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A B S T R A C T

Finding the hidden parameters of the cardiac electrophysiological model would help to gain more insight on the
mechanisms underlying atrial fibrillation, and subsequently, facilitate the diagnosis and treatment of the disease
in later stages. In this work, we aim to estimate tissue conductivity from recorded electrograms as an indication
of tissue (mal)functioning. To do so, we first develop a simple but effective forward model to replace the
computationally intensive reaction-diffusion equations governing the electrical propagation in tissue. Using the
simplified model, we present a compact matrix model for electrograms based on conductivity. Subsequently, we
exploit the simplicity of the compact model to solve the ill-posed inverse problem of estimating tissue con-
ductivity. The algorithm is demonstrated on simulated data as well as on clinically recorded data. The results
show that the model allows to efficiently estimate the conductivity map. In addition, based on the estimated
conductivity, realistic electrograms can be regenerated demonstrating the validity of the model.

1. Introduction

Atrial fibrillation (AF) is a common age-related cardiac arrhythmia
characterized by rapid and irregular electrical activity of the atria. In
Europe, 1–3% of the population (more specifically elderly) suffer from
AF. These patients have five times higher risk of strokes, especially is-
chemic stroke with higher death rate or worse prognosis at higher cost
[1]. The development and progression of AF is rooted in impaired
electrical conduction and structural damage of atrial tissue, known as
electropathology. Electrograms recorded during surgery or high-re-
solution mappings of the entire atria can help to localize and quantify
the degree of electropathology and to stage AF [2,3]. However, the
analysis of the electrograms is currently constrained by the lack of
suitable methods that can reveal the hidden electrophysiological
parameters of the tissue. These parameters can be used as local in-
dication of electropathology in the tissue. The lack of such methods also
limits the success rate of some AF therapies, e.g., electrogram-based
ablation that targets areas with complex fractionated electrograms. This
happens due to the inhomogeneity and complexity in defining fractio-
nation and its relation to pathological causes in tissue [4].

Currently, cardiologists mostly analyze the electrical propagation
and electropathology based on local activation times (ATs) and local
conduction velocities (CVs), defined as the distance traveled by the
depolarization wavefront in a unit of time. However, the interpretation

of these propagations, due to the interaction of many parameters, is
quite complex, needs expert intervention and is time varying (from
beat-to-beat during AF). The changes in conduction velocities may have
multiple causes of both pathologic and non-pathologic origin; even
pathological causes might not be local and might origin from a different
area in the atrium. For example, in a two-dimensional (2D) isotropic
and homogeneous tissue, the changes in the propagation velocity from
the steady state velocity (for flat wavefront propagation) has a linear
relationship with the local curvature [5]. In general, concave wave-
fronts propagate faster than convex wavefronts without having any
pathological causes. CV restitution is another example that influences
propagation velocity without indicating electropathology. Using the CV
restitution, it has been shown that CV is rate-dependent and typically
decreases for shorter inter-beat intervals [6].

The electrical propagation in tissue is governed by electro-
physiological models and is directly connected to its underlying para-
meters. Particularly, the propagation is correlated to the tissue in-
tracellular conductivity. It plays an important role in the underlying
dynamics and functional connections in the tissue as a mechanism of
inter-cellular communication. The estimation of these hidden para-
meters can be essential in the diagnosis and staging of the disease.
Moreover, the developed physiological models can potentially be used
for testing and determining appropriate treatments, e.g., guiding the
electrogram based ablation therapies. Unlike CV, analyzing tissue
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conductivity does not require expert intervention and it can be corre-
lated to local electropathology. As an example, it has been shown in
previous studies [7,8] that one way to represent fibrosis (as the hall-
mark of electropathology and AF progression) in computer models of
AF is via slow conductivities. Despite the beneficial effect of con-
ductivity in analyzing electropathology, the complexity of the electro-
physiological models makes its estimation challenging and not practical
in clinical settings.

