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Abstract. Understanding the intricate and complex materials microstructure and how it is
related to materials properties is an important problem in the Materials Science field. For a
full comprehension of this relation, it is fundamental to be able to describe the main charac-
teristics of the 3-dimensional microstructure. The most basic model used for approximating
steel microstructure is the Poisson-Voronoi diagram. Poisson-Voronoi diagrams have inter-
esting mathematical properties, and they are used as a good model for single-phase materials.
In this paper we exploit the scaling property of the underlying Poisson process to derive the
distribution of the main geometrical features of the grains for every value of the intensity
parameter. Moreover, we use a sophisticated simulation program to construct a close Monte
Carlo based approximation for the distributions of interest. Using this, we determine the
closest approximating distributions within the mentioned frequently used parametric classes
of distributions and conclude that these representations can be quite accurate. Finally we
consider a 3D volume dataset and compare the real volume distribution to what is to be
expected under the Poisson-Voronoi model.

1. Introduction

Investigating 3-dimensional structures is a fundamental aspect for many disciplines; es-
pecially for those related to materials study, but also for more abstract disciplines such as
Mathematics and Statistics. For materials study, one of the most outstanding aims is to
fully understand the intriguing relationship between microstructural features and mechanical
properties of the materials. The very first step for achieving this objective is quantifying
3D microstructures. From Materials Science point of view this means examining and under-
standing the nature and variety of microstructures. From Statistics it means looking for the
characterization of the 3D virtual microstructures under specific mathematical models.

In the past few years the use of Voronoi diagrams has rapidly increased. These diagrams
represent an appealing structure, especially because they describe various natural processes
quite well. In [1] an extensive list of fields in which Voronoi diagrams are adopted can be
found. Among the many areas of application of this model, the field of materials science stands
out. In fact, they are now among the most used mathematical models for microstructure
characterization and depending on the specific kind of materials, it is possible to use a proper
category of Voronoi diagrams.
In this paper, we discuss the most basic instance of the model: Poisson-Voronoi diagrams.

∗Contact author: m.vittorietti@tudelft.nl
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In this framework the nuclei or sites are generated by a homogeneous Poisson process with
intensity parameter λ. The parameter λ represents the expected number of points (Voronoi
cells) in a unit volume.

Although many interesting mathematical properties of Poisson-Voronoi diagrams are known,
there is still much to discover about the distributions of the geometrical characteristics of its
cells. Through simulations, many authors were able to obtain numerical approximations of
the moments of the distribution of the volume, of the surface area, of the number of faces and
many other geometrical characteristics of the grains. Nevertheless, analytic expressions of the
distributions of many of these important features are not known, others are only obtained
via complicated numerically intractable characterizations. Therefore, various proposals to
obtain close approximations to the real distributions were put forward by several authors e.g.
Lognormal- [14,15], Generalized Gamma- [7,17] and Rayleigh distributions [16]. But as far
as we know, there is no theoretical support for preferring one of these distributions.

The aim of this paper is twofold. After explaining that λ, the intensity parameter of the
Poisson process, is the only parameter determining all distributional properties of the geomet-
rical structure of the grains, we show that if we have the distribution of a given geometrical
characteristic for λ = 1, the distribution of the same quantity for every value of λ > 0 can be
obtained by rescaling. More precisely, we consider volume, surface area and number of faces
of the grains, but the approach can be extended to other characteristics. Secondly, we find
a close Monte Carlo based approximation for the previously mentioned geometrical charac-
teristics of the grains and using it we determine the most closely approximating distribution
within the mentioned frequently used parametric classes of distributions. As said before, sev-
eral well known probability distributions were used for approximating the grain geometrical
characteristics distributions, but in this study we determine the most accurate of these.

