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I. Introduction 
The application of the (structural impossible) strain softening postulate for fracture, is strictly against 

theory, and results, since long, in a tremendous spill of research efforts, without any possibility of progress. The 

lack of theory is also leading to models (see e.g. the German controlled CIB-W18 papers), where all viscoelas-

tic, plastic, and structural change processes in e.g. beam type specimens at loading, (which are known from 

molecular deformation kinetics [1]), are regarded as one fracture process. This results in a never ending stream 

of publications of assumed R-curves. The non-existence of the hardening R-curve for wood is nevertheless 

known from relevant small- and plate specimen data, showing no kinks in the loading line, while the kinks at 

mode II loading of edge notched beams is shown in [2] to be due to necessary plastic stress redistribution.  

Despite this assumed hardening, a softening transformation is assumed at crack extension. This softening 

postulate leads to impossible models, e.g. with negative spring constants, anti-normality, negative dissipation, 

etc., all strictly against admissibility and against the possibility to predict strength in any circumstance. The last 

representative of this ineffectual movement is the cohesive zone model, which is, as all the applied empirical 

models, based on the general error to regard the nominal stress to be the actual stress at the fracture plane.  

To try to correct this convincingly in the light of exact theory, it will be shown that real strain softening 

does not exist, and thus is not a material property. Yield drop (wrongly called softening) is only possible in a 

constant strain rate test, when the rate of the unloading process is higher than the loading rate by the constant 

strain rate test. Yield drop (“softening”) therefore is not possible in a constant loading rate test and also not in a 

dead load to failure test. Also when instability is involved in the dead load test, yield drop is not possible. 

“Strain softening” thus, is not “softening”, but is elastic unloading of the actual stress of the intact, not ultimate 

loaded, part of the specimen, thus outside the fracture region. Apparent and real (e.g. thermal) softening are 

fully described by (exact) deformation kinetics [1], without the need of impossible physical properties. It will be 

shown, that the real, actual stress at the fractured plane never is able to show yield drop and always determines 

strength behavior, what involves that deformation kinetics always has to be applied. 

 

II. Discussion of the Fictitious crack models 
The cohesive zone model is mostly qualified as a (Hillerborg type) fictitious crack model, thus is based 

on a fictive crack length extension, which is loaded by a cohesive flow stress, over such a length that the singu-

larity due to this cohesive flow stress neutralizes the singularity due to the field stress at the extended crack tip. 

The extended crack length is however not fictitious, but real, because only then, there is a real singularity possi-

ble at a real extended crack tip, which can be neutralized. The singularity is not neutralized at the existing crack 

tip when this crack extension is not real. Calculated thus is the strength of an extended crack length in a stress 

field, loaded also by a physical and structural not possible internal opposite applied, liquid-like, viscous soften-

Abstract: 
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ing stress field near the crack tips. Although the aim of the fictitious crack models (Dugdale, Barenblatt, Hiller-

borg) initially was, to remove the infinite high stresses of the singularity approach, it later simply was assumed, 

that by the fictive softening boundary condition, the strength, of the real crack tip singularity, approaches zero, 

in stead of going to infinity.  

These approximation models, with arbitrary outcomes (due to the impossible, now arbitrary chosen, sof-

tening boundary condition and wrong failure criterion), need not to be followed, because it is not necessary to 

choose an approximation of an approximation. Thus to choose a correction on the singularity solution of the 

Airy stress function. In chapter 2 of [2] the exact boundary value limit analysis approach, without singularities, 

is presented, leading to an exact Wu-failure criterion. The same can not be derived by the, singularity methods, 

which lead to an ultimate stress criterion for combined loading. Thus mode I and/or mode II failure is predicted 

to be determining, depending on which critical value of the two is the first reached. Thus an up to 100 % overes-

timate of the strength is in principle possible as follows from the exact (Wu-) equation, and the singularity me-

thod and the thereupon based fictitious crack models, thus are not exact for the mixed mode loading case.  

The most near to exact, for uniaxial loading, is, (according to elastic-plastic limit analysis), the Dugdale 

method, and the results can be compared with the results of the exact solution. Then, the extended crack length 

p
r , according to  the Dugdale model is:  

2
2 2

2

8 8

Ic

p

f f

K c
r

  

 
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, (2.1)  

where 
f

  is a yield stress. This leads to a maximal crack opening displacement 
c

  at the crack tip of:  
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when 
p

r  from eq.(2.1) is substituted. This result, based on singularity equations, was necessarily based on very 

small values of r  so that all terms (of the Airy stress function solution) containing not the factor 
0 .5

r


 were neg-

lected at the derivation of the solution equation. For finite values of r , and for the singularity neutralization 

effect by superposition of yield stresses, this is not allowed, leading to a not correct result. According to the 

exact theory, Chapter 2 of [2], applies, for Mode I, at the crack tip boundary 
0

r , at the start of flow, the condi-

tion:   
2

0
2 /

f
r c   , according to eq.(2.29) of [2] for the elliptic crack tip and applies approximately: 

2 2

0
/ 2

f
r c   according to eq.(2.20) of [2] for the circular crack tip of the singularity approach, showing a 

difference by a factor 4, depending on neglected terms and form of the crack tip determining value of the tan-

gential tensile stress along the crack-tip boundary. The Dugdale numerical factor:  
2

/ 8 1 .23   (based on an 

enlarged crack length) is between these values of 0.5 and 2, but is too far away from the elliptic value 2, which 

applies as highest lower bound of limit analysis (which bound is equal to the measurements, thus is the solu-

tion). Also the theoretical elastic elliptic crack opening displacement of: ( 2 ) /
c

c E   is far above the Dug-

dale value. The Dugdale model thus shows a not exact, too low, thus rejectable, lower bound of the strength, 

which only applies for uniaxial loading.  
A similar rejection applies for the Hillerborg cohesive zone model, which is based on “closing” stresses, 

proportional to the “softening” curve, because it wrongly is based on the nominal stress change, which is the 

decreasing elastic actual stress of the intact part, outside the fracture plane, and thus is not based, (as necessary 

for a right solution, see § 3, [1], [2], [3]), on the actual stress at the fracture plane, which is a, by stress spread-

ing, [4], increasing, actual stress. Therefore, wrongly, a zero tangential stress is found at the location of the 

highest (strength determining) tangential tensile stress at the crack boundary. This error is of course opposite 

from right, as further discussed later, based on the exact derivation of the, “softening” called, yield drop curve.  
 

