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SUMMARY

With the rising demands from customers and users and the development of ever ad-
vanced technologies, many space missions nowadays require more than one satellite
to fulfill their mission objectives. Although replacing single satellite systems (SSSs) by
multiple satellite systems (MSSs) offers advantages, such as enhanced spatial and tem-
poral coverage as well as high robustness and multifunctional purposes, it also intro-
duces new challenges. There is no doubt that as the number of satellites in a mission
grows, the complexity and operation cost of controlling and coordinating these satellites
only by human (or ground based) operators will increase dramatically. In addition, for
some deep space missions or complex operational tasks, due to the long signal trans-
mission time between the spacecraft and ground-based antennas or short communica-
tion windows, there will not be enough time or resources for operators to sufficiently
and efficiently control all of the required onboard functions from mission control cen-
ters. Therefore, to enhance the efficiency of operating an MSS, and to reduce the cost of
human resources and ground infrastructure, an onboard autonomous system (OAS) for
MSS is a promising solution. For specific missions, the use of an OAS may even be a mis-
sion enabler. One important function of an OAS is to provide planning and re-planning
services based on different mission requirements. The objective of this research is to
develop and characterize onboard autonomous mission planning and re-planning ap-
proaches for MSSs.

Traditional planning approaches have been reviewed and proven to be inappropriate
and inefficient for complex planning problems in the harsh space environment when
severe system constraints are enforced and a large number of vehicles constitutes the
MSS. To overcome these deficiencies, engineers and researchers have started to develop
OAS with the help of Artificial Intelligence (AI) techniques to allow for more complex
space missions. Based on the relevance of this problem, the following research questions
(RQs) have been formulated and will be answered in this thesis.

RQ1: What are the strengths of using AI in space missions? How to use a central-
ized AI algorithm in a multi-satellite system to decompose mission objectives and per-
form mission planning for the entire system?

RQ2: How to define emergency situations which may occur during mission oper-
ations? How to use AI algorithms to handle mission re-planning and re-scheduling
problems?

RQ3: How to design cooperation and negotiation approaches for an MSS to reach
an agreement? How to improve AI algorithms for distributed onboard mission plan-
ning problems?

To define potential scenarios, a reference mission is introduced in this thesis, called
Discovering the Sky at the Longest Wavelength (DSL). The mission is assumed to comprise
one Mother Satellite (MS) and eight Daughter Satellites (DSs) in a lunar orbit. Its scien-
tific objective is to observe the universe in the hitherto-unexplored very low frequency

xi



xii SUMMARY

(below 30 MHz) electromagnetic spectrum. The DSs collect scientific data only in those
parts of the orbit which is shielded from radio frequencies emitted by the Earth. These
DSs can only transmit collected data to the MS when they are outside of this shielded
orbit sections, to prevent interferences caused by communication. This renders mission
operations of DSL very complex. The existing body of knowledge on mission planning
problems for multi-satellite systems is reviewed. It comprises three categories: classi-
cal approaches, heuristic approaches, and advanced techniques (e.g., team negotiation
mechanisms, evaluation algorithms). Targeting the complexity of foreseeable DSL plan-
ning problems, nine representative optimization algorithms are applied to fourteen test
functions. The results indicate that Evolutionary Algorithms (EAs) have a broader adapt-
ability than classical approaches. They are also more efficient than other heuristic ap-
proaches. Therefore, EAs family is selected as suitable candidate for the reference MSS.

The operations concept of the DSL mission foresees that the initial mission planning
is performed by the MS, while the eight DSs are preliminary executing data collection
and transmission tasks. During this phase, the MSS implements a centralized architec-
ture and the MS conducts a centralized planning approach. By comparing basic Genetic
Algorithm (GA) with several state-of-the-art improved GAs, its weaknesses are revealed.
In this thesis, to overcome early and slow convergence problems, the need to develop
a new mutation strategy for GA is motivated. The proposed novel mutation strategy is
called Hybrid Dynamic Mutation (HDM), which contains a standard mutation operator
and an escape mutation operator. While the standard mutation operator uses a small
mutation rate for approaching the global optimum, the escape mutation operator uses
a larger mutation rate to allow an escape from local optima. The simulation results in-
dicate that the proposed HDM can improve the basic GA (which turns into the HDMGA)
leading to a superior performance on correctness and effectiveness as compared to al-
ternative GAs. Based on these findings, AI related methods are considered a promising
category as compared to classical methods due to their flexibility and effectiveness to
support the onboard planning for an MSS. In addition, the proposed HDMGA also pro-
vides a satisfying result for the considered initial mission planning problems.

Internal or external causes, e.g. an actuator failure or the challenging space environ-
ment, can lead to a satellite malfunction during mission operations. This thesis con-
siders the two most important behaviors of the DSL mission, observation and commu-
nication, and proposes potential emergency scenarios to handle possible system fail-
ures on DSs. Two re-planning methods, one called the Cyclically Re-planning Method
(CRM), the other one the Near Real-time Re-planning Method (NRRM), are established
and compared. The CRM performs re-planning at the beginning of each orbit and only
re-plans for one orbit. The NRRM performs re-planning in a near real-time setting when
the emergency occurs. Its re-planning covers for the rest of the mission. Three simula-
tion study cases are formulated based on assumed emergency scenarios. The proposed
two methods are compared on three aspects: the total number of data observed from all
DSs within a certain time frame, the total number of data the MS received from all DSs
within a certain time frame, and the average computation time needed for re-planning.
The results indicate that: (1) The NRRM allows to observe and transmit more data than
the CRM within a specific operational lifetime. (2) The NRRM requires more computa-
tional time than the CRM for emergency situations, while it requires less time than the
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CRM for nominal situations.
This research also covers a much more severe scenario, namely that the MS becomes

fully non-functional in an emergency situation. This would render the MS unable to
provide mission planning and re-planning services for the MSS. Without its main con-
troller on the MS, all DSs now need to cooperate to jointly solve the mission planning
problems. Due to the loss of the MS, both distributed and decentralized architectures,
which the MSS could then use are introduced. In a distributed architecture, each DS is
connected with all other DSs directly or through DS which acts as retranslator. In a de-
centralized architecture, each DS can only communicate with its neighbors. Considering
that the mission allocation problems in different organizational architectures are simi-
lar to information games in game theory, a game-theoretical model of the Multi-Satellite
Mission Allocation (MSMA) problem is formulated. The Utility-based Regret Play (URP)
negotiation mechanism is proposed for an MSMA problem using a distributed architec-
ture. It inherits the ability to evaluate individual utility at each negotiation step from
the Utility-based Fictitious Play, and the ability to regret the current choice and for not
proposing particular choices in the past negotiation steps from the Regret Matching Play.
The Smoke Signal Play (SSP) and Broadcast-based Play (BBP) are developed for a de-
centralized architecture instead. The SSP is inspired by an old communication method
called Smoke Signal, where each satellite is considered as a smoke tower, passing in-
formation of utility to its succeeding neighbor. The BBP uses broadcasting as the com-
munication method, where each satellite can transmit information to all its neighbors.
The simulation results show that the URP can outperform the other three state-of-the-
art mechanisms (Action-based Fictitious Play, Utility-based Fictitious Play, and Regret
Matching Play) with studied cases. For the decentralized architecture, the results reveal
that both SSP and BBP can provide valid solutions for mission allocation problems. The
BBP mechanism shows a superior performance on computation time as compared to
SSP and a state-of-the-art approach called Market-based Auction. The SSP mechanism,
on the other hand, shows the best performance with respect to power consumption.

To solve complex optimization problems in distributed mission planning scenarios,
an approach, named Hybrid Distributed GA (HDGA) is proposed. This approach con-
tains two modules: the Local Constraint Satisfaction module (LCS) and the Globally Dis-
tributed Optimization module (GDO). In the LCS module, the greedy best-first search
algorithm is employed as the local search heuristic for helping each DS to find suitable
solutions which can satisfy individual constraints. This module is designed to generate
multiple solutions to form local populations for the GDO. The GDO module employs
the HDMGA as the core optimization algorithm, while the individual populations are
formed through the local populations exchange procedure between one participant and
all other participants. For a standard planning case, the results indicate that HDGA can
reduce the computation time while ensuring a higher success rate compared to the HD-
MGA. Comparing the HDGA with two other state-of-the-art distributed optimization al-
gorithms, the Distributed Ant Colony Optimization (DACO) and the Coevolutionary Par-
ticle Swarm Optimization (CPSO), the statistical results reveal that HDGA is more stable
and accurate to handle large-scale planning problems. The HDGA also shows the best
performance on computation time among all tested distributed approaches.
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Met de stijgende vraag van klanten en gebruikers en de ontwikkeling van steeds meer
geavanceerde technologieën worden veel ruimtemissies tegenwoordig uitgevoerd door
systemen die uit meer dan één satelliet bestaan. Hoewel het vervangen van afzonder-
lijke satellietsystemen (SSS’s) door multi-satellietsystemen (MSS’s) voordelen biedt, zo-
als een verbeterde ruimtelijke en temporele dekking als ook een betere robuustheid en
multifunctionaliteit, brengt het ook tot nieuwe uitdagingen. Het lijdt geen twijfel dat
bij toenemend aantal satellieten in een missie de complexiteit en de operationele kos-
ten van het controleren en coördineren van deze satellieten met uitsluitend grondstati-
ons, drastisch zullen toenemen. Voor sommige missies naar de verre ruimte of missies
met uiterst complexe operationele taken, waarbij het communicatiesignaal een lange
weg moet afleggen tussen MSS en grondstation en/of slechts gedurende een korte tijd
gecommuniceerd kan worden met het MSS, maakt dat er voor het grondpersoneel on-
voldoende tijd en/of middelen beschikbaar zijn om alle taken aan boord van het MSS
optimaal te kunnen plannen en regelen. Om de efficiëntie van een MSS te verbeteren,
en om de kosten van personele middelen en grondinfrastructuur te verlagen, is een inge-
bouwd autonoom systeem (OAS) voor MSS een veelbelovende oplossing. Een OAS kan
daarnaast ook missies mogelijk maken die anderszins niet mogelijk zouden zijn. Een
belangrijke taak van een OAS is om het autonoom (her)plannen van de missietaken bin-
nen de missievereisten te realiseren. Het doel van dit onderzoek is om een dergelijke
autonome aanpak voor MSSs te ontwikkelen en te karakteriseren. Traditionele metho-
den van missieplanning zijn geanalyseerd. Gevonden is dat de traditionele methoden
niet geschikt of inefficiënt zijn voor het plannen van de meer complexe taken van een
MSS in de meedogenloze ruimteomgeving met name als dit MSS bestaat uit een groot
aantal satellieten en met inachtneming van alle beperkingen van zo een MSS. Om deze
beperkingen voor complexe ruimtemissies te boven te komen, zijn ingenieurs en onder-
zoekers begonnen een OAS te ontwikkelen met gebruik making van Kunstmatige Intelli-
gentie (KI) -technieken. Gebaseerd op de relevantie van dit probleem zijn een drietal on-
derzoeksvragen (OV’n) geformuleerd, die in dit proefschrift zullen worden beantwoord.
OV1: Wat zijn de voordelen van het gebruik van KI in ruimtemissies? Hoe een gecentra-
liseerd KI-algoritme te gebruiken in een multi-satellietsysteem om missiedoelen te ana-
lyseren en op basis daarvan een missieplanning te genereren voor het gehele systeem?
OV2: Hoe kunnen noodsituaties, die zich voordoen tijdens missieactiviteiten, worden
onderkent? Hoe kunnen KI-algoritmen worden ingezet bij het (hernieuwd) plannen van
de missieactiviteiten bij gerezen problemen? OV3: Hoe kan een wijze van aanpak voor
samenwerking en afweging worden uitgewerkt, die een succesvolle missieplanning voor
een MSS mogelijk maakt? Hoe kunnen KI-algoritmen voor gedistribueerde missieplan-
ning aan boord van het ruimtevaartuig worden verbeterd? Om mogelijke scenario’s op
te stellen die in dit proefschrift nader worden onderzocht met betrekking tot missie-
planning, is een referentiemissie geïntroduceerd, genaamd “Discovering the Sky at the
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Longest Wavelength” (DSL). Deze missie heeft als wetenschappelijk doel om het uni-
versum te observeren in het lage frequentiegebied (minder dan 30 MHz), een tot nog
toe niet eerder voor observatie gebruikt deel van het elektromagnetisch spectrum. De
missie wordt uitgevoerd door een MSS bestaande uit een moeder-satelliet (MS) en acht
dochter-satellieten (DS’s) die zich allen in een baan om de Maan bevinden. De DS’s ver-
zamelen alleen wetenschappelijke gegevens in die delen van de baan, waarin zij door de
Maan afgeschermd worden van door de Aarde uitgezonden straling in het betreffende
frequentiegebied. Verzamelde data worden door deze DS’s alleen naar de MS verzon-
den als ze zich buiten deze afgeschermde baandelen bevinden, dit om storingen van
de metingen veroorzaakt door het communicatiesignaal te voorkomen. Dit maakt mis-
sie operaties van DSL erg complex. De bestaande kennis over aanpak van missieplan-
ning voor MSS is onderzocht. Drie verschillende categorieën van aanpak worden onder-
scheiden: klassieke aanpak, en heuristische aanpak met en zonder gebruikmaking van
geavanceerde technieken (bijv. team onderhandelings-mechanismen, evaluatie algorit-
men). Gericht op de complexiteit van te verwachten planningsproblemen in de DSL-
missie, zijn negen representatieve optimalisatie-algoritmen uitgetest op veertien test-
functies. De resultaten tonen dat “Evolutionary Algorithms” (EA’s) zich gemakkelijker
laten aanpassen voor verschillende toepassingen dan bij een klassieke aanpak. Ze zijn
ook efficiënter dan andere heuristische benaderingen. Het is om deze redenen dat de
EA-familie is geselecteerd als geschikte kandidaat voor toepassing in de referentie MSS.
In het operationele concept van de DSL-missie wordt de initiële planning uitgevoerd
door de MS, terwijl de acht DS’s zich voornamelijk bezig houden met het vergaren van
de observatiegegevens en het overzenden van deze gegevens naar de MS. Tijdens deze
fase hanteert de MSS een gecentraliseerde architectuur en voert de MS een gecentra-
liseerde planningsaanpak uit. Uitgaande van een standaard Genetisch Algoritme (GA)
zijn de zwakke punten van deze standaard geïdentificeerd. Om trage convergentie en
problemen met convergentie in de vroege optimalisatiefasen te voorkomen wordt in
dit proefschrift de noodzaak om een nieuwe mutatiestrategie voor GA te ontwikkelen
gemotiveerd. De voorgestelde nieuwe mutatie-strategie is genaamd “Hybrid Dynamic
Mutation” (HDM) en omvat een standaard mutatie-operator en een escape-mutatie-
operator. Terwijl de standaard mutatie-operator een kleine mutatiesnelheid gebruikt
voor de bepaling van het globale optimum, gebruikt de escape-mutatie-operator een
grotere mutatiesnelheid om te vermijden dat de oplossing blijft steken in lokale optima.
De simulatieresultaten tonen dat de voorgestelde HDM in combinatie met GA (kort-
weg aangeduid als HDMGA) superieur is op gebied van correctheid en effectiviteit in
vergelijking met andere GA’s. Op basis van deze bevindingen worden KI-gerelateerde
methoden als een veelbelovende categorie beschouwd in vergelijking met meer klas-
sieke methoden ter flexibilisering en een meer effectieve ondersteuning van de gecen-
traliseerde missie planningsaanpak aan boord van de MS. Bovendien biedt de voorge-
stelde HDMGA ook een bevredigend resultaat voor de problemen zoals meegenomen
bij de initiële missieplanning. Interne of externe oorzaken, b.v. een actuatorstoring of
een weerbarstige ruimteomgeving, kunnen tijdens missie-operaties leiden tot een sto-
ring in een satelliet. In dit proefschrift worden de twee belangrijkste taken van de DSL-
missie, observatie en gegevensoverdracht (communicatie) nader beschouwd en worden
mogelijke scenario’s gedefinieerd voor het afvangen van systeemstoringen aan boord
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van één of meerdere DS’s. Twee herplannings-methoden, de een genaamd de “Cyclic
Re-planning Method” (CRM) en de andere de “Near Real-time Re-planning Method”
(NRRM), zijn ontwikkeld en nader onderzocht. De CRM voert een nieuwe planning
uit aan het begin van elke baanomloop en wel voor de duur van een enkele omloop.
De NRRM vernieuwt de planning bijna instantaan als zich een noodsituatie voordoet.
Deze vernieuwde planning omvat de gehele verdere missie. Voor het onderzoek zijn
drie simulatiegevallen geformuleerd op basis van een aantal aangenomen noodscena-
rio’s. De beide methoden zijn vergeleken op drie aspecten: het totale aantal gegevens
verzameld door alle DS’s binnen een bepaald tijdsbestek, het totale aantal gegevens dat
de MS van de DS’s heeft ontvangen binnen een bepaald tijdsbestek, en de gemiddelde
computertijd die nodig is voor het hernieuwen van de planning. De resultaten tonen
dat: (1) De NRRM meer gegevens verzamelt en verzendt dan de CRM binnen een spe-
cifieke operationele levensduur. (2) De NRRM meer computer tijd vereist dan de CRM
voor noodsituaties, en méér onder nominale omstandigheden. Dit onderzoek dekt ook
een veel ernstiger noodscenario, namelijk dat de MS niet langer functioneert. Dit maakt
de MS onbekwaam om missie(her)planningsdiensten uit te voeren voor de MSS. Zon-
der de hoofdcontroller op de MS moeten nu alle DS samenwerken om gezamenlijk de
missie(her)planningsproblemen op te lossen. Hiertoe zijn zowel gedistribueerde als ge-
decentraliseerde organisatie-architecturen voor de MSS geïntroduceerd. In een gedistri-
bueerde architectuur is elke DS direct verbonden met alle andere dochters of naar een
enkele DS die dan weer als relais fungeert naar anderen. In een gedecentraliseerde ar-
chitectuur daarentegen kan elke DS slechts communiceren met zijn directe buren. Daar
de toewijzing van missietaken in verschillende organisatie-architecturen vergelijkbaar is
met die in informatiespellen in speltheorie, is een spel-theoretisch model van het “Multi-
Satellite Mission Allocation” (MSMA) probleem geformuleerd. Het “Utility-based Regret
Play” (URP) onderhandelingsmechanisme wordt voorgesteld voor een MSMA-probleem
in een gedistribueerde architectuur. Het combineert de mogelijkheid om het indivi-
duele nut te evalueren bij elke onderhandelingsstap zoals in “Utility-based Fictitious
Play”, en om de huidige keuze te betreuren en bepaalde voorstellen van keuzes in eer-
dere onderhandelingsstappen achterwege te laten zoals in Regret Matching Play. Voor
een gedecentraliseerde architectuur zijn in plaats daarvan “Smoke Signal Play” (SSP)
en “Broadcast-Based Play” (BBP) ontwikkeld. SSP is geïnspireerd op een oude com-
municatiemethode, “Smoke Signal” genoemd, waarbij elke satelliet wordt beschouwd
als een rooktoren, die nuttige informatie doorgeeft aan zijn directe buren. Bij BBP kan
elke satelliet informatie verzenden naar alle DS’s. De simulatieresultaten tonen aan dat,
voor de bestudeerde gevallen, URP beter kan presteren dan drie andere “state-of-the art”
mechanismen (“Action-based Fictitious Play”, “Utility-based Fictitious Play” en “Regret
Matching Play”). Voor de gedecentraliseerde architectuur tonen de resultaten dat zowel
SSP als BBP valide oplossingen bieden voor de verdeling van missietaken over de sys-
teemelementen. Het BBP-mechanisme toont superieure prestaties qua computertijd in
vergelijking met SSP en een andere state-of-the-art benadering genaamd “Market-based
Auction”. Het SSP-mechanisme, aan de andere kant, heeft als voordeel het laagste ener-
gieverbruik.

Om complexe optimalisatieproblemen in gedistribueerde missieplanningsscenario’s
op te lossen, wordt een hybride aanpak voorgesteld, genaamd “Hybrid Distributed” GA
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(HDGA). In deze aanpak wordt gebruik gemaakt van een tweetal modules: de “Local
Constraint Satisfaction”-module (LCS) en de “Globally Distributed Optimisation” mo-
dule (GDO). In de LCS-module wordt het “Greedy Best-First” zoek-algoritme toegepast
om voor elke DS geschikte oplossingen te vinden, die aan de individuele beperkingen
van de DS tegemoet komen. Deze module is ontworpen om meerdere lokale oplossin-
gen te genereren die dan worden doorgegeven aan de GDO-module. De GDO module
maakt gebruik van het HDMGA optimalisatie-algoritme waarbij de individuele popula-
ties worden gevormd via de ingestelde procedure voor uitwisseling van lokale popula-
ties tussen de verschillende deelnemers. Voor een standaard planningsgeval geven de
resultaten aan dat HDGA de rekentijd kan verkorten en tegelijkertijd tot een hoger sla-
gingspercentage leidt dan HDMGA. Resultaten verkregen met HDGA in vergelijking met
twee andere “state-of-the-art” gedistribueerde optimalisatie-algoritmen, de “Distribu-
ted Ant Colony Optimization” (DACO) en de “Coevolutionary Particle Swarm Optimisa-
tion” (CPSO) laten zien dat HDGA stabieler en nauwkeuriger is voor het oplossen van
grootschalige planningsproblemen. HDGA toont ook de beste prestaties qua computer
tijd van alle geteste alternatieve gedistribueerde aanpakken.
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2 1. INTRODUCTION

T HIS chapter provides an introduction to the content of this dissertation: Autonomous
Onboard Mission Planning for Multiple Satellite Systems (MSSs). Firstly, the back-

ground on the need and development of various space missions is introduced. The
growing requirements from users of space services which trigger the motivation to de-
velop autonomous onboard systems is revealed. Then, the state of the art of represen-
tative space missions which use autonomous systems is briefly discussed. The concept
and application area of MSSs are introduced. In the sequel, the control and coordinate
approaches for MSSs are categorized to identify the current body of knowledge and to
allow to identify innovative research areas. As a result, three research questions are for-
mulated, followed by a description of the methodology used to answer these questions.
Finally, a short description of the content of the individual chapters of this thesis is pro-
vided.

1.1. BACKGROUND

HISTORY OF SPACE MISSIONS
On October 4th, 1957, the Soviet Union launched their first artificial satellite Sputnik 1
(Figure 1.1) [Wikipedia, 2018l] into an elliptical low Earth orbit. This mission opened
a new chapter in the human exploration of space. After this, many countries became
space-faring nations by launching their satellites, such as the United States of America
(Explorer 1, 1958 [Wikipedia, 2018d]), France (Astérix, 1965 [Wikipedia, 2018a]), Japan
(Ohsumi, 1970 [Wikipedia, 2018i]), and China (Dong Fang Hong 1, 1970 [Wikipedia, 2018c]).

Figure 1.1: The first artificial satellite: Sputnik 1 (taken from [Wikipedia, 2018l])

Driven by the “Space Race" between the Soviet Union and the United States of Amer-
ica, many milestones have been achieved, such as the first automated soft landing on the
Moon (Luna 9 [Dunham et al., 2002]), the first manned Moon landing (Apollo 11 mission
[Berry, 1970]), and the first space station (Salyut 1 [Bluth and Helppie, 1986]). During
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Notes: “Joint Ventures” refers to the multinational satellite consortia INTELSAT, INMARSAT, EUTELSAT, and EUMETSAT. 
The European Space Research Organization (ESRO) was a forerunner to the European Space Agency (ESA), which was formed in 1975.
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Figure 1.2: Space missions launched over the past 50 years (This figure is taken from [Orcutt, 2018])

this period, these space missions were more triggered by military and political purposes
than scientific applications. Figure 1.2 shows the satellites that have been launched over
the past 50 years.

After the 1970s, civil space missions began to dominate. With the increasing num-
ber of space applications, such as communications and people started to benefit from
space technologies. For instance, the fixed satellite services could provide information
transmission for terrestrial users, while mobile satellite services could help to connect
mobile communication units. Space missions for scientific research could provide many
types of applications, such as Solar System Exploration (Voyager 1 & 2, ICE, Galileo, etc.)
and geodesy (LAGEOS 1 & 2, QuikSCAT, etc.). Communication and navigation as well as
Earth observation became key application pillars of space flight (ATS-6, Ekran, Iridium,
GPS, GLONASS, Galileo, etc.).

Later on, with the development of advanced technologies and the rising demands
from customers and users, many space missions required more than one satellite to ful-
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fill their mission objectives. The central concept of an MSS is that a group of spacecraft
performs complex tasks where each individual satellite contributes to the overall mission
goal. Many existing missions have implemented an MSS. For example, the Global Posi-
tioning System (GPS) constellation consists of 31 satellites in orbit to provide navigation
services for military and civilian purposes; the Earth Observing-1 (EO-1) & LandSat-7 (2
satellites) monitor the lava flows from space; the Gravity Recovery and Climate Recov-
ery (GRACE) (2 satellites) mission provided detailed measurement of the Earth’s gravity
field; the PRISMA (2 satellites) mission provided a radio frequency metrology system that
enabled these two satellites to fly in close formation while autonomously avoiding col-
lisions. The idea of the MSS becomes particularly interesting when combined with the
trend towards miniaturization of future space systems.

MORE IS BETTER?
Since NASA’s Faster, Better, Cheaper (FBC) [McCurdy, 2001] missions have achieved im-
pressive accomplishments, many space researchers have began to search for ways to ac-
complish given tasks in less time and at less cost. Instead of using one large instrument
on board a very expensive large spacecraft, using an MSS with a group of small, inex-
pensive spacecraft seemed a better approach. Compared with single-satellite systems
(SSSs), MSSs show many advantages, such as low cost, high robustness, multifunctional
purposes, and enhanced spatial and temporal coverage.

Take the Spektr-R space project as an example. The objective of this project is to
study astronomical objects with an angular resolution up to a few millionths of an arc-
second. The total cost of this mission, which uses a large single spacecraft is more than
22 million €[Zak, 2018b]. This does not include the annual expense of mission oper-
ations and maintenance. Considering the low cost of a small satellite platform, if the
Spektr-R satellite could be replaced by ten MicroSats or CubeSats, the overall cost might
be reduced significantly.

Space is very challenging environment. Many external factors such as thermal con-
ditions, radiation, solar wind, space debris, and vacuum environment can cause the fail-
ures of satellites. Therefore, using multiple small satellites can reduce the out-of-service
risk caused by the space environment or internal system malfunction. This in turn en-
hances the robustness of the entire system. Furthermore, large satellites are customarily
designed for specific missions. The unique payloads these satellites are carrying usually
cannot be used for other space missions. This limits the efficiency of SSS. MSS, on the
other hand, can provide diverse functions by augmenting an existing system with a new
satellite hosting a desired payload.

Although using an MSS to replace the functionality of one large satellite can be ben-
eficial, it also suffers many difficulties. Usually, space missions are strongly dependent
on the ground segment and the operations performed by flight engineers who monitor
the enormous amount of telemetry data sent back to Earth during operations, plan ma-
neuvers, command the satellite for bus or payload activities. There is no doubt that as
the number of satellite grows, the complexity and operations cost of controlling and co-
ordinating these satellites only by operators will increase dramatically. In addition, for
some deep space missions or complex operational tasks, due to a long signal transmis-
sion time or short communication windows, there is not enough time or resources for
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operators to control all of the needed onboard behaviors from the control centers.

SMARTER IS BETTER!
With the increasing complexity of new space missions, it becomes inefficient for opera-
tors to control the entire satellite from the mission control center. To overcome these de-
ficiencies, space engineers and researchers have started to develop onboard autonomous
systems (OAS) with the help from various artificial intelligence (AI) techniques to en-
hance the satellite intelligence for more complex space missions.

As early as in 1998, the Deep Space 1 mission was the first space mission to demon-
strate an onboard autonomous system by using the Remote Agent (RA) architecture [Muscet-
tola et al., 1998]. Later on, in 2000, the EO-1 demonstrated the onboard fault diagnos-
tics and recovery, as well as a considerable autonomy of the science instruments and
downlink of the resulting imagery and data [Chien et al., 2004]. The DLR BIRD satellite
had an onboard navigation system (ONS), which was able to compute the instantaneous
nadir and flight direction for camera pointing, as well as precise positions for real-time
geocoding of image data. It also could perform real-time estimation of SGP4 mean el-
ements, allowing an onboard forecast of ground station contacts or eclipse times [Gill
et al., 2000]. Other autonomous systems have also been used for various space missions,
such as Orbital Express [Wikipedia, 2018j] and Mars Exploration Rovers [Zak, 2018a].

To implement an MSS as a platform for current (e.g. TDRS [Holmes, 1978], STEREO
[Kaiser et al., 2008]) or upcoming space missions (e.g. ANTS [Truszkowski et al., 2004],
MAIA [NASA, 2018b]), the OAS plays a more important role since it can assist the MSS in
several ways:

1. Firstly, the OAS typically is indispensable when communications between the satel-
lites and the ground are insufficient to operate the satellite. Then, the OAS can
make decisions based on the system’s current state and the mission objectives.

2. Secondly, the OAS is the only way to control a large number of satellites without
requiring huge human and computational resources as well as infrastructure on
the ground.

3. Thirdly, the OAS can provide onboard team coordination and negotiation services
without any interference from human, which is more efficient.

Considering all the benefits the OAS can bring, the objective of this thesis is to develop
concepts and approaches of intelligence systems for an MSS to perform different levels
of onboard autonomy.

1.2. STATE OF THE ART
Many early studies have already implemented autonomous technologies to fulfill the dif-
ferent requirements for either single-satellite missions or multi-satellite missions. In this
section, a survey of the research topics regarding onboard autonomy for space systems
is presented. Related research in non-space domains is also discussed in this section.
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ONBOARD AUTONOMY IMPLEMENTATIONS

An essential application for onboard autonomy is to facilitate the onboard navigation
of satellites to solve the navigation problems, which have been investigated for the past
four decades. In the last 20 years, with the rapid development of onboard computers
(including their growing computational power and memory, and decreasing mass), on-
board Autonomous Navigation Systems (ANS) have been designed for satellites to deter-
mine their orbit and to predict their motion parameters automatically. There are four
main branches for measurement systems which are key to the development of ANS. The
first branch uses radiometric systems based on radio frequencies. This is by far the most
widely and mature technique that has been used for many satellites’ ANS, such as BIRD
[Gill et al., 2000], PRISMA [Gill et al., 2007], and X-SAT [Gill et al., 2004]. The second
branch is based on magnetometers to sense the Earth’s magnetic field, which has been
revealed in [Shorshi and Bar-Itzhack, 1995], [Wiegand, 1996], and [Psiaki et al., 1993].
The third branch is based on star sensors using stellar refraction, such as the implemen-
tations in [Gounley et al., 1984], [Yunfeng and Renwei, 1995], and [Ning et al., 2013]. The
fourth branch is based on pulsars as shown in [Sheikh et al., 2006], [Shuai et al., 2007],
and [Zhang et al., 2017].

Rendezvous and docking (RVD) is another application which typically requires sup-
port from OASs. In 1998, the Engineering Test Satellite-VII (ETS-VII) [Kawano et al., 1999]
successfully performed the first autonomous RVD between unmanned spacecraft. After-
wards, many studies have been done to further facilitate RVDs by using different tech-
niques. Based on the characteristics of the target, autonomous RVD can be divided into
two types: for collaborative targets [Romano et al., 2007] and for non-cooperative tar-
gets [Chen and Xu, 2006]. To fully operate RVD autonomously, a variety of research top-
ics have also been investigated, including absolute and relative autonomous navigation
technologies [Gill et al., 2001; Fehse, 2003; D’Amico et al., 2006], the autonomous RVD
close-in sensors [Ruel et al., 2012], and autonomous RVD algorithms for different oper-
ation phases [Karr et al., 1990; Mukundan et al., 1994; Guglieri et al., 2014].

Implementing OASs for MSSs can reduce the operating cost on the ground segment
and enhance the real-time reaction capabilities for unexpected situations. Several repre-
sentative satellites which apply OASs are shown in Tab 1.1. The existing OASs can provide
a convenient step-wise approach to initiate fully autonomous formation flying, relative
navigation, guidance, and onboard control. Several ongoing space missions are also
included to demonstrate multi-satellite systems such as PROBA mission [ESA, 2018b],
JC2Sat-FF mission [ESA, 2018a], and the CanX program [Wikipedia, 2018b].

CONTROL MODELS FOR MULTI-SATELLITE SYSTEMS

A multi-satellite system contains two or more satellites working together to accomplish a
common goal. So it can also be recognized as a distributed space system (DSS). The con-
trol models for MSSs can be diverse, depending on the organizational relationship be-
tween the participating satellites. Two prevalent types of control models exist in current
DSS studies; the centralized control model (CCM), and the distributed control model
(DCM).

The CCM is also referred as the Master-Slave model [Kang et al., 2001] (Fig 1.3a),
which relies on a central controller (Master) which has access to all the information
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Table 1.1: Several representative multi-satellite systems: (1) The Morning and Afternoon Constellations
[Wikipedia, 2018h] are a group of Earth orbiting satellites with synergistic science objectives in similar sun-
synchronous orbits; (2) The Gravity Recovery and Climate Experiment (GRACE) mission [Wikipedia, 2018e]
uses two satellites to perform detailed measurement of Earth’s gravity field; (3) The TanDEM-X mission
[Wikipedia, 2018m] uses Synthetic Aperture Radar to generate a consistent global Digital Elevation Model
(DEM); (4) The Gravity Recovery and Interior Laboratory (GRAIL) mission [Wikipedia, 2018f] is a lunar sci-
ence mission to map the gravitational field of the Moon; (5) The Magnetospheric Multi-scale Mission (MMS)
[NASA, 2018a] is a unmanned space mission to study the Earth’s magnetosphere using four satellites; (6) The
PRISMA mission [Gill et al., 2007] contains two satellites to perform autonomous formation flying;

Name Satellites Purpose Year Owner Altitude
Aqua A synergistic instrument package measuring at visible, infrared, and microwave fre-

quencies allows comprehensive studies of water in the Earth/atmosphere system.
2002 NASA/GSFC

Aura Observations from limb sounding and nadir imaging allow studies of the horizontal
and vertical distribution of key atmospheric pollutants and greenhouse gases and
how these distributions evolve and change with time.

2004 NASA/GSFC

CALIPSO Observations from space-borne lidar, combine with passive imagery, will lead to
improved understanding of the role aerosols and clouds play in regulating the
Earth’s climate.

2006
NASA/GFSC

/LaRc

705 km
Afternoon

Constellation
CloudSat Cloud Profiling Radar allows the most detailed study of clouds to date and should

better characterize the role clouds play in regulating the Earth’s climate.
2006

NASA/GSFC
/JPL

GCOM-W1 Observations of water circulation changes. Specifically it observes precipitation,
vapor amounts, wind velocity above the ocean, sea water temperature, water levels
on land areas, and snow depths.

2012 JAXA

OCO-2 Three grating spectrometers are used to make global, space-based observations of
the column-integrated concentration of CO2, a critical greenhouse gas.

2014
NASA/GSFC

/JPL

LandSat-7 This mission provides global coverage, and spectral characteristics to allow com-
parisons for global and regional change detection and image data to various inter-
national users throughout the world during times of sudden global changes (e.g.
earthquakes or floods).

1999 USGS/NASA

Terra Terra is a multi-national, multi-disciplinary mission that helps us to understand
how the complex coupled Earth system of air, land, water and life is linked.

1999 NASA/GSFC

705 km
Morning

Constellation
EO-1 This mission develops and validates a number of instrument and spacecraft bus

breakthrough technologies. It is designed to enable the development of future earth
imaging observatories that leads to a significant increase in performance while also
having reduced cost and mass.

2000 NASA/GSFC

LandSat-8 This mission provides moderate-resolution measurements of the Earth’s terrestrial
and polar regions in the visible, near-infrared, short wave infrared, and thermal
infrared. Landsat 8 provides continuity service with the 38-year lifetime.

2013 USGS/NASA

GRACE
GRACE-1 GRACE is the first Earth-monitoring mission in the history of space flight.

Twin satellites took detailed measurements of Earth’s gravity field.
2002 NASA/DLR 500 km

GRACE-2
TerraSAR-X An imaging radar Earth observation satellite. It is a joint venture which is car-

ried out under a public-private-partnership between the German Aerospace Center
(DLR) and EADS Astrium.

