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Abstract 
The increase of solar photovoltaic penetration poses several challenges for distribution network operation, mainly because such high penetration 
might cause reliability problems like protection malfunctioning, accelerated decay of voltage regulators and voltage violations. Existing solutions 
based on mathematical programming solve a 3-phase ACOPF to optimally exploit the available energy, however, this might increase all reliability 
problems above if done carelessly. As a solution to optimally exploit DERs (like local photovoltaic and storage systems) without compromising the 
network reliability, this paper presents a novel algorithm to solve the 3-phase ACOPF as a sequence of convex Quadratically Constrained Quadratic 
Programs. Results show that this solution has a lower voltage unbalance and computation time than its non-linear counterpart, furthermore, it 
converges to a primal feasible point for the non-linear formulation without major sacrifices on optimal DER active power injections. 
 
Keywords: optimal power flow; power distribution networks; DER scheduling; quadratic constrained quadratic programming; renewable 
energy; storage systems. 

 
 

Una aproximación convexa para la programación óptima de DERs 
en sistemas de distribución desbalanceados 

 
Resumen 
El incremento de la penetración de energía solar fotovoltaica presenta varios retos para la operación de redes de distribución, principalmente 
porque tales penetraciones pueden causar problemas en la confiabilidad tales como mal funcionamiento de protecciones, desgaste acelerado 
de reguladores de tensión y violaciones de tensión. Soluciones existentes basadas en programación matemática resuelven ACOPF trifásicos 
para explotar de manera óptima la energía disponible, sin embargo, esto puede incrementar los problemas de confiabilidad si no es realizado 
cuidadosamente. Como una solución para explotar de manera óptima DERs (como sistemas locales de energía fotovoltaica y 
almacenamiento) sin comprometer la confiabilidad de la red, se presenta un novedoso algoritmo que resuelve el ACOPF trifásico como 
una secuencia de problemas de Programación Cuadrática Cuadráticamente Restringido convexos. Los resultados muestran que esta 
solución presenta menor desbalance de tensión y tiempo de computo que su contraparte no-lineal, es más, converge a un punto factible 
para el problema primal de la formulación no-lineal sin mayores sacrificios en las inyecciones óptimas de potencia activa de los DERs. 
 
Palabras clave: flujo óptimo de potencia; sistemas de distribución; programación de DERs; programación cuadrática cuadráticamente 
restringida; energías renovables; sistemas de almacenamiento. 

 
 
 

1  Introduction 
 
Solar photovoltaic (PV) penetration still keeps increasing 

thanks to the low technology costs and the favorable 
                                                      
1How to cite: Serna-Suárez, I.D., Carrillo-Caicedo, G., Morales-España, G.A., de Weerdt, M. and Ordóñez-Plata., G., A convex approximation for optimal DER scheduling on 
unbal-anced power distribution networks.. DYNA, 86(208), pp. 281-291, January - March, 2019 

renewable energy policies. For example, in 2016 Solar 
Photovoltaic (PV) installed capacity grew by 50%, with half 
of such expansion in China [1]. PV generation accounts for 
up to 90% in the United States of America and for distributed 
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energy sources with 2 MW or less of installed capacity 
[2]. According to the International Energy Agency [3], China 
and USA lead the annual installed capacity of solar 
generation with 34 and 14 GW. Besides, countries such as 
Japan, India, the United Kingdom, Germany, 
Korea, Australia, Philippines and Chile are over the 
mark of 700 MW of annual installed capacity [3]. 

For any amount of solar energy available, optimal 
exploitation of Distributed Energy Resources (DERs) in 
power distribution networks must always satisfy two 
conditions: a) physical laws that rule all electrical circuits; 
and b) power and service quality requirements. Namely, 
power quality and service problems might arise if high 
penetrations are not handled properly [4]. On the other hand, 
because distribution networks are operated with a radial 
topology, reversed flows might cause protection and 
regulation devices malfunctioning [5-7]. Additionally, 
distribution networks have the following characteristics: 1) 
The 3-phase set of voltage and currents are unbalanced, 2) 
The R/X ratio is high, 3) The load models depend on the 
connection and steady state voltage variations. A 3-phase 
Alternating Current Optimal Power Flow (3φ-ACOPF) can 
handle these characteristics and properly exploit DERs in a 
power distribution network. Objective functions for this 
optimization problem depend heavily on the network agent 
to be analyzed, but often are focused more on the distribution 
system operator, e.g., load curtailment minimization to safely 
operate the network and optimal reactive dispatch for losses 
minimization [8,9]. Also, it is common to see PV curtailment 
minimization [2,10] as an objective. Solution methods are 
mainly based on Interior Point Methods, however, as 
presented below, problem formulations vary widely. 

