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Abstract

A signed network represents how a set of nodes are connected by two logically contradictory types of
links: positive and negative links. In a signed products network, two products can be complementary
(purchased together) or substitutable (purchased instead of each other). Such contradictory types of
links may play dramatically different roles in the spreading process of information, opinion, behaviour
etc. In this work, we propose a self-avoiding pruning (SAP) random walk on a signed network to
model e.g. a user’s purchase activity on a signed products network. A SAP walk starts at a random
node. At each step, the walker moves to a positive neighbour that is randomly selected, the previously
visited node is removed and each of its negative neighbours are removed independently with a pruning
probability r. We explored both analytically and numerically how signed network topological features
influence the key performance of a SAP walk: the evolution of the pruned network resulted from the
node removals, the length of a SAP walk and the visiting probability of each node. These findings in
signed network models are further verified in two real-world signed networks. Our findings may
inspire the design of reccommender systems regarding how recommendations and competitions may
influence consumers’ purchases and products’ popularity.

1. Introduction

The concept of multi-layer networks has been proposed in 2010 [1-5] to capture different types of relationships/
links among the same set of nodes. For example, the rapid development of the Internet, smart phones and
information technology has facilitated the boost of online platforms, such as Facebook and YouTube, for
communications, creating and sharing information and knowledge. Users may participate in one or several
online networks besides their physical contacts forming a multi-layer network where the nodes represent the
users and the links in each layer represent a specific type of connections such as physical contacts and online
follower-followee relationships. Such multi-layer networks support the spreading of e.g. information,
behavioural patterns, opinions, fashion within each layer respectively and allow as well these spreading processes
on different layers to interact, introducing new phenomena that dramatically differ from a single spreading
process on a single network [6—19].

Signed networks is a special type of two-layer networks where the same set of nodes are connected by two
logically contradictory types of links, so called positive and negative links. The positive and negative links may
represent friendly and antagonistic interactions respectively in a signed social network [20] and represent the
complementary (i.e. when a product e.g. a phone is purchased, the other product e.g. a phone charger is likely to
be bought in addition) and substitutable (two products can be purchased instead of each other such as the
phones from two competing brands) relationships respectively in a signed network of products [21-23].

Whereas all types of links in most multi-layer networks such as physical contact and online friendships are
mostly positive thus facilitate the spread of information, opinion and etc the positive and negsative links in a
signed network usually play dramatically different roles in a general spreading process. The random walk (RW)
and self-avoiding walk have been used to model users’ purchase activity on a recommendation network of
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Figure 1. Schematic plot of SAP walk on a signed network with pruning probability = 1. The signed network is represented on the
top as a two-layer network a negative layer and a positive layer where dashed lines between the two layers emphasis that the nodes are
the same individual across layers and represented at the bottom as a single network with two types of links: positive (solid lines) and
negative (dotted lines). Att = 0, a walker visits arandom node in the network, which is in red. Atstep 1 or t = 1, the walker moves to a
random positive neighbour (in red) and the previously visited node and its negative neighbours (in yellow) are removed. Such steps
repeat until the walker has no node to visit any more. The pruned network in grey is shrinking over time.

products where two products are connected if when a user is purchasing one product the other product is
recommended’ by the online retail platform like Amazon [24—26]. However, these models have not considered
the substitute relations between products and the fact that once a product has been purchased, its substitutable
products will be unlikely to be purchased afterwards. Hence, we propose in this work a self-avoiding pruning
(SAP) walk on a signed network to model, e.g. a user’s purchase behaviour on a signed network of products. As
shown in figure 1, a SAP walk starts at arandom node in a signed network at ¢+ = 0. At each step, the walker
moves from its current location node i to a positive neighbour” j that is randomly selected, its previous location,
i.e. node iis removed from the signed network” and each of node ’s negative neighbours is removed
independently with probability r. The walker repeats such steps until there is no new location to move to. Since
each node pair can be connected by either a positive or negative link, but not both, the walker could equivalently,
at each step, remove each negative neighbour of its current visiting node i independently with probability r, then
move to a random positive neighbour jand afterwards remove the previously visited node i.

In the context of a signed product network, a SAP walk may model the purchase trajectory of a user on the
network of products: initially, the user purchases a random product and afterwards buys arandom
complementary product of his/her previous purchase; however, the user will not buy the same product
repetitively and unlikely buy the substitutable products of what he/she has bought. If the negative layer is empty,
our model is equivalent to the self-avoiding walk model of user purchases on the reccommendation network of
products i.e. the positive network layer [24-26].

Consider the scenario of a signed social network. A SAP walk could model the trajectory that a walker
(individual or company) recruits team members or collaborators aiming to recruit members with friendly
relations.

In this paper, we aim to understand how features of a signed network influence: (1) the evolution of the
pruned network topology resulted from the node removals in a SAP walk (2) the length /hopcount of a SAP walk,
i.e. the number of positive links that a SAP walker traverses in total and (3) the visiting probability of each node
by a SAP walk. Taking the product network as an example, we are actually going to explore how the initial signed
product network features influence (1) the sub-network a user may further explore after several purchase actions
and (2) the probability that a product is purchased and (3) how many purchases a user may performin totalina
SAP walk. The signed product network thus may affect both the user purchase behaviour and the popularity or
market share of the products. These questions will be firstly explored on simple signed network models and
afterwards on two real-world signed networks.

Our observations and analysis point out the significant influence of the negative/substitutable links on the
number of purchases of a user, the distribution of the popularity of a product etc. These findings may inspire the
design of future recommender systems: which complementary product(s) should be recommended in order to
maximise the total number of purchases of a walker? With which products a product should not compete in
order to maximise the total purchases of the product? How competition between products may affect market
share of the products and users’ purchases?

The SAP walk, as a starting model of users’ purchase activities can be improved or extended from multi-
perspectives, especially as more rich data becomes available. Section 6 illustrates one possible generalisation of

3 . . .
If two products are frequently co-purchased by the same users, one product will be recommended when a user is buying the other product.
A positive (negative) neighbour of a node is a neighbour that is connected with this node via a positive (negative) link.

When a node is removed from the network, all links connected to the node, including both positive and negative links, are also removed.
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the SAP model where the complementary products of a product are recommended or preferred with different
strength.

The paper is organised as follows: we introduce the basic definitions related to signed network models and
RWsin section 2. The influence of the signed network features on the aforementioned properties are studied in
signed network models when the pruning probabilityis r = 1in section 4, and when r = 1insection 5. Our
observations and understanding obtained in signed network models are further verified in two real-world signed
networks in section 7. We summarise our findings and discuss promising future work is in section 8.

2. Definitions

In this section, we introduce basic definitions regarding to signed network representation and models, different
types of RWs [26] and their relation to the SAP walk.

