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CrossFill: Foam Structures with Graded Density for Continuous Material Extrusion

Tim Kuipersa,b, Jun Wub, Charlie Wangc

aUltimaker, Utrecht, The Netherlands
bDepartment of Design Engineering, Delft University of Technology, The Netherlands

cDepartment of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China

Abstract

The fabrication flexibility of 3D printing has sparked a lot of interest in designing structures with spatially graded material properties.
In this paper, we propose a new type of density graded structure that is particularly designed for 3D printing systems based on filament
extrusion. In order to ensure high-quality fabrication results, extrusion-based 3D printing requires not only that the structures are
self-supporting, but also that extrusion toolpaths are continuous and free of self-overlap. The structure proposed in this paper, called
CrossFill, complies with these requirements. In particular, CrossFill is a self-supporting foam structure, for which each layer is
fabricated by a single, continuous and overlap-free path of material extrusion. Our method for generating CrossFill is based on a
space-filling surface that employs spatially varying subdivision levels. Dithering of the subdivision levels is performed to accurately
reproduce a prescribed density distribution. We demonstrate the effectiveness of CrossFill on a number of experimental tests and
applications.

Keywords: Space-Filling Surface, Graded Density, Continuous Material Extrusion, Functionally Graded Material, Fused Deposition
Modeling

(a) Input (b) Order (c) Leakage (d) Bulging

Fig. 1. Discontinuity in extrusion paths causes defects. (TPU, Ultimaker 3) End
points (top), T-junctions (middle) and isolated polygons (bottom) all introduce
discontinuity in the extrusion process and rapid travel moves are required. (c)
When the extrusion motor stops, the material still leaks out during rapid travel
moves. (d) Retraction reduces leakage, but instead introduces bulging.

1. Introduction

3D printing enables the fabrication of complex structures with
unprecedented geometric detail. This creates the opportunity to
realize 3D shapes with complex internal structures. Physical
properties of these infill structures are determined by their ge-
ometry and the constitutive material by which they are made.
Even with a single constitutive material, 3D printing allows to
achieve graded physical properties (e.g. density and stiffness) by
spatially varying the geometry of infill structures. This enables
functionally graded materials (FGM) at a manufacturable scale.
Precise realization of graded physical properties can lead to many
applications, such as customized insoles, comfort cushioning and
medical phantoms.

Fused deposition modeling (FDM) is one of the most widely
used 3D printing processes as it has a comparatively low run-
ning cost and supports a wide variety of materials. FDM systems
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(a) No overlap (b) Overlapped

Fig. 2. Microscopic photos of top and side views of printing results with a
0.38 mm wide extrusion path: (a) without versus (b) with overlapping by 0.36 mm
respectively. Overlapping extrusion paths exhibit over-extrusion of material at the
overlapping region, which results in unwanted blobs on the surface of the print.

work by extruding melted streams of material from a moving
nozzle to form a quickly solidified path. However, there is lim-
ited study on using FDM to reliably fabricate FGM. This task
is challenging since the complicated geometry of a functionally
graded infill structure is difficult to meet the different manufac-
turing constraints required by FDM to ensure printing quality:

• Overhanging geometry: If a geometric feature is not properly
supported by lower layers, it is said to be overhanging. While
overhanging geometry can be printed using support structures,
the complexity of infill structures inside a 3D model does not
allow an easy removal of support structures. Therefore, infill
structures are expected to be self-supporting.

• Discontinuous material extrusion: In extrusion-based fabrica-
tion, frequent restarting and stopping extrusion creates defects.
Simply stopping the extrusion motor will lead to material leak-
age. One common way to prevent that is to retract the filament
backward a bit before starting a rapid travel move, but that
in turn introduces bulges where the extrusion paths start and
end. See Fig. 1. In order to fabricate infill structures reliably,
it is desired that each layer of the structures is fabricated by
continuous extrusion along a single toolpath without any in-
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terruption.

• Overlapping extrusion paths: Since material is extruded along
a toolpath typically with a constant width, there is an excess
of material in a layer when extrusion paths are too close to
each other. The overlap of extrusion paths causes blobs and
wider lines, which make it difficult to control the density of
infill structures in corresponding regions (see Fig. 2). It is pre-
ferred to solve this problem intrinsically by generating infill
structures without overlapping toolpaths.

In order to use FDM for fabricating foam structures with graded
density inside a given model, a method needs to be developed for
generating infill structures according to a user-specified density
distribution, which should also avoid the above manufacturing
problems.

In this paper, we propose a novel type of foam structure that
can achieve the aforementioned objective. Specifically, we de-
velop a space-filling surface, called CrossFill, an FDM printable
foam structure as infill for a 3D model. Each layer of CrossFill
is a space-filling curve that can be continuously extruded along
a single overlap-free toolpath. The space-filling surface consists
of surface patches which are embedded in prism-shaped cells,
which can be adaptively subdivided to match the user-specified
density distribution. The adaptive subdivision level results in
graded mechanical properties throughout the foam structure. Our
method consists of a step to determine a lower bound for the sub-
division levels at each location and a dithering step to refine the
local average densities, so that we can generate CrossFill that
closely matches the required density distribution. A simple and
effective algorithm is developed to merge a space-filling curve of
CrossFill of a layer into the closed polygonal areas sliced from
the input model. Physical printing tests have been conducted to
verify the performance of the CrossFill structures.

Our approach provides three technical contributions:

• A novel self-supporting space-filling surface which supports
spatially graded density;

• A scheme for refining the structure to match a prescribed
density distribution;

• An algorithm for merging the toolpath of an infill structure
with the input model’s boundary so as to retain continuity.

2. Related work

For an overview of techniques involved in 3D printing let us
refer to the survey articles by Attene et al. [1] and Livesu et al.
[2]. In this section we review the design of microstructures and
in particular for extrusion-based 3D printing, as well as the use
of space-filling curves and surfaces.

2.1. Structures with graded properties
A variety of graded structures have been proposed in re-

cent years, including lattice structures with varying thickness
(e.g. [3, 4, 5, 6, 7]), triply periodic minimal surfaces (e.g. [8,
9]), free-form microstructures [10], microstructures for expres-
sive deformation (e.g. [11, 12, 13]), bone-like microstructures
(e.g. [14, 15]) and microstructures optimized by inverse homog-
enization (e.g. [16, 17]).

Most of these complex structures are fabricated with powder-
based 3D printing systems such as selective laser sintering (SLS)

or with stereolithography (SLA). Density gradation is typically
achieved by varying the thickness of geometric primitives. How-
ever, reliably fabricating microstructures with varying thickness
is challenging for extrusion-based 3D printing. When printing
beads narrower than the nozzle size, it is difficult to predict at
which location exactly the bead will end up; furthermore, when
the geometry is wider than the nozzle size the toolpath generation
needs to switch from a single bead into several in a controlled
manner. Furthermore, lattice structures are sliced into small dis-
connected components for each layer which violates the contin-
uous extrusion constraint (e.g. [3, 12, 18]).

