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A B S T R A C T

This article investigates the estimation of aircraft mass and thrust settings of departing aircraft
using a recursive Bayesian method called particle filtering. The method is based on a nonlinear
state-space system derived from aircraft point-mass performance models. Using only aircraft
surveillance data, flight states such as position, velocity, wind speed, and air temperature are
collected and used for the estimations. With the regularized Sample Importance Re-sampling
particle filter, we are able to estimate the aircraft mass within 30 seconds once an aircraft is
airborne. Using this short flight segment allows the assumption of constant mass and thrust
setting. The segment at the start of the climb also represents the time when maximum thrust
setting is most likely to occur. This study emphasizes an important aspect of the estimation
problem, the observation noise modeling. Four observation noise models are proposed, which are
all based on the native navigation accuracy parameters that have been obtained automatically
from the surveillance data. Simulations and experiments are conducted to test the theoretical
model. The results show that the particle filter is able to quantify uncertainties, as well as de-
termine the noise limit for an accurate estimation. The method of this study is tested with a data-
set consisting of 50 Cessna Citation II flights where true masses were recorded.

1. Introduction

Estimating aircraft mass using flight trajectory data has long been a topic of interest in ATM research. Aircraft mass not only is an
important parameter for aircraft performance-related studies but is also a desired piece of knowledge for air traffic controllers in
practice. Airlines, however, treat this data as confidential, and access is rarely granted to either researchers or air traffic controllers.
In practice, mass information is, thus, not accessible nor actively used by the research community. Having an accurate estimate of
aircraft mass at takeoff (or during the initial climb) can, for example, be beneficial for obtaining accurate trajectory and fuel con-
sumption predictions during the flight.

Earlier studies that addressed this problem commonly involved deterministic methods based on the aircraft total energy model. A
least-squares solution to this problem is proposed in Alligier et al. (2013), and an adaptive estimation method is presented in Schultz
et al. (2012). Using radar track data, these two approaches are compared in Alligier et al. (2014). All these methods employ active
radar data for estimation. With advancements in machine learning studies, supervised machine learning methods that require a well-
established training set are also introduced to address the estimation problem in Alligier et al. (2015) and Chati and Balakrishnan
(2017, 2018). With the growing adoption of Automatic Dependent Surveillance-Broadcast (ADS-B), estimation studies have been
conducted around this open data source, such as Sun et al. (2016).

The approaches by Alligier et al. (2013) and Chati and Balakrishnan (2018) have in common that they make use of regression
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analysis. Chati and Balakrishnan (2018) focus on estimating aircraft mass during the takeoff roll, whereas Alligier et al. (2013)
focuses on the climb phase. The advantage of regression analysis is that it avoids the need for an accurate model of the various noise
levels. However, regression analysis requires the exploitation of model linearity. Recently Sun et al. (2018b) has shown that ADS-B
data availability makes it worthwhile to use Bayesian inference methods for the estimation of aircraft mass. The goal of this article is
to extend this Bayesian inference approach such that it can incorporate non-linear aircraft evolution equations for the nonlinear
Bayesian filtering of aircraft mass, based on ADS-B and Enhanced Mode-S surveillance data.

From most of the aforementioned studies, a strong link between aircraft mass and thrust setting is evident, and it is not possible to
estimate one of the two parameters without some knowledge of the other. Several of these studies essentially addressed the esti-
mation process as a minimization problem. Solutions were obtained using a form of least-squares fitting. Aircraft mass estimated
under these conditions could be unrealistic and even outside plausible physical boundaries. Often, the main cause for this relates to
uncertainty in the trajectory data, as well as uncertainty and non-linearity in the system model. Although the effect of noise is an
important aspect in all inference processes, previous studies have not yet comprehensively studied its relation to mass estimation.
Therefore, alongside estimating aircraft mass, observation noise modeling for the nonlinear aircraft equations is one of the main
focuses of this study.

The problem of mass estimation by a (ground-based) observer can be considered as having to solve an inverse non-linear multi-
state system using noisy observation data. To approach this complex system, in this study, we construct a detailed point-mass flight
performance model with 11 system states and 8 observable states. A regularized Sample Importance Re-sampling (SIR) particle filter
is introduced to estimate the aircraft states from noisy observations. In addition, four models of different levels of observation noise
are constructed, which are based on ADS-B navigation accuracy standards. These models are used in particle filtering.

This study is an extension of our previous preliminary research of Sun et al. (2018a), with an improved system model and new
insights. Unlike Alligier et al. (2015) where the machine learning models use mass estimations from regression methods as training
input, or Chati and Balakrishnan (2018) where the machine learning model uses flight recorder data as training input, our method is a
purely model-based state estimation approach. The remainder of this study is structured as follows. Section two describes the
nonlinear point-mass flight dynamic system equations. Section three describes the theory of recursive Bayesian estimation and
particle filtering. Section four develops models for the process and observation noise. Section five specifies the particle filter for
aircraft mass estimation during initial take-off. Section six presents the experiments conducted with simulated and real flight tra-
jectories. Section seven conducts sensitivity analyses of the proposed approach. Conclusions are presented in section eight.

2. System of point-mass aircraft performance model

2.1. Aircraft state

This section describes the system equations for aircraft locomotion, which is implemented as a point-mass model. To illustrate,
Fig. 1 shows the observable states of an aircraft, primarily based on aircraft ADS-B broadcasts. The wind can be obtained from a
weather prediction model or estimated based on Enhanced Mode-S data, which is described in Sun et al. (2018d). The left figure
shows a horizontal projection of a trajectory, and the right figure a vertical projection. The heading and track are relative to the true
north. For ease of computation, latitudes, longitudes, and altitudes are converted to a Cartesian coordinate system, with its origin at
the first observed position. The point-mass model used in this study ignores the angle of attack and assumes no vertical wind.

