights give rise to the same reduced pressure when indenting

a metal crystal to the same reduced interference, they induce a different plastic response.

The smaller the rms height the later the onset of plastic deformation. This plasticity size

dependence occurs because the size of the subsurface region where the dislocation nu-

cleation strength is exceeded scales with rms height, but the availability of dislocation

sources does not scale accordingly: the spacing between dislocation sources is a material

parameter which is scale independent. This is why a larger reduced pressure is required

to induce nucleation in the case of a small rms height. The reduced pressure versus

reduced interference for the indentation by three indenters of rms heights h̄=0.001, 0.01

and 0.1, are shown here for completeness together with the corresponding mean contact
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pressure displacement curves (see figure 5.9).
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Figure 5.9: (a) Reduced pressure and (b) mean contact pressure are plotted against reduced interference for
three different rms heights.

The relative contact area ar, as calculated by GFDD and modified Persson’s theory,

are shown in figure 5.10 for an indenter with εf = 64−1. For all indenters, the input yield

stress to Persson’s theory is assumed to be 3 σTensile
Y . It can be seen that under this as-

sumption, the contact area as predicted by the theory and GFDD are very different from

each other when h̄ = 0.01 µm.
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Figure 5.10: (a) Relative contact area ar against reduced applied pressure σ∗
0 for an indenter with εf = 64−1

and three rms heights h̄. The input yield stress to Persson’s theory is 3 σTensile
Y . (b) The input yield stress to

Persson’s theory is the indentation flow strength obtained through GFDD calculations.

It is noteworthy that scaling rms height corresponds to a shift in the power spectrum

of the roughness, and has no influence on the range of wavelength considered in the
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problem, both large and small wavelength are the same. Already this observation is suf-

ficient to conclude that considering a resolution-dependent yield strength in Persson’s

theory, σ(λs), would not improve agreement between simulations and theory. Instead

one can see in figure 5.10b that if the flow stress value obtained through dislocation dy-

namics simulations, σGFDD
Y =12.3MPa, is used as the input yield strength σY in Persson’s

theory a much better agreement is found for the load–displacement curves. However,

this type of fix is not sufficient to obtain agreement between the probability distributions

of the contact stress, as one can see from fig. 5.11, where the probability distribution is

shown for the simulations and for Persson’s theory with and without correction for σY.

While the fix gives agreement between the areas that are not in contact, the simulations

show a much larger probability to have smaller as well as larger contact stresses when

compared to the theory.
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Figure 5.11: Probability distribution of contact stress σ∗ for different yield strength as input to Persson’s
theory compared to GFDD for indentation using h̄ = 0.01 µm at σ∗

0 = 0.06.
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5.4.2. EFFECT OF SHORT-WAVELENGTH CUT-OFF

In this section we perform simulations for different roughness resolution by changing

the small wavelength, while keeping the large wavelength constant. This corresponds to

changing the fractal discretization εf. It is noteworthy that changing resolution does not

correspond to scaling the contact problem. Changing resolution involves extending the

range between small and large wavelength, i.e. adding smaller wavelengths to the sur-

face, and therefore results in a different boundary value problem, with a different elastic

and thus plastic response. Such simulations are therefore not suitable to evidentiate a

plasticity size dependence. They might however give an indication on how suitable it is

to replace σY in Persson’s theory with σY(λs), as suggested in (Persson, 2006).
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Figure 5.13: Relative contact area ar against reduced applied pressure σ∗
0 for indenters with h̄ = 0.001 µm and

three fractal discretizations εf.

Figure 5.13 shows the increase of the relative contact area ar with load for inden-

ters with h̄ = 0.001 µm and three fractal discretizations. The curves are insensitive to

a change in λs suggesting against the use of a resolution-dependent σY. For all reso-

lutions there is a good agreement between simulations and theory. If one instead con-

siders indenters with h̄ = 0.01 µm the agreement is poor for all discretizations (see fig-

ure 5.14a). The agreement improves if again, instead of usingσY = 3σTensile
Y we replace it

by σY =σGFDD
Y (see figure 5.14). Given that σGFDD

Y is resolution-dependent, we conclude

that indeed aσY(λs) should be used, as suggested in (Persson, 2006). However, the use of

a resolution-dependent σY is not sufficient to obtain the agreement between the proba-

bility distributions, as one can see in figure 5.15(b). Also, much more important than the

dependence of σY on resolution appears the dependence of σY on rms height.
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Figure 5.14: Relative contact area ar against reduced applied pressure σ∗
0 for indenters with h̄ = 0.01 µm and

three fractal discretizations εf. The input yield stress for Persson’s theory is taken as (a) σY = 3 σTensile
Y (b)