2007
DLR/EADS 514 km

TanDEM-X
Mission

TanDEM-X TerraSAR-X’s twin satellite, an observation satellite using SAR (Synthetic Aperture
Radar) technology. It is an almost identical spacecraft to TerraSAR-X

2010

GRAIL
Mission

GRAIL A (Ebb) Satellites transmit and receive telemetry from the other spacecraft and Earth
-based facilities. To measure the gravity field and geological structure of the Moon.

2011 NASA/JPL
Periselene: 25 km
Aposelene: 86 kmGRAIL B (Flow)

MMS
Mission

No.1
Four identical spacecraft flying in a tetrahedral formation to study the
Earth’s magnetosphere.

2015 NASA
Perigee: 2,550 km

Apogee: 70,080 km
- 152,900 km

No.2
No.3
No.4

PRISMA
Mission

Mango Two satellites is used perform autonomous formation flying with autonomously
avoiding collisions.

2010 SSC
Perigee: 668,3 km
Apogee: 749 kmTango

of the entire system. Based on the information sent from each participant (Slave), the
controller needs to make all decisions regarding to specific mission objectives. Many
distributed systems chose CCMs because of their relatively simple implementation (e.g.
[Shao et al., 2000; Pei et al., 2004]). However, the CCM may become infeasible for dis-
tributed systems with a large number of participating satellites. Such systems can lead
to an unacceptable complex communication environment where the jammed chan-
nels can make the master unable to access the data provided by each participant in
time. These potential disabilities restrain the application of CCM for distributed sys-
tems. Meanwhile, the CCM may also become the performance bottleneck for an MSS
due to its requirements on the computational power.

DCMs, in contrast, can be used for those distributed systems which have a large
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(a) Master-slave model
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(b) Multi-agent model

Figure 1.3: Centralized master-slave model (left) and distributed multi-agent model (right)

number of participating satellites. In the terminology of distributed systems, participat-
ing satellites may also be called the agents of the systems. In a DCM, all the participants
need to work through team negotiation and coordination since there is no central con-
troller that makes decisions. One representative DCM is called the Multi-agent model
(Fig 1.3b). This concept was first proposed for a computer system which consists of mul-
tiple interacting intelligent agents (also referred to a Multi-agent System (MAS) [Ferber
and Weiss, 1999]). An automated intelligent agent in a MAS is commonly recognized to
have several characteristics: (1) Decision-making ability. An agent can make decisions
individually based on its status and mission requirements without any direct interven-
tion by human operators; (2) Interaction ability. An agent needs to be able to communi-
cate and establish interactions with other agents to achieve the global goal; (3) Reaction
ability. An agent needs to detect the changes in either the external operating environ-
ment or internal system status and provides corresponding strategies. Judging by these
characteristics, the participating satellites of an MSS can be considered as automated
intelligent agents.

Considering the diversity of space missions using MSSs, the corresponding multi-
agent models can have different topologies [Gong et al., 2015], such as the island topol-
ogy (Fig 1.4a), the cellular topology (Fig 1.4b), and several hybrid topologies (Fig 1.5).

Fig 1.4a indicates the island topology while Fig 1.4b shows the cellular topology. The
difference between an island topology and a cellular topology lies in the parallelization
grain. The island model is coarse-grained where each island consists of several subpop-
ulations, represented by the red circles in this figure. The inter-island communication
is done by migrating from one individual to another individual in another island. Using
the island topology can improve global search ability and save search time. The cel-
lular topology, on the other hand, is a fine-grained structure, where all the individuals
are placed in a network. Each individual is connected with its neighbors, which are the
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Migration

Island

(a) Island topology (b) Cellular topology

Figure 1.4: Sample topologies for multi-agent systems

only individuals it can communicate with and connect to. Cellular topology is particu-
larly efficient for highly complex problems. Besides these two typical topologies, hybrid
topologies combine two or more topologies hierarchically to absorb all their benefits,
improving problem-solving capability and scalability. Fig 1.5 shows three representative
hybrid topologies.

· · ·

Migration

Slaves

Island
master

· · ·

· · · · · ·

(a) Island-master topology

Migration

Island

(b) Island-cellular topology

Migration

Island

(c) Island-island topology

Figure 1.5: Sample hybrid topologies for multi-agent systems

COORDINATION FOR MULTI-SATELLITE SYSTEMS

Based on different mission requirements, the same MSS may required different coordi-
nation strategies. Team coordination for an MSS can be performed separately based on
two kinds of scenarios: cooperation scenarios and competition scenarios, as shown in
Fig 1.6.

For cooperation scenarios, all the satellites work together for a collective global goal.
Due to the differences in topology and system architecture, the cooperation scenarios
may use the centralized model or the distributed model. The centralized model uses a
central controller which employs centralized planning approaches [Siciliano et al., 2010]
for assigning tasks and generating control sequences for each team member. Using the
distributed model, all satellites have to perform team collaboration to solve task alloca-
tion problems [Zlot and Stentz, 2005]. Then, based on the sub-tasks assigned to each
satellite, the team needs to perform distributed planning [Siciliano et al., 2010] to gener-
ate feasible control sequences to meet all individual and global constraints.

For competition scenarios, each satellite is considered as a self-interested agent. For
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Figure 1.6: Concept discovery tree of team coordination approaches

these scenarios, the MSS could use the decentralized architecture. Here, the local objec-
tive and system status of each satellite is not fully transparent to other satellites. There-
fore, in order to continue operating the mission, all individual satellites need to negoti-
ate to reach a global agreement on task allocation problems [Shehory and Kraus, 1998].
Many decentralized planning approaches can be employed (e.g. in [Ponda et al., 2010;
Moehlman et al., 1992; Siciliano et al., 2010]).

MISSION PLANNING FOR MULTI-SATELLITE SYSTEMS

For efficient and effective space-based operations with a large number of satellites, on-
board autonomous systems are required. By employing team coordination, many simple
activities can be solved onboard. The operators in the mission control center then can in
principle, focus on non-nominal situations only. As shown in Fig 1.6, for onboard team
coordination, one vital stage is to perform planning to generate valid control sequences
for all participants. The basic idea of mission planning is that a computer or an opera-
tor generates feasible control sequences based on the mission requirements. These se-
quences will guide all the sub-systems to perform specific behaviors within the defined
time or order. This procedure is very complex due to massive characteristics associated
with communication capabilities, constraints from mission scientific requirements, on-
board storage capacities, and upload and download time windows.

For different coordination scenarios, the corresponding planning approaches can be
different. These planning approaches are mainly divided into traditional approaches
and artificial intelligence (AI) approaches according to the core algorithm. The tradi-
tional approaches use classical methods and algorithms to provide planning service.
Considering their excellent performance and reliable solutions on fully observable, de-
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terministic, and static operating environment, many early studies have shown their con-
tributions on this area (e.g. [Kwek, 1997; Richards et al., 2002; Flint et al., 2002]). How-
ever, traditional approaches have limitations on solving complex and large-scale plan-
ning problems. AI approaches, on the other hand, can handle partially observable, non-
deterministic, and unknown operating environment by employing heuristics methods.
AI approaches also show good adaptability and efficiency on finding valid solutions for
large-scale problems, loosely coupled and highly competition problems, and dynamic
problems (e.g. [Nissim and Brafman, 2012; Chbichib et al., 2012; Zidi et al., 2011; Xhafa
et al., 2012; Zhang et al., 2014; Gong et al., 2011]).

1.3. RESEARCH QUESTIONS
This thesis is triggered by a mission called “Discovering the Sky at the Longest Wave-
lengths" (DSL) [Boonstra et al., 2016]. It is comprised of nine satellites to perform low ra-
dio frequency observation and it is designed to operate in a Lunar Orbit. The long signal
transmission distance and challenging operating environment makes an OAS necessary
for this mission. Considering autonomous mission planning as vital for realizing full
onboard autonomy of an MSS, in this thesis, our research will focus on developing on-
board autonomous mission planning and re-planning systems. The developed concepts
are intended to be applicable for many MSSs, while DSL plays the role of a sample ref-
erence scenario. To sufficiently characterize and guide the research of this thesis, three
specific Research Questions (RQs) have been formulated in this section.

RQ1: What are the strengths of using AI in space missions? How to use a central-
ized AI algorithm in a multi-satellite system to decompose mission objectives and per-
form mission planning for the entire system?
To be able to coordinate an MSS based on a mission objective, the first step is to decom-
pose the primary mission objective, assign sub-tasks to each participating satellite, and
generate a sequence of onboard commands as the initial plan. Traditional planning and
scheduling approaches could solve specific problems with shorter computation time
and higher accuracy than most heuristic approaches. However, they may have problems
for dealing with complex constraints like linear, non-linear, convex and non-convex con-
straints. Real planning problems for an MSS could have more than one objective. They
also can be constrained by multiple types of constraints which traditional methods can-
not fulfill. Therefore, this RQ proposes to use Artificial Intelligence (AI) techniques for
an MSS to solve onboard mission planning problems. However, during mission opera-
tions, both the changes on initial mission objectives and the system failures caused by
the challenging space environment or spacecraft internal failures can lead to the inva-
lidity of the original mission plans. To identify these specific emergency situations, the
following research question related to re-planning has been formulated.

RQ2: How to define emergency situations which may occur during mission op-
erations? How to use AI algorithms to handle mission re-planning and rescheduling
problems?
This research question aims to detect and identify possible situations which could occur
due to the certain mission requirements. Based on these emergency situations, appro-
priate reaction strategies need to be formulated. Meanwhile, regular AI techniques used
in RQ1 need to be modified and adapted based on re-planning problems. For a real mis-
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sion, the central controller may have a certain probability of failure as well. In this case,
the organizational architecture of the MSS needs to be transferred from a centralized
architecture to a distributed one, where all the participating satellites need to work to-
gether to share the responsibility that the central controller originally used to hold. This
leads to the third research question of this thesis.

RQ3: How to design cooperation and negotiation approaches for an MSS to reach
an agreement? How to improve AI algorithms for distributed onboard mission plan-
ning problems?
Since the distributed architecture does not have a central controller, the global mission
objective needs to be decomposed and assigned through the cooperation and negotia-
tion among all participants. Developing efficient and effective negotiation mechanisms
are needed. The first sub-question requires to solve the team’s cooperation and nego-
tiation problems. Once all the satellites reach an agreement on the mission objective
allocation results, the second part of this RQ requires to solve the planning problems
for an MSS with a distributed architecture. A distributed onboard mission planning ap-
proach needs to be developed based on previous proposed approaches. Finally, compar-
ison with other state-of-the-art approaches shall be made to ensure that the proposed
approach is successful and efficient.

1.4. METHODOLOGY

SCENARIOS

To investigate the previously formulated research questions, various scenarios need to
be formulated to represent different characteristics of difficulties in each research ques-
tion. These scenarios can provide specific verification environments to test the feasi-
bility and applicability of the proposed methods and approaches. All these scenarios
are driven by one reference scenario mission, the DSL mission. The primary scientific
objective of this mission is to observe the universe in the hitherto unexplored, very low
frequency (below 30 MHz) electromagnetic spectrum range. To ensure filling of an entire
three-dimensional aperture and allowing all-sky observations, DSL contains one Mother
Satellite (MS) and eight Daughter Satellites (DSs) [Boonstra et al., 2016]. Therefore, the
basic MSS used in this thesis consists of one main satellite and eight participating satel-
lites. The mission objective is to collect radio signals from outer space as much as pos-
sible within a specific lifetime. Targeting possible scenarios, the organizational archi-
tecture of the MSS could use either a centralized or a distributed architecture. For our
research questions, the first two RQs will employ the centralized architecture scenario
where the MS acts as the central controller, while the distributed architecture scenario
will be used for RQ3. The details about these scenarios will be introduced in the next
chapter.

NUMERICAL SIMULATION

As previously mentioned, several scenarios are considered in this thesis. To develop suit-
able approaches for these scenarios, numerical simulation is used to characterize the
real-world problems. In this thesis, the simulators are developed in Matlab and Java. For
centralized approaches related in RQ1 and RQ2, all the simulations are assumed to be
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performed within the MS which is represented by a laptop with a 3.1 GHz Intelr Core™
i5 7267U dual-processor, 8 GB of RAM. For RQ3, to construct the distributed architec-
ture, we use Java as the development language to build the multi-agent system in a Java
IDE called Eclipse. To test the proposed approach, besides the high-end laptop used in
the previous RQs, several low-end computers are employed to represent the DSs with
lower computational power. Each of them has a 2.4 GHz Intelr Core™ i5 6300U dual-
processor with 8 GB of RAM.

Both the centralized and the distributed approaches use heuristic algorithms for op-
timization. To compare their performance, multiple runs will be used to test each pro-
posed approach. The statistical results will be presented as box plots, pie charts, bar
charts, and other statistical graphics.

VERIFICATION AND EVALUATION

To verify the correctness of the proposed approaches in this thesis, several benchmarks
are employed to test the performance of the proposed methods. For example, thirteen
representative test functions [Hedar, 2018b; Floudas and Pardalos, 1990] are employed to
test the performance of various candidate algorithms. Several Travelling Salesman Prob-
lems (TSPs) [University, 2018] are used to test the feasibility of both centralized [Johnson,
1990] and distributed optimization [Colorni et al., 1991] approaches. Job-shop schedul-
ing problems [Wikipedia, 2018g] are used to test the correctness of the proposed team
negotiation mechanisms [Agnetis et al., 2004].

To characterize the performance of the proposed methods, we also employ several
state-of-the-art methods for each RQ as competitors. Many centralized optimization al-
gorithms such as Genetic Algorithm (GA), Differential Evolutionary Algorithm (DE), Ant
Colony Optimization (ACO), and Particle Swarm Optimization (PSO) are used to com-
pare with the proposed centralized algorithms. Several task allocation approaches such
as Auction-based approaches and Utility-based approaches are used to compare with
the proposed negotiation mechanisms. Some representative distributed optimization
approaches which employ optimizers like distributed ACO (DACO), and coevolutionary
PSO (CPSO) are used to compare with the distributed optimization approach proposed
in this thesis.

1.5. THESIS OUTLINE
This thesis consists of seven chapters. The overview of this thesis is described in this sec-
tion. Chapter 1, the current chapter, introduces the history of space missions. It covers
the state-of-the-art of relevant topics like onboard autonomous systems of MSS, associ-
ated key primary control models, and team coordination approaches. Based on the re-
quired fundamentals and the telescript of the state of the art, three RQs are introduced.
Finally, methods to handle the RQs are introduced.

Chapter 2 introduces the background mission named DSL. Its scientific requirements
help to build the reference MSS which is used in this thesis. A literature review of exist-
ing mission planning algorithms and techniques is presented, including related topics
like task allocation approaches, optimization algorithms, negotiation mechanisms, and
search heuristics. This chapter also presents preliminary tests of comparing the tradi-
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tional methods and the heuristic methods on their performance of solving several opti-
mization problems, which can provide a basic insight for further research.

Chapter 3 introduces the development of an improved genetic algorithm (GA) for
solving initial planning problems using a centralized control model. The problem for-
mulation includes the notations, variables, constraints and the fitness function, based
on the mission requirements. The explanation of the proposed algorithm includes the
motivation for improvements, the basic principles and the determination of essential
variables. The verification uses both selected test functions and three other typical GAs
to verify the performance of the proposed algorithm. Then, the simulation results from
the DSL mission planning scenario illustrate the performance of the proposed algo-
rithm.

Chapter 4 considers potential emergency situations which may occur to the DS of the
DSL mission and proposes corresponding potential solution scenarios. A mathemati-
cal model of the re-planning problem is designed based on these scenarios, followed
by the architecture of the proposed re-planning system. Two re-planning methods are
proposed, with an explanation of the core algorithm, principles, re-planning strategies,
and corresponding pseudo codes. The simulation results show the performance of the
proposed re-planning methods for three proposed scenarios.

Chapter 5 focuses on developing coordination mechanisms for DSs. The organiza-
tion architecture of the reference MSS is reconstructed by following an assumed mal-
function of the MS. The MSS architecture is formulated by adapting ideas and methods
from game theory, based on the similarity between this distributed mission allocation
problem and typical perfect and imperfect information games. Considering the corre-
sponding applicable scenarios and existing negotiation mechanisms, two types of ne-
gotiation mechanisms are proposed. The comparison with other state-of-the-art mech-
anisms illustrates the performance of the proposed negotiation mechanisms. Recom-
mendations are made throughout the statistic results from the simulation.

In Chapter 6, a distributed mission planning approach is proposed. It starts with the
problem statements, including their notation, variables, local and global constraints,
and local and global fitness functions. Then, the detailed design procedure of this ap-
proach is introduced. The verification is realized by employing six instances from the
Travelling Salesman Problem (TSP) database. The comparison is made between the pro-
posed distributed approach with the previously proposed centralized approach. Finally,
simulations show the performance of the proposed approach as compared with other
distributed approaches.

Chapter 7 provides answers to each research question based on the results achieved
on each chapter. The strengths and weaknesses of each proposed method are high-
lighted. Higher level conclusions from the answers to the RQs are drawn. Future re-
search directions are proposed, along with preliminary thoughts on their methods, ap-
plications, new research fields and critical recommendations.
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T His chapter includes a brief introduction of the background mission which drives
this research, the literature review of the state-of-the-art on mission planning ap-

proaches and preliminary tests. The background mission of this thesis, called “Discover-
ing the Sky at the Longest Wavelengths” (DSL), is introduced first. Based on its scientific
requirements, basic assumptions related to the research in this thesis can be made. The
configurations and basic formulations of the multi-satellite system (MSS) used in this
thesis are investigated. Based on the research questions in the previous chapter and the
reference MSS, the literature review on related research topics is revealed. Tests on vari-
ous algorithms which have been reviewed are presented to examine their performance.
The preliminary results provide insight into suitable algorithms for this thesis.

2.1. BACKGROUND MISSION
As mentioned in Chapter 1, the background mission of this thesis is called the DSL mis-
sion [Boonstra et al., 2016]. The scientific objective of this mission is to observe the uni-
verse in the hitherto unexplored, very low frequency (below 30 MHz) electromagnetic
spectrum range. In this frequency range, terrestrial observations are severely hampered
by the strong ionospheric distortion and absorption, also known as man-made radio
frequency interference (RFI). To overcome this problem, space-borne observations are
needed.

Based on experiences from the RAE2-B explorer [Alexander et al., 1974], even at lu-
nar distance, interfering signals from strong terrestrial radio transmitters can still be de-
tected. However, the Moon can act as a natural shield to block any RFI from the Earth.
Fig 2.1 illustrates that the conical zone is suitable for the DSL mission to perform the ob-
servations since the radio emission from the Earth will be blocked by the Moon in this
area, called the “RFI-free zone" or “Blocked area”.

Earth

Moon

Lunar Distance

RFI-Free

Zone

Figure 2.1: RFI-free zone

Single radio antennas have limited directivity. In order to map the celestial sky for to-
mography, the system requires large baselines between antennas to overcome the weak
astronomical signals. Considering this requirement, the DSL mission chooses to use
an MSS with a total of nine satellites, consisting of one Mother Satellite (MS) and eight
Daughter Satellites (DSs).

The primary function of the MS is to carry all the DSs during the launch, and to re-
lease them after having reached the destination orbit. Once all the DSs have been de-
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ployed, another function of the MS is to act as the central controller and information hub
for gathering information from all DSs and providing control sequences. The total size
of the MS (shown in Fig 2.2) is 1300×1300×950 mm, including yet to be deployed DSs,
deployable solar panels, high gain antenna (for ground communication), inter-satellite
antenna (to receive and send information to DSs), attitude control system, and electrical
propulsion module.

Figure 2.2: Mother satellite with examples of parts of onboard sub-systems, including stowed antennas, daugh-
ter satellites, solar panels, momentum wheel, battery, and propulsion system (these two figures are taken from
[Boonstra et al., 2016]).

All eight DSs are identical on system functionalities and payloads, and act as data
collection nodes. Fig 2.3 shows the preliminary design of a DS, which is a small satellite
with the dimension of 300×300×300 mm and the mass of 12 kg. Its onboard memory
unit has a capacity of 128 Gbits. The inter-satellite communication for both DS-to-MS
and DS-to-DS is performed using a two-way radio frequency (RF) link, which enables a
6 Mbps data transmission rate.

Figure 2.3: Daughter satellite with examples of parts of onboard sub-systems: star trackers, propulsion system,
inter-satellite antenna, solar cells, and battery (these two figures are taken from [Boonstra et al., 2016]).

The DSL mission is inspired by the Westerbork Synthesis Radio Telescope which
forms a distributed antenna system for higher frequencies than DSL [Hogbom and Brouw,
1974] (Fig 2.4a). This MSS will be configured in a quasi-linear array with adjustable base-
lines for different scientific observation strategies. All DSs are docked on the MS during
launch. They will be in a similar orbit to the MS after deployment. This MSS is designed
to be reconfigurable in a lunar orbit. It can change the baseline of adjacent DS from 100
m to 100 km to provide interferometric observations and perform polarimetry with ra-
dio signals received by the antennas of each DS. The deployment procedures are shown
in Fig 2.4b. Based on this brief introduction of the DSL mission, some related scientific
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(a) Westerbrok Synthesis Radio Tele-
scope. Westerbork, the Netherlands
(figure taken from [ASTRON, 2018])

(b) Daughter satellites deployment schematic (figure taken from
[Boonstra et al., 2016])

Figure 2.4: Westerbrok telescope as the inspiration for the DSL configuration

requirements are provided in Tab 2.1.

2.2. LITERATURE REVIEW
The basic idea of mission planning is that an operator or the computer generates ad-
equate control sequences based on the mission requirements. These sequences will
allow the system to perform specific activities within the defined time window or se-
quence. This procedure is very complex due to the specific characteristics associated
with communication capabilities, constraints from scientific mission requirements, on-
board storage capacities, uplink and downlink time windows, orbital characteristics, and
other requirements or constraints. Considering the reference MSS described in the pre-
vious section, to solve the mission planning problems onboard, there are two types of or-
ganizational architectures. One is the centralized architecture where the MS is responsi-
ble for controlling the entire MSS. Another type is a non-centralized architecture, which
could be a distributed or a decentralized architecture based on the system topology. In
a distributed architecture, no MS is available and each DS is connected with other DSs
directly or through DS which acts as retranslator, as shown in Fig 2.5. The decentralized
architecture is like the distributed architecture but with more restrictions on the com-
munication environment, where each DS can only communicate with its neighbors. For
non-centralized architectures, the participating satellites need to implement different
distributed approaches to solve the mission planning problems.

As described in Chapter 1, when an MSS uses the centralized control model, it em-
ploys a central controller to oversee the entire team. Based on the information gathered
from each participating agent, the controller uses centralized problem-solving techniques.
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Table 2.1: DSL mission requirements and constraints [Boonstra et al., 2016]

MSS configuration
(1) 1 Mother Satellite;
(2) Minimally 5 (baseline 8) Daughter Satellites (For calibration and redundancy.
Also for higher reliability and longer lifetime;)

Orbit-related
(1) 350 km above Moon surface;
(2) Absolute orbit knowledge: 30 m;
(3) Relative orbit knowledge: 3 m;

Interferometry
(1) Formation flying with linear array;
(2) Adjustable baseline between 100 m - 100 km;

Payload

(1) Three orthogonal dipoles for each DS;
(2) Raw data downlink to MS with 6 Mbps through ISL;
(3) Raw data observation rate through antenna can reach 48 Mbps;
(4) Three channels receiver with a frequency of 0.1 MHz to 50 MHz;

Observation
(1) All observations need to be done within the observation window;
(2) Onboard memory cannot be overwritten during observation;

Communication
(1) All satellites need to keep radio silence within the observation window;
(2) MS can only communicate with one DS at the same time;

These problems are solved when the controller generates feasible solutions that can sat-
isfy all the mission constraints for the entire team. All these problems can be considered
as Constraint Satisfaction Problems (CSP) [Tsang, 2014]. For some other missions, the
solution needs to be optimal on specific criteria (e.g. time-optimal, energy-optimal).
These planning problems are considered as centralized optimization problems where
the objective function is formulated based on mission criteria. Many search algorithms
and optimization algorithms have been investigated and implemented in previous stud-
ies [Betts, 1998; Graham et al., 1979]. In this thesis, we first divide optimization and
search approaches into two categories: classical approaches and heuristic approaches
[Russell and Norvig, 2016]. Then, targeting the transmission architecture of the MSS, for
a distributed architecture, task allocation, and distributed optimization approaches will
be introduced.

2.2.1. CLASSICAL APPROACHES

BLIND SEARCH ALGORITHMS

As explained in [Russell and Norvig, 2016], blind search algorithms are a class of gen-
eral purpose search algorithms that operate in a brute-force way (also known as gener-
ate and test method). These algorithms are also called uninformed algorithms because
they do not need specific knowledge about the problem for searching. Many classical
approaches use blind search algorithms as solvers for constraints satisfaction and opti-
mization problems. Several well-known blind search algorithms are:

(i) Breadth-first search (BFS) [Moore, 1959] is a simple strategy for searching trees or
graph data structures. This algorithm always expands the root node first, then
comes to all the successors in the next lower level, and so on. Thus, BFS always
has the shallowest path to every node on the frontier. If there is more than one so-
lution, then the algorithm will find a solution with the minimal number of steps.
However, the main drawback of this algorithm is its memory requirements. Also, if
the solution is far off the beginning, then this algorithm is very time-consuming.
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Figure 2.5: Three organizational architectures: The one in the middle is the centralized architecture, which
has a single controller to control all the nodes; The one on the left is the distributed architecture, where all the
nodes are equivalent and are connected; The one on the right is the decentralized architecture, where each
node is only connected with its neighbors. (This figure is adopted from [Quantalysus, 2018])

(ii) Uniform-cost search (UCS) [Nilsson, 1971] follows the same idea as the BFS to ex-
pand the root node first in each level. Instead of expanding the shallowest node in
the BFS, the UCS expands the node with the lowest path cost. This algorithm has
the same weakness on memory requirement as the BFS.

(iii) Depth-first search (DFS) [Tarjan, 1972] is similar to the BFS except the priority of
the search order. The DFS searches each branch to the last one. Then it can move
to the second branch which has the same weight as the first branch. The memory
requirement has a linear relationship with the scale of the search graph. However,
the DFS has the possibility that it may go down to the most-left path forever. It
cannot guarantee to find a solution. Meanwhile, if more than one solution exists,
the DFS cannot guarantee to find the optimal one.

(iv) Depth-limited search (DLS) [Korf, 1990] is alleviated from DFS by adding a predeter-
mined depth limit l , which represents that any node at depth l is treated as if they
have no successors. This algorithm can solve infinite-path problems. However, if
the chosen depth l is less than the solution depth (which means the shallowest goal
is beyond the depth limit), using DLS may return incomplete solutions.

(v) Dijkstra’s algorithm [Dijkstra, 1959] runs on a weighted graph, starting with an ini-
tial and goal node. This algorithm aims to find a shortest path between nodes in
a graph, such as implementations on Google Maps. However, the computational
cost can be expensive since it performs a blind search. Meanwhile, it cannot han-
dle negative edges, which may lead to acyclic graphs and make the algorithm fail to
obtain the proper shortest path.

(vi) Bi-directional search (BS) [Pohl, 1971], as the name implies, searches from two di-
rections at the same time: one pushes forward from the beginning and the other
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one pushes backward from the goal. This algorithm can guarantee optimal solu-
tions with less memory requirement. Also, its search speed is much faster than
other search algorithms since it searches from two directions. However, it is hard
to implement BS because additional logic must be included to decide which search
tree needs to be extended at each step. Meanwhile, the BS requires to know the goal
state in advance, which could be not always possible to search backward through
possible states.

Besides the previous algorithms, there are many other derivative algorithms belonging
to blind search algorithms, such as depth-first iterative-deepening search (DFIDS) [Korf,
1985], combinatorial explosion (CE) [Edwards and Glass, 2000], and backwards chaining
(BC) [Russell and Norvig, 2016].

Many planning approaches have been designed based on the principle of uninformed
search algorithms. For example, the BFS has been used for motion planning [Lengyel
et al., 1990] and path planning [Sabra et al., 2006]. The DFS is used together with a dy-
namic programming algorithm for nonlinear integer programming problems in [Ng and
Sancho, 2001] and helps to explore unknown graphs in [Kwek, 1997]. In [Korf, 1990], the
DLS is combined with the DFIDS for solving real-time problems in a dynamic environ-
ment. Due to the weaknesses of long computation time and large memory requirements,
blind search algorithms are mostly used as a part of planning approaches to enhance the
partial search ability.

LINEAR PROGRAMMING

Linear Programming (LP) [Beasley, 1996] was first used in computer modeling to find the
best possible solution in a constrained environment to achieve best outcome (such as
maximum profit or lowest cost). However, LP is applicable only when all the constraints
are linear. It can only accommodate a limited class of objective functions. To implement
LP for a linear optimization problem, four components need to be formulated:

(i) Decision variables
Any optimization problem requires defined decision variables. These variables are
used to describe the different attributes of the problem.

(ii) Objective function
The objective function defines the purpose of the mission. Whether to find a solu-
tion to get the most or least, best or worst, can be described by the objective func-
tion. The objective function needs to be formulated as an algebraic expression to
show the relationship between the output and the decision variables.

(iii) Constraints
The constraints in LP represent the restrictions or limitations on the decision vari-
ables. They are formulated based on the mission requirements. The constraints
usually limit the search domain of the decision variables. For LP, the constraints
can be formulated either as equality or as inequality.

(iv) Boundaries
Boundaries can help to narrow the search domain for decision variables. Bound-
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aries are determined by the mission requirements. However, LP is still operable
without boundaries, though it needs a longer computation time.

Due to the unique structure of the LP, it is one of the most widely used techniques
of decision-making in business, industry and various other fields. Many problems for
multi-agent systems (e.g. planning & scheduling, modeling, and control, decision-making)
can be formulated as optimization problems with linear equality and inequality con-
straints. Therefore, many problems involving multi-agent systems are solved based on
the theory of LP. For example, in [Schouwenaars et al., 2001][Richards and How, 2002][Yil-
maz et al., 2008][Richards et al., 2002], mixed-integer LP is used to solve multi-agent
planning problems. In [Earl and D’Andrea, 2002][Matossian, 1996], LP is used for mod-
eling a multi-agent system. LP can also be used for controlling a multi-agent system
[Shamma, 2008][Baker, 1998][Reinl and Von Stryk, 2007].

To conclude, linear programming is a compelling, efficient approach for solving lin-
ear problems. However, LP also has obvious limitations. Firstly, it is hard to formulate
a real-world application as a mathematical problem. Secondly, the constraints of many
problems cannot be directly specified by linear equations. This limits the scope of us-
ing LP. Thirdly, for large-scale problems, using LP can be computationally expensive due
to its mathematical techniques. Because of the above limitations, it is difficult to find
optimal solutions for various problems.

DYNAMIC PROGRAMMING

Dynamic Programming (DP) was first developed by Richard Bellman [Bellman, 1954].
It is a mathematical optimization method to solve a complex problem by breaking it
down into a collection of simpler subproblems. Typically, all problems that require to
maximize or minimize certain quantities or counting problems can be solved through
DP. To implement DP for an optimization problem, four steps need to be followed:

(i) Characterize the structure of an optimization problem and break down the main
problem into simpler subproblems. Then formulate the decision variables, objec-
tive functions and boundaries based on the subproblems. Express how to use the
sub-problems to solve the entire problem.

(ii) Recursively define the value of an optimal solution by comparing it with previous
solutions through the evaluation of the objective function.

(iii) Compute the value of an optimal solution in a bottom-up fashion.

(iv) Construct the optimal solution of the entire problem from computed information
of the sub-problems.

There are many advantages of using DP. Firstly, the DP utilizes memorization techniques
to store results of sub-problems such that the same sub-problems will not be solved
again. Secondly, DP is well suited for a multi-stage or multi-point or sequential deci-
sion process. Thirdly, DP is applicable for both linear or non-linear problems, discrete
or continuous variables, and deterministic problems.

Due to the various advantages of DP, many MAS planning problems chose to use DP
as the solver. For example, in [Patek et al., 1999] the authors use a Neuro-Dynamic Pro-
gramming approach for multi-platform path planning problems. In [Flint et al., 2002],
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the cooperative path planning problem for a multi-vehicle system is modeled using a
stochastic DP framework. In [Ganguly et al., 2013], a DP based planning algorithm is
proposed for electrical distribution systems to optimize the feeder routes and branch
conductors sizes. In [Yuejin, 2005], DP is used to solve the optimization problem for
mission planning problems in multiple ground stations. Many other applications using
DP have been reviewed in [Bellman and Dreyfus, 2015].

While producing the optimal solution, the computational time of the DP is propor-
tional to the number of nodes in the graph. This depends on the griding (finer, coarser)
of the solution space and increases geometrically with the dimension of the solution
space. For the case of a large number of participants, DP may not be computationally
feasible. Meanwhile, since DP relies on the performance of subproblems, for some com-
plex planning problems, dividing a problem into subproblems and sorting intermediate
results consumes system memory, which may not be suitable for mobile devices (e.g.
CubeSat, UAVs).

2.2.2. HEURISTIC APPROACHES

Since all intelligent agents of an MAS are working in a common workspace, finding the
optimal control sequences for such MAS composed of a large number of participants is a
Non-deterministic Polynomial-time hard (NP-hard) problem. Therefore, many heuristic
algorithms have been implemented for centralized approaches. Several representative
categories will be illustrated here.

INFORMED SEARCH

Unlike the blind search mentioned in classical approaches, the informed search can find
solutions more efficiently using problem-specific knowledge beyond the definition of
the problem itself. Informed search tries to reduce the amount of search activities by
making intelligent choices for the nodes that are selected for expansion. This implies the
existence of some way of evaluating the likelihood that a given node is on the solution
path. In general, this is done using a heuristic function. Two famous search algorithms
belong to this catalogue:

(i) Greedy Best-first search (GBFS) [Russell and Norvig, 2016] is the general name for
search and optimization algorithms which always make the greedy choice at each
selecting point based on the heuristic function g (n). It makes a locally-optimally
choice, hoping it can lead to a globally optimal solution. Greedy searches do not
require to be completed, and they do not necessarily detect the shortest path. The
complexity of selection can be reduced substantially with a good heuristic function.
The amount of the reduction is affected by the particular problem and the quality of
the heuristic. The worst case performance of GBFS is no better than the BFS. There-
fore, many other approaches combine the GS to enhance the local search ability.
[Churchill and Buro, 2013] propose a novel GBFS called Portfolio greedy search for
large-scale StarCraft combat scenarios. In [Barer et al., 2014], the authors com-
pare GBFS with two other algorithms for multi-agent path-finding problems and
propose several improvements. [Borrajo, 2013] implements lazy GBFS with actions
costs to support the private planning part of the proposed approach.
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(ii) A∗ search [Hart et al., 1968] is an extension of Dijkstra’s algorithm. This algorithm
chooses the node on the search space for which its heuristic function is minimal.
Instead of employing the heuristic function g (n) which is used to estimate the cost
to reach the goal from a current node in the GS, the heuristic function combines
h(n), the cost to reach the node and g (n). For complex state spaces, A∗ often be-
comes impractical to find an optimal solution. Researchers either use variants of
A∗ to find suboptimal solutions quickly or use it to design heuristics that are more
accurate but not strictly admissible. A well designed A∗ heuristic can provide enor-
mous benefits compared with any blind search algorithms.
Many planning approaches have implemented the A∗ algorithm. For example, in
[Nissim and Brafman, 2012], a parallel version of the A∗ algorithm is designed for
multi-agent planning benchmark problems. [AlShawi et al., 2012] proposes a fuzzy
approach with A∗ to enhance the lifetime for wireless sensor networks. [Li and Sun,
2008] proposes an improved A∗ algorithm to solve the route planning problem for
multiple UAVs.