III. Continuum damage mechanics 
Continuum damage mechanics [3], is a simplified application of needed Deformation Kinetics analysis 

(of [1]), leading to the most elementary damage kinetics equations. Regarding fracture mechanics of [3], the 

analysis is based on the fractured (lost) area A  of an initially undamaged section 
0

A , leading to the variable:  

0

0

A A

A



    (3.1)  

The actual stress 
a

  on the material then is (expressed, as wanted, in the nominal stress  ):  
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0 0

a

P P

A A A




 
  


   (3.2) 

where   is the nominal stress and 
a

  the actual tress on still undamaged (=actual) area of the section. Now:  

- 1. The actual stress on the actual area evidently determines the rate of damage growth, and: 

- 2.  The strain increase due to damage is caused by the actual stress at the damage location.   

 Thus, the stress-strain behavior of the damaged material can be represented by the constitutive equation of 

the virgin, undamaged, material with the stress, in it, replaced by the actual stress. Thus: 
1

'

a

E E E

  



   

   (3.3) 

with:  'E E .   A simple form of the deformation kinetics damage equation for uniaxial tension is:   

n

d
C

d t

 




  

 

   (3.4) 

This is comparable with the deformation kinetics equation of [1] and § 5:   

0

'
e x p

d N
C N

d t k N

 
   

 

,   (3.5)  

for a forward zero order reaction due to high stress, where the exponential equation is replaced by its power law 

representation in eq.(3.4). (See for that last: Section 4.4 of [2]).  

To apply this, for a rod, loaded by a constant tensile stress 
0

 , the initial boundary condition of eq.(3.4), 

for a virgin material, is: 1   at t = 0, while at complete fracture: 0  .  

Integration of eq.(3.4) then gives for the time to failure:  
1

0
' 1

n
t C n 



  
 

.  

For stepwise loading then follows:   

 
1

1

1; ' 1
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t
t C n

t







   
   with: 

1k k k
t t t


   ,      k = 1,2,…..s.  (3.6)  

which is Miner’s rule, or the principle of linear summation, which evidently also applies for wood and timber.  

Important conclusions now are:  

1. It is necessary to apply of the actual stress in damage equations, for right results, as is applied in [3], [2]  and 

   [1], for all existing solutions, which all are empirically verified by tests, and:  

2. Limit analysis deformation kinetics [1] has to be applied, (e.g. in continuum mechanics), for exact solutions.  

 This is discussed and applied in next sections.  
 

IV. Softening-like behavior and fracture energy 
4.1 Introduction 

The derivation of “softening”- called yield drop behavior of the Griffith stress, is discussed in [2], chapter 3 and 

it is shown that the area under this load-displacement yield drop curve, divided by the crack area, is not the 

fracture energy, but the total external work on the specimen. The fracture energy is half this value and is equal 

to the decreasing critical strain energy release rate along the yield drop curve. For wood this factor ½ is 

correctly is applied for mode II. For mode I this is not the case and a two times too high value is applied. 

According to the, for wood applied, Hillerborg, fictitious crack model, is the fracture energy related to the newly 

formed fractured area, what is not a right definition because the energy then is by definition different for 

different initial crack lengths and thus is undetermined. Necessary is to use the Griffith definition, which 

includes the energy of formation of the initial crack for the total energy of full crack extension over the whole 

width of the specimen.  

Inconsistent, with the choice to relate the fracture energy to the actual newly formed fractured area, the 

fictitious crack model regards the nominal stress, (which is the actual elastic stress of the intact part of the spe-

cimen) to be the actual strength stress at de fracture plane. As consequence, the (by stress spreading increasing) 

strength, decreases strongly by definition, proportional to the yield drop curve at crack extension and approach-

es zero strength at the end what is against physics and against equilibrium conditions. Further, the success of 

the, deformation independent, Griffith theory, (and equilibrium method of limit analysis of [2]), with its con-

stant apparent surface energy and constant energy release rate, is ignored, but should be explained by any new 

theory. It therefore also is necessary to discuss the real strain energy release rate at the top of the yield drop 

curve, which causes the start of macro-crack extension, but is shown to be determined by a critical small-crack 

density [2]. It further appears that proceeded small-crack extension also determines the “softening” curve and 

post fracture behavior, as discussed in the following.  
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4.2. Mode I, hardening and “softening”-like behavior  
“Softening”- like yield drop only exists for the nominal stress and not for the actual fracture stress. The Griffith 

stress, eq.(4.8), is a nominal stress, acting on the section b∙t of Fig. 4.1. This stress, therefore is in reality the 

actual stress of the intact, not fractured, part of this specimen, which shows “softening”- like yield drop, follow-

ing the Griffith locus, what thus is not strain softening (at failure) but is unloading of intact undamaged material. 

The actual stress at the fractured section shows hardening and quasi hardening by stress spreading and thus no 

softening as will be derived below. The same applies for the necked actual cross section area of steel and for 

reduced area of other materials. Clearly the term strain softening has to be replaced by (dynamic) elastic unload-

ing (when the unloading process is faster than the loading rate by the constant strain rate test).  

As most materials, wood shows near failure a plastic and apparent plastic (deformation independent) be-

havior. Plasticity causes the apparent surface energy to be much higher than the real surface energy and when 

the test rig is stiff enough, the top of the loading curve is shown to be blunted enough to make any stress redi-

stribution possible and the behavior can be approximated by equivalent elastic- full plastic behavior. Therefore 

limit analysis applies and linear elastic fracture mechanics can be applied, up to the ultimate stress at the elastic-

plastic boundary around the crack tip. The dissipation by micro cracking, plastic deformation, and friction, with-

in this boundary, called fracture process zone, then is regarded as part the fracture energy for macro crack exten-

sion. When a specimen is loaded until “flow”, before the start of yield drop, and is then unloaded and reloaded, 

the behavior has really become elastic-full plastic, and the real stress differs an internal equilibrium system from 

the linear elastic loading stresses. According to the limit theorems, initial stresses or deformations have no effect 

on the plastic limit collapse load, provided the geometry is essentially unaltered and thus the calculation is based 

on initial dimensions. Therefore also, as method of practice and of the Building Codes, calculations can be 

based on a reduced E- modulus up to the ultimate state and therefore also the linear elastic derivation of the 

elastic unloading curve of the fractured specimen, is possible, based on the compliance method, as is followed 

below. It also should be realized that, for wood, confined plasticity, as e.g. occurs at ultimate bending compres-

sion, can be replaced by the equivalent linear elastic bending strength. Thus a linear elastic calculation up to  the 

crack boundary is possible and the term: “linear elastic fracture mechanics” then is in fact a pleonasm.   