σY =σGFDD
Y .
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Figure 5.15: Probability distribution of contact stress σ∗ for different fractal discretizations εf for indentation
for h̄ = 0.01 µm at σ∗

0 = 0.06. The input yield stress for Persson’s theory is taken as (a) σY = 3 σTensile
Y (b)

σY =σGFDD
Y .
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Here, a table is provided of the flow strengthσGFDD
Y found through GFDD simulations

and that allow for good agreement for similar curves in Persson’s theory. 1

Table 5.2: Normalized yield strength σGFDD
Y /3σTensile

Y

rms height εf = 4−1 εf = 8−1 εf = 16−1 εf = 32−1 εf = 64−1

h̄ = 0.01 µm 1.4 1.7 2.0 2.7 4.1
h̄ = 0.1 µm 3 4.7 9.5 10.6 13.3

5.5. CONCLUDING REMARKS

In this chapter we have shown a comparison between dislocation dynamics simulations

and Persson’s theory in the study of indentation of a metal flat body by a rigid indenter

with self-affine roughness. Although there is good agreement between simulations and

theory when the metal behaves elastically, the agreement ceases to be good when there

is plasticity. The best agreement for the area–load curves is found for small values of the

rms height, when the response is almost size independent. With decreasing rms height

the onset of plasticity in dislocation dynamics simulations is delayed, because there are

only few dislocation sources in the subsurface region where the stress concentration is

sufficiently large to induce dislocation nucleation. A good agreement between the area–

load curves obtained through simulations and theory is obtained if the size independent

yield stress in the theory is replaced by the yield strength obtained through the simula-

tions. The yield strength obtained through the simulations depends very strongly on rms

height, and on the resolution.

The necessity of using a resolution-dependent yield stress in his plasticity theory was

already explicitly mentioned by Persson. The fix is indeed important, because the plas-

tic response depends on resolution. However, if one wants to believe the simulations

(of course we are well aware that they have limitations too, one being that they are two

dimensional), the fix is not sufficient. This is because it does not account for the plas-

ticity size dependence that is observed when the system of analysis is scaled such as to

become elastically equivalent. To account for this the yield stress should also become

dependent on a scaling length in the problem.

1It has to be noted that for h̄ = 0.001 µm, the contact approaches full closure readily and hence the response
displays hardening. Consequently, the flow stress cannot be obtained from the GFDD simulations.
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Another point that is important to consider is that, although we found good agree-

ment for area–load curves, when using Persson’s theory with the yield strength obtained

through dislocation dynamics (i.e. a yield strength that depends on rms height and res-

olution) the contact stress probability distribution is still markedly different. The sim-

ulations predict a much broader contact stress distribution compared with the theory.

This is because in the theory the material behaves as perfectly plastic, without any strain

hardening. A possible improvement of the theory might be to use, instead of a constant

yield strength, a yield strength that increases with plastic deformation. This would trans-

late in a plastic peak in the probability distribution that moves towards larger pressures

with increasing closure of the contact and a broader distribution in stresses of the elastic

part of the contact.
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6
SUMMARY AND CONCLUSIONS

The primary objective of this work is to gain a better understanding of the plastic be-

havior of rough metal surfaces under contact loading. Attention in this thesis focuses on

the study of self-affine asperities with wavelengths spanning several decades of length

scales ranging from micrometers to nanometers, a scale at which plasticity is known to

be size dependent. The self-affine rigid indenter is used to indent the plastic crystal of

finite height.

In order to study contact mechanics of self-affine metal surfaces involving size -

dependent plastic deformation, a new modeling technique is presented that combines

discrete dislocation plasticity (DDP) with Green’s function molecular dynamics (GFMD).

GFMD is a boundary value method that enables one to study the elastic response of a

body subjected to an external load by modeling only the surface. The stresses inside

the body are derived through analytical solutions. In DDP, plasticity is modeled as the

collective motions of discrete dislocations, which are modeled as line singularities in an

isotropic linear elastic medium. The dislocation dynamics are governed by a set of con-

stitutive laws.