Denoting aircraft mass as m, thrust setting coefficient as T , distance flown as s , altitude as z, ground speed as vg, true airspeed as
va (in horizontal projection), vertical rate as vz, wind speed as vw, and air temperature as , the system state x vector can be written as:

= m s z v v vx ( , , , , , , , )T a z w (1)

The vector variables corresponding to the x and y axes are:

Nomenclature

x down range position (m)
y cross-range position (m)
z altitude (m)
vg aircraft ground speed (m/s)
va aircraft airspeed (m/s)

track angle (°)
heading angle (°)
flight path angle (°)

g gravitational acceleration (m/s2)
T thrust (N)

T thrust setting
D total drag (N)

m aircraft mass (kg)
vz vertical speed (m/s)
CD0 zero drag coefficient
k lift-induced drag coefficient
S wing area (m/s2)

air temperature (K)
w particle weight
x state vector
y observation vector

process noise
n observation noise
f state transition function
h observation function

Dirac delta function
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=
=
=

s x y
v v v
v v v

( , )
( , )
( , )

a

w

ax ay

wx wy (2)

Additional angular parameters in Fig. 1 are flight path angle , ground track , aircraft heading , and wind direction . In addition,
the measurement vector y is represented as:

= s z v v vy , , , , ,g z w
(3)

where s z v, , g, and vz are computed from ADS-B data. Wind vw and temperature are obtained using Enhanced Mode-S data (Sun
et al., 2018d).

2.2. State evolution

We want to model the system accurately in this point-mass performance model. The process noise is considered to be zero for
states where exact process equations are known. These states are m s z, , ,t T t t t, , and va t, . For states in which a perfect process equation
cannot be established accurately or are unknown, we use an auto-regressive model to describe their state evolution. These states are
the vertical rate vz, wind vw, and temperature . The complete state process equations can be described as follows:

=m mt t 1 (4)

=T t T t, , 1 (5)

= + +s s v v( )dtt t a t w t1 , 1 , 1 (6)

= +z z v dtt t z t1 , 1 (7)

= +v v a dta t a t t, , 1 1 (8)

= +v vz t z t, vz , 1 vz (9)

= +v vw t w w t w, , 1 (10)

= +t t 1 (11)

where a is the horizontal acceleration. State updates for v v,z w, and are expressed using autoregressive (AR) models with lag =p 1.
The coefficients of the AR models are constructed using historical data, which is described in Section 4.2. It is worth noting that since
we are working with a short segment of the flight (within 30 s), constant mass (m) and thrust setting ( T) are assumed. Obviously,
such an assumption cannot be applied to a longer period of the flight.

To compute the acceleration (a ), we need to consider the forces acting on the aircraft, which are thrust, drag, lift, and gravity.
The equations used at each time step to compute the acceleration are listed as follows:

=a a( , )t t t (12)

= v varctan ( , )t ax t ay t2 , , (13)

=a
m

T D g
v
v

1
t T t t t

z t

a t
,

,

, (14)

Fig. 1. Observed states in the flight dynamic system.
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=T f z v v( , , )t t a t z tthr , , (15)

=D f m v z C k S( , , , , , )t t t t Ddrag 0 (16)

where T and D are maximum thrust and drag forces expressed as functions of other state parameters. S is the aircraft wing surface.
The thrust is calculated based on the empirical model proposed by Bartel and Young (2008). The drag is calculated based on the drag
polar of the aircraft modeled in Sun et al. (2018c).

In general, only the maximum thrust provided by the engines can be calculated from aircraft speed and altitude. During operation,
aircraft engines only stay close to the maximum thrust for a short period of time at takeoff and at the start of the climb. Sometimes, a
reduced thrust is applied, where the reduction of thrust is constrained by the actual aircraft mass.

In the particle filter, such a constraint is reflected at the initialization of the particles. The relation of mass and thrust setting is
expressed using the following equation adapted from the Base of Aircraft Data (BADA) reduced climbing power model from Nuic
(2014)1:

= m m
m m

1T Tmin
max

max min (17)

0 0.2T (18)

Here, T is the minimum derated thrust ratio, which is aircraft type specific and commonly small. mmax and mmin are considered as
the maximum take-off mass and minimum operational mass respectively.

Eq. (17) shows the relationship between mass and the possibly reduced thrust ratio. It indicates that the higher the aircraft mass,
the smaller the range in which the thrust can be reduced. Aircraft mass is assumed to be uniformly distributed between the op-
erational empty mass and maximum takeoff mass. The thrust setting is assumed to be uniformly distributed between this minimum
possible derated thrust ratio and one:

m m m[ , ]oew mtow (19)

[ , 1]T T min (20)

3. Recursive Bayesian estimation

In the recursive Bayesian estimation, an estimate of the system state is obtained using all previous observations. To this end, a
recursive system with additive noise can be generalized by a discrete-time state model and observation model:

= +
= +

f
h n

x x
y x

( )
( )

t t t

t t t

1 1

(21)

where xt represents the set of system states and yt the set of observations at time t (t ), f and h represent the state transition
function and observation function, t is the process noise, and nt is the observation noise. t and nt are assumed to be mutually
independent sequences of independently and identically distributed variables. In the particular case of this study, we assume an
additive Gaussian model for both process noise and observation noise as a common practice.