2.1. Signed network representation

In a signed network with N nodes, two N x Nadjacency matrices A" and A~ can be used to represent the
positive and negative connections respectively. Element Aij- = 1(A;; = Difnodeiand;jare connected viaa
positive (negative) link. Or else Aifj = 0 (A;; = 0). Asigned network can be as well represented by a single
adjacency matrix A = A" — A~. Hence, each element

1,if i and j are connected via a positive link
Ajj =4 —1,if i and j are connected via a negative link
0, if 7 and j are not connected

The positive degree d;” = Z;-\]: 1A ofanode i counts the number of positive neighbours of node i, whereas

the negative degree d;” = > j\’: 1 A indicates the number of negative links incident to anode i. As shown in
section 7, both the positive and negative degree of a node in real-world signed networks tend to follow a power
law distribution. Since each node pair can be connected only by one type of links, positive or negative, but not
both, A,;A:; = 0. An example of signed network is shown in figure 1, which is plotted both as a two-layer
network (above) and a single network with two types of links (bottom).

2.2. Signed network models
The simplest signed networks can be constructed by generating the positive layer and negative layer
independently from the same network model or two different network models respectively, such as the Erd6s—
Rényi ER and scale-free SF random network model.

Erd6s—Rényi ER random network is one of the most studied random network models that allow many
problems to be treated analytically [27, 28]. To generate an Erd6s—Rényi random network with Nnodes and

average degree E[ D], we start with N nodes and place each link between two nodes that are chosen at random
NE[D]

among the Nnodes until a total number L = == oflinks have been placed. All the links are bidirectional. In
this paper, we choose N = 1000, E[D] = 4 for Erd6s—Rényi random networks. Erd6s—Rényi random networks
(Np)Fe ™

are characterised by a Poisson degree distribution, Pr[D = k] =

node in the network, and the link density p = %.

We use the hidden parameter model [29-32] to generate scale-free networks which have a power-law degree
distribution Pr[D = k] = ck~* as observed in many real-world networks [33-35]. The hidden parameter
model is considered because the degree distribution and the average degree of the generated scale-free networks

are both controllable. We start with Nisolated nodes and assign each node i a hidden parameter 7, = l_%, i=1,

o where D is the degree of arandom

2, ..., N. At each step, two nodes i and j are chosen randomly with a probability proportional to 7;and 7j;and they
are connected as a link if they were not connected previously. Such steps are repeated until L = @ links have
been added. In this case, the generated random network has a power-law degree distribution Pr[D = k]=
ck—0+), In this paper, we consider N = 1000, average degree E[D] = 4 and A = 3, such that the ER and SF
networks have the same average degree and a size of the largest connected component close to N.

The positive and negative degree of a node are possibly correlated, actually positively correlated as shown in
the real-world signed networks in section 7. Moreover, triangles with an odd number of positive links, so called
balanced triangles, have been shown to appear more frequently than the other types of signed triangles [36].

We focus on the simplest signed networks where the positive and negative connections are generated
independently from either the same or different network models, i.e. ER or SF model. In this case, the positive
and negative degree of a node are uncorrelated. We construct four types of signed networks: ER-ER, ER-SF,
SE-SF and SF-ER, where N = 1000 and the average degree of both layers are 4. Moreover, we consider as well

3
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ER-ER networks where E[D*] = 4and E[D"] = 0, 4 and 8 to explore the influence of the density of the
negative layer on SAP walks.

We explored as well the signed networks ER-ER and SF-SF where the positive and negative degree of a node
are positively correlated with linear correlation coefficient0 < p < 1, E[D*] = E[D"] = 4and N = 1000.
Such networks are generated as follows. First, an ER (or SF) network is generated as the positive network layer.
Second, set the negative degree of each node the same as its positive degree. Third, select randomly a fraction
1 — pofthenodes and shuffle randomly their negative degrees. After the shuffling, the generated degree
sequences for the two layers are correlated with linear correlation coefficient p [37, 38]. Given the negative
degree of each node, construct the negative network layer according to the configuration model [39].

3. Related work

Classic RW starts at a random node in an unsigned network. At each step, the walker moves from its current
location node i to a neighbour that is selected uniformly at random. In this process, the walker can visit any node
repeatedly if the network is connected. RW has been widely applied e.g. to model network routing protocol,
users’ visit at websites via hyper links and to detect network topology [40—44]. The self-avoiding random walk
(SAW) is the same as the RW except that at each step the walker moves to a random neighbour that has not yet
been visited. Hence, each node can be visited maximally once. A SAW stops when the walker has no further node
to visitany more. The SAW was first introduced by chemist Froly to study the behaviour of polymers on lattice
graph [45]. SAW has also been applied to detect protein—protein interaction [46], to detect network structure
which is more efficient than classic RW by avoiding previously visited nodes in each step [47], and to detect
unidentified network traffic [48].

Performance of these two types of RWs has been analytically studied [49]. The probability that a node is
visited by a classic random walker has been shown to be proportional to the degree of that node. The path length
ofa SAW is the number of links that have been traversed in total in a SAW. The path length of SAW has been
studied, especially regarding to the average and the probability distribution [50]. Tishby et al have found that the
path length of SAW on an Erd6s—Rényi random network follows the Gompertz distribution in the tail [51].

RW and SAW have been used to model users’ purchase activity on a recommendation network [24, 25]. In
contrast to RW and SAW, SAP walk addresses further that products can be substitutable to each other and are
seldom or not purchased by the same user.

Jung et al considered signed RW, where the sign of the walker changes depending on the signs of the links
that walker has traversed [52]. This work addresses, for the first time, that the signed links could influence the
dynamics of the walk thus the walkers’ trajectories. The SAP walk is equivalent to a self-avoiding walk on the
positive network layer if the negative network layer is empty, i.e. no negative links exist.

Opinion diffusion (voter model) on a signed network has been proposed in [53]. Dynamics of influence
diffusion and influence maximisation problem on signed networks have been explored [53] beyond the
influence maximisation problem on single unsigned networks [54]. Viral spreading processes on signed
networks have been studied in [55]. From an analytic point of view, SAP walk is more challenging to trace
because the earlier trajectory of a walker influences its future moves, in contrast to spreading models where state
transitions of each node depend only on the current states of neighbours and the local dynamic rule.

4. Influence of signed network topology on SAP walks whenr = 1

4.1. Evolution of the pruned network structure

The SAP walk on a signed network is more complex than previous RW models. At each step, the walker moves to
arandom positive neighbour, and afterwards, not only the previously visited node but also its negative
neighbours are removed,/pruned from the signed network. As shown in figure 1, the pruned signed network (in
grey) G(#) is shrinking over time. The pruned signed network at a step ¢ refers to the remaining signed network
after the removal of nodes at step . The initial signed network corresponds to G(0).

The pruned positive network layer G*(¢) suggests the potential sub-graph of the original signed network
that the walker could further explore via a SAP walk. In this section, we will explore how the topology, especially
the average degree, of the pruned positive network layer is changing over time. We start with the simpler case
when both the initial positive and negative layers are ER networks, with possibly different average degree.