LOCAL SEARCH

The former search algorithms are all designed to explore the search space systematically.
To achieve the systematicity, these algorithms usually keep one or more paths in mem-
ory, and record alternatives which have been explored along the path. This path is the
solution to the problem when the goal is found. However, in many problems, the path to
the goal is irrelevant. To avoid this, a different class of algorithm called Local Search (LS)
can be considered. LS is a heuristic method for solving the hard optimization problems,
which operate using a single node and move only to its neighbors. Although LS is not
systematic, it has two key advantages: (1) since it uses only one node at each step, the
memory requirement is minimal; (2) it can find reasonable solutions for problems with
a vast or infinite search space, which systematic algorithms are unable to find. Due to
its advantages, there are many derivatives for LS. Several representative algorithms are
introduced here:

(i) Hill Climbing (HC) [Russell and Norvig, 2016] search algorithm is an iterative algo-
rithm that starts at an arbitrary point and continually only moves in the direction of
increasing value (i.e. climbing a hill). It terminates when it reaches the "best" solu-
tion where all the neighbors’ value are not better than the current value. The HC is
also called greed local search since it always chooses the best neighbor. This char-
acteristic allows HC to improve a bad state and lead to rapid convergence. How-
ever, HC can also get stuck due to local maximum, ridges or plateaus. Variants of
HC have been invented due to these weaknesses, such as Stochastic HC [Juels and
Wattenberg, 1996], First-choice HC [Karypis and Kumar, 2000], and Random-restart
HC [Hoos, 1999].
For mission planning problems, many researchers propose to use HC as a solver.
For example, [Gerkey et al., 2005] proposed to use a parallel stochastic HC for a
small size multi-robot system to solve the actions coordination problems. [Rocha
et al., 2008] proposed an autonomous map building approach that uses occupancy
grid maps as representation model and employed HC for exploring the unknown
environment. This approach can be implemented for either a single robot system
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or multi-robot systems. In [Chbichib et al., 2012], the authors combined HC with a
descent algorithm to solve large-size multi-vehicle routing problems.

(ii) Tabu Search (TS) [Glover, 1989, 1990] was created by Fred W. Glover. It uses a neigh-
borhood search to iteratively move from one potential solution to a more promising
solution in the reachable search area (neighborhood). To avoid the pitfalls existing
in local search procedures, TS uses three types of memory structures, which are
short-term, intermediate-term, and long-term for guiding purposes. These flexi-
ble memory structures are also known as Tabu lists, which are sets of rules to filter
which solutions will be admitted to a certain neighborhood that is to be explored
next. By employing the adaptive memory feature, TS allows the implementation
of procedures that are capable of searching the solution space economically and
effectively. In addition, TS can also combine with other meta-heuristics to create
hybrid methods.
Since TS can overcome the local optima problems which could happen for ordinary
LS, many studies have been done using various TS derivative algorithms for mis-
sion planning problems. For example, for multi-vehicle static Dial-a-Ride problem
(DARP), [Cordeau and Laporte, 2003] design a TS heuristic to minimize route du-
ration and ride times. This method has also been implemented in another article
[Attanasio et al., 2004] for dynamic DARP. [Alonso et al., 2008] propose an algo-
rithm based on TS for site-dependent multi-trip periodic vehicle routing problems.
In [Gendreau et al., 1999], the authors proposed an elaborate TS which embedded
an Adaptive Memory Procedure (AMP) for solving the heterogeneous fleet vehicle
routing problem. The same idea was also used for solving the Team Orienteering
Problem (TOP) in [Tang and Miller-Hooks, 2005].

(iii) Simulated Annealing (SA) was created by N. Metropolis in 1953 [Metropolis et al.,
1953]. As described before, the HC always goes “uphill” and never will choose for
lower value at the current node. This greedy characteristic makes HC incomplete,
since it can get stuck with the local maximum. Simulated Annealing (SA) combines
the HC with a random selection so that it can be both efficient and complete. The
name of SA stems from metallurgy, where annealing is the process to heat up the
materials like metals and glass to a high temperature and then slowly cool them
down, eventually making them reach a low-energy crystalline state. Following the
same idea in the real world annealing process, SA uses a temperature variable T to
adjust the moving probability. The temperature T starts with a high value and then
slowly decreases to simulate the cooling process. While this temperature variable
is high, the algorithm has a higher probability to accept solutions that are worse
than its current solution. This gives the algorithm the ability to escape from any
local optimal. When the temperature reduces, the probability of accepting worse
solutions decreases, which allows the algorithm to gradually focus on an area of the
search space where the approximately optimum solutions can be found.
The adjustment on moving probability makes SA remarkably effective at finding an
approximately optimum solution when dealing with large-scale problems which
contain numerous local optima. Also, this algorithm is suitable for parallel pro-
cessing and can handle very complex nonlinear optimization problems. However,
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its performance strongly depends on the initial parameters, which are not easy to
formulate for some complex problems. In [Thangiah et al., 1994][Chiang and Rus-
sell, 1996][Baños et al., 2013], SA is used to solve the vehicle routing problem with
time windows. [Aydin and Fogarty, 2004] proposes to use parallel SA for multi-agent
job-shop scheduling problems. In [Zidi et al., 2011], the authors propose a multi-
objective SA for solving the multi-agent DARP (Dial A Ride Problem). [Keinänen,
2009] indicates that SA can also be used for multi-agent coalition structure genera-
tion problems.

EVOLUTIONARY ALGORITHMS

Inspired by natural selection in Darwin’s theory of biological evolution, Evolutionary Al-
gorithms (EAs) use mechanisms in nature, such as reproduction, selection, mutation,
recombination, and termination. There are many different variants of EAs. The com-
mon underlying idea of all these algorithms is the same. Given a population of individ-
uals, the environment will perform natural selection based on the performance of these
individuals, and eventually, the best individual will survive. These characteristics make
EAs the generic population-based meta-heuristic optimization algorithms. EAs are com-
monly used to solve problems that cannot be easily solved in polynomial time, such as
NP-hard problems. They also perform well-approximating solutions for all kinds of opti-
mization problems. Two popular types of EA will be introduced in this thesis, along with
the application of these algorithms.

(i) Genetic Algorithm (GA) [Whitley, 1994] is a search heuristic that mimics the process
of natural selection, which is the most widely used AI algorithm. It can be used to
find optima in many fields, such as path planning [Ponda et al., 2015; Li et al., 2000],
resource allocation [Kanury and Song, 2006], collision avoidance [Duan et al., 2013],
mission scheduling [Xhafa et al., 2012], and so forth. One GA requires several steps:
initialization, selection, genetic operators, and termination. Using GAs has several
advantages. Firstly, the GA is easy to implement for any kind of optimization prob-
lem. Secondly, it can find quality solutions in a short time. Thirdly, the genetic
operators can help GAs escape from local maxima. However, GAs also have some
limitations. Firstly, it is hard to formulate the mathematical model which can reflect
the problem to be solved. Secondly, for a complex problem, GA does not scale well
with complexity. When the number of elements which are exposed to mutation is
large, there is often an exponential increase in the size of search space. Further-
more, GA cannot solve problems which their fitness functions are only represent as
right or wrong. This means that GA cannot solve decision-making problems.
Considering the advantages of GAs, many researchers have implemented various
GAs for different multi-agent planning problems. For example, [Liu et al., 2004]
uses based-knowledge genetic operators to enhance the performance of GA for
multi-mobile-robotic system path planning problems. In [Pehlivanoglu, 2012], a
new GA called multi-frequency vibrational GA is proposed to solve the path plan-
ning problems for multiple UAVs. [Chilan and Conway, 2007] uses a binary GA for
the outer loop planning and a real-valued GA for the inner loop. In [Gad and Ab-
delkhalik, 2011; Abdelkhalik and Gad, 2012], the authors develop a hidden genes
method and a dynamic population size method to modify GA for finding flyby se-
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quences and optimal trajectories. In [Xhafa et al., 2012], the authors present a
suitable formulation of satellite scheduling and various forms of optimization ob-
jectives, mainly using GA for satellite ground station scheduling. [Tangpattanakul
et al., 2015a] and [Tangpattanakul et al., 2015b] presented a biased random-key ge-
netic algorithm, which has been used for multi-user, Earth observation scheduling
problems.

(ii) Differential Evolutionary (DE) [Storn and Price, 1997] is another meta-heuristics
under the EA family. Similar with GA, DE is also a population-based, combinato-
rial optimization algorithm. Although DE has the same theory foundation as GA,
the correspondences are not as exact as GA. The significant difference is that DE is
using actual real numbers. As a result, the ideas of mutation and crossover are sub-
stantially different. However, a benefit is that there are handful of results showing
that DEs are often more effective and/or more efficient than GAs. Moreover, when
working on numerical optimization, DE is able to represent problems as actual real
numbers instead of squeezing them into a chromosomal representation.
In [Chakraborty et al., 2009], the authors propose an alternative approach to solve
both centralized and distributed realizations for multi-robot path planning prob-
lems by employing a parallel DE. [Nikolos and Brintaki, 2005] provides an off-line
path planner for multiple UAVs coordinated navigation and collision avoidance in
known static maritime environments by using DE techniques. In [Rakshit et al.,
2013], the authors combine DE with Q-learning to realize an adaptive memetic al-
gorithm for a real-time multi-robot path planning problem. [Mingyong and Erbao,
2010] construct a general mixed integer programming model which uses an im-
proved DE to solve the vehicle routing problems with simultaneous pickups, deliv-
eries, and time windows.

SWARM INTELLIGENCE

Mostly inspired by biological systems, a swarm is a large number of homogeneous agents
interacting locally among themselves. In a swarm, there is no central controller to over-
see the entire team. Swarm Intelligence (SI) is a relatively new branch of AI inspired
by many social swarms in nature, such as ant colonies, fireflies, and flocks of birds.
Many research papers are reporting the successful application of SI algorithms in var-
ious optimization problems. The basic principles of SI make them suitable for a variety
of problem domains including function optimization problems, scheduling and plan-
ning, structural optimization, and data and image analysis. In this thesis, two of the
most popular SI algorithms will be introduced.

(i) Ant Colony Optimization (ACO) [Colorni et al., 1991] is a cooperative population-
based optimization algorithm which draws inspiration from the social behavior of
ant colonies. As each ant constructs a route from the nest to food by stochastically
following the quantities of pheromone level, the intensity of laying pheromone
would bias the path-choosing, decision-making of subsequent ants. The basic prin-
ciple of ACO is to model the optimization problem to be solved as a search for an
optimal path in a construction graph and to use artificial ants to search for feasible
solutions. Artificial ants simulate the behavior of real ants in several aspects: (1)



2

28 2. STATUS REVIEW AND SETTING

The ants deposit pheromone trails on each search node to indicate the quality of
the current node; (2) The solutions are constructed through the choices the ants
made through the construction graph. These choices depend on the pheromone
trails; (3) The decreasing trend of these pheromone trails relies on the quality of
the current choice of heading direction. Several advantages of the ACO are pro-
posed through previous studies: (1) ACO has an inherent parallelism, which can
be directly implemented for parallel computing; (2) Compared with other heuris-
tics, in terms of solving performance, it shows a strong robustness and the ability to
search for better solutions; (3) ACO can be used in dynamic environments, coping
with changes on objectives or settings.
Considering its advantages, ACO has been used to solve various optimization prob-
lems, such as planning & scheduling, sequential ordering, assembly line balancing,
TSP, etc. For MASs, ACO also provides powerful capabilities for many planning sce-
narios. For example, [Leung et al., 2010] identify that using ACO incorporated with
MAS can effectively solve the integrated process planning and shop-floor schedul-
ing problems. In [Garcia et al., 2009], a new method based on ACO and a simple
tuning algorithm is proposed for mobile robot path planning problems. For multi-
agent team collaboration problems, ACO can also provide a good performance,
such as in [Yingying et al., 2003] and [LIU et al., 2010]. [Zhang et al., 2014][Gao et al.,
2013][Wang et al., 2009] illustrate that ACO techniques could also be implemented
for multi-satellite system’s optimization, planning, and scheduling.

(ii) Particle Swarm Optimization (PSO) [Kennedy, 2011] is another population-based
optimization algorithm which simulates the swarm behaviors of bird flocking. PSO
is based on many individuals. Each individual is called a particle, which represents
a potential solution. Each particle has a fitness value which indicates the current
cost to get to the target, and a velocity value which indicates the flight direction and
is calculated according to the distance between a particle’s current position and its
target position. The position of a particle is influenced by both the best position
visited by it, and the best position visited by its neighbors. When one particle’s
neighbors are the entire swarm, the neighbor’s best position can be referred to as
the global optimal. All the particles iteratively evaluate the fitness of the particle
solutions and remember the location of their best fitness value. Once the termi-
nation conditions have been reached, the algorithm stops. Several advantages of
using PSO have been revealed by researchers: (1) PSO can be widely implemented
for both engineering and scientific research; (2) Only the most optimal particle can
transmit information to other particles. With the development of generations, the
computation speed can be much faster; (3) PSO uses real number for coding, which
is directly influenced by the solution. The variables’ dimension is equal to the con-
stant of the solution. Same as ACO, PSO is also implemented in many MAS appli-
cations due to its advantages. For example, in [Saska et al., 2006], PSO is used for
robot path planning problems because of its relatively fast convergence and global
search character. [Pugh and Martinoli, 2007] presents a multi-search algorithm in-
spired by PSO to mimic the multi-robot search process. [Gong et al., 2011] imple-
ments a multi-objective PSO for robot path planning problems, where the operat-
ing environment is dynamic due to unexpected sources of danger. In [Duan et al.,
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2013], the authors proposed to combine PSO with GA to solve multi-UAV formation
reconfiguration problems.

2.2.3. TECHNIQUES RELATED TO DISTRIBUTED SYSTEMS

TEAM NEGOTIATION & COOPERATION

Many of the centralized approaches for MASs have focused on the analysis of the mis-
sion allocation problem under a stable operating environment. However, in this thesis,
the mission platform is an MSS, which will operate at a lunar orbit. Unpredictable sit-
uations may occur to every member of the system, such as system failures caused by
meteorite, or a failure of onboard electronic components caused by cosmic radiation,
etc. Centralized approaches for the MSS are unreliable under these scenarios. Therefore,
the MSS needs to solve task allocation problems through team negotiation and cooper-
ation mechanisms. Kose [Kose et al., 2004] uses the reinforcement learning approach
for solving self-interested robot collaboration problems. However, due to limited com-
munication, the system could converge to a sub-optimal solution. Zheng and Koenig in
[Zheng and Koenig, 2009] propose a K -swaps mechanism to help the distributed algo-
rithms exchange assigned tasks among agents to reduce the team cost. However, it is
difficult to find a suitable value for K which can provide excellent performance both on
team cost and on the computation time. Lang and Fink [Lang and Fink, 2012] present a
quota-based negotiation mechanism for minimizing the total cost for a multi-machine
scheduling problem. Later in [Lang et al., 2016], they re-design this mechanism by im-
plementing a simulated annealing algorithm.

Raffard, Tomlin, and Boyd [Raffard et al., 2004] introduce an optimal distributed ap-
proach that uses a dual decomposition technique for a group of cooperative agents.
However, the negotiation procedure can only start when the entire team is willing to co-
operate. This assumption is not suitable for our case since satellites cannot establish the
communication link with others on a continuous basis. In [Jin and Li, 2016], the authors
propose a k-winner-take-all (k-WTA) negotiation mechanism for a multiple robots sys-
tem in a limited communication environment. However, in a real-world application, the
single point of failure on the winner could cause the algorithm to pause and go backward
to perform k-WTA again. [Choi et al., 2009] propose two decentralized auction-based ap-
proaches, namely, the consensus-based auction algorithm and consensus-based bundle
algorithm, for a fleet of autonomous mobile robots. Gao in [Gao et al., 2009] proposes an
evolutionary computation decentralized approach using the genetic algorithm for solv-
ing MRTA (Multi-robot Task Allocation) problems. However, it is time-consuming for all
agents to agree to regret the current assignment if a task has been bidden. The main
advantage of non-centralized approaches is the strong robustness that can tolerant low-
level system failures. The limitation of these approaches lies in the message communi-
cation between agents. If communication links are not sufficiently reliable, the outcome
may degrade.

DISTRIBUTED OPTIMIZATION APPROACHES

Most space applications apply centralized approaches due to their various advantages,
such as easy implementation, accurate solutions, less communication required than
with distributed approaches. However, centralized approaches cannot support some



2

30 2. STATUS REVIEW AND SETTING

distributed systems when no spacecraft can take over the responsibility of being the cen-
tral controller because of hardware or software constraints. Therefore, scientists have
developed interests to explore distributed mission planning approaches.

Izzo [Izzo and Pettazzi, 2007] develops a behavior-based path planning algorithm
using an equilibrium shaping technique for a set of identical spacecraft to reach a given
configuration. This approach can autonomously assign the final configuration to all the
satellites with a minimum amount of inter-satellite communication. Giovanini [Gio-
vanini et al., 2007] formalizes a multiple UUVs (Unmanned Underwater Vehicles) au-
tonomous mission planning problem as a receding horizon mixed-integer constrained
quadratic optimal control problem. They propose a distributed Nash-based game ap-
proach aimed to divide the planning problem into a set of subproblems which can be
distributed among the mission agents. Torreño [Torreño et al., 2012] proposes a coop-
erative refinement planning approach which builds upon the multi-agent partial-order
planning paradigm. The comparison with a distributed Constraint Satisfaction Prob-
lem (CSP) based MAS planning approach under different levels of coupling between
the agents is made to show the general capability of this system. Gao [Gao et al., 2016;
Zhen et al., 2018] proposes to use the improved distributed Ant Colony Optimization
(ACO) algorithm following the bottom-top structure for solving search-attack mission
self-organization problems. The authors have implemented this approach in both two-
dimensional and three-dimensional space. Evers [Evers et al., 2014] introduces the Max-
imum Coverage Stochastic Orienteering Problem with Time Windows (MCS-OPTW) and
develops a fast heuristic algorithm which could cope with the uncertainty of the mission
operation and could re-plan with the appearance of time-sensitive targets. Wu [Wu et al.,
2018] adopts a newly developed distributed genetic algorithm (DGA) for multiple UAVs
to cooperate in multiple task assignment problems. The proposed DGA is used in each
UAV to generate feasible task assignments, and Dubin’s paths are used for trajectory gen-
eration.

Besides the previously mentioned methods, there are many other distributed ap-
proaches for different kinds of MAS [Han et al., 2014; Das et al., 2015; Bhandari et al.,
2014]. However, two key points still need further investigations when implementing dis-
tributed planning approaches (DPAs) for an MSS.

1. Most DPAs, during each iteration, usually choose to peel away the local regenera-
tion procedure from the group information exchange procedure. This strategy can
speed up the computation time for specific scenarios. However, if constraints on
different agents are highly-coupled, employing those DPAs can be computation-
ally expensive.

2. Many studies have failed to cope with unexpected changes on operating agents
[Jin and Li, 2016]. The proposed DPAs are either especially suited for stable opera-
tional environments where all agents stay safe during the mission, or can only per-
form mission re-planning once the previous planning procedures are completed.
Few algorithms can handle unexpected changes while the current planning pro-
cedures are running onboard.
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2.3. PRELIMINARY CONCEPT SELECTION

In the previous section, many algorithms have been introduced, which are able to solve
various optimization problems. Considering the complexity of our reference mission
DSL, the mission planning problems could be solved by either centralized or distributed
approaches. For different scenarios, the number of objective functions can be one or
more, while the type of constraints can be consistent or mixed. To efficiently solve var-
ious planning problems, the MSS needs a robustness solver which can handle different
types of optimization problems. Hence, in this section, a preliminary selection of al-
gorithms has been made to draw basic conclusions for our research. These candidate
algorithms are selected based on their categories and characteristics, basically covering
both classical approaches and heuristic approaches. These algorithms are Breadth-first

Table 2.2: Six unconstrained test functions [Surjanovic and Bingham, 2018a]: (1)The Ackley function, with a
two-dimensional form, characterized by a nearly flat outer regions and a large “hole” at the center; (2)Bo-
hachevsky functions all have the same similar bowl shape. The shown shape is the first Bohachevsky function;
(3)The Booth function shows a plate shape; (4)Rosenbrock functions are also two-dimensional forms, with a
valley shape; (5)Michalewicz functions have a two-dimensional form with steep ridge shape; (6)Beale func-
tions have sharp peaks at the corners of the input domain.

Function
Name

Variables
Number

Global
minimum

Function
Shape

Ackley
Function

n
f (x∗) = 0,
at x∗ = (0,0, ...,0)

Bohachevsky
Function

2
f (x∗) = 0,
at x∗ = (0,0)

Booth
Function

2
f (x∗) = 0,
at x∗ = (1,3)

Rosenbrock
Function

n
f (x∗) = 0,
at x∗ = (1,1, ...,1)

Michalewicz
Function

2
f (x∗) =−1.8013,
at x∗ = (2.20,1.57)

Beale
Function

2
f (x∗) = 0,
at x∗ = (3,0.5)
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Search (BFS), Linear Programming (LP), Dynamic Programming (DP), A∗ Search (A∗),
Simulated Annealing (SA), Genetic Algorithm (GA), Differential Evolution Algorithm (DE),
Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO).

Comparing the performance of different optimization algorithms is usually done by
using common standard benchmark test functions, which are also known as artificial
landscapes. Since planning problems are considered as CSP and optimization prob-
lems, the test functions used here need to cover all kinds of problem types ranging from
unconstrained optimization problems to constrained problems. For unconstrained op-
timization problems, we employ six representative test functions, as shown in Tab 2.2.
These six test functions cover six shapes of unconstrained optimization problems as ex-
plained in the previous table. The Ackley function has many local minima which can trap
algorithms from finding the global minimum. The Bohachevsky functions have three
forms, all of them continuously convex and showing bowl shapes. The Booth function is
a continuous convex test function which shows a plate shape. The Rosenbrock function
is defined in an n-dimensional space, which is also a continuous convex function. The
Michalewicz function is also defined on an n-dimensional space, which has a total of n!
local minima. It has three global minima corresponding to three variable dimensions, for
n = 2, f (x∗) = −1.8013, for n = 5, f (x∗) = −4.687658, and for n = 10, f (x∗) = −9.66015.
The Beale function is a continuous non-convex function, which is also multimodal. The
idea of using these test functions is to test whether the candidate algorithms can han-
dle a simple unconstrained optimization problem. For the sake of simplicity, these six
unconstrained test functions are labeled as TF1 to TF6, respectively.

Besides the unconstrained test functions, to further test the candidate algorithms’
performance on different constrained optimization problems, some constrained test
functions are employed here, shown in Tab 2.3.

The constrained test functions are named directly by following the unconstrained
test function numbers, starting from TF7. To ensure a variety of test functions, these
eight functions contain three types of objective functions which are quadratic, non-
linear, and linear. For different functions, the number of variables and constraints are
also different. The constraints column in Tab 2.3 contains four kinds of constraints:
linear inequality constraints (LI), nonlinear inequality constraints (NI), linear equality

Table 2.3: Eight constrained test functions gathered from [Hedar, 2018a]

Function
Number

Variables
Number

Function
Type

Constraints Global
minimumLI NI LE NE

TF7 13 Quadratic 9 0 0 0 f (x∗) =−15
TF8 20 Nonlinear 2 0 0 0 f (x∗) = 0.803619
TF9 10 Nonlinear 0 0 0 1 f (x∗) = 1

TF10 5 Quadratic 4 2 0 0 f (x∗) =−30665.539
TF11 4 Nonlinear 2 0 0 3 f (x∗) = 5126.4981
TF12 2 Nonlinear 0 2 0 0 f (x∗) =−6961.81388
TF13 10 Quadratic 3 5 0 0 f (x∗) = 24.3062091
TF14 8 Linear 6 0 0 0 f (x∗) = 7049.3307
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constraints (LE), and nonlinear equality constraints (NE). The specific number of con-
straints for each function is also revealed here, along with the global minimum of the
corresponding functions.

Table 2.4: Test results on 14 test functions from nine candidate algorithms

Algorithm candidates
Test function number

BFS LP DP A* SA GA DE ACO PSO
TF1 Yes S Yes Q Yes Q Yes Q Yes Q Yes M Yes M Yes Q Yes Q
TF2 Yes S Yes M Yes Q Yes Q Yes Q Yes Q Yes Q Yes S Yes S
TF3 Yes M Yes S Yes Q Yes Q Yes Q Yes Q Yes Q Yes S Yes S
TF4 Yes M Yes M Yes M Yes Q Yes Q Yes Q Yes Q Yes S Yes S
TF5 Yes S Yes Q Yes M Yes Q Yes Q Yes M Yes M Yes Q Yes Q
TF6 Yes M Yes Q Yes Q Yes Q Yes Q Yes M Yes M Yes S Yes S
TF7 Yes VS No Yes M Yes VS Yes VS Yes S Yes M Yes S Yes S
TF8 No No Yes M Yes VS Yes VS Yes S Yes S Yes VS Yes VS
TF9 Yes VS No No Yes VS Yes VS Yes M Yes S Yes S Yes S

TF10 Yes VS No No Yes VS Yes VS Yes M Yes S Yes M Yes M
TF11 No No No Yes VS Yes VS Yes M Yes S Yes M Yes M
TF12 Yes VS No No Yes VS Yes VS Yes M Yes M Yes M Yes M
TF13 Yes VS No No Yes VS Yes VS Yes S Yes S Yes VS Yes VS
TF14 Yes VS Yes M Yes M Yes Q Yes VS Yes M Yes M Yes S Yes S

Tab 2.4 illustrates the test results of nine candidate algorithms on 14 test functions.
For each test function, we have implemented all candidate algorithms, and re-run each
algorithm 10 times to gather statistical results. TF1 to TF6 are all unconstrained test
functions, while TF7 to TF14 are constrained functions. For each algorithm, the column
on the left represents the feasibility of using this algorithm to get the correct solution for
the corresponding test function. Considering that all the test functions have the global
minima, to be more direct, a binary evaluation system is designed. "Yes" stands for the
positive conclusion that this algorithm can find the global minimum or a near-global
minimum where the difference to the global minimum is less than 5% for this function.
"No" stands for the failure when the algorithm is unable to find the feasible solution,
or the difference between the solution and the global minimum is larger than 5%. The
right column stands for the convergence effectiveness of reaching the global minimum.
"Q" stands for quick, "M" means medium, "S" represents slow, and "VS" is very slow. All
these symbols represent the statistical convergence time of solving the corresponding
test functions. This evaluation system is employed to simplify the comparison among all
the candidate algorithms. For each test function, the convergence time of all the capable
algorithms are represented by one symbol, which is concluded based on the computa-
tion time ranking list.

Based on the test results, the BFS can solve most of the test functions, except for those
who do not have a globally optimal solution. This forces BFS unable to terminate. Mean-
while, the shortsighted feature makes BFS slow on finding the optimal solutions. Due to
the unique requirements on LP, it can only solve the functions with linear objective func-
tion and constraints. Therefore, most of the constrained test functions are unsolvable by
LP because of the nonlinear constraints. DP shows similar results as LP, except its con-
vergence time is faster as compared to the LP. Although classical approaches can solve
some of the test functions in a short time, for complex constrained functions, the effi-
ciency of these algorithms decreases significantly.

Heuristic approaches can solve all the test functions. The A∗ search algorithm can
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correctly deal with the unconstrained and linear constrained problems. However, when
facing nonlinearly constrained problems, A∗ algorithm needs more computation nodes,
which makes it less efficient. SA can solve the unconstrained problems in a short time,
but for the constrained problems it is much slower. This is because SA needs to set a
specific time for the algorithm to search the whole search space. It means the algorithm
needs to have a constant long search period to find an optimal solution. Therefore, it is
difficult to determine this constant time. If it is set to be too long, it can waste time, but
if it set to be too short, the algorithm may not find the best solution. This defect severely
affects the adaptability of this algorithm.

GA and DE both belong to the same algorithm family (Evolutionary Algorithm). There
are several differences between GA and DE. GA has the advantage of being able to deal
with constraints. It can directly use them to limit the search space. DE, on the other
hand, needs to transfer constraints into penalty functions, and then add them to the ob-
jective function. This could make it difficult to choose the proper values for weight num-
bers. The crossover operator of a DE algorithm will randomly choose two candidates to
perform crossover, which is faster than the crossover process in GA. Although these dif-
ferences will cause differences on computational efficiency and accuracy, their process-
ing procedures still follow the same fundamentals. These two algorithms do not use the
gradient to optimize a problem. This means they do not require to be differentiable as it
is required by classical optimization methods, such as gradient descent and the Quasi-
Newton method. Therefore, GA and DE can be used on optimization problems that are
not continuous, noisy, and that can change over time. These two algorithms have great
characteristics for dealing with complex space missions. ACO and PSO are swarm in-
telligence methods. One simulates ants, and another one simulates birds. These two
algorithms do not have crossover and mutation operators, which means that each par-
ticle or ant in these algorithms has to decide its behaviors based on the reflection from
the environment and other particles or ants. These two algorithms have already been
widely used in discrete optimization problems as shown in the previous literature re-
view. In conclusion, GA, DE, ACO, and PSO all have great potential to become the main
algorithm for the research in this thesis. Considering the overall relative convergence
time for these test functions, optimization algorithms in the EA family (GA and DE) be-
come our preferred core algorithms as problem solvers.

2.4. SUMMARY
This chapter introduces the background mission of this thesis, the “Discovering the Sky
at Longest wavelength” (DSL) mission. The DSL will have multiple satellites in a circu-
lar lunar orbit to detect low frequency radio signals below 30 MHz. Based on the sci-
ence requirements of the DSL mission, the reference MSS for this thesis is constructed.
Considering that the fundamental objective of this thesis is to provide onboard mission
planning & scheduling capability for the reference MSS, an in-depth literature review has
been made. In this review, representative optimization algorithms are classified into two
categories: classical approaches and heuristic approaches. Some innovative and hybrid
approaches related to distributed system coordination and negotiation are also revealed.
Finally, targeting the high complexity of foreseeable scenarios, tests on nine algorithms
are made to provide a preliminary selection for the reference MSS. The chosen test func-
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tions cover both six unconstrained and eight constrained optimization problems. These
fourteen test functions contain different types of objective functions and constraints to
guarantee the diversity of the preliminary selection. In the next chapter, we will explore
how to solve the MSS onboard mission planning problems using various approaches.
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3.1. INTRODUCTION

I N Chapter 1, the motivation of this thesis has been addressed, which is to develop
concepts for an onboard autonomous system that can be used by a Multi-Satellite

System (MSS) for mission planning and scheduling. In the previous chapter, through
the background mission DSL, the reference MSS has been constructed. The nominal or-
ganizational architecture of this reference MSS is a centralized structure with one main
controller called the mother satellite (MS), and eight participants called daughter satel-
lites (DSs). Fig 3.1 illustrates the general architecture for a centralized control of this
MSS, where the MS contains the general planner, decision-maker, and re-planner, rep-
resented by gray boxes. Each DS is equipped with a plan executor and a status monitor,
represented by blue boxes. After the MS has received the mission objective from the con-

Mother Satellite

Initial Planning

General Planner

Decision-maker

Re-planner

Re-Planning

Plans executor

Status monitor
Request re-planning

Modify old plans

Control Center Antenna

SpaceGround

Mission Objective

Daughter Satellites

Figure 3.1: General architecture of controlling the centralized MSS

trol center, it will start the initial planning procedure using the general planner. It trans-
mits generated control sequences to each DS as initial plans. Once a DS has received the
initial plans, it will execute them off-line and constantly provide feedback to the MS for
regular checks using the status monitor. During the plan execution procedure, each DS
operates individually. The quality of these initial plans will directly affect the final perfor-
mance of the entire team. Therefore, in this chapter, the centralized planning approach
for providing the initial planning service will be developed in detail.

The scientific objective of the DSL mission is to detect low frequency RF signals
from deep space using multiple satellites. Coordinating all the participating satellites
to collect observations and communicate through a centralized controller is a very com-
plex task. The MS needs to determine which DS can perform which task at what time
such that the performance of the entire team can be optimal, which is illustrated by the
schematic diagram shown in Fig 3.2. The initial planning problems that the MS is fac-
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Figure 3.2: Example of initial plans generated by the MS. The orbit number represents the current orbit that
every satellite is in since the start of the mission. The task number represent the assigned observation tasks
by the MS. The com symbols represent the communication time assigned to each DS. The length of each box
stands for the duration of corresponding behavior.

ing can be considered as NP-hard problems, where meta-heuristic algorithms are nor-
mally considered as efficient methods by many researchers. In the simulation done in
Chapter 2, the EA family has been chosen as candidate algorithms to design the prob-
lem solver. Both the GAs and DEs are population-based optimization algorithms. The
main difference is the encoding, where basic GAs use binary encodings, while DEs use
real-valued encodings. Although DEs are more effective and more efficient than basic
GAs, DEs are very complicated to formalize for a real-world problem and they cannot
deal with mixed-integer variables (e.g. [Fleetwood, 2004]). Therefore, most existing re-
search has implemented GA techniques to solve space mission planning and scheduling
problems. Shi uses GA in [Shi et al., 1996] to solve the job-shop scheduling problem.
Shtub in [Shtub et al., 1996] and Dorn in [Dorn et al., 1996] also propose to use GA as
solvers for general scheduling problems. In [Sun et al., 2010], Sun uses GA to formalize
a real-time algorithmic approach for determining a near-optimal sequence for a satel-
lite payload. In [Globus et al., 2002][Globus et al., 2003], the authors have implemented
GA to effectively schedule a cooperated fleet of Earth imaging satellites, and compare its
performance with other EA algorithms to justify the advantages of GA. In [Soma et al.,
2004], GA is used to perform optimal resolution of visibility clashes for a fleet of Indian
remote sensing satellites, and the authors have developed an intelligent multi-objective
priority activated task optimizer to generate a weekly optimal schedule for spacecraft op-
erations. Chen proposes a hybrid optimization method based on GA and PSO in [Chen
et al., 2012], which greatly improves the efficiency of the optimization for multi-satellite
observation scheduling problems. All these articles show excellent performance of us-
ing GA as a scheduling tool for a space mission. However, most of the scheduling prob-
lems are focused on trajectory, resources, and antenna allocation. Few of them concern
the behavior planning problems within a group of satellites. This chapter will use an
improved GA as a tool which allows the MS to generate feasible initial plans for all the
participating DSs such that the overall team performance can be maximized onboard.
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3.2. PROBLEM FORMULATION
This section presents the details of how to transfer the initial planning procedure of the
DSL mission into a behavior scheduling optimization problem.

3.2.1. NOTATIONS AND VARIABLES
The notations and the variables used in this chapter are defined as follows:

NOTATIONS

• H : Satellite operating orbital altitude. According to the original design of the DSL
mission, this altitude is flexible to fulfill different scientific objectives. It ranges
from 300 to 450 km.

• Si , (i = 1,2, ..., N ): Daughter Satellite set. In this thesis, the planning problems rely
on a set of satellites, where N is the total number of participating satellites. For the
DSL mission N = 8.

• B : Baseline. This parameter represents the geometric distance between two satel-
lites in along-track direction. The baselines are flexible and depend on the scien-
tific requirement, and range from 100 m to 100 km.

• TO : Satellite orbital period. This notation represents the absolute time that a satel-
lite orbits the Moon when operating at a specific orbit.

• T i me: Mission lifetime. This variable represents the expected mission operating
lifetime.

• nk , (k = 1,2, ..., M , M = T i me/TO): Orbit number. It represents the current orbit
since the start of the mission.

• T WSi =
〈

OWSi ,CWSi

〉
: Time window set. OWSi represents the observation window

when satellite CWSi is able to obtain data. CW means the communication window
when this satellite can communicate with other satellites.

• Ini t i alSi =
〈

Obs0
Si

,Com0
Si

, M 0
Si

〉
: Initial sub-system parameter set . This set rep-

resents the initial value of key parameters for the three most relevant satellite as-
pects, which includes the initial observation data rate Obs0

Si
, communication data

rate Com0
Si

, and onboard storage capacity M 0
Si

.

VARIABLES

• Observation time variable set XSi (nk ) =
〈

xS
Si

(nk ), xE
Si

(nk )
〉

, where xS
Si

(nk ) repre-

sents the start time of the observation during orbit nk , and xE
Si

(nk ) stand for the
end time of the observation.

• Communication time variable set YSi (nk ) =
〈

yS
Si

(nk ), yE
Si

(nk )
〉

, where these two

variables have the same meaning as observation variables, only these variables
are for communication time.