2.2. Structures for extrusion-based printing

3D shapes fabricated by FDM typically comprise uniform in-
fill structures. Recently Martı́nez et al. [19] proposed a method to
generate infill structures with spatially graded density by printing
the cell membranes of 3D Voronoi diagrams. The cells center lo-
cations are randomly sampled from a 3D user-specified probabil-
ity distribution in order to create the spatially graded infill. Over-
hang constraints are satisfied by carefully constructing a distance
measure which forms the basis of defining the cell membranes.

The generated structures are limited by the following factors.
The extrusion paths are not continuous; the amount of retrac-
tions reduces reliability and increases print time. The density
is controlled indirectly through the density of the cell centers.
The actual relation between the two remains unclear. At high
densities the method is likely to generate overlapping extrusion
paths, leading to over-extrusion, which causes defects in the
print. These problems are well resolved by our approach.

Wu et al. [20] proposed using a subdivision grid of slanted
cubes called rhombuses for extrusion-based 3D printing and pro-
posed optimizing the subdivision structure for stiffness [21]. The
sides of the rhombuses can then be printed using a single bead.
However, the T-junctions require retractions, which are problem-
atic especially for flexible materials. Our method makes use of
a subdivision grid as well, but generates a continuous toolpath.
Moreover, compared to the rigid rhombic structures, the Cross-
Fill structure is more compliant and acts like a foam, which is
beneficial for several applications such as an insole.

In this paper we assert the density distribution is prescribed by
the user, and present a method to reliably reproduce the distribu-
tion using extrusion-based printing. The graded density can be
specified by the user or by an optimization process. The latter
was exploited for example in [14, 22].

2.3. Space-filling curves and surfaces

Our method makes use of space-filling surfaces, which are
analogous to space-filling curves in 2D (e.g. Hilbert curve [23],
Sierpiński curve [24, 25]). Using space-filling curves with vary-
ing degrees of subdivision level has been explored for purposes
other than 3D printing, such as robotic exploration tasks [26], fi-
nite element analysis [27, 28], paths for CNC milling [29]. In
the context of 3D printing, Kumar et al. [30] combined several
square based space-filling curves (e.g. Hilbert curve) to generate
porous infill structures with spatially graded density and semi-
continuous extrusion. However, this method allows for spatially
varying density only in the horizontal plane - not in the vertical
direction.

While there is much literature on extending such space-filling
curves to polylines in 3D, a space-filling curve in 2D can also
be extended into a space-filling surface in 3D. Space-filling sur-
faces are first defined by Ahmed and Bokhari [31]. Although the
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(a) Boundary mesh (b) Density
specification

(c) Lower bound
subdivision structure

(d) Dithering (e) Space-filling
curve extraction

(f) Fit into infill area

Fig. 3. Schematic overview of our method. The top row shows a 2D analogue of our method for clear visualization. The prism-shaped cells in the bottom row are
visualized as semi-opaque solids to keep the visualization uncluttered. Red lines in the bottom row highlight the local subdivisions performed in the dithering phase.
Note that, the shell of the 3D model is not displayed in (f) for the illustration purpose.

space-filling surfaces are continuous, any layer-wise cross sec-
tion is still discontinuous. In this paper we propose a new type
of space-filling surfaces, which provides cross sections that are
continuous.

3. Overview

CrossFill is a space-filling surface that is constructed using
subdivision rules on prism-shaped cells. Each cell contains a
patch of the surface, which is sliced into a line segment on each
layer to be a segment of the extrusion toolpath. Since the toolpath
will be fabricated with a constant width, the size of a cell deter-
mines the regional fraction of solid material (hereafter referred
to as ‘density’). By adaptively applying the subdivision rules to
the prism cells, we create a subdivision structure of cells with a
density distribution that closely matches a user-specified input.
Continuity of the space-filling surface across adjacent cells with
different subdivision levels – both horizontally and vertically –
is ensured by the subdivision rules and by post-processing of the
surface patches in neighboring cells.

Figure 3 provides an overview of our method using a sim-
ple 3D example (bottom) and a 2D schematic illustration (top).
From a user-specified 3D density field (Fig. 3b), we first increase
the subdivision levels everywhere until one further subdivision
would result in an average cell density higher than the average re-
quested density in that region (Fig. 3c). The resulting subdivision
structure forms the lower bound of the final subdivision levels. In
order to closely match the input density distribution, we develop
a dithering method in which we alternate the subdivision level
between the lower bound and one level deeper (Fig. 3d). Once
the subdivision structure is finalized, we slice it into space-filling
curves for the toolpaths on each layer (Fig. 3e). In this step, we
adjust the surface patches in the cells such that overlapping tool-
paths are prevented. Lastly, the space-filling curves are trimmed
to the infill area and connected to the shell of the input 3D mod-
els to form the final toolpaths preserving continuous extrusion
(Fig. 3f).

1 2
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28 29

(a) Subdivision tree (b) Prism cells

Fig. 4. The hybrid tree and graph data-structure employed for CrossFill, where
the blue links indicate the subdivision relationship between prism cells and the
black dots represent the leaf-nodes on the tree each of which embeds a patch of
the space-filling surface. The red arrows denote the connectivity graph for easily
traveling from one cell to its neighbors.

4. CrossFill

CrossFill is an infill structure which consists of a space-filling
surface. CrossFill is so named because the toolpath of this struc-
ture resembles crosses (see Fig. 9).

4.1. Initialization and data-structure
The space-filling surface of CrossFill is generated using a sub-

division scheme that starts from a cube which encompasses the
input 3D model with side lengths 2iw for integer values of i and a
constant extrusion width w. This cube is divided into four prisms
by splitting along the two diagonals of the horizontal faces. Start-
ing from these four prisms, the prisms are adaptively subdivided
into smaller ones. In lieu of the commonly used 1:8 subdivi-
sion of cubic cells, we make use of 1:2 and 1:4 subdivision of
prism-shaped cells. This allows more granularity, which is ben-
eficial for matching the requested density distribution. Details
on the types of prism-shaped cells and subdivision rules will be
presented in Section 4.2 and 4.3, respectively.

The hierarchy and connectivity of cells are encoded by a com-
bination of a tree and a graph. The subdivision tree connects a
cell to its subdivided constituent cells. The root node of the tree
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(a) H-prism (b) Q-prism

Fig. 5. The basic types of prisms in CrossFill: the shape of an H-prism can be
obtained by cutting a cube in half and the shape of a Q-prism by cutting a cube
in quarters. A H-prism can be subdivided into two Q-prisms and a Q-prism is
always subdivided into four H-prisms in our system.

(a)
HCL+

HEL+

(b)
HCR+

HER+

(c)
HCA+

HEA+

(d)
QCL−

QEL−

(e)
QCR−

QER−

(f)
QCA−

QEA−

Fig. 6. The types of prism cells by considering the embedded space-filling sur-
faces.

corresponds to the starting cube, while other nodes correspond to
prism cells. The leaf nodes of the tree constitute the current sub-
division structure. The connectivity graph stores the connectivity
information among the leaf cells. Two neighboring leaf cells are
linked if their surface patches are connected through the space-
filling surface; however, two cells which share a face which is
not crossed by the space-filling surface are not linked. The links
store the relative spatial location of the neighboring cell – up,
down left or right along the space-filling surface. See Fig. 4 for
an illustration. This connectivity graph facilitates efficient trav-
eling between neighboring cells. The tree and graph are updated
each time a new subdivision is applied to a leaf node.