Realistic computer electrophysiological models of electrograms
during sinus rhythm (SR) and AF have been developed in Refs. [9–11].
The results show that an analysis of the morphology of a single elec-
trogram can provide useful information about the substrate maintaining
AF. This detailed model is very useful for analyzing the effect of tissue
properties like anisotropy and heterogeneity on the resulting electro-
grams. However, using this model in the inverse problem of extracting
tissue properties from electrograms is nearly impossible due to the large
number of parameters that need to be estimated. In another study [12],
the tissue conductivity map is directly estimated from per cell action
potentials (APs) recorded by high resolution micro-electrode arrays,
which is not practical for living human tissue. In Refs. [13,14], a quite
different approach was used based on Eikonal equations to approxi-
mately model the cells’ activation times, based on the apparent con-
ductivity while ignoring all the microscopic details of the process, in-
cluding per cell potentials and electrograms.

Our hypothesis is that understanding atrial fibrillation and im-
proving AF therapy starts by developing a proper forward model that is
accurate enough (from a physiological point of view) and simulta-
neously simple enough to allow for subsequent parameter estimation.
Thus, the main focus of this paper is on developing a simplified forward
model that can efficiently explain the observed electrogram mor-
phology based on the tissue conductivity. Using a parsimonious para-
metrization, this model can then be used in the inverse problem of
estimating tissue conductivity as an indicator of electrophysiology.

The remainder of this paper is organized as follows. In Section 2 we
present the electrophysiological models that describe the electrical
propagation and electrogram generation in cardiac tissue. Next, we
introduce a simplified matrix model for the electrogram, formulated in
terms of two parameter vectors: the activation times and the tissue
conductivity map. In Section 3 we formulate the inverse problem of
conductivity estimation and present initial algorithms for solving the
problem. In Section 4 we demonstrate the performance of our proposed
approach on simulated data and compare its results with two other
reference approaches. In Section 5 we apply these algorithms to clini-
cally recorded data, and demonstrate their effectiveness in the analysis
of real data. We conclude in Section 6, and discuss possible future di-
rections.

2. Electrogram model

2.1. Action potential propagation model

In this study we use the generalized cable theory or the mono-
domain approach [9] to model the electrical propagation in atrial
tissue. In this approach the tissue is discretized on a two (or three)
dimensional grid and the electrical propagation (from cell to cell) is
governed by a reaction-diffusion equation. Let V tx( , ) be the trans-
membrane potential of the cell at location x and time instance t, then
the capacitive current through the cell membrane is given by C V t/ ,
with =C 1 µFcm 2 the total membrane capacitance. The reaction-dif-
fusion equation models the membrane current as a function of three
currents,

= +C V t
t

I t I t I t Vx x x x( , ) ( , ) ( , ) ( , , ),tm st ion (1)

where Ist is the external stimulus current, Iion is the total ionic current
based on the Courtemanche model in Ref. [15], and I tx( , )tm is the cell

transmembrane current per unit area that accounts for the spatial
evolution (diffusion) of the transmembrane potential. It is given by

=I t S V tx x x( , ) ( ) ( , ),vtm
1 (2)

where =S 0.24µmv
1 is the cellular surface to volume ratio, and x( ) is

a location-dependent intracellular conductivity tensor. Eq. (1) can be
discretized and solved with no flux boundary conditions, using various
approaches including a finite difference method (FDM) for regular
rectangular meshes, or using a finite element method (FEM) or finite
volume method (FVM) for irregular triangular meshes and curved
surfaces.

2.2. Electrogram model

An electrogram is a record of changes in the electrical potential of
the (many) cells in the neighborhood of an electrode that is positioned
on the heart surface, denoted by ty( , ), where y is the location vector
of the electrode. The electrogram can be modeled using a current source
approximation for a large volume conductor. For a 2D tissue where the
modeled cells are located within the area A0, the electrogram model is
[9].

=t I t Ay x
y x

x( , ) 1
4

( , ) d ( ),
e A

tm
0 (3)

where A x( ) is the area variable, e is the constant extra-cellular con-
ductivity, and I tx( , )tm is the trans-membrane current per unit area as
defined in Eq. (2).