The goal of filtering is to compute the probability of the system state at a given time t, based on the observations from time 1 to
time t, denoted as p x y( )t t1: :

=p
p p

p
x y

y x x y
y y

( ) ( )
( )t t

t t t t

t t
1:

1: 1

1: 1 (22)

where the first part of the numerator, p y x( )t t , is the observation probability that follows the observation function and observation
noise n from Eq. (21):

= hp y x y x( ) { ; ( ), }nt t t t (23)

where n is the covariance of the observation noise. Because the system described in Eq. (21) is a first-order Markov process, the
second part p x y( )t t1: 1 becomes:

=p p p dx y x x x y xt t t t t t t1: 1 1 1 1: 1 1
(24)

where the first term p x x( )t t 1 on the right-hand side of the equation is the state transition probability. It follows the state transition
function and the process noise model in Eq. (21):

= fp x x x x( ) { ; ( ), }vt t t t1 1 (25)

1 Note that a similar equation in BADA is used to determine power setting. In this study, the form of the equation is adopted for the thrust
reduction ratio.
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where v is the covariance of the process noise. Combining Eq. (22) and Eq. (24), the recursive form becomes:

=p
p p

p
p dx y

y x x x
y y

x y x
( ) ( )

( )t t
t t t t

t t
t t t1:

1

1: 1
1 1: 1 1

(26)

where the denominator of the fraction is a normalizing factor which does not need to be computed explicitly. The challenge is to
resolve Eq. (26) in a recursive way using input data y t1: . This is where Sequential Monte Carlo (SMC) simulation-based particle
filtering can be used.

3.1. Particle filtering

The specific Sequential Monte Carlo simulation method considered in this study is known as particle filtering (Doucet et al.,
2001). A particle filter is a recursive Bayesian estimator based on importance sampling that computes the posterior density in a Monte
Carlo fashion. It approximates the target distribution (denoted as p x( )) using a large number of samples (particles), drawn from a
proposal distribution (denoted as q x( )) that updates it recursively.

To describe the SMC process, at time t, let =x{ , w }t
i

t
i

i i
N be a set of particles that can represent the posterior density p x y( )t t1: , where xt

i

is the ith possible state with weight wt
i . Henceforth, the posterior density is approximated with the empirical probability density:

=
p x y xw ( )t t

i

N

t
i

t
i

1:
1 (27)

where (·) is a Dirac delta function centered at xt
i and wi is the normalized weight of a particle which satisfies = p x q xw ( )/ ( )i i i . The

most important part of particle filtering is the weight updating. Sequentially, the particle weight wt
i is updated in a recursive form.

The solution is presented in Eq. (28), as derived by Arulampalam et al. (2002):

=

=

qx x x y( , )

w w

w

t
i

t
i

t
i

t

t
i

t
i p p

q

t
i

y x x x
x x y

1 1:

1
( ) ( )

( , )

w

w

t ti ti t
i

t
i

t
i t

t
i

i

N
t
i

1

1 1:

1 (28)

At each iteration, the sum of all weights is normalized to one as shown in the last part of Eq. (28). The posterior filtered density is
approximated using Eq. (27). We can compute the expected state values at each time step using the obtained particle weights:

=
=

x x[ ] wt
i

N

t
i

t
i

1 (29)

There are different ways to choose the proposal distribution q x( ). A specific particle filter - Sample Importance Re-sampling (SIR) - is
used for solving the problem in this study. The SIR particle filter uses the state transition distribution p x x( )t t

i
1 as the proposal

Fig. 2. Estimation diagram including the source of observations and process of SIR particle filter. Further details are given in Section 5.
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distribution q x x y( , )t t
i

k1 . Therefore, the particle update equations in Eq. (28) can be simplified to:

p
p

x x x
y x

( )
w w ( )

t
i

t
i

t
i

t
i

t
i

t t
i

1

1 (30)

For a SIR particle filter, an optional additional re-sampling process at each iteration is included. The re-sampling is useful for
systems which involve a large number of states (commonly more than 3) and prevents the impoverishment of particles. The re-
sampling step generates a new set of particles based on the approximated p x x( )t

i
t
i

1 . Once particles are re-sampled, all weights are
assigned to N1/ .

The re-sampling step is essentially a redistribution of particles, which replaces low-weight particles with high-weight particles.
The standard re-sampling algorithm is called residual re-sampling, which was proposed by Liu and Chen (1998). Other forms of re-
sampling such as systematic re-sampling and stratified re-sampling were summarized by Douc and Cappé (2005). In this study, the
commonly used residual re-sampling is applied.

The process of flight state estimation using the particle filter is summarized in Fig. 2. In this figure, we can see that ADS-B and
Enhanced Mode-S data are decoded and used as state observations which support the update of the particle filter. The system
dynamic equations define the particle state evolution. In Section 5, different elements of the SIR particle filtering algorithm are
detailed. Before this can be implemented, we first need to introduce the system equations for describing the aircraft performance
model.