• MSi (nk ): Onboard memory. This represents available onboard memory for Si at
the beginning of the orbit nk .
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3.2.2. BLOCKED AREA
As mentioned in Chapter 2, to be able to detect the low-frequency radio spectrum with-
out the RFI from the Earth, the DSL mission will use the Moon as a natural shield. The
particular area of the Moon that is blocked from Earth interference is called "Blocked
area", where observations can be performed. The distance from the Earth’s center to

RFI-Free

Zone

Moon

Satellite Orbit

Blocked 

angle

Observation

angle

Figure 3.3: Observation window and blocked area of RFI

the Moon’s center is called the Lunar Distance. The average value is 384402 km. Based
on gravitation and classical physics, we can calculate the blocked angle from the moon’s
radius and distance. The blocked angle αbl k and the observation angle αobs can be cal-
culated by the following equations:

αbl k = arcsin
rE − rM

D
(3.1)

αobs =π−αblk −2∗arccos
rM

rM +H
(3.2)

In Eq 3.1, rE and rM represent the radii of the Earth and the Moon, respectively, and
D stands for the average lunar distance. To match the observation frequency with the
coherent radio emissions from Ultrahigh Energy Cosmic Rays (UHECR) and Neutrinos
(UHEN) ([Gusev et al., 2006]), the DSL will operate in a particular circular Moon orbit at
300 km altitude. As the result of this assumption, the feasible observation window for
this mission is obtained, as shown in Fig 3.3.

3.2.3. CONSTRAINTS
After providing the notations and the variables for the initial planning problem, bound-
aries and constraints need to be addressed based on the mission requirements.

CONSTRAINTS

The constraints formulated here represent scientific requirements, hardware limitations,
and temporal and logical order.
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• Variable boundaries
Considering the hard constraints on the observations, the observation and com-
munication window of each DS have strict boundary constraints. In each orbit,
the observation behavior can only happen inside of the corresponding observa-
tion window OW nk .

XSi (nk ) ∈OW nk
Si

(3.3)

Meanwhile, all communication behavior can only proceed when each satellite is
inside of the communication window CW nk

Si
. This is to avoid the radio interference

which is caused by satellite communications and affects the observation quality.

YSi (nk ) ∈CW nk
Si

(3.4)

• Observation
Besides the above boundaries, there are two types of constraints that need to be
formulated. One type relates to the observation behavior, and another type re-
lates to the communication behavior. One of the observation related constraints
is the chronological order in every orbit. The observation start time shall always
be ahead or at least equal to the end time.

xS
Si

(nk ) É xE
Si

(nk ) (3.5)

The time span of each observation behavior is another constraint. The span be-
tween the start and the end time in each orbit nk shall be less than the time that
satellite travels through the observation window. The full observation time is de-
fined as T O.

xE
Si

(nk )−xS
Si

(nk ) É T O (3.6)

• Communication
The communication behavior has the same constraint in the chronological order
as the observation behaviors.

yS
Si

(nk ) É yE
Si

(nk ) (3.7)

Another important constraint of communication is that the amount of data trans-
ferred in a communication window in one orbit shall be less than the raw data it
contains. For a long lifetime mission, the amount of data transfered in the orbit nk

shall be less than the raw data that onboard memory has at the start of this circle,
plus the amount of data that it has gathered in this orbit.[

yE
Si

(nk )− yS
Si

(nk )
]
∗ComSi É M 0

Si
−MSi (nk )+

[
xE

Si
(nk )−xS

Si
(nk )

]
∗ObsSi (3.8)

• Onboard storage
In the DSL mission, to secure the integrity of the raw data sent by one DS, no other
DS shall communicate at any time within the observation window. The MS only
receives data from one DS at one time. Therefore, when a satellite re-enters an
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observation window, the observation time span shall be limited by the accessible
onboard storage. [

xE
Si

(nk )−xS
Si

(nk )
]
∗ObsSi É MSi (nk ) (3.9)

MSi (nk ) =MSi (nk −1)−
[

xE
Si

(nk )−xS
Si

(nk )
]
∗ObsSi +

[
yE

Si
(nk )− yS

Si
(nk )

]
∗ComSi

(3.10)

3.2.4. OBJECTIVE FUNCTION
The main objective of the DSL mission is to collect the maximum of raw data within a
certain operation lifetime. To generate the best time sequence for each DS, the general
planner needs to consider all the constraints from hardware and software in a realistic
scenario as shown in before. In this chapter, the initial planning problem is simplified
to only the observation and communication period for each DS. The purpose of this
initial planning process is to generate initial plans, which help each DS to schedule its
observation and communication activities. In this chapter, these plans are each DS’s
time windows for the observation and communication behaviors. Therefore, the first
objective function is to maximize the total raw data that DSs can gather within a cer-
tain lifetime. The second objective function is to guarantee that the communication gap
between each DS is minimized to maximize the communication efficiency of the MS.

OF 1 : max
X

M∑
k=1

8∑
i=1

[
xE

Si
(nk )−xS

Si
(nk )

]
(3.11)

OF 2 : min
Y

M∑
k=1

8∑
i=1

[
yS

Si+1(nk )− yE
Si

(nk )
]

(3.12)

3.3. HYBRID DYNAMIC MUTATION GA
As mentioned before, the entire onboard mission planning problem can be considered
as an NP-hard problem. Based on the DSL mission requirements, we incorporate ob-
servation and communication behavior together in one model (as shown in Eq 3.11 and
Eq 3.12). The requirement of maintaining the onboard storage level as non-negative for
every DS causes nonlinear constraints in this model. The combination of linear and
nonlinear constraints increases the difficulty to solve the problem. Some preliminary
experiments on algorithm selection have been done in Chapter 2. Due to the intractabil-
ity and the large scale of the original problem, exact optimization algorithms such as the
linear programming algorithm have been abandoned because of their poor adaptabil-
ity. Meanwhile, for real applications, the oversubscribed feature is a common situation,
and the constrained programming algorithm can not provide solutions for most over-
subscribed situations. The nonlinear constraints in the model also cannot be handled
by this type of algorithms. Therefore, algorithms such as mixed-integer programming,
greedy search, local search or dynamic programming are all not feasible for this problem.

Instead, the planning algorithm should be flexible and scalable to adapt every pos-
sible scenario. The genetic algorithm (GA) is a meta-heuristic algorithm inspired by the
process of natural selection, which has been shown to have great potential on both sides.
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Therefore, we intent to use GA as the fundamental algorithm to solve initial mission
planning problems.

3.3.1. BASIC GA
GA represents a series of methods based on heuristic random search technique, which
belong to the larger class of EAs. The basic GA constructs a population by a set of solu-
tions called chromosomes. The population is responses for evaluating its fitness value
through the objective function at each generation. After the algorithm performs the
Evaluation procedures, certain chromosomes are chosen from the current population
through the Selection procedure. For this, it will use two genetic operators called: Crossover
and Mutation. The purpose of these operators is to evolve the population for the next
generation.

The crossover operator combines two chromosomes and randomly switches a part of
them. This operator can produce more offspring with better (or worse) fitness values for
the next generation. The mutation operator also changes the search space and creates
new offspring, with sudden changes on one or few values of a chromosome. However,
both crossover and mutation need a trigger to become active. For the crossover operator,
this trigger is called the crossover rate, and for the mutation operator, it is called the
mutation rate. After performing these two actions, one generation cycle is considered
to be completed. During each cycle, all chromosomes need to be tested by evaluating
their fitness function. When a GA reaches the stopping criterion which may contain the
generation number, or a total calculation time, or other terms, the algorithm will stop.

The strength of GAs lies in that they can deal with multi-modal problems and are able
to find the global optimum. However, the success rate of using GAs to solve these prob-
lems remains unstable and unreliable. For many problems, GAs may have a tendency to
converge towards a local optimum instead of a global optimum. This is because of the
diversity of different initial populations. Some populations may be closer to the global
optimum, while others may be further. There are also other problems like low efficiency
and operating on dynamic data sets. Among all these problems, the success rate is the
most critical weakness when using GA as the mission scheduling algorithm for a deep
space mission. One single mistake could cause the total failure of the mission. Many
studies have been done to increase this probability of success. Two ideas have been
proposed for this problem. The first idea is to create the data structure and genetic op-
erators for each problem. However, this idea requires a huge modeling effort for each
purpose, which is not practical. The second idea is to improve the efficiency by chang-
ing the strategies of each operator, e.g., one can use different rules to perform selection,
crossover and mutation.

To target these weaknesses, in this thesis, we aim to enhance the performance of
basic GAs by improving their mutation strategy. Many improvements have been made
for mutation strategies. Still, these improved GAs have different weaknesses in differ-
ent aspects. Tab 3.1 illustrates that two main weak points are still the early convergence
and long computation time. However, for the DSL mission, the MS needs to provide
initial plans to all the DSs as soon as possible once it has received the mission objec-
tive from the control center. This requires both high accuracy and short computation
time. The Hybrid Dynamic Mutation Genetic Algorithm (HDMGA) is proposed for this
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Table 3.1: Comparison of five kinds of mutation strategies: dynamic mutation strategy [Hong and Wang, 1996],
schema mutation strategy [Li and Zhang, 2009], compound mutation strategy [Jin et al., 2014], adaptive muta-
tion strategy [Srinivas and Patnaik, 1994a], and hyper mutation strategy Cheng [2012].

Name Features Advantages Disadvantages

Dynamic
Mutation

Use several mutation operators,
change with generation grows

1) Help to determine appropri-
ate mutation rate;
2) Increase algorithm convergence
speed when come to the end;

1) It use too many mutation operators,
which will slow down the algorithm at
each generation;
2) This method only can help to increase
the good fitness values’ offspring mutation
rate, which cause premature convergence
problems;

Schema
Mutation

Deal with premature
convergence problem

1)Good wide range of constit-
utive property and maneuvera-
bility;
2)Effectively protect the exce-
llent individuals;
3)Good efficiency and conver-
gence stability

Easy to fall into local optimal

Compound
Mutation

Big mutation rate for global
search and small mutation rate

for local search

1)Help to expend the search
area and increase the diversity
of individuals;
2)Assure the further evolution
of population and avoid local
convergence;

1)Each step needs to compare individuals,
which may slow down the algorithm;
2)Not possible to produce a suitable mutation
number;

Adaptive
Mutation

Produces suitable mutation
number adaptively; guaranteed
the higher survival rate of good

offspring

Reduce computation time and
maintain the population variety
for preventing premature con-
vergence

Problem of random search

Hyper
Mutation

Use two types of schemes to
adjust the population diversity

Use two types mutation schemes
to enhance the performance with
dynamic environment

1)Hard to set proper boundaries for high and
low mutation rates;
2)When using the second scheme, at each gene-
ration computer needs to recalculate the new
mutation rate, costing time at each iteration;

requirement.

3.3.2. HDMGA PRINCIPLE

After comparing different mutation strategies, the efficient performance and improve-
ments of the success rates of the GA is key in this research. This chapter proposes a new
mutation strategy called Hybrid Dynamic Mutation (HDM). This strategy is inspired by
the Dynamic Mutation [Hong and Wang, 1996] and the Adaptive Mutation [Srinivas and
Patnaik, 1994a]. These mutation strategies have common advantages on adjusting their
mutation operators to fit in different generations. However, due to their numerous mu-
tation operators, at each iteration, the algorithm needs to decide which operator and
which mutation rate is needed for this iteration. Meanwhile, their mutation rates will
adjust when their fitness value approaches the current best fitness value. This is the
reason why these two mutation strategies get easily stuck at a local optimum and cause
early convergence.

Instead of using multiple mutation operators, the HDM only uses two mutation op-
erators. These two operators work independently, one for the normal mode, and another
one for the escape mode. The reason why HDM can overcome early convergence prob-
lems is because of these two operators. For a basic form GA, there exists a termination
generation number TG . This means that if the average value of the fitness function has
not changed over several generations, the algorithm will stop. Within HDM, there is a
switch criteria labeled as TN . It will trigger the switch between the normal mode and the
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escape mode before the termination criteria of the current generation is satisfied. Until
the switch criteria has been reached, the algorithm uses the normal mutation rate Rnor .
After this criteria has been met, the algorithm employs the escape mutation rate Resc to
try to jump out of the local minimum. To expand the search area, the mutation rate in
the escape mode is larger than the one in the normal mode. The details about how to
determine the values of these two important variables will be presented in next section.

Based on the previous idea, the general procedure will be described by the pseudo
code shown in Algorithm 1.

Algorithm 1 Hybrid Dynamic Mutation Operator
Input: εS is the tolerant error,Rnor is the mutation rate used for normal mode, Resc is the mutation rate used for escape mode,

TN is the trigger number
Output: Mutation rate MR
1: function mut ati onC hi ldr en = mut ati onHDM(Popul ati onSi ze,nvar s,Rnor ,Resc ,TN ,εS )
2: for i = 1,2...Popul ati onSi ze do
3: F i tness_val ue(i ,1) ← f i tness_value(i )
4: for j = 1,2...i do
5: if F i tness_value( j +1)−F i tness_value( j ) É εS then
6: tN = tN +1
7: else
8: tN = tN

9: if tN Ê TN then
10: MR = Resc
11: else
12: MR = Rnor

13: return MR

Using this mutation strategy with the normal GA leads to the HDMGA which is de-
scribed by the pseudo code in Algorithm 2. As shown in this pseudocode, it is clear

Algorithm 2 HDM Genetic Algorithm
Input: PopulationSiza pop_si ze, parameter number nvar s, Termination error tolerant εT , Max stall generation SG_max,

Max generation G_max, fitness function F i t_F cn, Rnor is the mutation rate used for normal mode, Resc is the mutation
rate used for escape mode, TN is the trigger number.

Output: Solution X
1: function X = HDMGeneti c Al g or i thm( pop_si ze,nvar s,εT ,SG_max,G_max,F i t_F cn)
2: popul ati on ← Ini t i al (pop_si ze,nvar s)
3: while counter ÉG_max do
4: for i = 1,2...pop_si ze do
5: Best_i ndi vi dual (i ) =C al (F i t_F cn, popul ati on)
6: Cr ossover (t wo r andom i ndi vi dual s)
7: Mr ← mut ati onHDM(Popul ati onSi ze,nvar s,Rnor ,Resc ,TN )
8: pop = popul ati on
9: if r and É MR then
10: M_pos = r ound(nvar s ∗ r and)
11: if M_pos = 0 then
12: pop(i , M_pos) = 1−pop(i , M_pos)

13: popul ati on ← pop
14: if Best_i ndi vi dual (i +1)−Best_i ndi vi dual (i ) É εT then
15: T = T +1
16: else
17: T = 0
18: if T Ê SG_max then
19: break
20: X ← bet s_i ndi vi dual

return X

that the HDMGA still uses the basic GA frame, in each iteration it also includes the se-
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lection, crossover, mutation and evaluation procedures. The HDMGA implements the
HDM strategy to perform mutation procedure. This strategy provides the HDMGA the
ability to fast escape from local optima, while it also provide stable mutation for regular
situation. Once the termination terms of the HDMGA (number of generation, computa-
tion time, best error, etc.) have been met, the best individual will be the initial planning
result.

3.3.3. VARIABLES DETERMINATION
From the last section, it is obvious that there are two main variables Rnor and Resc which
need to be determined. This section focuses on how to determine the best value for each
of those variables.

NORMAL MODE

Table 3.2: Normal mode simulation results

Computation time [s]
Simulation

number
rate=0.01 rate=0.05 rate=0.1 rate=0.3 rate=0.5

1 13.3369 14.9003 16.6729 11.0716 16.4441
2 20.5683 16.9102 14.5214 30 30
3 30 5.7414 15.7078 17.8776 16.8626
4 15.2022 7.3488 16.4792 15.8848 30
5 13.412 30 14.2844 17.853 14.8617
6 8.6736 16.1859 16.6208 30 17.2854
7 4.0094 14.209 30 30 20.3043
8 8.5721 18.2125 18.1646 19.4098 13.2203
9 30 6.841 16.6854 14.1032 16.1795

10 15.7552 15.082 15.6729 19.1987 30
11 17.8689 7.1522 18.7301 14.4185 17.885
12 15.1472 16.2313 16.1971 30 16.8645
13 30 30 19.219 16.9326 16.7691
14 6.2299 8.0894 17.498 30 30
15 14.924 7.5297 15.3424 15.1416 17.0021
16 14.9844 17.5528 6.1339 16.9371 16.9507
17 7.4624 18.1506 7.8213 16.3075 16.3346
18 16.2285 6.5755 12.5373 18.4377 18.6071
19 9.1894 6.3589 12.4471 30 16.6194
20 9.7759 18.384 7.7527 30 15.7848
21 14.6014 17.924 9.9632 18.9031 17.6374
22 13.4476 18.527 17.4132 11.3463 11.4826
23 10.0539 16.9837 16.5443 13.2492 30
24 16.5549 16.6369 15.5118 20.0295 16.8116
25 17.9073 10.7449 13.1734 30 13.7317
26 16.5192 16.7456 15.5657 17.8253 30
27 19.3513 17.5698 9.1163 20.5392 30
28 16.981 16.725 6.2711 16.961 30
29 14.1365 16.6542 7.3295 30 6.8656
30 13.8373 15.9048 13.2052 11.2499 13.1831
31 17.6754 15.7125 7.2497 18.4475 16.8372
32 17.955 7.5653 13.94 16.8063 15.8152
33 15.1276 9.2673 15.0834 16.7693 12.0196
34 17.5905 16.2885 15.8931 13.9612 14.1809
35 16.6031 8.0178 30 13.4521 9.0731
36 13.5552 7.8383 30 30 15.5831
37 16.0187 30 12.7102 18.5325 30
38 14.7639 15.5005 16.0046 17.9351 16.1537
39 14.4946 20.6298 17.0179 30 16.5179
40 17.7025 4.8683 15.262 30 17.0405
41 16.8998 8.527 13.3989 14.1631 18.5036
42 13.6083 11.2134 18.179 16.2882 30
43 12.2632 13.9158 16.978 19.1731 17.9894
44 22.166 12.0699 30 19.1034 30
45 14.2131 30 30 17.4174 15.8066
46 17.1661 12.2435 14.0398 16.4872 30
47 18.8417 10.4718 9.386 16.3488 13.9887
48 30 13.2519 16.6295 30 16.1584
49 14.2785 16.9294 15.2647 17.5944 30
50 17.2692 14.5639 30 16.9189 30

Mean 15.858462 14.494926 15.992376 20.061514 19.667102
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Based on HDM principles, most of the time the HDMGA stays in the normal mode. This
means that the performance of the normal mode directly affects the convergence pro-
cess. The principle of the normal mode is the same as the mutation strategy used with
uniform mutation. To determine the suitable value of this mutation rate for initial plan-
ning problems, we implement previous representative constrained problems as shown
in Chapter 2 to test uniform mutation strategy (considering the page limitation, in this
section, we only present results for TF9). The mutation rate ranges from 0.01−0.5 based
on the empirical parameter value of an uniform mutation GA [Williams and Crossley,
1998]. Each mutation strategy is executed 50 times. During the simulation, the termina-
tion criteria for computation time is set to 30 to prevent the algorithm getting stuck at a
local optimum for too long. For those results which reach the computation time of 30, it
means that the algorithm is unable to find the global optimum. Therefore, it is consid-
ered as a failure. Based on test results, the following table (Tab 3.2) shows the detailed
results of 50 simulations. The second row stands for five different mutation rates for the
normal mode. The first column represents simulation number.

Figure 3.4: Failure number and percentage based on 50 simulations of various normal rates Rnor

Fig 3.4 is abstracted from Tab 3.2, which contains the number of failures and failure
percentage of each mutation rate over 50 simulation. The failure percentage for the 50
simulations is growing with increased value of the normal mutation rate. A rate of 0.01
and 0.05 has the same failure number (4) and same failure percentage (8%). Meanwhile,
the average computation time for each rate is summarized based on the valid data (i.e.
values obtained in less than 30 seconds) over the 50 simulations, and the results are il-
lustrated in the last row of this table. It is clear that when the mutation rate is set to be
0.05, the algorithm has a better performance on computation time than for the other
four values. This result means that for HDM, the default mutation rate for normal mode
should be set as 0.05.

ESCAPE MODE

After determining the mutation rate for the normal mode, the mutation rate for the es-
cape mode Resc needs to be determined. The methodology and test function remain the
same as for the normal mode. The mutation rate for the normal mode is set as 0.05. The
termination time for the algorithm is still set to 30. The escape mode is used to jump out
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of the local optimal, which requires a much higher probability to trigger the chromo-
some mutation to expand the search space. Therefore, the escape mutation rate is set to
a range from 0.55−0.95. Tab 3.3 and Fig 3.5 illustrate the performance and analysis from
50 simulations.

Table 3.3: Escape mode simulation results

Computation time [s]
Simulation

number
rate=0.55 rate=0.65 rate=0.75 rate=0.85 rate=0.95

1 5.642354 7.440349 5.7341 16.5992 4.6345
2 4.936087 11.812699 7.0087 3.3413 6.4737
3 6.323403 7.113951 6.1287 3.9814 7.1643
4 8.780604 4.51954 6.6002 9.0021 13.8092
5 7.072866 5.372019 5.2113 14.1823 4.9098
6 13.841103 6.723661 30 10.3199 6.8936
7 7.47665 5.468952 4.2704 10.0142 9.3156
8 10.515967 5.134882 2.8074 5.3177 30
9 5.735285 7.781025 9.4067 2.9981 5.5717

10 9.110012 8.670706 8.0344 4.3601 5.002
11 6.0516 5.379014 5.1271 13.5266 3.0743
12 14.0878 9.542031 2.9281 23.357 5.9755
13 6.5088 30 5.7274 6.2589 14.5376
14 6.8534 14.589169 6.9153 7.4975 5.5834
15 5.1959 6.102298 7.5397 7.2002 9.4667
16 16.2939 6.708615 8.2937 8.0407 10.9731
17 4.6471 30 30 9.6205 4.7791
18 6.0429 5.709645 5.6858 6.2342 5.8722
19 2.1908 4.100325 8.1799 6.0911 10.911
20 4.0836 5.196435 4.765 6.205 7.9407
21 9.5936 8.074185 4.123 12.9654 4.9632
22 5.4417 3.041382 5.3204 6.835 30
23 3.1602 8.743459 5.1109 3.9543 5.0241
24 4.8365 4.316142 6.3088 5.0527 5.0109
25 4.246 3.072595 5.5983 6.9999 6.2391
26 7.9222 10.040585 30 8.2596 7.8247
27 6.8372 5.89488 5.0119 5.3122 30
28 12.3173 30 6.241 10.6712 30
29 14.5906 5.029452 30 3.7847 30
30 5.4981 7.987153 11.5877 9.3973 14.9428
31 6.6018 9.5442 5.8375 4.069 30
32 18.6335 8.3932 10.242 8.404 30
33 7.2245 8.8391 7.4204 15.1347 5.9507
34 25.683 7.4665 15.6282 7.6166 18.512
35 14.6313 30 7.2938 6.7527 17.8559
36 10.918 10.7536 2.4621 30 6.9455
37 14.7833 30 19.0555 10.9562 19.7611
38 9.9066 8.9235 30 30 7.3542
39 7.4032 7.5076 6.9454 30 17.4248
40 6.6318 11.2011 5.8806 30 9.8284
41 8.9551 30 2.94836 8.4162 30
42 8.5912 4.6674 7.7191 10.19 6.81
43 7.3302 7.17 4.0772 7.3788 18.8292
44 4.7189 5.2881 8.6315 6.3605 14.3623
45 30 9.7524 8.6531 30 17.1568
46 3.0655 5.0447 30 7.8641 30
47 6.0603 9.0608 26.009 4.9506 18.4234
48 11.9477 4.5465 14.7857 7.5732 6.5844
49 4.5254 12.0713 13.9623 30 30
50 7.6653 8.0116 30 6.6859 27.7874

Mean 8.82220262 10.03613498 10.7443532 10.794656 14.009578

Fig 3.5 shows the results of the failure number and percentage over the 50 simula-
tions. It is clear that a mutation rate 0.55 has best performance among five mutation
rates on both success rate and average computation time. The failure number is at least
80% less than other mutation rates. Tab 3.3 shows the detailed results of every simula-
tion, and the average computation time from valid simulations (the last row of Tab 3.3). A
rate of 0.55 has the lowest average computation time compared to other mutation rates.
Therefore, Rnor = 0.05 and Resc = 0.55 are the best choices for these two variables.
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Figure 3.5: Failure number and percentage based on 50 simulations of various escape rates Resc

3.3.4. PERFORMANCE EVALUATION
Once the main variables of HDM have been determined, it still needs to be evaluated
whether this new mutation strategy has a better performance than other popular muta-
tion strategies. All test functions mentioned in the previous chapter have been employed
to evaluate the performance of the proposed method. This section presents part of the
evaluation where two test functions are used to represent an unconstrained problem and
a constrained problem. Four different mutation strategies are tested, including HDM,
Gaussian mutation, adaptive feasibility mutation, and dynamic mutation [Srinivas and
Patnaik, 1994b].

UNCONSTRAINED PROBLEM

For the unconstrained problem, a benchmark test function named “Beale function” is
used [Surjanovic and Bingham, 2018b]. This function is defined as:

f (x) = (1.5−x1 +x1x2)2 + (2.25−x1 +x1x2
2)2 + (2.625−x1 +x1x3

2)2 (3.13)

This test function has two variables, subject to −4.5 É xi É 4.5. The global minimum is
located at X∗ = (3,0.5), f (X∗) = 0. The simulation results of 50 runs for each mutation
strategy are shown in Tab 3.4.

Table 3.4: Computation time of 50 runs for the Beale function using four mutation strategies

Computation time [sec]
Experiment

number
HDM Gaussian Adapt-feasible Dynamic

1 5.642354 7.9 8.9263 14.9003
2 4.936087 7.1282 9.4191 16.9102
3 6.323403 17.5438 13.6213 5.7414
4 8.780604 8.3849 25.648 7.3488
5 7.072866 11.5475 5.2753 30
6 13.841103 30 8.6611 16.1859
7 7.47665 7.4122 14.3264 14.209
8 10.515967 16.7689 15.2937 18.2125
9 5.735285 15.7596 8.2695 6.841

10 9.110012 13.4733 5.8645 15.082
11 6.0516 6.2795 8.0252 7.1522
12 14.0878 7.6856 30 16.2313
13 6.5088 8.4806 30 30
14 6.8534 15.5095 4.5189 8.0894
15 5.1959 7.6407 30 7.5297
16 16.2939 8.6355 8.7017 17.5528
17 4.6471 16.4661 14.822 18.1506
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18 6.0429 12.7039 13.9411 6.5755
19 2.1908 7.1996 30 6.3589
20 4.0836 7.2144 10.2225 18.384
21 9.5936 14.4803 13.5252 17.924
22 5.4417 16.969 6.8481 18.527
23 3.1602 14.9105 10.2479 16.9837
24 4.8365 8.3607 8.0006 16.6369
25 4.246 15.9953 4.678 10.7449
26 7.9222 15.8916 15.2829 16.7456
27 6.8372 16.9592 19.7967 17.5698
28 12.3173 15.2293 13.819 16.725
29 14.5906 8.4368 13.9595 16.6542
30 5.4981 15.1831 13.3313 15.9048
31 6.6018 15.3953 10.0195 15.7125
32 18.6335 16.4629 30 7.5653
33 7.2245 18.8614 5.9227 9.2673
34 25.683 30 9.0193 16.2885
35 14.6313 15.8133 14.5835 8.0178
36 10.918 13.9048 3.7788 7.8383
37 14.7833 7.5642 20.6044 30
38 9.9066 15.2451 7.2171 15.5005
39 7.4032 15.7064 16.4063 20.6298
40 6.6318 13.1919 13.3444 4.8683
41 8.9551 12.4203 5.5747 8.527
42 8.5912 14.9775 7.7419 11.2134
43 7.3302 13.5201 12.945 13.9158
44 4.7189 13.3626 6.2364 12.0699
45 30 16.5882 7.1536 30
46 3.0655 9.7365 30 12.2435
47 6.0603 30 5.8492 10.4718
48 11.9477 30 13.6836 13.2519
49 4.5254 18.413 30 16.9294
50 7.6653 7.2313 19.6281 14.5639

Figure 3.6: Failure number and percentage results for four mutation strategies based on 50 simulation runs

Fig 3.6 shows the failure number and percentage for four mutation strategies over
50 simulation runs. From this figure, among the four strategies, the adaptive-feasible
mutation has the highest percentage of failure (14%). This number is almost as twice
large as results of Gaussian mutation and dynamic mutation (8%). In contrast, HDM
has a significantly lower rate of failure. During 50 simulation runs, this strategy only
failed once. So, when considering the chance of non-failure, HDM has a competitive
advantage compared with the other strategies.

To analyze these results, the computation time in Tab 3.4 is divided into seven levels.
The first level represents computing times less than 5 seconds, each level increasing by
5 from the previous level. For computation times beyond 30 seconds, the test is con-
sidered as a failure. Fig 3.7 shows the pie chart for each mutation strategy, illustrating
their performance on computing time. It can be seen that the computation time that
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Figure 3.7: Data distribution based on computation time over the 50 simulations

HDM requires is mostly (54%) between 5 and 10 s, which is almost 20% higher than the
Gaussian mutation and the adapt-feasible mutation, and 30% higher than the dynamic
mutation. This means that HDM has the best performance on computation time among
these four mutation strategies.

CONSTRAINED PROBLEM

As shown above, the HDM has the best performance in success rate and computation
time among the four mutation strategies in solving unconstrained problems. It still
needs to be tested whether HDM has a good performance for a constrained problem.
The test function used here is adopted from [Hedar, 2018a].

f (x) = 5
4∑

i=1
xi −5

4∑
i=1

x2
i −

13∑
i=5

xi (3.14)
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This problem has nine constraints, as shown in Eq 3.15:

g1(x) = 2x1 +2x2 +x10 +x11 −10 É 0

g2(x) = 2x1 +2x3 +x10 +x12 −10 É 0

g3(x) = 2x2 +2x3 +x11 +x12 −10 É 0

g4(x) =−8x1 +x10 É 0

g5(x) =−8x2 +x11 É 0

g6(x) =−8x3 +x12 É 0

g7(x) =−2x4 −x5 +x10 É 0

g8(x) =−2x6 −x7 +x11 É 0

g9(x) =−2x8 −x9 +x12 É 0

(3.15)

The global minimum is located at X∗ = (1,1, · · · ,3,3,3,1), f (X∗) = −15. Considering the
high time consumption for solving this problem, the function tolerance is set to be at a
relatively large number (in this case 100s), so the algorithm can be terminated by this
criteria when it gets stuck into a local optimum. Instead of trying to find the global min-
imum of this problem, this test is designed to verify the ability of escaping from a local
optimum for four different mutation strategies. Therefore, the results focus on fitness
values rather than on the computation time as shown in Tab 3.5.

Table 3.5: Fitness values of 50 simulation runs for the constrained function using four mutation strategies

Fitness Value
Experiment

number
HDM Gaussian Adapt-feasible Dynamic

1 -14.8886 -14.9995 -12.5129 -12.0806
2 -12.8721 -12.6512 -10.2718 -10.021
3 -14.9951 -5.4091 -12.1139 -9.1822
4 -9.3308 -11.9645 -9.3669 -10.1325
5 -14.9987 -6.7161 -12.4444 -11.0347
6 -14.9994 -11.9105 -14.9996 -12.6723
7 -12.962 -11.9048 -10.481 -10.2732
8 -14.999 -12.9687 -10.199 -10.5115
9 -11.8476 -10.4551 -12.0078 -14.9996

10 -14.9995 -12.5684 -14.9994 -14.9995
11 -13.2548 -6.2969 -14.9964 -9.461
12 -9.0221 -14.9995 -9.9649 -9.4534
13 -14.9478 -10.4354 -10.6301 -12.4483
14 -11.2541 -12.6691 -12.996 -12.033
15 -9.0518 -6.5441 -9.9694 -7.1963
16 -14.9995 -10.6224 -10.6301 -14.9997
17 -10.2648 -13.3414 -12.996 -9.2907
18 -13.2182 -12.047 -9.4347 -9.4844
19 -14.9997 -10.1834 -14.9995 -14.9992
20 -14.8477 -12.3226 -11.909 -14.9995
21 -10.2648 -9.0559 -14.9954 -14.9997
22 -14.2254 -9.3062 -7.6785 -10.1263
23 -14.9995 -10.6902 -11.7587 -12.0459
24 -13.2548 -9.6137 -14.9997 -14.9995
25 -14.9993 -12.6394 -8.115 -14.9994
26 -13.9874 -9.9774 -9.8515 -9.1938
27 -14.9995 -12.7101 -10.3731 -14.9995
28 -14.5841 -10.6558 -14.9957 -12.0019
29 -14.5971 -12.0025 -14.9957 -12.9981
30 -14.9997 -14.9995 -12.8629 -11.9388
31 -9.1848 -11.9235 -12.4082 -13.0478
32 -13.5841 -7.8327 -9.1286 -9.2957
33 -14.9999 -12.1134 -11.9813 -8.2301
34 -14.9958 -14.9996 -9.8558 -14.9997
35 -14.9584 -14.9989 -11.7356 -12.54
36 -14.6587 -11.9999 -12.8975 -10.5332
37 -9.0654 -12.5833 -14.9991 -11.5641
38 -14.9123 -10.3102 -14.9992 -9.0249
39 -8.5058 -12.3805 -8.94466 -14.9998
40 -9.2518 -9.3845 -9.7331 -12.2317
41 -14.9995 -9.5104 -14.9995 -12.1852
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42 -14.9874 -7.8454 -14.9996 -12.9736
43 -14.9002 -12.8049 -12.6029 -11.7341
44 -13.9584 -12.0088 -12.4467 -9.7371
45 -9.2051 -12.916 -10.6195 -14.9995
46 -10.6584 -12.3419 -11.3241 -12.2826
47 -14.9995 -12.9693 -10.6704 -9.2024
48 -14.9996 -14.9999 -9.5477 -14.9995
49 -14.9987 -12.5327 -9.3519 -7.7376
50 -12.9284 -14.9997 -14.9997 -9.8823

Tab 3.5 shows the fitness values for each mutation strategy during each test. Com-
paring these fitness values with the global optimum of the test function, the success rate
of each mutation strategy is shown in Fig 3.8 . Based on this figure, it is obvious that even

Figure 3.8: Success rates of four mutation strategies

with a high function tolerance, HDM shows the best performance on success rate com-
pared with other strategies. Dynamic mutation and adapt-feasible mutation have the
same percentage of success, while the Gaussian mutation has the lowest success rate.
Therefore, HDM has the best performance in terms of escaping from a local optimum
among four mutation strategies for the problem in Eqs 3.14 - 3.15.

After comparing the performance of solving the unconstrained and the constrained
problems, HDM shows a great potential in saving computation time and escaping from
local optima. The next section will apply HDMGA for the DSL initial planning problems.

3.4. INITIAL PLANNING PROCEDURES FOR THE DSL MISSION

3.4.1. SIMULATION SCENARIO ASSUMPTIONS
In the DSL mission, there are many payloads and subsystems which need to be con-
sidered. However, this chapter only intends to provide the initial planning sequences
for the observation and communication behaviors of the eight DSs. Based on this con-
straint, further assumptions are made to simplify the simulation environment.

As mentioned in Chapter 2, the MSS will be operated in a lunar orbit with a linear ar-
ray configuration. The MS is assumed to be positioned in the middle of the fleet, which
is the 5th place. The initial positions of all the simulations are set to be the same, where
the MS is placed at one of the conjunction points of the operating orbit and the Earth
- Moon center connection line. To simplify this initial planning scenario, a circular or-
bit is assumed with an altitude of Or bi t = 300 km. Each DS’s initial memory has the
same setting: MSi = 128 GB. The raw data rate from the payload is identical for every
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Figure 3.9: Initial planning sequences for eight DSs over five orbits. Each DS in each orbit has two behaviors,
the frontier one represents the observation and the later one stands for the communication window. The
parameters under each box represent the corresponding duration of each behavior.

DS: ObsSi = 48 Mbps. The data transmission rate is ComSi = 6 Mbps for each DS. The
baseline (i.e. the distance between adjacent satellites) is set to be B = 100 km. The pa-
rameters of mutation operators in the HDMGA are follow the same setting as it been
designed.

To avoid interference between the data transmission from the DS to the MS, in this
phase, the communication strategy is chosen as point-to-point (P2P), i.e., at each in-
stance, the MS can only communicate with one DS. With these assumptions, the general
planner can provide valid initial plans automatically for different observation objectives.