In Chapter 2, The GFMD method is extended in several ways: shear is added to the

GFMD continuum formulation and Poisson numbers as well as the heights of the de-
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formed body can now be chosen at will. In addition, the full stress tensor inside the

deformed body is derived. The results are validated with calculations based on the finite-

element method (FEM) and full molecular dynamics simulations. For the investigated

systems we observe a significant speed-up of GFMD compared to FEM. This paved way

to studying complicated contact mechanical problems at relatively inexpensive com-

pute power.

In Chapter 3, The GFMD method is further extended to study arbitrary boundary

conditions at both the top and bottom surfaces of the layer. This allowed for computing

the image stresses necessary for the evolution of dislocation structure. GFMD is suc-

cessfully combined with DDP and the resulting method is named Green’s function dis-

location dynamics (GFDD). The new method is used to capture plasticity quantitatively

from single to many dislocations. The results obtained using GFDD are compared with

conventional DDP for a benchmark problem: periodic indentation of a single crystal by

flat punches. The mean contact pressure during indentation using the two methods is

found to differ less than two different realizations using the same method. In addition,

GFDD is shown to scale more favorably with system size than conventional methods.

In Chapter 4, simulations are performed using GFDD to investigate the indentation

of a metal single crystal by means of a self-affine rigid surface. The method provides an

accurate description of plasticity by accounting for the collective glide of discrete dis-

locations as well as a detailed description of the self-affine roughness. The simulations

keep track of the changing contact area, the roughening of the metal surface, the pres-

sure distribution, and of sub-surface plastic deformation.

Results show that the plastic response of the metal crystal upon self-affine indenta-

tion is size-dependent. Thicker crystals indented deeper by surfaces with larger dimen-

sions deform plastically more than smaller systems, for which dislocation nucleation is

source limited.

At a given interference, the interfacial separation in case of plastic crystal is smaller

than that of the corresponding elastic crystal due to material pile up from exiting dislo-

cations. This results in the surface of the plastic crystal conforming more to the indenter

and hence a better closure of the gap. Despite the smaller interfacial separation in plastic

crystals, the contact area is found to be smaller in case of plastic crystal in comparison

to the elastic counterpart.
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The rms height is an important length in contact problems involving plasticity. Choos-

ing a larger rms height for the indenter induces a larger deviatoric stress component in

the substrate and hence strong plasticity. Although for elastic crystals the resistance to

indentation increases with Hurst exponent, plasticity is marginally affected by H .

Indentation to an interference of 50 nm for various values of the fractal discretization

has indicated that although the actual contact area decreases with decreasing fractal dis-

cretization, the nominal contact pressure is constant below a threshold value for λs. It

is shown that below that value, due to elastic interaction, the fragmented contact area

acts as a continuous effective contact, whose length does not change with further de-

creasing true contact area and which causes a constant subsurface stress distribution.

We conclude that if one is interested in either nominal or mean contact pressure, for

either elastic or plastic contacts, it is not worthwhile to describe the surface with wave-

lengths below the threshold. On the contrary, when one is interested in real contact

area, contact traction distribution, or gap geometry, the surface must be described with

great accuracy, including the shortest wavelength present in the self-affine surface under

study.

The mean contact pressure or contact hardness at 20 nm is found to be significantly

larger than in previous plasticity studies, up to 35σY, for the threshold valueλs = 625 nm.

This difference with previous work is caused partly by dislocation source limitation and

partly by the fact that we here considered a finer fractal discretization.

In Chapter 5, we have shown a comparison between dislocation dynamics simula-

tions and Persson’s theory in the study of indentation of a metal flat body by a rigid

indenter with self-affine roughness. Although there is good agreement between simu-

lations and theory when the metal behaves elastically, the agreement ceases to be good

when there is plasticity. The best agreement for the area–load curves is found for small

values of the rms height, when the response is almost size independent. With decreas-

ing rms height the onset of plasticity in dislocation dynamics simulations is delayed,

because there are only few dislocation sources in the subsurface region where the stress

concentration is sufficiently large to induce dislocation nucleation. A good agreement

between the area–load curves obtained through simulations and theory is obtained if

the size independent yield stress in the theory is replaced by the yield strength obtained

through the simulations. The yield strength obtained through the simulations depends
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very strongly on rms height, and on the resolution.