4.2. Types of cell

The construction of CrossFill depends on a subdivision tiling
consisting of prism-shaped cells. As shown in Fig. 5, two types
of prism are distinguished in our subdivision system:

H-prism is constructed by vertically cutting a cube in half along
a diagonal of the horizontal faces.

Q-prism is generated by splitting a cube into quarters along
both diagonals of the horizontal faces.

The subdivision tiling is generated by subdividing an H-prism
into two Q-prisms and subdividing a Q-prism into four H-prisms
(see the bottom row of Fig. 5).

Each prism cell encompasses a triangular patch of the space-
filling surface. The prism cells are categorized according to
which side faces of the prism are crossed by the triangle surface
patch (see the horizontal cross sections visualized in Fig. 7a):

A-route the surface is spanned across the faces connected to the
two catheti of the right triangle at the base of the prism.

A RL

(a) Three different types of route

A+ → L-R-

A- → R+L+ L- → A+L+

R+ → A-R-L+ → L-A-

R- → R+A+

A+ L- R-

L- L+ A+

R+ A- R-

A- L+ R+

L+ L- A-

R- A+ R+

(b) Subrules for ‘x→ a|b’ production

Fig. 7. Types of surface patch distinguished by the route (which sides of the cell
the segment crosses) and the direction. When a cell is subdivided, the type of
route x is substituted with different routes in the two newly constructed cells as a
and b respectively.

(a) HCL+ → QCL− QCA− (b)

QCR− →
HER+ HEA+

HCR+ HCA+

Fig. 8. Examples of combined subdivision rules.

L-route the surface crosses between the face connected to the
hypotenuse and the left cathetus.

R-route the surface crosses between the face connected to the
hypotenuse and the right cathetus.

In order to keep track of the spatial ordering between cells
when subdividing and when updating the connectivity graph, we
introduce the horizontal direction of traversal (see Fig. 6):

+ direction travel from left to right, from left to hypotenuse or
from hypotenuse to right.

− direction travel from right to left, from right to hypotenuse or
from hypotenuse to left.

In order to fully characterize a cell, we also distinguish be-
tween the two fashions in which the 3D surface patch is embed-
ded in the prism (compare the bottom and top in Fig. 6):

E-embedding when vertically exploring a cell from bottom to
top by horizontal cross sections, the embedded surface is
said to be expanding if it is moving from the right of the
traveling direction to the left.

C-embedding the embedded surface is contracting otherwise.
(Note that the embedding is not defined in terms of whether
the triangle surface patch points up or down.)

In total we consider 12 different types of prism cell; see Fig. 6.
It can be easily verified that the overhanging angle of embedded
surfaces in all types of prism cell is always less than 45◦ – i.e.,
the self-supporting constraint is satisfied.

4.3. Subdivision rules
We now define the subdivision rules on the prism cells, which

depend on the type of prism (H- or Q-prism), the route type (A-,

4



(a) CrossFill 3D (b) Layers (c) 2D L-systems

Fig. 9. Intersecting the uniformly subdivided CrossFill (a) by horizontal planes
results in space-filling curves (b). The red space-filling curve can be obtained by
applying the subrules of Fig. 8b. The Sierpiński curve is visualized in purple in
(c).

R+

L+
A-

R-

L- A-

R+

L+

R+

A+

A+
R+

L+
L+ A-

R-

L- A-

A-

R-

L- A-

A-

A-

R-

L-

L-

L-

R-

R-

Fig. 10. Repeated application of the subdivision rules defined in Fig. 7b. Denser
and denser space-filling curves can be generated from the subdivided space tiling.

L- or R-route), the direction of traversal (+ or −) and the type of
embedding (C- or E-embedding):

HCx→ QCa QCb HEx→ QEa QEb

QCx→
HEa HEb
HCa HCb

QEx→
HCa HCb
HEa HEb

(1)

where the pattern ‘x→ a|b’ can be filled with any of the subrules
for route type and traveling direction as given in Fig. 7b. The
spatial ordering on the right hand side of the rule indicates the
spatial ordering of the cells: on top of each other and horizontally
next to each other when following the route along its direction.
Two examples of filled subdivision rules described by Eq. (1) are
illustrated in Fig. 8.

We initialize the CrossFill fractal with four QCA− cells such
that the surface patches form a pyramid. Together with the sub-
division rules this forms a system closely related to an L-system.

Relation to 2D L-systems. As illustrated in Fig. 9a and (b), a
subdivision tiling of right triangles and an embedded 2D space-
filling curve can be obtained when intersecting a uniformly sub-
divided CrossFill structure with a horizontalplane at an altitude
of half the prism’s height. The rules used above with integrated
traversal information can help generate a 2D space-filling curve
similar to the Sierpiński curve (see the purple curve in Fig. 9c).
Whereas the Sierpiński curve is generated by connecting the cen-
ters of the triangle cells, the CrossFill pattern is generated by con-
necting the vertices located on the edges which are crossed by the
curve. Compared to the 1:4 subdivision of square cells (e.g. for
constructing the Hilbert curve), the 1:2 subdivision of triangles
allows more granularity. Similarly, our 3D subdivision rules pro-
vide more granularity than a cubic 1:8 subdivision. As illustrated
in Fig. 10, repeatedly denser space-filling curves can be obtained
when reapplying the subdivision rules defined in Fig. 7b.

4.4. Compatibility and continuity

The surface patches embedded in a subdivision structure with
uniform subdivision level form a continuous space-filling sur-
face. With adaptive subdivision levels, neighboring cells can
have different sizes. The boundary of the surface patch embed-
ded in a big cell does not always match with the boundary of
surface patches in neighboring linked smaller cells (e.g. prisms
10 and 27 in Fig. 4).

Horizontal
continuity

Vertical side
continuity

Vertical mid
continuity

side
view

side
view

top
view

a
b
c

b
c

d

f

fe

e

h

ha g

g

a'=b,c
e'=f

g'=h∩F

E

E

F

F

A
B

Fig. 11. Three steps for adjusting the space-filling surface to enforce the continu-
ity between neighboring linked cells. Adjustments are made to edges on the sides
of the surface patches and the patches are thereby transformed into ruled surfaces
Red elements (vertices and edges) are to be changed into the corresponding blue
elements in order to match the green elements in this figure. (top) Assembled
view. (middle) Exploded view. (bottom) Closeups of the interface between two
cells.

To solve this problem in general is difficult; however, it is solv-
able when neighboring linked cells have only one level difference
in the subdivision tree, because there is only a limited set of con-
figurations. The continuity can be enforced on such a structure
with heterogeneous subdivision level in three steps.