3.4.2. HDMGA RESULTS

Based on the previous assumptions, Fig 3.9 represents a study case which illustrates de-
tailed initial plans for all eight DSs with the total orbit number set to be M = 5. The
Y-axis stands for the satellite number, while the X-axis represents the elapsed time. In
this figure, eight DSs have received their own time sequences from the MS for their ob-
servation and communication behaviors. The observation windows of different DSs may
have overlaps, but there is no overlap in communication time based on the P2P commu-
nication protocol. Fig 3.10 shows four different locations of the MS and DSs in the first
orbit.

These four pictures show the different positions of DSs and the MS in the first orbit.
Fig 3.10(a) shows all the satellites out of the observation window. Therefore, all the com-
munication and observation indicators for each DS are switched off. When some DSs
enter the observation window, the onboard executor will trigger the observation equip-
ment to start gathering data. The example shown in Fig 3.10(b) illustrates the situation
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Figure 3.10: DSs’ observation and communication plans for the first orbit, “C” stands for communication and
“O” stands for observation. (a) stands for the location where all the satellites are outside of the OW; (b) stands
for the DS 1-4 and the MS are inside of the OW, while other DSs are out of the OW; (c) indicates that the DS 2-8
and the MS are inside of the OW, DS1 and DS2 are out now; (d) indicates that DS4 is communicating with the
MS now, while the DS 6-8 are still observing data inside of the OW.

2138 s after the simulation started. There are four DSs in the observation window, with
the same observation indicators “ON”. The DSs which are outside of the observation
window remain with their payload “OFF”. Fig 3.10(c) shows another location where DS1
and DS2 are out of the observation window, and their observation indicators show “OFF”.
Here, DS3 - DS8 are inside of the observation window, with their observation indicators
“ON”. Fig 3.10(d) shows that DS4 is communicating with the MS at time 6206 s. Based on
the simulation results in Fig 3.9 and Fig 3.10, it is clear that HDMGA can provide proper
initial plans for the reference MSS based on specific mission requirements.
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3.4.3. EVALUATION AND ANALYSIS

Figure 3.11: Success rate of four GA mutation strategies

The previous results show that HDMGA can solve the initial planning problem for
the MSS reference scenario. However, for a real planning scenario, the computation effi-
ciency and success rates are also important. To verify the performance of the proposed
HDM, comparisons with three other popular mutation strategies are carried out. The
details of the comparison procedures draw the same assumptions used in Chapter 3.3.4.
However, considering the long computation time for this scenario, the simulation time
is reduced by a factor of 10 for each strategy. The success rate and the computation time
are two aspects to be compared in the sequel.

Fig 3.11 illustrates the success rate of each mutation strategy during this simulation.
The dynamic mutation has the highest success rate which is 100%, and HDM reaches
90%. In comparison, the other two strategies, Gaussian mutation and adapt-feasible
mutation, perform worse with only 40% success rate each. In Fig 3.8, HDM has a better
performance than Dynamic mutation, because a larger termination error tolerant εT has
been used when evaluating the constrained problem (Eq 3.14). However, for real plan-
ning problems, this termination error tolerance εT will be much smaller such that the
algorithm can escape from local optima. The dynamic mutation strategy with its plenty
mutation operators (depends on the scale of the problem), can provide more choices
when the algorithm gets stuck at different local optima. In conclusion, the dynamic mu-
tation strategy performs better than HDM in terms of success rate.

The average computation time and average convergence generations are shown in
Fig 3.12. It is clear that HDM is faster in finding the results than the dynamic mutation
strategy. Based on this figure, the proposed mutation strategy HDM saves almost 25%
of computation time and 29% of convergence generation when compared with the dy-
namic mutation strategy. Considering the success rate and computation time, the HDM
proofs itself a better mutation strategy than other considered mutation strategies for this
specific planning problem.
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Figure 3.12: Results of average computation time and average convergence generation of the HDM and the
dynamic mutation strategies

3.5. SUMMARY
In this chapter, a new mutation strategy for GA is proposed to solve initial planning
problems for the DSL mission. Based on the reference MSS, the centralized onboard au-
tonomous planning architecture is introduced in the first section, together with a review
on GA implementations for related planning problems. Then, based on the DSL mission
requirements, the initial planning problem is formulated as an optimization problem.
The mathematical model of this problem is described as well. Considering the weak-
nesses of several representative mutation strategies, a new strategy, called HDM, is pro-
posed. The test results illustrate that the proposed HDM strategy has a superior perfor-
mance for standard fitness functions of both constrained and unconstrained problems.
The average convergence time and success rate both indicate that the HDM is superior
to its competitors namely, Gaussian mutation, Adaptive mutation, and Dynamic muta-
tion.

Based on simplified assumptions for the DSL mission, the HDMGA is implemented
as the solver for a general planner to generate the initial plans for observation and com-
munication behaviors of the entire team. The simulation results on test functions have
verified the proposed HDMGA. The performance of the proposed strategy is compared
with three other state-of-the-art mutation strategies. The comparison shows that HD-
MGA has the best convergence time and a higher success rate. This conclusion indicates
that HDMGA can be used as a general planner in the MSS architecture, and that it can
generate suitable initial plans for the entire team.

With the initial plans, the DSs can start to execute these plans without any inter-
ference from ground operators. However, the space environment is very harsh, and
the satellites are vulnerable. So, the planning system shall be robust and show graceful
degradation against failures of operating satellites. In the next chapter, we will consider
several emergency situations which may occur during operations. The corresponding
re-planning methods will be investigated there.
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4.1. INTRODUCTION

I N the previous chapter, a mutation strategy called Hybrid Dynamic Mutation (HDM)
was proposed to improve the Genetic Algorithm (GA) to solve the initial planning

problems for a multi-satellite system (MSS). It is assumed that when the general planner
on the MS performs the initial planning for the entire team, all the DSs remain healthy
and the system status is consistent. Therefore, the initial planning procedure is consid-
ered as an off-line optimization problem. However, during the mission, many factors can
change the conditions of the operating team. These factors can either be new mission
objectives which have been uploaded from the control center, or they can be malfunc-
tions on the operating satellites which are caused by external space environment (e.g.
space debris, meteorites) or internal system failures (e.g. failures on sensors, processors
or actuators). No matter what is the reason that causes the changes on the operating
satellites, these influences invalidate the initial plans. Under these circumstances, the
mother satellite (MS) can either choose to terminate the current mission plans and per-
form the initial planning processes again based on the new conditions, or it can employ
a re-planner to modify and adjust the current plans to fit the new situation.

However, to solve a real-world re-planning problem, several questions need to be
considered first:

(1) When to perform the re-planning?

(2) How much computation resources should be given to the re-planner for its task?

(3) How to minimize the effect of executing old plans during the re-planning procedure?

(4) How to ensure the new plans are not in conflict with the current executed activities?

By answering these questions, many re-planning approaches are proposed for specific
mission re-planning problems. One widely used re-planning method is called Iterative
Repair (IR), which was first proposed to be ready to continually modify the initial plans
for the DS-1 mission. It has been used for different re-planning problems, such as [Ra-
bideau et al., 1999b], [Chien et al., 2000], [Zweben et al., 1993], and [Rabideau et al.,
1999a]. The basic idea of IR is that at each iteration, the re-planner will first identify the
old plans for the current planning horizons, then update the goals and system states,
and generate new planning horizons. By employing IR, the onboard reaction time to re-
spond to changes in the operating environment or mission objectives can be reduced,
and system conflicts caused by these changes can be avoided. Later on, the idea of IR
has been expanded and combined with other re-planning techniques to formalize dif-
ferent re-planning approaches. The main purpose of these re-planning approaches is to
provide suitable, approximate optimal new plans for the system within a short reaction
time. These approaches normally focus on improving the quality of the new plans by
targeting one or a few perspectives. For example, [Brock and Khatib, 2000] [Boella and
Damiano, 2002] [Grecu and Gonsalves, 2000] [Tompkins et al., 2006] all aim to provide
feasible re-planning architectures for specific applications, which can decrease the re-
planning reaction time for these specific applications. [Likhachev et al., 2005] [Stentz
et al., 1995] [Duan et al., 2009] [Das et al., 2016] implement different heuristic algorithms
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to improve the efficiency and effectiveness of the optimization procedures for the re-
planner. [Jiang et al., 2008] [Chamseddine et al., 2015] [SalarKaleji and Dayyani, 2013]
propose several unique fault-detection mechanisms to reduce the reaction time of the
re-planning methods.

Although many re-planning approaches have shown good performances for different
scenarios, few of these scenarios are related to multiple subjects under an unpredictable
operating environment. Therefore, considering the DSL mission as the reference, un-
expected situations that can occur during the operations need to be addressed. This
chapter aims to solve the mission re-planning problems for the reference MSS under
three specific emergency situations (failures related to onboard memory, observation,
and communication), and also provide corresponding re-planning approaches.

4.2. ARCHITECTURE OF ONBOARD PLANNING & RE-PLANNING

SYSTEM
As described in Chapter 3, the DSL mission employs a centralized control architecture
where the MS acts as the main controller to perform the initial planning. Fig 3.1 re-
veals the general structure of the centralized mission planning approach for the refer-
ence MSS. Based on this, the architecture of the planning & re-planning system is con-
structed, as shown in Fig 4.1. This architecture includes the general planner (GP), the
decision-maker (DM), and the re-planner (RP), which are all executed on the MS, while
the mission executor and status monitor (MEM) is running on each DS. Following this
flowchart, once a DS receives the initial plan, it will execute this plan and constantly
provides feedback to the MS. The MS will make decisions about whether the re-planner
needs to be activated on the basis of these status feedbacks. With the combination of
all these components, the MS has the ability to plan or re-plan for the entire MSS un-
der certain scenarios. This section will introduce the functionality of these components,
provides the basic assumptions, and formulates the entire architecture for the central-
ized onboard planning and re-planning system.

4.2.1. GENERAL MISSION PLANNER

The general mission planner (GP) is the key component for solving the onboard initial
mission planning problem. Its flowchart is shown in Fig.4.2. This module has been de-
signed to receive high-level mission requirements from the control center and provide
suitable initial control sequences for every DS in the system. Considering the centralized
control model, the MS receives the commands from the control center and considers
them as high-level goals (e.g. which area to observe, or the total observation time, etc.).
Based on these high-level goals and the current available resources on all DSs, the GP on
the MS can establish the initial planning problem. Then, the GP will proceed according
to the following steps:

a. Sampling the operation area
As described in Chapter 2, the RFI-blocked area provides an Observation Window
for the DSL mission to observe low frequency radio signals from deep space. This
step uses the pre-designed orbit altitude and the Earth-Moon distance, sampling the
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Figure 4.1: General flowchart of the planning and re-planning system for the reference MSS. It consists of four
modules, the general planner (GP), the decision-maker (DM), the re-planner (RP), and DS mission executor
and monitor (MEM). The GP, DM and RP are located on the MS, and the MEM is located on each DS.

operation area for the mission assignment. The blocked angle and observation angle
can be calculated using Eq 3.1 and Eq 3.2.

b. Mission decomposition
In this step, the high-level goal is expanded and transformed into a mathematical
form which the GP is able to handle. Based on the system status of all DSs, the plan-
ner can decompose the main mission into several sub-missions. For each DS, input
parameters can be calculated based on these sub-mission requirements. These in-
put parameters include the observation and communication windows, the mission
lifetime, the satellite orbital period, and other planning parameters. Therefore, the
high-level goal can be decomposed and the entire planning problem can be formu-
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Figure 4.2: Flowchart of the general mission planner

lated as a multi-objective optimization problem.

c. Initial planning
After the decomposition in the previous step, the MS needs to generate feasible initial
plans for all DSs. In this chapter, the system status of all DSs is assumed to be iden-
tical. Then, the GP implements the proposed HDMGA from the previous chapter to
perform initial planning and generate optimal control sequences for all DSs.

4.2.2. DS MISSION EXECUTOR AND MONITOR

The flowchart of these two modules is illustrated in Fig 4.3. Based on the control se-
quences received from the MS, each DS can perform these preplanned tasks indepen-
dently. To ensure safety, a self-check procedure is required to define the current status
of each agent. A Beacon Signal (BS) is used during self-check, which carries the basic
information about the health status of the corresponding DS. If the MS identifies the BS
which contains the unhealthy condition from any DS, the onboard planning system will
request the decision-maker to perform a detailed check with this DS. The executor can
proceed based on the BS signals from DS with healthy conditions. The monitor has the
ability to monitor the performance of the plan execution. When any error is detected by
onboard sensors, the monitor can stop the current process and request for a re-do of the
current scheme. Once all plans have been executed, the monitor needs to check whether
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the sub-goal assigned to it has been reached or not. If necessary, the monitor can request
the general mission planner to provide new plans according to new objectives.
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Figure 4.3: Flowchart of the mission executor and monitor for each DS

4.2.3. DECISION-MAKER
The decision-making process is activated by the BS signal which contains the unhealthy
content sent from a DS. The BS only contains simple information about whether this DS
is healthy or not. Therefore, to fully analyze the current status of this DS, an emergency
communication channel between this unhealthy DS and the MS needs to be established
immediately, while other DSs continue their work. Through this channel, the MS can
receive detailed information from the target DS to allocate the system error of this DS.

To design this decision-maker, the priority is to define the possible emergency sce-
narios which the system can handle. During mission operations, either situation whether
it is the initiative to change of a mission objective, or a DS failure can render the cur-
rent mission plans obsolete. For these reasons, in this chapter, we take three emer-
gency situations into account, expressed by E. This set consists of four elements: (1)
Time when an emergency occurs Te , its unit is second. (2) The emergency scenario set
es = {A,B ,C , ...} represents the scenarios the decision-maker is facing. It can be one of
emergency scenarios, or a combination of different scenarios. (3) The position array for
dysfunctional satellites n. This array stands for the dysfunctional satellites’ positions in
the MSS. For example, n = [1,2,5,7] means that DS1, DS2, DS5, and DS7 are damaged.
(4) The functional array p. Each number represents the percentage of the functional-
ity situation for the corresponding dysfunctional DS, where 100% means perfectly func-
tional and 0% means totally dysfunctional. The same idea has been used in [Barua and
Khorasani, 2011]. Combining all four elements, an emergency situation is characterized
as: E = {Te ,es,n,p}. For the DSL mission, observing from lunar orbit to collect raw data
and send these data back to Earth are the two most important aspects that need to be
considered. Therefore, the emergency situations we handle in this chapter are failures
in the observation and communication functionalities. Based on these, three possible
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scenarios are assumed:

(i) Scenario A
In space, there are plenty of ways a spacecraft can get dysfunctional. Although in
lunar orbit, there are much less man-made space debris objects than in earth orbit,
other influences such as radiation or micro-meteoroids can cause a damage to the
fleet. Therefore, the first scenario we need to consider is facing the downsizing of
the fleet. The number of the dysfunctional DSs can range from one to eight.

(ii) Scenarios B and C
Besides for external influences which can cause fatal failures of satellites, the inter-
nal errors can also cause malfunctions for different sub-systems. Here, observation
and communication malfunctions are two main aspects we consider. Therefore,
we assume that during operations, the observation equipment and/or the commu-
nication equipment may face partial-failures and become semi-functional due to
a system error such as circuit aging or other factors. In these two scenarios, the
number of reduced-functional satellites can range from one DS to eight DSs. The
functional percentage can range from 0%−100% to represent different levels of the
damage. Scenario B represents partial-failure of the observation system, and C
represents partial-failure of the communication system.

Although here only 3 scenarios have been defined, the concept and architecture of this
planning and re-planning system is generic and can be used for other scenarios. Based
on these assumptions for emergency situations, the decision-maker has to react to these
three sample scenarios. When the MS builds the communication link with the target DS,
it will trigger the self-check. The flowchart of the decision-maker is illustrated in Fig 4.4.
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Based on the decision made by the decision-maker from the previous step, the re-
planner will receive a signal from the decision module about which situation it is facing.
Then the first step is to evaluate whether this request is within the cognitive database.
This database is pre-designed to target possible emergency situations. In this thesis, we
only consider the three scenarios previously introduced. Any case beyond those three
cannot activate the re-planning procedure due to the knowledge limitation of the MS.
Meanwhile, during operations, new objectives can also trigger the re-planner. Different
emergency scenarios combined with different numbers of dysfunctional satellites can
lead to very diverse re-planning cases. For some cases, by changing the old plans’ order,
or inserting and deleting plans, new valid plans can be establish. For other situations,
based on new objectives or a change of operation environments, the re-planner needs to
create new plans without consulting the initial plans. Therefore, during this evaluation,
the re-planner needs to choose whether to modify old plans or generate new plans.

The differences between initial planning and re-planning are the total number of
plans that need to be handled and how to manage them. In initial planning, the system
needs to generate all mission plans for each DS according to the main mission objec-
tive. In contrast, in re-planning, the first option is always trying to modify the current
plans instead of creating new plans. For the DSL mission, considering its unique obser-
vation constraints, all the satellites need to keep communication silent when satellites
are within the observation window. This causes traditional re-planning methods unable
to handle this situation. Based on this unique constraint, we propose two re-planning
methods, each with its own principles, and each approach corresponding to one pref-
erence. The flowchart of the re-planner is shown in Fig 4.5. The details of these two
methods will be explained in the next section.
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4.3. RE-PLANNING METHODS
Considering the unique requirements for the DSL mission, along with emergency situa-
tions which can occur during mission operations, effective re-planning methods which
can plan for common tasks and re-planing for emergency situations are needed.

This section proposes two re-planning methods, called the Cyclically Re-planning
Method (CRM) and the Near Real-time Re-planning Method (NRRM), respectively. Both
methods consist of a core planning algorithm which has been used in Chapter 3 to per-
form the onboard initial planning. The differences between these two methods are the
strategies of selecting the re-planning time point and choosing a number of unfinished
tasks during the re-planning process. The efficiency and accuracy of these two approaches
are different when targeting different scenarios under different time constraints. Each
method has its own strengths and weaknesses, so the specific choice of the method de-
pends on the user requirements.

4.3.1. CORE ALGORITHM

In this chapter, we employ the HDMGA as the core algorithm for our re-planning meth-
ods. The HDMGA consists of two mutation operators. These two operators work in-
dependently from each other during the mutation procedure. One operator is for the
normal mode, the other is for the escape mode. For the normal GA, there exists a termi-
nation generation number TG , which means that if the average value of fitness function
has not changed over several generations TG , the algorithm will stop. Within HDM, there
is another condition TN which is the trigger to switch the algorithm between the normal
mode and the escape mode. Until the switch criteria has been reached, the algorithm
uses the normal mutation rate Rnor . Once TN satisfies the switch criteria, the algorithm
will use the escape mutation rate Resc to try to jump out of the local minima. To expand
the search area, the mutation rate in escape mode is larger than the rate in normal mode.

4.3.2. CYCLICALLY RE-PLANNING METHOD

PRINCIPLE

As the name implies, this cyclically re-planning method (CRM) is executed once per-
orbit to perform mission planning and re-planning for the entire team. Instead of using
GP to perform initial planning for the entire operation lifetime at the beginning of the
mission, the CRM will repeat the single orbit planning procedure at the beginning of
each orbit using the latest system status of all DSs and the old plans from the previous
orbit. There are several advantages for using this method: Firstly, for some observation
missions, the entire operation lifetime can be a very extended period. During each orbit,
each DS requires four variables to control observation and communication tasks (as ex-
plained in Chapter 3.2), which are the start and end time points for each of the task. With
the long operation time, the total number of variables of the planning algorithm will be
huge. Using CRM at the beginning of each orbit can reduce the planning variable num-
ber and make it a constant due to the fixed number of satellites. Secondly, considering
the large scale of variables, the dimension of the constraint matrix for the re-planning
problem of all orbits will be much larger than the one for the single orbit re-planning
problem. Therefore, employing CRM can reduce the complexity of solving the optimiza-
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tion problem at each orbit, which can reduce the computation time. Thirdly, when fac-
ing different emergency scenarios, the CRM needs to establish the communication link
between the MS and each DS at the first possible communication time (both MS and DS
are out of the communication window). This can eliminate the problem that initial time
sequences in the MS are occupied by establishing the emergency link with the damaged
DSs. Finally, under the normal scenario, the old plans for previous orbits can be directly
used by the CRM while only changing the variables’ boundaries. When the re-planner
faces emergency scenarios, the new model can be modified based on the previous nor-
mal situation model and it can perform re-planning based on the current status of the
functional DSs. All these advantages render the CRM a fast and easy re-planning method
for operations.

During the re-planning produce, the steps of using this method are as follows:

(1) At the end of each orbit, the MS needs to activate the re-planning procedure by eval-
uating the status of each DS through the BS. During operations, the BS is sent every
certain period which is defined by the user. However, due to the observation win-
dow (OW) constraints, all the DSs need to keep communication silent during that
time, including the BS. Therefore, when the MS receives an unhealthy BS from the
DS which just exits the OW, this signal only indicates that some abnormal events
have happened during this period. It cannot provide the MS the exact time when
this abnormal event occurred. In this case, the MS has corresponding strategies for
different time intervals at which the emergency situations may occur.

(2) Once the emergency scenario has been determined from the last step, the MS has
to evaluate how many DSs are still fully or partially functional. Meanwhile, several
important parameters need to be updated according to re-planning time, such as the
onboard memory MSi (nk ) for the Si at the orbit nk , data observation rate ObsSi (nk ),
and the communication rate ComSi (nk ).

(3) Based on the DSL mission requirements, basic parameters such as satellite number,
baseline, orbit altitude, initial settings for observation and communication systems
can be determined. The new array of variables and new constraint matrix need to
be re-assigned according to the new model. Then, based on the specific scenarios,
the algorithm will follow predefined strategies to perform a re-planning for the next
orbit.

The pseudo-code of the CRM is shown in Algorithm 3.

4.3.3. NEAR REAL-TIME RE-PLANNING METHOD

PRINCIPLE

Unlike CRM, the near real-time re-planning method (NRRM) follows a different strategy
to perform mission re-planning. In the previous method, in order to reduce the total
number of variables and the complexity of the constraint matrix, we choose to plan the
satellite tasks at the beginning of each orbit. The NRRM, on the other hand, uses the
strategy which only reacts to the emergency scenarios once they occurred, and perform
re-planning for the unfinished mission objective. However, the NRRM has the same hard
constraint as the CRM, which is, during the observation all satellites need to keep silent.
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Algorithm 3 Cyclically re-planning method
Input: daughter satellite number N , objective of the orbit number M , cyclically operation period TO , observation window

OW, communication window CW, emergency situation E, observation rate ObsSi
, and communication rate ComSi

Output: Task plans X
1: function X ←C RM(N , M ,TO ,OW,CW,E,ObsSi

,ComSi
)

2: counter = 1
3: while counter É M do
4: for i = 1 : N do
5: if BSi = heal thy then
6: ESi

← null

7: else
8: ESi

← {T
Si
e ,es,nSi

,pSi
}

9: switch es do
10: case es = 0 . Nor mal si tuati on
11: x ← f uncti on(HDMG A{N , M ,TOr bi t ,OW,CW,E,ObsSi

,ComSi
})

12: case es = 1 . Scenar i o A
13: [Num,1] = si ze[ f i nd(E 6= 0)]
14: N ← N −Num
15: x ← f uncti on(HDMG A{N , M ,TO ,OW,CW,E,ObsSi

,ComSi
)

16: case es = 2 . Scenar i o B
17: Obs(ncounter ) = Obs(ncounter −1)∗p
18: x ← f uncti on(HDMG A{N , M ,TO ,OW,CW,E,Obs(ncounter ),Com(ncounter )})

19: case es = 3 . Scenar i o C
20: Com(ncounter ) = Com(ncounter −1)∗p
21: x ← f uncti on(HDMG A{N , M ,TO ,OW,CW,E,Obs(ncounter ),Com(ncounter ))

22: Ncounter ← N − f (X)
23: xcounter = x
24: counter = counter +1
25: X = [x1 ; ...,xM ]

return X

Therefore, the reaction to the emergency scenarios may not occur in real-time. This is
the reason why this method is called near real-time re-planning method.

The strengths of the NRRM are as follows: Firstly, although the re-planning pro-
cedure of the NRRM requires more computation resources than the CRM because the
number of variables for the NRRM is larger than the CRM, the overall re-planning times
for the NRRM is much lower than the CRM. This is because the CRM will re-plan for
each orbit, while the NRRM only performs re-planning if necessary. Therefore, the over-
all computational resource consumption of the NRRM can be much less than the CRM
when facing a small number of emergencies. Secondly, the NRRM can react to emer-
gency scenarios much quicker than the CRM. Although based on the main scientific re-
quirement that during the OW all the satellites need to keep silent, the NRRM can rely on
the positions of dysfunctional satellites and their situation parameters to decide when
to activate the re-planning procedure. Therefore, this method is called a near real-time
method. This means that for specify scenarios, the MS can react immediately, while
for other scenarios, the MS needs to determine when to perform re-planning without
jeopardizing the observation tasks. Thirdly, since the whole mission task sequences for
every DS have been planned during initial planning, under any emergency scenario, the
NRRM can react based on the initial plans. During the re-planning, some re-plan tech-
niques such as deleting, inserting, and modifying can be employed by the NRRM, which
will accelerate the re-planning procedure.

The steps of using the NRRM for re-planning are as follows:
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Algorithm 4 Near real-time re-planning method
Input: daughter satellite number N , objective of the orbit number M , cyclically operation period TO , observation window

OW, communication window CW, emergency situation E, observation rate ObsSi
, and communication rate ComSi

Output: Task plans X
1: function X ← N RRM(N , M ,TO ,OW,CW,E,ObsSi

,ComSi
)

2: E ← null
3: Xi ni t i al ← f uncti on(HDMG A{N , M ,TO ,OW,CW,E,ObsSi

,ComSi
) . Ini t i al pl anni ng

4: for i = 1 : TO ∗M do
5: if Ei 6= 0 then

6: ESi
← {T

Si
e ,es,nSi

,pSi
}

7: [a,b] = si ze(nSi
)

8: if PosMS < nSi
(a) then . Er r or Detect i on

9: rt =Out ti me(Sa )
10: elsePosMS > nm (a)
11: rt =Out ti me(MS)

12: switch es do
13: case es = 0 . Nor mal si tuati on
14: X = Xi ni t i al

15: case es = 1 . Scenar i o A
16: Xi ni t i al ← del et i ng {es,n}
17: X ← f uncti on(HDMG A{Xi ni t i al , N , M ,TO ,OW,CW,E,ObsSi

,ComSi
,rt })

18: case es = 2 . Scenar i o B
19: Xi ni t i al ← modi f yi ng {es,n,p}

20: Xi ni t i al ← i nser t i ng {T
Si
e ,es,n,p}

21: X ← f uncti on(HDMG A{Xi ni t i al , N , M ,TO ,OW,CW,E,ObsSi
∗pSi

,ComSi
,rt })

22: case es = 3 . Scenar i o C
23: Xi ni t i al ← modi f yi ng {e,n,p}
24: Xi ni t i al ← i nser t i ng {rt ,e,n,p}
25: X ← f uncti on(HDMG A{Xi ni t i al , N , M ,TO ,OW,CW,E,ObsSi

,ComSi
∗pSi

,rt })
return X

(1) After the initial planning, the NRRM keeps low power operations, which only moni-
tors the health condition of each DS.

(2) Once an emergency occurred, the NRRM needs to react differently based on the spe-
cific situation, determining the key parameters which include the start time of the
re-planning procedure, the current system status of each DS, and the achieved mis-
sion status.

(3) Then, targeting different scenarios, the NRRM will save the part of current plans for
healthy DSs to reduce unnecessary time consumption on these satellites. Mean-
while, the core algorithm will be based on the start time of the re-planning and other
parameters to re-plan all the tasks for the rest of the mission.

The corresponding pseudo-code is shown in Algorithm 4.

4.4. SIMULATIONS AND ANALYSIS
To analyze the performance of the two re-planning methods, multiple simulation cases
have been designed based on the emergency scenarios introduced before. Each case
represents a unique emergency scenario. For each case, we apply two re-planning meth-
ods (CRM & NRRM) to perform mission re-planning separately. Furthermore, we ana-
lyze their performance based on several criteria such as computation time, completion
of the mission objective, and efficiency value.
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4.4.1. SIMULATION ASSUMPTIONS

SIMULATION ENVIRONMENT

The DSL mission will operate in a lunar orbit to prevent RFI from the Earth. Based on
the scientific mission requirements, some basic parameters about the simulation en-
vironment are following the same assumptions as in Chapter 3.4. Meanwhile, since the
purpose of this section is to test whether the proposed re-planning methods can be qual-
ified when facing various emergency situations, the total number of operational orbits is
set to be M = 4.

SIMULATION CASES

The simulation cases are adopted from three different scenarios introduced before. For
each case, we need to provide the emergency situation set E = {Te ,es,n,p} for the re-
planner to describe an emergency case. In order to test the performance of each method,
the simulation environment for the same case will stay the same. Meanwhile, to verify
the diversity of the real situation, each case contains different information.

• Case A
This case aims to simulate an example of the scenario A, which represents a com-
plete malfunction of several DSs during the mission. To simulate this situation, we
assume that the emergency occurred at the time when the MS was inside the OW.
Based on the orbit altitude, the orbit period TO can be calculated by Eq 3.1 and
Eq 3.2. The emergency time Te is set to be 12000 seconds after mission started.
Meanwhile, to increase the diversity of this case, we assume that three DSs are dys-
functional, two of them are ahead of the MS, and another is behind the MS. The
emergency situation set can be written as EA = {Te = 12000,es = 1,n = [1,3,5],p =
[0%,0%,0%]}, where es = 1 stands for the case A, n = [1,3,5] stands for the number
of the dysfunctional DSs (DS1, DS3, and DS5), p = [0%,0%,0%] indicates that all of
the damaged DSs are totally dysfunctional.

• Cases B & C
These two cases are two examples to simulate the scenario B and C, which repre-
sent a partially dysfunctional situation related to either their observation or com-
munication functionality. Following the same approaches as in case A, the emer-
gency time is set as same as the previous case. The number of partial-failure DSs
are four, two in front of the MS and two behind the MS. The functional percent-
age of each DS is different. We assume the emergency sets for cases B and C are
EB = {Te = 12000,es = 2, n = [2,4,6,8],p = [20%,40%,60%,80%]} and EC = {Te =
12000,es = 3,n = [1,3,5,7],p = [20%,40%,60%,80%]}, respectively. All representa-
tions are the same as explained in case A.

4.4.2. CRM SIMULATION
Based on previous assumptions, we first employ CRM to solve all three cases.

• Case A
The simulation results when using CRM to solve case A are shown in Fig 4.6. This
figure contains eight sub-figures representing task sequences for all eight DSs. The
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blue line with blocks on the top represents initial plans made by the MS based on
the mission objective. Each block stands for a task operation period. The black
line represents the mission cyclically re-planning procedure under the normal sit-
uation. The red line with blocks stands for new plans made by the CRM, each block
represents a new task operation period. The bottom blue line is the re-planning
procedure line when the emergency has been detected. The vertical gray dash line
separates four orbits of the operation lifetime. The X-axis stands for the mission
elapsed time which starts from 0. The Y-axis represents the plan number with the
range from 0 to 16, which helps to distinguish each task.

To explain the results in this figure, several aspects need to be mentioned. The
black block line illustrates the strategy of the CRM to re-plan at the beginning of
each orbit. All the sub-figures contain this line to show that every DS needs the
CRM to provide plans during each orbit. Based on the assumptions, this emer-
gency will occur at 12000 seconds after the mission has started. This time point
has been marked on the black line. However, due to the core concept of the CRM,
the re-planning procedure after this emergency is triggered at the beginning of
next orbit only, represented by the blue line at the bottom. This case assumes
that only three DSs are dysfunctional. The dysfunctional set is n = [1,3,5]. These
three satellites share the same condition, of which re-planning results are illus-
trated in Fig 4.6a, Fig 4.6c, and Fig 4.6e, respectively. These figures show that after
the emergence occurred, all the plans for DS1 have been deleted, as well as for DS3
and DS5. The total number of operable satellites is decreased due to the damage.
Therefore, all operable DSs (in this case are: DS2, DS4, DS6, DS7 and DS8) have
longer communication times with the MS, as shown in Fig 4.6b, 4.6d, 4.6f, 4.6g,
and 4.6h, respectively. The increased communication time for these DSs also pro-
vides them extra storage capacity for a longer observation time. The new plans in
the figures of these DSs’ show that the periods for both communication tasks and
observation tasks are indeed increased.

• Case B
Following the assumptions made for case B, the simulation results are shown in
Fig 4.7. The meaning of each line is the same as in case A, along with the explana-
tion of the X- and Y-axes. The partial non-functionality on observation tasks only
influences the observation duration of certain DSs, while the old plans of observa-
tion tasks for other healthy DSs are not influenced since they already reach their
maximum capability. Therefore, this figure only contains the re-planning infor-
mation about the satellites (DS2, DS4, DS6, and DS8) showing partial-failure. The
following aspects explain the simulation results shown in this figure.

This case is about the reduced functionality of the observation tasks. It leads to
a direct impact on the data observation rate ObsSi of each DS. With the same
amount of onboard storage capacity, lower observation rate means longer obser-
vation time if it is inside of the OW. In this figure, the representations of the boxes
and the lines are the same as for case A. Comparing the new plans (red line) with
the initial plans (blue line) in each sub-figure, the re-planned observation task
blocks are longer than the initial blocks. The functional matrix p in this case influ-
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(a) DS1 in Case A (b) DS2 in Case A

(c) DS3 in Case A (d) DS4 in Case A

(e) DS5 in Case A (f) DS6 in Case A

(g) DS7 in Case A (h) DS8 in Case A

Figure 4.6: Re-planning results for Case A using the CRM. For all figures, at each orbit, the middle box stands
for the observation task, and the earlier and later boxes stand for the communication tasks. Gray dash lines
divide operation time into four orbits. For the first orbit, since there is no data to communicate, there is no
communication task in front of the observation task.
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(a) DS2 in Case B (b) DS4 in Case B

(c) DS6 in Case B (d) DS8 in Case B

Figure 4.7: Re-planning results for Case B using the CRM. Only the partially non-functional DSs are shown.

ences the observation functionality of each dysfunctional DS. The percentage in
the matrix denotes the current observation functionality of the corresponding DS.
For example, for DS2, the functional percentage is 20%, which means that the new
observe rate NewObsS2 is only 20% of the normal rate. The observation blocks
of DS2 are the longest among all four damaged DSs (as shown in Fig 4.7a), and
corresponding blocks for DS8 are the shortest due to its smallest damage (in Fig
4.7d).

• Case C
In this case, the dysfunctionality on communication tasks of four DSs cannot affect
the remaining DSs since the communication window has been equally distributed
to every DSs by the MS. With the same amount of DSs, the communication time for
the dysfunctional DSs cannot change, which means the healthy DSs cannot take
over the unhealthy DSs’ communication time. Therefore, we only focus on the four
dysfunctional DSs. The results are shown in Fig.4.8, which contains four DSs (DS1,
DS3, DS5 and DS7). The results shown in each sub-figure illustrate that commu-
nication task blocks in the new plans (red lines) have the same lengths as blocks in
the initial plans (blue lines). Due to the malfunction on the communication tasks,
with the same communication time, the dysfunctional DSs can transmit less data
than in the initial plans. This causes less storage recovery for the next observa-
tion orbit. Comparing with the initial plans, observation blocks of the new plans
in each DS are much shorter. This indicates less observation time due to the com-
munication malfunction. The re-planning details of dysfunctional DSs are shown
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(a) DS1 in Case C (b) DS3 in Case C

(c) DS5 in Case C (d) DS7 in Case C

Figure 4.8: Re-planning results for Case C using the CRM. Only partial non-functional DSs are shown.

in each sub-figure.

To summarize, it is verified that the concept of the proposed CRM works for every
scenario introduced before and can provide valid plans for further mission operations.
Meanwhile, with a constant or even fewer DSs for different cases, the CRM can re-plan
the mission cyclically in a short computation time due to a smaller number of variables
and a smaller dimension of the constrains matrix.

4.4.3. NRRM SIMULATION

In this part, we employ the NRRM to solve all three simulation cases. To compare the
performance of CRM and NRRM, we use the same case assumptions. Every simulation
shown in this part has the same settings as the previous simulations.

