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Symbols and Abbreviations 

 

 

Roman symbols 

 

ft Tensile strength 

Gf Mode-I tensile fracture energy 

h Crack band width 

K Current stiffness matrix 

q Load reduction factor in ISLA 

r Convergence tolerance of μ in ISLA  

t Stiffness reduction factor 

v Initial load factor for non-proportional loading in SLA 

  

Greek symbols 

 

εu Ultimate tensile strain 

λ Load factor in SLA 

μ Utilisation function which is the largest utilization value of all elements in ISLA 

 

Abbreviations 

 

CITA Continuous incremental-only tangential analysis  

IMPL−EX Implicit-explicit approach 

ISLA Incremental sequentially linear analysis 

LATIN The large time increment method 

NIEM Non-iterative energy based method 

NR Newton–Raphson method 

SLA Sequentially linear analysis 

SUR Smooth unloading-reloading function approach 
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Incremental Sequentially Linear Analysis to Control Failure for Quasi-

brittle Materials and Structures including Non-proportional Loading 
 

Chenjie Yu, P.C.J. Hoogenboom, J.G. Rots, 

Delft University of Technology, Delft, the Netherlands 

 

Abstract 

Quasi brittle materials, such as un-reinforced masonry or concrete are difficult to analyse 

because often the traditional Newton–Raphson (N-R) procedure fails to converge. Many 

solutions have been proposed such as Sequentially Linear Analysis (SLA), but these may fail 

in case of non-proportional loading with a large prestress. In this paper a new method is 

proposed that is based on a combination of the Newton–Raphson method and Sequentially 

Linear Analysis. The method is incremental; each increment starts and ends with an 

equilibrium state. The solution search path follows damage cycles sequentially with secant 

stiffness. The proposed method is demonstrated to be robust and accurate. It has been tested 

on prestressed concrete beams. It can be naturally extended to other types of analyses (e.g. 

geometrically non-linear analysis and transient analysis) due to the incremental procedure. In 

addition, it is shown that high prestress values can transform the behaviour of a concrete 

beam from softening to hardening. 

 

Keywords: Structural analysis, incremental, iterative, implicit, explicit, sequentially linear 

analysis (SLA), Newton-Raphson (N-R) method, masonry, unreinforced concrete 

 

1. Introduction 

 

Nonlinear analysis of quasi brittle materials, such as masonry, concrete, reinforced and 

prestressed concrete, has been applied for more than 40 years. However, the robustness of the 

algorithms is still a serious issue. The load-displacement curves of quasi brittle materials 

have many little peaks related to initiation and propagation of numerous cracks. These peaks 

are only visible if one zooms in on a curve which is computed with very small load 

increments. Consequently, the tangent stiffness in the neighbourhood of these peaks varies 

extremely and can lead to divergence of the Newton-Raphson (N-R) iterations in certain 

displacements. 

 

Many solution methods have been proposed to adapt the full N-R method (e.g. [1]) or 

introduce new approaches of solving non-linear problems. The modified N-R method 

computes and decomposes the tangential stiffness matrix only in the first iteration at the 

beginning of every load step while the full N-R method sets up and decomposes the tangent 

stiffness matrix in every iteration. The global tangent stiffness in the N-R method can be 

based on true negative softening stiffness at local level or on the positive secant stiffness at 

local level. Also, arc-length schemes can be added, which is a modification of load control in 

order to trace post-failure behavior numerically when a structure softens or snaps back 

[2][3][4][5]. However, these techniques cannot prevent divergence or ill-conditioning of the 

system of equations in case of brittle behaviour. A new constraint has been developed based 

on the energy release rate in term of geometrically linear damage, geometrically linear 

plasticity and geometrically non-linear damage to improve the robustness of the arc length 

method in [6]. In the implicit–explicit approach (IMPL-EX), the explicit (non-iterative) 

scheme and implicit (iterative) scheme are combined [7][8]. IMPL-EX combines an implicit 

scheme of the stresses in the constitutive model with an explicit extrapolation of the involved 
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internal variables. The length of the time step influences the accuracy of this method [9]. The 

LATIN method is a non-incremental iterative computational strategy applied over the entire 

time interval [10]. The main features are the separation of possibly non-linear local equations 

in space and time and possibly global linear equations in the spatial variable, a two-step 

iterative approach and an ad-hoc space-time global approximation. The difficulty is to define 

the search paths in the two-step scheme, which currently is guided by numerical parameters 

that do not have a clear physical meaning. A fictitious viscosity has been added in the 

constitutive equations for the cohesive interface to trace the instable post-behaviour [11].  
 

In order to enhance the robustness of solving non-linear problems, a total approach with 

secant stiffness (Load-Unload method) and an “event-by-event” damage model (saw tooth 

constitutive law) has been introduced by sequentially linear analysis [12]. Sequentially linear 

analysis (SLA) is an alternative to the Newton-Raphson method when bifurcation, snap-back 

or divergence problems arise. The incremental-iterative procedure, adopted in nonlinear finite 

element analysis, is replaced by a sequence of scaled linear finite element analyses with 

decreasing secant stiffness, corresponding to local damage increments [13]. The saw tooth 

model has been improved in [13][14] to make the results independent of the magnitude of the 

stiffness reduction in a step. The SLA with fixed smeared cracking has been improved with a 

damage dependent shear modulus decreasing along with Young’s modulus to reduce the 

mesh-directional bias for fixed smeared cracking [15]. Two methods are proposed to perform 

SLA with non-proportional loading [16][17]. An algorithm selects the critical integration 

point to which a damage increment is applied by extra stresses [16] or a varying constant-

load factor [17]. The non-proportional loading method in [16] has been improved by a 

constrained optimization to suit for more non-proportional loading cases [18]. Non-

proportional loading still has limitations; the method fails when a large initial overburden 

force is applied [19]. In addition, Coulomb friction laws have been introduced for tension-

shear failure criterion [18]. SLA has similarity to the discretized lattice model method [20] 

[21] [22]. In lattice models, the continuum is replaced by a lattice of truss or beam elements. 