Step 1: Horizontal continuity enforcement. When horizontally
neighboring cells have a different subdivision level their embed-
ded surface patches may not match at the sides where the cells
meet. For example the edge a in Fig. 11 doesn’t align with b
and c. In such a case the edge of the lower subdivision level cell
is transformed such that it matches the higher subdivision level
cells and its surface is converted into a ruled surface A: on each
layer we connect the one edge (d) of the surface patch with either
of the two edges (b or c) of the smaller surface patches using a
horizontally straight line segment. See Fig. 11 and Fig. 12a.

Step 2: Vertical side continuity enforcement. When vertically
neighboring cells have a different subdivision level the edges of
their surfaces may not end in the same location at the interface
where the cells meet. For example the vertex e doesn’t coincide
with f in Fig. 11. In such a case the edge(s) of the lower sub-
division level cell are transformed: part of the edge is flipped
horizontally in the plane E along the cell side where the edge re-
sides. This adjustment is also performed if the discontinuity was
introduced because of the horizontal continuity enforcement, as
is illustrated by surface patch B in the middle of Fig. 11.

Step 3: Vertical mid continuity enforcement. When vertically
neighboring cells have different subdivision level and have ruled
surfaces the horizontal edges may not align on the horizontal side
where the cells meet. For example vertex g doesn’t lie on the
edge h in Fig. 11. In such a case the vertices of the higher subdi-
vision level cells are adjusted to lie on the intersection between
edge h and the side F where the two higher subdivision cells meet
horizontally. Similar to vertical side continuity enforcement, we
flip part of the edge to which the adjusted vertex belongs and
introduce ruled surfaces.

The space-filling surface in linked cells with subdivision level
differences can be effectively enforced to be continuous by this

5



(a) Ruled
surface

(b) Before
enforcement

(c) After
enforcement

(d) Another
example

Fig. 12. The impact of continuity enforcement on CrossFill structures. The en-
forcement causes surface patches to become ruled surfaces. Blue lines show the
isolines which are straight at each Z height. Red patches show discontinuities in
the space filling surface.

approach. Examples of CrossFill structures with continuity en-
forcement are shown in Fig. 12. For more extensive examples
we refer to the video in the supplementary material. Note that
in the implementation we do not actually construct the surface;
instead, we compute the vertex locations of the edge segments of
the surface patches, slice those at the height of a printing layer
and connect the resulting locations using straight line segments.

Self-supporting. It should be noted that the curved surfaces in-
troduced by enforcing the continuity of neighboring linked prism
cells will not violate the self-supporting property of the space-
filling surface. With the help of the carefully designed continuity
enforcement algorithm, we generate surfaces that have overhang
≤ 45◦ in most places. There is only one exceptional case for
the side enforcement in an H-prism, where the overhang can be
increased to tan−1

√
2 ≈ 55◦. However, geometry overhanging

with an angle of 55◦ is not a problem for most FDM 3D printers,
so the self-supporting constraint is not violated.

Density. Sudden jumps in density are hard to be realized on our
infill structure. For example, a density distribution which is 10 %
in the bottom half and 80 % in the top half is not easily realized
while satisfying the overhang constraint. Our space-filling sur-
face requires some distance to change from the low to the very
high density along the vertical direction. Also, the surface patch
with enforced continuity would be considerably different from
the original triangular surface patches, which might have a large
influence on the physical properties associated with a given den-
sity. The situation is controlled by imposing the constraint that
cells linked to each other only allow to differ by a single subdivi-
sion level at most.

The distance required to change from a low density to a
high density depends heavily on the size of the cell associated
with the lower density. For a simple square subdivision grid
the distance between the side of a cell with subdivision level
n and height h to a cell with subdivision level m is minimally
h ·

(
1
21 + 1

22 + ... + 1
2m−n

)
, which converges to h for m → ∞. For

our prism based subdivision approach the distance converges to
2h vertically and 0.97h horizontally. However, depending on the
positioning of the most dense cell w.r.t. the grid of the least dense
cell, the required distance can increase to 4h vertically and 2.75h
horizontally. The horizontal distance is measured along the space
filling surface in terms of the average length of segments in the
2D L-system. This means that two cells which are spatially next
to each other can have a large difference in density so long as the
space filling surface takes a large detour between the two.

5. Adaptive subdivision

This section presents our approach for generating a subdivi-
sion structure with subdivision levels which closely matches the
requested density distribution. Our approach consists of two
steps: the first decides a lower bound subdivision level at each
location and the second fine-tunes the local density distribution
by dithering between the lower bound and a higher bound. Be-
fore presenting this approach, we introduce the methods for eval-
uating the target and the current density in a cell.

5.1. Target cell density
Common ways of specifying a density distribution are as a

scalar field defined on a tetrahedral mesh or a voxel model or as
a procedural function. In order to make our program compati-
ble with several commercial software packages, we construct a
voxel model from a sequence of gray-scale image files. The re-
lationship between the gray-scale value and the physical density
is specified by the user. The target density ρT of a cell P is com-
puted as the average density of voxels {vi} covered by P:

ρT (P) =
∑

vi

Vol(vi ∩ P)ρ(vi)
/∑

vi

Vol(vi ∩ P) (2)

where the function Vol(vi ∩P) computes the volume of the com-
mon region of a voxel vi and a cell P. We define the target mass
MT as the requested amount of volume to be filled with solid
material in a cell:

MT (P) = ρT (P)Vol(P). (3)

Because the size of starting cube of CrossFill is a power of 2
times the extrusion width w, the fractal can start with a volume
which is considerably larger than the input model and its density
distribution. For a cell lying completely outside the voxel set, we
use the density of its nearest voxel as its density ρT (·).

5.2. Current cell density
For a cell Pn located at level n in the subdivision tree, we

calculate the current amount of material in the surface patch
according to the size of P and the type of route (L, R or A).
By considering the configurations of embedded triangles in a
prism cell (Fig. 6), we calculate the current density estimate
ρC of Pn and the corresponding current mass MC as follows:

ln

w

ρC(Pn) =
w
ln
·


√

2 for A
1 for L and R

ln = linit2−n/2

MC(P) = ρC(Pn)Vol(Pn)

(4)

where w is the constant width of material extrusion, ln is the
length of the cathetus at the top of the prism and linit is the side
length of the starting cube. Note that w is the horizontal width
which differs from the thickness in the direction normal to the
surface. Note also that the density, i.e., the fraction of solid ma-
terial, is independent of the height of the prism, the embedding
of the surface patch and the direction; it is determined by the
average of horizontal segment length and the extrusion width w,
which are unaffected by these factors. In this analysis, for the
sake of simplicity, we neglect the effect that linked cells influ-
ence the density of a given cell due to the continuity enforcement.
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Algorithm 1 Lower bound subdivision structure generation

function LowerBoundSubd(cell P)
if P is a leaf-node then

Compute MC , MN and MT ;
if MN < MT then . P needs to be subdivided

Subdivide(P);
end if

end if
for all c ∈ P.children do

LowerBoundSubd(c);
end for

end function
function Subdivide(cell P)

for all c ∈ P.links do . For linked neighbors of P
if c.depth < P.depth then . For level constraint

Subdivide(c);
end if

end for
Subdivide P according to the rules;
Update the corresponding links of neighbors;

end function

We provide a method for compensating for the errors induced by
continuity enforcement in Section 7.1.1.