In Fig. 4.1, a mode I, center notched test specimen is given with a length “l”, a width “b” and thickness 

“t”, loaded by a stress σ showing a displacement increase δ of the loaded boundary due to a small crack exten-

sion. The work done by the constant external stress σ on this specimen, during this crack extension is equal to: 

 2 2 / 2b t W b t             (4.1) 

This is twice the increase of the strain energy W of the specimen. Thus the other half of the external work, equal 

to the amount W, is the fracture energy, used for crack extension. Thus the fracture energy is equal to half the 

applied external energy, which is equal to the strain energy increase W. This follows, for the total crack length, 

from the difference of the strain energy of a body containing the crack and of the same body, without a crack:  
2 2

2 2
e ff

b lt b l t W

E E

 
    (4.2) 

The fracture energy is also equal to the strain energy decrease at fixed grips conditions when δ = 0:  
c

c

W t v d a




   = 
2 2

/c t E   (4.3) 

where the last two terms give the strain energy to open (or to close) the sufficient small, flat, elliptical crack of 

length 2c and where “v” is the virtual displacement of the crack surface in the direction of σ.   

From eq.(4.2) and eq.(4.3) follows that:  

 

 
Figure 4.1 -  Specimen b x l and thickness t, containing a flat crack of 2c  
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2 2

2 2
e ff

b lt b lt

E E

 
   

2 2

/c t E    (4.4) 

Thus the effective Young’s modulus of the specimen of Fig.4.1, containing a crack of 2c, is:  

2

1 2 /
e ff

E
E

c b l





    (4.5) 

The equilibrium condition of the critical crack length is:  

 2 0
c

W G c t

c


 



   (4.6) 

where 
c

G  is the fracture energy for the formation of the crack surface per unit crack area.  

With W of eq.(4.2) or of eq.(4.3), eq.(4.6) becomes:  
2 2

2 0
c

c t
G c t

c E


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

 

 
 

,   or:   

2 2 2

2
1 2 0

2 2
c

b lt c b lt
G c t

c E b l E

  
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

  

  
  

   (4.7)  

giving both the nominal Griffith strength:  

c

g

G E

c





    (4.8) 

This stress is the actual stress /P bt  outside the fractured section and is a nominal stress for the fractured 

section, related to the width b of the specimen of Fig. 4.1. The real, actual, mean stress in this weakest actual 

cross section (ligament) with width:  b – 2c, where fracture occurs, is: 

1

2 ( / ) (1 2 / )

c c

a

G E b G E

c b c b c b c b



 

   

  

  (4.9) 

Because this stress is determining for newly formed crack area, it is applied by the fictitious crack models for a 

local fracture energy estimation. It is however not noticed that this use of the actual stress leads to “hardening”, 

in stead of “softening”, according to: 

   
2

6 / 1
0

/ 1 2 /( / )

a c
G E c b

b c b c bc b





 
  

 

   (4.10) 

This occurs when c/b > 1/6, what always is the case for actual critical crack lengths. The real actual stress 
a

  

increases with the increase of the crack length even up to infinity when 2c approaches b and hardening behavior 

characterizes the critical stress. However, there is a maximal value for this clear wood fracture as discussed in § 

6. This constant maximal value of the energy release rate for each mode is basic for the Griffith theory. Then the 

nominal stress follows the Griffith locus, eq.(4.12) (see Fig. 4.6), as failure condition, which also is the 

condition of no damage acceleration, and the applied strain rate, at the end of the test is relatively slow, so that it 

has to be increased highly, (by one order in [5]), to shorten the delay time of the macro crack fracture process.  

The stress for e.g. the minimal critical crack length of  c/b = 1/6, is:   /
c c

G E c   / ( / 6 )
c

G E b   

and the actual stress at the fracture plane is:     
,

/ ( / 6 ) / / 3
c u c

G E b b b b    1 .5 / ( / 6 )
c

G E b .   

Thus is 1.5 times the nominal Griffith stress. Thus, macro crack extension demands an increase of the tensile 

strength. The possible tensile strength increase, follows from the exact stress spreading theory of [4]. Although 

derived for local compression, the sign of the shear stresses may be reversed and the same spreading rules apply 

for tension. For c/b = 1/6, according to Fig. 4.1, there is a spreading of the stress on 4c solid material to:  b = 6c. 

Thus the tensile strength is: 6 / 4 1 .2 2
m m

    , thus 1.22 times the uniaxial tensile strength 
m

 . The 

nominal, fully spread, stress then is 4 / 6 0 .8 2
m m

    . Thus a factor 1.5 lower. High peak factors occur at 

long initial cracks, but there is a maximal value due to maximal possible spreading. Also the fully spread stress 

remains too high to explain macro crack extension at low mean stresses, where also the fracture energy is too 

low. Thus total fracture can not be due to single macro crack extension alone (see § 4.7). As known, a system of 

small cracks in the ligament, may lower the load of the adjacent intact, undamaged, part of the specimen and a 

high concentration of small cracks appears to be necessary to explain fracture at low nominal stresses.  

Because unloading is determined by the decrease of stiffness of the specimen, by crack extension, the 

mathematical expression of this influence has to be derived. This is discussed in the next paragraph 4.3.  
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4.3. The “softening”- called, yield drop curve  

“Softening” (yield drop) should be described by Deformation Kinetics [1] but an alternative description of the 

so called “softening” behavior as a result of former crack propagation alone is possible by the Griffith theory, 

which can be regarded as an equilibrium method of limit design. Straining the specimen of Fig. 4.1 to the 

ultimate load at which the initial crack will grow, gives, according to eq.(4.5): 

 
2

/ 1 2 / /
g g eff g

E c bl E          (4.11) 

Substitution of 
2

/
c g

c G E  , of the ultimate state, according to eq.(4.8), gives:  

2 3

/ 2 /
g g c g

E G E b l     (4.12) 

This is the equation of critical (unstable) equilibrium states, representing the apparent softening (= unloading) 

curve, due to the Griffith stress, eq.(4.8), which is the actual stress on the intact part of the specimen, outside the 

fracture plane. It is shown by the dynamics of crack propagation that the velocity of crack propagation is zero at 

the initial critical crack length and that the Griffith relation, eq.(4.8), is the condition for zero acceleration of 

crack extension. Thus the crack of Griffith length is in unstable equilibrium but does not propagate.  