The necessity of using a resolution-dependent yield stress in his plasticity theory was

already explicitly mentioned by Persson. The fix is indeed important, because the plas-

tic response depends on resolution. However, if one wants to believe the simulations

(of course we are well aware that they have limitations too, one being that they are two

dimensional), the fix is not sufficient. This is because it does not account for the plas-

ticity size dependence that is observed when the system of analysis is scaled such as to

become elastically equivalent. To account for this the yield stress should also become

dependent on a scaling length in the problem.

Another point that is important to consider is that, although we found good agree-

ment for area–load curves, when using Persson’s theory with the yield strength obtained

through dislocation dynamics (i.e. a yield strength that depends on rms height and res-

olution) the contact stress probability distribution is still markedly different. The sim-

ulations predict a much broader contact stress distribution compared with the theory.

This is because in the theory the material behaves as perfectly plastic, without any strain

hardening. A possible improvement of the theory might be to use, instead of a constant

yield strength, a yield strength that increases with plastic deformation. This would trans-

late in a plastic peak in the probability distribution that moves towards larger pressures

with increasing closure of the contact and a broader distribution in stresses of the elastic

part of the contact.



SAMENVATTING EN CONCLUSIES

Het primaire doel van dit werk is om een beter begrip te krijgen van het plastische gedrag

van ruwe metalen oppervlakken in mechanisch contact. De aandacht in dit proefschrift

concentreert zich op de studie van zelfgelijkende oneffenheden met golflengtes verspreid

over verschillende decades van lengteschalen variërend van micrometers tot nanome-

ters, een schaal waarvan bekend is dat plasticiteit maatafhankelijk is. De zelfgelijkende

stijve indringer wordt gebruikt om het plastische kristal van eindige hoogte in te duwen.

Om de contactmechanica van zelfgelijkende metaaloppervlakken met afmeting-

afhankelijke plastische vervorming te bestuderen, wordt een nieuwe modelleringstech-

niek gepresenteerd die discrete-dislocatie-plasticiteit (DDP) combineert met Green’s func-

tie moleculaire dynamica (GFMD). GFMD is een grenswaarde methode die het mogelijk

maakt om de elastische respons van een lichaam onderworpen aan een externe belasting

te bestuderen door alleen het oppervlak te modelleren. De spanningen in het lichaam

worden afgeleid door middel van analytische oplossingen. In DDP wordt plasticiteit

gemodelleerd als de collectieve bewegingen van discrete dislocaties, die gemodelleerd

zijn als lijn-singulariteiten in een isotroop lineair elastisch medium. De dislocatie dy-

namica wordt bepaald door een reeks constitutieve wetten.

In hoofdstuk 2, wordt de GFMD-methode op verschillende manieren uitgebreid: af-

schuiving wordt toegevoegd aan de GFMD-continuumformulering en Poisson-getallen

en de hoogtes van het vervormde lichaam kunnen nu naar believen worden gekozen.

Bovendien wordt de volledige spanningstensor binnen het vervormde lichaam afgeleid.

De resultaten worden gevalideerd met berekeningen op basis van de eindige elementen

methode (EEM) en simulaties van volledige moleculaire dynamica. Voor de onderzochte

systemen zien we een aanzienlijke versnelling van GFMD ten opzichte van EEM. Dit

heeft de weg geplaveid om gecompliceerde mechanische contactproblemen te bestud-

eren met relatief goedkope rekenkracht.

In hoofdstuk 3 wordt de GFMD-methode verder uitgebreid om willekeurige rand-
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voorwaarden te bestuderen aan zowel de boven- als onderkant van de laag. Dit maakt

het mogelijk om de beeldspanningen te berekenen die nodig zijn voor de evolutie van

de dislocatiestructuur. GFMD is succesvol gecombineerd met DDP en de resulterende

methode heet Green’s functie dislocatiedynamica (GFDD). De nieuwe methode wordt

gebruikt om de plasticiteit kwantitatief te bepalen van enkele tot vele dislocaties. De

resultaten die zijn verkregen met behulp van GFDD worden vergeleken met conven-

tionele DDP voor een referentieprobleem: periodieke indrukking van een enkel kristal

door platte stempels. De gemiddelde contactdruk tijdens het indenteren met behulp

van de twee methoden blijkt minder te verschillen dan die voor twee verschillende re-

alisaties. Bovendien is aangetoond dat GFDD gunstiger schaalt met de systeemgrootte

dan de conventionele methodes.