Firstly, we examine the case when the initial negative layer is an empty graph, i.e. the average degree
E[D~(t = 0) = 0]initially is zero. The initial positive network layer possesses the binomial degree distribution,

which approaches the Poisson distribution Pr[D*(0) = k] = %Oy)ke‘f(o), under the condition that the network
is sparse, i.e. the average degree ¢ (0) = E[D"(0)] of the initial positive layer att = 0is a constant. The SAP walk

4
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on such a signed network is equivalent to a SAW on the positive network layer G*(0). Initially, the network has
N (t = 0) = N nodes. Atany step t, the pruned positive network layer has N — #nodes.

An insightful observation of a SAW walk on an ER random graph in [51] is as follows. A SAW walker has a
higher probability to visit a neighbour with a higher degree. Take the step t = 1 as an example. Starting from the
random node that is visited at step t = 0, the walker walks to a node with degree kin G*(0) atstep t = 1 with
probability kPr[D(0) = k] /c(0). A special property of the Poisson distribution is that kPr [D*(0) = k]/

c(0) = Pr[D*(0) = k — 1]. The probability to walk to a node with degree k in G*(0), thus with degree k — 1in
GT(1) after the removal of the previously visited node and its links is Pr[D*(0) = k — 1]. The node to visit at
t = lisasifchosen randomly from G*(1).

Note that when a randomly selected node together with its links are removed from an ER network, the
remaining network is again an ER network with the same link density, i.e. the probability that two nodes are
connected. Hence, the network pruning resulting from a SAP walk on an ER positive network with an empty
negative layer is statistically equivalent to the node removal process upon the initial ER network where at each
step, anode is randomly selected and this node together with its links are removed from the network. The
pruned positive network G () atany step ¢is thus an ER network with N — ¢nodes and link density
E[D*(0)]/(N — 1). Theaverage degree® of the pruned positive network at step tis
E[D*(0)]

N-1

E[D*(1)] = N—-t-1) (¢Y)
when the original signed network is sparse and the size N'is large.

Furthermore, we consider the case where the negative network layer G~(0) is not empty but an ER network
with its average degree E[D~(0)] > 0. Atany step tof a SAP walk, the network is pruned by the removal of the
previously visited node and its negative neighbours. Since the negative and positive ER networks are generated
independently, the node to visit at each step is as if chosen randomly from the negative layer G~(¢). From the view
of the negative network layer, a random node and its negative neighbours together with all their negative links are
removed from the negative layer at each step. The negative network layer G~(¢) remains approximately an ER
network with the same link density over time. This is an approximation because the neighbour of a random node
tends to have a higher degree. The link density remains approximately the same p~ ~ E[D~(0)] /(N — 1) over
time, whereas at each step tonaverage, N(t — 1) — N(t) = 1 + (N(t — 1) — 1)p~ nodesare removed. The
size N(¥) refers to the average size of the pruned network at step f over a large number realisations of the stochastic
SAP walks. Hence, the size of the pruned negative layer, which is as well the size of the pruned positive layer follows

1 1
N(t)z(N—1+—](l—p‘)t——+l. )
p p
From the prospective of the positive layer, at step t, the negative neighbours of the previously visited node are as if

chosen randomly from positive layer G*(+ — 1). The positive layer remains as an ER network with the same link
density pt = E[D*(0)] /(N — 1). The average degree of the pruned positive network layer at time ¢ is

+
E[D*(1)] = (N() — Dp* ~ (N -1+ L_)PJ’(l —p) - p__ 3
p p
When the original signed network is sparse and the size Nislarge
+ L)+ Sy P
E[D™(1)] = N+;P(1—P)—;~ 4)

As shown in figure 2, the average degree E[D(¢)] of the positive pruned network as a function of the SAP
walk step can be well approximated by our theoretical result equation (3), when the initial network is an ER-ER
signed network. The average positive degree E[D*(#)] of the pruned network at each step ¢is proportional to the
size of the pruned network as shown in equation (3). A denser negative layer with alarge E[D~(0)], could more
effectively prune the network, leading to a fast decrease of the average degree of the pruned positive layer.

ER(positive)-SF(negative) signed networks are pruned slightly less than ER—ER networks when both layers
have the same average degree 4 (see figure 2). This can be explained as follows. If a visited node has a large
negative degree, its removal will lead to the removal of many nodes, its negative neighbours. If a negative
neighbour of a visited node has a large negative degree, however, the removal of such a negative neighbour
together with its negative links will not remove extra nodes but makes the negative layer sparser, protecting the
network from the pruning. In ER-SF networks, the visited nodes are as if randomly chosen from the negative
layer, thus tend to have alow negative degree. Nodes with a high negative degree in the SF negative layer are likely

6 o, .
The average degree of the pruned positive or negative network layer at a step  refers to the average degree at step ¢ over all the nodes and
over alarge number of SAP walk realisations.
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Figure 2. The average degree E[D(t)] of the positive pruned network as a function of the step ¢t of a SAP walk on a signed network
with N = 1000 nodes. We simulate 100 independent realisations of a SAP walk on each of the independently generated 100 signed
networks and plot the average and standard deviation (error bar) of E[D*(¢)]. The average degree of the initial positive layer is always
E[D*(0)] = 4. The SF network has a power exponent 3. The best curve fitting for ER-SF networks by theory equation (3) is obtained
when E[D~(0)] = 3.4.

to be removed as the negative neighbour of a visited node, which reduces the pruning. We expect that the SAP
walks on ER-SF networks whose average degree in the negative layer is E[D~(0)] = 4 perform similarly to the
SAP walks on ER-ER networks but with a lower average degree E[D(0)] in the negative layer. Hence, we fit the
average degree E[D™(t)] of the positive pruned network as a function of the SAP walk step in ER-SF networks by
our theory (3) for ER-ER networks. Figure 2 shows the optimal fit when E[D~(0)] = 3.4. If we remove the top
2% of the nodes with the highest degree from the SF negative network layer whose original average degree is 4,
the resultant average degree becomes 3.4.

Figure 2 shows that the pruned positive network, e.g. E[D*(#)], shrinks faster if the initial network is a SF-SF
signed network than ER-SF signed network. This is mainly due to the fact that, a node with alarge positive
degree is likely to be visited in early steps and removed, significantly reducing the average degree of the positive
pruned layer. However, the negative neighbours of a visited node are as if chosen randomly in the positive layer
and tend to have a lower positive degree in a SF-SF network than in ER-SF network, slightly reducing the
pruning effect.

Hence, a SF or in general a heterogeneous positive layer and a dense negative layer tend to facilitate the
pruning of the network whereas a SF (heterogeneous) negative layer reduces the pruning effect.

