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Abstract
A signed network represents how a set of nodes are connected by two logically contradictory types of
links: positive and negative links. In a signed products network, two products can be complementary
(purchased together) or substitutable (purchased instead of each other). Such contradictory types of
linksmay play dramatically different roles in the spreading process of information, opinion, behaviour
etc. In this work, we propose a self-avoiding pruning (SAP) randomwalk on a signed network to
model e.g. a user’s purchase activity on a signed products network. A SAPwalk starts at a random
node. At each step, thewalkermoves to a positive neighbour that is randomly selected, the previously
visited node is removed and each of its negative neighbours are removed independently with a pruning
probability r.We explored both analytically and numerically how signed network topological features
influence the key performance of a SAPwalk: the evolution of the pruned network resulted from the
node removals, the length of a SAPwalk and the visiting probability of each node. Thesefindings in
signed networkmodels are further verified in two real-world signed networks. Ourfindingsmay
inspire the design of recommender systems regarding how recommendations and competitionsmay
influence consumers’ purchases and products’ popularity.

1. Introduction

The concept ofmulti-layer networks has been proposed in 2010 [1–5] to capture different types of relationships/
links among the same set of nodes. For example, the rapid development of the Internet, smart phones and
information technology has facilitated the boost of online platforms, such as Facebook andYouTube, for
communications, creating and sharing information and knowledge. Usersmay participate in one or several
online networks besides their physical contacts forming amulti-layer networkwhere the nodes represent the
users and the links in each layer represent a specific type of connections such as physical contacts and online
follower-followee relationships. Suchmulti-layer networks support the spreading of e.g. information,
behavioural patterns, opinions, fashionwithin each layer respectively and allow aswell these spreading processes
on different layers to interact, introducing new phenomena that dramatically differ from a single spreading
process on a single network [6–19].

Signed networks is a special type of two-layer networks where the same set of nodes are connected by two
logically contradictory types of links, so called positive and negative links. The positive and negative linksmay
represent friendly and antagonistic interactions respectively in a signed social network [20] and represent the
complementary (i.e. when a product e.g. a phone is purchased, the other product e.g. a phone charger is likely to
be bought in addition) and substitutable (two products can be purchased instead of each other such as the
phones from two competing brands) relationships respectively in a signed network of products [21–23].

Whereas all types of links inmostmulti-layer networks such as physical contact and online friendships are
mostly positive thus facilitate the spread of information, opinion and etc the positive and negsative links in a
signed network usually play dramatically different roles in a general spreading process. The randomwalk (RW)
and self-avoidingwalk have been used tomodel users’ purchase activity on a recommendation network of
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products where two products are connected if when a user is purchasing one product the other product is
recommended3 by the online retail platform like Amazon [24–26]. However, thesemodels have not considered
the substitute relations between products and the fact that once a product has been purchased, its substitutable
products will be unlikely to be purchased afterwards. Hence, we propose in this work a self-avoiding pruning
(SAP)walk on a signed network tomodel, e.g. a user’s purchase behaviour on a signed network of products. As
shown infigure 1, a SAPwalk starts at a randomnode in a signed network at t=0. At each step, thewalker
moves from its current location node i to a positive neighbour4 j that is randomly selected, its previous location,
i.e. node i is removed from the signed network5 and each of node iʼs negative neighbours is removed
independently with probability r. Thewalker repeats such steps until there is no new location tomove to. Since
each node pair can be connected by either a positive or negative link, but not both, thewalker could equivalently,
at each step, remove each negative neighbour of its current visiting node i independently with probability r, then
move to a randompositive neighbour j and afterwards remove the previously visited node i.

In the context of a signed product network, a SAPwalkmaymodel the purchase trajectory of a user on the
network of products: initially, the user purchases a randomproduct and afterwards buys a random
complementary product of his/her previous purchase; however, the user will not buy the same product
repetitively and unlikely buy the substitutable products of what he/she has bought. If the negative layer is empty,
ourmodel is equivalent to the self-avoidingwalkmodel of user purchases on the recommendation network of
products i.e. the positive network layer [24–26].

Consider the scenario of a signed social network. A SAPwalk couldmodel the trajectory that awalker
(individual or company) recruits teammembers or collaborators aiming to recruitmemberswith friendly
relations.

In this paper, we aim to understand how features of a signed network influence: (1) the evolution of the
pruned network topology resulted from the node removals in a SAPwalk (2) the length/hopcount of a SAPwalk,
i.e. the number of positive links that a SAPwalker traverses in total and (3) the visiting probability of each node
by a SAPwalk. Taking the product network as an example, we are actually going to explore how the initial signed
product network features influence (1) the sub-network a usermay further explore after several purchase actions
and (2) the probability that a product is purchased and (3)howmany purchases a usermay perform in total in a
SAPwalk. The signed product network thusmay affect both the user purchase behaviour and the popularity or
market share of the products. These questions will befirstly explored on simple signed networkmodels and
afterwards on two real-world signed networks.

Our observations and analysis point out the significant influence of the negative/substitutable links on the
number of purchases of a user, the distribution of the popularity of a product etc. These findingsmay inspire the
design of future recommender systems: which complementary product(s) should be recommended in order to
maximise the total number of purchases of awalker?Withwhich products a product should not compete in
order tomaximise the total purchases of the product?How competition between productsmay affectmarket
share of the products and users’ purchases?