The “softening”- called yield drop curve, eq.(4.12), is known as “Griffith locus” and has a vertical tangent 

/ 0
g g

d d   , occurring at a crack length of: 

/ 6
c

c b l  ,  (4.13)  

which is the top of the curve. Smaller cracks than 
c

c  are unstable because of the positive slope of the locus (see 

eq.(4.16), because crack recovery is not possible). These small cracks, (if any, near the macro-crack tip) extend 

during the loading stage, by the high peak stresses at the notch of the test specimen, to a stable length and only 

higher crack lengths than 
c

c  are to be expected at the highest stress before yield drop, giving the stress-strain 

curve of Fig. 4.2 with 
c

 of eq.(4.15) as top value. For a distribution of small cracks, in a repeating pattern, b 

and l in eq.(4.13) are the St. Venant crack distances and the critical crack distance for extension is about 2.2 

times the crack length. Because, when b ≈ 2.2∙(2
c

c ) and: l ≈ 2.2∙(2
c

c ), then: bl ≈ 19∙
2

c
c  ≈ 6 

2

c
c  according to 

eq.(4.13). This also applies for extended small cracks after merging because the stress flow around the crack 

needs the St Venant’s distance below the crack to be on full strength and to be able to extend the there present 

small cracks further. Thus the critical crack density, for the start of yield drop, is reached, when the small crack 

distance is about the crack length. This critical distance also is predicted by Deformation Kinetics, discussed in 

§ 5, and is used in § 4.6 to explain yield drop by small-crack propagation in the fracture plane (at the ligament).  

 
Figure 4.2 – “Softening” curve according to eq.(4.12) for the specimen of Fig. 4.1 or 4.5. 

 

According to eq.(4.13), the yield drop line, eq.(4.12), now can be given as:  
4

4
1

3

g c

g

g
E

 



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



 

,  (4.14)  

where: /
c c c

E G c    (4.15)  

is the ultimate load with 
c

c  according to eq.(4.13). The negative slope of the Griffith locus is:   

4

4
1

g

cg

g

E






 




  (4.16)  
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Vertical yield drop occurs at 
g c

  , and the strain then is: ( / ) (1 1 / 3 )
g c c

E     and eq.(4.14) becomes: 

3

3
0 .7 5

3

g g c

g c c g

  

  
  





 

,  (4.17)  

More in general eq.(4.14) can be written, when related to a chosen stress level
1g

 : 

4 4

4 4

1 1 1

1 / 3

1 / 3

g g c g

g g c g

   

   


 


  (4.18)  

To control whether 
c

  changes, eq.(4.18) can be written like: 

 
0 .2 5

3

1 1 1

3

1 1 1

3 ( / ) ( / ) ( / )

1 ( / ) ( / )

g g g g g gc

g g g g g

     

    

  


 



 
 

  (4.19) 

with the measured values at the right hand side of the equation. When the occurring “softening” curve starts to 

differ from the Griffith locus, 
c

  decreases, causing a steeper decline of the curve, due to additional small crack  

and clear wood failure of the fracture plane. This failure by a small-crack merging mechanism is discussed in § 

4.6. To measure the fracture energy as area under the softening curve, the displacement of the loading jack due  

 
Figure 4.3. Measuring nonsense data at gage 2  

 

to the mean deformation of the specimen has to be known. This can not be obtained by measuring the gage dis-

placement over an crack opening (see Fig. 4.3) because it is not known what then is measured and this local 

unloading, around the open crack, is mainly proportional to the crack length itself, and is not simply related to 

the constant ultimate stress state of the ligament.  

 

4.5. Empirical confirmation  

The measurements of [5] are complete by measuring the whole loading and yield drop curve and using the 

compact tension tests as control, being also a control by the different loading case. The graphs of [5], Fig. 4.6 

and 4.7, are the result of tension tests on the specimen of Fig. 4.5. The length of the specimen was l = 3 mm, the 

width and thickness: b = t = 20 mm and the notch length 2c = 2x5 = 10 mm with a notch width of 0.5 mm. 

In figures 4.6 and 4.7, measured stress-displacements are given together with the lines 1 and 2 according to 

Griffith locus: eq.(4.17). The strain 
g

  follows from the displacements at the x-axis of the figures, divided  

 

 
Figure 4.5 - Geometry of the specimens [5] 

 

through 3 mm, the measuring length and length of the specimen. Because of the small length of 3 mm, not the 

whole width b of the specimen is active. Assuming a possible spreading of 1.2:1, through the thickness of 1.25 

mm above and below the side notches, the working width 
e f f

b  is equal to the length of the fracture plane plus 2 

times 1.2 x 1.25 or 
e f f

b  = 10 + 3 = 13 mm. 
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Thus the notch lengths in Fig. 4.5 should be regarded to be 1.5 mm in stead of 5 mm. The stresses in the figures 

4.6 and 4.7, are related to the length of the fracture plane, thus are actual stresses and are not related to 
e f f

b  

according to the nominal Griffith stress, wherefore the actual stresses have to be reduced by a factor:  

10/13 = 0.77, as done and discussed in [2].   

Macro crack extension occurs by small crack merging with the macro crack tip. Thus is due to small-crack 

propagation toward the macro-crack tip. The level above 4 (to 4.6) MPa is measured in 3 of the 10 specimens of 

the discussed series T1309/2309 of [5] and an example is given in Fig. 4.6, reaching the top of Fig. 4.2, 

indicating that this strength of the fracture plane according to crack-pattern A of fig. 4.8 was determining for 

yield drop. The other specimens of this series did show lower strength values than about 4 MPa, as applies for 

further unloading due to already extended small cracks.   

 

 
Figure 4.6 - Stress - displacement of specimen T 1409 of [5].  

 

  
Figure 4.7 - Stress - displacement of specimen T 1509 of [5]  

 

At § 4.3 and § 5 is shown that for the critical small crack density of eq.(4.13), the crack distance is about 

the crack length, as given by row A of Fig. 4.8. Line 1 of Fig. 4.6 gives the primary crack extension, eq.(4.17), 

by this critical crack density. Curve 1 levels off from the measurements at   = 4 Mpa, where the next process 

starts, given by line 2. This thus happens when the crack length has become about 3 times the initial critical 

value 
c ,0

c , according to  

,0
3

c

g

c

E G

c



   0.57∙7 =∙4 MPa  (4.20) 

This 3 times larger crack length is given by crack row B of Fig. 4.8. The top value 
c

  of the first process on 

row A, is 
c

 = 7 Mpa, for all values of 
g

  between 4 and 7 Mpa. The top value of the second process B on 

3
c ,0

c  cracks, is: 
c

 = 4 MPa. This process ends, where cracks of 7
c ,0

c  lengths remain, according to row C of 

Fig. 4.8. Thus when:  

1 1
7 0 .3 7 8 7 2 .6 5

7 7 7

c c

g

c c

E G E G

c c


 
       Mpa (where line 2 of Fig. 4.6 levels off from the 

data) 

This stress is equal to top value 
c

  of the next process C, on 7
c ,0

c  cracks, given below line 2 in Fig. 4.6. This 

ends at: (1 / 1 5 ) 7 0 .2 5 8 7 1 .8 1     Mpa, where the process on 15 
c ,0

c  starts. However, processes towards 

the longer cracks of 15, 31 and 63 
c ,0

c  are not distinct and it is probable that, due to the high actual stress, 

failure may occur at any point of the still intact part of the ligament.   
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Again, due to the spreading effect very high tensile stresses are theoretically possible, but overcritical crack 

lengths just show empirically too low 
Ic

K  values, showing the Griffith strength and critical energy release rate 

to be not followed. Thus failure by post-critical crack lengths is due to ultimate uniaxial clear wood tensile 

stress, (or shear stress for mode II) and is not due to a critical release rate. This will be discussed further at § 4.7. 