3.2. Application to the aircraft mass and thrust estimation

The observable states are flight distance and ground speed in the horizontal and vertical direction, as well as the atmospheric
conditions. The measurement vector is denoted as y . Recall the measurement function from Eq. (21):

= +h n ny x( ) ; (0, )nt t t t (31)

where the state and measurement vectors at time t are:

=
=

=

=

m s z v v v
m x y z v v v v v

s z v v v

x y z v v v v v

x

y

[ , , , , , , , ]
[ , , ( , ), , ( , ), , ( , ), ]

, , , , ,

[( , ), , ( , ), , ( , ), ]

t t T t t t a t z t w t t

t T t t t t ax t ay t z t wx t wy t t

t t t g t z t w t t

t t t gx t gy t z t wx t wy t t

, , , ,

, , , , , ,

, , ,

, , , , , (32)

The observation functions for all states can be written in detail as follows:

= +s s nt t s t, (33)

= +z z nt t z t, (34)

= + +v v v ng t a t w t vg t, , , , (35)

= +v v nz t z t vz t, , , (36)

= +v v nw t w t vw t, , , (37)

= + nt t t, (38)

As previous mentioned, the observation noise is assumed to be uncorrelated additive Gaussian noise. The noise n from Eq. (21)
can then be considered a multi-variate Gaussian distribution. The diagonal covariance matrix n for these noise models is expressed
as:

= diag( , , , , , , , , )n x y z
2 2 2

vg
2

vg
2

vz
2

vw
2

vw
2 2 (39)

where vg
2 and vw

2 apply to both x and y directions. Since the noise follows a multivariate normal distribution, the associated weight of
the particles, p y x( )t t

i , can be conveniently computed as follows:

( )h h

p y x

y x y x

w w ( )

w exp [ ( )] [ ( )]
t
i

t
i

t t
i

t
i

t t
i T

t t
i

1

1
1
2

1
(40)

In this study, the particles are re-sampled at each time step and normalized to N1/ . Hence, the weight calculation is simplified to:

h hy x y xw exp 1
2

[ ( )] [ ( )]t
i

t t
i T

t t
i1

(41)
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4. Observation and process noise models

4.1. The observation noise model

Observation noise is closely related to sensor errors. For example, GPS errors affect position measurements (related to the state x )
and altimeter errors affect altitude measurements (z ). ADS-B transponders operate under regulations that define the minimum
accuracy of sensors RTCA (2011). Different categories of uncertainty indicators are transmitted through ADS-B. In this study, these
Navigation Accuracy Categories (NAC) of ADS-B (versions 1 and 2) are considered for the construction of observation noise models.

Table 1 illustrates the Navigation Accuracy Category - velocity (NACv), which defines the level of accuracy in terms of horizontal
and vertical speed. The NACv indicator is broadcast along with the airborne velocity (message Type Code 18). HFOM and VFOM,
short for the horizontal and vertical figure of merit, indicate the 95% confidence interval which corresponds to twice the standard
deviation in the observation noise model. The HFOM and VFOM can therefore be used to obtain values for ,vg

2
va
2 , and vz

2 .
Similarly, Table 2 shows the Navigation Accuracy Category - position (NACp), which defines the level of accuracy in terms of

horizontal and vertical position. For each NACp level, an Estimated Position Error (EPU) and a Vertical Estimated Position Error
(VEPU) are defined. Similarly, they indicate a 95% confidence interval for the horizontal and vertical bounds. From these values, we
can obtain ,x y

2 2, and z
2 for the observation noise model.

Four sets of observation noise models are proposed based on the ADS-B specifications, each corresponding to a different com-
bination of NACp and NACv (see Table 3). These four models are also the foundation for the experiments carried out later on in this
study.

The uncertainties in the wind and temperature measurements depend on the Enhanced Mode-S data that was used to generate
weather information. The variances for wind and temperature are set to be 2.52 and 12 for the noise model n3. These two values are
based on the variance of the model results obtained in Sun et al. (2018d). For other noise models, they are adjusted with respect to the
scale of the velocity uncertainty. The exact values of all four noise models for Eq. (39) used in the experiments are listed as follows:

=
=
=
=

diag(1.5 , 1.5 , 2 , 0.15 , 0.15 , 0.23 , 0.2 , 0.2 , 0.1 )
diag(5 , 5 , 7.5 , 0.5 , 0.5 , 0.76 , 0.8 , 0.8 , 0.3 )
diag(15 , 15 , 22.5 , 1.5 , 1.5 , 2.28 , 2.5 , 2.5 , 1 )
diag(48 , 48 , 68 , 5 , 5 , 7.62 , 7.5 , 7.5 , 3 )

n

n

n

n

1
2 2 2 2 2 2 2 2 2

2
2 2 2 2 2 2 2 2 2

3
2 2 2 2 2 2 2 2 2

4
2 2 2 2 2 2 2 2 2 (42)

4.2. Process equations for vertical rate, wind, and temperature

As described in Eqs. (9) and (10), vertical rate, wind, and temperature along the climb path are modeled as autoregressive (AR)
models. This is because the underlying process model is unknown, and these time series exhibit a strong correlation between con-
secutive data points.

AR is also an approach that models the process error of certain variables that do not have explicit process expressions. The
purpose is not to have an accurate process error, but the magnitude of the process error models for these parameters. As long as the
process error is large enough to capture and track the changes in the variables, it is sufficient for the estimator. To obtain these error
models, we can make use a large quantity of historical data.

For simplification, we will use a first-order AR model (AR1) to describe state evolution. In general, the AR1 model (without the
bias term) can be expressed in the following form:

= +x x
(0, )

t t 1
2 (43)

where is the model parameter and is the white noise with variance of 2. Using real flight data, these parameters can be estimated.
For a given flight, and can be estimated in Eq. (44) using the least-squares regression:

=

=

=

=

x xVar( )

x x
x

t t
2

1

t
n t t

t
n

t

1 1

1 1
2

(44)

where x represent the wind, temperature, or vertical rate data extracted from real flights. This real flight data source should be

Table 1
Navigation accuracy category/velocity (ADS-B versions 1 and 2).