From Eq. (4) and the subdivision rules in Fig. 7 we can derive
the increment in mass when performing a subdivision, which is
used to supervise the generation of an adaptive subdivision struc-
ture. The new mass the children cells would have after a subdi-
vision MN is as follows:

MN(P) = MC(P) ·

1 for A
1 + 1

2

√
2 for L and R

(5)

The ratio of A-, L- and R-route cells in a CrossFill structure
with uniform subdivision level quickly converges to 1/3 after a
depth of only 5 subdivisions. If the current density of A-route
cells is 100 % then the other 2/3 of all cells is still at a lower den-
sity, so the maximum attainable density in the whole structure is
1/3 + 1/3

√
2 ≈ 80 %.

From the above we can derive that the average density incre-
ment factor is

√
2. This provides more granularity than other

fractal structures, e.g. the Hilbert curve, which has a density in-
crement factor of 2 for each subdivision. One step of the Hilbert
curve quadruples the amount of cells, while it only doubles the
distance between connected cells, so the total length of the curve
is doubled, which means that the curve with a constant line width
comes to cover double the area.

5.3. Lower bound subdivision levels

Given the specified density distribution, we adaptively refine
the subdivision structure such that the current density of each cell
approaches, but does not exceed, the average target density (i.e.,
Eq. (2)). This is achieved by a top-down pass on the subdivision
tree. In order to accomplish that we subdivide a cell P if it sat-
isfies the following condition: MN(P) < MT (P). To restrict the
subdivision level difference between linked cells to be at most
one, before subdividing a candidate cell P that satisfies the con-
dition, we subdivide its linked cells with a shallower subdivision
level first.

requested
density

lower
bound

dithered

Fig. 13. Schematic overview of dithering from a subdivision tree with lower
bound subdivision levels.

(a) Input density
distribution

(b) Lower bound
subdivision levels

(c) After dithering

Fig. 14. A square subdivision tiling fitted to an input density distribution image
with a diagonal gradient from 0 % to 100 % density. The dithering step eliminates
banding artifacts from the lower bound subdivision structure and creates a smooth
density distribution.

The pseudo-code of our algorithm is presented in Algorithm 1.
By calling the function LowerBoundSubd(·) on the root of the
tree, the subdivision level is decided in each location. This con-
stitutes the lower bound subdivision levels. The following sub-
section presents a dithering approach to further reduce the ap-
proximation error.

5.4. Dithering

Because the input is a continuous density distribution while
the output only admits a limited set of subdivision levels, choos-
ing a subdivision level of a CrossFill cell always induces a dis-
cretization error a.k.a. quantization error. The idea is to diffuse
this quantization error to linked cells in the neighborhood so as to
influence the chosen subdivision level there. This causes the sub-
division levels to oscillate between the subdivision levels closest
to the target density (see Fig. 13). This is akin to the widely
employed dithering technique in multimedia processing.

We define the quantization error as the difference between tar-
get mass and current mass. Diffusing this error to dither the sub-
division level leads to a CrossFill structure with densities better
matching the target distribution regionally. See Fig. 14 for an
example on a simple square subdivision tiling. The lower bound
subdivision structure exhibits strong banding artifacts; these arti-
facts are eliminated by dithering.

1

2
3 4
1

2

Dithering order. When processing cells for dither-
ing we consider the leaf nodes in a sequence analo-
gous to the Morton order [32]: We traverse the tree
in depth-first order and at each non-leaf cell we re-
curse the children in the following order: first the
bottom left, then the bottom right and, if it is a Q-
prism, then the top left and the top right. Here ‘right’ refers
to linked cells along the direction of the horizontal traversal of
the surface patches, which is clockwise around the space-filling
polygon of each layer. Quantization error of the current cell P is
then redistributed to those cells in the neighborhood of P which
have not yet been processed in dithering.
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(a) Positioned weights
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w1+w2 w3

½w4
½w4
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(b) Application example

Fig. 15. Quantization error propagation weights in various scenarios. Connected
cells may cover an area at multiple positions relative to the checking cell marked
by ‘x’. The horizontal dimension depicted here is along the traversal of the space-
filling surface (i.e., two-manifold). The gray area indicates locations which have
already been processed.

Neighborhood. Dithering along a manifold with a lower dimen-
sion makes the implementation simpler while retaining the ad-
vantages of dithering. Velho and Gomes [33] have shown that
propagating quantization error along the directions of a space-
filling curve (as 1D manifold) for 2D images can yield a halfton-
ing technique with appealing properties. Similarly, rather than
considering all geometrically neighboring cells of a prism cell
P, we only consider the cells which are neighboring P in the
connectivity graph. As such we only disperse quantization er-
ror along the 2D manifold of the space-filling surface within 3D
space. In order to visualize the dithering process effectively, we
‘unfold’ the space-filling surface and consider the resulting 2D
topology (see Fig. 4a and the supplementary video).

Weights. The amount of the quantization error distributed to
each (yet unprocessed) cell in the neighborhood depends on its
relative position with respect to the current cell P being checked.
Connected cells to the left and bottom have always already been
processed because of the Morton order. For a subdivision struc-
ture with uniform subdivision, the configuration is therefore as
shown in Fig. 15a. The diagonal cells are obtained by access-
ing the links of directly linked neighbors. There are various er-
ror diffusion schemes with different weights and different con-
figurations (ref. [34, 35, 36]). A comprehensive study about
their performance is beyond the scope of this paper. We em-
ploy a simple error diffusion scheme with the following weights:
w1 = w3 = 1.0, w2 = w4 = 2.0 and w5 = 0.0. Because not
all positions relative to the checking cell are always occupied by
(unprocessed) cells, the weights are normalized to compute the
quantization error to be diffused to unprocessed linked neigh-
bors: ŵi = wi/

∑
c∈P.neighborhood c.w

Because linked cells can have a size different from P, the
weights need to be adjusted to account for the change of con-
figuration. A linked cell can occupy more space than P or only a
portion of the space occupied by P. In the former case multiple
weights are added together, while in the latter case the weight
is split equally. The diagonal positions always retain the same
weight. An illustration of such a configuration can be found in
Fig. 15b.

Algorithm. The dithering algorithm decides on the final subdivi-
sion level by choosing between the lower bound subdivision level
and a higher bound of one subdivision level deeper by compar-
ing the quantization error of those two subdivision levels. The
quantization error E of a prism cell P before subdivision (EC)
and after subdivision (EN) are calculated by

EC(P) = MC(P) + ME(P) − MT (P)

EN(P) = MN(P) + ME(P) − MT (P)
(6)

Algorithm 2 Dithering

function Dither(cell P)
if P is NOT a leaf-node then

for all c ∈ P.children do . using the Morton order
Dither(c);

end for
else

Compute MC , MN and MT ;
Define M = MC;
if 1/2(MC + MN) + P.ME < MT then

Subdivide P according to the rules;
Update the corresponding links to neighbors;
Update mass as M = MN ;

end if
E = M + P.ME − MT ;
Re-distribute E to P’s unprocessed neighbors;

. The ME of cells in the neighborhood is updated.
end if

end function

where ME(P) is the quantization error diffused to P from already
processed cells. P is subdivided if the absolute value of EN(P)
is smaller than the absolute value of EC(P). An exception to
this rule is if P has linked neighbors with a lower subdivision
level in order to comply with the constraint that linked cell can
only differ by a single subdivision level. After the subdivision
decision the corresponding quantization error is diffused to the
unprocessed linked neighbors according to the weighing scheme
described above. Pseudo-code of this dithering approach is given
in Algorithm 2. The diffused error P.ME is initialized as zero on
each cellP before calling Dither(·) on the root of the subdivision
tree. Figure 14c shows the result on a 2D example.