It now is shown, that the Griffith yield drop equation, combined with the crack merging model, precisely 

explains the data of strong specimens. The data of the less strong specimens, given by Fig. 4.7, show instability 

of process A, due to the steep slope near the top of Fig. 4.2. (This also explains the high variability found in [5]). 

Line 1 of Fig. 4.7 is the same as line 2 of Fig. 4.6, and can be chosen to level off at about 2.2 MPa, in accor-

dance with the uniaxial strength of the still intact area of the ligament, which is half the area at 4.4 MPa, show-

ing again that an ultimate stress criterion is determining above the nominal Griffith strength criterion for long 

small-cracks (thus at low nominal stress). The crack merging mechanism, clearly noticeable at strong speci-

mens, is a chosen lower bound equilibrium system of limit analysis, which precisely follows the measured data 

(See § 4.6).  

 

4.6. Crack merging mechanism 

The increased unloading (yield drop), with respect to macro crack extension due to small crack extension, at the 

fracture plane, can be explained, using the equilibrium method, by the joining of the small cracks as follows:.  

In § 4.3 and § 5 it is shown, that the critical intermediate small crack distance, for crack extension, is about 

equal to the crack length, as given in scheme A below. In § 4.3, a crack distance of 2.2 times the crack length is 

found, what for simplicity of the model is rounded down here to 2, giving slightly too high stresses. For these 

small cracks, the critical crack length according to eq.(4.13) then is: 

 

  2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c  .  A 

 

           6c           2c             6c            2c           6c             2c           6c          . B 

 

                        14c                            2c                          14c                         . C   

 

Figure 4.8. Small crack merging 

 

0 0 0
/ 6 2 .2 ( 2 ) 2 .2 ( 2 ) / ( 6 ) 1 .0

c
c lb c c c         , for the specimen with row A. 

The distance l between the rows, above each other, is 2.2 times the crack length, being the Saint-Venant distance 

for building up the stress again behind a crack, to be able to form a new crack. Thus l = b = 2.2∙2c for row A, 

and l = b = 2.2∙6c in row B, and l = b = 2.2∙14c for row C. Thus when crack pairs of row A join together, a crack 

length of 6c occurs. The critical crack length thus is for row B: 

 
22

0 0 0 0
/ 6 2 .2 6 2 .2 6 / (6 ) 0 .5 6 0 .5 6 3

c
c lb c c c c             .  

But at the end of this process the real distances are: 6 
0

c  + 2
0

c  = 8 
0

c , and  

2

0 0
/ 6 8 2 .2 6 / (6 ) 2 .4

c
c lb c c        , so that the produced crack of 3

0
c  is overcritical and the critical 

process for further fractureis due to an other process. The only possibility is that small crack formation and pro 

pagation in the remaining intact part of the ligament becomes determining. This determining clear wood failure, 

which starts at half way the yield drop, is discussed in § 4.7. 

For every successive process applies, that every crack merges with one neighbor by extension at one side over a 

distance of 1 
0

c , leading to halving of the solid area of the ligament, and to an increase of the crack length by: 

1 0
2 2 2 2

n n
c c c


   , giving 

1 0
2 6c c  and 

2 1 0 0
2 2 2 2 1 4c c c c    , as found before. The increase of the 

crack length is: 
1 0

( 2 ) 2 2 2 2


    
n n n

c c c c c . Including the initial crack length of 2
0

c , the increase of the 

total crack length is: 
1 0

( 2 ) 2 2 2 2
n n n

c c c c c


     .  (4.21)  

More general for all merging cracks at any distance during time t  this is:  

1
( )c c t       (4.22)  

and as the determining damage deformation kinetics equation this is (see § 5, eq.5.3):  

2 0
/ ex p ( )d c d t c      (4.23)  

when the initial site concentration 
0

c  is high, (zero-order reaction) as applies for row A of Fig. 3.  

Eq.(4.23) can be written: ln ( ) ln ( )
v

c C   , or, because 
0v

  = n, is constant, independent of stress, due to 



The Myth of Softening behavior of the Cohesive... 

www.ijceronline.com                                         Open Access Journal                                         Page 38 

the time stress equivalence, [1], is:   

0 0

1
1 ln ( )

v

v

c

n c




 




  (4.24) 

showing that the combined Griffith – crack-merging model is identical to common damage behavior.  

Regarding Fig. 4.8, it is clear that the overcritical longer cracks are not determining for crack extension, but that 

fracture always is due to the same micro crack extension in the remaining intact clear wood parts of 2 c length. 

The damage process acts in all these parts at the same time. Thus, for the whole fracture process, from the 

beginning to full separation, applies, that micro-cracking in the intact part ( )b c of the ligament is 

determining, and that the concentration is not determined by / 6
c

c lb  , but by: 
2

1
' ( 2 ) / 6  

c
c c b c  

2
( 2 ) c b c ,    (with 

2

1
2 .2c , is 

2
0 .5c ). 

 The kinetics shows the same behavior as for clear wood, indicating that always the same small-crack 

propagation is determining. As shown in [1], always two coupled processes act, showing the same time-

temperature and the same time-stress equivalence of both. One process, with a very high density of sites, pro-

vides the sites of the second low site density process, as follows from a very long delay time of this second ma-

cro-crack process at common load levels. (Of course there is no delay time for macro crack extension at a high 

loading stress level due to the time stress equivalence). The mode I notched specimen, discussed here, also 

shows the low concentration reaction by the strong yield drop behavior (of the nominal stress). The coupled 

processes occur for the crack merging processes, where the initial crack length is the reactant and the product is 

the newly formed crack length what also applies for macro-crack extension due to the crack merging process. 

The numerous small-cracks, growing towards the macro notch, provide the site for the macro crack to grow as 

second low concentration reaction process. This failure mechanism applies for every bond breaking process at 

any level.  