NACv HFOM VFOM

4 <0.3m/s < 0.46m/s
3 < 1m/s < 1.52m/s
2 < 3m/s < 4.57m/s
1 < 10m/s < 15.24m/s
0 > 10m/s or unkown > 15.24m/s or unkown
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different from the data source y t1: that is used for mass estimation by the particle filter. It is worth clarifying that the AR approach is
only used to find out the parameters of process equations using a different set of flights than the ones used for particle filter mass
estimation.

The reason that wind and temperature can be modeled in this way is that locally they tend to be homogeneously distributed with
some degree of variability. There is often a gradual increase in wind magnitude and a lapse of temperature with increasing altitude.
On the other hand, the vertical rate is often a controlled variable in point mass flight models. Without more information from the
aircraft, an AR model can capture the change in vertical rate from the observer’s point of view.

Table 2
Navigation integrity category (ADS-B versions 1 and 2).

NACp EPU VEPU

11 <3m <4m
10 <10m <15m
9 <30m <45m
8 <0.05 NM n/a

7–0 Not used in this study

Table 3
Noise models.

Noise model NACp NACv

n1 11 4
n2 10 3
n3 9 2
n4 8 1

Fig. 3. First order AR model parameters for v v,z wx , and vwy.
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To determine representative values for and 2, ADS-B and Enhanced Mode-S data was collected for climbing flights in a period
of one month (around 10,000 flights) using our receiver. and 2 were computed for each state parameter (see Fig. 3).

The mean value of each parameter is then used for the AR models. Table 4 summarizes the obtained parameters for v v,z w, and
(used in Eq. (9)–(11)).

5. The particle filter algorithm

The detailed algorithm is specified in Algorithm 1, which is adapted from Blom and Bloem (2007). The most essential part of the
algorithm is the SIR update, where the weights of the particles are updated based on the observations. This step reflects Eq. (40) that is
described in the previous section. In addition, the state evolution is defined by the aircraft performance that is described by Eqs.
(4)–(11).

Algorithm 1. The SIR particle filter: p px y x y( ) ( )t t t t1 1: 1 1:

1: for i = 1 to N bf do ▷ Initialize particles
2: draw m m m( , )i

0 oew mtow

3: draw m m m m(1 ( )/( ), 1)Ti T i
0 min mtow 0 mtow oew

4: draw s z v v v x, , , , , ,i
a
i

z
i

w
i i

n0 0 0 0 0 0

5: m s z v v vx , , , , , , ,i i
Ti

i i
a
i

z
i

w
i i

0 0 0 0 0 0 0 0 0

6: Nw 1/i
0

7: let hx y( )0 1
0

8: let n be observation noise covariance
9:
10: for t=t0 to tNdo
11: for i = 1 to N do ▷ SIR update
12: p y xw w ( )t

i
t
i

t t
i

1

13: =w̄ w / wt
i

t
i

i
N

t
i

1
14: for i = 1 to N do ▷ re-sampling

15: draw =x x x¯ w̄ ( )t
i

i
N

t
i

t
i

1

16: Nw 1/t
i

17: for i = 1 to N do ▷ state evolution
18: draw (0, )t

19: ++ fx x(¯ )t
i

t
i

t1
20: for i = 1 to N do ▷ apply kernel
21: draw dm (0, )i

k m,
2 as kernel noise for m

22: +m m dmt
i

t
i i

23: draw d 0,T
i

k T,
2 as kernel noise for T

24: + dT t T t T
i

,
2

,
2

25: draw d {0, }i
k,
2 as kernel noise for heading

26: compute dv a
i
from d i

27: +v v dva t
i

a t
i

a
i

, ,

In this study, we use the regularized SIR particle filter proposed in Musso et al. (2001). Specifically, a stochastic kernel filter (KF)
is used as an effective technique to prevent degeneration and impoverishment of the set of particles that are maintained by the
particle filter. The stochastic kernel is applied to the states of interests (m and T), as well as a hidden state, aircraft heading ( ). It
adds a small random Gaussian noise to the state variables of all particles after re-sampling. For m and T , the kernel helps to prevent
the degeneration of particles and maintain a local diversity of values. In the case of aircraft heading , the kernel is essential for the

Table 4
Parameter summary for the first order AR models.

vz 0.9997 0.1423
vwx 1.0003 0.0733
vwy 1.0003 0.0842

1.0000 0.1223
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functioning of the particle filter to track small changes in heading. These kernels are defined as:

k
k
k

(0, )
(0, )

(0, )

m k m

k

k

,
2

,
2

,
2

T T

(45)

In this study, the k m, is chosen to be 0.5% of the maximum m range, which is × m m0.005 ( )mtow oew . The k, T is chosen to the
0.5% of the maximum T range, which is less than ×0.005 0.2. The choice of k, is 2 degrees.

From a nonlinear system point of view, this noise has the same effect as the process noise, since they both introduce uncertainty to
the state evolution (see Eq. (21)). However, in the context of particle filtering, this approach should be considered as a form of
regularization (Musso et al., 2001). This is a simple but effective technique to prevent the degeneration and impoverishment of
particles, which lead to run-time execution errors in practice. To accomplish this, the kernel produces only a tiny variation of the
states. Overall, it also compensates, to some extent, the limitation of the constant mass and thrust assumption.