6. Toolpath generation

We now have a method for creating an infill structure with spa-
tially graded density according to a user-specified density distri-
bution. The infill structure is defined in a cubic region and can
be fabricated by continuous material extrusion. In this section,
we will first explain how to effectively slice the structure into a
continuous 2D polygonal curve for each layer. After that, we will
fit the 2D polygonal curve of a layer into the region of an input
3D model.

6.1. Slicing
The first step toward generating the toolpath of a layer for 3D

printing is to generate the space-filling curve which lies on the
intersection between the surface of CrossFill and the horizontal
plane at the height z of the printing layer. As mentioned above,
the space-filling surface only exists conceptually in our imple-
mentation. We directly generate the space-filling curves from the
type of prism cells and their linkage in the connectivity graph.
Given a height z, we first find the sequence of cells covering this
height in the subdivision structure. The cell which is closest to
the last point on the toolpath of the previous layer, is chosen
as the first cell for exploring the horizontally linked cells. The
whole sequence of cells can be traced out by following the links
in the connectivity graph which are pointing to the right, i.e., by
following the cells along the horizontal traversal direction (see
Fig. 6). When appending a cell to the sequence we take take the
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(a) Overlap problem (b) Clamping

45°

(c) Detouring

Fig. 16. Dealing with overlapping paths in neighboring prisms (the red color
indicates overlapping regions) – the figures illustrate a top-view of two prisms
crossed by extrusion paths (dashed black lines) which initially lie close to each
other (i.e., overlap occurs in (a)). By clamping the endpoints to a position that is
at least 1/2 the extrusion width away from the other prism (b) and introducing an
additional 45◦ turn on the line segments (c), the overlap can be avoided.

right linked cell which intersects with the z height. After employ-
ing the continuity enforcement rules from Section 4.4 we are left
with the edges of the surface patches, which are sliced at z to
serve as the vertices of the space-filling curve of that layer.

6.2. Overlap prevention
These space-filling curves can have overlap near the boundary

of a prism when a surface patch segment is too close to the neigh-
boring prism (see Fig. 16a for an example). This occurs when
the distance between the two segments is less than the horizontal
width w of extrusion toolpaths. In order to prevent path overlap,
we clamp the endpoints of sliced line segments to a position that
is w/2 away from the neighboring prism (see Fig. 16b).

However, only applying the clamping step cannot completely
avoid overlap in situations where the toolpath makes a sharp turn.
When the turning angle between the segment and the side of the
cell is sharper than 45◦, we introduce an additional vertex at a
position with distance w · 1/2

√
2 away from the vertex on the side

of the cell – called detouring. See Fig. 16c. It should be noted
that in a uniformly subdivided CrossFill structure, the turning
angle on a space-filling curve generated by slicing is either 45◦
or 90◦ (see Fig. 9b for an example), which means that detouring
is not needed in such a context.

Detouring does not violate the overhang constraint. The intro-
duced vertex is supported either by a detoured vertex below or a
segment with a turning angle just above 45◦. Moreover, detour-
ing does not reduce any area covered by the extrusion path, so a
detoured layer still supports the layer above. The increased den-
sity caused by detouring can be compensated for using a method
introduced in Section 7.1.1.

6.3. Conversion into infill structure
Now that we have a non-overlapping space-filling curve as

toolpath for fabricating the CrossFill structure of each layer, We
limit it to the interior area of an input 3D model while retain-
ing the continuity of the toolpaths. Specifically, we first intersect
the space-filling curve with the infill area shrunk by w/2 (see
Fig. 17c). This operation makes the trimmed space-filling curve
connected to itself via the perimeters of that layer.

Performing an intersection between the space-filling curve and
the infill area could result in a single polygon. However, there are
cases in which additional polygons are generated:

1. the infill area splits the space-filling curve into multiple
parts (in the bottom right of Fig. 17b);

2. the infill area contains a polygon which doesn’t touch the
space-filling curve (in the top left of Fig. 17b).

(a) Raw (b) Intersected (c) Single line

q′ q1 
p′ p1 q q1 p p1 

q′ q2 p′ p2 

q q2 p p2 q′ q3  p′ p3 
q q3 

p p3 

(d) Closeup

Fig. 17. Inserting the cross-filling curve into to an infill area, where the cross-
filling curve is displayed in black color, the outer wall is in red color and the
second wall is shown in orange color. (a) The original cross-filling curve. (b)
The intersected space-filling structure. (c) The finally connected toolpaths of
multiple walls and the infill structure. (d) A zoom-view of (c).

We tackle both these problems by connecting all polygons to the
innermost perimeter of the shell of the print and to each other
afterwards. The problem to be solved here for generating contin-
uous toolpaths is different from [37], in which spiraling toolpaths
are generated to completely fill a given region. By contrast, we
are tackling the problem of connecting multiple polygons into a
single polygonal curve.

Two polygons are connected into a single polygon by building
a bridge between them as follows. First, two points p and q with
‖p − q‖ = w on a polygon are considered. We consider the point
p′ on the other polygons closest to p and find a point q′ on the
other polygon such that qq′ is parallel to pp′. We search for
such pairs of points until we find a bridge for which the length
is at most 3/2w. New line segments pp′ and qq′ are then added
and the line segments pq and p′q′ are removed. Examples for
building bridges can be found in Fig. 17d. Repeatedly building
bridges between polygons can connect all into a single polygon.
In order to minimize the number of sub-optimal bridges, we start
by connecting the smallest polygons to suitable neighbors and
work our way outward.

Our method has several advantages. When there are many pos-
sible candidate locations for building a bridge, we can select the
‘optimal’ position according to various criteria. For example, we
can promote bridges at regions with low curvature in order to
minimize the influence on the extruded amount of material. An-
other option is to build bridges that are closer to interior regions
so as to minimize the visual surface impact.

Connecting polygons which have distance more than 2w intro-
duces new line segments hanging in the air. Strictly this conflicts
with the overhang constraint; however, this often is not a prob-
lem for FDM printing. Such distances are rarely long, and these
lines of bridges do not have to support any material above. In
practice, the extruded beads of FDM can stay in mid-air because
of the high viscosity of the melted plastic.