To model the measurement process, we develop a space-discretized
representation of Eq. (3) for an electrode array. Consider an array
of M electrodes, and let ym be the location of an electrode with index

…m M{1,2, , }. Also let xn denote a l by l discretization of x with
=a l( )2 the area of each element of the grid and n the index of an

element (modeled cell) in the grid. The space-discretized representation
of Eq. (3) on a two-dimensional gridded tissue is

=
=

t
N I t

r
ax( ) 1

4
( , )

m
e n

n

m n1

tm

, (4)

where t ty( ) ( , )m m . In Eq. (4), rm n, denotes the distance between
the electrode with index m and the cell with index …n N{1,2, , } where

= ×N r cc c is the total number of modeled cells or the elements of the
grid with rc rows and cc columns. We will assume that the electrodes are
also located on a 2D grid parallel to the tissue surface at a height that
equals z0 (we set =z 1 mm0 in the simulations). If we neglect for
simplicity the electrode diameter,1 we can write

= +r zy xm n m n,
2

0
2 (5)

and we define = …r r rr [1/ , 1/ , ,1/ ]m m m m N
T

,1 ,2 , to contain the inverse of
the distances of all cells to electrode m.

A space-discretized representation of all per cell transmembrane
currents in Eq. (2) is then given by

=
= + + +

I t S V t
S

x( , ) ( )
( ( ) ( ) ( ) ( ))

n v n n

v x xx n
V
x x xy n

V
y y yx n

V
x y yy n

V
y

tm
1

1
, , , ,

n n n n

(6)

where x( )n n and V t V tx( , ) ( )n n . By stacking all per cell poten-
tials at time instance t in a vector = …t V t V tv( ) [ ( ), , ( )]N

T
1 and likewise

for the currents = …t I t I ti ( ) [ ( ), , ( )]N
T

tm tm,1 tm, , Eq. (6) can be expressed in
a space-discretized vector form as

=t S ti D v( ) ( ) .vtm
1 (7)

1 Although generally the electrode diameter needs to be considered, our si-
mulation has a relatively large spatial step size l, while the electrode diameter
is smaller than l.
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The linear operator D in this equation equals

= + + +D D D D D D D D Ddiag( ) diag( ) diag( ) diag( ) ,x xx x x xy y y yx x y yy y

(8)

where diag( ) is a diagonal matrix with its diagonal entries from the
argument vector, and xx , xy, yx and yy are vectors stacking the cor-
responding conductivities of all cells. As an example,

= …[ , , , ]xx xx xx xx N
T

,1 ,2 , . Matrices Dx and Dy are respectively the first-
order discrete spatial derivative operators in the x and y directions,
where we can use a forward, backward, or central space difference
scheme.

By using Eq. (7), we can reformulate Eq. (4) as

=t k tr D v( ) ( ),m m
T (9)

where all constants are collected in =k a S(4 )e v
1. This equation

shows that each electrogram is a weighted sum of all per cell action
potentials, where the weights depend linearly on the inverse of cell
distances to the electrode and nonlinearly on their conductivities.

To develop the space-discretized matrix representation of Eq. (3),

we stack the M electrogram signals in a single vector
= …t t t( ) [ ( ), , ( )]M

T
1 . We also define an ×M N matrix R that con-

tains all the inverse distances from electrodes to cells,
= …R r r r[ , , , ]M

T
1 2 . Sampling over time, the linearized matrix re-

presentation of the electrogram array at all time instances can then be
written as

= k R D V, (10)

where = … T0 (1) ([ ( ), , , 1)] is an ×M T matrix containing all
the M resulting electrograms for all time instances, and matrix V con-
tains all the per cell action potentials.

2.3. Simplified electrogram model

Given an electrogram array , our aim is to estimate the con-
ductivity tensor from Eq. (10). Therefore, we first need to compute V
using Eq. (1). However, we propose to simplify the electrogram model
by skipping the transmembrane potential computation in Eq. (1), and
benefit from the observation that once activated, all cells produce al-
most the same stereotype AP, denoted by V t( )0 . A similar approach was
first employed by Spach et al. in Ref. [16] to reproduce experimental
electrograms using the activation times and a stereotype AP. Moreover,
the same concept was used by Franzone et al. [17] to model electro-
grams and look at tissue properties on more complex electrogram
morphologies. Both studies verify this assumption and show that it can
provide realistic electrograms. To demonstrate this hypothesis, as an
example, Fig. 1 shows all simulated action potentials in the 29th row of
the anisotropic tissue M3 in Fig. 2. This row includes an area with
slower conductivities. The APs have been aligned with respect to their
ATs. As can be seen, the depolarization phase of the simulated APs, that
are of importance in calculating electrograms, match reasonably with
each other. We will discuss the simulations in more details in Section 4.

With this assumption, our proposed simplified matrix representa-
tion of Eq. (10) can be written as

= k R D V , (11)

Fig. 1. Aligned simulated APs of the 29th row of the simulated tissue M3 whose
conductivity map and activation map are plotted in Fig. 2.