6. Experiments

This section describes three different experiments that are designed to test the proposed method. In the first experiment, a
simulated flight is generated with a known mass and thrust setting. Four rounds of estimations are carried out under four different
noise models. The simulation is undertaken to ensure the validity of the particle filter based on the proposed system equations. In the
second experiment, a real flight is chosen, and the estimation is undertaken with the same four noise models. This is to ensure that the
results from a real flight are in line with the simulation results. The number of particles is set to one million. This choice reflects a
balance between accuracy and computational speed. The third experiment is based on a number of flights with a Cessna Citation II
laboratory aircraft, with known mass.

6.1. Experiment I: Simulation of a Boeing B737-700 flight

In this experiment, the aircraft mass m is set to be 60,000 kg, and the thrust setting T is set to be 0.96. The actual observation
noise for the simulated trajectory is n2. The wind is absent in the simulation, and the climb is performed with a constant climb rate.
Using the simulated trajectory, particle filters with four distinct noise levels are applied to estimate the mass and thrust settings.

In Fig. 4, the convergence of particles under assumed observation noise n2 (the same as in the simulation) is illustrated. In each

Fig. 4. Convergence of the particle filter states (noise level n2).
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convergence plot, the green line represents the true state value, the black dots are simulated observations,2 and the gray or colored
area is bounded by the minimum and maximum state values at each iteration. Under this condition, it can be seen that the mass and
thrust settings nicely converge to their true values. On the other hand, convergence is less important for other states. The main goal is
to be able to track the changes in these states during the filtering process.

In Fig. 5, the convergence of m and T under all four observation noise levels is shown. In each plot, the left-hand side red
distribution corresponds to mass, and the right-hand side blue distribution represents the thrust setting. It is apparent that with
increasing assumed observation noise, the uncertainty of the final results increases.

The Figure also shows that the estimates can become trapped in incorrect states when the assumed noise is lower than actual noise
(in the first two plots). When the assumed noise level is much higher than the actual noise, the uncertainty in the final estimate
becomes large (as demonstrated in the last two plots). These observations are consistent with the characteristics of a particle filter.

6.2. Experiment II: Example of a real Boeing B737-700 flight

In this second experiment, an actual climb trajectory of a Boeing 737-700 is used to demonstrate the application of the SIR particle
filter to real flights. The trajectory data is gathered from ADS-B and decoded. The wind data are computed as the combination of ADS-
B and Enhanced Mode-S data.

The trajectory and convergence of the particles under noise level n2 are shown in Fig. 6. Similar to the previous simulated case,
the black dots represent actual observed data, while the solid lines represent weighted average state values of particles at each
iteration. In these plots, not only the mass and thrust setting exhibit convergence, but we can also see that the changes in airspeed,
vertical rate, wind, and temperature are tracked by the particle filter. It is also clear that the particle filter can cope with missing data
points, as shown in the plots.

Fig. 7 illustrates the convergence of m and T under different noise levels, showing uncertainties with similar characteristics to the
previous simulated case.

The use of these simulated and real flights demonstrates the applicability of the SIR particle filter for mass and thrust setting
estimations. However, these experiments are based on a single sequence of filtering under each noise level. We can observe that the
estimation uncertainty increases with the observation noise in both experiments, but it is not sufficient to quantify the estimation
uncertainty yet.

Fig. 5. Final distribution of m and T under different observation noise levels.

2 Note that the airspeed is calculated as the difference between ground speed and wind speed.
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6.3. Experiment III: Practical demonstration with Cessna Citation II flights

A set of 50 real flights with known mass is used to test the proposed system model and the particle filter. These flights were carried
out by a Cessna Citation II aircraft that is operated by TU Delft for student practicals. The mass of the aircraft is obtained accurately

Fig. 6. Convergence of the particle filter states (noise level n2).

Fig. 7. Final distribution of m and T under different observation noise levels.
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by weighing all passengers and measuring the exact amount of fuel on board prior to the start of each flight.
Although accurate FMS trajectory data is available, we used the collected Mode-S data for the experiment. In this way, the

validation is closer to real cases. In addition, NACp and NACv values are decoded from raw ADS-B data to automatically select the
observation noise model. In the validation, the T is assumed to be 0.1 for this aircraft.

To obtain a stable estimation, each trajectory is executed 30 times with the particle filter. This is similar to using 30 million
particles in one round. The implication of this will be discussed later on. The averaged final results are shown in Fig. 8. Estimated
mass (indicated with crosses) is plotted against the real mass of the aircraft (indicated with circles) in the top plot of the figure. The
estimated thrust setting is plotted in the bottom plot.

The estimation errors are plotted in Fig. 9. The plots on the left-hand side show the estimation errors ( m m/ true), where the mean
and median error are both around −0.5% of the true mass. There is a very small but not significant negative bias in the results. On the
right hand side, the absolute estimation errors ( m m/ true) are computed and shown. As a result, the mean absolute error (MAE) is
found to be 4.3%, while the median of the absolute error is 2.6%.

Compared to the result from Alligier et al. (2015), a higher error is shown. However, in this article, we obtain the error by
comparing the estimates with the aircraft true masses, while the error from Alligier et al. (2015) is obtained by comparing estimates
from machine learning algorithms with the least-squares estimates.

7. Sensitivity analyses and discussions

This section presents sensitivity analyses of the fundamental aspects of aircraft mass estimation. This yields insight into the
recommendations on choosing a noise model and practical particle filtering.

7.1. Determination the estimation uncertainty

A large number of additional simulations are performed to study the uncertainty of the estimation. 500 rounds of estimations
under each defined noise model are performed for the simulated flight. The simulated Boeing B737-700 flights are generated with a
mass of 60,000 kg, a thrust setting of 0.96, and a small simulation noise of /4n1 .