Therefore, the micro structure of the material can be simulated by assigning different 

properties. A truss or beam element is removed when a failure criterion is reached in a brittle 

material. 

 

In addition to developing total approaches, research is also ongoing to improve the robustness 

and efficiency of incremental approaches. The predictive SUR approach [23] uses a smooth 

unloading-reloading function (SUR) to compute an approximate tangent stiffness matrix, 

which is used in a non-linear incremental-iterative N-R method. The predictive SUR 

approach is more efficient than the secant method, but the form of the SUR function 

significantly affects the convergence characteristics of the model. The strong discontinuity 

approaches [24] define in each increment either a loading phase or an unloading phase with 

the crack state frozen to improve the robustness when a sudden propagation of cracks through 

several elements occurs in one increment. Each time when a crack segment is added in an 

element, an unloading phase with frozen crack propagation is performed. If the propagation 

criterion is met simultaneously in more than one element, the crack is added in the critical 

element. Other improved approaches are Non-iterative energy based method (NIEM) [25] 

and Continuous incremental-only tangential analysis (CITA) [26], both of which adopt 

piecewise linear continuum laws. NIEM uses tangent stiffness to scale the global load 

increments according to the local discontinuity in the multi-linear stress-strain diagram. 

NIEM allows for switching between the incremental and the total approach based on energy 

dissipation. When a critical bifurcation point is reached, it is impossible to incrementally 

determine the effective path and the switch to a total method is adopted with the secant 
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material stiffness. When NIEM switches to the total approach, the non-proportional loading 

issue remains.  CITA is presented as a continuous, incremental-only, tangential analysis for 

the Newton–Raphson method. Again, the tangent elasticity modulus is based on the true 

negative stiffness. This method improves the efficiency compared with the secant method and 

keeps track of the displacement history. The CITA method attempts to control energy 

dissipation by limiting the damage level to a single event. Negative tangent stiffness may still 

cause divergence problems, e.g. in case of snap-backs. The Force-Release method [27] 

extends saw-tooth constitutive laws to an incremental and non-iterative procedure. The 

Force-Release method is based on redistribution of released stresses. It preserves the linearity 

of each step. After rupture of the critical element, a sequentially linear redistribution process 

of stress release takes place until a static equilibrium state is reached. However, the method 

does not follow snap-backs. In an attempt to follow snap-backs, the Force-Release method is 

combined with the Load-Unload method [28]. The result is a range of possible solutions, 

which depends on the choice of external load velocity and ratio between disequilibrium 

forces and external load increment. 

 

In this paper a new method is proposed which combines the advantages of the Newton–
Raphson method and Sequentially Linear Analysis. The new method will be demonstrated to 

work effectively for non-proportional problems but it can be naturally extended to include 

geometrical nonlinearity, plasticity for cyclic loading and transient analysis. 

 

The idea behind the proposed method is to perform an incremental analysis with Newton-

Raphson iterations and linear elastic material behaviour with load or displacement control. As 

soon as the stress somewhere is too large, the Young’s modulus of the considered element is 

reduced and the load is reduced or increased to the level at which the stress is just not too 

large. The method is robust because all physical nonlinearity is included in stiffness damage 

cycles. 

 

2. General equations and procedures of the new algorithm  

 

Suppose that a structure is loaded by two load cases, one with a constant load factor 1 and 

the second with a varying load factor 2. This is referred to as non-proportional loading. Here 

2 can be incremented (2.1 Load control) or first incremented and then automatically 

decremented (2.2 “Arc length” control). In proportional loading, on the other hand, there is 

only 2 and no 1. 

 

Just as in SLA, utilisation values are computed for each element. A utilisation function μ is 

defined as the largest utilisation value of all elements, which is a function of the load factors 

and the stiffness matrix K. The material is in equilibrium if  

 

μ(𝜆1, 𝜆2, 𝐾) ≤ 1,      (1) 

 

which means that the stresses or strains of the critical element, i.e. the element that is most 

close to a first or next damage moment, lie either on or within the failure surface. 

 

2.1 Load control 
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For the load control, 1 is fixed for all load steps and 2 is incremented. Note that 2 is fixed 

within a load step. The load factor 2 is applied to imposed forces or imposed displacements. 

Suppose that after load step n somewhere the failure surface is reached. 

 

μ𝑛 = μ(𝜆1, 𝜆2, 𝐾𝑛) = 1      (2) 

where the subscript on μ and K refer to a load step.  

 

For the next step 𝜆2 is increased to 𝜆2
′
. If 

 

μ𝑛+1
1 = μ(𝜆1, 𝜆2

′, 𝐾𝑛+1
0 ) > 1     (3) 

where 𝐾𝑛+1
0 =  𝐾𝑛 

 

then restart from μn, which means that the displacements are reset to the values at the end of 

step n. Subsequently the stiffness matrix is reduced. 

 

μ𝑛+1
2 = μ(𝜆1, 𝜆2

′ , 𝐾𝑛+1
1 )      (4) 

 

where  𝐾𝑛+1
1  means that the Young’s modulus of the critical finite element is reduced in the 

stiffness matrix for this step, which is based on the rotating smeared crack with constant 

stiffness reduction t. In this model, the Young’s modulus in principal directions of the critical 

finite element is reduced. A step in which the stiffness is reduced is called a cycle. The 

superscripts on μ and K refer to the cycle number of a load step. 

 

Restart from μn and continue reducing the stiffness matrix until 

 

μ𝑛+1
𝑚+1 = μ(𝜆1, 𝜆2

′, 𝐾𝑛+1
𝑚 ) ≤ 1     (5) 

where 𝐾𝑛+1
𝑚  refers to the stiffness matrix being reduced m times for the critical element of 

each load step. 