1.1.  Literature review 

In general, the transmission Alternating Current Optimal 
Power Flow (ACOPF) is not appropriate to find the optimal 
DER schedules in a distribution network. However, some key 
ideas can be borrowed from advances in ACOPF. For 
example, in [11] a single phase ACOPF is solved as a 
sequence of Linear Programs which can be extended to solve 
the Unit Commitment problem [12]. A closer look reveals 
that this cartesian formulation allows the inclusion of 
constant current and constant impedance load models as 
linear constraints. This might lead to some computation 
performance and convergence improvements [13]. 

Interior Point (IP) algorithms can solve non-linear 
formulations of the 3φ-ACOPF efficiently, being the Current 
Injection Method (CIM) in cartesian coordinates the most 
common solution formulation. This is because, although 
polar and cartesian formulations lead to similar results and 
time performances [2,14,15], the cartesian formulations are 
the preferred way to solve large and complex 3φ-ACOPF 
because of their robustness [2]. 

However, recent advances on convex optimization have 
shown its importance to unbalanced power network analysis. 
Robbins et al. [16] present a Quadratic Programming 
formulation for the 3φ-ACOPF that also gives a lower bound 
for the problem. There, the authors claim that branch-flow 
Second Order Cone Programming (SOCP) approaches [17] 

are unable to cope with system unbalance. Moreover, 
Christakou et al. [18] show that branch-flow formulations 
also may introduce errors in branch currents for congested 
networks.  

Ahmadi et al [19] present another alternative to SOCP 
formulations. They study how the linear approximation over 
a bounded region can be useful for the solution of three-phase 
power flow equations. Watson et al. [20] propose a non-
iterative convex formulation to solve a 3φ-ACOPF, to 
analyze the effects of the neutral conductor and system 
storage in a distribution network. Additionally, Zamzam et 
al. [21] present a non-convex Quadratically Constraint 
Quadratic Programming formulation that also helps to find 
problematic constraints thanks to their Feasible Point Pursuit 
Successive Convex Approximation algorithm. In general, 
recent advances have presented Quadratic Programming as a 
promising alternative [22,23]. 

Convex alternatives to SOCP formulations are usually 
based on Semidefinite Programming (SDP). However, their 
use has been very limited, mainly because of two reasons: (1) 
SDP optimum computation is a resource intensive task; (2) 
SDP optimum depend heavily on the network itself. The time 
performance problem is solved by Li et al. [24] by using an 
SDP equivalent of the SOCP branch-flow formulation for the 
unbalanced problem. Another approach to solve the SDP 
limitations is based on finding a network partition that 
exploits chordal sparsity of the SDP formulation [25,26]. In 
particular, the network dependency is addressed in [25] by 
solving the 3φ-ACOPF as a sequence of SDP problems. From 
the former review, one can see that linear and convex 
approximations are important because they allow the 
inclusion of integer variables to 3φ-ACOPF [27] and it can 
be used to derive distribution network locational marginal 
prices [28]. 

1.2.  Contributions 

This paper presents an optimal DER scheduling algorithm 
for unbalanced distribution networks considering a full 3φ-
ACOPF formulation which is solved as a sequence of convex 
Quadratically Constrained Quadratic Programs. This 
formulation is a novel solution that accounts explicitly for all 
relevant aspects of a power distribution network, including 
ZIP and delta loads. Moreover, the algorithm is able to find a 
primal feasible point for the non-linear formulation, making 
unnecessary approximations for the constant power 
component of a ZIP load model. Also, the presented 
algorithm is computationally more efficient than the IP 
method used as reference and it results in solutions with 
lower voltage unbalance. 