First, we want to illustrate the estimation accuracy using the particle filter. In Fig. 10, the distributions of estimates at the final
time step of all rounds are shown. The results are grouped by observation noise. On the left-hand side of the figure, the results ofm are
indicated, with the y-axis ranging from moew to mmtow. The horizontal black line indicates the actual mass (60,000 kg) used in the
simulations. On the right-hand side, the thrust settings are plotted in the same fashion. We can see that the particle filter yields a high
level of accuracy with the simulated trajectory.

Next, we want to study the uncertainty of the estimation. By computing the standard deviations of the mass and thrust values from
all particles at the end of each run, we are able to visualize estimation uncertainty under different noise models. On the left-hand side
of Fig. 11, distributions of particle mass standard deviation are shown. It can be observed that with increasing observation noise,
uncertainty also increases. The right-hand side of the plot indicates the same trends for the thrust setting.

Figs. 10 and 11 display similarities, but show different aspects of the estimation result. The earlier figure shows the final estimates
by using the mean state values from particles at last time steps of all runs. In the latter figure, the spread of particles by the
measurement of standard deviation is shown.

To quantify the uncertainty under different noise models, twice the standard deviation is used as an indicator. This is then

Fig. 8. Estimated results for all measurement flights.
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translated into the percentage of the aircraft maximum take-off mass and thrust settings, which are shown in Table 5.
Similarly, the accuracy of the estimation can also be obtained by comparing the estimation results with the input mass the thrust

setting of these simulated trajectories. The results are listed in Table 6.

Fig. 9. Distribution of estimation errors.

Fig. 10. The distributions of estimated mass and thrust setting based on 500 rounds of simulated trajectory under different observation noise
models.

Fig. 11. Standard deviation of particles states on mass and thrust setting among 500 rounds of simulations under different observation noise models.

Table 5
Uncertainties related to observation noise obtained using 500 round of estimations with simulated trajectories under different observation
noise levels.

Noise 2 ¯ m % of mmtow 2 ¯ T %

n1 2403 kg 3.0% 0.040 4.0%
n2 2694 kg 3.4% 0.041 4.1%
n3 3307 kg 4.2% 0.035 3.5%
n4 6079 kg 7.7% 0.037 3.7%
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However, we have to be cautious when extrapolating the accuracy listed in Table 6. It is based on simulated trajectories based on
the dynamic model that is also used by the particle filter. In practice, the result from Section 6.3 better reflects the accuracy of the
estimations. In addition, we also see that the uncertainty results are obtained based on one aircraft type. However, the percentage
values from this table can still be an important indicator to quantify the uncertainties of estimations. It can be used as an indicator for
the missing uncertainty component for other estimation methods that are based on ADS-B surveillance data.

In order to ensure the functioning of the SIR particle filter, we are required to have an accurate understanding of the observation
noise. If the assumed noise is much larger than the actual observation noise level, the states of particles would have large variances.
This, in turn, produces estimations with greater uncertainties. Examples can be seen in the last plots of Figs. 5 and 7. On the other
hand, if the assumed noise is much smaller than the actual noise, the particles would converge to a set of incorrect states. With the
assumed noise model, all other possible states have extremely low probabilities. As such, the convergence to the real states becomes
difficult. Under such a noise level assumption, the estimator will result in high confidence (low variance) but with possibly incorrect
(biased) estimates. Examples can be seen in the first plots of Figs. 5 and 7.

7.2. The choice of a proper observation noise model

As a general rule, the observation noise model (the covariance matrix *n ) should reflect the actual noise in the measurement
data. As such, the particles would be able to track the changes in states accurately. However, in real life, actual noise from the data is
not often known directly.

One way to find out the noise level in ADS-B data is to decode the NACp and NACv values as described in Section 4.1 and then use
the corresponding noise models proposed in Table 3 to identify the proper noise model. This is only possible, however, when access to
raw ADS-B data is available. When using other data sources, one can possibly construct the proper noise model using the vector auto-
regression (VAR) method (Lütkepohl, 2005, p15).

As a rule of thumb, when raw NACp and NACv values are not available, the noise models of n2 or n3 are generally good starting
points. This conclusion is based on our observation that the majority of the ADS-B messages meet the accuracy levels of NACp 9/10
and NACv 3/2.

7.3. The influence of variation in mass and thrust setting

From experiments in previous sections, it is noticeable that the thrust setting ( T) does not always converge. The same trend is not

Table 6
Mean accuracy of the estimation based on 500 round of estimations with simulated trajectories under different observation noise levels.

Noise 2 ¯ m % of mmtow 2 ¯ T %

n1 304 kg 0.4% 0.005 0.5%
n2 308 kg 0.4% 0.005 0.5%
n3 437 kg 0.6% 0.006 0.6%
n4 509 kg 0.6% 0.006 0.6%

Fig. 12. Varying T versus varying m.
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encountered with mass estimations until a larger noise model has been introduced. To understand the reason for this, the variation of
these two parameters and their influence on the (simulated) flight trajectory is studied. In line with this goal, two sets of simple
simulations are conducted.

In the first set of simulations, the aircraft mass is fixed at +m m( )/2oew mtow , and the thrust setting varies from 0.85 to 1. Results
are shown on the left two plots of Fig. 12. In the second set of simulations, the thrust setting is kept at 0.9, and aircraft mass varies
from moew to mmtow. Results are shown on the right-hand side of Fig. 12. Here, only the horizontal flight distances and speed profiles
are illustrated.