 

A routine with the name “Find μ” is defined in Figure 1. Figure 2 shows the program 

structure diagram for the imposed loading. The structure state refers to the displacements, 

velocities and accelerations of the nodes. The parameter r is defined as the material 

equilibrium convergence tolerance value.  

 

 
Figure 1: Routine “Find μ” 

 

Perform a non-linear analysis (Newton-Raphson)

For all elements

Calculate the utilisation value

Store the maximum utilisation value as µ and the critical element number
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Figure 2: Program structure diagram for the load control 

 

Figure 3 illustrates the searching path of the imposed loading of force control and 

displacement control separately. F and U represent the force vector and displacement vector. 

The blue line is the target curve. The green dotted lines present the load steps. The red dashed 

lines present the current stiffness, which has been reduced from the previous value based on 

the stiffness reduction. The black solid arrow lines are the procedure paths for every cycle. 

The pink solid arrow lines are the output paths for all the cycles in one load step. The solid 

dots are the equilibrium states while the open dots are the temporary trial states. It is noted 

that the paths of the black dashed lines result from the internal force change along with the 

stiffness reduction. The N-R procedure has been performed to update the internal force based 

on the current displacements and the reduced stiffness. When reaching an equilibrium state, a 

load increment is applied for the next load step. If the utilization value is still smaller than 1, 

the next load increment is applied (Step 123 in Figure 3a). Otherwise, the procedure 

restarts from the structure state of the previous load step, which means that the displacements 

are reset to the values of the previous load step. Below, two procedures in one cycle are 

described: 

 Firstly, the secant stiffness of the critical element of the previous cycle is reduced by the 

defined stiffness reduction factor, which is the same as for SLA. It is noted that the 

damage procedure is irreversible, which means that all stiffness reductions of the previous 

cycles are repeated before the current cycle in this load step. Due to these stiffness 

reduction procedures, the internal forces are updated based on the displacements of the 

previous load step and the algorithm reaches a temporary equilibrium state, which is 

calculated by the N-R iterations. One N-R iteration is enough for a geometrically linear 

analysis. Eq. (6) is adopted to update a temporary equilibrium state for the force control 

loading while Eq. (7) is employed for the displacement control loading. However, several 

N-R iterations are needed for a geometrically non-linear analysis. 

𝐾′∆𝑢 = 𝐹𝑒𝑥𝑡 − 𝐹𝑖𝑛𝑡
′      (6) 

𝐾′∆𝑢 = −𝐹𝑖𝑛𝑡
′       (7) 

where 𝐾′ is the reduced stiffness, 𝐹𝑖𝑛𝑡
′  is the updated internal forces due to the reduced 

stiffness and 𝐹𝑒𝑥𝑡 is the external forces for the force control loading. 

 Secondly, the incremental load is applied and a linear analysis is performed for the current 

load step.  

 

For instance, an equilibrium state starts at Step 8 and ends up at Step 12 (a load step). A 

new load increment is applied at Step 9. After that, the stiffness is reduced sequentially 

from Step 10 to Step 12 (cycles). The search path of this load step is Step 

8988a1088b1188c12. 
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a. Displacement control loading  b. Force control loading 

Figure 3 Searching path for the load control 

 

2.2 Load scaling control 

 

For the Load scaling control, 1 is fixed and  2 is incremented or decremented depending on 

the capacity of the structure, which is based on μ. Two control methods are introduced below 

in the Load scaling control. 

 

2.2.1 Damage control method 

 

Suppose that after load step n somewhere the failure surface is reached.  

 

μ𝑛 = μ(𝜆1, 𝜆2, 𝐾𝑛) = 1      (8) 

 

For the next cycle 

μ𝑛+1
1 = μ(𝜆1, 𝜆2

1 , 𝐾𝑛+1
0 ) > 1     (9) 

 

where 𝜆2
1 is an increased 𝜆2 and 𝐾𝑛+1

0 =  𝐾𝑛. The superscript on 𝜆 refer to the cycle number 

of a load step. 

 

Subsequently, reduce the Young’s modulus of the critical element and restart from μn 

μ𝑛+1
2 = μ(𝜆1, 𝜆2

1 , 𝐾𝑛+1
1 )      (10) 

where  𝐾𝑛+1
1  is the stiffness matrix with reduced Young’s modulus of the critical element. 

 

If μ is still larger than 1, then again restart from μn 

 

μ𝑛+1
3 = μ(𝜆1, 𝜆2

2, 𝐾𝑛+1
1 )      (11) 

 

where 𝜆2
2 is a reduced 𝜆2

1 based on a constant reduction q or a function 𝑞(𝜇) (𝜆2
2 = 𝑞𝜆2

1 or 

 𝜆2
2 = 𝑞(𝜇)𝜆2

1). Parameter q is smaller than 1 but larger than 𝜆2/𝜆2
1, e.g. 𝜆2/𝜆2

1 is 0.9 and q is 

0.95. Parameter q can be adjusted by a decreasing function 𝑞(𝜇) where 𝑞(1) = 1.  

 

If μ is still larger than 1, then repeat restarting from μn until 
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μ𝑛+1
𝑚+1 = μ(𝜆1, 𝜆2

𝑚, 𝐾𝑛+1
1 ) ≤ 1     (12) 

where 𝜆2
𝑚 means that 𝜆2 is adjusted m times, which is a reduced 𝜆2

𝑚−1 based on a constant 

reduction q or a function 𝑞(𝜇). 

 

In case of a weakly non-linear situation, the relation between the load factor and utilization 

function can be linearized. Equations 9 to 12 can be written as 

 

μ𝑛+1
1 = 𝐶0       (13) 

μ𝑛+1
2 = 𝐶0 + 𝐶1(∆𝐸) + 𝐶2𝜆2

1      (14) 

μ𝑛+1
3 = 𝐶0 + 𝐶1(∆𝐸) + 𝐶2𝜆2

2     (15) 

 

where C0 represents the value of μ with a new load factor of Load step n+1, ∆E is the 

stiffness reduction, C1 represents some non-linear function of ∆E and μ and C2λ represents a 

linear relation of λ and μ when the stiffness is fixed.  