After briefly reviewing the basic concepts of Voronoi diagrams in Section 2, in Section 3
we explain the scaling property of the Voronoi structure in terms of the intensity parameter
and how it can be useful for studying distributional properties of the grain features. Section
4 describes our simulation approach and produces an accurate Monte Carlo approximation
for the distribution of the grain volume and the grain surface area. In fact, we provide the
approximate distributions of the grain volume and of the grain surface area for λ = 1 and we
adapt it for the other values of λ using the aforementioned scaling properties. In Section 5, we
study the approximation of the true distributions of the geometrical characteristics by some
well-known and frequently used probability distributions in this context: the Gamma-, Gener-
alized Gamma- and Lognormal distribution. Fitting these three distributions and comparing
them through statistical measures, such as the supremum distance and the Total Variation
distance between the Monte Carlo empirical distribution and its parametric approximations,
we are not only able to identify the best approximation but also to give a measure of error if
one of these parametric approximations is used.
In Section 6 we consider an experimental dataset of grain volumes and compare the distribu-
tion of these volumes to the distribution that would be expected in case of a Poisson-Voronoi
generating process. Finally, we discuss the possibility to extend our approach according to dif-
ferent Voronoi Diagrams cases, such as Multi-level Voronoi and Laguerre Voronoi Diagrams.
We want to remark that for the 3D Voronoi diagrams generation we use TATA Steel software
and for data analysis the statistical software R.
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2. Poisson-Voronoi Diagrams

We begin by reviewing the generic definition and the basic properties of the Poisson-Voronoi
Diagram. Given a denumerable set of distinct points in Rd, X = {xi : i ≥ 1}, the Voronoi
diagram of Rd with nuclei {xi} (also called sites or generator points) is a partition of Rd
consisting of cells

Ci = {y ∈ Rd : ‖xi − y‖ ≤ ‖xj − y‖ for j 6= i}, i = 1, 2, . . .

where ‖ · ‖ is the usual Euclidean distance. This means that given a set of two or more
but finitely many distinct points, we associate all locations in that space with the closest
member(s) of the point set with respect to the Euclidean distance [1].

If we assume that X = Φ = {xi} is the realization of a homogeneous Poisson point process,
we will refer to the resulting structure as the Poisson-Voronoi diagram, VΦ. In particular in
this paper, we assume that the sites of the Poisson-Voronoi diagrams are generated according
to a uniform or homogeneous Poisson process. This means that for any bounded set A in R
with Lebesgue measure |A| (length if d = 1, area if d = 2, volume if d = 3), the expected
number of points falling in A, µ(A), is proportional to |A|. In formula

(2.1) µ(A) = λ|A|.
The parameter λ > 0 is referred to the intensity parameter of the Poisson process and for a
homogeneous Poisson process is assumed to be constant.

For a formal definition of the Poisson process see [2].
As mentioned before, our aim is to find the distribution of the geometrical characteristics

of the grains. In order to approximate these distributions, we generate a large sample of in-
dependent and identically distributed cells, more specifically typical cells. A typical Voronoi
cell refers to a random polytope which loosely speaking has the same distribution as a ran-
domly chosen cell from the diagram selected in such a way that every cell has the same
chance of being sampled. Moreover, the distribution of the typical Poisson-Voronoi cell is by
Slivnyak-Mecke formula [6] the same as the distribution of the Voronoi cell containing the
origin, obtained when the origin is added to the point process Φ. This cell is formally given
by

C = {y ∈ Rd : ‖y‖ ≤ ‖y − x‖ for all x ∈ Φ}.
Okabe et al. [1] synthesize previous research activity about the properties of Poisson

Diagrams. Despite the fact that distributions of several geometrical characteristics are already
known, the distributions of the main features, especially in 3D, are not. We describe a
simulation approach to approximate these distributions in the next section.

3. Distribution of the geometrical properties of a typical cell

Given the complexity of finding explicit formulae for the distributions of the Poisson-
Voronoi diagram geometrical characteristics, especially in 3D, many authors used Monte
Carlo methods to approximate these. Among them Kiang [3], Kumar and Kurtz [4], Lorz
and Hahn [5], Møller [6], Tanemura [7] obtained numerical results for the moments of the
distribution of volume, surface area, and number of faces of the grains in 3D. They also give
histogram estimates of these distributions and suggest approximations for them using various
well known probability distributions. For instance, for the volume distribution, before 1990
most authors used the Lognormal distribution for approximating the grain size distribution in
polycrystals. Nowadays, more flexible distributions such as Gamma or Generalized Gamma
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are commonly used (e.g. [4,7]). Although these models fit the observed data rather well (as
we will see in the next section) our approach allows to find an accurate representation of the
true distribution and the parametric distribution that optimally fits the data.