4.2.Length of a SAP walk

The length or hopcount H of a SAP walk counts the total number of positive links, or the total number of move
steps, a SAP walker traverses until it has no other node to move to. In the context of a signed produce network,
H + 1 suggests the total number of purchases of a consumer. Signed networks leading to alarge H + 1
promotes the purchases of more products. We would like to understand how the original signed network
topology influences the length of a SAP walk.

The probability distribution of the length H of a SAP walk is shown in figure 3(a), for various types of signed
networks. Intuitively, a SAP walk stops when the walker has no other node to move to, which is likely to happen
if the current pruned positive network layer is less connected in the sense that no giant connected component
exists but only small connected clusters exist. Hence, a dense initial negative network layer G~(0) leads to the
removal of many nodes in each step and effectively reduces the connectivity of the positive layer, resulting in a
small length H. This explains our observation in ER-ER signed network (figure 3(a)) thata dense G~(0) leads to a
small length H on average.

The distribution of the length H of a SAP walk on an ER-ER network can be analytically derived. A SAP walk
hasalength H = hrequires that the node that the walker visits at step /1 has degree 0 in the pruned positive layer
G™(h) and each node visited in a previous step t where 0 < t < h, has a positive degree in the corresponding
pruned positive network layer larger than 0. As discussed in section 4.2, the pruned positive layer remains an ER
network with the same link density p* but with a shrinking size N(#). Hence
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Figure 3. Probability distribution of the length of a SAP walk on a signed network.

h—1
PrlH=h]~ (1 — pH)N®=IT] [1 — (1 — pHNO-1]. (5)
t=0

Figure 3(a) shows that our theory of the distribution of the length equation (5) well approximates the
simulation results. The distribution of the length of a SAP walk on an ER-SF network can be well approximated
by (5), our theory on an ER-ER network with E[D(0) = 3.4].

Which type of signed networks tend to lead to along length of a SAP walk? If we look at the average path
length, the ordering of signed networks from the highest to the lowest follows: ER-ER(E[D~(0) = 0]), ER—SF,
ER-ER(E[D~(0) = 4]), ER-ER(E[D~(0) = 8]), SF—SF, SE-ER(E[D~(0) = 4]). This orderingis consistent
with our previous explanation: a heterogeneous positive layer such as SF network and a dense negative layer
facilitate the pruning of the network leading to a short length of a SAP walk whereas a heterogeneous e.g. SF
negative layer reduces the pruning effect attributing to a long length of a SAP walk.

Thelength of a SAP walk actually depends on not only the link density but as well the connectivity of the
pruned positive layer. The negative neighbours of a visited node are as if chosen randomly in the positive layer
since the two layers are independent in connections. Removal of such random nodes in the positive layer reduces
less the connectivity of the positive layer if the original positive layer is a SF network since SF networks are robust
against random node removals compared to ER networks. However, hubs in the positive layer are more likely to
be visited and removed reducing more significantly the density of the SF positive layer.
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Figure 4. The probability vy that a node is visited by a SAP walk versus its degree D*(0) = k in the initial positive network is plotted for
all possible degree values k in (a) and for small k in (b). Since many nodes may have the same initial positive degree D*(0) = k, we plot
their average visiting probability and the standard deviation.

4.3.Nodal visiting probability
The probability that a node is visited by a SAP walk implies a certain kind of importance of the node, e.g. the
probability that a product is purchased when the signed network represents the network of products. Intuitively,
anode with a higher positive degree in the initial signed network has a higher chance to be visited by a SAP walk.
Hence, we examine the visiting probability of a node given its initial positive degree, which is shown in figure 4.
Firstly, we analytically derive the nodal visiting probability in ER-ER networks. Specifically, we compute the
probability v, that a random node j with degree d]-+(0) = k in the initial positive layer is visited by a SAP walk
starting at arandom node. We denote X, as the node that is visited by a SAP walk at step ¢. Since the node j can be
visited atany step 0 < t < hbya SAP walk of length h, we have

N@©)—1 h N(@©0)—1
vi= Y. Y Pr[X,=jlH=hlPr[H=hl~ Y, Pr[X,=j|H >t]|Pr[H > t], (6)
h=0 t=0 t=0

assuming that the probability node jis visited at any step tis independent of the length H of the walk as long as
H > t. Thenodejis visited at step t by a SAP walk that has alength H > trequires that node j is not visited nor
removed in the previous steps and jis connected with the node X, visited atstept — 1. Hence
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Af(t—1) 1
Nt—1)—1 pt(N¢g—1)—1)

t—1
PriX,=jlH>tl~ [[ (1 = PriXy =j]) - (7)
t'=0

where Pr[X, = j] = 1/N(0), AT (¢ — 1) is the degree of nodejat step + — 1in the pruned positive network
layer given that j is not visited in the first t — 1 steps. The node X, to be visited at step ¢ as well as its negative
neighbours are as if randomly chosen from the pruned positive layer G," ;. The pruned network remains
approximately (precisely if the negative layer is empty) an ER network with the same link density p* when the
Af—1) . .-
m is the probability that

— L isthe probability that the
PFIN(E—1D -1

walker choose nodejout of the p*(N (+ — 1) — 1) positive neighors of X,_; to move to. We approximate the
degree Af(t’ ) by its average using the same symbol, which follows the following recursion for ¢’ < ¢ thus before

the node is visited

node visited and its negative neighbours are removed at each step. The ratio

node jis connected with the node X;_; visited in the previous step and

AT — 1)
ALt ~ W(A}(ﬂ -D-p A -D-1) -1
AT — 1)
+ (1 - W](Aj(t' — 1) —p Af( = 1)

Nt -1 -2

=870 = D0 =P )

where A}L(O) = D]-+(0) = k. The first (second) term corresponds to the case that node j is (not) connected with
the node visited at step # — 1.In the first case where jis connected with X,,_y, the degree Af(t’ ) at step ¢’ could
be reduced from A}’(t’ — 1) due to the removal of X,/ and its negative neighbours which happen to be a
positive neighbour of node j. In the second case, the degree Af(t’ ) decreases from A;r(t’ — 1) due to the removal
of Xy_1’s negative neighbours which happen to be a positive neighbour of node j. Combining equations (2) and
(5)—(8), we could derive the probability v that a random node j with degree d]*(O) = k in the initial positive layer
is visited by a SAP walk on an ER-ER signed network.

As shown in figure 4, our numerical solution of nodal visiting probability well approximates the simulation
results especially when the initial negative ER network is sparse e.g. E[D~(0)] = 0. When the initial negative ER
network is denser, the actual visiting probability is lower than the prediction of the numerical solution. This is
because our theoretical analysis assumes that the negative layer remains an ER network with the same link
density after the removal of each visited node and its negative neighbours, as if all these nodes removed are
chosen randomly. In fact, high negative degree nodes are more likely to be removed as a negative neighbour of a
visited node. The actual A (t'), thus also the visiting probability, is smaller than their corresponding analytic
estimations.