 

Load factor 𝜆2
2 can have any values close to but different from 𝜆2

1. In the practical application, 

𝜆2
2 is defined as 𝜆2

1 over μ𝑛+1
2 . The value of the utilisation function  should be 1, therefore, 

 

1 = μ𝑛+1
4 = 𝐶0 + 𝐶1(∆𝐸) + 𝐶2𝜆2

3    (16) 

from which 𝜆2
3 can be solved. 

𝜆2
3 =  𝜆2

1 (2μ𝑛+1
2 −1−μ𝑛+1

2 μ𝑛+1
3 )

μ𝑛+1
2 (μ𝑛+1

3 −μ𝑛+1
2 )

     (17) 

 

For a strongly non-linear situation, parameter p is defined as an adjustment value which 

varies depending on μ to render |μ-1| smaller than r. Actually, p is smaller than 1 when μ is 

larger than 1, and vice versa. Eq. (17) is in fact scaling the load level to the level at which the 

most loaded element is loaded to just its strength, which is typical for SLA. Figure 4 shows 

the program structure diagram for Load scaling control. 

 

In this paper, this method is called damage control method because Young’s modulus of just 

the critical element is once reduced and further remains unchanged during load factor 

adjustment iterations. Like in SLA, only one element is damaged in every load step of the 

damage control method.  
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Figure 4: Program structure diagram of the damage control method in Load scaling control  

Figure 5 shows the restart procedure of the implicit algorithm. Important is saving and 

loading of the structure state. Only when |μ-1| is smaller than r the structure state will be 

saved and overwritten. Consequently, the analysis is restarted with the structure state of the 

last cycle of the previous load step. Without the restart command the algorithm would 

continue with the structure state of the previous cycle of the current load step, which would 

be incorrect. This restart procedure ensures that every load step’s calculation is based on the 

correct structure state and stiffness of just the critical element. 
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Figure 5. Restart procedure of the algorithm  

2.2.2 Load and damage control method 

 

Compared with SLA, the damage control method has more calculating cycles since several 

extra cycles are necessary (interpolation procedure) for every stiffness reduction to reach an 

equilibrium state. In order to improve the efficiency for the damage control method, the 

stiffness matrix is reduced rather than fixed during load factor adjustment iterations. 

Consequently, the total number of cycles still equals the number of the stiffness reductions. 

In other words, the total number of cycles is not increased by the load factor scaling 

procedure. 

 

To this end Eq. 11 and 12 are adjusted. The stiffness matrix is being reduced during the 

iterations rather than being reduced only once and then fixed. 

 

If μ is larger than 1, then restart from μn 

 

μ𝑛+1
3 = μ(𝜆1, 𝜆2

2, 𝐾𝑛+1
2 )     (18) 

 

If μ is still larger than 1, then restart from μn until 

 

μ𝑛+1
𝑚+1 = μ(𝜆1, 𝜆2

𝑚, 𝐾𝑛+1
m ) ≤ 1    (19) 

where 𝜆2
𝑚 is a reduced 𝜆2

𝑚−1 based on a constant reduction q or a function 𝑞(𝜇). 

 

The program structure diagram is shown in Figure 6. Figure 7 shows the algorithm path of 

the Damage control method and the Load and damage control method for applying a force 

load. F and U represent the force vector and displacement vector. The blue line is the target 

curve. The green dotted lines present the load steps. The red dashed lines indicate the reduced 

stiffness based on the stiffness reduction. The black solid arrow lines are the procedure paths 

for every cycle. The pink solid arrow lines are the output paths for all the cycles in one load 

step. The solid dots are the equilibrium states while the open dots are the temporary trial 

states. It is noted that the paths of the black dashed lines result from the internal force change 

along with the stiffness reduction. The N-R procedure has been performed to update the 

internal force based on the current displacements and the reduced stiffness. 
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Figure 6. Program structure diagram of Load and damage control method in Load scaling control 

 

  
a. Damage control method   b. Load and damage control method 

Figure 7 Searching path of Load scaling control 

 

To summarize, if the incremental load is prescribed in load steps, it is referred to as the Load 

control method. Here load can be both a prescribed force load increment or a prescribed 

displacement load increment. If the incremental load is scaled based on the reduced stiffness, 

it is referred to as the Load and damage control method. The latter is especially suitable in 

case the problem cannot be handled in displacement control for obtaining post-peak behavior. 

In addition, there is a third algorithm called the Damage control method. Here, the stiffness is 

only reduced once in the first cycle no matter how many cycles the load step has. Since the 

stiffness remains unchanged after the first cycle, the scaling procedure follows a linear 

interpolation procedure to search for the suitable load factors. It is quite similar to SLA in 

that the algorithm reaches an equilibrium state for every damage step and the load factors are 

governed by the utilization value. But the difference is that in ISLA every equilibrium state 
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search starts from the equilibrium state of the previous “load step”, which indeed is the 

previous damage step, instead of restarting from the origin in the total scheme of SLA. 

However, in the Load and damage control method the stiffness is continued to be reduced 

every cycle. So, the number of stiffness reductions is the same as that of the cycles in the load 

step. 

 

3. Highly prestressed beam test 

In [29], the principle, algorithms and search paths of incremental sequentially linear analysis 

has been demonstrated for the case of proportional loading of a simply supported notched 

beam. In that publication, the effectiveness of the scheme with cycles has been illustrated in 

detail for a number of typical prescribed load steps. Plots of the number of cycles per load 

step, element criticality and stress-strain jumps illustrate the searching path. 