The main idea is that, given a Poisson-Voronoi diagram generated by a Poisson point pro-
cess Φ with intensity parameter λ, this λ is the only parameter determining the distributions
of the geometrical features of the grains. Furthermore, the dependence of the distributions
on the intensity parameter is via simple scaling of a ‘parent distribution’, due to the following
important scaling property of the Poisson process.

Lemma 3.1 (Scaling Property). Let Φ = {X1, X2, . . . } be a Poisson process on Rd with

intensity λ = 1. Choose λ > 0 and define Φλ = {X1/λ
1/d, X2/λ

1/d, . . . }. Then Φλ is a
Poisson process with intensity λ.

The fact that Φλ is a Poisson process is a special instance of the ‘Mapping theorem’ [see
2, Section 2.3] for further details on the proof.

In the following subsections Lemma 3.1 will be used to study the dependence of the distri-
butions of volume, surface area and number of faces of the grains on the intensity parameter
λ.

3.1. Grain Volume. We first focus our attention on the grain volume distribution because
of the direct relationship of this Poisson-Voronoi geometrical characteristic and the grain size
distribution in microstructure characterization of materials.

Exploiting the properties of the Poisson process, the distribution for the normalized length
of the Voronoi cell in 1D or size measure in 1D, can be shown to have density [8]

f1D(y) = 4y exp(−2y) 1[0,∞)(y)

In dimension d > 1, it was conjectured that the area (2D) and the volume (3D) of the typical
cell in a Poisson-Voronoi diagram may be distributed as the sum of two and three gamma
variables with shape and scale parameters equal to 2 [3], but [9] and [10] showed the conjecture
to be false. In 2D an analytic, though computationally challenging result is provided by Calka
[11], which gives an expression for the distribution of the area of the typical cell in 2D given
the number of vertices. In 3D, as we know so far, no analytic expression for the volume
distribution exists.

Lemma 3.2. Denote by Fλ the distribution function of the volume (length if d = 1, area if
d = 2) of the typical cell of the Poisson-Voronoi diagram based on a homogeneous Poisson
process on Rd with intensity parameter λ > 0. Then, for all x ≥ 0,

(3.1) Fλ(x) = F1(λx)

Proof. Let Φ be a homogeneous Poisson process on Rd with intensity 1. Denote by C the
typical cell of the Voronoi diagram based on this process. Fix λ > 0 and consider the
homogeneous Poisson process Φλ with intensity λ as introduced in the statement of Lemma
3.1. Then the typical cell in the Voronoi diagram based on Φλ is a scaled version of the typical
cell of the Voronoi diagram based on Φ, in the sense that it is given by Cλ = {x/λ1/d : x ∈ C}.
This means that the volume Vλ of Cλ is exactly λ−1 times the volume V of C. Therefore, for
x ≥ 0,

Fλ(x) = P(Vλ ≤ x) = P

(
V

λ
≤ x

)
= P(V ≤ λx) = F1(λx)

�
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3.2. Grain Surface area.

Lemma 3.3. Denote by Gλ the distribution function of the surface area of the typical cell of
the Poisson-Voronoi diagram based on a homogeneous Poisson process on R3 with intensity
parameter λ > 0. Then, for all x ≥ 0,

Gλ(x) = G1

(
λ

2
3x
)

Proof. The argument follows the proof of Lemma 3.2. Denote by Sλ the surface area of Cλ
and note that scaling of Cλ implies that Sλ is λ−

2
3 times the surface area of C, S. Therefore

Gλ(x) = P(Sλ ≤ x) = P

(
S

λ
2
3

≤ x
)

= P
(
S ≤ λ

2
3x
)

= G1

(
λ

2
3x
)