7. Results

7.1. Experiments
Experiments were performed on an Intel Core i7-7500U CPU

@ 2.70 GHz using a single core and 16.3 GB memory. We have
printed test structures on several Ultimaker 3 machines, loaded
with white Ultimaker TPU 95A in AA 0.4 mm Print Cores. The
basic print path settings were taken from the default Cura 4.0 pro-
file of 0.1 mm layer thickness for this setup. qMost notably the
setting for Infill Line Width was w = 0.38 mm and the Speed was
25 mm/s. In order to enable the connect polygons functionality
in some of our tests, we set the Extra Skin Wall Count to zero and
instead set the Extra Infill Wall Count to one, so that we can en-
able the setting Connect Infill Polygons. The Infill Line Distance
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Fig. 18. Compensating for inaccuracies of the simplified density measure. For
several simplified density values the actual total amount of volume is recorded in
blue, so that we can map required output densities to the corresponding simplified
input densities using a smoothing spline fitted to that data in red.

setting was set to 0.76 mm meaning that the smallest possible
prism has sides of length lmax = 2w

√
2, which corresponds to a

density of 40 % in order to save computation time.
For various tests we have used a test cube with side lengths

of 48.64 mm, which is 27w, so that the starting cube of the sub-
division tree matches the 3D model. In order to isolate the infill
structure, the settings Top/Bottom Thickness and the Wall Thick-
ness have been set to 0 mm.

For some of the models, the requested infill densities are too
low to support the dense top skin. In order to overcome this
problem, we enforced a minimal subdivision level for prism cells
which overlap with top skin after the dithering stage, by itera-
tively calling Subdivide from Algorithm 1. By modifying the
subdivision structure in this way, we guarantee a required per-
centage of infill for supporting top skin regions.

7.1.1. Simplified density measure compensation
The method we propose uses a simplified density estimate

based on cell size and route type. Because this doesn’t take
into account effects from continuity enforcement (Section 4.4)
or from clamping and detouring (Section 6.2) the output density
is different from the simplified density estimates. Once we eval-
uate the discrepancy, we can compensate for it.

We have generated test cubes with a homogeneous simplified
density (Eq. (4)) within the range of 1 % to 80 % and analyzed the
total extruded volume compared to the total volume of the cube.
These results are shown in blue in Fig. 18. We fit a Matlab
smoothing spline to the data with a smoothing parameter of 0.75.
The resulting curve is then used to compensate for the disparity
between the simplified density estimates and the actual densities
by mapping the density requirements to the corresponding sim-
plified density estimates prior to applying our algorithms.

7.1.2. Accuracy
The accuracy of a functionally graded material is inherently

related to a viewing resolution. When viewing any print at a res-
olution close to the printer resolution, the density is either 100 %
or 0 % regardless of the user specified density at each location,
which means the accuracy at that resolution is low. In order to
evaluate the accuracy of our functionally graded material, we
evaluate the average local error at a range of resolutions. For
each resolution we divide the specification and the generated in-
fill structure into smaller cubes and compute the local error as

(a) Kernel size w · 64/7 (b) Kernel size w · 64/16

24%

-24%

0%

(c) Legend

Fig. 19. Example of local errors on a 2D space-filling curve generated from a
diagonal gradient from 10 % to 80 % density. The errors are translated to opacity
and overlaid with the space-filling curve. w is the line width. When analyzing
at lower resolution the errors are higher. The overall error is positive because
the diagonal line segments introduced at locations where consecutive cells are
a different subdivision level have a higher density than the simplified density
estimate used.
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Fig. 20. Local average error for a range of kernel sizes on several test specifica-
tions. Kernel size is in multiples of the line width, while the average local error
is measured in terms of infill density percentage. When viewing the structures at
lower resolutions, the accuracy is higher. High-frequency specifications such as
the sphere shell perform worse.

the absolute difference between the average specification density
throughout that cube and the average realized density through-
out that cube. The accuracy is then given by the average local
error across all subcubes for that resolution (see Fig. 19). Note
that at kernel sizes of powers of two the subcubes align with the
prism-shaped cells, which lowers the error measure.

We define several density specifications for our test cube on
which we evaluate the accuracy. a) Homogeneous at 20 %.
b) Homogeneous at 40 %. c) Gradient: a smooth linear gradi-
ent from 10 % in one bottom corner to 40 % in the diametrically
opposite corner. d) Contrast plane: half of the cube is 10 % infill
density and the other half is 40 %. The plane which separates
these two halves makes an angle of 22.5◦ with the X axis in the
horizontal plane and has an overhang angle of 45◦. e) Sphere
shell: a sphere with a radius of half the cube side length and a
shell thickness of 1/7 the size of the side lengths of the cube. The
density of the shell is 40 % and the density inside and outside is
10 %. All these are specifications consisting of 512 images of
512 px × 512 px. The accuracy results are shown in Fig. 20.

7.1.3. Computation time
In order to evaluate the running time of our algorithms, we

consider four of the application models discussed in Section 7.3.
We consider the test models and corresponding settings dis-
played in Table 1. The computation times are shown in Table 2.
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Table 1: Example model settings.

white black top spec size (px) phys. size (mm)
Sole 5 % 40 % 0 % 1456 × 564 × 1 155 × 58 × 14
Bunny 10 % 80 % 20 % 45 × 35 × 2785 129 × 100 × 126
Phantom 0 % 100 % 20 % 417 × 412 × 146 123 × 121 × 87
Saddle 40 % 10 % 0 % 60 × 44 × 47 250 × 188 × 63

Table 2: Computation time in seconds.

Sole Bunny Phantom Saddle
Lower bound 6.2 11.2 4.3 150.9
Dithering 0.5 2.3 0.4 10.5
Extract polygon 0.4 15.7 3.4 12.8
Limit polygon 0.3 11.3 3.8 12.0
Reconnecting 4.6 98.9 65.4 135
Total gcode 14 182 105 346

7.1.4. Elastic behavior
Because the generated structures are similar to foams, which

are often used in a compressive context, it would be interesting to
find out their compressive behavior. Because the non-linear ma-
terial properties at high strain values when compressing a foam
are difficult to capture when using a finite elements method, we
have performed actual physical tests instead.

We have printed samples with homogeneous subdivision level,
and we have printed samples using dithering to approximate sev-
eral homogeneous density specifications with simplified densi-
ties between 10 % and 30 %. Compressions were performed in
both the vertical and the horizontal direction. Because our struc-
tures are rotationally symmetric around the Z axis we only need
to test 2 of the 3 dimensions. In total 78 prints were made in
42 test configurations (some configurations were tested multiple
times): 2 testing directions, 4 homogeneous subdivision levels
(10.1 %, 14.0 %, 20.1 %, 28.5 %) and 17 heterogeneous subdivi-
sion levels in the same range.

We have performed compression tests on the Instron 3366, fit-
ted with compression plates. See Fig. 21a. Compressions were
performed at a speed of 0.5 mm/s up to a maximum force of 2 kN
after which the sample was decompressed.

The stress-strain results are plotted in Fig. 22. One interest-
ing observation from the data is that the stress-strain graphs are
roughly horizontal for a long range of strain values. This is
caused by the structure collapsing and folding in on itself. Such
plateaus are typical of foams [38, 39], and they are important
design variables for common applications of foams [40]. Fig-
ure 21b shows how such collapse can be localized to only a par-

(a) The compression testing setup. (b) Partial collapse.