The SAPwalk, as a startingmodel of users’ purchase activities can be improved or extended frommulti-
perspectives, especially asmore rich data becomes available. Section 6 illustrates one possible generalisation of

Figure 1. Schematic plot of SAPwalk on a signed networkwith pruning probability r=1. The signed network is represented on the
top as a two-layer network a negative layer and a positive layer where dashed lines between the two layers emphasis that the nodes are
the same individual across layers and represented at the bottom as a single networkwith two types of links: positive (solid lines) and
negative (dotted lines). At t=0, awalker visits a randomnode in the network, which is in red. At step 1 or t=1, thewalkermoves to a
randompositive neighbour (in red) and the previously visited node and its negative neighbours (in yellow) are removed. Such steps
repeat until thewalker has no node to visit anymore. The pruned network in grey is shrinking over time.

3
If two products are frequently co-purchased by the same users, one product will be recommendedwhen a user is buying the other product.

4
Apositive (negative)neighbour of a node is a neighbour that is connectedwith this node via a positive (negative) link.

5
When a node is removed from the network, all links connected to the node, including both positive and negative links, are also removed.

2
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the SAPmodel where the complementary products of a product are recommended or preferredwith different
strength.

The paper is organised as follows: we introduce the basic definitions related to signed networkmodels and
RWs in section 2. The influence of the signed network features on the aforementioned properties are studied in
signed networkmodels when the pruning probability is r=1 in section 4, andwhen r 1¹ in section 5.Our
observations and understanding obtained in signed networkmodels are further verified in two real-world signed
networks in section 7.We summarise ourfindings and discuss promising future work is in section 8.

2.Definitions

In this section, we introduce basic definitions regarding to signed network representation andmodels, different
types of RWs [26] and their relation to the SAPwalk.

2.1. Signed network representation
In a signed networkwithN nodes, twoN×N adjacencymatrices A+ and A- can be used to represent the
positive and negative connections respectively. Element A 1i j, =+ (A 1i j, =- ) if node i and j are connected via a
positive (negative) link. Or else A 0i j, =+ (A 0i j, =- ). A signed network can be as well represented by a single

adjacencymatrix A A A= -+ -. Hence, each element

A

i j

i j

i j

1, if and are connected via a positive link

1, if and are connected via a negative link

0, if and are not connected
i j, = -

⎧
⎨⎪
⎩⎪

The positive degree d Ai j
N

i j1 ,= å+
=

+ of a node i counts the number of positive neighbours of node i, whereas

the negative degree d Ai j
N

i j1 ,= å-
=

- indicates the number of negative links incident to a node i. As shown in
section 7, both the positive and negative degree of a node in real-world signed networks tend to follow a power
law distribution. Since each node pair can be connected only by one type of links, positive or negative, but not
both, A A 0i j i j, , =- + . An example of signed network is shown infigure 1, which is plotted both as a two-layer
network (above) and a single networkwith two types of links (bottom).

2.2. Signed networkmodels
The simplest signed networks can be constructed by generating the positive layer and negative layer
independently from the same networkmodel or two different networkmodels respectively, such as the Erdős–
Rényi ER and scale-free SF randomnetworkmodel.

Erdős–Rényi ER randomnetwork is one of themost studied randomnetworkmodels that allowmany
problems to be treated analytically [27, 28]. To generate an Erdős–Rényi randomnetworkwithNnodes and
average degree E[D], we start withNnodes and place each link between two nodes that are chosen at random
among theNnodes until a total number L NE D

2
= [ ] of links have been placed. All the links are bidirectional. In

this paper, we chooseN=1000,E[D]=4 for Erdős–Rényi randomnetworks. Erdős–Rényi randomnetworks

are characterised by a Poisson degree distribution, Pr D k
Np

k

ek Np

= =
-

[ ] ( )
!

, whereD is the degree of a random

node in the network, and the link density p E D

N 1
=

-
[ ] .

We use the hidden parametermodel [29–32] to generate scale-free networkswhich have a power-law degree
distribution Pr D k ck= = l-[ ] as observed inmany real-world networks [33–35]. The hidden parameter
model is considered because the degree distribution and the average degree of the generated scale-free networks
are both controllable.We start withN isolated nodes and assign each node i a hidden parameter i i

1h = a , i=1,
2, ...,N. At each step, two nodes i and j are chosen randomly with a probability proportional to ηi and ηj and they
are connected as a link if theywere not connected previously. Such steps are repeated until L E D N

2
= [ ] links have

been added. In this case, the generated randomnetwork has a power-law degree distribution Pr D k=[ ]=
ck 1 1- + a( ). In this paper, we considerN=1000, average degree E[D]=4 andλ=3, such that the ER and SF
networks have the same average degree and a size of the largest connected component close toN.

The positive and negative degree of a node are possibly correlated, actually positively correlated as shown in
the real-world signed networks in section 7.Moreover, triangles with an odd number of positive links, so called
balanced triangles, have been shown to appearmore frequently than the other types of signed triangles [36].

We focus on the simplest signed networkswhere the positive and negative connections are generated
independently from either the same or different networkmodels, i.e. ER or SFmodel. In this case, the positive
and negative degree of a node are uncorrelated.We construct four types of signed networks: ER–ER, ER–SF,
SF–SF and SF–ER,whereN=1000 and the average degree of both layers are 4.Moreover, we consider as well

3
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ER–ERnetworkswhere E D 4=+[ ] and E D 0, 4=-[ ] and 8 to explore the influence of the density of the
negative layer on SAPwalks.

We explored aswell the signed networks ER–ER and SF–SFwhere the positive and negative degree of a node
are positively correlatedwith linear correlation coefficient 0�ρ�1 , E D E D 4= =+ -[ ] [ ] andN=1000.
Such networks are generated as follows. First, an ER (or SF)network is generated as the positive network layer.
Second, set the negative degree of each node the same as its positive degree. Third, select randomly a fraction
1−ρ of the nodes and shuffle randomly their negative degrees. After the shuffling, the generated degree
sequences for the two layers are correlatedwith linear correlation coefficient ρ [37, 38]. Given the negative
degree of each node, construct the negative network layer according to the configurationmodel [39].