�

3.3. Number of grain faces. Finally, another (discrete) property of interest regards the
number of grain faces of the typical cell. It is clear that using either Φ or Φλ (from Lemma
3.1) as a basis for the Voronoi diagram, yields the same number of faces of the typical cell
(C or Cλ respectively), leading to

Lemma 3.4. Denote by Nλ the distribution function of the number of faces of the typical cell
of the Poisson-Voronoi diagram based on a homogeneous Poisson process on Rd with intensity
parameter λ > 0. Then, for all x ≥ 0,

Nλ(x) = N1(x)

The same lemma holds for number of corner points, nv. In fact, exploiting the Euler-
Poincaré relation [1], it is possible to determine nv when the number of faces is known.

4. Simulation Results

Now, we approximate the distribution function of the grain geometrical features, using
the results obtained by a simulation based on 1 000 000 Voronoi diagrams. Our simulation
approach also allows to determine which of the usual parametric models provides the best
approximation to the true distribution and its deviation from it. We consider the volume,
the surface area and the number of faces of a 3D Poisson Voronoi typical cell. Two possible
approaches, well described in [1] are possible:

(1) generate a large number of points inside a bounded region B according to Φ, construct
VΦ and measure the characteristics of all its cells.

(2) generate a sequence of independent typical Poisson Voronoi cells, measure the char-
acteristics of each and then aggregate them to obtain the required distributions.

We follow the second approach. The reason for this choice derives from the convenience
of having a sample of independent and identically distributed Voronoi cells such that we
can quantify the agreement with the real distribution. Moreover, we are able to control and
eliminate the boundary effect that is present because the structure is actually only constructed
on a bounded region. For our objective it is important that only the distributions of the
geometrical properties of the typical cell are needed, using λ = 1 in the simulations. By
Lemma 3.2, 3.3 and 3.4, the distributions based on diagrams with different intensities can
be obtained by scaling.

We conduct our simulation approach using the Voronoi software provided by TATA Steel.
The implemented algorithm is based on the half plane intersection, which is closely related
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to the original definition of a Voronoi tessellation [12] but a filter, which determines which
neighboring points of a site are needed for the Voronoi cell construction of this site, is added for
improving the computational speed, now comparable to the performance of the best algorithm
[13].

A Monte-Carlo procedure is the adopted.
Repeat 1 000 000 times:

Step 1: : Generate a 3D Poisson-Voronoi diagram with added generator point (0, 0, 0)
with λ = 1;

Step 2: : Determine the geometrical characteristics of the realizations of the typical
Voronoi cell, the cell that contains the point (0, 0, 0), C(0);

Then, aggregate the 1 000 000 values.
The main graphical results are shown in Figures 1, 2 and 3.

The values of the estimated densities of the previously mentioned geometrical character-
istics are given at http://dutiosb.twi.tudelft.nl/ martina.vittorietti/. An R-package is under
construction. In Tables 1 and 2, we report the estimated moments of the main geometrical
characteristics and the estimated probabilities for the number of faces. They are coherent
with both the theoretical and numerical results obtained by other authors [4,7].

Table 1: Estimated moments of the geometrical features of 1 000 000 Poisson-Voronoi
typical cells, λ=1

(a)
Volume

µ1 1.00008
σ 0.41189
µ2 1.16981
µ3 1.55900
µ4 2.32340

(b)
Surface area

µ1 5.82670
σ 1.43821
µ2 36.01888
µ3 234.69091
µ4 1603.48468

(c)
Number of faces

µ1 15.53071
σ 3.33896
µ2 252.35173
µ3 4277.80397
µ4 75464.60519

5. Parametric approximations to the distributions

Various proposals to estimate the distributions of the geometrical properties of the typical
cell were put forward by several authors such as the Lognormal distribution [14,15], General-
ized Gamma distribution with 2 [17] or 3 parameters [7] and Rayleigh distribution [16]. Ferenc
and Néda [10] propose their own function for the volume distribution. However, nobody was
able to find an analytic expression for the grain geometrical characteristics distributions.