The influence of different thrust settings on the flight trajectory is much smaller than the influence of differences in mass. This is
shown in both distance traveled and the speed profile. Next, noise is added to the simulation. For simplification, only the resulting
speed profiles are shown in Fig. 13.

Here, we can see that the trajectories become hard to distinguish for thrust settings when noise is larger than n2. In the case of
mass, the trajectories only become hard to distinguish when noise reaches n3. This offers an intuitive demonstration of the noise
effects on trajectories.

From a statistical point of view, we can analyze the relationships between mass and thrust settings through particle distributions
when convergence is reached. In Fig. 14, the resulting distributions of m and their T are shown. The particles are grouped by the final
mass distribution. Here, m values are separated in small bins, and corresponding T values are shown in the right-hand plots. m and T
from the same groups are plotted with the same color. It is possible to see that the diversity of the particles disappears with noise level

n1. With noise level n4, a large range of estimates is considered possible. With noise level n2 and n3, the true values of the states
are represented. It is also clear to see the corresponding mass and thrust setting values in this visual representation.

The results from Fig. 5 can be confirmed with the distributions of the particles. The estimation of mass can only be possible when
the noise is smaller than or equal to n3. The equivalent NACp and NACv values are 9 and 2 respectively. With the first two plots of
Fig. 5, we can also observe that when the assumed observation noise ( n1) is smaller than the actual observation noise ( n2), the
estimation results are biased.

8. Conclusion

In this article, steps were taken to construct a comprehensive model and estimation method to derive aircraft mass and thrust
setting solely using ADS-B and Enhanced Mode-S observations. The complexity of such a problem was discussed at the start of this
study. In summary, the difficulty of the estimation lies in solving an inverse non-linear system that consists of eleven states.

In order to address this challenging nonlinear estimation problem, this article developed a stochastic recursive Bayesian approach
using a particle filter. The recursive Bayesian approach not only provided estimates but also allowed for quantifying uncertainties
under different noise levels. If realistic observation noise levels can be identified, the proposed particle filter is able to estimate
aircraft mass and thrust setting. Simulated, real, and measurement flights were used to test the method proposed in this study,
specifically to test the method, define the uncertainty, and validate the accuracy of the method. With the measurement dataset, this
particle filter approach yielded a mean absolute error of around 4.3% of the true mass. Finally, the convergence speeds were swift. In

Fig. 13. Simulated speeds with different noise model.
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most cases, the estimation could be obtained using around 30 s of the flight data at the start of the climb.
In this study, we have selected the flight segment where the thrust setting is most likely to be at the maximum, which is in the

initial climb phase. The maximum thrust is computed using the model proposed by Bartel and Young (2008). Even with the reduction
setting ( T) modeled, we still cannot completely mitigate the uncertainty in the underlying thrust model. However, for the errors of
the particle filter, estimated mass and thrust setting during initial take-off a strong positive correlation is known, i.e., a too high
assumed thrust setting leads to a too high estimated aircraft mass. When testing the particle filter with reference flights from a Cessna
Citation II, we were able to increase the accuracy of the estimation with better knowledge of the thrust setting. Changing from 0.85 to
0.95 allows the particle filter to converge closer to the real mass. However, this assumption is specific to our test flight. For common
commercial airlines, we still recommend using the value of 0.85 unless there is evidence indicating otherwise.

By linking the ADS-B native uncertainty reporting system with the observation noise, we were able to construct realistic ob-
servation noise models. At the same time, we were also able to automatically select the appropriate noise model for each flight using
raw ADS-B data when available. Knowing the effect of these uncertainties by using a particle filter can be beneficial for future ADS-B-
related studies. Better understanding the noise model in surveillance data is the key to improving the accuracy of the dynamic model
used for estimation. This can be an interesting area for follow-on studies.

In the current model, the bank angle is left out of the equations, which is, of course, a simplification. The consequence is that we
are only able to use non-turning flight segments for the estimations. Introducing an additional parameter for the bank angle could
enable the estimation to use data from turning trajectories. However, this may increase the complexity of the model, as well as the
estimation uncertainty.

A simplified form of the observation noise is assumed in this study. That is, the noise for different observable states is assumed to
be uncorrelated. However, this may not be true in real situations. Auto-correlation of errors may exist as suggested in Mohleji
Wangohleji and Wang (2010). If such knowledge can be discovered, it may further improve the estimation. The noise models that are
defined in this study correspond to Version 1 and Version 2 of the ADS-B implementation. For older ADS-B Version 0 transponders
(equipped on older aircraft types), the noise should be defined based on its Navigation uncertainty Categories (NUC). The NUC levels
are less refined than NAC in Version 1 and 2. Future implementations of our method should take this into consideration.

The proposed Bayesian filtering framework has shown its potential for parameter estimation. It was also noticeable that the
designed particle filter can be a good candidate for aircraft trajectory state filtering. When mass can be estimated at the start of a
flight, other state parameters along the entire flight can be better estimated or predicted. This will bring more insight to, for example,
fuel consumption and trajectory prediction during the rest of the flight. Now that the estimation of mass using a particle filter has
been demonstrated, one of the logical follow-on steps is to investigate applications of other non-linear estimation approaches. If in

Fig. 14. Relationship between deviations in estimated thrust setting and mass.
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such case the state space would further grow, then it might also useful to consider other nonlinear estimation methods such as
combinations of particle filtering and Markov Chain Monte Carlo simulation.

Finally, to allow open access to the method developed in this study, the source code of the particle filter is published alongside this
article.3
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