3. Relatedwork

Classic RWstarts at a randomnode in an unsigned network. At each step, thewalkermoves from its current
location node i to a neighbour that is selected uniformly at random. In this process, thewalker can visit any node
repeatedly if the network is connected. RWhas beenwidely applied e.g. tomodel network routing protocol,
users’ visit at websites via hyper links and to detect network topology [40–44]. The self-avoiding randomwalk
(SAW) is the same as theRWexcept that at each step thewalkermoves to a randomneighbour that has not yet
been visited. Hence, each node can be visitedmaximally once. A SAWstopswhen thewalker has no further node
to visit anymore. The SAWwasfirst introduced by chemist Froly to study the behaviour of polymers on lattice
graph [45]. SAWhas also been applied to detect protein–protein interaction [46], to detect network structure
which ismore efficient than classic RWby avoiding previously visited nodes in each step [47], and to detect
unidentified network traffic [48].

Performance of these two types of RWs has been analytically studied [49]. The probability that a node is
visited by a classic randomwalker has been shown to be proportional to the degree of that node. The path length
of a SAW is the number of links that have been traversed in total in a SAW.The path length of SAWhas been
studied, especially regarding to the average and the probability distribution [50]. Tishby et alhave found that the
path length of SAWon an Erdős–Rényi randomnetwork follows theGompertz distribution in the tail [51].

RWand SAWhave been used tomodel users’ purchase activity on a recommendation network [24, 25]. In
contrast to RWand SAW, SAPwalk addresses further that products can be substitutable to each other and are
seldomor not purchased by the same user.

Jung et al considered signed RW,where the sign of thewalker changes depending on the signs of the links
thatwalker has traversed [52]. This work addresses, for the first time, that the signed links could influence the
dynamics of thewalk thus thewalkers’ trajectories. The SAPwalk is equivalent to a self-avoiding walk on the
positive network layer if the negative network layer is empty, i.e. no negative links exist.

Opinion diffusion (votermodel) on a signed network has been proposed in [53]. Dynamics of influence
diffusion and influencemaximisation problemon signed networks have been explored [53] beyond the
influencemaximisation problemon single unsigned networks [54]. Viral spreading processes on signed
networks have been studied in [55]. From an analytic point of view, SAPwalk ismore challenging to trace
because the earlier trajectory of awalker influences its futuremoves, in contrast to spreadingmodels where state
transitions of each node depend only on the current states of neighbours and the local dynamic rule.

4. Influence of signed network topology on SAPwalkswhen r=1

4.1. Evolution of the pruned network structure
The SAPwalk on a signed network ismore complex than previous RWmodels. At each step, thewalkermoves to
a randompositive neighbour, and afterwards, not only the previously visited node but also its negative
neighbours are removed/pruned from the signed network. As shown infigure 1, the pruned signed network (in
grey)G(t) is shrinking over time. The pruned signed network at a step t refers to the remaining signed network
after the removal of nodes at step t. The initial signed network corresponds toG(0).

The pruned positive network layer G t+( ) suggests the potential sub-graph of the original signed network
that thewalker could further explore via a SAPwalk. In this section, wewill explore how the topology, especially
the average degree, of the pruned positive network layer is changing over time.We start with the simpler case
when both the initial positive and negative layers are ERnetworks, with possibly different average degree.

Firstly, we examine the case when the initial negative layer is an empty graph, i.e. the average degree
E D t 0 0= =-[ ( ) ] initially is zero. The initial positive network layer possesses the binomial degree distribution,

which approaches the Poisson distribution Pr D k0 ec

k
c0 0

k

= =+ -[ ( ) ] ( )
!

( ), under the condition that the network

is sparse, i.e. the average degree c E D0 0= +( ) [ ( )]of the initial positive layer at t=0 is a constant. The SAPwalk
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on such a signed network is equivalent to a SAWon the positive network layer G 0+( ). Initially, the network has
N t N0= =( ) nodes. At any step t, the pruned positive network layer hasN−tnodes.

An insightful observation of a SAWwalk on an ER random graph in [51] is as follows. A SAWwalker has a
higher probability to visit a neighbour with a higher degree. Take the step t=1 as an example. Starting from the
randomnode that is visited at step t=0, thewalkerwalks to a nodewith degree k in G 0+( ) at step t=1with
probability kPr D k c0 0=+[ ( ) ] ( ). A special property of the Poisson distribution is that kPr D k0 =+[ ( ) ]/
c Pr D k0 0 1= = -+( ) [ ( ) ]. The probability towalk to a nodewith degree k in G 0+( ), thuswith degree k 1- in
G 1+( ) after the removal of the previously visited node and its links is Pr D k0 1= -+[ ( ) ]. The node to visit at
t=1 is as if chosen randomly from G 1+( ).

Note that when a randomly selected node togetherwith its links are removed froman ERnetwork, the
remaining network is again an ERnetworkwith the same link density, i.e. the probability that two nodes are
connected. Hence, the network pruning resulting from a SAPwalk on an ER positive networkwith an empty
negative layer is statistically equivalent to the node removal process upon the initial ER networkwhere at each
step, a node is randomly selected and this node together with its links are removed from the network. The
pruned positive network G t+( ) at any step t is thus an ERnetworkwithN−tnodes and link density
E D N0 1-+[ ( )] ( ). The average degree6 of the pruned positive network at step t is