Fig. 2. Each row of the figure demonstrates a simulated tissue and its estimated parameters. First and second columns demonstrate the underlying model including
the true conductivity map and the true AM on the 2D tissue surface, respectively. In all cases the tissue is stimulated from the left bottom corner. The electrode
locations are indicated by *. The third to fifth columns demonstrates the estimated parameters including conductivity map estimated from the proposed CMM,
conductivity map estimated from the Eikonal diffusion equation, and the conduction velocity map, respectively.
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where the n j( , ) th entry of V equals = V jTV[ ] ( )n j s n, 0 , which is a
time shifted and sampled version ofV t( )0 , n is the activation time of cell
n, and Ts is the sampling period. This also assumes each cell is activated
only once (i.e., data contains a single beat). We will collect all activa-
tion times in a vector = …[ , , ]N

T
1 . The calculation of these delays and

their interrelations (e.g., direction and speed of propagation) are not
part of this model. This sparse parametrization of the model in terms of
and opens up new possibilities for parameter estimation (con-

ductivity) and further signal manipulations.

2.4. Compact matrix model for electrograms based on conductivity

To this end, we reformulate Eqs. (8) and (11) in the form of a
measurement equation that highlights the linear dependency on the
conductivity map. As a first step, the conductivity tensor can be written
as

= = A A
1 0
0 .n

xx n xy n

yx n yy n n n
n

n
T, ,

, , 2
(12)

The right-hand side of this equation represents an eigenvalue de-
composition of the conductivity tensor. The principal eigenvalue n
describes the conductivity in the main direction of the cell while n
defines the anisotropic ratio (for human atrial cells, n is of the order of
0.4 [13]). The columns of the orthonormal matrix An are the eigen-
vectors of the conductivity tensor and define the orientation of the cell
in the global coordinate system. An is parametrized by n, a rotation
angle that represents the fiber direction. The conductivity tensor can
thus be written as

= =K K, ,n n n n
n n
n n

,1 ,2
,3 ,4 (13)

where Kn is parametrized by two parameters, n and n.
The remaining parameters are then the per cell conductivities along

the main direction, i.e., n. Using a stacked vector notation for all cells
…n N{1, , } we obtain = …[ , , , ]N

T
1 2 . Using Eq. (13), Eq. (8) can be

written as

= +
+ +

D D D D D
D D D D

diag( )diag( ) diag( )diag( )
diag( )diag( ) diag( )diag( ) ,

x x x y

y x y y

1 2

3 4 (14)

where as an example = …[ , , , ]N
T

1 1,1 2,1 ,1 . We further use a property
of the Khatri-Rao product (column-wise Kronecker product) denoted by
, to write the vectorized form of Eq. (14) to express its linear de-
pendency on . The employed property is =B A x A x B( ) vec( diag( ) )T ,
where vec( ) stacks the columns of the argument matrix to form a
vector. The final vectorized version of Eq. (14) is

=Dvec( ) , (15)

where

= + +

+

D D D D D D

D D

(diag( ) ) (diag( ) ) (diag( ) )

(diag( ) ) .
x
T

x y
T

x x
T

y

y
T

y

1 2 3

4 (16)

Using Eq. (15), and a property of the Kronecker product, denoted by ,
which is =B A X AXB( )vec( ) vec( )T , we can also present the vec-
torized version of Eq. (11) as

=
=

k
k

V R D
V R

vec( ) ( ) vec( )
( ) .

T

T (17)

Finally, by writing = vec( ) and defining the mixing matrix
= kM V R( ( ))T of size ×MT N , the resulting linear measure-

ment equation based on conductivity, from here on referred to as the
compact matrix model for atrial electrograms (CMM), is

= M . (18)

3. Conductivity estimation

We have seen how the measured data ( or ) can be described in
terms of a simple parametrization: , , and some nuisance parameters,
i.e., a ×2 2 matrix Kn that models the cell direction. Given the data, the
inverse problem is to estimate these parameters. In particular, we are
interested in the conductivity map.

