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Elastodynamic single-sided homogeneous Green’s function representation:
Theory and numerical examples

Christian Reinickea,∗, Kees Wapenaara

aDelft University of Technology, Department of Geoscience and Engineering, Stevinweg 1, 2628 CN Delft, The Netherlands

Abstract

The homogeneous Green’s function is the difference between an impulse response and its time-reversal. Accord-
ing to existing representation theorems, the homogeneous Green’s function associated with source-receiver pairs
inside a medium can be computed from measurements at a boundary enclosing the medium. However, in many
applications such as seismic imaging, time-lapse monitoring, medical imaging, non-destructive testing, etc., me-
dia are only accessible from one side. A recent development of wave theory has provided a representation of the
homogeneous Green’s function in an elastic medium in terms of wavefield recordings at a single (open) bound-
ary. Despite its single-sidedness, the elastodynamic homogeneous Green’s function representation accounts for
all orders of scattering inside the medium. We present the theory of the elastodynamic single-sided homoge-
neous Green’s function representation and illustrate it with numerical examples for 2D laterally-invariant media.
For propagating waves, the resulting homogeneous Green’s functions match the exact ones within numerical
precision, demonstrating the accuracy of the theory. In addition, we analyse the accuracy of the single-sided
representation of the homogeneous Green’s function for evanescent wave tunnelling.

Keywords: Elastic, numerical, interferometry, internal multiples, layered

1. Introduction

The homogeneous Green’s function is the difference between an impulse response and its time-reversal. In
the absence of losses, the wave equation is symmetric in time. Therefore, an impulse response to a source and
its time-reversal satisfy the same wave equation. By subtracting the wave equations for these two responses
from each other, we obtain a wave equation with a source term equal to zero, and a solution: the homogeneous5

Green’s function.
In optics, Porter [1] used a closed-boundary representation of the homogeneous Green’s function to retrieve

the wavefield inside a medium. This representation has been the basis for inverse source problems [2] as well
as inverse-scattering methods [3]. Unfortunately, in many practical situations, there is only single-sided access
to the medium. When measurements are absent at a substantial part of the closed boundary, the retrieved10

homogeneous Green’s function will suffer from significant artefacts. In particular in the presence of strong
internal multiple scattering, these artefacts become more severe.

The closed-boundary representation can be modified to become an integral representation over the top and
bottom boundaries of the medium if the medium has infinite horizontal extent [e.g. 4, 5]. Further, a recent
progress of wave theory has demonstrated that, after appropriate modification of the homogeneous Green’s15

function representation, the integral contribution from the bottom boundary vanishes [6]. The result is a single-
sided homogeneous Green’s function representation. This representation correctly describes the wavefield inside
the medium, including all orders of scattering, but excluding evanescent waves. The form of the single-sided
representation is similar to the closed-boundary representation. However, the single-sided representation uses
a so-called focusing function instead of the time-reversed Green’s function [6]. For acoustic waves, the focusing20

function can be retrieved from a single-sided reflection response and an estimate of the direct arrival, using the
Marchenko method [e.g. 7, 8, 9]. In the elastodynamic case, the approximate focusing function can be retrieved
in a similar way [10, 11]. However, an exact retrieval of the elastodynamic focusing function requires additional
information about the medium [11]. In this paper, we assume that the elastodynamic focusing function is
available (obtained either approximately by the Marchenko method or by direct modelling when the medium is25

known). The single-sided representation theorem provides the mathematical framework to place virtual sources
and/or receivers inside the medium. Imaging techniques, e.g. for medical or geophysical applications with
limited access to the medium, could benefit from this. Furthermore, virtual receivers inside a medium could
be used for time-lapse monitoring purposes, i.e. to observe changes in a medium over time. Other potential
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applications could be forecasting the medium response to induced sources, or the localisation of passive sources30

inside a medium such as an earthquake [12].
We outline the theory of the single-sided homogeneous Green’s function representation for elastodynamic

waves in lossless media. Further, we evaluate the accuracy of the elastodynamic single-sided homogeneous
Green’s function representation numerically for 2D layered media. For the evaluation we use a directly mod-
elled homogeneous Green’s function as a reference. Eventually, we present an example in which the wavefield has35

wavenumber-frequency components that are evanescent only inside a thin layer between the recording boundary
and the target depth. We demonstrate that these evanescent wavenumber-frequency components of the elasto-
dynamic homogeneous Green’s function are accounted for by the single-sided representation, except for small
numerical errors.

2. Theory40

This section consists of three parts. In the first part we show the definition of the decomposed matrix-vector
wave equation. In the second part we define the elastodynamic homogeneous Green’s function, and in the third
part, we introduce the elastodynamic single-sided homogeneous Green’s function representation. A detailed
derivation of this representation can be found in Appendix A.

2.1. Matrix-vector wave equation for decomposed wavefields45

We represent the elastodynamic wavefield using powerflux-normalised P- and S-wavefield potentials. Besides,
we choose the depth direction x3 as a preferential direction of propagation. For this reason, we decompose the
wavefield in downward and upward propagating waves [13, 14, 15], and we define a 6×1 wave vector p containing
decomposed wavefields and a 6× 1 source vector s containing sources for these decomposed wavefields,

p =

(
p+

p−

)
, p+ =




Φ+

Ψ+

Υ+


 , p− =




Φ−

Ψ−

Υ−


 , s =

(
s+

s−

)
. (1)

The superscript + refers to downgoing waves, the superscript − to upgoing waves. The wavefield potentials50

Φ±, Ψ±, Υ± represent the P, S1 and S2 waves, respectively (in cylindrical coordinates in a laterally-invariant
medium, S1 and S2 waves are SV and SH waves). The decomposed source terms s± are defined analogous
to the decomposed wavefields p±. After applying a forward Fourier transform from the space-time to the
space-frequency domain,

p(x, ω) =

∫
p(x, t)eiωtdt, (2)

the matrix-vector wave equation for decomposed wavefields can be written as,55

∂3p(x, ω)− B p(x, ω) = s(x, ω). (3)

Here, i is an imaginary unit (i2 = −1), ∂3 denotes a spatial derivative in the x3 direction and the operator
B = B(x, ω) accounts for the propagation and the mutual coupling of the decomposed fields [an expression of B
can be found in 6]. The spatial coordinates are denoted by x = (x1, x2, x3)T , the time is denoted by t and the
frequency is denoted by ω. The superscript T denotes a transpose. Further details about decomposed wavefields
in 3D inhomogeneous media can be found in [16, 5, 17, 13, 18, 19].60

2.2. Homogeneous Green’s function

Consider the decomposed matrix-vector wave equation with a delta source term, s = Iδ(x− xs), where I is
an identity matrix of appropriate size. The solution of this equation,

∂3Γ(x,xs, ω)− B Γ(x,xs, ω) = Iδ(x− xs), (4)

is the Green’s matrix Γ(x,xs, ω) containing decomposed wavefields,

Γ(x,xs, ω) =

(
G+,+ G+,−

G−,+ G−,−

)
(x,xs, ω). (5)

Here, the first superscript describes the direction of the decomposed wavefields at the receiver position x, the65

second superscript describes the direction of the decomposed source fields at the source position xs. The 3× 3
submatrices G±,± are defined as,