• Case A
The NRRM has a different re-planning strategy as compared to the CRM strategy.
The simulation result for case A is shown in Fig 4.9. In each sub-figure, the NRRM
overall planning procedure is represented by the black line at the beginning. The
dashed line stands for the system standby. Once an emergency is detected, the
NRRM needs to wait to reach the start time of the re-planning, which is indicated
by the pink line in each sub-figure. This waiting period is related to the dysfunc-
tional satellite’s position within the fleet. The blue block stands for the re-planning
procedure and the dashed line after that represents the system standby. The rest
of the line follows the same connotation as in the previous figures.
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(a) DS2 in Case A (b) DS4 in Case A

(c) DS6 in Case A (d) DS7 in Case A

(e) DS8 in Case A

Figure 4.9: Re-planning results for Case A using the NRRM

To fully explain this figure, we discuss here the following aspects: (1) Due to the
case A, DS1, DS3, and DS5 are eliminated from the fleet after the emergency. There-
fore, in this figure, we only present re-planning results of the five healthy DSs. (2)
Fig 4.9a shows the results of DS2. The third box of the blue line in the second orbit
represents the second communication task in this orbit, which has an overlap with
the re-planning period. Based on NRRM, all tasks after the emergency should be
suspended and re-evaluated. At the time the NRRM finishes the re-planning, the
time window for this communication task has passed. However, after eliminating
all dysfunctional satellites, DS2 is re-ranked to the first position within the fleet.
Therefore, after the re-planning, this communication task has been replaced and
re-calculated according to the number of operable DS. (3) For the DS4 (Fig 4.9b),
the same box also represents a communication task in the second orbit, of which
operation period in initial plans is behind the re-planning period in the MS and
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should be unchanged. However, the total number of healthy DSs in the fleet is
decreased, and this communication time for each operable DS is correspondingly
increased. The new plan for this communication task indicates that DS4 has to
wait for DS2 to finish its communication task first. Only then it can start its own
communication task. (4) The results of DS6, DS7, and DS8, are shown in Fig 4.9c,
Fig 4.9d and Fig 4.9e, respectively. Due to the team downsizing, all the tasks shown
in initial plans have been moved ahead accordingly. (5) For all operable DSs, due
to the increasing communication time, the observation time in each orbit after the
emergency is also increased. This also happens when using the CRM.

• Case B
The simulation results are shown in Fig 4.10. Considering the potential influences
of the NRRM during the re-planning procedure, we show four dysfunctional DSs

(a) DS1 in Case B (b) DS2 in Case B

(c) DS3 in Case B (d) DS4 in Case B

(e) DS6 in Case B (f) DS8 in Case B

Figure 4.10: Re-planning results for Case B using the NRRM. Only the relevant DSs are shown.
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(DS2, DS4, DS6, DS8) and two unharmed DSs (DS1, DS3).

This figure shows the following: (1) Although DS1 and DS3 are unharmed, we can
see from Fig 4.10a and Fig 4.10c that the re-planning procedure is occupying the
MS when the communication task of these two DSs should occur. These commu-
nication tasks require the corresponding DS and the MS to be available for this
task at the same time. Therefore, for DS1, the communication task during the re-
planning procedure cannot be fully finished due to the occupation of the MS. For
DS3, the communication task happens after the re-planning procedure needs to
be deleted. (2) Meanwhile, one communication task in this orbit for DS2 is also
canceled due to the same reason. For DS4, the initial plan about its communi-
cation task in this orbit is delayed and decreased due to the re-planning end time.
The sub-figures for DS2 and DS4 show the corresponding phenomena by red lines,
as shown in Fig 4.10b and Fig 4.10d, respectively. (3) The reason for increasing the
observation time for each damaged DS is the same as the reason when using the
CRM. In this figure, new plans for DS2 and DS4 show the increased length of the
observation block in the new plan lines, which are the same for DS6 and DS8.

• Case C
In this case, for the same reasons as in case B, we present six DSs in Fig 4.11. From
this figure, several conclusions can be drawn: (1) For the same reason as in case
B, the MS is occupied due to the re-planning procedure. Therefore, the commu-
nication tasks in the second orbit of DS1, DS2, and DS3 need to be deleted or de-
creased. The new plans (red line) in Fig 4.11a illustrate that the communication
task box is stopped because of this reason. For DS2 and DS3, the results are simi-
lar. (2) The new observation tasks of DS1, DS3, DS5, DS7 are shorter than the ones
in the initial plans because of the malfunction on the communication equipment
of these DSs. The reason causing this phenomenon is the same as explained in
case C using the CRM as shown in Fig 4.11c, Fig 4.11e, and Fig 4.11f.

Using these simulations, the concept of this method has been successfully demon-
strated to solve the emergency scenarios introduced before. The NRRM has a different
re-planning strategy compared to the CRM. More variables and larger dimensions of the
constraint matrix, using the NRRM for initial planning lead to longer time than what the
CRM spends on planning time in each orbit. When an emergency occurs, the NRRM has
to re-plan the rest of the mission in one step, which results in increases on the variable
number and constraint matrix. These aspects all lead to a more complex programming
process and a longer computation time. However, the NRRM has the unique ability that
it can react to the emergency in near real-time, which is faster than waiting for the next
orbit as for the CRM. Using the NRRM to solve mission re-planning problems also has
the benefit that it can use the initial plans as baselines to implement the re-planning.
This can help the re-planner to reduce unnecessary computations. Other performance
comparisons between the CRM and the NRRM will be described in the following section.
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(a) DS1 in Case C (b) DS2 in Case C

(c) DS3 in Case C (d) DS4 in Case C

(e) DS5 in Case C (f) DS7 in Case C

Figure 4.11: Re-planning results for Case C using the NRRM

4.4.4. PERFORMANCE COMPARISON

To compare the performance between CRM and NRRM, we focus on three aspects: the
total number of data observed from all DSs within a certain time period, the total num-
ber of data the MS received from all DSs within a certain time period, and the average
computation time for re-planning in each case.

The histogram Fig 4.12 shows four categories. The first case is a control group rep-
resenting the normal situation without emergencies. The other three cases stand for
simulation cases introduced before. From the normal situation, the NRRM has received
1122 Gbits of raw data, which is 6 Gbits more than the CRM. The reason for this differ-
ence lies in their different re-planning strategies. The CRM does the re-planning at the
start of each orbit, which occupies the time of a communication task for the DS1. The
difference for the normal case between the two methods is 0.53%. This indicates that us-
ing the NRRM allows to collect more data than using the CRM. This difference effects all
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three cases, making the NRRM to observe more data than the CRM in the same period.
The figure also shows that for cases B and C there are similarly small differences. The dif-
ferences on these two cases are 0.72% and 0.74%, respectively. In Case A, the difference
is 3.15%. This is much higher than other cases, which is because when using the NRRM,
the re-planner can react within this orbit, which can extend the operable communica-
tion time in this orbit.

Fig 4.13 shows the comparison of the number of data received by the MS when us-
ing the two proposed methods for each simulation case. The figure illustrates the total
data received from all DSs during the mission. From the differences, we can observe:
(1) Due to the different re-planning strategies, using the NRRM helps the MS to obtain
3.91% more data than using the CRM. This is because for the normal case, the NRRM can
transmit more data than the CRM, for the same reason as what influences the data obser-
vation. Each case shows that using the NRRM makes the MS to receive more data than
using the CRM. (2) Based on the results, the difference of two methods in case B is 2.66%
lower than the difference in the normal case. This is because the NRRM needs time to
re-plan the mission, which occupies the time that the MS is supposed to communicate
with a DS. Therefore, the number of data received by the MS in case B using the CRM is
108.96 Gbits, which is close to the number under the normal case (110.44 Gbits). (3) The
NRRM shows steady performance on both cases A and B. The MS can receive almost the
same amount of data (110.28 and 110.33 Gbits). For case C, the amount of data received
by the MS drops significantly because of the malfunction on communication equipment
of four DSs.

In Fig 4.14, the differences between total computation time of these two methods for
re-planning are shown. For the normal case, the NRRM has a shorter computation time
due to the one-time planning policy, which is 26.63% shorter than using the CRM. The
CRM has to perform the re-planning procedure at each orbit, whether an emergency oc-
curred or not. The NRRM only needs to perform the initial planning at the beginning of
the mission. However, besides the normal case, all other simulation cases show that the
average computation time spent by the NRRM is longer than the time by the CRM. The

Figure 4.12: The number of data observed for the normal case and the three emergency cases within a certain
lifetime
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Figure 4.13: The number of data received by the MS for the normal case, and the three emergency cases within
a certain lifetime

Figure 4.14: Time consumption information in three cases

reason is that the NRRM has more variables and a larger constraint matrix than the CRM.
Although the CRM has to perform re-planning many times, for each time the number of
variables and constraints is small. This leads to a shorter computation time in total. The
differences show that for cases B and C, the differences are at the same level (17.61%
and 16.45%). For case A this difference is larger (21.25%) because the NRRM has less
variables and constraints due to the loss of three DSs.

From Fig 4.15, we can draw conclusions on the differences in the performance of
these two methods: (1) Based on the amount of data observed on DSs and the total
amount of data received by the MS, the red and blue lines reveal that NRRM supports
observation and transmission of more data than the CRM in a certain lifetime. For each
emergency case, the differences follow this pattern. The differences in the differences for
each case are caused by the unique situation formed by corresponding simulation cases,
such as cases A and C. (2) For all emergency cases, the time consumption reveals that
the NRRM requires at least 16.45% more computational time than the CRM. Therefore,
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Figure 4.15: Percentage differences of CRM and NRRM on three aspects for various cases

for emergency situations, the CRM can provide re-planning sequences faster than the
NRRM. The comparison shows that the NRRM has a superior performance on data ob-
servation and transmission and the CRM has a superior performance on the consump-
tion of the computation time for re-planning in these emergency cases.

4.5. SUMMARY
In this chapter, we first develop the model of the onboard mission planning and re-
planning problem for a multi-satellite system. Then, on top of the nominal scenario,
three emergency scenarios covering partial or complete failures of spacecraft in the fleet
are introduced. This is followed by the general architecture of the planning and re-
planning system, which helps to realize functions of four sub-systems, including the
general planner, the decision-maker, the re-planner, and the mission executor and mon-
itor. To handle the introduced three emergency scenarios, two re-planning methods are
proposed. These two methods use the same core optimization algorithm which has been
proposed in the previous chapter. The difference of two methods lies in their re-planning
strategies. The CRM performs re-planning at the beginning of each orbit, and it only re-
plans for one orbit. The NRRM performs re-planning in a near real-time setting when
the emergency occurs. Its re-planning is for the rest of the mission. The comparison
between these two methods on three study cases indicates that the CRM has the advan-
tage of saving computation resources, while the NRRM has the advantage that it allows
to observe and transmit more data within the same lifetime. Both methods show their
adaptability and flexibility when dealing with different cases. Both of them can success-
fully provide feasible new plans for various emergency scenarios.

In the next chapter, we aim to conduct further simulations for another realistic sit-
uation, which is the malfunction on the MS. Under this circumstance, the MSS will lose
the main controller and the proposed centralized planning and the re-planning meth-
ods presented in this chapter are invalid. In such a scenario, all operable DSs have to
cooperate to takeover the responsibility of the MS. Therefore, team cooperation and ne-
gotiation will be discussed in the next chapter.
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5.1. INTRODUCTION

I N Chapter 3 and 4, the MSS onboard mission planning & re-planning problems were
investigated through a centralized control model where the MS acted as the main con-

troller and all the DSs were only participants in this system. When the MS is functional,
it obtains essential information (e.g. healthy condition, sub-system status) from each DS
and performs onboard planning & re-planning by using centralized optimization algo-
rithms. Due to its omniscient ability, the MS can decompose the main mission objective
into several sub-goals and allocate them to the suitable DSs. This mission decomposi-
tion problem is called Multi-satellite Mission Allocation (MSMA) problem. It can be seen
as an optimal assignment problem where the objective is to optimally assign a set of sub-
goals to a set of satellites in a way that optimizes the overall system performance. Many
researchers have done studies on similar fields such as the Multi-robot Task Allocation
(MRTA) problem [Lerman et al., 2006; Tang and Parker, 2007], the Sensor Networks (SN)
deployment problem [Howard et al., 2002; Mini et al., 2014], the weapon-target assign-
ment problem [Murphey, 2000], and many other problems related to unmanned aerial
vehicles (UAVs), unmanned ground vehicles (UGVs), and unmanned underwater vehi-
cles (UUVs).

Basically, three types of approaches have been used to solve the previous problems.
The Centralized approaches [Koes et al., 2006; Semsar and Khorasani, 2007] are the most
widely used methods, which require one central controller to determine the mission as-
signment for each team member. The centralized approaches have the main advantage
of performing optimization based on the overall objective function, which leads to a
solution to be optimal or near-optimal. However, the centralized approaches also suf-
fer from several weaknesses. Firstly, centralized approaches are strongly depending on
the main controller, which makes them very vulnerable to its failure. Secondly, they re-
quire steady communication between the main controller and the participants, which
causes limitations on communication and mission coverage. Thirdly, the demand on
computational power of the main controller is high. As mentioned in Chapter 2.1, this
thesis focuses on providing the onboard mission planning and re-planning capability
for the DSL mission. The original design of this mission is to employ the centralized ar-
chitecture by using the MS as the main controller. This controller responds to mission
objectives received from the ground station, gathers the system status from all daughter
satellites, and generates the sequential plans for each DS. In Chapter 4, we took three
emergency situations of the DSs into account and formulated several potential cases for
the proposed re-planning methods. Under these emergency situations, the DSs suffer
from different kinds of system failures, such as nonfunctional or partially functional ob-
servation or communication capabilities. However, in a real-world scenario, the MS as
well faces risks on being completely or partially nonfunctional. In this case, the MSS will
lose the main controller, while any of the daughter satellites cannot perform the cen-
tralized planning for the whole fleet due to the design limitations. That is, DSs were
never designed to support the MS failure. Under this circumstance, the MSS will lose
the central controller, which makes centralized approaches unusable. To overcome this
situation, daughter satellites are forced to break the original centralized topology and
construct a new topology. It can be either a distributed or a decentralized architecture
based on the baseline between the daughter satellites and the efficient communication
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range.
Therefore, from this chapter on words, we investigate non-centralized approaches

for onboard mission planning. Unlike centralized approaches, non-centralized approaches
require cooperation and negotiation between participant DSs, which are treated as agents
in the network. Many of the earlier works that have been reviewed in Chapter 2 are fo-
cused on the analysis of the mission allocation problem under a stable operating envi-
ronment. However, in our study, we also cover unpredictable situations during opera-
tions, where the MSS needs to adjust cooperation and negotiation mechanisms based
on different conditions. In this chapter, we propose several negotiation and cooperation
mechanisms for the reference MSS to accomplish onboard mission allocation problems.

5.2. MULTI-SATELLITE MISSION ALLOCATION PROBLEM
An MSMA problem can be divided into three sub-problems: firstly, how to decompose
the global goal into several sub-goals; secondly, how to construct the organizational ar-
chitecture based on different mission requirements; and thirdly, how to assign the sub-
goals to each satellite through the negotiation and cooperation mechanisms. Solving
a mission allocation problem is a dynamic decision making procedure. It should be
solved iteratively over time considering the changes of self-status or mission environ-
ment. Thus, choosing a suitable problem model and an adequate organizational archi-
tecture can lead to a more realistic solution.

5.2.1. ORGANIZATIONAL ARCHITECTURES

The organizational architecture provides a framework for activities and interactions be-
tween participant agents through the definition of characteristics, authority relation-
ships and communication links [Durfee et al., 1999]. In principle, the topology of the
MSS usually follows one of three organizational architectures: the centralized architec-
ture, the distributed architecture, and the decentralized architecture.

• Centralized architecture
As shown in Fig 5.1, all sub-tasks need to be determined by the main controller.

Task

Controller

Sub-tasks

Sub-tasks Sub-tasks

Sub-tasks

Figure 5.1: The centralized architecture

Its advantage is the controller can observe and gather information from all team
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members and then generate suitable solutions for them. However, lacking of ro-
bustness is one of the most severe drawbacks of the centralized architecture. Once
the main controller is dysfunctional due to either internal system errors or exter-
nal environment changes, the whole system will fail immediately. Meanwhile, the
scalability of the problem is restricted because all the agents are connected to the
main controller. This is considered as a bottleneck for the whole system regarding
the high demands from the main controller on both computation and communi-
cation capability. Thus, for an MSMA problem with a few participants and easy op-
erating environment, the centralized architecture is the most-suited [Al-Yafi et al.,
2009].

• Distributed architecture
As shown in Fig.5.2, all the agents in the distributed architecture have to interact

Task
Information Hub

Information 

exchange
Information 

exchange

Information 

exchange

Information 

exchange

Figure 5.2: The distributed architecture

with others to achieve a common goal. There exist either several stable information-
exchange channels or an information hub to help connect all agents. Using this
architecture, the computational load for the main agent can be shared with other
agents in the system. Moreover, the strong robustness of the distributed architec-
ture guarantees the system can still operate with the loss of few agents. However,
time delay during the communication needs to be handled properly. Thus, for an
MSMA problem with sufficient communication links but no single agent which
can take over the total computational load, the distributed architecture is the best
solution.

• Decentralized architecture
In the decentralized architecture shown in Fig.5.3, there is no hub or channels
for agents to exchange their information. Each agent can only connect with their
neighbors which determined by the range of the communication system and their
relative positions. The agents have to make decisions based on the limited infor-
mation gained from their neighbors. If an agent cannot find any neighbor, it may
work on its own. Therefore, the decentralized architecture has high robustness.
Once any damage occurs to a decentralized architecture, the whole system will
break into many decentralized systems. However, for a decentralized architecture,
a good local solution for each agent may not lead to a good global solution. It
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also faces the allocation redundancy problems once it breaks into several smaller
decentralized systems. In general, when applying the decentralized architecture
onto the MSS, restrictions on communication will affect the global performance.

Task

Task

Task

Task

CommunicationCommunication

CommunicationCommunication

Figure 5.3: The decentralized architecture

5.2.2. GAME-THEORETICAL FORMULATION FOR AN MSMA PROBLEM
Considering the distributed or the decentralized architecture the MSS could form, in this
chapter, we adopt concepts and methods from game theory to formulate negotiation
procedures between agents in the MSMA problem. Game theory is a study on math-
ematically modeling the conflicts and cooperation between several intelligent rational
decision-makers. In general, it studies how cooperation and negotiation mechanisms
can be designed and how to maximize the global welfare from the perspectives of each
agent.

In our MSMA problem, the DSs are considered as players and the goal is to minimize
the DS decision time that has the longest decision time in all DSs. Different architectures
lead to different kinds of games. For the distributed architecture, there exists an infor-
mation hub or few information exchange channels. All the players know the moves or
decisions previously made by all the other players, which makes this MSMA problem a
Perfect Information Game. For the decentralized architecture, each player is only famil-
iar with its neighbors’ information and decisions. This feature sorts this MSMA problem
as an Imperfect Information Game. Despite the differences in game types between the
distributed and the decentralized architectures for an MSMA problem, the objective is
to find the optimal task assignments and the resulting collective payoffs, which makes
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both games the so-called Cooperative Multi-player Game.
For this MSMA problem, we make the following assumptions:

1. Participant agents
A team of satellite S, each agent has individual needs, which is labeled as Si , i =
1,2,3, ..., N ;

2. Main mission goal and sub-mission goals
The mission objective MO is a high-level target for the whole group. During the
mission, this global goal needs to be decomposed into several sub-goals for each
satellite. The set of sub-goals is formulated as {moS1 , ...moSN };

3. Task assignment profile
As mentioned previously, the main mission needs to be decomposed and assigned
to each participant. Therefore, for all participants, the collection of task assign-

ments are called an assignment profile, or sometimes an action set: a j = {a j
1 , ..., a j

N }.
Each profile represents a possible combination of task assignments for all the par-
ticipant agents, and together all the assignment profiles form the profile search
space A ;

4. Utility functions

The utility function for each satellite USi (a j
i ) can be either different or indifferent

depending on mission requirements. Each assignment profile a j
i ∈A corresponds

to a global utility UG (a j ).

The task assignment profile which is agreeable to every player is well-known as the Nash
equilibrium. A Nash equilibrium is expressed as a∗ = (a∗

1 , ......, a∗
N ) such that no player

could improve its utility by choosing a different solution. For any satellite Si in the sys-
tem, we use a−i to represent the collection of the task assignments of the other satellites
beside Si , i.e.,

a j
−i = (a j

1 , ... , a j
i−1, a j

i+1, ... , a j
n). (5.1)

With this notation, if all the satellites Si ∈ S are satisfied with the following condition,

USi (a∗
i ,a∗

−i ) = max
a

j
i ∈A

USi (a j
i ,a∗

−i ) (5.2)

we call the assignment profile a∗ a pure Nash equilibrium (or to be Pareto efficiency).
In an MSMA problem, the system objective is to find out a pure Nash equilibrium for
all participants. Normally, a pure Nash equilibrium may not exist in every cooperative
multi-player game. Therefore, the utilities for the participant satellites in our MSMA
problem should be tailored so that at least one pure Nash equilibrium exists.

5.2.3. UTILITIES DESIGN
In game theory, utility represents the motivations of players. Well-designed utility func-
tions for every player can lead all players reach a more preferred global outcome (global
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utility). It is important to distinguish the global utility UG (a j ) and the individual util-

ity USi (a j
i ). The global utility represents the overall outcome under certain assignment

profile A , whereas an individual utility partly reflects the payoff of a single agent.
The MSMA problem considered in this chapter is an important input for our next

phase research. The solution of the MSMA problem will be used as the initial assign-
ment profile which represents the sub-goals for all the DSs. The quality of this solution
will directly affect the performance of the follow-up planning algorithm. Therefore, the
global utility and individual utilities for this MSMA problem are designed based on the
mission requirements and computational needs.

Since there is no sequential requirement for operations, all daughter satellites can
work simultaneously. Therefore, the global utility aims to search for an assignment pro-
file which is a pure Nash equilibrium among all the assignment profiles. It means that
the performance of this Nash equilibrium (chosen profile) is better or at least the same
compared to other profiles. The equation for the global utility is shown as follows:

UG (a∗) = min
a j ∈A

{max
i∈N

{US1 (a j
1), ...,USi (a j

i ), ...,USn (a j
n)}} (5.3)

where the objective of this global utility is to minimize the utility of the satellite that has
the largest utility in the team.

The individual utilities follow the same rules as the global utility. Based on the sci-
entific assumptions of the DSL mission, all eight daughter satellites have identical hard-
ware and software settings. Although some system errors can change the parameters of
the key components, the self-interest for each satellite is the same. Therefore, we treat
these individual utilities as identical interest utilities. As introduced in previous chap-
ters, in this thesis, we only concern about observation and communication behaviors.
Therefore, in this chapter, for each DS there are three parameters related to these two
behaviors, and they are considered to have influences on the individual utility of each
DS. These three parameters stand for the functionality situation of the onboard memory
H M , the observation capability HO, and the communication capability HC . For each
satellite, once an assignment profile comes in, the On-board Computer (OBC) needs to

estimate the time consumption based on the profile a j
i and the three above condition

parameters. The individual utility for each satellite is to find the assignment profile a∗
which minimizes the time consumption, shown as:

USi (a∗) = min
a j ∈A

{TSi (a1
i , H M , HO, HC ), ...,TSi (a j

i , H M , HO, HC )} (5.4)

where TSi is the equation to calculate the time consumption for different inputs of the
satellite Si .

The self-interest of each satellite is to get an assignment which can minimize their
time consumption. However, for this cooperative multi-player game, each player has to
cooperate with others to improve the global utility. They need to negotiate with other
players and reach a compromised solution which every player can accept. To efficiently
accomplish the negotiation and cooperation procedures, the next section will introduce
three negotiation mechanisms for different organizational architectures.
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5.3. NEGOTIATION AND COOPERATION MECHANISMS
As mentioned before, in order to solve the mission allocation problem for an MAS, coop-
eration and negotiation between the agents are very important. To develop a good mech-
anism means to design the protocols for governing all the agents’ interactions. Such
mechanisms have certain desirable properties, including Simplicity, Success rate, Max-
imizing welfare, Individual intelligence, and Stability [Zlotkin and Rosenschein, 1996].
Considering all these aspects, in this section, we will discuss the equilibrium selection
under distributed and decentralized organizational architectures, and design the suit-
able cooperation and negotiation mechanisms.

5.3.1. AGENT COMMUNICATION LANGUAGES
Before diving into the details about how to design the cooperation and negotiation mech-
anisms, first we need to introduce how the agents can interact with each other. For an
agent, these interactions include how to enlist the support of other agents to achieve its
goals, how to provide information to other agents, how to report its own status to other
agents, and how to request something from other agents. These special communica-
tion languages are called the Agent Communication Languages (ACL). These languages
rely on speech act theory [Searle, 1969] and provide a separation between the commu-
nication act and the content ontology. The first ACL was KQML (Knowledge Query and
Manipulation Language) [Mayfield et al., 1995], which was developed in the early 1990s.
By using the ACL, agents can interact with other agents by providing information to other
agents, reporting their status, requesting from other agents, and so forth.

Currently, the most widely used ACL is called the FIPA (Foundation for Intelligent
Physical Agents) [IEEE, 2018], which incorporates many features from KQML. The ad-
vantages of the FIPA ACL are the predefined interaction protocols which help to manage
conversations using different language contents. An ACL message contains a set of mes-
sage parameters. One of the mandatory parameters in all ACL messages represents the
communicative acts (i.e. the purpose of this message), known as Performatives. Using
this parameter to identify the priority and the need of the sender will increase the effi-
ciency of the receiver’s reaction. For example, if an agent receives two messages with the
performative to be INFORM and REQUEST, it will react to the REQUEST earlier than the
INFORM by defined protocols. The most commonly used performatives can be found in
Tab 5.1.

5.3.2. DISTRIBUTED NEGOTIATION MECHANISM

APPLICABLE SCENARIO ASSUMPTIONS

When the MS fails, the MSS system needs to reform its architecture to a distributed or
a decentralized architecture. In our study case, we firstly assume that no obstacle can
block the communication between DS, and the individual communication power can
provide reliable connections with other DSs. This assumption allows each DS to be able
to communicate with other DSs during operations, which makes this MSS fit in the char-
acteristic of a distributed architecture (as shown in Fig 5.2). When the communication
between agents can be guaranteed, this assumption is also valid for other multi-agent
system applications such as multiple drones or multiple intelligent vehicles.
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Table 5.1: FIPA ACL Performatives (taken from [IEEE, 2018])

Explanation
ACCEPT-PROPOSAL This is a general-purpose acceptance of a proposal (at some point in the future) the receiving agent il perform the action, once the given

precondition is, or becomes, true.
CALL-FOR-PROPOSAL(CFP) This is a general-purpose action to initiate a negotiation process by making a call for proposals to perform the given action. The actual

protocol under which the negotiation process is established is known either by prior agreement or is explicitly stated in the protocol
parameter of the message.

CONFIRM The sender confirms to the receiver the truth of the content. The sender initially believed that the receiver was unsure about it.
DISCONFIRM This indicates that the sending agent believes that some proposition is false, intends that the receiving agent also comes to believe that the

proposition is false, or believes that the receiver either believes the proposition, or is uncertain of the proposition.
INFORM(-IF, -REF) INFORM is the most used performative. The single INFORM is to tell another agent something, and the sender must hold that proposition

to be true. Also intends that the receiving agent also comes to believe that the proposition is true; For INFORM-IF, it is used as content of
REQUEST to ask another agent to tell the sender is a proposition to be true or false; For INFORM-REF, it is similar as INFORM-IF, only this
action asks for the value of the proposition;

PROPOSE This is a general-purpose act to make a proposal or respond to an existing proposal during a negotiation process by proposing to perform a
given action subject to certain conditions being true. The sender informs the receiver that the proposer will adopt the intention to perform
the action once the given precondition is met, and the receiver notifies the proposer of the receiver’s intention that the proposer performs
the action.

QUERY(-IF, -REF) QUERY-IF is the act of asking another agent whether (it believes that) a given proposition is true. The sending agent is requesting the
receiver to inform it of the truth of the proposition; QUERY-REF is the act of asking another agent to inform the requester of the object
identified by a descriptor. The sending agent is requesting the receiver to perform an inform act, containing the object that corresponds to
the descriptor.

REFUSE The action of refusing to perform a given action, and explaining the reason for the refusal. This act is performed when the agent cannot
meet all of the preconditions for the action to be carried out, both implicit and explicit.

REJECT-PROPOSAL This is a general-purpose rejection to a previously submitted proposal. The agent sending the rejection informs the receiver that it has no
intention that the recipient performs the given action under the given preconditions.

REQUEST(-WHEN, -WHENEVER) The sender is requesting the receiver to perform some actions by using REQUEST; REQUEST-WHEN allows an agent to inform another
agent that a certain action should be performed as soon as a given precondition, expressed as a proposition, becomes true; REQUEST-
WHENEVER allows an agent to do the same as the REQUEST-WHEN, furthermore, if the proposition should subsequently become false,
the action will be repeated as soon as it once more becomes true.

UTILITY-BASED REGRET PLAY

For the MSMA problem using the distributed architecture, we propose a new negotiation
mechanism called Utility-based Regret Play (URP). In our case, under the distributed ar-
chitecture, each DS has to negotiate with other DSs without any knowledge about pre-
vious utilities of others. Therefore, the new negotiation mechanism requires each DS to
only know, at most, the proposals made by itself, the proposals made by other DSs, and
its own utility function. Considering these requirements, the new mechanism is inspired
by two negotiation mechanisms, namely, the Utility-based Fictitious Play (UFP) [Fuden-
berg and Levine, 1995] and the Regret Matching Play (RMP) [Hart and Mas-Colell, 2000].
The UFP has the advantage of low computation burden on each participant, but it also
suffers from slow convergence because it does not require each participant to compare
their results. The RMP, on the other hand, has the advantage of regret ability for not
playing the target that has been chosen in current negotiation step. However, the RMP
cannot guarantee to converge to a pure equilibrium assignment profile. The URP inher-
its the ability to evaluate individual utility at each negotiation step from the UFP, and the
ability to regret current choice and to choose another option in the past negotiation steps
from the RMP. To ensure the steady communication connection within the distributed
MSS, one of the DSs is selected as the information hub. The selection procedure is done
by evaluating the relative positions of the totally functional DSs. The principle of this
selection is to chose a DS which is in the middle of the fleet and has the highest com-
munication capability. Considering that one DS is selected to be the information hub,
we name this negotiation mode as "Hub Mode", the Fig 5.4 shows the procedures of this
mode in the FIPA representation.

As shown in the figure, after the user sends the mission objectives through the ground
station to the selected information hub, this CFP message will trigger the start of the
group negotiations. The first action for the hub is to send self-check requests to every
agent. Afterwards, the hub can determine the total number of team members and then



5

92 5. TEAM NEGOTIATION

 FIPA Negotiation & Cooperation Procedure (Hub Mode)
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Figure 5.4: Utility-based Regret Play

generate the initial assignment profile for each participant. The agents which received
this request will perform a self-check on three aspects, which have been introduced be-
fore (H M , HO, HC ). If one agent’s condition is nonfunctional on either of these aspects,
it will reply to the hub with a DISCONFIRM message to indicate that it is unable to join
the current mission (Then, the content of the message is “OFFLINE”). If one agent’s con-
dition is totally or partially functional on all these aspects, it will reply to the hub with a
CONFIRM message to indicate its presence for this missions (the content of this message
is “ONLINE”). Once the hub receives the status information from potential participants,
it considers all the agents who have replied with “ONLINE” are ready for the team nego-
tiation.

When the negotiation procedure starts, the hub randomly generates the initial as-
signment profile a0 = [a0

S1
, a0

S2
, ...a0

Sn
] based on the global goal and the total number of

agents and then sends messages as REQUEST to every agent. All the non-hub agents
will receive the initial local task, which triggers their utility evaluation process. The util-
ity value is then sent back to the hub and shared with other agents.
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At each negotiation step g , each agent can only access to other agents’ utility values
through the hub. Through this information, the team can define the agent with the best
utility and the agent with the poorest utility. These two agents can establish a unique
communication link to share their personal information and local tasks. The informa-
tion they share depends on the restrictions of their communication. A message with
more detailed content about one agent’s personal information, local tasks and the utility
value can help the other agents to have a better understanding of its decision, but this
message will be massive, and therefore, requires longer time to deliver this message. A
simplified message, on the other hand, can save transmission time but it also loses the
detailed descriptions about agent’s information. In our work, to expand the adaptability
of the URP, it is designed to compromise between the detailed message and the simpli-
fied message. It means these two agents will come to an agreement on new assignments
which will be used for the next negotiation step. Assume these two agents to be Si and
S j , the utilities of step g are USi (ag

Si
) and US j (ag

S j
), respectively. The new assignments

for both agents can be predicted as follows:

[ag+1
Si

, ag+1
S j

] ←R(ag
Si

, ag
S j

, HCSi , HCS j , H MSi , H MS j , HOSi , HOS j ) (5.5)


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)+US j (a
g
S j

)
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S j
]∗

US j (a
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S j

)

USi (a
g
Si

)+US j (a
g
S j

)

(5.6)

Eq 5.5 is used for the situation where the detailed information is exchanged between Si

and S j , including all the relative parameters (HS, HC , HO, ag ). With this information,
two agents can reallocate the total assignment based on their conditions. Eq 5.6 is used
for the situation where only the simplified information is exchanged (the utility value of
USi (ag

Si
) and US j (ag

S j
)). Under this situation, these two agents can only reallocate the

total assignment based on their utilities.
The hub also needs to generate the task assignment profile for other agents besides

these two agents, and sends it to each agent. During each negotiation step, every agent
has the power to “regret" its current assignment based on the current utility value and
the previous utility values. The agent who regrets about the assignment can use QUERY
to ask the hub to reassign the previous profile so that it can have a better utility value. Be-
fore all the agents reach an agreement on one assignment profile, they will keep sending
REJECT-PROPOSE back to the hub, and the hub has to continue the negotiation proce-
dure. Once a proposal of assignment profile has been accepted by all agents, the hub will
send QUERY to reconfirm the availability of each agent. The final assignment profile is
sent back to ground through the hub to inform the final decision made by the group.

5.3.3. DECENTRALIZED NEGOTIATION MECHANISMS

SCENARIO ASSUMPTIONS

Compared with the distributed architecture, the decentralized architecture has less re-
quirements on system-level information-sharing abilities [Tanenbaum and Van Steen,
2007]. In our case, due to the long distance between two DSs or hardware limitations,
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the MSS may not be able to establish communication channels which can connect every
DS in the group. Therefore, the decentralized architecture is a preferred choice for such
an MSMA problem (as shown in Fig 5.3). For terrestrial multi-agent systems or under
water (e.g. the multi-agent system using UAV or other kinds of intelligent vehicles), this
architecture is also applicable on the system which has restrictions on communication
(e.g. geographical obstacles, low communication distance). These communication re-
strictions make that the agents in such MAS can only connect with its neighbors. For this
architecture, we propose two mechanisms to help the participants to negotiate based on
their self-interests and the global mission objectives.

Before we jump into the negotiation procedures, a neighbor map needs to be estab-
lished based on the mission requirements and other instructions. For a given agent Si ,
the set of agents connected to it via communication links is called its neighboring set
NeSi . The existence of a communication link between two agents in general may refer
to the availability information of one agent to the other one. For this situation, we in-
troduce the neighbor map matrix M ap = [L(Si ,S j )]N∗N to describe the graph associated
with information exchanging in a network of agents, and to provide an initial statement
for using the decentralized negotiation mechanisms.

L(Si ,S j ) =


1
∣∣i − j

∣∣= 1
−1

∣∣i − j
∣∣ 6= 1

0
∣∣i − j

∣∣= 0
(5.7)

SMOKE SIGNAL PLAY

We firstly propose the Smoke Signal Play (SSP) as the most intuitive communication and
negotiation mechanism for a decentralized architecture. This negotiation mechanism is
inspired by one of the oldest forms for long-distance communication called Smoke Sig-
nal. It was used in the ancient China to alert soldiers in other stations about the station of
impending enemy attack by signaling from tower to tower [Wikipedia, 2018k]. The gen-
eral idea of this negotiation mechanism is to use each agent as a smoke tower, then pass
the information of utility value to the one after it. Once the negotiation procedure starts,
each agent only needs to react to particular messages with the REQUESTperformative,
and responds with the INFORM performative message which only contains the utility
values, while other status information remains hidden.