 

The example in the present section focuses on the robustness of this method for non-

proportional loading. To this end, the beam mentioned before [29] has been re-used without a 

notch and subjected to the combination of a horizontal prestress P at both ends of the beam 

and a vertical load L at the top, as illustrated in Figure 8. This beam is adapted from 

Hordijk’s experiment in 1981 [30]. It has also been used in [16] [17]. P is applied as a stress 

of 1, 5 or 10 MPa over the total area of the beam ends instead of 1 MPa as used before [16] 

[17]. L is applied as two point loads up to and beyond the peak, which increase to failure and 

reduce afterwards. No reinforcement is applied.  

 

 
Figure 8. Test model dimension and load combination 

3.1 Material properties and modified material model  

This case considers softening for tension. The concrete properties are E = 32000 MPa, 

Poisson’s ratio = 0.2, tensile strength ft= 3 MPa, fracture energy Gf = 0.06 N/mm. The 

compressive behaviour is elastic. Eq. 18 is used to determine the ultimate strain to consider 

mesh size dependency (Figure 9).  

𝐺f =
𝑓𝑡𝜀𝑢ℎ

2
      (18) 

where h is the element size and 𝜀𝑢is the strain at which the concrete is completely fractured. 

This paper does not consider mesh directional dependency. Mesh directional bias has been 

studied in [31][32][33]. Possible solutions include non-local damage models [34][35], the 

strong discontinuity approaches [36][37] and the extended finite element method [38][39]. 

Figure 10 shows the analysis cycles when Young’s modulus is sequentially reduced to 50% 

of the previous value (The virtual strength is 4.22 MPa). In this paper a reduction factor of 90% 

has been used. This has not been displayed here because it would produce an unclear picture. 



 13 

 
Figure 9. Material properties of concrete 

(tension softening) 

 

 
Figure 10. Stiffness reduction procedure: 

sequentially reduced stiffness to 50% of the 

previous value 

3.2 FEM model in ABAQUS and ANSYS 

The analyses have been performed by 1) Standard N-R with force control in ABAQUS, 2) 

Standard N-R with arc length control in ABAQUS, 3) SLA in ANSYS [8] and 4) the proposed 

method in ANSYS. The same material properties, element sizes (5 mm) and structural model 

have been used in all analyses (Figure 8). In ANSYS the rotating smeared crack model is used. 

In ABAQUS the concrete damaged plasticity model is used to simulate concrete behaviour. 

The parameters inputted for this model are: dilation angle is 30
。
, eccentricity is 0.1, fb0/fc0 = 

1.16, K = 0.667, and viscosity parameter is 0 [40].  

The plane element used in ABAQUS is CPS8R, which is an 8-node biquadratic plane stress 

quadrilateral with reduced integration. The plane element used in ANSYS is PLANE183. It is 

a higher order 2-D, 8-node element. The integration point scheme for both element types is 2x2 

Gauss. 

Figure 11 shows the colour range of the maximum principal strain contours.  

 
Figure 11. Contour color range 

 

3.2 Comparison for 1 MPa prestress 

The original 1 MPa prestress [16] [17] is applied for comparison. Figure 12 indicates that the 

proposed method and SLA deliver almost the same force-displacement diagram. Moreover, 

one crack is localized and propagates to the top of the beam for both methods shown in 

Figure 13 and Figure 14. Actually, the plateau of the curve can continue to extend to more 

than 10 mm. These two methods produce almost identical results for the 1 MPa prestress test. 

Both of them have no divergence issues. 
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Figure 12 Reaction force-displacement diagrams for the 1 MPa prestress test 

 
Figure 13 Maximum principal strain contour when the midspan displacement is 0.3 mm by the 

proposed method for the 1 MPa prestress test 

 
Figure 14 Maximum principal strain contour when the midspan displacement is 0.3 mm by SLA for 

the 1 MPa prestress test 

3.3 Comparison for 5 MPa prestress 

Figure 15 shows the force displacement diagrams for 5 MPa prestress of ISLA, N-R and SLA 

with marked deviation points of SLA and N-R. The SLA analysis stops at a displacement of 

1.8 mm while ISLA can continue up to 2.2 mm and further. The cracks have already 

propagated to the top of the beam at the displacement of 2.2 mm in ISLA. Hence the ISLA 

results beyond this point are not shown. The diagram of SLA is quite similar, but the N-R 

method fails earlier. The reason for the SLA algorithm to stop at 1.8 mm displacement is 

explained here. Initially, the constant-load factor v can be adjusted to almost equal to the 

varying-load factor λ as shown in Figure 16. However, after 1.8 mm displacement the 

constant-load factor v cannot be adjusted to equal the live load factor λ as shown in Figure 

17. It appears that the algorithm of non-proportional loading in SLA [16] as well as [17] is 

only suitable for weakly non-linear situations.  
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Figure 15. Reaction force-displacement diagrams for the 5 MPa prestress test 

 

Figure 16. Prestress adjusting ratio for the SLA analysis: The first 100 cycles are shown as an 

example of convergence to the correct value.  

 

Figure 17. Prestress adjusting ratio  for the SLA analysis: 41 cycles are shown. All shown cycles 

fail to convergence. ( The peak has no particular meaning.) 

 

Figure 18 shows the crack propagation calculated by the proposed method, at 5 stages, which 

are marked in Figure 15. Initially, symmetrical ductile cracks occur at the bottom of the beam 

and the maximum principal strain of two symmetrical critical elements go into the green zone 

in Figure 18a. At this moment, the displacement-reaction force diagram meets the end point 
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of the initial slope. Afterwards, the right critical crack propagates much faster than the left 

one until the displacement-reaction force diagram reaches the first peak shown in Figure 18b. 

After that, the displacement-reaction force diagram drops a little and then rises to a second 

peak when the left critical crack catches up with the right one in Figure 18c. Then the 

development of the left critical crack even surpasses the right one in Figure 18d. Finally, the 

main cracks bifurcate, with branch cracks forming and extending to the top of the beam in 

Figure 18e. There is no further damage due to the elastic compressive capacity. Similar crack 

propagation is obtained by SLA, for which the final crack pattern is shown in Figure 19. The 

spacing of cracks is governed by the positions of the critical elements which have the largest 

ratio of the maximum principal stress versus strength in a cycle. Initially multiple elements 

can be critical and cracks start in a distributed manner, but eventually only two dominant 

cracks survive while other elements are unloaded. It is an advantage of SLA and ISLA to 

handle bifurcations properly. For a four-point loaded beam, two dominant cracks are 

underneath the loading positions. 