G±,±(x,xs, ω) =



G±,±Φ,Φ G±,±Φ,Ψ G±,±Φ,Υ

G±,±Ψ,Φ G±,±Ψ,Ψ G±,±Ψ,Υ

G±,±Υ,Φ G±,±Υ,Ψ G±,±Υ,Υ


 (x,xs, ω), (6)
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where the first subscript describes the wavefield potential at the receiver position x and the second subscript
describes the wavefield potential at the source position xs. In this paper, we use 6 × 6 matrices to describe
complete decomposed elastodynamic wavefields (e.g. in Equation 5) and 3 × 3 matrices to describe their four70

decomposed parts (e.g. in Equation 6). Ignoring evanescent waves, the operator B and its complex-conjugate
B∗ are mutually related as follows [combining Equations 70 and 88 in 20],

B = KB∗K. (7)

The superscript ∗ denotes a complex-conjugate. The matrix K as well as matrices J and N which we will use
later are defined as,

K =

(
O I
I O

)
, J =

(
I O
O −I

)
, N =

(
O I
−I O

)
, (8)

where O is a null matrix of appropriate size. The matrices K and J can be thought of as a Pauli matrices, the75

matrix N is a symplectic matrix.
We complex-conjugate Equation 4 and substitute the operator B∗ using Equation 7. By pre- and post-

multiplying the result by the matrix K, we obtain,

∂3 [KΓ∗(x,xs, ω)K]− B [KΓ∗(x,xs, ω)K] = Iδ(x− xs). (9)

Here, we used the identity KK = I. According to this equation, the quantity KΓ∗(x,xs, ω)K is another solution
of the wave equation. It is the Fourier transform of a time-reversed Green’s function, but the diagonal as well80

as the off-diagonal elements G±,± are interchanged. By subtracting Equation 9 from Equation 4 we obtain the
homogeneous wave equation, i.e. a wave equation with a source term equal to zero,

∂3Γh(x,xs, ω)− B Γh(x,xs, ω) = O. (10)

A solution of the homogeneous wave equation is the homogeneous Green’s function,

Γh(x,xs, ω) = Γ(x,xs, ω)−KΓ∗(x,xs, ω)K, (11)

which contains block-matrices as follows,

Γh(x,xs, ω) =

(
G+,+

h G+,−
h

G−,+h G−,−h

)
(x,xs, ω) =

(
G+,+ − (G−,−)∗ G+,− − (G−,+)∗

G−,+ − (G+,−)∗ G−,− − (G+,+)∗

)
(x,xs, ω). (12)

Equation 11 states that, in the space-frequency domain, the homogeneous Green’s function is the Green’s func-85

tion minus its complex-conjugate, pre- and post multiplied by matrix K. From the source-receiver reciprocity
relation of the decomposed Green’s function [6],

Γ(x,xs, ω) = NΓT (xs,x, ω)N, (13)

and the identity KN = −NK, it follows that the homogenous Green’s function obeys the source-receiver
reciprocity relation,

Γh(x,xs, ω) = NΓT
h (xs,x, ω)N. (14)

2.3. Elastodynamic single-sided homogeneous Green’s function representation90

Consider a medium which is bounded by a reflection-free boundary ∂D0 at the top (x3 = x3,0) as depicted in
Figure 1a. Let R(x,x′, ω) be the reflection response associated with a source for downgoing waves located at x′

just above ∂D0, and a receiver for upgoing waves located at x on ∂D0. We define the depth level of x′ as ∂D′0. In
the notation of decomposed wavefields, we can state that R(x,x′, ω) = G−,+(x,x′, ω). The direct (downgoing)
wave from x′ to x on ∂D0 is part of the decomposed Green’s function G+,+(x,x′, ω) = Iδ(xH − x′H). Here,95

the subscript H refers to the horizontal components, i.e. xH = (x1, x2)T . Since the medium is reflection-free
above ∂D0, the decomposed Green’s functions associated with sources for upgoing waves at x′ and receivers at
x on ∂D0 are zero, G±,−(x,x′, ω) = O. According to the matrix notation in Equation 12, we can write the
homogeneous Green’s matrix Γh(x,x′, ω) for x at ∂D0 in terms of the reflection response R(x,x′, ω) and an
identity matrix I of appropriate size,100

Γh(x,x′, ω) =

(
Iδ(xH − x′H) −R∗(x,x′, ω)
R(x,x′, ω) −Iδ(xH − x′H)

)
. (15)

Next, we introduce the focusing function F(x,xs, ω). The focusing function is defined in a so-called truncated
medium which is identical to the true medium for x3,0 ≤ x3 < x3,s and homogeneous for x3 ≥ x3,s, where x3,s

3



is the depth of the focal point at xs (see Figure 1b). We assume that xs is located below ∂D0. The decomposed
focusing matrix consists of a down- and an upgoing part,

F(x,xs, ω) =

(
F+

F−

)
(x,xs, ω), (16)

with,105

F±(x,xs, ω) =



F±Φ,Φ F±Φ,Ψ F±Φ,Υ

F±Ψ,Φ F±Ψ,Ψ F±Ψ,Υ

F±Υ,Φ F±Υ,Ψ F±Υ,Υ


 (x,xs, ω). (17)

The superscripts ± and the first subscript describe the wavefield direction and the wavefield potential at the
receiver location x, respectively. The second subscript describes the wavefield potential at the focusing position
xs. The downgoing focusing function F+(x,xs, ω) for x at ∂D0 is the inverse of a transmission response of the
truncated medium between ∂D0 and the depth level x3 = x3,s [6],

∫

∂D0

T+(x,x′, ω)F+(x′,xs, ω)d2x′H

∣∣∣∣
x3=x3,s

= I δ(xH − xH,s), (18)

and the complete focusing function F obeys the focusing condition,110

F(x,xs, ω)|x3=x3,s = I1 δ(xH − xH,s). (19)

Here, we introduced the matrix I1 = (I,O)T . The upgoing focusing function F−(x,xs, ω) is the reflection
response of the downgoing focusing function in the truncated medium. In a physical interpretation, the focusing
function is the Fourier transform of a wavefield injected at the surface ∂D0, which focuses at time zero at the
position xs (see Figure 1b). Note, that the first event of the focusing function is injected at negative times.

∂D0

∂D′
0•x

′
•

... x ...
•

... x ...

R(x,x′, ω)

x3,0

x3,s

x3 True medium

(a)

∂D0•... x ...

•
xs

F+(x,xs, ω)

F−(x,xs, ω)

x3,0

x3,s

x3 Truncated medium

(b)

Figure 1: Reflection response and focusing function. (a) R(x,x′, ω) is the reflection response of a medium which is reflection-free
above ∂D0. The source is located at x′ on ∂D′0 (just above ∂D0), the receivers are located at x on ∂D0. (b) The decomposed focusing
function F(x,xs, ω) is defined in a truncated medium which is identical to the true medium for x3 < x3,s, and reflection-free for
x3 ≥ x3,s.

Consider the homogeneous Green’s function Γh(x,xs, ω) related to a source at xs inside the medium and re-115

ceivers on the surface ∂D0 as depicted in Figure 2a. According to Equations A.17 and A.18 in the Appendix, the
homogeneous Green’s function Γh(x,x′, ω) recorded on the top boundary and the focusing function F(x,xs, ω)
can construct a wavefield Γ1(x,xs, ω),

Γ1(x,xs, ω) =

∫

∂D′
0

Γh(x,x′, ω)F(x′,xs, ω)IT1 d2x′, (20)

from which the homogeneous Green’s function Γh(x,xs, ω) can be represented as,

Γh(x,xs, ω) = Γ1(x,xs, ω)−KΓ∗1(x,xs, ω)K. (21)

Evaluating the matrix products in Equations 20-21 reveals that the forward-in-time propagating part of the120

homogeneous Green’s function Γh(x,xs, ω) is a superposition of the non-zero sub-matrices of Γ1(x,xs, ω), i.e.
G−,+(x,xs, ω) and G−,−(x,xs, ω). Hence, Figure 2a also illustrates the wavefield Γ1(x,xs, ω).