An initial step to reduce the number of unknowns and simplify the
inverse problem is to estimate the ATs in using a standard approach.
In this study we estimated by finding the minimum of the first time
derivative of each electrogram which coincides with the activation time
of the cell that is under the electrode [18]. This provides us with an
incomplete activation map (AM) where the values are only known for
cells that are under the electrodes. Next, we linearly interpolate the
incomplete AM to provide a higher resolution AM for modeled cells.
This provides a good estimation of ATs when the wavefront is rather
smooth and there is only one single wavefront, that is mostly the case
during SR. However, our simulation showed that in case of multiple
wavefronts or existing blocks in the tissue, that is the case during AF,
the activation time estimation using the minimum of the first time
derivative of electrograms is less precise and better estimation methods
are required. This is deferred to future work.

Assuming is known, the next step is to estimate using Eq. (18).
The amount of data is ×M T while the number of unknown parameters
is a function of the chosen spatial resolution, i.e., the modeled number
of cells N. As they are both on a regular grid, we can define the ratio of
the number of cells with the number of electrodes as the “oversampling
ratio” L. The number of unknowns in this step ( ) is then equal to LM .
We would expect the number of data samples to be easily larger than
the number of unknowns (T L), but unfortunately, most time-domain
samples are not very informative. Thus, the mixing matrix M is ill-
conditioned or ill-posed, in particular for larger L. This issue always
arises when we discretize and solve an inverse problem that has i( ) the
form of a first-kind Fredholm integral equation (Eq. (3)), and ii( ) has a
Laplacian operator (Eq. (1)) in its forward model.

Estimation of the conductivity map is based on the linear mea-
surement model Eq. (18). Since the mixing matrix is ill-conditioned,
simply inverting M produces an unstable solution. Therefore, reg-
ularization is needed, which is equivalent to bringing in some prior
information to penalize implausible solutions. Our experiments show
that, in general, the conductivity in each small enough anatomical site
varies smoothly around an average value µ creating a smooth (low
rank) conductivity map of size ×r cc c, where = vec( ). These
smooth variations can partly be due to the changes in the properties of
many cells in the real 3D tissue that are only modeled by a few cells on
the 2D recording area. Notice that the changes in the conductivities of
different anatomical sites can also be modeled by setting different va-
lues for µ with respect to our prior knowledge of the recording site. On
the other hand, in cases of functional or pathological problems, a local
conductivity n could be much smaller than the average µ , resulting in
a conductivity block that causes irregular AP wavefront propagation or
even results in formation of multiple wavefronts.

These observations encourage regularization conditions that pro-
mote a sparse and low-rank solution for . Among many possibilities,
we will consider the following regularized cost function for estimation
of conductivity:

= + +J µ µM 1 11( ) ,T
2
2

1 1 2 * (19)

where 1 and 2 are the regularization parameters, and 1 is the all-ones
vector. The 1-norm regularization term, 1, promotes a sparse solu-
tion, whereas the nuclear norm (the sum of singular values of its
argument) promotes a smooth low-rank conductivity map. Notice that
for applications in which we are more interested in localizing con-
ductivity blocks in tissue, we can ignore the smooth low-rank regular-
ization and only penalize the optimization problem using the 1-norm
which means setting = 02 .
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In this paper we solve Eq. (19) using the Split Bregman algorithm
[19] which leads to the following augmented Lagrangian optimization
problem,

= + + +

+

µ µ

µ µ

M p p 1 b Q

Q 11 B

ˆ arg min ( )

( ) ,T

p Q, ,
2
2

1 1 1 1 2
2

2 *

2 2 2
2 (20)

where the p and Q are the introduced auxiliary variables, µ1 and µ2 are
penalization parameters, and b1 and B2 are the Lagrange multipliers.
The Split Bregman algorithm then solves this problem iteratively by
breaking it into smaller problems, which are simpler to implement. In
each step of each iteration, one unknown parameter is updated by
minimizing Eq. (20) while assuming the other unknowns are constant.
For more detail on solving each step we refer to Ref. [20]. Overall the
algorithm has a fast convergence rate to a reasonable precision in
practice.