 
18a      18b 

 
18c      18d 

 
18e 

Figure 18. Maximum principal strain contours of crack propagation by the proposed method for the 5 

MPa prestress test 

 
Figure 19. Maximum principal strain contour of final crack pattern by SLA for the 5 MPa prestress 

test 

Figure 15 shows that the reaction force-displacement diagrams of the ABAQUS N-R analysis 

can only reach the end point of the initial slope although the structure almost has hardening 

behaviour. The value of initial slope is the same for SLA and the proposed method. The crack 

pattern is also similar but has fewer cracks (Figure 20). 
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Figure 20. Maximum principal strain contour of final crack pattern by N-R force control analysis for 

the 5 MPa prestress test 

Only extremely small load steps (1e-7 at the end) with arc-length control can find the 

hardening part of the reaction force-displacement diagram shown in Figure 15. The first peak 

is lower than SLA and the proposed method, nevertheless they align well after the second 

peak. After that they both have a similar hardening slope. As shown in Figure 21, the ultimate 

crack pattern is similar to that of the proposed method and SLA while it has less cracks at the 

end point of the initial slope and the first peak, which results in lower capacity than SLA and 

the new method. 

 

 
21a     21b 

 
21c 

Figure 21. Maximum principal strain contours of the crack propagation of the N-R arc length control 

analysis for the 5 MPa prestress  

3.4 Comparison for 10 MPa prestress 

Figure 22 shows the reaction force-displacement diagrams for 10 MPa prestress of SLA and 

the proposed method with marked deviation points of SLA and N-R. They overlap in the 

beginning of the curves. SLA fails to continue earlier than the 5 MPa prestress test and does 

not reach the final hardening slope. N-R arc length even diverges before N-R force control. 

 

Figure 23and Figure 24 show the crack patterns for the proposed method and for SLA, which 

are marked in Figure 22. In SLA, the numerical procedure stops at the stage of two major 

symmetrical cracks. The proposed method continues and also shows the formation of branch 

cracks. The main difference with the crack development in the 5 MPa prestress test is that 

two dominant cracks develop simultaneously. It is because the higher prestress has a higher 

effect in preventing cracks to propagate to the top of the beam. 
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Figure 22. Reaction force-displacement diagram for the 10 MPa prestress 

 

 
Figure 23. Maximum principal strain contour of the final crack pattern of SLA for the 10 MPa 

prestress  

 
24a      24b 

 
24c      24d 

 
24e 

Figure 24. Maximum principal strain contours of the crack propagation of the proposed method for 

the 10 MPa prestress  

The reaction force-displacement diagram of the Newton-Raphson method with force control 

has a good agreement with SLA and the proposed method from the initial slope to the final 

hardening slope (Figure 22). The hardening behaviour can be obtained without arc length 
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method. Figure 25 also shows symmetrical crack development in N-R force control even 

until the branch crack moment whereas the proposed method has random branch cracks. 

 

   
25a      25b 

 
25c 

Figure 25. Maximum principal strain contours of the crack propagation by N-R force control for the 

10 MPa prestress 

Figure 26 shows numbers of cycles of every load step in ISLA. For the 5 MPa prestress test, 

the total number of cycles of ISLA is 13047 while that of SLA before divergence is 20688. 

The total number of increments for the N-R arc length control is 258958. The very small arc 

length has to be employed in order to reach convergence, while each increment has several 

iterations. The maximum number of cycles of a load step in ISLA is 23. For the 10 MPa 

prestress test, the total number of cycles of ISLA is 18936 while that of SLA before 

divergence is 7519. The total number of cycles of SLA for 10 MPa prestress test is smaller 

than that of ISLA is because SLA diverges very early. The maximum number of cycles of a 

load step in ISLA is 21. From these numbers it is clear that ISLA used the lowest number of 

computation steps. Nevertheless, it is recommended to further improve the efficiency of 

ISLA by reducing the number of cycles. 

 

 
26a 5 MPa prestress test    26b 10 MPa prestress test 

Figure 26. Numbers of cycles of every load step in ISLA 

 

The strength limit of the beams can be calculated by hand from equilibrium. This is due to 

the linear elastic compression zone. The limit strength of the total reaction force is 

𝐹 = 𝑃
ℎ−𝑑

𝑎
, 

 

where P is the prestressing force (uniformly applied), h is the beam depth, d is the element 

size (4-node element with 1 integration point) and a is the horizontal distance between a load 

and a support reaction. The limit strength with 5 MPa prestress is 15.8 kN; The limit strength 

with 10 MPa prestress is 31.6 kN, which are in a good agreement with the computational 

results. 
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4. Physical and geometrical non-linear analysis test 

 

ISLA is an incremental procedure. Therefore, geometrically non-linear effects can be 

naturally included in ISLA. When geometrically non-linear effects are considered, the B 

matrix and geometrical non-linear matrix (which is related to internal forces) are 

implemented and updated by the Lagrange method. Only the material matrix is updated by 

ISLA. 

 

TUD-COMP-0b is a quasi-static one-way out-of-plane tests administered by TU-Delft [41]. 

This specimen was a single-wythe wall constructed of calcium silicate units 102 mm thick. It 

was 1.4 metres long and 2.75 metres high. The wall is subjected to a constant overburden 

load of 0.2 MPa and is subsequently subjected to a uniform face pressure load via airbags. 

The wall is fully clamped at its base. For the top boundary, the horizontal in-plane and out-

of-plane translations are fixed, as well as all rotations, but the top boundary is free to displace 

vertically. The two side supports are free. The FEM model is shown in Figure 27. 