4



The homogeneous Green’s function Γh(x,x′, ω) corresponds to sources and receivers at the surface (∂D0 ∪
∂D′0). A physical interpretation of Equation 20 is that the focusing function focuses, or inverse-propagates, the
sources of Γh(x,x′, ω) from x′ to xs.125

In analogy, according to Equations A.12 and A.13 in the Appendix, the receivers of the homogeneous Green’s
function Γh(x,xs, ω) are focused on, or inverse-propagated to, a virtual receiver location xr inside the medium,
according to,

Γ2(xr,xs, ω) =

∫

∂D0

I2F
T (x,xr, ω)NΓh(x,xs, ω)d2x, (22)

from which the homogeneous Green’s function Γh(xr,xs, ω) can be constructed,

Γh(xr,xs, ω) = Γ2(xr,xs, ω)−KΓ∗2(xr,xs, ω)K. (23)

The quantity F(x,xr, ω) is the focusing function related to a focal point at xr. Further, we introduced the matrix130

I2 = (O, I)T . Equations 20-23 together form an elastodynamic single-sided homogeneous Green’s function
representation: It expresses the homogeneous Green’s function between xs and xr inside the medium in terms
of the single-sided data Γh(x,x′, ω) at the upper boundary ∂D0 ∪ ∂D′0. An illustration of the homogeneous
Green’s function Γh(xr,xs, ω) is displayed in Figure 2b. By evaluating the matrix products in Equations 22-23
it can be seen that the forward-in-time propagating part of the wavefield Γ2(xr,xs, ω) is represented by all paths135

in Figure 2b that are associated with upward propagating waves at xr. The representation formed by Equations
20-23 involves integrations along an open boundary of the medium, and therefore, only requires single-sided
access to the medium.

∂D0•... x ...

•
xs

Γh(x,xs, ω)

0

x3,s

x3 True medium

(a)

∂D0

•
xs

•xr

Γh(xr,xs, ω)

0

x3,s

x3 True medium

(b)

Figure 2: Homogeneous Green’s functions. (a) Γh(x,xs, ω) is the homogeneous Green’s function related to a source located inside
the medium at xs and receivers located on the surface ∂D0 at x. (b) Γh(xr,xs, ω) is the homogeneous Green’s function related to
a source located inside the medium at xs and a receiver located inside the medium at xr. Both subfigures show the forward-in-time
propagating part of the respective homogeneous Green’s function.

3. Numerical example

In this section, we show a numerical example of the elastodynamic single-sided homogeneous Green’s function140

representation for a 2D laterally-invariant medium. Further, we investigate the accuracy of the single-sided
representation for wavenumber-frequency components of the elastodynamic homogeneous Green’s function that
are evanescent only inside a thin layer between the recording boundary and the virtual receiver depth. From
here on, we consider a 2D medium, i.e. in all expressions of Section 2 the spatial coordinate x simplifies to
x = (x1, x3)T and the horizontal coordinate xH simplifies to x1. Besides, we only consider P and SV waves,145

indicated by the subscripts Φ and Ψ, respectively. In the provided numerical examples, we use modelled
focusing functions. This allows us to analyse the properties of the single-sided representation, independent of
approximations of the focusing function retrieval via the Marchenko method.

3.1. Wavenumber-frequency domain expressions

Since we consider a laterally-invariant model the required data can be modelled efficiently by wavefield150

extrapolation in the wavenumber-frequency domain [21, 22]. However, in the theory section the single-sided
homogeneous Green’s function representation is formulated in the space-frequency domain. To transform the

5



expressions to the wavenumber-frequency domain, we use the fact that all the presented expressions have a sim-
ilar form, namely a product of two space-dependent functions g(x1, x3, x

′′
1 , x
′′
3) and f(x′′1 , x

′′
3 , x
′
1, x
′
3), integrated

across a horizontal surface ∂D′′,155

∫

∂D′′
g(x1, x3, x

′′
1 , x
′′
3)f(x′′1 , x

′′
3 , x
′
1, x
′
3)dx′′1 . (24)

In laterally-invariant media, integrals of the above form can be rewritten as a spatial convolution,

∫

∂D′′
g(x1 − x′′1 , x3, 0, x

′′
3)f(x′′1 , x

′′
3 , x
′
1, x
′
3)dx′′1 , (25)

which corresponds to a multiplication in the wavenumber domain [23],

g̃(k1, x3, 0, x
′′
3)f̃(k1, x

′′
3 , x
′
1, x
′
3). (26)

Here, we introduced the horizontal wavenumber k1. Note, when we say wavenumber domain, we refer to the
horizontal-wavenumber domain (k1, x3) on the receiver side (first coordinate). Wavefields in the wavenumber
domain are written with a tilde on top. Expressions in the space and wavenumber domain are mutually related160

via the Fourier transform,

g̃(k1, x3, x
′′
1 , x
′′
3) =

∫
g(x1, x3, x

′′
1 , x
′′
3)e−ik1x1dx1. (27)

We model the required input data, the reflection response R̃(k1, x3,0, 0, x
′
3,0, ω) and the focusing functions

F̃(k1, x3,0, 0, x3,s/r, ω), in the wavenumber-frequency domain by wavefield extrapolation. Since we model all
fields for a source with a horizontal space coordinate x1 = 0, we omit this coordinate in the following expressions.
Next, we transform Equations 20-23 to the wavenumber domain according to Equations 25-27. After evaluating165

Equations 20-23 in the wavenumber-frequency domain, we transform the final result Γ̃h(k1, x3,r, x3,s, ω) to the
space-time domain via an inverse Fourier transform,

Γh(xr,xs, t) =
1

(2π)2

∫∫
Γ̃h(k1, x3,r, x3,s, ω) e−i[ωt−k1(x1,r−x1,s)] dk1dω. (28)

Here, we replaced the horizontal receiver coordinate x1,r in the exponent by the horizontal offset between the
receiver and the source, x1,r − x1,s, to account for the actual horizontal position of the source x1,s.

3.2. Results170

We present a numerical example of the elastodynamic single-sided homogeneous Green’s function represen-
tation. The result is compared to the exact homogeneous Green’s function, which is computed by wavefield
extrapolation. For a clear illustration, we choose a simple model as depicted in Figure 3. Results for a more
complex model can be found in Appendix B. Note that we use superscripts (i) to refer to the ith layer of the
medium.175

According to Appendix A, the single-sided homogeneous Green’s function representation ignores evanescent

waves, which are associated with imaginary-valued vertical-wavenumbers k3(cp/s, k1, ω) = i
√
k2

1 − ω2

c2
p/s

. Thus,

all wavenumber-frequency components that satisfy the relation,

|k1| >
ω

cmax
, (29)

should be excluded from the analysis. Here, cmax is the maximum propagation velocity of the truncated medium.
In the following, before displaying a wavefield in the space-time domain, we mute evanescent waves according180

to Equation 29 using the maximum P-wave velocity of the truncated medium cmax, apply an inverse Fourier
transform according to Equation 28 and convolve the resulting wavefield with a 30 Hz Ricker wavelet [defined
by Eq. 7 in 24]. Note that, we create a virtual source as well as a virtual receiver, meaning that there are
two truncated media, bounded at the bottom by x3,s and x3,r, respectively. The above mentioned maximum
P-wave velocity cmax is the overall maximum P-wave velocity of both truncated media.185