 

4 7 Mode II shear tests  

In [6], [7], results of mode II tests, called asymmetric four point bending (AFPB) tests, are given, applied on 

very long sub-critical initial crack lengths, which clearly represent an identical state of a former yield drop 

stage, because the measured 
I Ic

K -values were a factor 3 to 4 lower than those of the control tests on standard 

single edge notched beam (SENB) test-specimens. By the standard fracture equation for this case, eq.(4.25), the 

value of 
0

  and 
I Ic

K  were obtained in [6], [7], by estimation of the energy release rate 
I I

G  by the compliance 

method at different crack lengths and, as control, by the finite element virtual crack closure method. The found 

too low value of 
c

G  is now not the critical energy release, but simply the minimal elastic energy for crack clo-

sure of the very long crack. In the first eq.(4.7) is 
c

G  then the mean crack closure energy per unit crack length, 

and the derivation in this equation, with / 0
c

G c   , gives the condition of minimal mean crack closure ener-

gy per unit crack length, as minimum potential energy condition as applies for equilibrium, similar to the frac-

ture energy in the ultimate state, giving the meaning of 
c

G , and of eq.(4.25), for overcritical crack lengths. Thus 

also in that case applies:  

 0
/

I Ic c
K a f a W        (4.25) 

This equation can be written, when clear wood shear failure is determining in this shear loaded specimen:  

1

0

( / )
I Ic

c

K
a f a W C


    (constant)     (4.26)  

where 
0

  is the ultimate nominal stress. 
1

C  is only dependent on dimensions and stiffness factors of the speci-

men. This is different from the solution in [6], [7]. There the critical value of 
c

G , in I Ic c
K E G , is chosen 

to be at the 5 % offset from linearity. The common calculation in [6], [7], based on the assumption that the over-

critical initial crack length is still the critical macro crack length, leads to strongly (factor 3 to 4) too low, not 

critical, not constant, values of 
c

G . 
1

C  then is dependent on /a W , and is determined by the compliance me-

thod and crack closure technique. This delivered right values  of  /f a W .  

According to fig.12 of [7], there is no difference (by volume effect) between the data for W = 40 mm and 

W = 20 mm, thus mean values of both are here regarded. 

Determining for small crack extension, at the presence of a long (post-critical) crack, is the still available intact 

area of: ( )W a  
1
( )c W a . The critical small crack density is proportional to this area according to eq.(4.13).  
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Thus, the critical macro-crack length, which is equivalent to the critical small crack density, is:  

 1 2
/ 6 (1 / ) (1 / ) / 6 (1 / )

c
a b l c W a W W a W c a W         W (4.27) 

where: (1 / )l W a W   and 
1

(1 / )b c W a W   as St. Venant distance. Thus, because W is constant, is:  

For a/W = 0.7, is:  ( / )
c

a f a W 
6

(1 / )c a W ( / )f a W
6 6

0 .3 1 .0 0 .5 5c c      (4.28) 

For a/W = 0.8, is:  ( / )
c

a f a W 
6

(1 / )c a W ( / )f a W
6 6

0 .2 1 .2 0 .5 4c c     (4.29) 

For a/W = 0.9, is:  ( / )
c

a f a W 
6

(1 / )c a W ( / )f a W
6 6

0 .1 1 .6 7 0 .5 3c c    ,  (4.30) 

giving the necessary constant value of 
1

C  of eq.(4.26) and providing the control of the empirical ( / )f a W -

values of [6], which are based on the initial macro-crack lengths of a/W = 0.7, 0.8 and 0.9. Eq.(4.28) to (4.30) 

show, that for this type of test specimen, with overcritical crack lengths, applies: 

 / 0 .5 4 / 1 /f a W a W    (4.31) 

Regarding fracture, it is to be expected, that the determining clear wood shear strength is the same for the 

above 3 cases. Thus: Eq.(4.25) also can be written, expressed in the ultimate actual shear stress: 

/

( / ) (1 / ) ( / ) / (1 / ) ( / )

I I I I I I

u

K W K K W

W aa f a W a a W f a W a W a W f a W




 
   

      
   or:  

/ (1 / ) ( / )

I I

u

K
W

a W a W f a W
  

  

,  (4.32)  

This is constant (because W also is constant for the 3 cases). Then:  

For / 0 .7a W  , is:  
/ (1 / ) ( / )

I I
K

a W a W f a W


  

0 .7 9
3 .2

0 .7 0 .3 1


 
 (4.33) 

For / 0 .8a W  , is: 
/ (1 / ) ( / )

I I
K

a W a W f a W


  

0 .7 1
3 .3

0 .8 0 .2 1 .2


 
 (4.34) 

For / 0 .9a W  , is:
/ (1 / ) ( / )

I I
K

a W a W f a W


  
=  

0 .9 0 .1 1 .6

0 .5
.

7

2
3 3

 
,   (4.35) 

giving a mean value of: u
W  = 3.25  MPa m  , and with W = 40 mm, this is 

u
 = 9 Mpa of the tested 

small clear specimen of 40x10x15 mm
3
 glued in the centre of beam specimen [7]. Thus a/W = 0.8 means that 

the initial crack length a = 0.8∙40 = 32 mm.  

The optimal, (quasi critical) ,I I m
K  values of 0.79, 0.71 and 0.52 are determined in [6], [7] by the compliance 

method and the finite element crack closure technique as control, although these values are about a factor 2.5 to 

4 below the real critical value. The in [6], [7] found ( / )f a W  -values of 1.0, 1.2 and 1.67, are agreed by eq. 

(4.28) to (4.30). Because, according to these equations: 

 (1 / )a W ( / )f a W  
7

c   constant, is: 

8

7
/ (1 / ) ( / ) / (1 / )

I I I I
K K

c
a W a W f a W a W a W c

 
     

 or: 
9

/ (1 / )

I I
K

c
a W a W


 

. Thus:  

For / 0 .7a W  , is: 
/ (1 / )

I I
K

a W a W


 
 

0 .7 9
1 .7 2

0 .7 0 .3



  (4.36) 

For / 0 .8a W  , is: 
/ (1 / )

I I
K

a W a W


 

0 .7 1
1 .7 7

0 .8 0 .2



 (4.37) 

For / 0 .9a W  , is: 
/ (1 / )

I I
K

a W a W


 
=  1 .7 3

0 .9 0 .1

0 .5 2


  (4.38) 

and for these specimens thus is:  

,m
1 .7 4 / 1 /

I I
K a W a W         MPa m   (4.39) 

which is not based on a critical fracture energy, but on an ultimate, actual, clear wood, shear strength.  

It thus is confirmed by the data of [6], [7], that the actual mean shear strength of the intact part of the fracture 

plane is determining and not the, on the macro crack length based, apparent critical 
I I

K  - value, which is not 
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constant and too low for macro-crack extension. Macro crack extension is thus due to small crack merging and 

extension towards the macro-crack tip. There is no principal difference between mode I and mode II fracture, 

because failure for any stress combination, is due to reaching the ultimate, uniaxial, tensile strength at the crack-

boundary near the crack tip [2]. Virtual, oblique, crack extension in the isotropic wood matrix applies for shear 

and all combined mode I – II failure cases as lower bound solution, which is an exact solution, being equal to 

the empirical Wu-fracture criterion [2], and thus is the real solution.  