4. Simulation results

To demonstrate the performance of the proposed conductivity map
estimation algorithm, we have simulated 2D phantom tissue areas of

×90 90 cells with =l 0.02 cm0 cell-to-cell distances on the grid, based
on examples of real tissue. Each simulated tissue has a different con-
ductivity map with a smooth background and zero, one or two con-
ductivity blocks in it that are respectively shown in the first column of
Fig. 2 and are denoted by M1, M2, and M3. Notice that the plots only
demonstrate the ×37 37 central cells where a ×5 5 electrode array with
inner-electrode distance of l9 0 was positioned. The electrode locations
are shown by the *. The tissues are stimulated with a stimulation cur-
rent injected to the cell at the left bottom of the tissue. The tissues in
M1 and M2 are isotropic ( = 1n ) while the tissue in M3 is anisotropic
with = 0.4n . In all simulations A equals the identity matrix indicating
that the main direction of the cells is along the x-axis. Eq. (1) was used
to calculate the propagation of the APs on the tissue with a fixed time
step =T 0.01 mss . The resulting activation maps in the selected areas are
also shown in the second column of Fig. 2. Eq. (10) was next used to
calculate the electrograms recorded by the electrode array. Since this
high temporal resolution complicates the succeeding parameter esti-
mation, the resulting electrograms and the stereotype V t( )0 were down-
sampled by a factor of 5, which increases the sampling period of the
data to =T 0.05 mss . Note that we made sure the upstroke phase ofV t( )0
is preserved after down-sampling.

We then use Eq. (20) to estimate the conductivity maps of each
tissue, assuming that the isotropic ratio n and fiber rotation angle n
are known and constant (the same values that were used in generating
the data). To reduce the number of unknowns, the modeled cell size in
the inverse problem was considered three times bigger than the initial
cell size used in the forward model simulation. The inter-electrode
distance was considered three times the modeled cell size ( =L 3), i.e.,
nine times the initial cell size. To focus on the performance of the
conductivity map estimation algorithm itself, and to avoid the errors in
AT estimations, we use the real ATs in this simulation. For each mod-
eled cell, we used the activation time of the central cell of the ×3 3
block of initial cells that it covers. Obviously using the ATs estimated
from electrograms and interpolating them for higher resolution mod-
eled cells introduces inaccuracies in estimating the conductivity map.
We will later demonstrate how these inaccurate ATs affect the con-
ductivity estimation. The equations derived in Section 2.4 were then
used to calculate the mixing matrix M , and finally Eq. (20) was used to
estimate the conductivity maps. The resulting conductivity maps ˆ CMM
are shown in the third column of Fig. 2. Since the focus of this study is
on introducing the model itself and not on optimal tuning of its para-
meters, we used values that yielded visually good results in all simu-
lations, which are, = 1e91 , = 1e82 , =µ 1e41 , =µ 1e42 , =µ 0.9, and
the number of iteration =N 100itr .

For reference, we use the apparent conductivity map estimation
using the Eikonal-diffusion (ED) equation [14]. To the best of our
knowledge, this is the only similar approach that estimates electrical
conductivity map and is also applicable to our data. We also provided
the local conduction velocity map [21] as a commonly used approach in
the literature for analysis of slow conduction and conduction block in
tissue. Notice that unlike CMM and ED, CV does not provide a mea-
surement of conductivity but only measures the local velocity of the
wavefront propagation. The estimated CV map and the estimated con-
ductivity map from the ED equation, are also plotted in the right two
columns of Fig. 2. As shown in the figure, the CV map only provides an
overview of areas with fast and slow conduction which cannot be di-
rectly connected to tissue conductivity and thus electropathology in
tissue. ED, on the other hand, performs well for isotropic and rather
homogeneous tissues, but provides inaccurate results around bound-
aries of the tissue (case M1 and M2), the main diagonal of the co-
ordinate system, and around the boundaries of the blocks. It also
completely fails to provide any reliable results in case of anisotropic
tissue, which is the case shown in M3. The results in general show that
the proposed method outperforms the two reference methods.

Fig. 3 demonstrates two other examples, denoted by M4 and M5.
Different from the simulation in Fig. 2, the conductivities are now es-
timated using the ATs that are estimated from low resolution electro-
grams instead of using the true ATs. The ATs are estimated by finding
the minimum of the first time derivative of electrograms, and linearly
interpolated to obtain a higher resolution activation map for all mod-
eled cells. The tissue in M4 is isotropic while the tissue in M5 is ani-
sotropic. All other parameters used in theses simulations are equal to
those used in generation of Fig. 2 and only the conductivity maps are
different, which are plotted in the first column of Fig. 3. The ground
truth ATs and the estimated ATs from electrograms are also shown in
Fig. 3. The proposed CMM and ED were used for estimation of con-
ductivity and the results are shown in the last two columns of Fig. 3
respectively. Notice that we did not include CV in this figure. As can be
seen, by comparing the estimated AM with the true AM, the estimated
ATs are less accurate in areas with blocks. These inaccurate estimations
cause the blocks to appear much smoother, or they are even missed.
This can also be affected by the size of the block and its geometry with
respect to the wavefront propagation direction. As shown in the simu-
lations, the proposed CMM performs better than the ED because it also
depends on the final electrograms and not only on the estimated ATs.