6



c
(1)
p = 1500m s−1

c
(1)
p = 1500m s−1

c
(2)
p = 2000m s−1

c
(3)
p = 2500m s−1

c
(3)
p = 2500m s−1

c
(4)
p = 3000m s−1

c
(5)
p = 3500m s−1

c
(5)
p = 3500m s−1

c
(1)
s = 800m s−1

c
(1)
s = 800m s−1

c
(2)
s = 1000m s−1

c
(3)
s = 1200m s−1

c
(3)
s = 1200m s−1

c
(4)
s = 1400m s−1

c
(5)
s = 1600m s−1

c
(5)
s = 1600m s−1

ρ(1) = 1000 kgm−3

ρ(1) = 1000 kgm−3

ρ(2) = 1500 kgm−3

ρ(3) = 1000 kgm−3

ρ(3) = 1000 kgm−3

ρ(4) = 1500 kgm−3

ρ(5) = 1000 kgm−3

ρ(5) = 1000 kgm−3

x3,0 = 0m

x3 = 500m

x3 = 1250m

x3 = 2000m

x3 = 2500m

x3 = 3000m

x3,s = 1500m

Figure 3: Layered model. The model depth ranges from 0 m to 3000 m, the lateral distance ranges from −12 812.5 m to 12 800 m.

The P-wave velocity, S-wave velocity and density are denoted by c
(i)
p , c

(i)
s and ρ(i) respectively. The superscripts (i) refer to the

ith layer of the medium. The top boundary and the virtual source depth are denoted by x3,0 and x3,s, respectively. Solid lines
represent medium interfaces and dashed lines represent (scattering-free) depth levels.

The reflection response R̃ and the focusing functions F̃± are modelled by wavefield extrapolation using the
modelling parameters shown in Table 1.

Number of frequency samples 1025
Frequency sample interval 0.511 s−1

Number of wavenumber samples 2048
Wavenumber sample interval 0.245× 10−3 m−1

Table 1: Modelling parameters.

The modelled reflection response R̃(k1, x3,0, x
′
3,0, ω) contains P-wave and S-wave recordings. The components

associated with a P-wave source are superimposed and shown in the space-time domain in Figure 4a. For
clearer illustration, we only show source-receiver offsets between −2000 m and +2000 m and times between 0 s190

and 4 s. The reflection response contains primary reflections, converted reflections and internal multiples. Mode
conversions between P- and S-waves do not occur at zero-incidence. Therefore, events with a gap at x1 = 0 m
are easily identified as converted waves.

Next, we define a virtual source inside the medium at xs = (0 m, 1500 m)T . Thus, we model a focusing
function F̃(k1, x3,0, x3,s, ω) with focusing depth equal to 1500 m. The up- and downgoing P- and S-wave com-195

ponents of the focusing function, that are associated with a P-wave focus, are superimposed and displayed in
the space-time domain in Figure 4b. Since the focusing function contains both causal and acausal events it is
displayed for times between −2 s and +2 s.

The reflection response and focusing function of Figure 4a and 4b are used to compute a homogeneous Green’s
function Γ̃h(k1, x3,0, x3,s, ω) related to the virtual source at xs and receivers at the surface. The computation200

is performed as stated in Equations 20-21. Figure 4c shows a superposition of the up- and downgoing P- and
S-wave components of the resulting homogeneous Green’s function in the space-time domain. Only responses
to a virtual P-wave source are displayed. Figure 4c illustrates that the acausal part of the homogeneous Green’s
function is a time-reversed and polarity-flipped version of the causal part.
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Figure 4: Virtual source retrieval. (a) Reflection response R(x1, x3,0, x′3,0, t). (b) focusing function F(x1, x3,0, x3,s, t) for a focal

point at xs = (0 m, 1500 m)T . (c) Homogeneous Green’s function Γh(x1, x3,0, x3,s, t), obtained from the single-sided representation,
for a virtual source at xs = (0 m, 1500 m)T and receivers at the surface. Fields in (a) and (c) are associated with a P-wave source,
and the field in (b) is associated with a P-wave focus. A k1-ω filter was applied to all displayed fields before transformation to the
space-time domain. The traces in Figures (a) and (c) were multiplied with a gain function (× e0.5|t|) to emphasise the late arrivals.
Note that the plots have different clipping.

Subsequently, we compute the single-sided representation of the homogeneous Green’s function Γ̃h(k1, x3,r, x3,s, ω)205

associated with virtual receivers at x3,r = 1700 m according to Equations 22-23. We superpose the downgoing

components of the homogeneous Green’s function, G̃+,+
h (k1, x3,r, x3,s, ω)+G̃+,−

h (k1, x3,r, x3,s, ω), and display the
absolute value of the result in Figure 5. Here, we display the four elastic components separately. Due to the sym-
metry of the homogeneous Green’s function Γ̃h(k1, x3,r, x3,s, ω) (see Equation 12), the sum of its upgoing com-

ponents, G̃−,+h (k1, x3,r, x3,s, ω)+G̃−,−h (k1, x3,r, x3,s, ω), produces an identical result. Further, since the medium210

is horizontally-layered we only show positive wavenumbers k1. In Figure 5, the amplitude of the ΦΦ, ΦΨ and ΨΦ
components of the quantity, G̃+,+

h (k1, x3,r, x3,s, ω) + G̃+,−
h (k1, x3,r, x3,s, ω), decreases rapidly for |k1| > ω

c
(3)
p

, i.e.

beyond the dashed red line. The velocity c
(3)
p is the maximum propagation velocity in the truncated medium, and

therefore, the line |k1| = ω

c
(3)
p

separates propagating from evanescent waves. As shown in Appendix A, the elas-

todynamic single-sided homogeneous Green’s function representation does not take into account wavenumber-215

frequency components that are evanescent on the boundaries of the domain (here x3 = x3,0 and x3 = x3,r).

Thus, for wavenumbers |k1| > ω

c
(3)
p

the retrieved quantity, G̃+,+
h (k1, x3,r, x3,s, ω) + G̃+,−

h (k1, x3,r, x3,s, ω), is not

representing the analytic elastodynamic homogeneous Green’s function. Further, in the wavenumber regime
|k1| >> ω

c
(3)
p

, the quantity, G̃+,+
h (k1, x3,r, x3,s, ω) + G̃+,−

h (k1, x3,r, x3,s, ω), becomes unstable. This instabil-

ity could be due to either the behaviour of the elastodynamic single-sided homogeneous Green’s function220

representation for evanescent wavenumber-frequency components, or numerical instabilities, or both. Nev-
ertheless, the analytic elastodynamic homogeneous Green’s function is characterised by an exponential ampli-
tude decay for evanescent wavenumber-frequency components. The amplitude of the ΨΨ component of the
quantity, G̃+,+

h (k1, x3,r, x3,s, ω) + G̃+,−
h (k1, x3,r, x3,s, ω), is in the order of one for |k1| < ω

c
(2)
p

and increases

rapidly for |k1| > ω

c
(2)
p

, beyond the indicated dotted red line. Hence, for the ΨΨ component of the quantity,225

G̃+,+
h (k1, x3,r, x3,s, ω) + G̃+,−

h (k1, x3,r, x3,s, ω), the transition from propagating to evanescent waves is defined

by the P-wave velocity of the second layer c
(2)
p , instead of the P-wave velocity of the third layer c

(3)
p . This is
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expected because its ΨΨ component only requires an S-wave focus in the third layer of the medium. Creating
an S-wave focus in the third layer only allows for P-wave conversions above layer (3). As such, the highest