The FIPA representation of this mechanism is shown in Fig 5.5. Different from the
distributed architecture, for the decentralized architecture, the mission objective is sent
to every agent at the beginning of the negotiation procedures to make sure that each
agent can make its decisions. With the neighbors map, each agent can determine which
position it holds in the MSS and how to configure the communication sequences with
its neighbors. Once the negotiation procedure starts, the SSP will trigger the first agent
in the system to send utility value to the second one. Then, the second agent will send
its own utility values and the preceding agent’s together to its successor, and so forth.
These steps belong to the forward transmission, which ends at the last agent who only
has one neighbor in front. At this point, the last agent has the entire knowledge about
the utilities of all the other agents, which enables it to evaluate the local goal. Then,
the backward transmission procedure is activated by this fully knowledge agent. The
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Figure 5.5: Smoke Signal Play

backward transmission follows the same protocols as the forward transmission, where
this last agent is the start point.

Unlike the URP of which the local goals for each agent have to wait until all the partic-
ipants agree with current assignment profile, the SSP ensures that any agent with com-
plete knowledge of the group can define its own local goal based on the following expres-
sion:

ã∗
i = MO ∗ USi (MO)∑N

j=1 US j (MO)
(5.8)

where ã∗
i is the proximate result for satellite Si since the utilities of all agents are deter-

mined by the global goal instead of a suitable local goal. This result is only a temporary
solution and will improve as the negotiation iteration increases.

BROADCAST-BASED PLAY

Besides the SSP, we propose another mechanism named the Broadcast-based Play (BBP).
Unlike the point-to-point (P2P) communication method used in the SSP, the BBP, as its
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name suggests, uses broadcasting as the communication method. In our case, if any
daughter satellite is damaged, the fleet needs to reconfigure or re-establish the satellites
order to fit the SSP requirements. The BBP, on the other hand, can enhance the robust-
ness of the system by continuously broadcasting information to all the neighbors. The
FIPA representation of this mechanism is shown in Fig 5.6.

Same as the SSP, the BBP also requires the ground station to send the global goal to
every agent so that they can make decisions even without cooperation. Based on the
payload requirements, the efficient transmission distance can be determined, and each
agent will know how many neighbors it can reach and how many can reach it based on
the neighbor map matrix. Once the negotiation procedure starts, each agent will start
to broadcast the REQUEST message. Every time an agent receives a REQUEST message
from another agent, it will store this message into its message database. Then, this agent
will check whether it has replied to the sender in previous steps or not. If any information
has changed, this agent will send a REPLY message with the new information, otherwise
it will send a REQUEST message to decline this request. If not, this agent will send RE-

 FIPA Negotiation & Cooperation Procedure (Ripple Mode)
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Figure 5.6: Broadcast-based Play
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JECT message to decline this request. If this agent has never replied to the sender, it
will send a REPLY message which contains all the information it currently contained.
This strategy ensures that no useless information will be shared twice, which helps the
receiver to avoid duplication. Moreover, when sending a message, the sender needs to
address the ascription of this message along with its time tag. This additional content
on every message helps each agent to expand its message database. Once the database
reaches the predefined condition (e.g., receive all the information related to every agent),
the local goal can be determined using the same expression shown in Eq 5.8.

COMPARISON

In this section, we have introduced two negotiation mechanisms for the decentralized
architecture: the SSP and the BBP. These two mechanisms have many similarities. How-
ever, from an application point of view, there exist several differences when implement-
ing these mechanisms in real missions. Firstly, due to the differences between P2P and
broadcast, their power consumption is different. The SSP uses the P2P protocol to es-
tablish the communication links. The total communication slots depend on the total
number of the participant agents. If there is no message lost during transmission, the
number of communication slots NP can be determined by NP = 2∗ (N −1), where N is
the total number of agents. The BBP uses the broadcast protocol. The total number of
the broadcast slots NB can be estimated by NB = N ∗ (N −1). However, since the agents
are assumed to broadcast simultaneously, the consumption of negotiation time the BBP
will be much lower as compared to the SSP. Secondly, comparing the communication
slots of the SSP and the BBP, it is evident that the BBP needs more times than the SSP.
Considering the power consumption of all message transmissions, the total power con-
sumption of BBP is expected to be much larger than SSP’s. Moreover, the SSP strictly re-
lies on the communication sequence, where as the BBP is more flexible about the agents’
configuration.

5.4. SIMULATION RESULTS AND ANALYSIS
In this section, we will present the assumptions in our simulation study cases, and the
results based on the proposed mechanisms for different scenarios. This allows to evalu-
ate the performance of the proposed mechanisms, along with the comparisons with the
state-of-the-art mechanisms to verify the superiority of the proposed mechanisms.

5.4.1. SIMULATION ENVIRONMENT
As in previous chapters, the simulations in this chapter will follow the same scientific
requirements of the DSL mission as before. There are in total nine satellites including
one mother satellite (MS) and eight daughter satellites (DSs). In this case we consider
the situation that the MS, for whatever reasons, gets completely dysfunction. Then in
order to continue the mission the eight DSs must implement either a distributed or a
decentralized architecture.

To simulate different architectures, we propose two simulation scenarios. For both
scenarios, we assume that all eight daughter satellites participate in the MSMA prob-
lem. For each DS, we use a functionality status set Heal thSi =

〈
H MSi , HCSi , HSSi

〉
to

represent the healthy condition of this DS, where H M stands for the onboard memory
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condition, HO stands for the condition of the observation capability, and HC stands for
the condition of communication capability. Each variable represents the percentage of
the functionality situation of corresponding sub-system, 0% meaning this sub-system is
entirely dysfunctional and 100% meaning it is fully functional. The same idea has been
used in [Barua and Khorasani, 2011]. The operating orbit and other basic parameters are
the same as in previous chapters.

Scenario 1. We assume that the distances between any two satellites are within the ef-
ficient transmission distance and there is no obstacle to block the communication. This
means that any daughter satellite can establish the communication link with the rest of
the satellites. Using this assumption, this scenario is considered as the study case that
employs the distributed architecture. In this scenario, we do not consider the propaga-
tion delay of the inter-satellite communication since we only want to verify the correct-
ness of the proposed mechanisms. Any daughter satellite who has fully functional com-
munication equipment can be selected as the information hub. For the communication
efficiency, we define that the satellite in the middle of the fleet will make a proposal for
becoming the hub. The rest of the satellites can react to this proposal based on their
status and position.

Scenario 2. Here, the communication between the satellites is restricted. There is
no single satellite that can establish communication links with all the other satellites.
Each satellite can only communicate with its neighbors. Based on this assumption, this
scenario employs the communication-constrained decentralized architecture and aims
to test the SSP and BBP mechanisms. We assume that each satellite’s efficient “normal-
ized” transmission distance is one, that is, it can only reach one satellite both in front
and behind.

To have a fair comparison, we use the same computer for all the simulations, which
has a 3.1 GHz Intelr Core™i5 processor, 8 GB of RAM, and MacOS V10.13.3 as the oper-
ation system. To construct the MSS, we use the JADE (Java Agent DEvelopment Frame-
work) in Eclipse to build the multi-agent simulation environment for our MSMA prob-
lems.

5.4.2. SIMULATION RESULTS OF THE DISTRIBUTED ARCHITECTURE

INTERFACE AND SETUP

To test the URP performance, we establish the interface for information hub and par-
ticipant satellites, as shown in Fig 5.7. From this figure, we can see that the users can
customize the mission objective by changing the number in the corresponding box. By
using the Refresh and Check buttons, the hub can send self-check request to each agent
in the network. Every satellite has to indicate the hub whether it joins the team or not
by the "Online" or "Offline" button in Fig 5.7b. The three healthy aspects related to on-
board storage, observation, and communication are also inputs from users to simulate
the onboard monitoring results. Once the hub begins the negotiation procedure, at each
negotiation step, it will send assignments to every satellite and wait for the evaluation
results.
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(a) Panel for the information hub (b) Panel for all participant agents

Figure 5.7: Multi-agent simulation interfaces in JADE for testing the URP

RESULTS AND ANALYSIS

For the DSL mission, there are eight DSs. To test the effectiveness of the URP under
the different number of participants, we simulate five different team sizes which range

Figure 5.8: Single negotiation step shown in the Sniffer Agent in JADE



5

100 5. TEAM NEGOTIATION

from 4 to 20 satellites with the increment of 4 satellites. We consider four satellites as a
test unit, and each satellite has different system status. The status parameters for these
four satellites (the test unit) are as follows: DS1 : {H M = 100%, HO = 100%, HC = 100%},
DS2 : {H M = 50%, HO = 100%, HC = 100%}, DS3 : {H M = 100%, HO = 50%, HC = 100%},
DS4 : {H M = 100%, HO = 100%, HC = 50%}. For each team size, we run the simulation
under the same initial condition for ten times to collect the statistic results of the ne-
gotiation steps and the CPU time. In order to facilitate quantitative results, we set the
mission objective for every test unit to be 500 Gbits. Therefore, along with the increasing
number of agents, the mission objective is also increased. Fig 5.8 shows a single step
of negotiation procedure for the eight DSs in JADE by a Sniffer Agent, which shows the
same communication strategy as Fig 5.4. The hub sends the request messages to every
DS at the beginning of this negotiation. Once it receives all the feedback, it will distribute
the assignment profile for this negotiation step and wait for the evaluation results of each
participant DS.

For each team size, we re-run the simulation with the same initial setting for ten
times to get the results of the required negotiation steps and the required CPU time. The
statistic results of this simulation are presented by box plots in Fig 5.9. Fig 5.9a shows the
results of the negotiation steps and Fig 5.9b shows the total CPU time consumption and
the average time consumption at each step. From Fig 5.9a we can see a clear trend that

(a) Number of negotiation steps for five different
team sizes

(b) Total CPU time consumptions and average
time consumption on each negotiation step for
five different team sizes

Figure 5.9: Statistics results of five different team sizes using the URP mechanism, which are gathered from ten
simulation runs for each size.

with increasing number of the agents, the number of negotiation steps increases signif-
icantly. Each box represents the statistic results for a certain number of agents, starting
with 4 agents and ending with 20 agents. When the number of agents is four, the aver-
age negotiation steps are 25. After doubling the number of agents, the average required
steps turn to 45, and tripling the number of agents to 12 leads the raise of the negotia-
tion steps up to 88. The upward trend for agents below 12 is relatively flat considering
the increased number of negotiation steps. However, comparing the yellow box which
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represents 16 agents with the gray box which stands for 12 agents, the average steps in-
creased almost four times from 88 to 302. Moreover, after the team size expands to 20,
the needed steps go up to 760. Then, the hub needs more negotiation steps to evaluate
the feedback received from each agent and re-assign a new assignment profile to them.

Fig 5.9b shows the CPU time consumption for different number of agents. Clearly,
there is also an increasing trend. The boxes represent the statistic results from ten sim-
ulation runs. For four agents, the average time consumption is about 480 ms, and for
other team sizes (8, 12, 16, 20 agents) are 2257 ms, 8132 ms, 46908 ms, and 225400 ms,
respectively. The tendency is the same, but the amplitudes are much larger compared to
the negotiation steps. To have a more detailed insight on this phenomenon, we combine
the numerical data from all figures and calculate the average time consumption at each
negotiation step, as the green line shown in Fig 5.9b. With the increasing number of the
agents, the CPU time needed for each negotiation step is also increased, which begins
from 20 to 301 ms/step. This is because with the increasing number of negotiation steps,
the message database is also expanding. This makes the hub needing more time to find
the suitable profile in the database and reply it to the agent who sends the regret mes-
sage. Based on these simulation results, the URP shows good success rate on solving the
MSMA problem. However, when the number of agents grows, the CPU time consump-
tion is also facing a growth. Therefore, the URP mechanism is suitable for solving the
MSMA problem with a relatively small team member.

To illustrate the performance of the URP, we use the same computational resources
and the same setup to test three other negotiation mechanisms: Action-based Fictitious
Play (AFP)[Smyrnakis and Veres, 2016], UFP, and RMP. Fig 5.15 shows the simulation re-
sults for all those mechanisms. Compared to the AFP, although URP needs more nego-
tiation steps, the consumption on CPU time is 50% less. This gap will increase with the
number of agents increased. The results of the UFP show the similar CPU time con-
sumption with the URP at all five team sizes. However, the URP requires almost 30% less
number of negotiation steps than the UFP. For the RMP, the URP has better performance
on both negotiation steps and CPU time consumption. Although the URP can outper-
form the other three mechanisms in our study, it has a weakness. The growth rate of
the time consumption at each negotiation step is increasing with a growing number of
agents. Therefore, the URP is best for solving the MSMA problem with a relatively small
number of agents.

5.4.3. SIMULATION RESULTS OF THE DECENTRALIZED ARCHITECTURE

INTERFACE AND SETUP

Unlike the distributed architecture, for the decentralized architecture, there is no infor-
mation hub. All the satellites have to negotiate with their neighbors by sharing their own
utility values. The interface we have established for this architecture is shown in Fig 5.11.

For the SSP and the BBP mechanisms, each participating satellite needs to determine
who are its neighbors. The total number of neighbors is shown in the text field next to
the list in Fig 5.11. Considering any dysfunction of participating agents will break one
decentralized system into several independent decentralized systems. For a decentral-
ized architecture, the global objective has to be sent to every agent at the beginning of
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Figure 5.10: Comparison on the number of negotiation step and CPU time for five different team sizes

the negotiation procedure. During the mission allocation procedure, each satellite can
only make decisions based on the information it has gathered from its neighbors. This
leads to another parameter called Response Time (RT). This parameter helps the agent
to determine how long it needs to wait for its neighbors to react. If any neighbor fails to
send a message within RT , it will be considered as a fully dysfunction agent and aban-
doned from this system. Here, we assume the RT = 1000 ms.

RESULTS AND ANALYSIS

To test the performance of the SSP and the BBP mechanisms, we also test five groups
of agent numbers from 4 to 20. We take the Market-based Auction (MBA) mechanism
[Walsh and Wellman, 1998] as the contrast mechanism. The system status of each test
follows the same setting as in the distributed architecture. The numerical data gathered
from ten simulation runs indicates statics number of the CPU time consumption and
the total power consumption for each set of agents. Fig 5.12 and Fig 5.13 are two ex-
amples of the interaction between 8 agents during the simulation, which fits the FIPA
representations in Sec.6.3.
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Figure 5.11: Multi-agent simulation interface in JADE for testing the BBP and the SSP

The statistical results of the CPU time consumption are shown in Fig 5.14. In this
figure, the X-axis in each sub-figure stands for the participant number, and the Y-axis
stands for the CPU time (with ms as the unit). We use box plots to show the results of ten
simulation runs for each mechanism. From this figure we can see that BBP performs al-
most 4 times faster than MBA for all five team sizes. SSP can be twice as fast as MBA. For
a direct comparison, we extract the average CPU time for each mechanism, shown in Fig
5.15a. The average time consumption for all three mechanisms shows the linear growth.
The blue line stands for BBP, the orange line stands for SSP, and the black line stands for
MBA. The gap between every mechanism on each size of agents becomes larger with the
enlarged team member because of the differences on Response Time. The RT is a safety
precaution to prevent any dysfunction agent affecting other agents. For all functional
agents, during the negotiation procedure, they have to wait until the RT passes. Un-

Figure 5.12: SSP negotiation
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Figure 5.13: BBP negotiation

Figure 5.14: Statistical results of CPU time for three negotiation mechanisms (BBP, SSP and MBA)

der this assumption, comparing the SSP which uses a sequential P2P communication
strategy with the BBP which uses the synchronized broadcast communication strategy,
the BBP only requires half the time which the SSP requires. The MBA needs even more
time because it requires agents to send bid messages regularly for checking the auction
results. This regular behavior can extend the negotiation time by adding the redundant
waiting time. The simulation results also justify that for all simulated cases, the SSP takes
on average twice the time than the BBP, while four times of the MBA.
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(a) Average CPU time (b) Packet transmission number

Figure 5.15: Comparison on average CPU time consumption and packet transmission number for three nego-
tiation mechanisms (BBP, SSP and MBA)

Although the BBP saves more time than the SSP, the SSP has an advantage from an
energy consumption perspective. To simplify the energy consumption calculation pro-
cess, we assume that each message equals to one packet and only contains one utility
value. To transmit multiple information, the sender has to send the corresponding num-
ber of messages. Fig 5.15b shows the total packet transmission number for different sets
of agents.

These three lines are depicted based on the communication strategy each mecha-
nism choses. For SSP, during the forward information sharing procedure, the anterior
agent needs to pass all the information it received from its preceding neighbor, along
with its own information to the next agent, and vice versa for the backward procedure.
The total number of packets can be calculated by P N ssp = N∗(N−1), where N is the size
of the team. For the BBP, since it uses the broadcast method, we assume that each agent
only broadcast the latest information it received. To ensure the neighbors can receive
the messages, each agent needs to continue broadcasting the same message until a new
request has been received. In this case, for a team with N participating agents, the total
number of packets transfered is P N bbp = 2∗(N−1)2. For the MBA, due to its regular bid-
ding behavior and the price comparison on the same bidder, the packet consumption in
a worst scenario is P N mba = 4∗(N−1)∗(N−2). Comparing the results shown in Fig 5.15,
we can conclude that both the BBP and the SSP require less packet transmissions than
MBA during the negotiation, while SSP requires even less compared to BBP. The broad-
casting method requires more power consumption than the P2P method. Even though in
this case, to simplify the comparison procedure, for both mechanisms, we assumed that
the power consumption for transmitting each packet is a constant value, the power con-
sumption of BBP is still higher than SSP, and the difference of these two mechanisms will
increase with the number of agents growing. In real applications, this difference may be
even higher considering that more energy is needed for broadcasting than for P2P. From
this comparison (Fig 5.15), we can conclude that SSP requires less energy consumption
while the BBP requires less CPU time.
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5.5. SUMMARY
In this chapter, we developed three negotiation and cooperation mechanisms for the on-
board mission allocation problems in multi-satellite system. Considering the possible
scenario where the MS may face a complete dysfunction during mission operations, we
introduced two organizational architectures that the MSS may use when losing the MS,
which were the distributed architecture and the decentralized architecture. Implement-
ing these architectures, we adopted concepts from game theory to formulate the math-
ematical model for the multi-satellite mission allocation problem. For the distributed
architecture, a mechanism called Utility-regret Play (URP) was proposed. This mecha-
nism inhered advantages from the Utility-based Play (UBP) and the Regret Matching Play
(RMP) negotiation mechanisms. The simulation results have shown that the URP has
a better performance on the convergence negotiation steps and the average CPU time
compared with three other mechanisms, namely, Action-based Fictitious Play (AFP),
UBP, and RMP. For the decentralized architecture, two mechanisms named Smoke Signal
Play (SSP) and Broadcast-based Play (BBP) were proposed. Comparing these two mech-
anisms in multiple simulation runs, the BBP on average required 50% less CPU time con-
sumption than the SSP, while SSP required much less power consumption than the BBP.
The comparison with another state-of-the-art mechanism called Market-based Auction
(MBA) also indicated that the proposed mechanisms (BBP and SSP) outperformed MBA
on both average CPU time and energy consumption.

In next chapter, we will focus on developing a distributed mission planning approach
for the distributed architecture, to improve the convergence performance for the multi-
satellite system with a large number of satellites.
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DISTRIBUTED ONBOARD MISSION

PLANNING APPROACH

Parts of this chapter are from Z.Zheng, J.Guo, E.Gill, Distributed Onboard Mission Planning for Multi-Satellite
Systems, submitted to Aerospace Science and Technology
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6.1. INTRODUCTION

I N the previous chapter, the MS faced a completely operative dysfunction. The loss
of the main controller would render of the centralized planning and re-planning ap-

proaches proposed in Chapter 3 and Chapter 4 useless. Based on this scenario, we pro-
posed several negotiation mechanisms in Chapter 5 for different organizational archi-
tectures to solve the corresponding MSMA problems.

After the main mission objective has been decomposed and allocated to each partic-
ipating DS, more detailed behavior planning procedures for each DS can be produced.
Considering that the MSS will lose the MS, the rest of the team needs to work with an
non-centralized architecture. This chapter aims to solve the onboard planning prob-
lems through collaboration among the DSs. Based on the literature review in Chapter 2,
scientists have already developed distributed planning approaches (DPAs) for different
types of multi-agent systems. However, there are two key points still require to be further
investigated when implementing DPAs for a multi-satellite system (MSS). (1) Most of the
DPAs, during each iteration, normally choose to peel away the local regeneration proce-
dure from the group information exchange procedure [Shen and Norrie, 1999; Han et al.,
2014]. This strategy can speed up the computation time for certain scenarios. However,
if constraints on different agents are highly-coupled, employing those DPAs can be com-
putationally expensive. (2) Many early studies (e.g. [Das et al., 2015; Bhandari et al.,
2014; Schetter et al., 2003; Zlot et al., 2002]) did not consider scenarios where unexpected
changes could happen to operating agents. These previously proposed DPAs are either
especially suited for stable operational environments where all agents stay safe during
the mission, or can only perform mission re-planning after the previous planning proce-
dures have been completed. Few algorithms ([Torreño et al., 2012; Evers et al., 2014; Wu
et al., 2018]) can handle unexpected changes while planning procedures are executed
onboard.

In this chapter, a distributed onboard approach is proposed for distributed mission
planning scenarios where multiple small satellites need to cooperate to solve a global
task. The proposed approach consists of a Local Constraint Satisfaction (LCS) module
and a Global Distributed Optimization (GDO) module. The LCS is performed individ-
ually on each satellite using a local search heuristic to provide feasible sub-solutions,
while the GDO is running via the inter-satellite communication. During each iteration
the proposed approach uses an improved distributed genetic algorithm to guarantee
that highly-coupled global constraints can be met. Considering the combination of these
two modules, this approach is named by Hybrid Distributed Genetic Algorithm (HDGA).

6.2. PROBLEM STATEMENT
In previous Chapters 3 and 4, the MS is responsible for gathering information from each
DS before and during the planning procedures. It uses centralized planning approaches
to generate suitable control sequences for each DS to maximize the overall observation
performance. However, this architecture is extremely vulnerable to faults, degradation,
and other non-normal situations, causing a reduction or even total loss of the function-
ality of the MS, as the scenario described in Chapter 5. Therefore, a distributed architec-
ture is proposed to replace the centralized architecture, as shown in Fig 6.1. The upper
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Figure 6.1: Organizational architecture change due to the loss of the main controller

figure shows the centralized architecture where the MS is controlling the entire team. All
DSs are only responsible for executing plans and monitoring their self-status. The lower
part in Fig 6.1 illustrates the change of the MSS architecture once the MS is dysfunctional
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and the new architecture is a distributed architecture. From this figure, we can conclude
that when the MS is eliminated from the team, the mission objective has to be sent to
every DS at the beginning of the planning procedure. All the DSs are connected with
each other through communication channels. Each DS is considered as a decision agent
which is used to cooperate and negotiate with other agents to solve the multi-satellite
mission allocation problems. Then, the distributed planner on each DS has to execute
the distributed planning procedure with the information exchanged through the com-
munication channels. Once every DS in the team comes to an agreement on a planning
result, the plan executor and monitor on each DS will ensure the execution of these plans
and keep track of the system status.

Due to the change of the system architecture as compared to the centralized archi-
tecture, the generic description for the planning problem is different from previous ap-
proaches and needs to be reconstructed for the new architecture. The planning problem
considered here is more complicated than when using the distributed architecture. The
primary mission objective remains the same as in previous chapters, which is to maxi-
mize observation data within the specific operational lifetime. The centralized optimiza-
tion problem formulation is now invalid since no single DS has the capability to take over
the functionality of the MS. Instead, the planning problem will be handled through the
cooperation of all DSs. Therefore, the problem formulation in this chapter is involving
all DSs.

6.2.1. NOTATIONS AND ASSUMPTIONS
• The planning problem relies on a set of N DSs. Here, we uses the same expres-

sion as in previous chapters, i.e. Si , (i = 1,2, ..., N ), where N is the total number of
participating satellites in the mission.

• Mission lifetime T i me. This variable represents the expected mission operating
lifetime. Here, nk , (k = 1,2, ..., M , M = T i me/T ) represents the current orbit num-
ber since the start of the mission, and T represents the orbit period of this operat-
ing orbit. This assumption is the same as in Chapter 3.

• Constraint set C j
Si

, ( j = 1,2, ...,Q), where Q is the total number of local constraints
for DS Si . For this case, since all satellites are identical, they face the same types
and the same number of constraints. For other heterogeneous applications, con-
straints of each individual may be different.

• Initial sub-system parameter set Ini t i alSi =
〈

Obs0
Si

,Com0
Si

, M 0
Si

〉
. This set rep-

resents the initial values characterizing the three most relevant sub-systems. The
values include the initial observation data rate Obs0

Si
, the communication data

rate Com0
Si

, and the onboard memory M 0
Si

.

• Functionality status set Heal thnk
Si

=
〈

H M nk
Si

, HC nk
Si

, HSnk
Si

〉
. This set stands for the

healthy condition for DS Si in a certain orbit nk . Each variable represents the per-
centage of the functionality situation for each sub-system, where 100% means per-
fectly functional and 0% means completely dysfunction.
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6.2.2. VARIABLES
• Sub-mission objective set moSi , (i = 1,2, ..., N ). This set is a predefined set based

on the mission allocation results provided in the previous chapter. The main mis-
sion objective MO needs to be decomposed into sub-mission objectives. The ob-
jective decomposition procedure is performed by using the negotiation mecha-
nisms proposed in the previous chapter. Once a DS receives a sub-mission objec-
tive, it will consider this objective as an input for the upcoming distributed plan-
ning procedures until its system status is changed due to system failures. In this
case, the renegotiation protocol will be triggered and the main mission objective
will be reallocated to each DS.

• Observation time variable set XSi (nk ) =
〈

xS
Si

(nk ), xE
Si

(nk )
〉

, where xS
Si

(nk ) repre-

sents the start time of the observation window during orbit nk , and the xE
Si

(nk )
stands for the end time of the observation.

• Communication time variable set YSi (nk ) =
〈

yS
Si

(nk ), yE
Si

(nk )
〉

, where these two

variables also represent the start and end time of the communication time during
orbit nk .

• Onboard memory variable MSi (nk ) represents the available onboard memory for
Si , which changes with orbit number nk .

6.2.3. CONSTRAINTS
Based on the definition of the scenario with its notations and variables, in this section,
the constraints will be formulated for the distributed architecture. These constraints
comprise the onboard storage constraints C sto , the behavioral synchronization con-
straints C s yn , and the communication constraints C com .

(1) Individual storage constraints C sto : The onboard storage for individual DS depends
on the initial condition of the memory usage, the observation time and the commu-
nication time. This can be formulated as:

C sto
Si

: ∀nk , [xE
Si

(nk )−xS
Si

(nk )]∗Obsnk
Si

É MSi (nk−1)+[yE
Si

(nk−1)−yS
Si

(nk−1)]∗Comnk−1
Si

(6.1)

(2) Behavior synchronous constraints C s yn : Different mission requirements need dif-
ferent strategies for providing behavior synchronization. This means that certain
behaviors on different satellites need to be executed at the same time. In this case,
the data observing behavior for each DS needs to be correlated in time and band-
width with other DSs for further signal processing, expressed by:

∀nk ,

{
ξ

Si j
nk

= 1, XSi ∩XSj 6=∅
ξ

Si j
nk

= 0, XSi ∩XSj =∅
(6.2)

C s yn
Si

:
N∑

i=1

N∑
j=1

(ξ
Si j
nk

) ÊϑMO (6.3)
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where ξ
Si j
nk

represents the observation set relationship between two satellites Si and
S j under orbit nk . The variable ϑMO stands for the required number of temporally
correlated observations to satisfy the signal processing requirements.

(3) Communication constraints: For the distributed architecture, the communication
channels could be jammed due to bandwidth limitation. The constraints on com-
munication can be expressed by:

∀nk ,

{
µ

Si j
nk

= 1, YSi (nk )∩YSj (nk ) 6=∅
µ

Si j
nk

= 0, YSi (nk )∩YSj (nk ) =∅
(6.4)

C com1
Si

:
N∑

i=1

N∑
j=1

(µ
Si j
nk

) É κMO (6.5)

C com2
Si

: ∀nk , yE
Si

(nk )− yS
Si

(nk ) Ê T Cmi n (6.6)

whereµ
Si j
nk

represents the set relation of communication. Here, κMO is the total com-
munication number that can be handled by the communication channel due to the
hardware requirements, and TCmi n is a constant number which is determined by
the hardware to represent the minimum time of each communication slot. For the
DSL mission, the motivation of launching satellites in lunar orbit is to avoid the RFI.
Therefore, RFI generated by other satellites needs to be avoided as well to ensure the
data integrity, κMO is set to be 1.

6.2.4. EVALUATION FUNCTIONS
The evaluation functions for the distributed approach consist of two parts: one for solv-
ing the local constraint satisfaction problem (LCS), the other for solving the global dis-
tributed optimization problem (GDO).

For the local CSP, each DS needs to generate operable plans based on its own con-
straints, including the sequential constraints C seq shown in Eq 3.5 and 3.7, data trans-
mission constraints C tr a shown in Eq 3.8 and 3.9, and the onboard storage constraints
shown in Eq 6.1. The local CSP can be expressed as a triple 〈V,D,C〉Si , where VSi =
{XSi ,YSi } is a set of variables for satellite Si ; DSi is the respective search domain for vari-
ables, which can be calculated based on the orbit altitude and satellite baseline (distance
between two DSs). The set CSi = {C seq ,C tr a ,C sto}Si represents of constraints for satel-
lite Si . In our approach, the results from the local CSP are the candidates for further
distributed optimization problem.

After solving the local CSP, each DS can formulate its own global variables set through
exchange of the team information. This individual global variables contain all the vari-
ables from the entire team. The distributed evaluation function (Eq 6.7) is used for in-
dividual evaluation procedures during each generation. Once all satellites get their in-
dividual evaluation result through the global evaluation function (Eq 6.8), the best in-
dividual solution among the team can be selected as the best solution for the current
generation. These two functions are formulated as follows:

L(XSi ) = argmax
N∑

i=1

M∑
j=1

[xE
Si

(nk )∗−xS
Si

(nk )∗] (6.7)
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G(X) = argmax{L(XS1 ),L(XS2 ), ...,L(XSN )} (6.8)

where in Eq 6.7, xE
Si

(nk )∗ and xS
Si

(nk )∗ stand for the individual global variables randomly
formed in satellite Si by combining the information from all other satellites. In Eq 6.8,
the global solution is given by the best of all the satellites’ solutions. In the next section,
we will introduce the local search heuristic and the distributed optimization algorithm
in detail.

6.3. DISTRIBUTED MISSION PLANNING APPROACH
Based on the problem statement from the last section, the HDGA is designed to solve the
onboard mission planning problem for an MSS with a distributed planning architecture.
The flow chart of the HDGA for the distributed mission planning problem is shown in
Fig 6.2. From this chart, it can be seen that besides the team negotiation, the HDGA
is divided into two parts: the local constraint satisfaction and the globally distributed
optimization, each of them is represented by a LCS module and a GDO module. In the
LCS module, a heuristic is designed to generate local populations as candidates to form
the global population in the next phase. In the GDO module, we transform the HDMGA
(proposed in Chapter 3) into a distributed form to perform distributed optimization.

6.3.1. LOCAL CONSTRAINT SATISFACTION MODULE

Algorithm 5 Local constraints satisfaction module

Input: BP be the set of basic parameters. Ini t i alSi is the initial system status for
this satellite, including the onboard storage, observation, and communication rate.
Cur r ent I te is the number of current iteration. LPsi ze is the size of the local popula-
tion.

Output: Local population LCSi

1: function Local popul ati on = PopGener ati on(BP, Ini t i alSi ,Cur r ent I te,LPsi ze )
2: Constr ai nt s ←C alConstr ai nt s(BP,Cur r ent I te)
3: while LCSi () 6= LPsi ze do
4: SubC hr omosome ←GBF S(Cur r ent I te, Ini t i alSi )
5: if SubC hr omosome is satisfied with Constr ai nt s then
6: for i = 1,2, ...LCSi .si ze do
7: if SubC hr omosome is not as same as anyone in LCSi then
8: add{SubC hr omosome} to LCSi

9: else
10: remove {SubC hr omosome} from candidate
11: return LCSi

In this module, each DS needs to determine the local population for the local vari-
ables by implementing a local search heuristic. Based on the planning architecture, this
module generates suitable local solutions for the inter-satellite information exchange
procedure. Considering the existing search heuristics, the greedy best-first search (GBFS)
is chosen as the local search heuristic for one main reason: quick convergence speed
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Figure 6.2: Flow chart of HDGA for each satellite

[Bonet and Geffner, 2001]. The “greedy” characteristic of the GBFS will make the algo-
rithm blindfolded by immediate interests, leading to a sub-optimal solution. Unlike the
standard CSPs which demands an optimal solution, in our case, we need the LCS mod-
ule to provide several sub-optimal solutions within a short time frame. The GBFS can
provide many solutions which satisfy local constraints within a short time frame. The
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local population can also be initialized by this algorithm. The Pseudo code is shown in
Algorithm 5 on Page 115.

6.3.2. GLOBAL DISTRIBUTED OPTIMIZATION

As described in Fig 6.2, the second module is the globally distributed optimization mod-
ule. Considering the similarities in global constraints between the distributed planning
problem and the centralized planning problem (e.g. observation constraints, communi-
cation constraints, and onboard memory constraints), we modify HDMGA into a dis-
tributed form to cope with the distributed architecture. However, different from the
centralized optimization approaches, the distributed approach cannot perform a global
evaluation for each DS based on its own variables. The constraints on synchronous ob-
servations requires that the evaluation procedure has full knowledge of other partici-
pating satellites. Therefore, the proposed distributed HDMGA (DHDMGA) needs the
(strongly-coupled) global population at every iteration to ensure the correctness of the
final solution. Through the communication bus of the MSS, all satellites can share their
local populations with others. By combining the local populations from all others, each
satellite can formulate its global population which contains all the variables from the
entire team.

The generation procedures of this global population are shown in Fig 6.3. This figure
consists of two parts; the upper part with several rectangles represents the local popu-
lation for each DS. As explained in the previous chapter, each DS will use the GBFS to
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Algorithm 6 Global distributed optimization module

Input: Local populations from other satellites LCS1 , ...,LCSN ; Satellite number Si ; global
population size GPsi ze ; Termination error tolerant εT ; Max stall generation SGmax ,
Max generation Gmax , fitness function D(XSi )

Output: Global solution G(X)
1: function G(X) =DHDM-GA(GPsi ze ,LCSi ,εT ,SGmax ,Gmax ,F i t_F cn)
2: Gl obal 0

pop ←GPFor mul ati on(GPsi ze ,LC 0
S1

, ...LC 0
SN

)
3: while κÉGmax && εt É εT do
4: for j = 1,2...GPsi ze do
5: best_i ndi vi dual ( j ) =C al (D(XSi ),Gl obalpop ( j ))
6: Cr ossover (t wo r andom i ndi vi dual s)
7: HDMmut ati on(GPsi ze ,Rnor mal ,Rescape ,TN )

8: Best_i ndi vi dualκ← Max{best_i ndi vi dual (1), ...,best_i ndi vi dual (GPsi ze )}
9: Information exchange with other satellites to update:

10: G(X)κ← Max
〈

Best_i ndi vi dualκS1
, ...,Best_i ndi vi dualκSN

〉
11: if Best_i ndi vi dualκ ==G(X)κ then break;
12: else
13: Gl obalκpop ← Re f r eshGP (Gl obalκ−1

pop ,GPsi ze ,LCκ
S1

, ...LCκ
SN

)

14: G(X) ←G(X)κ

15: return G(X)

solve the local CSP and generate several solutions. These solutions are entirely indepen-
dent of each other. In Fig 6.3, these local solutions are distinguished by different colors.
Although in this figure, for different satellites, we used the same colors to represent the
chromosomes in the local populations, the variables for different satellites are different.
Each color within each satellite represents the combination of the values for their lo-
cal variables. For instance, the first variable set in upper left rectangle {x11, x12, ..., x1N }
is presented by red, which stands for a local chromosome (LC) in satellite S1, while the
same color in the upper right rectangle {xM1, xM2, ..., xM N } is the variable set for satellite
SM .