E D t
E D

N
N t

0

1
1 1=

-
- -+

+
[ ( )] [ ( )] ( ) ( )

when the original signed network is sparse and the sizeN is large.
Furthermore, we consider the casewhere the negative network layerG 0-( ) is not empty but anERnetwork

with its average degree E D 0 0>-[ ( )] . At any step tof a SAPwalk, thenetwork is prunedby the removal of the
previously visitednode and its negativeneighbours. Since the negative andpositive ERnetworks are generated
independently, thenode to visit at each step is as if chosen randomly from thenegative layerG t-( ). From the view
of the negative network layer, a randomnode and its negativeneighbours togetherwith all their negative links are
removed from the negative layer at each step. Thenegativenetwork layerG t-( ) remains approximately anER
networkwith the same link density over time. This is an approximationbecause theneighbour of a randomnode
tends tohave a higher degree. The linkdensity remains approximately the same p E D N0 1» -- -[ ( )] ( ) over
time,whereas at each step ton average, N t N t N t p1 1 1 1- - = + - - -( ) ( ) ( ( ) ) nodes are removed. The
sizeN(t) refers to the average size of the prunednetwork at step tover a largenumber realisations of the stochastic
SAPwalks.Hence, the size of the prunednegative layer,which is aswell the size of theprunedpositive layer follows

N t N
p

p
p

1
1

1
1

1. 2t» - + - - +
-

-
-

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

From the prospective of the positive layer, at step t, the negative neighbours of the previously visited node are as if
chosen randomly frompositive layer G t 1-+( ). The positive layer remains as an ERnetworkwith the same link
density p E D N0 1= -+ +[ ( )] ( ). The average degree of the pruned positive network layer at time t is

E D t N t p N
p

p p
p

p
1 1

1
1 . 3t= - » - + - -+ +

-
+ -

+

-

⎛
⎝⎜

⎞
⎠⎟[ ( )] ( ( ) ) ( ) ( )

When the original signed network is sparse and the sizeN is large

E D t N
p

p p
p

p

1
1 . 4t+ - -+

-
+ -

+

-


⎛
⎝⎜

⎞
⎠⎟[ ( )] ( ) ( )

As shown infigure 2, the average degree E D t+[ ( )]of the positive pruned network as a function of the SAP
walk step can bewell approximated by our theoretical result equation (3), when the initial network is an ER–ER
signed network. The average positive degree E D t+[ ( )]of the pruned network at each step t is proportional to the
size of the pruned network as shown in equation (3). A denser negative layer with a large E D 0-[ ( )], couldmore
effectively prune the network, leading to a fast decrease of the average degree of the pruned positive layer.

ER(positive)-SF(negative) signed networks are pruned slightly less than ER–ERnetworks when both layers
have the same average degree 4 (see figure 2). This can be explained as follows. If a visited node has a large
negative degree, its removal will lead to the removal ofmany nodes, its negative neighbours. If a negative
neighbour of a visited node has a large negative degree, however, the removal of such a negative neighbour
togetherwith its negative linkswill not remove extra nodes butmakes the negative layer sparser, protecting the
network from the pruning. In ER–SF networks, the visited nodes are as if randomly chosen from the negative
layer, thus tend to have a lownegative degree. Nodes with a high negative degree in the SF negative layer are likely

6
The average degree of the pruned positive or negative network layer at a step t refers to the average degree at step t over all the nodes and

over a large number of SAPwalk realisations.
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to be removed as the negative neighbour of a visited node, which reduces the pruning.We expect that the SAP
walks on ER–SF networks whose average degree in the negative layer is E D 0 4=-[ ( )] perform similarly to the
SAPwalks on ER–ERnetworks butwith a lower average degree E D 0-[ ( )] in the negative layer. Hence, we fit the
average degree E D t+[ ( )]of the positive pruned network as a function of the SAPwalk step in ER–SF networks by
our theory (3) for ER–ERnetworks. Figure 2 shows the optimal fit when E D 0 3.4=-[ ( )] . If we remove the top
2%of the nodes with the highest degree from the SF negative network layer whose original average degree is 4,
the resultant average degree becomes 3.4.

Figure 2 shows that the pruned positive network, e.g. E D t+[ ( )], shrinks faster if the initial network is a SF–SF
signed network than ER–SF signed network. This ismainly due to the fact that, a nodewith a large positive
degree is likely to be visited in early steps and removed, significantly reducing the average degree of the positive
pruned layer.However, the negative neighbours of a visited node are as if chosen randomly in the positive layer
and tend to have a lower positive degree in a SF–SF network than in ER–SF network, slightly reducing the
pruning effect.

Hence, a SF or in general a heterogeneous positive layer and a dense negative layer tend to facilitate the
pruning of the networkwhereas a SF (heterogeneous)negative layer reduces the pruning effect.

4.2. Length of a SAPwalk
The length or hopcountH of a SAPwalk counts the total number of positive links, or the total number ofmove
steps, a SAPwalker traverses until it has no other node tomove to. In the context of a signed produce network,
H+1 suggests the total number of purchases of a consumer. Signed networks leading to a largeH+1
promotes the purchases ofmore products.Wewould like to understand how the original signed network
topology influences the length of a SAPwalk.

The probability distribution of the lengthH of a SAPwalk is shown infigure 3(a), for various types of signed
networks. Intuitively, a SAPwalk stopswhen thewalker has no other node tomove to, which is likely to happen
if the current pruned positive network layer is less connected in the sense that no giant connected component
exists but only small connected clusters exist. Hence, a dense initial negative network layer G 0-( ) leads to the
removal ofmany nodes in each step and effectively reduces the connectivity of the positive layer, resulting in a
small lengthH. This explains our observation in ER–ER signed network (figure 3(a)) that a dense G 0-( ) leads to a
small lengthH on average.