Figure 4 shows that the visiting probability of a node grows approximately linearly with the initial positive
degree of the node in each signed network model. A large slope of a curve in figure 4 features a fast growth of the
nodal visiting probability as a function of the initial positive degree of a node, i.e. a high heterogeneity of nodal
visiting probabilities. Interestingly, the order of the various signed network models in the heterogeneity of nodal
visiting probabilities, the order of these networks in the average SAP walk length and the order of these signed
networks in the average degree of the pruned positive layer at a given step are the same. A SAP walk that prunes
the network slowly tends to have along length and lead to a high heterogeneity in nodal visiting probabilities. A
SAP walker tends to visit high degree nodes in the pruned positive layer at each step. A longer length of a SAP
walk, thus, attributes to a higher visit probability of a node with a large initial positive degree, leading to more
heterogeneity of nodal visiting probabilities.

4.4. Influence of degree—degree correlation

The positive and negative degree of a node can be correlated. The real-world networks considered in section 7
have a positive correlation between the degrees of a node in the two layers. In this subsection, we explore how the
degree—degree correlation between the positive and negative layers may influence the aforementioned
performance of a SAP walk.

We consider ER-ER and SF-SF signed networks with E[D*] = E[D~] = 4and N = 1000, where the
degree—degree correlation p varies within [0,1]. We illustrate the three properties of a SAP walk using the two
extreme case p = 0and p = 1, whereas results from other p values within [0,1] lead to the same observations.
We simulate 100 independent realisations of a SAP walk on each of the independently generated 100 signed
networks to derive the three properties of SAP walks.
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Figure 5. (a) The average degree E[D ()] of the positive pruned network as a function of the step r of a SAP walk (b) probability
distribution of the length of a SAP walk and (c) the probability v, that a node is visited by a SAP walk versus its degree D*(0) = k in the
initial positive network, when the positive and negative degrees of a node are uncorrelated p = 0 and correlated p = 1 respectively.
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In both ER-ER and SF-SF signed networks, we find that a positive degree—degree correlation evidently
facilitates the pruning of the network, reduces the average path length and leads to a more homogeneous visiting
probabilities among the nodes (see figures 5(a)—(c)). Such effects are more evident in SF-SF networks than in
ER-ER networks and can be explained as follows. When the degree—degree correlation is positive, a high degree
node in the positive layer tends to have a high degree in the negative layer. The high positive degree of such a
node tends to let the walker visit the node in earlier steps. After being visited, the node together with its many
negative neighbours, are removed, pruning the network significantly. The high negative degree of such anode
tends to let the node be removed as a negative neighbour of a node that has been visited. The removal of such a
node together with its many positive links significantly prunes the positive layer and reduces the connectivity.

4.5. Influence of the community structure in signed networks

Beyond the degree distribution and correlation in the two layers of a network, we explore further how the
community structure of a signed network may influence the SAP walks. We consider the Girvan and Newman
(GN) networks to model networks with a community structure [56]. Each GN network has N = 1000 nodes and
average degree 4, the same as our ER and SF network models. The N nodes are divided into four groups, each
with 250 nodes. Within each group, each of the E[D;,] - N/8links is placed between two nodes that are
randomly selected from the group. On average, each node has E[D;, ] links connecting it to the nodes within the
same group. We place further each of the E[D,,] - N/2 links between two nodes that are randomly chosen from
the N nodes but from different groups. The average out-degree E[ D] is the expected number of links that
connect a node to the other nodes from a different group. The average degree 4 requires E[D;,] + E[Dou] = 4.
When E[D,,.] = 0, the GN network is composed of four isolated ER networks. When E[D,,;] = 3, the GN
network becomes an ER network. A GN network with E[D,,,;] < 3 represents a network with a community
structure where nodes within the same group are more likely connected than nodes from different groups.

We focus on the case when the two layers of a signed network are independent. In this case, the SAP walks
perform similarly on ER-GN (negative layer) networks and on ER-ER networks, since the visited nodes are as if
randomly chosen from the negative layer. When the positive layer has the community structure, SAP walks
perform quite differently. As shown in figure 6, as the GN-ER networks become more modular in the positive
layeri.e. E[D,y,] becomes smaller, the average length of a SAP walk becomes smaller and the nodal visiting
probabilities become less heterogeneous. Consider the case when E[D,,.] = 0. The SAP walker walks only
within the sub-graph of one group, limiting the length of a SAP walk. The length of a SAP walk in this case equals
that of a SAP walk on an ER-ER network of N/4 nodes, where E[D*(0)] = 4 and E[D(0)] = 1, because the
sub-graph of the ER negative layer that corresponds to the group where the walker resides is again an ER network
with the same link density. Hence, the distribution of the SAP walk length and the nodal visiting probabilities on
GN-ER networks when E[D,,;] = 0 can be analytically deduced by our theories for ER-ER networks. An
interesting observation is that as E[D,,] increases slightly from 0, the average length of a SAP increases
significantly as shown in figure 6(a). The influence of the community structure of the positive layer on a SAP
walk is evident when the community structure is significant. When the length of a walk becomes shorter as the
positive layer becomes more modular, the nodal visiting probabilities become more homogeneous, which is
consistent with our previous findings. The influence of the community structure in the positive layer on the
pruning speed, i.e. the average degree E[D*(#)] of the positive pruned network as a function of the step ¢, is not
evident. This is mainly due to the independence between the two layers: the negative neighbours of a visited node
are as if chosen randomly from the positive layers.

When the two layers are correlated, the influence of the community structure on SAP walks is non-trivial.
Consider, for example, that both layers are GN networks with E[D~(0)] = 0.4 and follow the same grouping
(any two nodes that belong to the same group in one layer are also within the same group in the other layer). The
average length of a SAP walk is further reduced to E[H] = 28.31 due to the correlated community structure in
the negative layer.

5. Influence of signed network topology on SAP walk when r = 1

In this section, we consider the general case of the SAP walk that each negative neighbour of a visited node is
removed independently with a probability rwhere 0 < r < 1.

We first consider the ER-ER and SF-SF networks where the positive and negative layers are generated
independently.

The SAP walk with a pruning probability r on an ER-ER signed network where the average degree of the two
layers are E[D"]and E[D~]respectively is equivalent to the SAP walk with pruning probability 1 on an ER-ER
signed network whose average degree in the two layers are E[D"]and E[D™] - r respectively. Scaling the
pruning probability by rin a SAP walk model is equivalent to scaling the link density of the negative layer by r.
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Figure 6. (a) The average length of a SAP walk as a function of E[D,,,] = 3 of the positive GN network layer, (b) the distribution of the
length of a SAP walk and (c) the probability v that a node is visited by a SAP walk versus its degree D*(0) = k in the initial positive
network. The SAP walk is on a GN-ER network with N = 1000 nodes and E[D*(0)] = E[D~(0)] = 4.
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Figure 7. Phase diagram of the average path length E[H] of a SAP walk. Dependence of the average path length on the pruning
probability rand the degree—degree correlation p. The colour bar in the right represents the average path length. The underlying
signed network is an ER-ER network in (a) and SF-SF in (b) with E[D*(0)] = E[D(0)] = 4. For each set of parameters, the average
path length is obtained as the average of 1000 SAP walks on each of the 100 signed networks.