 

The one-way bending gives a crack at top and bottom and in the middle of the wall This leads 

to a three-hinged mechanism where the geometrically non-linear effect governs post-peak 

softening behaviour.  

 

4.1 Modelling approach 

 

Table 1 depicts model information. The analyses have been performed by 1) Geometrically 

linear and physically non-linear arc length control analysis in ABAQUS, 2) Geometrically 

and physically non-linear arc length control analysis in ABAQUS, 3) Geometrically linear 

and physically non-linear SLA in ANSYS and 4) Geometrically and physically non-linear 

ISLA in ANSYS. 

 

The same material properties, element sizes (0.1m x 0.1m) and structural model have been 

used in all analyses. To simulate the loading frame, two 2.4 m beams are tied to the top and 

bottom of the wall respectively with 6 DOFs. At phase one, 30 kN line load corresponding to 

0.2 MPa overburden is applied at the top beam in Y direction. Then at phase two, lateral 

pressure is applied at the whole wall.  
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Figure 27 FEM model 

 

Table 1. Model loading, geometry, material properties and boundary conditions 

 

Loading       

Dead load Self-weight     

Overburden 0.2 MPa   

Estimated lateral pressure 4000 kPa   

Geometry  Value   Description 

wbr = 0.214 m Horizontal dimension of bricks 

hbr = 0.071 m Vertical dimension of bricks 

tbr = 0.102 m Brick thickness 

L = 1.4 m Length of wall   

H = 2.75 m Height of wall/building 

Steel material properties Value   Description 

E = 2.1x1011 N/m2 Steel Young’s modulus 

ν = 0.3   Poisson’s ratio 

Masonry material properties Value   Description 

ρ = 1800 kg/m3 Mass density 

E = 3.5x109 N/m2 Masonry Young’s modulus 

ν  = 0.21   Poisson’s ratio 

ft = 1.5x105 N/m2 Masonry tensile strength 

Gf = 15 N/m Fracture energy for tensile failure 

Boundary conditions Description     

Base Clamped     

Top ·      In- and out-of-plane translation fixed. Free to displace vertically  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  ·      Rotation fixed in all directions    

4.2 Test results 

 

Figure 28 shows the midspan displacement versus base shear force diagrams for 1) 

Geometrically and physically non-linear ISLA, 2) Geometrically linear and physically non-

linear SLA, 3) Geometrically linear and physically non-linear Newton–Raphson method and 

4) Geometrically and physically non-linear Newton–Raphson method. The deviation points 

of N-R and SLA are marked in the figure. It can be observed that the peak capacities meet 

well for these four analyses. However, the geometrically non-linear effect governs post-peak 

softening behaviour. Both geometrical linear analyses from SLA and Newton–Raphson 

method have a hardening behaviour after the peak. For all three methods, the total load meets 

the peak 10 kN at 2.6 mm and the peak plateau keeps stable until the displacement is 5.6 mm. 

Then the total load drops below 8 kN when the midspan displacement increases to 9 mm. 

Then, the total load becomes almost zero when the ultimate displacement is approximately 

100 mm (98 mm). 

 

 
Figure 28. Midspan displacement-force curves for comparison of geometrical linear and non-linear 

effects 

 

5. Discussion 

 

The new algorithm extends sequentially linear analysis to classical non-linear implicit 

analysis with Newton-Raphson iterations. The name we propose for this solution method is 

incremental sequentially linear analysis (ISLA): the words “sequentially” and “linear” refer 

to the established sequentially linear analysis from which the method is derived; the word 

incremental refers to the incremental procedure. 

 

Indeed, an implicit scheme is chosen in this paper. However, an explicit scheme can also be 

used in the algorithm. The main difference would be that the algorithm does not restart from 

the previous equilibrium state to update incremental displacements. 
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In the load control method, every load step can contain one increase or decrease of the load 

and several reductions of Young’s modulus of various elements. In the damage control 

method, every load step can contain one reduction of Young’s modulus and several changes 

of the load. In the load and damage control method, every load step can contain several 

changes of the load and several reductions of Young’s modulus of various elements. Table 2 

shows the differences of these methods. 

 

Table 2. Changes in load and Young’s modulus within one load step 

 

ISLA Load Young’s modulus 

Load control method Once increased or decreased 

(prescribed loading) 

Several reductions for 

one or more critical 

elements  

Damage control method Once increased and then several 

changes (scaled loading) 

One reduction for one  

critical element  

Load and damage control 

method 

Once increased and then several 

changes (scaled loading) 

Several reductions for 

one or more critical 

elements  

 

For the imposed displacement loads, it is recommended to use the load control method. For 

the force loads, this method can be used too but the post peak response cannot be obtained. 

The damage control method can be used to determine the post peak behaviour and snap back 

behaviour of structures. The load and damage control method is much faster than the damage 

cycle method. It is also robust and it provides the same results. Based on efficiency, the load 

control method and the load and damage control method are suggested for large structures. 

 

6. Comparison of SLA and ISLA 

 

Sequentially linear analysis (SLA) and incremental sequentially linear analysis (ISLA) have 

several features in common. Young’s modulus of the material around a critical integration 

point is reduced. The critical integration point is defined as the point with the largest 

utilisation factor. The load is adjusted to make the largest utilisation factor equal to one. In 

other words, all integration points pass the utilisation factor check. 

 

On the other hand, there are also differences between SLA and ISLA, which are shown in 

Table 3. 

 

Table 3. Differences between SLA and ISLA 

 

 

 

 

SLA 
ISLA 

proportional loading non-proportional loading [17] 

unit load is mapped back 

linearly 
load factor is solved in 3 cycles 

load factor is incremented or 

decremented 

displacements are not saved displacements are saved 

one linear elastic analysis  

in each load step 

several linear elastic analyses  

in each load step 

several nonlinear analyses in 

each load step 
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7. Conclusions 

 

This paper proposes the incremental sequentially linear analysis (ISLA). This method is 

incremental; each increment starts and ends with an equilibrium state. The solution search 

path follows damage cycles sequentially with secant stiffness. 