The distribution of the lengthH of a SAPwalk on an ER–ERnetwork can be analytically derived. A SAPwalk
has a lengthH=h requires that the node that thewalker visits at step h has degree 0 in the pruned positive layer
G h+( ) and each node visited in a previous step twhere t h0  < , has a positive degree in the corresponding
pruned positive network layer larger than 0. As discussed in section 4.2, the pruned positive layer remains an ER
networkwith the same link density p+ butwith a shrinking sizeN(t). Hence

Figure 2.The average degree E D t+[ ( )]of the positive pruned network as a function of the step t of a SAPwalk on a signed network
withN=1000 nodes.We simulate 100 independent realisations of a SAPwalk on each of the independently generated 100 signed
networks and plot the average and standard deviation (error bar) of E D t+[ ( )] . The average degree of the initial positive layer is always
E D 0 4=+[ ( )] . The SF network has a power exponent 3. The best curve fitting for ER–SF networks by theory equation (3) is obtained
when E D 0 3.4=-[ ( )] .
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Figure 3(a) shows that our theory of the distribution of the length equation (5)well approximates the
simulation results. The distribution of the length of a SAPwalk on an ER–SF network can bewell approximated
by (5), our theory on an ER–ERnetworkwith E D 0 3.4=-[ ( ) ].

Which type of signed networks tend to lead to a long length of a SAPwalk? If we look at the average path
length, the ordering of signed networks from the highest to the lowest follows: E DER ER 0 0=-– ( [ ( ) ]), ER−SF,

E D E DER ER 0 4 , ER ER 0 8= =- -– ( [ ( ) ]) – ( [ ( ) ]), SF−SF, E DSF ER 0 4=-– ( [ ( ) ]). This ordering is consistent
with our previous explanation: a heterogeneous positive layer such as SF network and a dense negative layer
facilitate the pruning of the network leading to a short length of a SAPwalkwhereas a heterogeneous e.g. SF
negative layer reduces the pruning effect attributing to a long length of a SAPwalk.

The length of a SAPwalk actually depends on not only the link density but as well the connectivity of the
pruned positive layer. The negative neighbours of a visited node are as if chosen randomly in the positive layer
since the two layers are independent in connections. Removal of such randomnodes in the positive layer reduces
less the connectivity of the positive layer if the original positive layer is a SF network since SF networks are robust
against randomnode removals compared to ER networks.However, hubs in the positive layer aremore likely to
be visited and removed reducingmore significantly the density of the SF positive layer.

Figure 3.Probability distribution of the length of a SAPwalk on a signed network.
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4.3. Nodal visiting probability
The probability that a node is visited by a SAPwalk implies a certain kind of importance of the node, e.g. the
probability that a product is purchasedwhen the signed network represents the network of products. Intuitively,
a nodewith a higher positive degree in the initial signed network has a higher chance to be visited by a SAPwalk.
Hence, we examine the visiting probability of a node given its initial positive degree, which is shown infigure 4.

Firstly, we analytically derive the nodal visiting probability in ER–ERnetworks. Specifically, we compute the
probability vk that a randomnode jwith degree d k0j =+( ) in the initial positive layer is visited by a SAPwalk

starting at a randomnode.We denoteXt as the node that is visited by a SAPwalk at step t. Since the node j can be
visited at any step 0�t�h by a SAPwalk of length h, we have

v Pr X j H h Pr H h Pr X j H t Pr H t , 6k
h

N

t

h

t
t

N

t
0

0 1

0 0

0 1

 å å å= = = = » =
=

-

= =

-

[ ∣ ] [ ] [ ∣ ] [ ] ( )
( ) ( )

assuming that the probability node j is visited at any step t is independent of the lengthH of thewalk as long as
H�t. The node j is visited at step t by a SAPwalk that has a lengthH�t requires that node j is not visited nor
removed in the previous steps and j is connectedwith the node Xt 1- visited at step t−1.Hence

Figure 4.The probability vk that a node is visited by a SAPwalk versus its degree D k0 =+( ) in the initial positive network is plotted for
all possible degree values k in (a) and for small k in (b). Sincemany nodesmay have the same initial positive degree D k0 =+( ) , we plot
their average visiting probability and the standard deviation.
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where Pr X j N1 00 = =[ ] ( ), t 1jD -+( ) is the degree of node j at step t 1- in the pruned positive network
layer given that j is not visited in thefirst t−1 steps. The nodeXt to be visited at step t aswell as its negative
neighbours are as if randomly chosen from the pruned positive layer Gt 1-

+ . The pruned network remains
approximately (precisely if the negative layer is empty) an ERnetworkwith the same link density p+when the

node visited and its negative neighbours are removed at each step. The ratio
t

N t

1

1 1

jD -

- -

+( )
( )

is the probability that

node j is connectedwith the node Xt 1- visited in the previous step and
p N t

1

1 1- -+( ( ) )
is the probability that the

walker choose node j out of the p N t 1 1- -+( ( ) ) positive neighors of Xt 1- tomove to.We approximate the
degree tjD ¢+( ) by its average using the same symbol, which follows the following recursion for t t¢ < thus before
the node is visited
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where D k0 0j jD = =+ +( ) ( ) . Thefirst (second) term corresponds to the case that node j is (not) connectedwith
the node visited at step t 1¢ - . In thefirst case where j is connectedwith Xt 1¢- , the degree tjD ¢+( ) at step t ¢ could
be reduced from t 1jD ¢ -+( ) due to the removal of Xt 1¢- and its negative neighbours which happen to be a

positive neighbour of node j. In the second case, the degree tjD ¢+( ) decreases from t 1jD ¢ -+( ) due to the removal
of Xt 1¢- ʼs negative neighbours which happen to be a positive neighbour of node j. Combining equations (2) and
(5)–(8), we could derive the probability vk that a randomnode jwith degree d k0j =+( ) in the initial positive layer
is visited by a SAPwalk on an ER–ER signed network.