1.3.  Outline 

This paper is organized as follows: Section 2 and 3 
present the mathematical nomenclature and the distribution 
network models used. Section 4 describes the model 
approximations, while section 5 describes the optimization 
problem. Section 6 describes the 12 simulated cases. Section 
7 presents the results and section 8 closes with some 
concluding remarks. 
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2.  Nomenclature 
 
The three-phase Alternating Current Optimal Power 

Flow (3φ-ACOPF) model presented below uses the 
following basic nomenclature: For an electric distribution 
network, let 𝒩𝒩 = {1,2,3, …𝑁𝑁} be the set of nodes and ℛ =
{1,2,3, …𝑅𝑅} be the set of branches -each branch 𝑟𝑟 ∈ ℛ is 
defined by a pair of nodes 𝑛𝑛,𝑚𝑚 ∈ 𝒩𝒩. Now, let 𝒢𝒢, 𝒟𝒟, and 
Φ be the set of elements that inject power into the 
network, the set of loads and the set of phases, 
respectively. A subindex in any set indicates that a 
specific partition is being made, e.g., for a node 𝑛𝑛 ∈ 𝒩𝒩 
and a generator 𝑔𝑔 ∈ 𝒢𝒢, 𝒢𝒢𝓃𝓃 is the set of generators 
connected to node 𝑛𝑛, 𝒩𝒩ℊ is the set of nodes to which a 
generator 𝑔𝑔 is connected, and Φ𝑔𝑔 is the set of phases that 
generator 𝑔𝑔 has. Voltages are represented with the letter 
𝑉𝑉, currents with 𝐼𝐼, apparent power with 𝑆𝑆 (active power 
with 𝑃𝑃 and reactive power with 𝑄𝑄), impedance with 𝑍𝑍 and 
admittance with Y. A superscript ϕ is used to denote that 
the electrical variable is measured at phase ϕ. All 
electrical variables and parameters are presented as 
complex values when required, so for a complex number 
𝐶𝐶, its complex conjugate is denoted by 𝐶𝐶∗; Re{𝐶𝐶} = 𝐶𝐶r and 
Im{𝐶𝐶} = 𝐶𝐶 i are their real and imaginary parts, 
respectively; and |𝐶𝐶| and ∠δ𝐶𝐶 denote its magnitude and 
angle δ𝐶𝐶. To keep notation simple, all variables and 
constants are intended to be column vectors of complex 
numbers. Each component of the vector is the value of the 
variable in the corresponding time period, e.g. 𝐶𝐶 =
[𝐶𝐶1,𝐶𝐶2 …𝐶𝐶τ]𝑇𝑇, for a time window 𝒯𝒯 = {1,2, … τ} and where 
𝐶𝐶𝑡𝑡 is the value variable 𝐶𝐶 ∈ ℂτ has at time 𝑡𝑡, and τ is the 
total number of time periods. With this in mind, all 
operations and equations are supposed to be time-
component wise, e.g., for two complex vectors 𝐴𝐴 and 𝐵𝐵, 
and τ = 2, 𝐴𝐴/𝐵𝐵 = 𝐶𝐶, mean 𝐴𝐴1/𝐵𝐵1 = 𝐶𝐶1 and 𝐴𝐴2/𝐵𝐵2 = 𝐶𝐶2. 

 
3.  Models  

 
Model equations are classified into three groups: 

Generation, demand and network. The equations are handled 
to the solver in cartesian form, similarly to the non-linear 
formulation in [11]; and without using discrete variables for 
the storage model, as in [29]. Equations below are used to 
declare the optimization problems in section 5. 

 
3.1.  Generation  

 
There are two basic kinds of power generation in Active 

Distribution Networks (ADNs): from the bulk transmission 
system and from Distributed Energy Resources (DERs). 
Transmission system power injections are done at the 
network header node, while DER power injections can be 
done at any node 𝑛𝑛 ∈ 𝒩𝒩 of the network. Then, the injected 
apparent power from the transmission system at phase ϕ is 
defined as: 

 
𝑆𝑆𝑔𝑔
ϕ = 𝑉𝑉ℎ

ϕ�𝐼𝐼𝑔𝑔
ϕ�

∗
   𝑔𝑔 ∈ 𝒢𝒢ℎ,  ∀ϕ ∈ Φ𝑔𝑔      (1) 

 
Where ℎ is used to denote that the power from the 

transmission system is injected at the network header node,  

 
Figure 1. Power injection by a PV system g at phase φ of node n. If solar 
energy is curtailed, P < Pav, otherwise, P = Pav. 
Source: The authors. 