 The proposed method has a similar high robustness as SLA. It is also user friendly 

without mapping back procedure in SLA. In addition, it produces smooth curves like 

[9] instead of the usual jumpy curves of SLA. 

 The searching path of ISLA is based on physical parameters (damage history and 

displacement history) instead of numerical parameters in other methods. The 

equilibrium state is updated based on stiffness reductions of critical elements and load 

increments. The damage is also introduced to the structure correctly at the 

corresponding displacements. 

 The proposed method can be easily implemented in commercial software. The results 

are reproducible. The algorithm does not switch between methods and therefore does 

not depend on the value of switch parameters. 

 Non-proportional loading can be analysed without modifications. There is no 

restriction on the load definition; load cases can be applied and removed 

simultaneously or separately. 

 The method is an incremental procedure and can be naturally extended to 

geometrically non-linear analysis and transient analysis.  

 Non-proportional SLA as proposed in reference [17] does not converge for high 

prestressing values on the specimens analysed in this paper. Currently, it is not clear 

whether regular SLA can be expected to solve this. ISLA on the other hand does 

converge. 

 Large prestressing values prevent softening of the force-displacement relation while 

the stress-strain relation does soften. 

 The proposed method cracks grow one after the other intermittently, whereas the 

cracks grow simultaneously in the non-linear Newton-Raphson method with arc 

length control. 

 The bending cracks in the specimens branch into multiple cracks. For accurate 

computation of the crack branches the Newton–Raphson method with arc length 

control needs a very small step size and a lot of computation time. The proposed 

method also need much computation time but is still faster than the Newton–
Raphson method with arc length control. 

 The point at which the bending cracks branch into multiple cracks is higher for 5 MPa 

prestressing than for 10 MPa prestressing. For even higher prestressing values the 

crack branching starts directly at crack initiation. On the other hand, for low 

prestressing values like in reference [17] this point is higher than the beam height, 

which results in no branch cracks and a softening force-displacement curve. 

 

REFERENCES 

[1] R.D. Borst, M.A. Crisfield, J.J.C. Remmers, and C. V. Verhoosel. Nonlinear finite 

element analysis of solids and structures. John Wiley & Sons, 2012. 

[2] G.A.Wempner, Discrete approximations related to nonlinear theories of solids, 

International Journal of Solids and Structures 7, 1581 (1971). 



 25 

[3] E. Riks, An incremental approach to the solution of snapping and buckling problems, 

International Journal of Solids and Structures 15, 529 (1979). 

[4] E.Ramm, Strategies for tracing the nonlinear response near limit points, Nonlinear finite 

element analysis in structural mechanics (Springer, 1981) pp. 63–89. 

[5] T. Pohl, E. Ramm and M. Bischoff, Adaptive path following schemes for problems with 

softening, Finite Elements in Analysis and Design 86, 12 (2014). 

[6] C. V. Verhoosel, J. J. Remmers and M. A. Gutiérrez, A dissipation-based arc-length 

method for robust simulation of brittle and ductile failure, International Journal for 

Numerical Methods in Engineering 77, 1290 (2009). 

[7] J. Oliver, A. Huespe, S. Blanco, and D. Linero, Stability and robustness issues in 

numerical modeling of material failure with the strong discontinuity approach, Computer 

Methods in Applied Mechanics and Engineering 195, 7093 (2006). 

[8] J. Oliver, A. Huespe, and J. Cante, An implicit/explicit integration scheme to in- crease 

computability of non-linear material and contact/friction problems, Computer Methods in 

Applied Mechanics and Engineering 197, 1865 (2008).  

[9] W.Alnaas, Nonlinear finite element analysis of quasi-brittle materials, Ph.D. thesis, 

Cardiff University (2016). 

[10] P. Ladevèze. Nonlinear computational structural mechanics: new approaches and non-

incremental methods of calculation. Springer Science & Business Media, 2012. 

[11] Y. F. Gao and A. F. Bower, A simple technique for avoiding convergence problems in 

finite element simulations of crack nucleation and growth on cohesive interfaces, Modelling 

and Simulation in Materials Science and Engineering 12(3), 453 (2004). 

[12] J.G. Rots. Sequentially linear continuum model for concrete fracture. Fracture 

Mechanics of Concrete Structures, 13, 2001. 

[13] J.G. Rots, B. Belletti, and S. Invernizzi. Robust modeling of rc structures with an “event-

by-event” strategy. Engineering Fracture Mechanics, 75(3):590–614, 2008. 

[14] J.G. Rots and S. Invernizzi. Regularized sequentially linear saw- tooth softening model. 

International Journal for Numerical and Analytical Methods in Geomechanics, 28(7-8):821–

856, 2004. 

[15] A.T. Slobbe, M.A.N. Hendriks, and J.G. Rots. Sequentially linear analysis of shear 

critical reinforced concrete beams without shear reinforcement. Finite Elements in Analysis 

and Design, 50:108–124, 2012 

[16] M.J. DeJong, M.A.N. Hendriks, J.G. Rots. Sequentially linear analysis of fracture under 

non-proportional loading. Engineering Fracture Mechanics 75 (2008) 5042–5056 

[17] Chenjie Yu, P.C.J. Hoogenboom, J.G. Rots, Algorithm for non-proportional loading in 

sequentially linear analysis. 9th International Conference on Fracture Mechanics of Concrete 

and Concrete Structures, UC Berkeley, 2016 

[18] A. Graaf, Sequentially linear analysis for simulating brittle failure, PhD Dissertation, 

Delft University of Technology, ISBN 978-94-6186-799-5 

[19] G. Giardina, A. Graaf, M.A.N. Hendriks, J. G. Rots, and A. Marini. Numerical analysis 
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