In hoofdstuk 4 worden simulaties uitgevoerd met behulp van GFDD om de indeuk-

ing van een enkel metalen kristal door middel van een zelfgelijkend rigide oppervlak to

onderzoeken. De methode biedt een nauwkeurige beschrijving van de plasticiteit door

rekening te houden met het collectieve glijden van discrete dislocaties en geeft een gede-

tailleerde beschrijving van de zelfgelijkende ruwheid. De simulaties houden het veran-

derende contactoppervlak, het opruwen van het metalen oppervlak, de veranderende

drukverdeling en de plastische vervorming onder het oppervlak bij.

De resultaten tonen aan dat de plastische respons van het metaalkristal na indrukken

met een zelfgelijkende indenter afhankelijk is van de grootte. Dikkere kristallen die dieper

ingedrukt zijn door oppervlakken met grotere afmetingen vervormen plastisch meer dan

kleinere systemen, waarvoor dislocatiekiemvorming bronbeperkt is.

Bij een gegeven interferentie is de separatie aan het grensvlak in het geval van een

plastische kristal kleiner dan die van het corresponderende elastische kristal als gevolg

van materiaal dat opstapelt door uitgaande dislocaties. Dit resulteert erin dat het op-

pervlak van het plastische kristal meer overeenkomt met de indenter en dus een betere

afsluiting biedt van de opening. Ondanks de kleinere separatie aan het grensvlak in plas-

tische kristallen, blijkt het contactgebied kleiner te zijn in vergelijking met de elastische

tegenhanger.

De rms-hoogte is een belangrijke lengte bij contactproblemen met plasticiteit. Het

kiezen van een grotere rms-hoogte voor de indenter geeft een grotere deviatorische span-

ningcomponent in het substraat en derhalve sterke plasticiteit. Hoewel voor elastische
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kristallen de weerstand tegen indrukken toeneemt met de Hurst exponent, wordt de

plasticiteit marginaal beïnvloed door H .

Indrukken tot een interferentie van 50 nm voor verschillende waardes van de frac-

tale discretisatie heeft aangetoond dat hoewel het feitelijke contactgebied afneemt met

afnemende fractale discretisatie, de nominale contactdruk constant is onder een drem-

pelwaarde voorλs. Aangetoond wordt dat onder die waarde, vanwege elastische interac-

tie, het gefragmenteerde contactgebied fungeert als een continu effectief contact, waar-

van de lengte niet verandert met een verder afnemend echt contactoppervlak en die een

constante ondergrondse spanningsverdeling veroorzaakt. We concluderen dat als men

geïnteresseerd is in de nominale of gemiddelde contactdruk, voor zowel elastische als

plastische contacten, het niet de moeite waard is om het oppervlak met golflengten on-

der de drempelwaarde te beschrijven. Integendeel, wanneer iemand geïnteresseerd is in

het echte contactgebied, de contact-tractieverdeling of de spleetgeometrie, het opper-

vlak met grote nauwkeurigheid moet worden beschreven, inclusief de kortste golflengte

die aanwezig is in het zelfgelijkende oppervlak dat wordt bestudeerd.

De gemiddelde contactdruk of contacthardheid bij 20 nm blijkt aanzienlijk groter te

zijn dan in eerdere plasticiteitsstudies; tot 35σY voor de drempelwaardeλs = 625 nm. Dit

verschil met eerder werk wordt deels veroorzaakt door beperking van de dislocatiebron

en deels door het feit dat we hier een fijnere fractale discretisatie beschouwden.

In hoofdstuk 5, laten we vergelijking zien tussen dislocatiedynamica-simulaties en

de theorie van Persson met betrekking tot de studie van indrukking van een plat met-

alen lichaam door een starre indenter met zelfgelijkende ruwheid. Hoewel er een goede

overeenstemming is tussen simulaties en theorie wanneer het metaal zich elastisch gedraagt,

is de overeenkomst niet langer goed wanneer er sprake is van plasticiteit. De beste

overeenkomst tussed de oppervlakte-belastingscurves wordt gevonden voor kleine waardes

van de rms-hoogte, waarvoor de respons bijna maatonafhankelijk is. Met afnemende

rms-hoogte wordt het begin van plasticiteit in dislocatiedynamica-simulaties vertraagd,

omdat er slechts weinig dislocatiebronnen zijn in het gebied onder de oppervlakte waar

de spanningsconcentratie voldoende groot is om dislocatiekiemvorming te induceren.