As noted in [17] the use of the Lognormal distribution function for representig grain size
distribution lacks a solid physical basis and is not in general accurate. Nowadays, the debate
regards mostly the Generalized Gamma Distribution with 2 or 3 parameters, but until now
no physical explanation for using one preferential distribution exists. However, in view of the
scaling properties described in the previous sections, it is natural to think that the distri-
butions of the geometrical characteristics of the grain belong to a scale parametric family of

http://dutiosb.twi.tudelft.nl/~martina/
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V

f(x)

(a)

v

F(x)

(b)

Figure 1: (a) Kernel density estimate (Epanechnikov kernel, cross validation band-
width h = 0.05) and (b) empirical cumulative distribution function of volume of
1 000 000 Poisson-Voronoi typical cells, λ = 1

s

f(x)

(a)

s

F(x)

(b)

Figure 2: (a) Kernel density estimate (Epanechnikov kernel, cross validation band-
width h = 0.25) and (b) empirical cumulative distribution function of surface area of
1 000 000 Poisson-Voronoi typical cells, λ = 1

distributions. Only then the distributions of the quantities for all λ can belong to the class.
One could, for instance, consider the Lognormal distribution. Its probability density is given
by

f(x|µ, σ) =
1

xσ
√

2π
exp (−(log(x)− µ)2

2σ2
).
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(a)
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F(x)
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Figure 3: (a) Relative frequencies and (b) empirical cumulative distribution function
of number of faces of 1 000 000 Poisson-Voronoi typical cells, λ = 1

Table 2: Distribution of the number of faces F of 1 000 000 Poisson-Voronoi typical
cell, λ = 1

F nf pf F nf pf F nf pf
4 5 0.000005 16 115188 0.115188 28 435 0.000435
5 35 0.000035 17 101151 0.101151 29 224 0.000224
6 316 0.000316 18 82277 0.082277 30 95 0.000095
7 1822 0.001822 19 62408 0.062408 31 52 0.000052
8 6190 0.006190 20 44944 0.044944 32 18 0.000018
9 15051 0.015051 21 30477 0.030477 33 3 0.000003

10 30685 0.030685 22 19466 0.019466 34 1 0.000001
11 52528 0.052528 23 11682 0.011682 35 1 0.000001
12 77421 0.077421 24 6756 0.006756 36 1 0.000001
13 100094 0.100094 25 3631 0.003631
14 114163 0.114163 26 1890 0.001890
15 120015 0.120015 27 975 0.000975

Let µ̂1 and σ̂1 be the maximum likelihood estimates when λ = 1 (based on the 1,000,000
simulated values). Then, define a scale family based on that, fλ(x) as:

fλ(x) = λf(λx|µ̂1, σ̂1) =
1

xσ̂1

√
2π

exp (−(log(x) + log(λ)− µ̂1)2

2σ̂2
1

)

which corresponds to a Lognormal distribution with parameter vector (µ̂1−log(λ), σ̂2
1). There-

fore, we have a log-addition scaling on the first parameter, which is not consistent with the
λ-scaling that is found for real distributions. Now let us consider the Generalized Gamma
distribution. Its density function, parameterized according to [18], is given by

(5.1) f(x|a, b, k) =
bxbk−1

Γ(k)abk
e−(xa)

b
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where a and b are the shape and the scale parameters, k the family parameter. Let â1, b̂1 and
k̂1 be the maximum likelihood estimates for the parameters (based on the 1,000,000 simulated
values) when λ = 1. Define fλ(x) as equal to:

fλ(x) = λf(λx|â1, b̂1, k̂1) =
b̂1x

b̂1k̂1−1

Γ(k̂1)

(
λ

â1

)b̂1k̂1
e
−
(
λ
â1
x
)b̂1

which corresponds to a Generalized Gamma with parameters ( â1λ , b̂1, k̂1). This suggests to
look for a distribution that belongs to this scale family. Special cases of this family are
the Gamma distribution with parameters a, k and b = 1 and the Weibull distribution with
parameters a, b and k = 1. Beside the parametrization in eq. 5.1, another one is provided
by Prentice [19]. This is in general more stable in the estimation of the parameters but
both parametrizations lead to the same estimates. In the next subsections, we report the
estimated parameters of the best Generalized Gamma approximations and we statistically
compare the fits based on the Gamma distribution, the Generalized Gamma distribution and
the Lognormal distribution. This comparison is based on two criteria:

• Supremum distance between two distribution functions:

(5.2) D(F,G) = sup
x∈R
|F (x)−G(x)|

This distance is computed between the empirical distribution function Fn of the sam-
ple and the maximum likelihood fit within the respective parametric families. The
data are the 1,000,000 simulated values from the distribution of interest, with λ = 1.
• Total Variation distance between distributions with distribution functions F and G

and densities f and g respectively on R:

(5.3) TV (F,G) := sup
A∈B
|
∫
A
dF (x)−

∫
A
dG(x)| = 1

2

∫
|f(x)− g(x)| dx

This distance is computed between the kernel estimate of the densities and maximum
likelihood parametric fits based on the simulation results with λ = 1.

Note that information on these distances is based on the data obtained with λ = 1. If the
estimates for more general values of λ are obtained via the rescaling, these distances do,
however, not change under this scaling, so the distances also hold for the other values of λ.

Table 3: Estimated Generalized Gamma parameters for volume distribution approx-
imation, λ=1

â b̂ k̂
Estimate 0.380 1.287 3.583
Std. Error 0.005 0.006 0.0322
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Data

v

f(x)

Figure 4: Comparison of parametric approximations to the volume distribution of
1 000 000 Poisson-Voronoi typical cells, λ = 1
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quantiles
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Figure 5: (a) QQplot and (b) cumulative distribution function comparison of para-
metric approximations to the volume distribution of 1 000 000 Poisson-Voronoi typical
cells, λ = 1

Table 4: Comparison of Gamma-, Generalized Gamma- and Lognormal approxima-
tions for volume distribution in terms of Supremum- and Total Variation distance

Gamma Generalized Gamma Lognormal
Supremum distance 0.013 0.005 0.041
TV distance 0.018 0.005 0.089
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DataDataDataDataDataDataDataDataDataDataDataDataDataDataDataData

Data

s

f(x)

Figure 6: Comparison of parametric approximations to the surface area distribution
of 1 000 000 Poisson-Voronoi typical cells, λ = 1

Table 5: Estimated Generalized Gamma parameters for surface area distribution
approximation

â b̂ k̂
Estimate 3.174 2.102 3.839
Std. Error 0.025 0.011 0.036

Table 6: Comparison of Gamma-, Generalized Gamma- and Lognormal approxima-
tions for surface area distribution in terms of Supremum- and Total Variation distance

Gamma Generalized Gamma Lognormal
Supremum distance 0.020 0.002 0.037
TV distance 0.035 0.003 0.082

6. Application

Data used for this application are kindly provided by Erik Offerman (TU Delft). They are
relative to 882 grains in an actual steel microstructure in a volume of 950µm × 1100µm ×
400µm. The main information collected from the processed experimental data set is:
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Data

Data

Sample quantiles

Theoretical 
quantiles

(a)

Data

s

F(x)

(b)

Figure 7: (a) QQplot and (b) cumulative distribution function comparison of para-
metric approximations to the surface area of 1 000 000 Poisson-Voronoi typical cells,
λ = 1

• center of mass of each grain;
• equivalent spherical radius;
• orientation as Miller indices.

More details about the 3D microstructure and the 3DXRD measurement can be found in
[22,23].

0 2000000 4000000 6000000

0.
00

00
00

0.
00

00
02

0.
00

00
04

v

f(
x)

Figure 8: Kernel density estimate (Epanechnikov kernel, cross validation bandwidth
h = 21735.28)

First, an estimate of λ is required for fitting. The most commonly used estimator is
given by the ratio between the number of grains and the size of the domain [25]; in the

specific case λ̂ = 2.11 × 10−6µm−3. Another option is to use a moment estimator for λ,

λ̂ = µ1
V̄

, where V̄ is the empirical mean volume and µ1 =
aΓ(k+ 1

b
)

Γ(k) is known for the best
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Generalized Gamma distribution approximating the volume distribution (Tab. 3). This leads

to λ̂ = 2.64× 10−6µm−3.