Fig. 4 demonstrates the robustness of the model with respect to
inaccurate local activation times. The first row shows the estimated
conductivity map and conduction velocity map of the simulated tissue
M2 that was already presented in Fig. 2. The second to fourth row
present three realizations of parameter estimation when uniformly
distributed random errors in range of [ , ]m m ms are added to the true
activation times. Note that the average delay between two neighboring
modeled cells in the true activation map is about 0.5ms. The conduc-
tion velocity maps are provided for comparison. As can be seen, the
conductivity map is less affected by the errors in activation times than
CV map due to: (i) its dependency on the electrograms morphology and
not only on the estimated activation times, and (ii) the regularization
terms in conductivity estimation using Eq. (19).

5. Experiments on clinical data

In this section we apply the proposed method to clinically recorded
data. The epicardial electrograms used in this study were recorded
using a 192-unipolar electrode array ( ×8 24) with 2mm inter-electrode
distance and 0.45 mm electrode diameter. The electrode array is sub-
sequently positioned on 9 mapping atrial sites using the anatomical
borders, visually by the surgeon. The array records 5 s of sinus rhythm
and 10 s of induced atrial fibrillation (IAF) signals at each site. This
technique was performed in more than 400 patients of 18 years and
older, with coronary and/or structural heart disease, with or without
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AF, electively scheduled for cardiac surgery and a ventricular ejection
fraction above 40%. We have selected four representative patients from
the database denoted by P1 to P4, and only used the signals recorded
from a fixed location in the middle of the right atrium. The electro-
grams for P1 to P3 are recorded during SR, and the electrograms for P4
are recorded during IAF. The acquired signals are amplified, filtered
(bandwidth 0.5–400 Hz), sampled (1 kHz), analogue to digital con-
verted (16 bits) and recorded on a hard disk. More details on the
mapping approach and the electrode array specifications can be found
in Ref. [2].

Before employing Eq. (20) to estimate the tissue conductivity, we
need to perform some preparation steps. First the tissue surface is
meshed with a 2D mono-layer grid where each element on the grid is
assumed to be a cell. Although a smaller cell size provides a more ac-
curate estimation of conductivity, to avoid numerical complications
and reduce the number of unknowns in our model, we select the largest
possible cell size that still reasonably models the electrograms. There-
fore, in our simulations the modeled cell size equals =l 0.2/3 cm
which is one third of the inner-electrode distance leading to =L 3. After
gridding the tissue surface the inverse of the cell to electrode distances
are calculated and stored in the matrix R.

The ATs are estimated using the maximum negative slope of the
electrograms followed by a 2D interpolation. This provides good esti-
mates of the ATs under the assumption of SR, and a single smooth
wavefront which holds for the P1 to P3. The resulting activation maps
are demonstrated in Fig. 5, where the electrode locations are marked by
the . We also use the same approach to estimate the ATs for P4 whose
activation map is demonstrated in Fig. 6. As can be seen, two wave-
fronts enter the recording area and collide, and as a result, some elec-
trograms are fractionated. This implies that our approach might provide
faulty and smooth ATs that will eventually affect the estimation of
conductivity map as already demonstrated in simulated tissues in Fig. 3.

After completing the activation map, we can build V in Eq. (11) by
shifting the stereotype V t( )0 with respect to the estimated ATs. The
matrix containing the recorded electrograms was initially normalized
to have a zero average and a minimum to maximum amplitude of 1.
Although we have not measured the tissue fiber direction at the re-
cording site, =A In for all cells seems reasonable enough with respect
to the isochrones geometry. Since the conduction velocity across the x-

Fig. 4. The first row demonstrates the estimated conductivity map (using the
proposed approach) as well as the estimated conduction velocity map for the
simulated electrograms already presented in M2 in Fig. 2. The second to fourth
row show the same estimated parameters, where uniformly distributed local
error, in range of [ , ]m m , are added to the true activation times.