P-wave velocity associated with an S-wave focus in layer (3) is c
(2)
p . In other words, the unstable behaviour of230

the ΨΨ component for |k1| > ω

c
(2)
p

(to the right of the dotted red line) is caused by waves that are S-waves at the

source, convert to P-waves in the second layer and convert back to S-waves before reaching the receivers. For

unconverted S-waves the highest propagation velocity is c
(3)
s , i.e. those waves are propagating for |k1| < ω

c
(3)
s

(to

the left of the dashed blue line). However, these propagating S-waves are obscured by the unstable behaviour
of the parts of the ΨΨ component that convert to P-waves in the second layer.235
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Figure 5: Analysis of the retrieved elastodynmaic homogeneous Green’s function. The four figures show the single-sided represen-
tation of the elastodynamic homogeneous Green’s function after summing its receiver-side downgoing components and taking the
absolute value of the result |G̃+,+

h (k1, x3,r, x3,s, ω) + G̃+,−
h (k1, x3,r, x3,s, ω)|. The elastodynamic homogeneous Green’s function is

associated with a virtual source at xs = (0 m, 1500 m)T and virtual receivers at x3,r = 1700 m. We only show positive wavenumbers

k1. In addition, we draw lines, k1 = ω

c
(i)
p/s

, defined by the P-/S-wave velocity c
(i)
p/s

in the ith layer of the model. The amplitudes in

the plain yellow areas increase rapidly and were clipped for values greater than one.

We evaluate the accuracy of the elastodynamic single-sided homogeneous Green’s function representation
by comparing it to the exact elastodynamic homogeneous Green’s function. To that end, we model the elas-
todynamic homogeneous Green’s function Γ̃h,mod(k1, x3,r, x3,s, ω) for an actual source at xs = (0 m, 1500 m)T .
Next, we compute the relative error of the single-sided representation of the elastodynamic homogeneous Green’s
function according to,240

Ẽ(k1, x3,r, x3,s, ω) =
|(G̃+,+

h + G̃+,−
h − G̃+,+

h,mod − G̃+,−
h,mod)(k1, x3,r, x3,s, ω)|

|(G̃+,+
h,mod + G̃+,−

h,mod)(k1, x3,r, x3,s, ω)|
, (30)

where the absolute value is evaluated element-wise. The resulting relative error Ẽ(k1, x3,r, x3,s, ω) is shown in

Figure 6. For |k1| < ω

c
(3)
p

, the single-sided representation of the quantity, G̃+,+
h (k1, x3,r, x3,s, ω)+G̃+,−

h (k1, x3,r, x3,s, ω),

is accurate within a relative error Ẽ(k1, x3,r, x3,s, ω) of about 10−15, i.e. within numerical precision. For |k1| >
ω

c
(3)
p

, the relative error Ẽ(k1, x3,r, x3,s, ω) increases drastically, except for the ΨΨ component ẼΨΨ(k1, x3,r, x3,s, ω).

As explained above, the single-sided representation of the ΨΨ component of the homogeneous Green’s function245

Γ̃h,ΨΨ(k1, x3,r, x3,s, ω) only requires an S-wave focus in the third layer of the medium, such that the ΨΨ com-
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ponent of the quantity, G̃+,+
h (k1, x3,r, x3,s, ω) + G̃+,−

h (k1, x3,r, x3,s, ω), is accurate within numerical precision
up to wavenumbers defined by the P-wave velocity of the second layer of the medium, |k1| < ω

c
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p

.
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Figure 6: Relative error of the retrieved elastodynamic homogeneous Green’s function. The four figures show the relative error

defined by Equation 30. The red lines are k1 = ω

c
(i)
p/s

defined by the P-wave velocity c
(i)
p in the ith layer of the model. The

amplitudes in the plain yellow area increase rapidly and were clipped for values greater than five. Inside the white area the relative
error could not be represented as a number due to limited numerical precision (double-precision). Of course, these values are still
defined but their representation requires a higher numerical precision.

The resulting elastodynamic homogeneous Green’s function Γ̃h(k1, x3,r, x3,s, ω) is a decomposed wave-
field, described by up- and downgoing P- and S-waves. To obtain the full homogeneous Green’s function250

G̃h(k1, x3,r, x3,s, ω), that is associated with measurable wavefield quantities, we apply wavefield composition,

G̃h(k1, x3,r, x3,s, ω) = L̃(k1, x3,r, ω)Γ̃h(k1, x3,r, x3,s, ω)L̃−1(k1, x3,s, ω), (31)

where L̃(k1, x3,r/s, ω) is the composition operator. Further details about wavefield composition can be found

in Wapenaar et al. [6]. The full homogeneous Green’s function G̃h(k1, x3,r, x3,s, ω) relates force sources f and
deformation sources h to traction recordings τ and particle velocity recordings v,

G̃h(k1, x3,r, x3,s, ω) =

(
G̃τ ,f − (G̃τ ,f )∗ G̃τ ,h + (G̃τ ,h)∗

G̃v,f + (G̃v,f )∗ G̃v,h − (G̃v,h)∗

)
(k1, x3,r, x3,s, ω). (32)

From Equation 32 follows that, in the space-time domain, the (τ , f) and (v,h) components of the full ho-255

mogenous Green’s function are anti-symmetric in time, and hence, vanish at time zero. This is undesirable for
imaging applications because imaging uses the wavefield at time zero for xr = xs. However, in the space-time
domain the (τ ,h) and (v, f) components are non-zero at time zero for xr = xs, and can be used for imaging.

After transforming the elastodynamic homogenous Green’s function to the space-time domain Gh(xr,xs, t),
we display its (v3, f3) component, Gv3,f3(xr,xs, t) + Gv3,f3(xr,xs,−t), in Figure 7. The time slices illustrate

the symmetry of the homogeneous Green’s function Gv,f
h in time. At time zero the wavefield focuses. The focus

is distorted by linear artefacts. The artefacts occur because the homogeneous Green’s function was filtered by
a k1-ω mask that is determined by the maximum propagation velocity at a given virtual receiver depth x3,r.
The k1-ω mask mutes the part of the propagating S-wavefield that overlaps with the evanescent P-wavefield,

10



causing linear artefacts in the space-time domain. According to Snell’s law, the inclination angle α of these
linear artefacts is determined by,

1

cp
=

sin(α)

cs
. (33)

Using c
(3)
p = 2500 m s−1 and c

(3)
s = 1200 m s−1, we find that the linear artefact at the focusing position at time

zero has an inclination angle α = 28.7◦ (see Figure 7). An inspection of the time slices, e.g. for t = 0.15 s260

and t = 0.45 s, demonstrates that the single-sided representation of the elastodynamic homogeneous Green’s
function contains primary waves, converted waves, and multiply scattered waves.
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Figure 7: Single-sided representation of the elastodynamic homogeneous Green’s function. The time slices show the single-sided

representation of the elastodynamic homogeneous Green’s function Gv3,f3
h (xr,xs, t) related to a virtual source (f3) at xs =

(0 m, 1500 m)T and virtual receivers (v3) placed on a grid with a depth range from 0 m to 3000 m and a lateral distance range
from −2000 m to 2000 m. The spatial sampling interval is 12.5 m in both horizontal and vertical directions. The time slices were
multiplied by a gain function (×e1.5|t|) to emphasise the late arrivals. At time zero, we indicate the slope angle α of a linear
artefact caused by applying a k1-ω mask.
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We evaluate the accuracy of the elastodynamic single-sided homogeneous Green’s function representation
by comparing it to the exact elastodynamic homogeneous Green’s function. To that end, we modelled the
elastodynamic homogeneous Green’s function for an actual source at xs = (0 m, 1500 m)T . The modelled elas-265

todynamic homogeneous Green’s function is subtracted from the elastodynamic homogeneous Green’s function
obtained from the single-sided representation. To exclude evanescent waves, the result ∆Γ̃h(k1, x3,r, x3,s, ω) is

element-wise multiplied by a k1-ω filter M̃ determined by the maximum propagation velocity of the medium.
Next, we compute the normalised Frobenius norm NF = 1√