Hence, all our theoretical results in section 4 for SAP walks with r = 1 on ER-ER networks can be extended to
the SAP walks with an arbitrary pruning probability r on ER-ER networks.

However, such equivalence does not hold when the positive and negative degrees of a node are correlated nor
in SF-SF networks. We take the average path length of a SAP walk as an example and explore the effect of the
pruning probability p and the degree—degree correlation p on the average path length. As shown in figure 7, the
effect of the pruning probability on the average hopcount is more evident as the degree—degree correlation
increases. When the degree—degree correlation is high, nodes with a high degree in both layers tend to be
removed in early steps of a walk. In this case, a smaller pruning probability could effectively reduce the pruning.

6. Generalisation of the SAP walk model

The SAP walk model can be generalised from multiple perspectives to better approximate real-world purchase
behaviour of users. We illustrate one possible generalisation to take into account the heterogeneous preference
of a user over the complementary/recommended products. It has been observed that customers tend to prefer
popular projects and more engaged customers, i.e. those who have purchased/walked more, are more likely to
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Figure 8. Comparison of the SAP walk when y = 0 and the generalised SAP walk when y = 1in (a) the average degree E[D™(t)] of
the positive pruned network as a function of the step t of a walk (b) the probability distribution of the length of a walk and (c) the
probability v, that a node is visited by a walk versus its degree D™(0) = k in the initial positive network. The two layers are
independent in both ER-ER and SF-SF signed networks.
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Table 1. Topological parameters of real networks.

Network Nodes Links fraction of ‘+’links fraction of -’links E[D,] E[D] fp
Wiki 6186 97 874 78 402 (80.11%) 19 472 (19.89%) 25.35 6.30 0.62
Epinions 6186 92091 73 062 (79.33%) 19 029 (20.67%) 23.62 6.15 0.35

buy niche or less popular products [57]. We have shown that the popularity of a product, i.e. the visiting
probability of the corresponding node, grows approximately linearly with its initial positive degree. Hence, we
consider the generalised model where the probability for a walker at step ¢ residing at node i to walk to a positive
neighbour j of i is proportional to d]-+ (0)"/t+ D where d]*(O) is the positive degree of node j in the initial signed
network and v > 0. In this case, a node with a high initial positive degree is preferred, whereas such preference
becomes weaker as the walker moves more, i.e. becomes more engaged. Our classic SAP model discussed earlier
corresponds to the case when v = 0. In figure 8, we compare the three walk features of our classic model when
~ = 0and the generalised model when v = 1. We find that such preference of visiting a node with a high initial
positive degree leads to alonger walk on average and more heterogeneous nodal visiting probabilities. A node
with a high initial positive degree is visited more thus becomes more popular wheny = 1.

The SAP model can be as well extended by letting the probability for a walker at step ¢ residing at node i to
walk to a positive neighbour j of i be proportional to the popularity of j, i.e. the number of walkers that have
visited node j and such preference decreases as a walker moves more. We hypothesise that a node with a large
initial positive degree may become more and more popular over time, based on our observations in the SAP walk
withy = 1.

7. SAP walks on real-world signed networks

Finally, we choose two real-world signed networks and explore their network features and how these features
may influence the SAP walks on these networks. We consider the Wikipedia adminship election network and an
Extracted Epinions social network [58]. In Wiki network, two nodes connected by a positive (negative) link
suggest that the two users support (reject) each other to be an administrator. A positive (negative) link in
Epinions network means that the corresponding two users trust (distrust) each other’s reviews.

The Epinions network is far larger than Wiki. We have sampled the Epinions network by firstly removing all
nodes with zero positive degree or zero negative degree and then randomly selecting the same number of nodes
as in Wiki from the largest connected positive layer of Epinions together with the positive and negative links
among these nodes. Basic topological features of these two networks of the same size are shown in table 1. The
degree correlation pp, measures the linear correlation coefficient between the positive degree and negative degree
ofanode. The positive and negative layers tend to be positively correlated in their degrees, i.e. pp > 0, instead of
independent as assumed in our signed network models.

The degree distributions of the positive and negative layer in both Wiki and Epinions are shown in figure 9
are highly heterogeneous, closer to a scale-free distribution than a Poisson distribution.

Upon each real-world signed network, we simulate independently 10° SAP walks and investigate their key
properties discussed earlier. The negative network layer has been missing in modelling the purchase behaviour
of auser. Hence, we consider as well the SAP walk on these two real-world networks, where, however, the
negative network layer is replaced as an empty network without any link.

Figure 10(a) shows that the positive layer is pruned or shrinks faster in Wiki than in Epinions network. Wiki
has a shorter length of SAP walk on average than Epinions, as shown in figure 10(b). One explanation for both
observations is that Wiki has a slightly denser initial negative layer (larger E[D~(0)]) than Epinions as shown in
table 1, which removes on average more nodes per step. Moreover, the high degree correlation pp in Wiki
contributes as well to a fast pruning in the positive layer and a short length of SAP walks.

When the negative layer is empty, i.e. E[D~(0) = 0], the positive layer is pruned far slower, the average path
length E[H] is far larger. A SAP walk on a signed network with an empty negative layer is equivalent to a self-
avoiding walk on the positive network layer. In this case, the Epinion positive layer leads to alonger average path
length than the Wiki positive layer. This is likely due to the higher standard deviation of the degree in the Wiki
positive layer 49.55 than that in the Epinion 45.58 positive layer. A higher degree standard deviation implies an
earlier visit of the hubs, whose removal may significantly prune the network and reduce the connectivity.

The visiting probability of a node versus its initial positive degree tends to have a larger slope in Epinions
than that in Wiki. This is consistent with our observations in signed network models that the visiting probability
viincreases faster with kin a signed network that leads to a higher average degree E[D*(#)] of the pruned
positive layer and a longer length E[H] of SAP walks.
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Figure 9. Degree distribution of real-world signed networks.

The negative network layer dramatically prunes a signed network and reduces length of a SAP walk.
Moreover, a heterogeneous degree distribution in the positive layer and a positive degree—degree correlation
between positive and negative layers may further enhance the pruning effect, shorten the SAP walk length and
facilitate homogeneous visiting probabilities of nodes. These effects have been observed consistently in both
network models and real-world networks.