The lower part of the figure shows the global population of each DS. Once the local
population has been generated, this information will be exchanged with other satellites
through the communication bus. By combining all the local populations received from
other satellites, each DS can formulate its individual global population by assembling
the LCs from other satellites. To ensure the integrity and randomness of the global pop-
ulation in each satellite, the assembling procedures for the global chromosome (GC)
in each satellite are performed by implementing the Roulette Wheel Selection (RWS)
[Lipowski and Lipowska, 2012]. In this figure, the squares stand for the global popula-
tion for each satellite. Each small rectangle within the global population represents the
LC gathered from one satellite, which is selected through the RWS in each satellite. For
example, the first global chromosome in satellite S1 consists of the red LC X1 from the
S1, the blue LC X2 from the S2, and in the end the yellow LC XM from the SM . The RWS
will guarantee a non-repeatable selection for GCs in each satellite. Once the global pop-
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Figure 6.4: Fitness value on six study cases for HDMAGA and HDGA approaches

ulations have been formulated, each satellite will start individual evaluation through the
evaluation function G(X). The procedure of the globally distributed optimization mod-
ule is expressed in Algorithm 6 on Page 118.

6.4. VERIFICATION
In the previous section the HDGA has been designed. To verify the proposed approach,
in this section, several instances of the Travelling Salesmen Problem (TSP) will be im-
plemented as study cases to compare the performance of the proposed HDGA and the
previous centralized approach (HDMGA).

The typical TSP is a well-known NP-hard problem that exists in many real-world sce-
narios. The TSP is usually used to test the sufficiency and correctness of optimization
approaches. The sufficiency of an approach means how quick one approach can find
the right solution, and the correctness of an approach means whether this approach can
find the optimal solution or the solution is within the acceptable range. In this chapter,
we implement six instances gathered from the TSPLIB [Reinhelt, 2014], every instances
have their optimal solution. For each instance, both the HDGA and the HDMGA are ex-
amined. Both the centralized and the distributed approaches use heuristic algorithms
as optimizers. To compare the performance, for each instance we run ten simulations
under the same initial conditions. Since our proposed approaches are designed for the
DSL mission which has eight DSs, the distributed approach uses eight computing nodes.
Each node utilizes a 2.4 GHz Intelr Core™i5 6300U dual-processor, 8 GB of RAM, and
1 Gb/s network interface. Only one processor core per node is used to simulate the dis-
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Table 6.1: TSP instances results for both approaches

Approaches
Centralized Approach

(HDMGA)
Distributed Approach

(HDGA)
Examples Av.#iter Av.time[s] Av.FV Av.#iter Av.time[s] Av.FV
berlin52 114 18.97 9890 147 27.88 10231
kroA200 101 29.88 62890 205 35.98 68903

pr152 136 24.87 125631 197 26.76 131928
d198 130 38.87 27986 160 40.15 30139
ts225 93 34.64 337895 124 43.74 368751
pr299 77 47.97 129821 102 62.82 134723

tributed environment for the HDGA. Each run is terminated when the maximum num-
ber of generations has been reached or the lowest error has been achieved. The results
contain the average computation time, average iteration number, and average fitness
value. The details of the statistic results on fitness values are shown in Fig 6.4, where the
blue lines stand for upper, middle and lower quartiles, black lines represent upper and
lower whiskers, and red markers are the abnormal results.

The statistical results of this verification are shown in Tab 6.1. It includes the average
convergence iteration number (represents by Av.#iter), average computation time (the
sum of computation times of all the participant nodes, represented by Av.time[s]), and
average fitness value (represented by Av.FV) for both approaches. Although in this ta-
ble, the centralized approach (HDMGA) shows that it can get much lower fitness value
compared with the distributed approach (HDGA) on every instance, the average differ-
ences between two approaches on fitness values are all less than 5%. This makes the
use of the proposed HDGA acceptable when dealing with different TSP instances. Ac-
cording to Fig 6.4 and Tab 6.1, the centralized approach presents a better performance
than the distributed approach on every considered aspect. The verification made in this
section reveals the usability of HDGA. However, to check the usability of the proposed
approach for the DSL mission scenario, we need to compare it with other approaches
for our unique study case. In next section, simulation results on different approaches
will be shown to characterize the overall performance of the proposed HDGA.

6.5. SIMULATION AND ANALYSIS
This section will introduce the simulation results for the proposed distributed approach
and its comparison with two other state-of-the-art approaches. These comparisons will
help to analyze the characteristics of the proposed method.

We first evaluate the proposed approach by comparing it with a centralized approach.
Then, we employ two other state-of-the-art distributed approaches as competitors to
compare their performance with the proposed HDGA for a distributed mission planning
scenario. One approach employs the distributed ant colony optimization (DACO) algo-
rithm [Collings and Kim, 2014] as the solver, and the other one uses the coevolutionary
particle swarm optimization (CPSO) algorithm [Krohling and dos Santos Coelho, 2006]
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as the solver. Both solvers have been implemented for the distributed system optimiza-
tion problems.

6.5.1. STUDY CASES

STANDARD PLANNING CASE

In previous chapters, the study case was simplified as a centralized optimization prob-
lem where the variables are the start and end time of observation and communication
behaviors for each DS, and the mission objective is to maximize the collection of obser-
vation data within a certain lifetime. For this standard planning scenario, the centralized
method uses the MS to perform the centralized planning algorithm (HDMGA) while the
distributed approach needs all the eight DSs to perform the HDGA. In order to ensure
the consistency of the comparisons, despite of differences in the planning architecture,
both approaches need to follow the same assumptions.

To simplify the mission operation environment, the orbit is assumed to be a circular
orbit with an altitude of 300 km above the moon surface. The initial status Ini t i alSi is
assumed to be identical within the team, where the detail assumptions are Obs0

Si
= 48

Mbps, Com0
Si

= 6 Mbps, M 0
Si

= 128 GB. The MS position has the same relative position
as in Chapter 3 and 4. Three key constraint parameters from Eq 6.3, Eq 6.5 and Eq 6.6
are assumed to be constant based on the DSL requirements, which are ϑMO = 5, κMO = 1
and TCmi n = 5. To test the capability of dealing with long lifetimes and more satellites,
the mission objectives cover 10 to 50 orbital periods, and the number of DS ranges from
6 to 12.

DISTRIBUTED PLANNING CASE

The distributed planning case represents the abnormal situation that the MSS will en-
counter a malfunction of the MS. In this scenario, the MSS is unable to perform the cen-
tralized approach due to the loss of the central controller. For this distributed case, the
proposed approach is compared with two other distributed approaches.

Basic settings including the orbit altitude (300 km), initial status (Ini t i alSi ), and the
mission objectives (10 to 50 orbits) stay the same as in the normal case. The differences
are: (1) There is no MS in the team. Therefore, the baseline between the 4th and the 5th

DS is the same as the baseline of other DSs; (2) Besides the initial status, in this case, we
add the health status Heal thnk

Si
to represent the current health conditions of each DS.

The details about the health status are shown in Tab 6.2; (3) Considering the functionality
status, the total number of DSs for this case is assumed to be a constant number 8, which
is equivalent to the real scenario in the DSL mission.

Table 6.2: Functionality status settings for participating satellites

Sat 1 Sat 2 Sat 3 Sat 4 Sat 5 Sat 6 Sat 7 Sat 8
HM (%) 100 80 100 100 100 50 25 75
HO (%) 100 100 60 100 75 100 25 50
HC (%) 100 100 100 40 75 50 100 25
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SIMULATION ENVIRONMENT

To guarantee a fair comparison, the simulation environment needs to be addressed. As
mentioned in Chapter 6.2, the system architecture is forced to switch from a centralized
architecture to a distributed architecture due to the loss of the main controller (MS). The
HDGA is performed by a group of DS where the single onboard computational power is
much lower than the MS’s. However, it is difficult to get realistic and reliable numbers
about the onboard computers on the DSs and the MS. Therefore, to simulate the differ-
ences in the computational power, we employ two kinds of computers as a simple case.
One is a high-end laptop (2017 MacBook Pro) to represent the MS for the centralized ap-
proach. This laptop has a 3.1 GHz Intelr Core™i5 7267U dual-processor, 8 GB of RAM,
and MacOS V10.13.3 as operating system. The other hardware comprises four low-end
laptops (2015 Surface Pro 4) where each core is assigned to represent one DS in the dis-
tributed approach. Each laptop has a 2.4 GHz Intelr Core™i5 6300U dual-processors, 8
GB of RAM and a Windows 10 operating system. Regarding the software, we have trans-

(a) GUI for centralized approach

(b) GUI for distributed approach

Figure 6.5: JADE software GUI for both approaches

ferred the previous MATLAB codes into the JAVA codes, in which the distributed architec-
ture is programmed. The simulation environment is constructed by using the JADE (Java
Agent DEvelopment Framework) in the Eclipse. The graphical user interfaces (GUI) for
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both architectures are shown in the Fig 6.5. Fig 6.5a illustrates the centralized approach
where all the satellites exist in the same platform called the “PlatForm1”, while Fig 6.5b
shows that each DS has its own platform and all the DSs are remotely connected with
each other. This distributed system architecture is implemented for all the distributed
approaches.

6.5.2. CENTRALIZED VS DISTRIBUTED
It is difficult to compare the centralized approach (CA) with the distributed approach
(DA) considering the differences between a centralized planning problem and a dis-
tributed planning problem. Therefore, in this part, the statistical simulation results are
only to show the capability of the proposed HDGA.

The first notable aspect is the success rate of the proposed approaches. Compared to
previous studies, for artificial intelligence (AI) related approaches, usually their success
rate cannot reach 100% [Ferber and Weiss, 1999; Russell and Norvig, 2016]. Both HDMGA
and HDGA are based on the GA, which makes them inherit the uncertainty of the suc-
cess rate from the normal GA. The second aspect is the accuracy rate of the proposed ap-
proaches. Both approaches have unique stop criteria to terminate the algorithm, which
lead to different solutions for the same problem. To compare the success rate (SR) and
accuracy rate (AR) of HDMGA and HDGA, we simulate multiple times to summarize sta-
tistical results on these two aspects. The SR stands for the success rate that this approach
can provide a solution for the corresponding problem, while the AR is the percentage of
accurate solutions in all solutions. Tab 6.3 shows SR on both approaches for five dif-
ferent objectives. All statistical results are gathered from 10 repetitive simulations with
the same initial conditions. From this table, several conclusions can be drawn. Firstly,

Table 6.3: Statistical results of success rate and accuracy rate for HDMGA and HDGA

Centralized Approach (HDMGA) Distributed Approach (HDGA)
6 satellites 8 satellites 10 satellites 12 satellites 6 satellites 8 satellites 10 satellites 12 satellites
SR AR SR AR SR AR SR AR SR AR SR AR SR AR SR AR

10 orbits 100% 100% 100% 90% 90% 90% 90% 80% 100% 90% 100% 90% 100% 80% 90% 70%
20 orbits 90% 90% 90% 90% 90% 90% 90% 70% 100% 90% 100% 80% 100% 80% 100% 80%
30 orbits 90% 80% 90% 80% 90% 80% 80% 80% 100% 80% 90% 70% 90% 70% 90% 70%
40 orbits 80% 80% 80% 70% 80% 70% 70% 70% 90% 70% 90% 70% 100% 70% 80% 60%
50 orbits 80% 70% 80% 70% 70% 70% 60% 50% 80% 70% 80% 60% 80% 60% 80% 50%

the overall success rates for DA are better than the CA. For CA, with increasing number
of satellites and operation lifetime, the number of variables increases correspondingly.
The larger number of variables makes the HDMGA much harder to generate suitable so-
lutions. While DA relies on individual evaluation performed by each satellite, the chance
to produce suitable solutions on each DS is much higher. Secondly, CA produces more
accurate solutions compared to DA. The different system architectures lead to different
procedures of convergence, where the DA chooses to employ a low standard on stopping
criteria to make sure that the continuity of the distributed optimization procedures can
be guaranteed.

Fig 6.6 shows the statistical results of one scenario from Tab 6.3. This scenario has
8 satellites as participants. The boxes represent the computation time for 10 runs. The
upper part illustrates the results for the CA, while the lower part stands for the DA. All
markers follow the same definition as in Fig 6.4. The average computation times for
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Figure 6.6: Computation time on 8 satellites for both approaches

both approaches are shown in Fig 6.7, where Fig 6.7a shows the CA results and Fig 6.7b
represents results of DA.

(a) Results for the centralized approach (b) Results for the distributed approach

Figure 6.7: Average computation time comparison for centralized and distributed approaches to solve five
mission objectives using four different team sizes

From this figure, several conclusions can be drawn. Firstly, for short lifetime mis-
sions, the DA requires more computation time than the CA. This is because the DA re-
quires team information exchange during each iteration, where some DSs have to wait
for others. The CA can produce the solutions without any stop during the calculation.
Secondly, with the increasing number of orbits, the DA requires less average time con-
sumption compared with the CA. Meanwhile, for the same number of orbits, the dif-
ferences between the two approaches are getting larger with the increasing number of
agents. All these findings indicate that the DA can handle large-scale variable problems
better than the CA. The time consumption of DA is larger than of CA when lifetime is
lower than 30 orbits. However, the DA can achieve better or at least the same perfor-
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Table 6.4: Success rates and accuracy rates for three distributed planning approaches

HDGA DACO CPSO
SR AR SR AR SR AR

10 orbits 100% 90% 100% 90% 100% 100%
20 orbits 100% 80% 90% 80% 100% 80%
30 orbits 90% 70% 90% 70% 90% 80%
40 orbits 90% 70% 80% 70% 80% 70%
50 orbits 80% 60% 70% 50% 60% 40%

mance on time consumption compared with the CA when the lifetime is 40 orbits, while
the DA outperforms the CA for lifetime of 50 orbits due to the increasing number of the
variables. The dimension of the constraints matrix for HDMGA is growing with a growing
number of variables. This can increase the computation time exponentially. However,
for DA, in the LCS module, each satellite only evaluates individual variables. This re-
duces the overall computation time. When using the HDGA, all satellites have to share
the computation load within the team. Even with the same number of variables as CA,
the number of iteration steps which each DS performs is much lower than for the CA.
This leads to a lower computation time when compared with the CA for a larger number
of variables. Fig 6.7 shows the average computation time for different team sizes. In the
12-agent scenario, CA consumes more time than DA when the lifetime exceeds 30 orbits,
while for the 8-and 10-agent scenarios, this phenomenon happens for 30−40 orbits. For
the 6-agent scenario, the gap between the DA and the CA is becoming smaller when the
lifetime enlarges.

Considering the comparison on success rate, accuracy rate, and average computa-
tion time, we are able to draw some conclusions on both approaches.

(1) When the mission requires the accuracy of the final solution as the priority, the cen-
tralized approach is always better than the distributed approach. The CA may, how-
ever, require more computation time than the DA.

(2) When the mission requires a successful operation as the first priority, the DA can
provide better success rates than the CA. In this case, DS solutions may be less accu-
rate.

(3) When the mission demands a quick reaction as first priority, for a small number of
variables, CA should be chosen, and for large-scale problems, DA should be used.

6.5.3. DISTRIBUTED VS DISTRIBUTED
In this part, the distributed planning study case is employed to test the performance of
the proposed HDGA against DACO and CPSO approaches. All three approaches use the
same settings and the same distributed architecture. The statistical results are summa-
rized from 10 simulation runs with the same initial setup. Tab 6.4 shows the SR and the
AR of each approach on five different objectives. Based on this table, we observe that
when the lifetime is below 30 orbits, the performance on success rates and accuracy for
all three approaches is similar. For 10 and 30 orbits, the CPSO can provide more accurate
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Figure 6.8: Statistic results on computation time for three approaches

solutions than the HDGA. However, when the lifetime exceeds 40 orbits, the SR starts to
decrease for both DACO and CPSO, while the HDGA stays the same as the previous life-
time. When the lifetime reaches 50 orbits, the performance on both competitors is worse
than the proposed method. This table also indicates that the proposed HDGA is more
stable and accurate for dealing with large-scale problems.

Fig 6.8 illustrates the simulation results of the three approaches on computation
time. The upper part is for HDGA, the middle part is for DACO, and the lower part is
for CPSO. Each box represents the statistical results based on 10 simulation runs. The
red pluses stand for the abnormal results which indicate the number of failures of each
approach during the simulation. Based on the statistical results, the average computa-
tion time for each approach is shown in Fig 6.9.

Figure 6.9: Average computation time for three approaches



6.6. CONCLUSION

6

125

In Fig 6.9, the black line represents the proposed HDGA, the blue line stands for
the CPSO, and the red line denotes the DACO. The proposed HDGA presents the low-
est average computation time among all three approaches, while the DACO is the high-
est. The main reason why HDGA is superior to the other two approaches is because it
has a pre-selection procedure before the team evaluation procedure. This can help to
avoid the global population of each iteration to generate infeasible solutions. For DACO
and CPSO approaches, after the information sharing procedures are finished, each com-
putation node can generate candidate solutions based on its current knowledge. For
the distributed planning study case in this chapter, the global fitness function relies on
strongly-coupled variables which come from different satellites. Independent evalua-
tion approaches like the DACO and the CPSO may not provide sufficient solutions for
other satellites. This causes these approaches to waste more time on retrieving the suit-
able candidates from previous generations. The proposed HDGA uses two level of in-
formation exchange procedures instead of one to improve the success rate of establish-
ing the global population at each generation. This method can therefore avoid conflicts
caused by individual constraints from other satellites. However, in this thesis, the time
delay of the inter-satellite communication is not considered. With the current assump-
tions, then the HDGA can solve the same planning problem within a shorter time com-
pared to the other two distributed approaches.

6.6. CONCLUSION
A novel hybrid distributed planning approach (HDGA) is presented for multiple-satellites
systems. This approach consists of a local search heuristic and a distributed optimiza-
tion algorithm. The local heuristic uses a greedy best-first search as the search algorithm
for solving the local constraint satisfaction problems, while the HDMGA of Chapter 3 is
used as a core algorithm for distributed optimization problems. The proposed approach
is validated through similar results obtained for the centralized approach. Addressing
several unique mission planning study cases derived from the DSL mission, the HDGA
shows better performance for dealing with large-scale problems compared to the pre-
vious centralized approach. Compared with other state-of-the-art approaches for dis-
tributed planning problem, the HDGA shows a better performance on success rate, ac-
curacy, as well as the average computation time. Therefore, the HDGA shows a good
potential for solving distributed mission planning problems in future multi-satellite mis-
sions.
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7.1. SUMMARY

W ITH the increasing complexity of space applications, using multiple-satellite sys-
tems (MSSs) instead of single-satellite systems (SSSs) is becoming an inevitable

trend due to its many advantages, such as higher robustness, increasing functionality
and lower cost. However, implementing an MSS for a space mission will also bring many
challenges, e.g. the operational complexity of MSS with a large number of satellites. A
large number of operating satellites is a heavy burden for ground operators to control
every sub-system of every satellite in the MSS. Meanwhile, for specific missions, such as
deep space missions, the commands sent from the ground segment can be delayed or
jammed due to a long communication distance, making it impossible to control an MSS
from ground in real-time. Furthermore, for highly complex missions, the MSS may re-
quire a short reaction time to critical situations (e.g. collision avoidance). Also, the MSS
may only be reached by a control center within a short communication window. These
constraints will bring extra requirements on hardware and software capabilities on op-
erations for both the MSS and the control center. Therefore, to enhance the efficiency of
operating an MSS, and to reduce the cost of human resources and ground infrastructure,
developing an onboard autonomous system (OAS) for MSS is a promising solution. One
important function of an OAS is to provide the planning and re-planning services based
on different mission requirements.

Traditional planning approaches have been reviewed and prove to be inefficient and
inappropriate for complex planning problems in a harsh environment with severe sys-
tem constraints and a large number of variables. In contrast, Artificial Intelligence (AI)
approaches are more suitable for these complex problems due to their broad adaptabil-
ity and their ability to deal with large-scale variables. Therefore, this thesis focuses on
the development of onboard mission planning and re-planning approaches using AI
techniques for supporting future highly capable OAS. The goal of developing these ap-
proaches is to enable the MSS to perform onboard autonomous mission planning and
re-planning for various scenarios. In order to guide the research of this thesis, three re-
search questions (RQs) were defined and formulated, as follows:

RQ1: What are the strengths of using AI in space missions? How to use a central-
ized AI algorithm in a multi-satellite system to decompose mission objectives and per-
form mission planning for the entire system?

RQ2: How to define emergency situations which may occur during mission op-
erations? How to use AI algorithms to handle mission re-planning and rescheduling
problems?

RQ3: How to design cooperation and negotiation approaches for an MSS to reach
an agreement? How to improve the AI algorithm for distributed onboard mission
planning problems?

Chapters 2 and 3 addressed and answered RQ1. In Chapter 2, we first introduced
the reference mission of this thesis, called Discovering the Sky at the Longest Wavelength
(DSL), which scientific objective is to observe the universe in the hitherto-unexplored
area, very low frequency (below 30 MHz) electromagnetic spectrum range in a lunar or-
bit. Then, existing work on mission planning problems for the multi-satellite system was
reviewed in three categories: classical approaches, heuristic approaches, and advanced
techniques (e.g. team negotiation mechanisms, distributed optimization approaches)
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for distributed systems. Three classical approaches and six heuristic approaches were
chosen from the related work as candidates for a preliminary selection. The goal of this
selection was to identify a suitable approach for MSS to handle different types of opti-
mization problems. Eight constrained and six unconstrained test functions were em-
ployed as benchmarks. The results of using these functions in simulations indicated
that Evolutionary Algorithms (GA and DE) have a broader adaptability than classical ap-
proaches. They also have better efficiency than other heuristic approaches.

Following the preliminary selection of suitable algorithms in Chapter 2, Chapter 3
investigated how to use the selected AI algorithm to solve the mission initial planning
problems under a centralized architecture, i.e. a Mother Satellite (MS) in charge of mis-
sion planning and re-planning and maintaining communication to several Daughter
Satellite (DS), in our case 8 DSs. The mathematical model of the mission initial planning
problem was formulated, including its notations, variables, constraints, and objective
functions. By revealing the weaknesses of the basic Genetic Algorithm (GA), along with
a comparison with several other improved GAs, the need of developing a new mutation
strategy for GA has been motivated. The proposed mutation strategy is called Hybrid
Dynamic Mutation (HDM) strategy, which contains two mutation operators, the normal
mutation operator and the escape mutation operator. While the normal mutation op-
erator uses a small mutation rate Rnor = 0.05 for approaching the global optimum, the
escape mutation operator uses a larger mutation rate Resc = 0.55 to allow an escape from
local optima. The simulation results indicated that the proposed HDMGA has a supe-
rior performance on correctness and effectiveness than alternative GAs for the problem.
Based on these findings, AI methods are considered as a promising category compared
with traditional methods due to their flexibility and effectiveness to support onboard
planning for an MSS. The proposed HDMGA has also been shown to provide a satisfying
result for considered initial mission planning problems.

Chapter 4 addressed and answered RQ2. The architecture of the centralized mis-
sion planning and re-planning system was first described. This architecture includes
four components, namely, the general mission planner, the DS plan executor and moni-
tor, the decision-maker, and the re-planner. Three emergency scenarios were proposed
based on the potential failures (e.g. space debris, meteorites, or failures on sensors,
processors or actuators) which could occur to important sub-systems of each DS dur-
ing operations. Two re-planning methods, one called the cyclically re-planning method
(CRM), the other one the near real-time re-planning method (NRRM), were established
and compared in fundamental terms. Both methods were tested and compared using
the same simulation environment. Three simulation case studies were formulated based
on the introduced three emergency scenarios. Each case was designed to represent a dif-
ferent level of failures on multiple DSs. Here, case A stood for a total operative dysfunc-
tional of DS1, DS3 and DS5, case B stood for a partial failure of observation functionality
on DS2, DS4, DS6 and DS8, and case C represented a partial failure of communication
functionality on DS1, DS3, DS5 and DS7. To ensure the diversity of the simulation, the
functionality status in each case was set differently. The performance of the proposed
two methods was compared for three aspects: the total number of data observed from
all DSs within a certain time frame, the total number of data the MS received from all
DSs within a certain time frame, and the average computation time for re-planning. We
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concluded that: (1) Both the total data obtained on DSs and the total data transmitted to
the MS, the NRRM could observe and transmit more data than the CRM within a specific
operation lifetime. (2) The NRRM required at least 16.5% more computational time than
the CRM for emergency situations, while it required 26.6% less time than the CRM for
normal situations. This indicates that for emergency situations, the CRM could provide
re-planning sequences faster than the NRRM, while for the normal case, the NRRM is
much faster than the CRM.

In Chapter 5, a much more severe scenario was treated, namely that the MS became
non-functional in a emergency situation. This would render the MS unable to provide
mission planning and re-planning services for the MSS. Without its main controller on
the MS, a single DS cannot take over the responsibility of the MS due to its limited hard-
ware. Instead, all DSs need to cooperate to jointly perform the distributed mission plan-
ning.

Chapter 5 also answered the first part of RQ3. Due to the loss of the MS, this chapter
first introduced distributed and decentralized architectures which the MSS could en-
counter. These two architectures were different in terms of communication topologies.
In the distributed architecture, each DS was connected to other DSs, while in the decen-
tralized architecture, one DS was only linked with its neighbors. Considering that the
mission allocation problems in different organizational architectures are highly similar
to the information games in game theory, a game-theoretical model of the multi-satellite
mission allocation (MSMA) problem was formulated. Three new negotiation mecha-
nisms were introduced, compared and analyzed in theoretical terms. The Utility-based
Regret Play (URP) negotiation mechanism was proposed for a MSMA problem using a
distributed architecture. The URP inherited the ability to evaluate individual utility at
each negotiation step from the Utility-based Fictitious Play, and the ability to regret the
current choice and to choose another option in the previous negotiation steps from the
Regret Matching Play. The Smoke Signal Play (SSP) and Broadcast-based Play (BBP) were
developed for a decentralized architecture instead. The SSP was inspired by an old com-
munication method called Smoke Signal, where each agent was considered as a smoke
tower, passing information of utility to its neighbor after it. The BBP used broadcast-
ing as the communication method, where each agent can transmit information to its
neighbors. The numerical simulations were carried out through several connected com-
puters, where the communication environments of these computers were designed to
follow the corresponding organizational architecture. The simulation results showed
that the URP could outperform the other three state-of-the-art mechanisms using the
designed distributed study cases. For the decentralized architecture, the results revealed
that both SSP and BBP could provide valid solutions for mission allocation problems.
In addition, strengths and weaknesses of these methods were identified and compared
with another state-of-the-art mechanism called Market-based Auction (MBA) through a
statistic analyses. This analysis included the average number of negotiation steps, the
average CPU time consumption, and the total number of transmitted packets. The BBP
mechanism showed a better performance on saving the computation time compared to
SSP and MBA. The SSP mechanism, on the other hand, showed the best performance
with respect to power consumption.

Chapter 6 answered the second part of RQ3. Based on the allocation results gath-
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ered from the previous chapter, this chapter focused on the development of a distributed
mission planning approach, named hybrid distributed GA (HDGA). This approach con-
tained two modules: the local constraints satisfaction module (LCS) and the globally
distributed optimization module (GDO). In the LCS module, the greedy best-first search
algorithm was employed as the local search heuristic to help each DS to find the suitable
solutions which can satisfy individual constraints. This module was designed to generate
multiple solutions to form local populations for the GDO. The GDO module employed
the distributed HDMGA as the core optimization algorithm, while the individual popu-
lations were formed through the local populations exchanging procedure between one
agent and all other agents. The proposed HDGA was tested by employing six instances of
the TSP (Travelling Salesman Problem). Although test results indicated that the fitness
value of HDGA was around 5% inferior than the centralized HDMGA, these results still
justify the correctness and applicability of the proposed HDGA. When the HDGA was
implemented for a standard planning case, the results indicated that it could reduce the
computation time while ensuring a higher success rate compared to the centralized HD-
MGA. While comparing the HDGA with two other state-of-the-art distributed optimiza-
tion algorithms, the distributed ant colony optimization (DACO) and the coevolution-
ary particle swarm optimization (CPSO), the statistical results indicated that HDGA was
more stable and accurate to handle large-scale planning problems. Finally, the HDGA
also showed the best performance on computation time among all tested distributed
approaches.

7.2. CONCLUSIONS AND INNOVATIONS
This thesis was investigating the development of the onboard autonomous mission plan-
ning and re-planning system which can provide sufficient onboard control capabilities
without any interference from ground operators. This section provides the conclusions
and the main innovations of this thesis.

1. Evaluation of mission planning approaches for multi-satellite systems
Multi-satellite systems can be considered as multi-agent systems (MASs) with limita-
tions on operation environment. To develop an onboard autonomous mission planning
and re-planning system for an MSS, existing planning approaches need to be reviewed
and compared thoroughly. The advantages and drawbacks of classical approaches and
heuristic approaches have been, for the first time, reviewed from the perspective of space
applications. The most relevant techniques and methods for distributed systems have
been addressed as well, including the coordination mechanisms, the topology of MASs,
and distributed optimization approaches. A careful selection methodology has been de-
signed to sift through representative approaches to identify their strengths and the weak-
nesses. This preliminary selection covers almost all types of optimization problems. The
specifically defined evaluation and selection criteria is used to find an approach with the
best applicability and computational efficiency among the candidate approaches. The
results of this selection have also provided a basic understanding of tested candidates
for other research fields, such as selecting best-suited optimization algorithms for opti-
mization problems of other multi-agent systems.

2. Onboard centralized autonomous planning
A new mutation strategy has been designed to overcome the shortcomings of the con-
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ventional genetic algorithm (GA). This new algorithm called Hybrid Dynamic Mutation
GA (HDMGA) helps the Mother Satellite (MS) to perform the onboard initial planning for
the entire MSS. Considering the unique scientific requirements of our reference mission,
the initial planning problem has been formulated as a mixed-constrained optimization
problem. Based on the preliminary selection results, GA has been chosen as the solver
for this mixed-constrained optimization problem. The goal of developing HDMGA was
to compensate for shortcomings of the original algorithm in terms of computational ef-
ficiency and accuracy. The simulation results have indicated that the proposed HDMGA
can handle complex optimization problems in a short computation time compared with
other centralized planning approaches. The proposed algorithm can also be applied to
other centralized planning scenarios which have a high number of participants, such as
multi-robot and multi-UAV (Unmanned Aerial Vehicle) systems.

3. Onboard centralized autonomous re-planning
The architecture for the centralized mission planning and re-planning system has been
developed, including four modules: general mission planner, plan executor and mon-
itor, decision-maker, and re-planner. Considering the potential failures on DSs, three
emergency situations have been developed and specified. These emergency situations
are assumed to be critical representative scenarios due to the scientific requirements
of the DSL mission. Targeting various mission priorities, two new re-planning meth-
ods have been designed. One is called the cyclically re-planning method (CRM), and
the other one is called the near real-time re-planning method (NRRM). Both methods
have been shown to be able to reproduce valid control sequences for designed emer-
gency situations. The comparison has shown that the CRM has a better performance
on the re-planning computation time, while the NRRM allows the MSS to collect more
observations than the CRM. These re-planning methods are also applicable for other
emergency situations and re-planning scenarios with the customized initial settings and
constraints.

4. Multi-satellite negotiation mechanisms
The MS may face itself a fatal system failure. Under this circumstance, the organiza-
tional architecture of the MSS is forced to transfer from a centralized architecture to
a non-centralized architecture due to the loss of the main controller on the MS. Con-
sidering the different communication topologies, the MSS could form, in this research,
non-centralized architectures which can be divided into either a distributed architecture
or a decentralized architecture. Both differ in the condition of the internal communi-
cation network. For the distributed architecture, a new negotiation mechanism called
the Utility-based Regret Play (URP) has been developed. This new mechanism has been
shown to be able to outperform most other state-of-the-art negotiation mechanisms un-
der the same distributed negotiation scenario. For the decentralized architecture, two
new negotiation mechanisms have been proposed, namely, the Smoke Signal Play (SSP)
and the Broadcast-based Play (BBP). The SSP is designed to save total power consump-
tion on inter-satellite communication, while the BBP is designed to provide negotiation
results with a shorter computation time. Both mechanisms have been compared with
a representative method (Market-based Auction) and have been proven to be superior
in saving computation time and energy. Meanwhile, to implement the proposed mech-
anisms for the MSS using both the distributed and decentralized architectures, a vali-
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dation platform has been developed and implemented based on the JADE (Java Agent
DEvelopment Framework). The proposed negotiation mechanisms are also applicable
for other multiple intelligent agent systems which require system-level negotiation and
cooperation to accomplish one or more tasks.

5. Onboard distributed planning approach
A distributed planning approach called Hybrid Distributed GA (HDGA) has been de-
veloped in this thesis to solve MSS planning problems using a distributed architecture.
The unique two-layer architecture of the HDGA consists of two modules: the local con-
straints satisfaction module (LCS) and the globally distributed optimization module (GDO).
This innovate hybrid approach uses the LCS to simplify the impact of strongly-coupled
constraints from the scientific requirements. It employs the GDO to increase the search
space and accelerate the convergence time. Although the cross-verification results of
the HDGA and the HDMGA have indicated that the accuracy performance of the dis-
tributed approach is inferior to the centralized approach, the HDGA can still provide
solutions within an acceptable range (less than 5% difference). The advantage of the
HDGA is that it has a broader range of applicability and can be used on problems that
cannot be solved by a centralized approach. The comparison with other state-of-the-
art distributed approaches also proves that the proposed method has the conspicuous
advantages in terms of success ratio, accuracy, and computation time. With these advan-
tages, the HDGA can be applied on other distributed systems with multiple independent
agents (e.g. multi-robot systems, multi-UAV systems, multi-UUV (Unmanned Underwa-
ter Vehicle) systems).

7.3. OUTLOOK
In this thesis, several important conclusions have been formulated based on innova-
tive contributions to develop the onboard mission planning and re-planning system for
a multi-satellite system. Although some approaches and mechanisms have been thor-
oughly investigated and verified, some other assumptions and interesting research top-
ics remain untouched for many reasons. Recommendations for future research are pro-
vided in the sequel.

1. Influence of a more detailed orbital model
As described above, the DSL mission will be operated in a lunar orbit. All the
planning and re-planning approaches developed in this thesis were modeled and
constructed under the assumption of circular orbits. However, for real-world mis-
sions, the operating orbit will be elliptical to a certain extent and shaped by various
gravitational and non-gravitational perturbations. A more detailed orbital model
can alter the problem formulation and influence the performance of the proposed
approaches. This needs to be further investigated to demonstrate the applicability
of the proposed methods for non-circular orbits.

2. Incorporation of more sub-systems related to DSL mission
In Chapter 3, the planning problem has been simplified to only concern two key
sub-systems: the payload and the communication sub-system. The mathemati-
cal models and objective functions were all constructed based on these two sub-
systems only. However, a real spacecraft requires many other sub-systems to fulfill
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the mission objective. Under this circumstance, more variables and constraints
need to be considered. The corresponding expansion of computational complex-
ity needs to be further investigated to characterize the performance of the pro-
posed approaches.

3. More extensive and detailed database for emergency situation
According to Chapter 4, one key component for re-planning is the decision-maker.
Its decision-making capability relies on the database it can access. In this thesis, to
simplify the planning problems, only three emergency situations have been taken
into consideration. To enhance the intelligence of the decision-maker, a more ex-
tended and detailed refined database should be established. With a comprehen-
sive database, the proposed methods can react to more complex re-planning situ-
ations.

4. Communication delay for negotiation
When performing team negotiation to decompose the main mission goal into sub-
goals and allocate them to each DS, the communication channels are assumed to
be instantaneous, i.e. there is no time delay for transmitting messages between
DSs. However, in real systems, it is unrealistic to ignore communication delays.
Further investigation is required to identify the influence of latency on the pro-
posed mechanisms.

5. Development of ground test-bed
In this thesis, several approaches and methods have been developed to solve on-
board mission planning problems. To verify the proposed methods, many simula-
tion and cross-verifications have been designed and performed. However, actual
operation will differ from simulations. A ground test-bed is therefore needed to
test and verify the proposed methods under representative conditions. Some pre-
liminary configurations, such a test-bed, have been done by employing several
quadrotors (Matrix 100 from DJI company). Many other group maneuver capabil-
ities are still needed or need to be further developed to enhance the applicability
of this test-bed.
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