 

4.8. Mode I fracture at overcritical crack lengths  

The same equations, as given in § 4 7 for mode II shear tests, apply for mode I tensile behavior for the succes-

sive increasing crack lengths by crack merging during yield drop. Thus similar to eq.(4.28) to (4.30) is:  

For 2a/W = 3/4 = 0.75, is:   ( / )
c

a f a W 
6

(1 2 / )c a W ( / )f a W
6 6

0 .5 1 .5 1 0 .7 5c c       (4.40)   

For 2a/W = 7/8 = 0.875, is: ( / )
c

a f a W 
6

(1 2 / )c a W ( / )f a W
6 6

0 .3 5 4 2 .0 7 0 .7 3c c       (4.41) 

For 2a/W = 15/16 = 0.938, is: ( / )
c

a f a W 
6

(1 2 / )c a W ( / )f a W
6 6

0 .2 5 2 .8 7 0 .7 2c c       (4.42)  

where, (see[8]):      
2

/ 1 / 1 2 /f a W a W    (4.43)  

In [8], the exact derivation, as boundary value problem, of  /f a W  according to eq.(4.43) is given, which 

does apply for critical crack lengths, while eq.(4.40) to (4.42) show that the relation:  

( / )f a W  = 0.74 / (1 2 / )a W  applies for overcritical crack lengths. This also applies for overcritical crack 

lengths of mode II, according to eq.(4.31).  

It now can be concluded that the common calculation, where the overcritical crack length is treated as the 

critical crack length leads to too low, not constant, apparent energy release rates, which represent the minimum 

energy of crack closure. The same equation with the same values of the apparent release rates and the same 

values of  /f a W  is found by fracture and clear wood failure of the intact part of the ligament, showing this 

process to be determining for fracture at lower stresses. Not the critical energy release rate is determining but 

the maximal stress, that has to follow the Wu-equation in stresses, of in stress intensity factors for zero open 

crack lengths according to § 6. 

 

V. Deformation kinetics of fracture 
The basic equations for fracture according to the limit analysis equilibrium theory of molecular deforma-

tion kinetics are given in § 4.4 of [1]. The basic concept of this, fundamental theory is to regard plastic flow as a 

matter of molecular bond breaking and bond reformation in a shifted position, what is the same as to state that 

flow is the result of a chemical reaction like isomerization. Thus not the composition changes, but only the bond 

structure of the molecules. Damage occurs when not all broken side bonds reform, providing the sites for a 

damage process.  

The general theory, developed in [1], is based on the limit analysis equilibrium method and is, as such, 

an exact approach, which is able to predict all aspects of time dependent behavior of materials by the same con-

stitutive equation, because the mathematical derivation of this general theory is solely based on the reaction 

equations of the bond-breaking and bond- reformation processes at the deformation sites due to the local stresses 

in the elastic material around these sites. The form of the parameters in the rate equations, are according to the 

general equilibrium requirements of thermodynamics. By expressing the concentration and work terms of the 

rate equation in the number and dimensions of the flow units, the expressions for the strain rate, fracture, flow, 

hardening and delay time are directly derived without any assumptions. To obtain simplifications, series expan-

sion of the potential energy curve is applied, leading to the generalized flow theory, thus to a proof of this gen-

eral flow model, and showing the hypotheses of this generalized theory, to be consequences of the series expan-

sion. This theory thus applies generally, also for structural changes, giving an explanation of the existing phe-

nomenological models and laws of fracture.  

The rate equation for fracture then can be given, for high stress, as applies for fracture, by:  

2
s in h e x p

r r

d W W

d t t k T t k T

    
     

  

  (5.1) 

where the concentration of activated units per unit volume   can be written: 
1

/N A   .with: N flow units 

per unit area of a cross section, each  at a distance 
1

  behind each other, with   as jump distance and A as area 

of the flow unit. The work of a flow unit W, with area A moving over a barrier, over a distance   is:   

/W fA N   . Because of equilibrium, per unit area, of the external load 1 1    with the force on the N 
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flow units: N fA . Thus N fA   and eq.(5.1) becomes, expressed in the nominal, macro, engineering stress  , 

which is the part of the total external stress, that acts on N, to be found from tests with different loading paths:  

1 1

e x p

r

d N N

d t t N k T

   

 

 
   

  

, (5.2) 

In this equation is 
r

t  the relaxation time. The value of A can be regarded constant because any change is 

compensated by an corrected value of f  and a corrected value of   to obtain a correct load on the flow unit 

and its correct volume. Eq.(5.2) can be written, with 
1

' /N N   (the number of flow units per unit volume):  

     ' / ' / e x p /
r

d N d t N t N k T    ,  or: 

e x p
' '

r

d

d t N N t N k T

     
   

  

  (5.3)  

For this zero order reaction in wood, when the very high initial reactant concentration does not change much, 

the solution  is:  

0 0 0

e x p
' ' '

f

r

t

N N t N k T N

   
 

 

, or:  

0

0 0 0 0 0

'
e x p e x p

' '

f f f

r

t t tN k T E E

N N t t h k T N k T t k T N k T

     

 

    
              

    

  or  (with 1
k T

h
 ):   

0

0 0

'
ln ln 1

'

f

f

t NE

k T N k T t N

 
    

 
    0

ln
f

t

t


 

 

, (5.4) 

This last, according to Fig. 5, which applies for structural materials. Thus 
0

' 0 .5 '
f

N N   as also 

experimentally found for fracture, i.e. the crack length is about the crack distance, or the intact area has reduced 

to 0.5 times the initial area when macro-crack propagation starts due to small crack merging behavior, which 

explains the measured mode I and mode II final nominal yield drop behavior of fracture.  