4nt4nr
‖M̃ ◦ ∆Γ̃h(k1, x3,r, x3,s, ω)‖2 at each virtual

receiver depth level x3,r, where the symbol ◦ denotes a Hadamard product. The normalisation factor is a270

function of the number of time samples nt and the number of space samples nr. We choose the normalisation
factor

√
4nt4nr because ∆Γ̃h(k1, x3,r, x3,s, ω) consists of four nt× nr block-matrices. In Figure 8, we show the

resulting residual norm as a function of virtual receiver depth x3,r. The difference plot demonstrates that, for
all modelled wavenumber-frequency components of the propagating wavefield, the elastodynamic single-sided
homogeneous Green’s function representation is accurate within numerical precision. For the evaluation, we275

used the residual of the elastodynamic decomposed homogeneous Green’s function ∆Γ̃h(k1, x3,r, x3,s, ω) instead
of its composed equivalent to exclude effects of the wavefield composition (see Equation 31) from the analysis.
In this case, however, the wavefield composition also performs within numerical precision.

0 1000 2000 3000
0.0

0.5

1.0
·10−14

x3,r (m)

N
F

Figure 8: Error analysis. Normalised Frobenius norm NF of the difference ∆Γ̃h(k1, x3,r, x3,s, ω) between the elastodynamic single-
sided homogeneous Green’s function representation (see Figure 7) and its modelled equivalent as a function of virtual receiver depth
x3,r.

3.3. Evanescent wave tunnelling

In this section, we investigate tunnelling of evanescent waves using a new model (see Figure 9). The new280

model is nearly identical to the model in Figure 3. However, the layer between x3 = 1250 m and x3 = 2000 m is
replaced by a thin layer ranging from x3 = 1250 m to x3 = 1330 m and a thicker layer ranging from x3 = 1330 m
to x3 = 2000 m. For the thin layer, the P- and S-wave velocities are 2500 m s−1 and 1200 m s−1, respectively.

For the layer below, the propagation velocities are smaller, c
(4)
p = 2000 m s−1 and c

(4)
s = 1000 m s−1.

Next, we evaluate the single-sided representation of the elastodynamic homogeneous Green’s function Γ̃h(k1, x3,r, x3,s, ω)285

according to Equations 20-23, for a virtual source at x3,s = 1500 m and a virtual receiver at x3,r = 1700 m.

To analyse the result, we model the elastodynamic homogeneous Green’s function Γ̃h,mod(k1, x3,r, x3,s, ω) as

a reference and compute the relative error Ẽ(k1, x3,r, x3,s, ω) according to Equation 30. Figure 10 shows the
resulting relative error. For wavenumber-frequency components that are only propagating in the truncated
medium, i.e. |k1| < ω

c
(3)
p

, the relative error Ẽ(k1, x3,r, x3,s, ω) is in the order of 10−15, as expected. For larger290

wavenumbers, |k1| > ω

c
(3)
p

, we would expect a rapid increase of the relative error Ẽ(k1, x3,r, x3,s, ω) due to insta-

bilities, similar to Figure 6. However, Figure 10 shows that for wavenumbers, ω

c
(3)
p

< |k1| < ω

c
(2)
p

, the relative error

Ẽ(k1, x3,r, x3,s, ω) ranges from about 10−15 to about 10−6. The relative error is not within numerical precision
but still very small. We interpret this effect as evanescent wave tunnelling. In the theory section, we excluded
evanescent waves. However, this restriction is only required on the boundaries on which the reciprocity theorem295

of the correlation-type is evaluated (see Appendix A). Therefore, the theory does not exclude evanescent wave
tunnelling. Besides, the theory does not make any assumption about the thickness of the tunnelled layer. In
the presented numerical example, we observed that the relative error of the tunnelling experiment depends on
the thickness ∆x3 of the tunnelled layer. This observation is expected because the amplitude of the tunnelled
evanescent waves is reduced by the factor,300

exp

(
−
√
k2

1 −
ω2

c2
∆x3

)
. (34)
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Figure 9: Layered model. As Figure 3 but with an additional thin layer between x3 = 1250 m and x3 = 1300 m. For the sake of
readability, the distances between the interfaces are not proportional because the third layer is only 80 m thick.

The single-sided representation compensates for this amplitude decay. For increasing thickness of the tunnelled
layer, i.e. stronger amplitude decay, the amplitude ratio of tunnelled and propagating waves becomes smaller,
and the numerical errors become larger. To estimate the maximum amplitude decay in the presented example,

we maximise
√
k2

1 − ω2

c2 (see Equation 34) inside the wavenumber regime, ω

c
(3)
p

< |k1| < ω

c
(2)
p

. Thus, we choose

c = c
(3)
p , maximise the frequency ω = 1025× 0.511 s−1 (see Table 1) and maximise the horizontal wavenumber305

k1 = ω

c
(2)
p

. The resulting amplitude decay factor,

exp

(
−
√
k2

1 −
ω2

c2
∆x3

)
= exp


−

√(
1025× 0.511 s−1

2000 m s−1

)2

−
(

1025× 0.511 s−1

2500 m s−1

)2

× 80.0 m




= exp
(
−0.157 m−1 × 80.0 m

)
= 3.51× 10−6, (35)

shows that, for tunnelling through the high-velocity layer of 80.0 m thickness, the smallest amplitude ratio of
tunnelled and propagating waves is already in the order of 10−6.
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Figure 10: Relative error of the retrieved elastodynamic homogeneous Green’s function. As Figure 6, but this time for the model
in Figure 9 with the thin high-velocity layer. Note that also for tunnelled waves (the region between the dashed and dotted red
lines) the relative errors are very small.

4. Discussion and conclusion

4.1. Discussion310

We presented numerical examples of the single-sided homogeneous Green’s function representation in elastic
laterally-invariant media. Such 1D models are relatively simple, but they allow us to model the required fields
with very high numerical accuracy via wavefield extrapolation. Nonetheless, the theory is valid for laterally
varying media, and has already been tested numerically for acoustic waves [25]. In the future, we will extend
the here presented numerical example to elastic laterally varying media.315

Here, we modelled the focusing functions. In practise, for the acoustic situation the focusing functions can
be retrieved from the reflection response combined with a smooth velocity model via the Marchenko method,
which is described by Broggini et al. [26], Van der Neut et al. [27] and others. For example, Wapenaar et al. [25]
presented an acoustic single-sided homogeneous Green’s function representation that uses focusing functions
retrieved via the Marchenko method. Da Costa Filho et al. [10] and Wapenaar [11] extended the Marchenko320

method to elastodynamic waves, however, it still requires more prior knowledge of the medium than in the
acoustic case. In the here presented numerical example, we used numerically modelled elastodynamic focusing
functions to analyse the properties of the elastodynamic single-sided homogeneous Green’s function representa-
tion, independent of approximations of the focusing functions. Currently, we are developing the (elastodynamic)
Marchenko method further to minimise the required amount of prior knowledge of the medium.325