Fig. 3. Each row of the figure demonstrates a simulated tissue and its estimated parameters. First and second columns demonstrate the underlying model including
the true conductivity map and the true AM on the 2D tissue surface respectively. In each case the tissue is stimulated from the left bottom corner and the electrode
locations are indicated by *. The third to fifth columns demonstrates the estimated parameters including the estimated AM, the estimated conductivity map from the
proposed CMM, and the estimated conductivity map from the Eikonal diffusion equation.
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axis is almost twice its value across the y-axis, we set = 0.25n
2 . After

calculating all necessary parameters, the equations used in Section 2.4
were employed to compute the mixing matrix M with =k 1/300. Fi-
nally, Eq. (20) was used to estimate the conductivity map which are
demonstrated in the second column of Figs. 5 and 6. The optimization
parameters used in these simulations are = 21 , = 22 , =µ 0.8,

=µ 11 , =µ 12 , =N 100itr . Note that such ranges of variation in the
conductivity within a small area is acceptable, as demonstrated in a
previous study on similar clinical mapping data [22]. However, these
ranges can be further improved by the correct tuning of the regular-
ization parameters. This is deferred to future work.

There is no ground truth to compare the conductivity map to.
Therefore, to demonstrate the performance of the model, Fig. 5 also
shows the ×5 5 clinically recorded electrograms, as well as the modeled
electrograms for the same recording in P1. Fig. 6 also demonstrates the
recorded and simulated electrograms of P4 during IAF. The estimated
in combination with the proposed CMM in Eq. (18) were used to gen-
erate the modeled electrograms. As we can see, despite the low gridding
resolution and all simplifications we made in this study, the real and
modeled signals match reasonably, especially around the AT of each
electrogram. For IAF data in P4, the approach can, to some extend,
follow the morphology of the fractionated electrograms, except for the
sharp deflections as in 6. This is partly due to the errors in AT esti-
mation of the fractionated electrograms, and the smooth changes in the
AM due to linear interpolations. Moreover, since the electrical propa-
gation outside the boundaries of the simulated tissue is neglected, the
simulated electrograms at the boundaries are less accurate.

6. Conclusions and discussion

In this study we developed a compact matrix model for atrial
electrograms CMM to show its linear dependence on the conductivity
vector, enabling the estimation of this parameter from the recorded
electrograms. The results show that despite the low resolution and all
simplifying assumptions, the model can efficiently estimate the con-
ductivity map and regenerate realistic electrograms, specially during
sinus rhythm. We also provided the results of two other approaches,
namely, conductivity estimation based on Eikonal-diffusion equation
and conduction velocity estimation. The provided examples show that
our method outperforms the other two approaches especially in case of
anisotropy and inhomogeneity in the tissue.

However, we need to acknowledge that the presented algorithm
may not perform well in cases where our underlying assumptions are
not valid. These can happen in two cases. First, when the wavefront is
not smooth, as is the case during AF. In this case, multiple wavefronts
enter the area of interest simultaneously or one wavefront breaks into
multiple wavelets due to the inhomogeneity in the conductivity. This
complicates the estimation of the activation times and results in an
inaccurate activation map and consequently an inaccurate conductivity
map. Therefore, more robust AT estimation algorithms need to be de-
veloped. Second, for 3D tissues where each layer of tissue might have a
different conductivity map and wavefront propagation. In this case our
model, like any other approach that uses electrograms, images all the
activities on the 2D tissue surface and ignores the underlying layers and
is therefore not valid. Although this can be partly solved by developing

Fig. 5. The estimated activation map (first column) as well as the estimated conductivity map (second column) from the electrograms recorded at the right atrium of
three different patients during one heart beat in SR. Clinically recorded electrograms of patients P1, as well as the simulated electrograms using the proposed
approach, are also demonstrated in the third column.
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3D models of the tissue following the same principles as 2D, the main
problem would be the estimation of the ATs in the underlying layers
which is currently not possible in clinical recordings.

Future work therefore includes the development of a better algo-
rithm for the estimation of ATs, analyzing the efficiency and accuracy
of various alternative regularization functions and algorithms for sol-
ving the inverse problem, as well as a discussion on the selection of the
regularization parameters.
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