As shown infigure 4, our numerical solution of nodal visiting probability well approximates the simulation
results especially when the initial negative ER network is sparse e.g. E D 0 0=-[ ( )] .When the initial negative ER
network is denser, the actual visiting probability is lower than the prediction of the numerical solution. This is
because our theoretical analysis assumes that the negative layer remains an ERnetworkwith the same link
density after the removal of each visited node and its negative neighbours, as if all these nodes removed are
chosen randomly. In fact, high negative degree nodes aremore likely to be removed as a negative neighbour of a
visited node. The actual tjD ¢+( ), thus also the visiting probability, is smaller than their corresponding analytic
estimations.

Figure 4 shows that the visiting probability of a node grows approximately linearly with the initial positive
degree of the node in each signed networkmodel. A large slope of a curve infigure 4 features a fast growth of the
nodal visiting probability as a function of the initial positive degree of a node, i.e. a high heterogeneity of nodal
visiting probabilities. Interestingly, the order of the various signed networkmodels in the heterogeneity of nodal
visiting probabilities, the order of these networks in the average SAPwalk length and the order of these signed
networks in the average degree of the pruned positive layer at a given step are the same. A SAPwalk that prunes
the network slowly tends to have a long length and lead to a high heterogeneity in nodal visiting probabilities. A
SAPwalker tends to visit high degree nodes in the pruned positive layer at each step. A longer length of a SAP
walk, thus, attributes to a higher visit probability of a nodewith a large initial positive degree, leading tomore
heterogeneity of nodal visiting probabilities.

4.4. Influence of degree–degree correlation
The positive and negative degree of a node can be correlated. The real-world networks considered in section 7
have a positive correlation between the degrees of a node in the two layers. In this subsection, we explore how the
degree–degree correlation between the positive and negative layersmay influence the aforementioned
performance of a SAPwalk.

We consider ER–ER and SF–SF signed networks with E D E D 4= =+ -[ ] [ ] andN=1000, where the
degree–degree correlation ρ varies within [0,1].We illustrate the three properties of a SAPwalk using the two
extreme case ρ=0 and ρ=1, whereas results fromother ρ values within [0,1] lead to the same observations.
We simulate 100 independent realisations of a SAPwalk on each of the independently generated 100 signed
networks to derive the three properties of SAPwalks.
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Figure 5. (a)The average degree E D t+[ ( )]of the positive pruned network as a function of the step t of a SAPwalk (b)probability
distribution of the length of a SAPwalk and (c) the probability vk that a node is visited by a SAPwalk versus its degree D k0 =+( ) in the
initial positive network, when the positive and negative degrees of a node are uncorrelated ρ=0 and correlated ρ=1 respectively.
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In both ER–ER and SF–SF signed networks, wefind that a positive degree–degree correlation evidently
facilitates the pruning of the network, reduces the average path length and leads to amore homogeneous visiting
probabilities among the nodes (see figures 5(a)–(c)). Such effects aremore evident in SF–SF networks than in
ER–ERnetworks and can be explained as follows.When the degree–degree correlation is positive, a high degree
node in the positive layer tends to have a high degree in the negative layer. The high positive degree of such a
node tends to let thewalker visit the node in earlier steps. After being visited, the node togetherwith itsmany
negative neighbours, are removed, pruning the network significantly. The high negative degree of such a node
tends to let the node be removed as a negative neighbour of a node that has been visited. The removal of such a
node together with itsmany positive links significantly prunes the positive layer and reduces the connectivity.

4.5. Influence of the community structure in signed networks
Beyond the degree distribution and correlation in the two layers of a network, we explore further how the
community structure of a signed networkmay influence the SAPwalks.We consider theGirvan andNewman
(GN)networks tomodel networkswith a community structure [56]. EachGNnetwork hasN=1000 nodes and
average degree 4, the same as our ER and SF networkmodels. TheNnodes are divided into four groups, each
with 250 nodes.Within each group, each of the E[Din]·N/8 links is placed between two nodes that are
randomly selected from the group.On average, each node hasE[Din] links connecting it to the nodes within the
same group.We place further each of theE[Dout]·N/2 links between two nodes that are randomly chosen from
theNnodes but fromdifferent groups. The average out-degree E[Dout] is the expected number of links that
connect a node to the other nodes from a different group. The average degree 4 requires E D E D 4in out+ =[ ] [ ] .
WhenE[Dout]=0, theGNnetwork is composed of four isolated ERnetworks.WhenE[Dout]=3, theGN
network becomes an ERnetwork. AGNnetworkwithE[Dout]<3 represents a networkwith a community
structure where nodeswithin the same group aremore likely connected than nodes fromdifferent groups.

We focus on the case when the two layers of a signed network are independent. In this case, the SAPwalks
perform similarly on ER–GN (negative layer)networks and onER–ERnetworks, since the visited nodes are as if
randomly chosen from the negative layer.When the positive layer has the community structure, SAPwalks
performquite differently. As shown infigure 6, as theGN–ERnetworks becomemoremodular in the positive
layer i.e. E Dout[ ]becomes smaller, the average length of a SAPwalk becomes smaller and the nodal visiting
probabilities become less heterogeneous. Consider the case when E[Dout]=0. The SAPwalkerwalks only
within the sub-graph of one group, limiting the length of a SAPwalk. The length of a SAPwalk in this case equals
that of a SAPwalk on an ER–ERnetwork ofN/4 nodes, where E D 0 4=+[ ( )] and E D 0 1=-[ ( )] , because the
sub-graph of the ERnegative layer that corresponds to the groupwhere thewalker resides is again an ERnetwork
with the same link density. Hence, the distribution of the SAPwalk length and the nodal visiting probabilities on
GN–ERnetworks when E D 0out =[ ] can be analytically deduced by our theories for ER–ERnetworks. An
interesting observation is that as E Dout[ ] increases slightly from0, the average length of a SAP increases
significantly as shown infigure 6(a). The influence of the community structure of the positive layer on a SAP
walk is evident when the community structure is significant.When the length of awalk becomes shorter as the
positive layer becomesmoremodular, the nodal visiting probabilities becomemore homogeneous, which is
consistent with our previous findings. The influence of the community structure in the positive layer on the
pruning speed, i.e. the average degree E D t+[ ( )]of the positive pruned network as a function of the step t, is not
evident. This ismainly due to the independence between the two layers: the negative neighbours of a visited node
are as if chosen randomly from the positive layers.