Een goede overeen- komst tussen de oppervlakte-belastingscurves verkregen door sim-

ulaties en theorie wordt verkregen als de grootte-onafhankelijke vloeispanning in de the-

orie wordt vervangen door de vloeigrens verkregen door de simulaties. De vloeigrens
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verkregen door de simulaties hangt zeer sterk af van de rms-hoogte en van de resolutie.

De noodzaak om een resolutieafhankelijke vloeispanning te gebruiken in zijn plas-

ticiteitstheorie, werd door Persson al expliciet genoemd. De oplossing is inderdaad be-

langrijk, omdat de plastische respons afhangt van de resolutie. Als je echter de simu-

laties wilt geloven (natuurlijk zijn we ons ervan bewust dat ze ook beperkingen hebben,

waaronder ervan dat ze tweedimensionaal zijn), is deze oplossing niet voldoende. Dit

komt omdat het niet de afmetingsafhankelijkheid van de plastiteit verklaart die wordt

waargenomen wanneer het analysesysteem zodanig wordt geschaald dat het elastisch

equivalent wordt. Om dit te verklaren moet de vloeispanning ook afhankelijk worden

van een schaallengte in het probleem.

Een ander punt dat belangrijk is om te overwegen is dat, hoewel we een goede overeen-

komst voor oppervlakte-belastingscurves vonden, wanneer we de theorie van Persson

gebruiken met de vloeigrens verkregen door dislocatiedynamica (dat wil zeggen een

vloeisterkte die afhangt van de rms-hoogte en resolutie) de waarschijnlijkheidsverdel-

ing va de contactspanning nog steeds aanzienlijk anders is. De simulaties voorspellen

een veel bredere contactspanningsverdeling vergeleken met de theorie. Dit komt do-

ordat het materiaal zich in de theorie gedraagt als perfect plastisch, zonder enige ver-

vormingsverhardening. Een mogelijke verbetering van de theorie zou kunnen zijn om in

plaats van een constante vloeigrens een vloeigrens te gebruiken die toeneemt met plas-

tische vervorming. Dit zou zich vertalen in een plastische piek in de waarschijnlijkhei-

dsverdeling die zich naar grotere drukken verplaatst met toenemende sluiting van het

contact en een bredere verdeling in spanningen van het elastische deel van het contact.
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It was shown in (Venugopalan et al., 2017) that assuming an in-plane undulation of

the top surface of an isotropic layer with a real-valued wavenumber q , equation (3.9) can

be solved with the factorization

uα(x, z) = u0
α exp(i qx)exp(±qz). (A.1)

Substituting equation (A.1) in the equilibrium condition (3.9), it can be rewritten in Fourier

space as

C11ũx (q, z)−C44ũx (q, z)− i (C12 +C44)ũz (q, z) = 0

C11ũz (q, z)−C44ũz (q, z)− i (C12 +C44)ũx (q, z) = 0.
(A.2)

Equation (A.2) then reduces to

ũx (q, z) = i ũz (q, z). (A.3)

This implies that

ũc
x (q, z)− i ũs

x (q, z) = i ũc
z (q, z)+ ũs

z (q, z). (A.4)

This explains how the solutions of the in-plane cosine transform of the lateral ux dis-

placement field couples to the in-plane sine transform of the normal uz displacement,

and vice versa.
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For the limiting case in which the height of the slab tends to infinity, H(q, zm) can be

written as:

H11(qzm À 1) = H33(qzm À 1) = 2s
1+s ,

− H12(qzm À 1) = H34(qzm À 1) = 2s2

1+s ,

H13(qzm À 1) = 0,

− H14(qzm À 1) = H23(qzm À 1) = 0,

H22(qzm À 1) = H44(qzm À 1) = 2s
1+s ,

H24(qzm À 1) = 0. (B.1)

In the limiting case of short wave-numbers, we find

q H11(qzm ¿ 1) = q H33(qzm ¿ 1) = C44
zm

,

− q H12(qzm ¿ 1) = q H34(qzm ¿ 1) = 0,

q H13(qzm ¿ 1) =−C44
zm

,

− q H14(qzm ¿ 1) = q H23(qzm ¿ 1) = 0,

q H22(qzm ¿ 1) = q H44(qzm ¿ 1) = C11
zm

,

q H24(qzm ¿ 1) =−C11
zm

. (B.2)

In the case of bottom undulation going to zero u(q,0) → 0, we recover the elastic energy

for a fixed bottom derived in (Venugopalan et al., 2017).
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The following notations are adopted to outline GFDD methodology.