8. Conclusion

Classic spreading models assume that all network links are beneficial for information diffusion. However, the
positive and negative links in a signed network may facilitate and prevent the contagion of information, opinion
and behaviour etc respectively. As a start, we propose a SAP RW on a signed network to model, for example, a
user’s purchase activity on a signed network of products. We unravel the significant effect of the negative links
and the signed network structure in general on SAP walks. We found that a more heterogeneous degree
distribution of the positive network layer such as the power-law distribution, a denser negative layer and a high
degree—degree correlation between the two layers tend to prune the network faster, suppress the length of SAP
walks and reduce the heterogeneity in nodal visiting probabilities. When the two layers are independent,
however, a more heterogeneous degree distribution of the negative network layer tends to slow down the
pruning and contribute to alonger length of SAP walks and more heterogeneity in nodal visiting probabilities.
These observations has been obtained from both signed network models and real-world signed network and
analytically proved in signed ER-ER networks. Real-world networks tend to have a heterogeneous degree
distribution in the positive layer and a positive degree—degree correlation, which reduce total purchases of users
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but increase the homogeneity of the popularity of products. Our findings point out the possibility to influence
users’ purchases and product popularity via recommendations and competitions.

Itis interesting to explore further the influence of other key features. We have shown that the community
structure in the positive network layer may reduce the length of a SAP walk and the heterogeneity of nodal
visiting probabilities. Beyond the community structure, balanced triangles are shown to appear more frequently
than unbalanced ones in real-world networks. The effect of the fraction of balanced triangles on SAP walks and
other dynamic processes remains interesting to investigate. We could as well to improve the SAP walk towards a
more realistic model of e.g. user’s purchase activity, by taking into account, for example, the choice of the initial
node to visit, the possibility that a walker /user may stop the walk earlier and the heterogeneity of the links
preference over recommendations. Optimisation problems that are interesting to be further explored include
how to add nodes to an existing signed network, how to add positive links via e.g. recommendations or how to
recommend a product path/sub-graph to maximise the visiting probabilities of a group of nodes.

Acknowledgments

The authors would like to thank National Nature Science Foundation of China (Nos. 11601430, 11631014,
11871311) for support.

ORCID iDs

Huijuan Wang © https:/orcid.org/0000-0003-2684-4407
Cunquan Qu ® https://orcid.org/0000-0001-8090-2538

References

[1] Buldyrev SV, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature 464 1025
[2] Kiveld M, Arenas A, Barthelemy M, Gleeson ] P, Moreno Y and Porter M A 2014 J. Complex Netw. 2 203
[3] De Domenico M, Solé-Ribalta A, Cozzo E, Kiveld M, Moreno Y, Porter M A, Gémez S and Arenas A 2013 Phys. Rev. X 3 041022
[4] Sahneh FD, Scoglio C and Mieghem P Van 2013 IEEE/ACM Trans. Netw. 21 1609
[5] Cardillo A, Gomez-Gardefies J, Zanin M, Romance M, Papo D, Pozo F and Boccaletti S 2013 Sci. Rep. 3 1344
[6] De Domenico M, Granell C, Porter M A and Arenas A 2018 Nat. Phys. 14 523
[7] De Domenico M, Granell C, Porter M A and Arenas A 2016 Nat. Phys. 12901
[8] Solé-Ribalta A, De Domenico M, Gémez S and Arenas A 2016 Physica D 32373
[9] Saumell-Mendiola A, Serrano M A and Bogufid M 2012 Phys. Rev. E 86 026106
[10] SahnehF D, Scoglio Cand Chowdhury F N 2013 2013 American Control Conf. 2307—12
[11] WangH, LiQ, D’Agostino G, Havlin S, Stanley H E and Van Mieghem P 2013 Phys. Rev. E 88 022801
[12] Cozzo E, Banos R A, Meloni S and Moreno Y 2013 Phys. Rev. E 88 050801
[13] LiuM,LiD, Qin P, Liu C, Wang H and Wang F 2015 PloS one 10 0120701
[14] LiD, Qin P, WangH, Liu Cand Jiang Y 2014 Europhys. Lett. 105 68004
[15] Granell C, Gémez S and Arenas A 2014 Phys. Rev. E90 012808
[16] Granell C, Gémez S and Arenas A 2013 Phys. Rev. Lett. 111 128701
[17] LiQ, Braunstein L A, Wang H, Shao J, Stanley H E and Havlin S 2013 J. Stat. Phys. 151 92
[18] de Arruda G F, Cozzo E, Peixoto T P, Rodrigues F A and Moreno Y 2017 Phys. Rev. X7 011014
[19] WangH, Chen C, Qu B, Li D and Havlin S 2017 New J. Phys. 19 073039
[20] Leskovec J, Huttenlocher D and Kleinberg ] 2010 Proc. SIGCHI Conf. on Human Factors in Computing Systems, CHI ’10 (New York, NY,
USA: ACM) pp 1361-70
[21] McAuleyJ, Pandey R and Leskovec ] 2015 Proc. 21th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 15 (New
York, NY, USA: ACM) pp 785-94
[22] ChiangK-Y, Hsieh C-J, Natarajan N, Dhillon 1S and Tewari A 2014 J. Mach. Learn. Res. 151177-1213
[23] Tang], ChangY, Aggarwal C Cand Liu H 2016 ACM Computing Surveys (CSUR) 493 42
[24] HouL, Liu K and LiuJ 2018 Complex Networks and their Applications VI ed C Cherifi et al (Cham: Springer International Publishing)
pp 935-45
[25] Oestreicher-Singer G, Libai B, Sivan L, Carmi E and Yassin O 2013 J. Mark. 77 1
[26] MasudaN, Porter M A and Lambiotte R 2017 Phys. Rep. 716 1-58
[27] Erd6s P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 6 5117-5160
[28] Bollobas B 1998 Modern Graph Theory (Berlin: Springer) 215-52
[29] Caldarelli G, Capocci A, De Los Rios P and Mufioz M A 2002 Phys. Rev. Lett. 89 258702
[30] Soderberg B 2002 Phys. Rev. E 66 066121
[31] Bogufia M and Pastor-Satorras R 2003 Phys. Rev. E 68 036112
[32] Barabasi A-L 2016 Network Science (Cambridge: Cambridge University Press)
[33] Catanzaro M, Boguiid M and Pastor-Satorras R 2005 Phys. Rev. E71 027103
[34] Cohen R and Havlin S 2003 Phys. Rev. Lett. 90 058701
[35] Barabdsi A-Land Albert R 1999 Science 286 509
[36] Szell M, Lambiotte R and Thurner S 2010 Proc. Natl Acad. Sci. 107 13636
[37] SchwartzN, Cohen R, Ben-Avraham D, Barabasi A-L and Havlin S 2002 Phys. Rev. E 66 015104
[38] QuB,LiQ, Havlin§, Stanley H E and Wang H 2014 Phys. Rev. E90 052811