When the two layers are correlated, the influence of the community structure on SAPwalks is non-trivial.
Consider, for example, that both layers are GNnetworkswith E D 0 0.4=-[ ( )] and follow the same grouping
(any two nodes that belong to the same group in one layer are alsowithin the same group in the other layer). The
average length of a SAPwalk is further reduced toE[H]=28.31 due to the correlated community structure in
the negative layer.

5. Influence of signed network topology on SAPwalkwhen r 1¹

In this section, we consider the general case of the SAPwalk that each negative neighbour of a visited node is
removed independently with a probability rwhere 0�r�1.

Wefirst consider the ER–ER and SF–SF networks where the positive and negative layers are generated
independently.

The SAPwalkwith a pruning probability r on anER–ER signed networkwhere the average degree of the two
layers are E D+[ ]and E D-[ ] respectively is equivalent to the SAPwalkwith pruning probability 1 on an ER–ER
signed networkwhose average degree in the two layers are E D+[ ]and E D r-[ ] · respectively. Scaling the
pruning probability by r in a SAPwalkmodel is equivalent to scaling the link density of the negative layer by r.
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Figure 6. (a)The average length of a SAPwalk as a function of E[Dout]=3 of the positive GNnetwork layer, (b) the distribution of the
length of a SAPwalk and (c) the probability vk that a node is visited by a SAPwalk versus its degree D k0 =+( ) in the initial positive
network. The SAPwalk is on aGN–ERnetworkwithN=1000 nodes and E D E D0 0 4= =+ -[ ( )] [ ( )] .
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Hence, all our theoretical results in section 4 for SAPwalkswith r=1 onER–ERnetworks can be extended to
the SAPwalkswith an arbitrary pruning probability r onER–ERnetworks.

However, such equivalence does not holdwhen the positive and negative degrees of a node are correlated nor
in SF–SF networks.We take the average path length of a SAPwalk as an example and explore the effect of the
pruning probability p and the degree–degree correlation ρ on the average path length. As shown infigure 7, the
effect of the pruning probability on the average hopcount ismore evident as the degree–degree correlation
increases.When the degree–degree correlation is high, nodes with a high degree in both layers tend to be
removed in early steps of awalk. In this case, a smaller pruning probability could effectively reduce the pruning.

6.Generalisation of the SAPwalkmodel

The SAPwalkmodel can be generalised frommultiple perspectives to better approximate real-world purchase
behaviour of users.We illustrate one possible generalisation to take into account the heterogeneous preference
of a user over the complementary/recommended products. It has been observed that customers tend to prefer
popular projects andmore engaged customers, i.e. thosewho have purchased/walkedmore, aremore likely to

Figure 7.Phase diagramof the average path length E[H] of a SAPwalk. Dependence of the average path length on the pruning
probability r and the degree–degree correlation ρ. The colour bar in the right represents the average path length. The underlying
signed network is an ER–ERnetwork in (a) and SF–SF in (b)with E D E D0 0 4= =+ -[ ( )] [ ( )] . For each set of parameters, the average
path length is obtained as the average of 1000 SAPwalks on each of the 100 signed networks.
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Figure 8.Comparison of the SAPwalkwhen γ=0 and the generalised SAPwalkwhen γ=1 in (a) the average degree E D t+[ ( )]of
the positive pruned network as a function of the step t of awalk (b) the probability distribution of the length of a walk and (c) the
probability vk that a node is visited by awalk versus its degree D k0 =+( ) in the initial positive network. The two layers are
independent in both ER–ER and SF–SF signed networks.
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buy niche or less popular products [57].We have shown that the popularity of a product, i.e. the visiting
probability of the corresponding node, grows approximately linearly with its initial positive degree. Hence, we
consider the generalisedmodel where the probability for awalker at step t residing at node i towalk to a positive
neighbour j of i is proportional to d 0j

t 1g+ +( ) ( ) where d 0j
+( ) is the positive degree of node j in the initial signed

network and 0g > . In this case, a nodewith a high initial positive degree is preferred, whereas such preference
becomesweaker as thewalkermovesmore, i.e. becomesmore engaged. Our classic SAPmodel discussed earlier
corresponds to the case when γ=0. Infigure 8, we compare the threewalk features of our classicmodel when
γ=0 and the generalisedmodel when γ=1.Wefind that such preference of visiting a nodewith a high initial
positive degree leads to a longer walk on average andmore heterogeneous nodal visiting probabilities. A node
with a high initial positive degree is visitedmore thus becomesmore popular when γ=1.

The SAPmodel can be aswell extended by letting the probability for awalker at step t residing at node i to
walk to a positive neighbour j of i be proportional to the popularity of j, i.e. the number of walkers that have
visited node j and such preference decreases as awalkermovesmore.We hypothesise that a nodewith a large
initial positive degreemay becomemore andmore popular over time, based on our observations in the SAPwalk
with γ=1.

7. SAPwalks on real-world signed networks

Finally, we choose two real-world signed networks and explore their network features and how these features
may influence the SAPwalks on these networks.We consider theWikipedia adminship election network and an
Extracted Epinions social network [58]. InWiki network, two nodes connected by a positive (negative) link
suggest that the two users support (reject) each other to be an administrator. A positive (negative) link in
Epinions networkmeans that the corresponding two users trust (distrust) each other’s reviews.