According to the theory, the single-sided representation of the elastodynamic homogeneous Green’s function
is accurate for waves that are non-evanescent at the virtual source and receiver depth levels. In our first nu-
merical experiment, we only consider propagating waves and confirm the theory within numerical precision. In
our second experiment, we investigate wavefield components that are evanescent inside a thin layer, but prop-
agating at the virtual source and receiver depth levels. In this case, the numerical result for the elastodynamic330

homogeneous Green’s function using the single-sided representation performs well also for evanescent waves,
except for a small relative error. The latter experiment is a tunnelling experiment, which performs better if the
tunnelled layer is thin with respect to the inverse of the absolute vertical wavenumber. Although evanescent
wave tunnelling appears to be possible in theory, in practice it will suffer from noise and it will not be possible
to retrieve the evanescent components of the focusing function via the Marchenko method.335
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4.2. Conclusion

We presented a numerical example demonstrating that single-sided access to a medium suffices to correctly
retrieve the non-evanescent components of an elastodynamic homogeneous Green’s function with virtual sources
and virtual receivers inside the medium. Despite the single-sided access to the medium, all events of the
homogeneous Green’s function including primaries, internal multiples and converted waves are represented340

correctly. Waves that are evanescent, either on the recording boundary, or at the virtual source/receiver depth
level, are neglected by the single-sided representation of the elastodynamic homogeneous Green’s function, and
hence, can lead to artefacts. Nevertheless, the evanescent components can be filtered to suppress these artefacts.
The remaining, i.e. propagating, components can be used e.g. for imaging.

In addition, we observed in a numerical experiment that the elastodynamic single-sided homogeneous Green’s345

function representation can tunnel evanescent components through a thin layer. In theory, this tunnelling of
evanescent waves is independent of the thickness of the tunnelled layer. In practise, the single-sided repre-
sentation of tunnelled waves has limited numerical accuracy because it has to compensate for the exponential
amplitude decay of evanescent waves, which is stronger for thicker layers. Hence, the tunnelled layer has to
be sufficiently thin with respect to the inverse of the absolute vertical wavenumber of the evanescent wave.350

Note that we refer to tunnelling because the single-sided representation requires that at the virtual source and
receiver depth levels the elastodynamic homogeneous Green’s function is propagating.

To conclude, we provided a mathematical framework to create virtual wavefield measurements inside a
medium that is only accessible from a single side. We foresee potential applications in the fields of imaging,
time-lapse monitoring, forecasting of the medium response as well as localisation of passive sources.355
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Appendix A. Elastodynamic single-sided homogeneous Green’s function representation

In the following, we summarise the derivation of the elastodynamic single-sided homogeneous Green’s func-
tion representation [6]. First, we show the decomposed reciprocity theorems and introduce the two states that
are used in the derivation. Second, we explain the properties of the focusing function. Third, we derive the365

elastodynamic single-sided homogeneous Green’s function representation by inserting the focusing function and
the Green’s function in the decomposed reciprocity theorems.

Appendix A.1. Reciprocity theorems and the two states

We define a domain D with infinite horizontal extent. The x3 axis is defined along the depth direction as
downward pointing. The domain is enclosed by ∂D0 (x3 = x3,0) at the top, ∂Dr (x3 = x3,r) at the bottom370

and a cylindrical boundary ∂Dcyl with infinite radius at the side. Besides, we introduce two wavefield states A
and B with independent decomposed wavefield vectors pA,B as well as independent decomposed source vectors
sA,B , both in the space-frequency domain. We assume the medium in which these wavefields and sources exist
is lossless, and that the medium parameters of the states A and B are identical inside the domain D. Now we
can formulate the reciprocity theorems of the convolution- and correlation-type,375

∫

∂D
pT
ANpBn3d2x =

∫

D

(
sTANpB + pT

ANsB
)

d3x, (A.1)

∫

∂D
p†AJpBn3d2x =

∫

D

(
s†AJpB + p†AJsB

)
d3x. (A.2)

Here, the dagger symbol † denotes transposition and complex-conjugation. On the boundary ∂D, the derivation
of the reciprocity theorem of the correlation-type (Equation A.2) uses the symmetry relation L†K = JL−1,
which only holds for propagating waves [28]. Note that L = L(x, ω) is the operator matrix that composes
wavefields. Consequently, we neglect evanescent waves on the boundary ∂D. The boundary ∂D consists of the
top and bottom boundaries of the domain, ∂D0∪∂Dr. Integral contributions over the cylindrical boundary ∂Dcyl380

vanish (if the medium has infinite horizontal extent) because the integrand is proportional to one divided by
the radius squared (∝ 1

R2 ) whereas the cylindrical surface is proportional to the radius (∝ R). In the boundary
integrals, n3 is the x3 component of the outward-pointing normal vector on the boundary ∂D (n3 = −1 on ∂D0,
n3 = +1 on ∂Dr).

The single-sided homogeneous Green’s function representation is derived by evaluating the two reciprocity385

theorems using a specific definition of states A and B. First, we define state B in the actual medium. Let the
upper boundary ∂D0 be at x3 = x3,0. Above ∂D0, i.e. x3 ≤ x3,0, the state B medium is reflection-free. Below
∂D0, i.e. x3 > x3,0, the actual medium is inhomogeneous and elastic. We define the state B wavefield to be the
medium’s Green’s function Γ(x,xs, ω) related to a source at xs with x3,s > x3,0, and a receiver at x,

pB = Γ(x,xs, ω), sB = Iδ(x− xs). (A.3)

Second, we define state A. We choose a point xr below ∂D0. The state A medium is defined equal to the state390

B medium for x3,0 ≤ x3 ≤ x3,r, and for x3 ≥ x3,r the state A medium is reflection-free. Often, the state
A medium is referred to as the so-called truncated medium. The state A wavefield is defined as the focusing
function F(x,xr, ω). By definition the source term of the focusing function is zero,

pA = F(x,xr, ω), sA = 0. (A.4)

Appendix A.2. Focusing function

The downgoing part of the focusing function F+(x,xr, ω) is the inverse of a transmission response related395

to sources at the boundary ∂D0 and a receiver at xr,

∫

∂D0

T+(x,x′, ω)F+(x′,xr, ω)d2x′H

∣∣∣∣
x3=x3,r

= I δ(xH − xH,r), (A.5)

and it obeys the focusing condition,

F(x,xr, ω)|x3=x3,r
= I1 δ(xH − xH,r), (A.6)

with F containing F+ and F−, see Equation 16. The upgoing focusing function F−(x,xr, ω) is the reflection
response of the downgoing focusing function in the truncated medium.

In a physical interpretation the focusing function, when transformed to the time domain, is a wavefield400

injected at ∂D0, which focuses at time zero at the location xr. Figure 1b depicts the focusing function in
a cartoon. The solid arrows represent the downgoing focusing function F+. When the downgoing focusing
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function is sent into the truncated medium it is partially reflected, leading to the upgoing focusing function,
indicated by dashed arrows in Figure 1b. In the absence of a coda, the upgoing focusing function would be
reflected downward again. Consequently, the focusing function would not focus at xr. This scenario is prevented405

by sending a coda of the downgoing focusing function into the medium to cancel the downward reflections of
the upgoing focusing function. The coda is also shown in Figure 1b.