Fig. 21. Compression testing. Under stress some cells in the structure start to
collapse. Cells tend to collapse in groups on the same heights.
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Fig. 22. Stress - strain - density graphs of the results of our compression ex-
periments. The structure is more compliant in the vertical direction than in the
horizontal direction. From these results we can conclude that dithering can pro-
vide a spectrum of material properties; higher densities start collapsing at higher
strain values and their collapse trajectory is shorter.

ticular Z range in the case of vertical compression.
The constant stress along that range is a fundamental charac-

teristic of such a plateau. We estimate it by taking the average
stress along the part of the stress-strain graph which has a local
tangent modulus below 0.4 MPa. The resulting values have been
plotted alongside the Young’s modulus values in Fig. 23b.

7.2. Discussion

Accuracy. At a kernel size of 16w (6.08 mm) the average abso-
lute local error is low for smooth input density distributions. Be-
cause of the constraint that neighboring linked cells can only dif-
fer by a single subdivision level the two distributions with sharp
contrast edges or high frequency detail score considerably worse.
See Fig. 20, ‘contrast plane’ and ‘sphere shell’. The relative er-
ror decreases as the resolution increases. Therefore, depending
on the application the user might decide that at a specific resolu-
tion the accuracy is good enough.
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(a) Dithering
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Fig. 23. Plotting Young’s modulus and plateau stress for different densities. Lines
represent linear regression results over dithered data and average values of not
dithered data. Dithering provides material properties in between the discrete den-
sities. However, they are not monotonically increasing with the density, which
makes mapping required material properties to corresponding infill densities non-
trivial.

Computation time
Our algorithms take up over 80 % of the total gcode generation
time; there is room for improvement. It should be noted that we
not optimized the code for loading the density specification data
into the subdivision tree or the code for connecting polygons,
which currently consume the majority of the processing times.
Polygon extraction and polygon limiting times depend highly on
the number of layers, which is relatively small for the shoe sole
example.

Elastic behavior. It should be noted that the first local maximum
in the stress-strain graphs of Fig. 22 are not the yield points. Most
of the deformation applied to the structure is elastic deformation.
We observed the material to creep back to its original shape at
ever decreasing rates. After 24 hours a strain of merely 0.8 % re-
mained after an initial strain above 50 %, meaning that the plastic
deformation is negligible at stresses with magnitudes as high as
in our tests (2 kN).

For larger densities the strain at which the structure is fully col-
lapsed is lower. When we compress a sample with 40 % density
by 60 % then the stress-strain graph should exhibit a local tan-
gent equal to the base properties of the material used. In our test
results we see that the tangent tends toward the Young’s modulus
of TPU: 26 MPa [41]. This agrees with literature on the densifi-
cation of foams [38].

In most aspects the structures are more compliant in the ver-
tical direction than in the horizontal. The plateau heights in
Fig. 22a are lower than the corresponding ones in (b) and the
strain regions of the plateaus are wider as well. Of course some
aspect of this anisotropy is caused by the layerwise buildup of
FDM, but a larger part of the difference is most likely caused
by the geometric structure. The structure can collapse in the Z
direction easily because of the alternating E- and C-embeddings.

The vertical Young’s modulus Ez is lower than the horizontal
Young’s modulus Exy for most densities. For densities around
10 % and 20 %, that relationship is reversed, though. That can

be explained by the fact that around those densities the subdi-
vision structure contains mostly Q-prism cells which are filled
with CrossFill surface patches with a more vertical slope than
those for H-prisms. More vertical elements increase the stiffness
in the vertical direction.

The prisms only subdivide vertically every two iterations: only
the Q-prisms do. The H-prisms of 20.1 % are subdivided hor-
izontally compared to 14.0 %, while the prisms of 14.0 % and
28.5 % are also subdivided vertically compared to 10.1 % and
20.1 % respectively. This irregularity can explain the nonmono-
tonicity we see in the Young’s modulus with respect to infill den-
sities in Fig. 23b: horizontal subdivision decreases the slope of
the surface patches in the structure, which decreases the thick-
ness of these patches, which in turn decreases the overall stiff-
ness.

Because the deeper subdivision level cells determine the ruled
surface in horizontal continuity enforcement, surface patches of
a dithered subdivision structure are predominantly determined by
the higher density cells. We therefore expect to see large changes
after 10 % and after 20 %. We can see large jumps in the vertical
Young’s modulus at those places in Fig. 23b. Also the plateau
heights for horizontal compressions show large jumps.

When comparing the dithered results in Fig. 23 to the ones
without dithering we can conclude that dithering indeed provides
more granular control of the overall material properties of the
manufactured part. However, because of the nonmonotonicity in
these results it is not trivial to define a process for the designer to
choose which infill density is needed at a location in a design.

7.3. Applications
The structures generated by our method support variable com-

pliance, which can control the deformation of an object under
certain loads. We have designed a density specification for the
Stanford bunny model using Autodesk Monolith [42], as shown
in Fig. 24d.

Because the CrossFill structures behave much like foams, it
could be attractive for ”cushioning, packaging and energy ab-
sorption” [38]. Foams with variable stiffness could be used for a
personalized bike saddle (see Fig. 24a) or for personalized shoe
soles (see Fig. 24c).

A boundary mesh of a teddy bear along with a density dis-
tribution show how different densities lead to different bending
behavior (see Fig. 24b). The difference in density distribution in
the two arms causes the arms to deform in a different way under
the same load.

Because our method is principally density-based, it could also
be useful in situations where the relevant material properties are
volumetric; CrossFill could prove useful for imaging phantoms
- objects which can be used in the medical field to evaluate
magnetic resonance imaging (MRI) scan procedures. We have
printed an example of what could serve as a phantom in Fig. 24e.

8. Conclusion and future work

In this paper, we have introduced a new infill structure, Cross-
Fill, which can provide spatially graded density to match a user-
specified density distribution. CrossFill is carefully designed so
that it is self-supporting and can be fabricated from a single, con-
tinuous and overlap-free toolpath on each layer. Algorithms for
generating the lower bound subdivision levels and dithering the
subdivision levels have been developed to accurately match the
prescribed density distribution. To use CrossFill as infill struc-
tures of a given 3D model, we have presented an algorithm to

12



(a)

(b)

(c)

(d)

(e)

Fig. 24. Various examples of applications of CrossFill. (a) A bicycle saddle with a density specification. A weight of 33 N is added on various locations to show the
different response of different density infill. (b) A teddy bear with a density specification. (c) A shoe sole with densities based on a pressure map of a foot. (d) The
Stanford bunny painted with a density specification. (e) A medical phantom with an example density distribution for calibrating an MRI scanning procedure.

connect the toolpaths of CrossFill and the toolpaths for the given
models shell into a single continuous extrusion path. The perfor-
mance of CrossFill has been verified on a variety of experimental
tests and applications.

The study of experimental tests shows that CrossFill acts very
much like a foam although future work needs to be conducted to
further explore the mapping between density and other material
properties. Another line of research is to further enhance the
dithering technique, e.g. changing the weighing scheme of error
diffusion.
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