The Epinions network is far larger thanWiki.We have sampled the Epinions network byfirstly removing all
nodes with zero positive degree or zero negative degree and then randomly selecting the same number of nodes
as inWiki from the largest connected positive layer of Epinions together with the positive and negative links
among these nodes. Basic topological features of these two networks of the same size are shown in table 1. The
degree correlation ρDmeasures the linear correlation coefficient between the positive degree and negative degree
of a node. The positive and negative layers tend to be positively correlated in their degrees, i.e. ρD>0, instead of
independent as assumed in our signed networkmodels.

The degree distributions of the positive and negative layer in bothWiki and Epinions are shown infigure 9
are highly heterogeneous, closer to a scale-free distribution than a Poisson distribution.

Upon each real-world signed network, we simulate independently 105 SAPwalks and investigate their key
properties discussed earlier. The negative network layer has beenmissing inmodelling the purchase behaviour
of a user. Hence, we consider as well the SAPwalk on these two real-world networks, where, however, the
negative network layer is replaced as an empty networkwithout any link.

Figure 10(a) shows that the positive layer is pruned or shrinks faster inWiki than in Epinions network.Wiki
has a shorter length of SAPwalk on average than Epinions, as shown infigure 10(b). One explanation for both
observations is thatWiki has a slightly denser initial negative layer (larger E D 0-[ ( )]) than Epinions as shown in
table 1, which removes on averagemore nodes per step.Moreover, the high degree correlation ρD inWiki
contributes as well to a fast pruning in the positive layer and a short length of SAPwalks.

When the negative layer is empty, i.e. E D 0 0=-[ ( ) ], the positive layer is pruned far slower, the average path
lengthE[H] is far larger. A SAPwalk on a signed networkwith an empty negative layer is equivalent to a self-
avoidingwalk on the positive network layer. In this case, the Epinion positive layer leads to a longer average path
length than theWiki positive layer. This is likely due to the higher standard deviation of the degree in theWiki
positive layer 49.55 than that in the Epinion 45.58 positive layer. A higher degree standard deviation implies an
earlier visit of the hubs, whose removalmay significantly prune the network and reduce the connectivity.

The visiting probability of a node versus its initial positive degree tends to have a larger slope in Epinions
than that inWiki. This is consistent with our observations in signed networkmodels that the visiting probability
vk increases faster with k in a signed network that leads to a higher average degree E D t+[ ( )]of the pruned
positive layer and a longer length E[H] of SAPwalks.

Table 1.Topological parameters of real networks.

Network Nodes Links fraction of ‘+’links fraction of ‘-’links E[D+] E[D-] Dr

Wiki 6186 97 874 78 402 (80.11%) 19 472 (19.89%) 25.35 6.30 0.62

Epinions 6186 92 091 73 062 (79.33%) 19 029 (20.67%) 23.62 6.15 0.35
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The negative network layer dramatically prunes a signed network and reduces length of a SAPwalk.
Moreover, a heterogeneous degree distribution in the positive layer and a positive degree–degree correlation
between positive and negative layersmay further enhance the pruning effect, shorten the SAPwalk length and
facilitate homogeneous visiting probabilities of nodes. These effects have been observed consistently in both
networkmodels and real-world networks.

8. Conclusion

Classic spreadingmodels assume that all network links are beneficial for information diffusion.However, the
positive and negative links in a signed networkmay facilitate and prevent the contagion of information, opinion
and behaviour etc respectively. As a start, we propose a SAPRWon a signed network tomodel, for example, a
user’s purchase activity on a signed network of products.We unravel the significant effect of the negative links
and the signed network structure in general on SAPwalks.We found that amore heterogeneous degree
distribution of the positive network layer such as the power-law distribution, a denser negative layer and a high
degree–degree correlation between the two layers tend to prune the network faster, suppress the length of SAP
walks and reduce the heterogeneity in nodal visiting probabilities.When the two layers are independent,
however, amore heterogeneous degree distribution of the negative network layer tends to slow down the
pruning and contribute to a longer length of SAPwalks andmore heterogeneity in nodal visiting probabilities.
These observations has been obtained fromboth signed networkmodels and real-world signed network and
analytically proved in signed ER–ERnetworks. Real-world networks tend to have a heterogeneous degree
distribution in the positive layer and a positive degree–degree correlation, which reduce total purchases of users

Figure 9.Degree distribution of real-world signed networks.
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Figure 10. (a)The average degree E D t+[ ( )]of the positive pruned network as a function of the step t of a SAPwalk on a real-world
signed network. (b)Probability distribution of the length of a SAPwalk on a signed real-world network. (c)The probability vk that a
node is visited by a SAPwalk versus its degree D k0 =+( ) in the initial positive network.
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but increase the homogeneity of the popularity of products. Our findings point out the possibility to influence
users’ purchases and product popularity via recommendations and competitions.

It is interesting to explore further the influence of other key features.We have shown that the community
structure in the positive network layermay reduce the length of a SAPwalk and the heterogeneity of nodal
visiting probabilities. Beyond the community structure, balanced triangles are shown to appearmore frequently
than unbalanced ones in real-world networks. The effect of the fraction of balanced triangles on SAPwalks and
other dynamic processes remains interesting to investigate.We could as well to improve the SAPwalk towards a
more realisticmodel of e.g. user’s purchase activity, by taking into account, for example, the choice of the initial
node to visit, the possibility that awalker/usermay stop thewalk earlier and the heterogeneity of the links
preference over recommendations. Optimisation problems that are interesting to be further explored include
how to add nodes to an existing signed network, how to add positive links via e.g. recommendations or how to
recommend a product path/sub-graph tomaximise the visiting probabilities of a group of nodes.
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