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0 Kernel
Poisson−Voronoi
Generalized Gamma

Data

v

f(x)

Figure 9: Comparison of parametric approximations to the volume distribution
density(Epanechnikov kernel, cross validation bandwidth h = 0.057, black line), λ = 1

In figures 9, 10(a), 10(b) a graphical comparison in terms of probability density function,
qq-plot and cumulative distribution function, respectively is performed. At first sight the re-
sult discourages the use of the Poisson-Voronoi model for this dataset. One major difference
is related to the presence of many more small cells in the real microstructure than one would
expect in the Poisson-Voronoi setting. One possible explanation could be the measurement
inaccuracy of the smallest cells: it is, in fact, a very well known problem in the literature [24].
Moreover, volume values close to 0 may be attributed also to the non space filling reconstruc-
tion even in the center regions, as reported by data providers. This over-representation of
small cells will also lead to an inaccurate estimate of λ and have a global impact on the com-
parison of both distributions. It is interesting to see whether the distributions in the higher
volume regions fit better. One way to look at this is by conditioning on the (e.g. 10%) highest
observed volumes. This conditional distribution then has to be compared to an appropriate
Generalized Gamma distribution. We use a (conditional) method of moments estimate for λ
to rescale the data on the same level as was done in Figure 10(b). This leads to Fig. 11. In



14

0 5 10 15 20

0.5

1.0

1.5

2.0

2.5

Theoretical 
Quantile

Sample Quantile

(a)

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

v

F(x)

(b)

Figure 10: (a) QQplot and (b) cumulative distribution function comparison of Gen-
eralized Gamma distribution to the real volume distribution, λ = 1

this graph we still see a difference between the two distribution functions as it comes to the
thickness of the tails. However, the general shapes of both conditional distributions are quite
similar.

All in all, we would not recommend the use of the Poisson-Voronoi model for the data
at hand because of some complications (as the overrepresentation of small volumes, maybe
due to premature stopping of the generating process) that could be addressed by using other
models, such as Weighted Voronoi Diagrams. On the other hand, if especially the distribu-
tional behavior of the highest volumes is of interest and there are indications of inaccurate
measurements of the smallest grains, the Poisson-Voronoi model may be used as a reasonable
approximation and as a way of extrapolating distributional properties for cells with volume
values close to 0.
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Figure 11: Cumulative distribution function comparison of Generalized Gamma
distribution to the highest values of volume distribution λ = 1

7. Conclusions

This work provides a very accurate representation for the distributions of the main geo-
metrical characteristics of the Poisson-Voronoi typical cell. It is now possible to exploit our
approximated distribution for generating observations of approximately every geometrical
characteristic that defines the grain size and for every possible value of λ. Moreover, we show
that the Generalized Gamma distribution, with parameter â = 0.380, b̂ = 1.287 k̂ = 3.583 for
the volume and b̂ = 3.174, â = 2.102, k̂ = 3.839 (Tab. 3 and 5) for the surface area is the best
approximation in the class of the commonly used parametric distributions for grain size dis-
tributions. Nevertheless, it is not the true underlying distribution. In fact, the interpretation
of the total variation distance as a measure of quality allows to say that using Generalized
Gamma approximation for the grain volume distribution we could commit an error of about
0.5% and about 0.3% for the grain surface area (Tab. 4 and 6).

As noted in the introduction, Poisson-Voronoi diagrams are interesting and widely applied,
but for modeling microstructures only constitute the most basic case. Their use in microstruc-
ture characterization is not fully evaluated yet. Therefore, we want to test their applicability
and then extend our work to more general and less understood Voronoi structures, such as
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Multi-level Voronoi diagrams [20] or Laguerre-Voronoi tessellations [21] in which the conve-
nient scaling properties present in the Poisson-Voronoi diagrams are less obvious.
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