For a 3D acoustic medium, the focusing function can be retrieved from the reflection response of the medium
combined with a smooth velocity model via the Marchenko method [e.g. 7, 8, 9]. For an elastic medium, the
focusing function retrieval still requires additional information about the medium [11].410

Appendix A.3. Derivation

We insert states A and state B (Equations A.3, A.4) in the reciprocity theorems of the convolution- and
the correlation-type (Equations A.1, A.2) and evaluate them in the domain Dr bounded by ∂D0 at the top and
by ∂Dr at the bottom. Note that the state A and state B media are identical in the domain Dr, which is a
necessary condition for Equations A.1-A.2. Using the focusing condition of Equation A.6, we find,415

IT1 NΓ(xr,xs, ω)−H(x3,r − x3,s)F
T (xs,xr, ω)N =

∫

∂D0

FT (x,xr, ω)NΓ(x,xs, ω) d2xH , (A.7)

and,

IT1 JΓ∗(xr,xs, ω)−H(x3,r − x3,s)F
T (xs,xr, ω)J =

∫

∂D0

FT (x,xr, ω)JΓ∗(x,xs, ω) d2xH . (A.8)

H(x3) is the Heaviside function. We multiply Equation A.8 by K from the right and substitute the identities
J = NK as well as JK = N,

IT1 NKΓ∗(xr,xs, ω)K−H(x3,r − x3,s)F
T (xs,xr, ω)N =

∫

∂D0

FT (x,xr, ω)NKΓ∗(x,xs, ω)K d2xH . (A.9)

We eliminate the term with the Heaviside function by subtracting Equation A.9 from Equation A.7. The
resulting expression can be written in terms of the homogeneous Green’s function (using Equation 11),420

IT1 NΓh(xr,xs, ω) =

∫

∂D0

FT (x,xr, ω)NΓh(x,xs, ω) d2xH . (A.10)

The multiplication by IT1 N from the left in Equation A.10 deletes the upper submatrices of the homogeneous
Green’s function Γh(xr,xs, ω). We retrieve the complete matrix Γh(xr,xs, ω) by multiplying Equation A.10 by
I2 from the left,

Γ2(xr,xs, ω) = I2I
T
1 NΓh(xr,xs, ω) =

(
O O

G−,+ − (G+,−)∗ G−,− − (G+,+)∗

)
, (A.11)

and by using Equations 11 and 12,

Γh(xr,xs, ω) = Γ2(xr,xs, ω)−KΓ∗2(xr,xs, ω)K. (A.12)

From Equations A.10 and A.11 it follows that the Green’s function Γ2(xr,xs, ω) is defined as,425

Γ2(xr,xs, ω) =

∫

∂D0

I2F
T (x,xr, ω)NΓh(x,xs, ω)d2x. (A.13)

Equations A.12-A.13 together form the single-sided homogeneous Green’s function representation for Γh(xr,xs, ω).
The right-hand side of Equation A.13 contains the homogeneous Green’s function Γh(x,xs, ω), for which we
can obtain a single-sided representation in a similar way. First, in Equation A.10, we substitute x by x′ on ∂D′0
(just above ∂D0), xs by x (on ∂D0) and xr by xs,

IT1 NΓh(xs,x, ω) =

∫

∂D′
0

FT (x′,xs, ω)NΓh(x′,x, ω) d2x′H . (A.14)

Second, we multiply Equation A.14 by N from the right, transpose the result and apply source-receiver reci-430

procity (NΓT
h (xs,x, ω)N = Γh(x,xs, ω)),

Γh(x,xs, ω)I1 =

∫

∂D′
0

Γh(x,x′, ω)F(x′,xs, ω) d2x′H . (A.15)
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Multiplication by matrix I1 deletes part of the homogeneous Green’s function Γh(x,xs, ω). The full matrix
Γh(x,xs, ω) is constructed by multiplying by IT1 from the right,

Γ1(x,xs, ω) = Γh(x,xs, ω)I1I
T
1 =

(
G+,+ − (G−,−)∗ O
G−,+ − (G+,−)∗ O

)
, (A.16)

and by using the definition of the homogeneous Green’s function (Equations 11, 12),

Γh(x,xs, ω) = Γ1(x,xs, ω)−KΓ∗1(x,xs, ω)K, (A.17)

where Γ1(x,xs, ω) is defined as,435

Γ1(x,xs, ω) =

∫

∂D′
0

Γh(x,x′, ω)F(x′,xs, ω)IT1 d2x′. (A.18)

Equations A.17-A.18 together form the single-sided homogeneous Green’s function representation for Γh(x,xs, ω).
In summary, we derived a single-sided representation of the homogeneous Green’s function Γh(xr,xs, ω)

consisting of two steps. In the first step (Equations A.17-A.18) a virtual source is created inside the medium.
In the second step (Equations A.12-A.13) a virtual receiver is created inside the medium.

Appendix B. 20-Layer model440

The numerical experiment of the Section 3.2 is repeated for the 20 layer model shown in Figure B.11.
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Figure B.11: Layered model. The model depth ranges from 0 m to 3000 m, the lateral distance ranges from −12 812.5 m to 12 800 m.
The P-wave velocity, S-wave velocity and density are denoted by cp, cs and ρ, respectively.

We model the reflection response and the required focusing functions to create a virtual source at xs =
(0 m, 1500 m)T and virtual receivers on a grid with a depth range from 0 m to 3000 m and a lateral distance
range from −2000 m to 2000 m. The spatial sampling interval is 12.5 m in both the vertical and horizontal
direction.445

From the reflection response and the focusing function we compute the single-sided representation of the
elastodynamic homogeneous Green’s function Γ̃h(k1, x3,r, x3,s, ω) and apply a k1-ω filter (determined by the
P-wave velocity as a function of the virtual receiver depth x3,r). We compose the result according to Equation

31 and obtain the full elastodynamic homogeneous Green’s function G̃h(k1, x3,r, x3,s, ω). Next, we apply a
transformation to the space-time domain and a convolution with a 30 Hz Ricker wavelet. Figure B.12 displays450

the (v3, f3) component of the resulting elastodynamic homogeneous Green’s function Gv,f
h (xr,xs, t).

To analyse the accuracy of the single-sided representation, we model the elastodynamic homogeneous Green’s
function for an actual source at xs = (0 m, 1500 m)T . We compute the difference between the modelled and
the single-sided representation of the elastodynamic homogeneous Green’s function. To exclude the evanescent
wavefield, we element-wise multiply the residual ∆Γ̃h(k1, x3,r, x3,s, ω) by a k1-ω filter M̃, which is determined by455

the maximum propagation velocity of the medium. Subsequently, we evaluate the normalised Frobenius norm
NF = 1√

4nt4nr
‖M̃ ◦∆Γ̃h(k1, x3,r, x3,s, ω)‖2 and show the result as a function of virtual receiver depth x3,r in
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Figure B.13. The error plot demonstrates that, also in case of the 20 layer model, the single-sided homogeneous
Green’s function representation is accurate for propagating waves within numerical precision.
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Figure B.12: Single-sided representation of the elastodynamic homogeneous Green’s function. The time slices show the result

of the elastodynamic single-sided homogeneous Green’s function representation Gv,f
h (xr,xs, t) related to virtual source (f3) at

xs = (0 m, 1500 m)T and virtual receivers (v3) placed on a grid with a depth range from 0 m to 3000 m and a lateral distance range
from −2000 m to 2000 m. The spatial sampling interval is 12.5 m in both horizontal and vertical direction. The time slices were
multiplied by a gain function (×e1.5|t|) to emphasise the late arrivals.
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Figure B.13: Error analysis. Normalised Frobenius norm NF of the difference ∆Γ̃h(k1, x3,r, x3,s, ω) between the elastodynamic
single-sided homogeneous Green’s function representation (see Figure B.12) and its modelled equivalent as a function of virtual
receiver depth x3,r.
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