18


https://orcid.org/0000-0003-2684-4407
https://orcid.org/0000-0003-2684-4407
https://orcid.org/0000-0003-2684-4407
https://orcid.org/0000-0003-2684-4407
https://orcid.org/0000-0001-8090-2538
https://orcid.org/0000-0001-8090-2538
https://orcid.org/0000-0001-8090-2538
https://orcid.org/0000-0001-8090-2538
https://doi.org/10.1038/nature08932
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/10.1109/TNET.2013.2239658
https://doi.org/10.1038/srep01344
https://doi.org/10.1038/s41567-018-0065-4
https://doi.org/10.1038/nphys3865
https://doi.org/10.1016/j.physd.2016.01.002
https://doi.org/10.1103/PhysRevE.86.026106
https://doi.org/10.1109/ACC.2013.6580178
https://doi.org/10.1109/ACC.2013.6580178
https://doi.org/10.1109/ACC.2013.6580178
https://doi.org/10.1103/PhysRevE.88.022801
https://doi.org/10.1103/PhysRevE.88.050801
https://doi.org/10.1371/journal.pone.0120701
https://doi.org/10.1209/0295-5075/105/68004
https://doi.org/10.1103/PhysRevE.90.012808
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1007/s10955-012-0625-4
https://doi.org/10.1103/PhysRevX.7.011014
https://doi.org/10.1088/1367-2630/aa79b7
https://doi.org/10.1145/1753326.1753532
https://doi.org/10.1145/1753326.1753532
https://doi.org/10.1145/1753326.1753532
https://doi.org/10.1145/2783258.2783381
https://doi.org/10.1145/2783258.2783381
https://doi.org/10.1145/2783258.2783381
https://doi.org/10.1145/2956185
https://doi.org/10.1509/jm.11.0400
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1007/978-1-4612-0619-4_7
https://doi.org/10.1007/978-1-4612-0619-4_7
https://doi.org/10.1007/978-1-4612-0619-4_7
https://doi.org/10.1103/PhysRevLett.89.258702
https://doi.org/10.1103/PhysRevE.66.066121
https://doi.org/10.1103/PhysRevE.68.036112
https://doi.org/10.1103/PhysRevE.71.027103
https://doi.org/10.1103/PhysRevLett.90.058701
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1073/pnas.1004008107
https://doi.org/10.1103/PhysRevE.66.015104
https://doi.org/10.1103/PhysRevE.90.052811

10P Publishing

NewJ. Phys. 21(2019) 035001 HWanget al

[39] Newman M EJ, Strogatz S H and Watts D J 2001 Phys. Rev. E 64 026118

[40] LiX, Tao X and Li N 2016 IEEE Commun. Lett. 20 2280

[41] Tizghadam A and Leon-Garcia A 2010 IEEE INFOCOM 2010 Conf. on Computer Communications Workshops pp 1-6

[42] Aldrich M, Badshah A, Mayton B, Zhao N and Paradiso J A 2013 2013 IEEE SENSORS pp 1-4

[43] Noulas A, Scellato S, Lathia N and Mascolo C 2012 2012 Int. Conf. on Privacy, Security, Risk and Trust (PASSAT), and 2012 Int. Conf. on
Social Computing (SocialCom) pp 14453

[44] Saralegui U, la Sen M D and Alonso-Quesada S 2016 2016 UKACC 11th Int. Conf. on Control (CONTROL) pp 1-6

[45] Flory PJ 1953 Principles of Polymer Chemistry (Ithaca, NY: Cornell University Press)

[46] Ou-YangL, Dai D Qand Zhang X F 2015 IEEE/ACM Trans. Comput. Biol. Bioinform. 12 1333

[47] Camilleri E, Rohde P P and Twamley ] 2014 Sci. Rep. Sci. Rep. 4 4791

[48] Nia M A, Atani R E, Fabian B and Babulak E 2016 Secur. Commun. Netw. 16 3509-3526

[49] Lawler G F 1980 Duke Math. J. 47 655

[50] Guttmann AJ2012 arXiv:1212.3448 [math-ph]

[51] TishbyI, Biham O and Katzav E 2016 J. Phys. A: Math. Theor. 49 285002

[52] JinhongJungLS, Jin W and Kang U 2016 ICDM 973-978

[53] LiY, Chen W, WangY and Zhang Z-L 2013 Proc. 6th ACM Int. Conf. on Web Search and Data Mining, WSDM ’13 (New York, NY, USA:
ACM) pp 657-66

[54] Kempe D, KleinbergJ and Tardos E 2003 Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 03 (New
York, NY, USA: ACM) pp 137-46

[55] LiB 2016 Master Thesis Delft University of Technology

[56] Girvan M and Newman M EJ 2002 Proc. Natl Acad. Sci. 99 7821

[57] Goel EGS, Broder A and Pang B 2010 WSDM 10: Proc. 3rd ACM Int. Conf. on Web Search and data Mining 20110

[58] LeskovecJand Krevl A 2014 SNAP Datasets: Stanford large network dataset collection

19


https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1109/LCOMM.2016.2599183
https://doi.org/10.1109/INFCOMW.2010.5466694
https://doi.org/10.1109/INFCOMW.2010.5466694
https://doi.org/10.1109/INFCOMW.2010.5466694
https://doi.org/10.1109/ICSENS.2013.6688590
https://doi.org/10.1109/ICSENS.2013.6688590
https://doi.org/10.1109/ICSENS.2013.6688590
https://doi.org/10.1109/SocialCom-PASSAT.2012.70
https://doi.org/10.1109/SocialCom-PASSAT.2012.70
https://doi.org/10.1109/SocialCom-PASSAT.2012.70
https://doi.org/10.1109/CONTROL.2016.7737565
https://doi.org/10.1109/CONTROL.2016.7737565
https://doi.org/10.1109/CONTROL.2016.7737565
https://doi.org/10.1109/TCBB.2015.2401014
https://doi.org/10.1038/srep04791
https://doi.org/10.1002/sec.1557
https://doi.org/10.1002/sec.1557
https://doi.org/10.1002/sec.1557
https://doi.org/10.1215/S0012-7094-80-04741-9
http://arxiv.org/abs/1212.3448
https://doi.org/10.1088/1751-8113/49/28/285002
https://doi.org/10.1109/ICDM.2016.0122
https://doi.org/10.1109/ICDM.2016.0122
https://doi.org/10.1109/ICDM.2016.0122
https://doi.org/10.1145/2433396.2433478
https://doi.org/10.1145/2433396.2433478
https://doi.org/10.1145/2433396.2433478
https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/956750.956769
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1145/1718487.1718513
https://doi.org/10.1145/1718487.1718513
https://doi.org/10.1145/1718487.1718513

	1. Introduction
	2. Definitions
	2.1. Signed network representation
	2.2. Signed network models

	3. Related work
	4. Influence of signed network topology on SAP walks when r = 1
	4.1. Evolution of the pruned network structure
	4.2. Length of a SAP walk
	4.3. Nodal visiting probability
	4.4. Influence of degree–degree correlation
	4.5. Influence of the community structure in signed networks

	5. Influence of signed network topology on SAP walk when r≠1
	6. Generalisation of the SAP walk model
	7. SAP walks on real-world signed networks
	8. Conclusion
	Acknowledgments
	References