ζ: Dislocation structure,

St, Su: Part of the boundary where traction and displacement are prescribed respectively,

σ̃, ũ: Stress and displacement field due to dislocations in the solid,

σ̂, û: Stress, displacement field of the complementary problem,

σ, u: Total stress and displacement field in the solid,

t̃ , ũ: Tractions and displacements on St, Su due to dislocation fields,

t̂ , û: Tractions and displacements on St, Su for complementary problem,

t , u: Prescribed tractions and displacements on St, Su for the total problem,

where σ = σi j e i j , t = ti e i and u = ui e i with e i j = e i ⊗ e j where e i and e j are the unit

basis vectors in R2.

The quantities available at time tn are: ζn, σ̂n, ûn,σ̃n and ũn.

Objective of GFDD simulation is to find: ζn+1,σ̃n+1, ũn+1,σ̂n+1 and ûn+1 at time tn+1.

Step1: Let the prescribed traction on St increase as t = K t 0, where K is a function of

time and t 0 be a specified reference traction field. Also, let the prescribed displacement

on portion Su vary with time in a similar manner so that u = K u0, where u0 be a specified

reference displacement field. Thus, at time tn+1: Kn+1 = K (tn+1).

Step2: Update the dislocation structure, ζn+1 = f (ζn,σ̃n). The steps involved in this

process are summarized below.

– Find stresses on dislocation due to σ̃ and σ̂; Peach-Koehler forces on dislocations,

velocity of dislocations.

– Check for release of dislocations pinned to obstacles.

– Move dislocations to new positions.

– Annihilation of dislocations.

– Pinning of dislocations to obstacles.

– Nucleation of dislocations at sources
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Step3:

– Get tractions t̃ n+1 acting on portion St of boundary arising because of dislocations:

t̃ n+1 = σ̃n+1n, (C.1)

where n is the unit normal vector to the boundary.

– Get the updated specified traction for the complementary problem at tn+1:

t̂ n+1 = Kn+1t 0 − t̃ n+1. (C.2)

Step4:

– Find displacements ũn+1 on portion Su of boundary due to dislocations.

– Get the updated specified displacement for the complementary problem at tn+1:

ûn+1 = Kn+1u0 − ũn+1. (C.3)

Step5: Start solving the complementary problem using GFMD.

– Set up a rigid top punch represented by htop(r ).

– The elastic bottom solid with arbitrary surface profile hbot(r ) is represented using

nx equispaced (super-)atoms.

– The center of mass of the system is critically damped or slightly under-damped.

– Loop over time. Set the number of iterations nit such that it scales with

√(
zm
Lx

)
nx.

– Transform displacements ûn+1 on portion Su of the boundary into Fourier

space represented as ūnow
i (q).

– Transform tractions t̃n+1 on portion St of the boundary into Fourier space

represented as t̄i (q).

– Calculate elastic restoring forces, F̄i (q) =−(∇ui vel)ūnow
i (q).

– Correct the traction due to dislocations, F̄i (q) ← F̄i (q)+ t̄i (q).
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– Add external pressure, F̄i (0) ← F̄i (0)+P ext
i .

– Add damping forces, F̄i (q) ← F̄i (q)+η{ūnow
i (q)− ūold

i (q)}.

– Use Verlet to solve equation of motion, ūnew
i (q) = 2ūnow

i (q)−ūold
i (q)+F̄i (q)dt 2.

– Transform displacements into real space.

– Implement the boundary condition at the punch-substrate interface:

i If the interface is frictionless then skip this step.

ii If the interface is full sticking then implement hard wall condition writ-

ten as ūnew
i (r ) ← max{ūnew

i (r ),−htop(r )}.

– Assign ūold
i (r ) ← ūnow

i (r ) & ūnow
i (r ) ← ūnew

i (r ).

– Output the displacement ūi (r ) corresponding to the equilibrated surface at the

end of MD iterations.

Step6: The displacement field of the equilibrated surface obtained using GFMD from

the previous step is used to calculate the body fields. We had derived the closed-form

expressions for calculating body fields earlier in B.

Step7:

– If required, output total stresses, strains and displacements:

σn+1 = σ̂n+1 + σ̃n+1, (C.4)

εn+1 = ε̂n+1 + ε̃n+1. (C.5)

un+1 = ûn+1 + ũn+1. (C.6)
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