 

 
Figure 5. Stress and temperature dependence of the lifetime for structural materials [1]  

 

VI. Small crack limit strength behavior 
The interpretation of Fig. 6 in literature is to regard the inclined line to represent LEFM theory, the horizontal 

line to be the strength theory and the curved, connecting line to follow nonlinear fracture theory. However, there 

is no difference between nonlinear and linear elastic (LEFM) fracture mechanics. For both the linear elastic - 

full plastic approach of limit design applies. The full-plastic zone of the elastic-full plastic approach exists, as 

failure criterion, by a single curve in stress space as shown in Fig. 6. In this figure of [9], is d/d0, the ratio of 

specimen size to the fracture process zone size. But, because the line is the result of volume effect tests, the 

initial crack length is proportional to the test-specimen length. Thus, 
0

/d d  also can be regarded to be the ratio 

initial open crack length to the process zone size (times a factor). Then, for small values of d, this 
0

/d d ratio 
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also may represent the critical small crack density in a macro specimen (d also is crack interspace). The curved 

line of Fig. 6, follows the equation:  

 0 0
ln ln 0 .5 ln 1 /d d       (6.1)  

This can be written:  
0 .5 0 .5

0 0

0 0 0

ln ln ln
d d d

d d d







    
     

    

   (6.2)  

or: 
0 0 0

/
c

d d d K     ,   (6.3) 

This confirms that the curve represents the stress intensity as ultimate state with 
c

K  as critical  stress intensity 

factor as should be for values of
0

/d d >>1. For these higher values the curved line approaches the drawn 

straight tangent line  0 0
ln ln 0 .5 ln 1 /d d      0 0

ln 0 .5 ln /d d   with the necessary slope of the 

curve 0

0

ln ( / )
0 .5

ln ( / )d d

 
 


 as limit. The real slope however is: 

  
0 .5

0
0

0 0 0 0 0 0 0 0

ln 1 /
ln ln ( / ) 0 .5 0 .5

ln ( / ) ( / ) ( / ) ( / ) 1 / 1 /

d d
d d

d d d d d d d d d d d d d d

  



 
   

    
    

   (6.4) 

This slope is: – 0.5 for 
0

d d   and this slope is zero when 0d  . 

This shows that for the whole curve LEFM applies and it is an indication that, at zero crack dimensions, thus 

for: d = 0, the clear wood strength theory still follows LEFM, because it applies also for the constant initial 

length 
0

d . After first yield drop, to half way unloading, the strength theory applies for further crack extension. 

Similar to steel, where yield drop follows after dislocation multiplication and breakaway, applies for wood the 

fracture zone 
0

d  formation, and small crack propagation. The Wu-equation then applies in stresses [2] in stead 

of in stress intensities.  

  
Fig. 6. From [9]. Limit LEFM behavior as correction of the interpretation of [9].   

 

VII. Application of the singularity J-integral approach 
Outer the standard methods for estimation of the energy release rate, the application of the J-integral 

(Rice integral) and M-θ-integral are becoming more and more a must for the singularity approaches for wood. 

However, the finite element applications appear to lead to quite different outcomes by different authors, show-

ing the application to be not exact, as also follows from the following remarks, found in literature.  

J (around a singularity) is the component along the crack-line of a vector integral, having a meaning for not 

oblique, (thus impossible for shear and mixed mode [2]) and (only for mode I) incipient self-similar growth of a 

crack in a (nonlinear) elastic material. In this case, J has the meaning of the rate of energy-release per unit of 

crack-extension. The path-independency of J can be established only, when the strain energy density (or stress 

working density) of the material is a single valued function of strain. In a deformation theory of plasticity, which 

is valid for radial monotonic loading but precludes unloading and which is mathematically equivalent to a non-

linear theory of elasticity, J still characterizes the crack-tip field and is still a path-independent integral. Howev-

er, in this case, J does not have the meaning of an energy-release rate; it is simply the total potential-energy 

difference between two identical and identically (monotonically) loaded cracked bodies which differ in crack 

lengths by a differential amount. Further, in a flow theory of plasticity (as applies for wood}, even under mono-

tonic loading, the path-independence of J cannot be established. Also, under arbitrary load histories which may 

include loading and unloading, J is not only not path-independent, but also does not have any physical meaning. 

The blunting of the top of the loading curve and formation of the fracture zone and the main amount of crack 

growth with crazing and small crack formation in, (and outside), the process zone, means unloading and non-

proportional plastic deformation which also invalidates the deformation theory of plasticity.  

Thus the J- integral method, of the singularity approach, does not apply to wood.  
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VIII. Conclusions 
- “Strain softening” called, yield drop is elastic unloading of the actual elastic stress at the intact part of the 

specimen, outside the fracture zone (and thus is not softening, as strain induced material transformation). 

- The assumption of strain softening of the fracture stress is based on the error to regard the nominal stress to be 

the actual, ultimate stress, at the actual area of the fracture plane. This illogic assumption is automatically 

rejected because it is against fundamental properties and constitutive laws of mechanics.  

- Thus, “softening”- called yield drop only exists for the nominal stress and not for the actual fracture stress, 

which shows hardening. The Griffith stress: /
c c

G E c   is a nominal stress, acting on the section b∙t of Fig. 

4.1. The Griffith stress therefore only has the meaning to be the actual stress, of the intact, not fractured, not 

ultimate, but elastic loaded, part of this specimen, which shows yield drop at crack extension, as is common, for 

processes with a low reactant concentration, thus, in this case, containing a single extending macro-crack.  

- This yield drop unloading, necessary for equilibrium, is due to decrease of the stiffness and increase of damage 

at the fracture site. The real, statically admissible, actual mean stress at the fractured region shows necessarily 

real and apparent hardening (by the spreading effect).  

- Yield drop only is possible at a constant strain rate test, thus is not possible in a constant loading rate test and 

also not in a dead load to failure test. Softening called yield drop, which is elastic unloading of the intact, not 

ultimately loaded, part of the specimen, thus is not a material property.  

- It is discussed that the fictitious crack models and the cohesive zone models are too far from theory to have 

any meaning. By not regarding the actual real stress, at the fracture plane, also the equilibrium, compatibility, 

normality, yield and boundary conditions at the crack boundary are not satisfied.  

- As known from Continuum damage mechanics and Deformation kinetics, it is necessary to apply the actual 

stress on the actual area in damage and fracture equations, for right results, as follows from the uncountable 

number of solutions, which are confirmed by tests. Limit analysis, based deformation kinetics [1], has to be 

applied, (e.g. in continuum mechanics), for exact solutions, giving the possibility to design, reliable new, never 

tested, structures and to account for the influence of time (duration of load), moisture content and temperature.  

- Fracture of the ligament does only at the start of yield drop follows the Griffith theory and thus is total fracture 

not due to single macro crack propagation alone. After half way the yield drop unloading of the nominal stress, 

the apparent energy release rate is not high enough anymore. Further crack extension follows a small rack 

merging mechanism and macro crack extension is due to small-crack propagation toward the macro-crack tip. 

This is caused by clear wood failure following an ultimate stress failure criterion.  

- According to the crack merging mechanism and according to molecular deformation kinetics there is a critical 

small crack density, when the crack distance is about the crack length, for the start of yield drop.  

- Important is the conclusion that, after the start of yield drop, according to a critical energy release rate, further 

crack extension follows by an ultimate mean shear strength criterion of the intact part of the fracture plane.  

- Small-crack merging explains precisely the “softening” called yield drop curve (of [5]).  
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