 
 

therefore, 𝑉𝑉ℎ
ϕ is the voltage at phase ϕ of the network header 

node. Apparent power at system header is modeled just with 
eq. (1), in contrast, more details must be given to model DER 
power injections. 

 
 

3.1.1.  Photovoltaic system  
 
Photovoltaic system active power injections are defined 

as the difference between the total available power and the 
curtailed power (see Fig. 1): 

 
𝑃𝑃𝑔𝑔
𝜙𝜙 = 𝑃𝑃𝑔𝑔

av,𝜙𝜙 − 𝑝𝑝𝑔𝑔
𝜙𝜙    ∀𝑔𝑔 ∈ 𝒢𝒢𝑝𝑝𝑝𝑝,  ∀𝜙𝜙 ∈ Φ𝑔𝑔          (2) 

 
Where 𝑃𝑃𝑔𝑔

av. is the total available irradiance, 𝑝𝑝𝑔𝑔 is the total power 
being curtailed and 𝑃𝑃𝑔𝑔

𝜑𝜑 ,  𝑝𝑝𝑔𝑔
𝜑𝜑 ≥ 0. Power curtailment is mainly used 

to avoid voltage limit violation. If there is no PV reactive power 
compensation, 𝑄𝑄𝑔𝑔

𝜑𝜑 = 0. Otherwise, reactive power is limited by: 
 

�𝑄𝑄𝑔𝑔
𝜙𝜙� ≤ 𝑃𝑃𝑔𝑔

𝜙𝜙 tanΘ𝑔𝑔max.    ∀𝑔𝑔 ∈ 𝒢𝒢𝑝𝑝𝑝𝑝,  ∀𝜙𝜙 ∈ Φ𝑔𝑔           (3) 
 
So, it always injects apparent power with at least a power 

factor equal to 𝑐𝑐𝑐𝑐𝑐𝑐𝛩𝛩𝑔𝑔
max. 

 
3.1.2.  Storage system  

 
In contrast to all other system elements, Electric Storage 

(ES) has two exclusive disjunctive states (charging and 
discharging), i.e., an ES can be charging or discharging, but 
not both. Therefore, its behavior can be modeled with 
auxiliary time-dependent Boolean (integer) variables. This 
drastically increase the problem complexity if it is done 
carelessly. Hence, since an efficient mixed-integer 
formulation of the storage system is beyond the scope of this 
paper, integer variables are avoided in the present 
formulation by choosing a proper objective function (see 
section 5.1.2) and by using the equations below (See Fig. 2). 

Figure 2. Electrical storage model. 
Source: The authors. 
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Storage system active power injections are defined as:  
 

𝑃𝑃𝑔𝑔
ϕ = 𝑃𝑃�𝑔𝑔

ϕ/ε𝑖𝑖𝑖𝑖 − 𝑃𝑃�𝑔𝑔
ϕ × ε𝑜𝑜𝑜𝑜    ∀𝑔𝑔 ∈ 𝒢𝒢𝐸𝐸𝐸𝐸,  ∀ϕ ∈ Φ𝑔𝑔        (4) 

 
Where 𝑃𝑃�𝑔𝑔 and 𝑃𝑃�𝑔𝑔 are the power being injected and withdrawn 

from the network; εin and εou are the efficiencies when injecting 
and withdrawing such power; and 𝑃𝑃�𝑔𝑔, 𝑃𝑃�𝑔𝑔 ≥ 0. Besides, since for 
this study storage systems are not allowed to inject or withdraw 
reactive power, 𝑄𝑄𝑔𝑔

ϕ = 0,  ∀𝑔𝑔 ∈ 𝒢𝒢𝐸𝐸𝐸𝐸,  ∀ϕ ∈ Φ𝑔𝑔. 
On the other hand, energy storage can connect two time 

periods. So, for any time period t, this property is defined by 
the following equation: 

 
𝑃𝑃𝑔𝑔,𝑡𝑡
ϕ = �𝑆𝑆𝑆𝑆𝐶𝐶𝑔𝑔,𝑡𝑡−1

ϕ − 𝑆𝑆𝑆𝑆𝐶𝐶𝑔𝑔,𝑡𝑡
ϕ � 𝐸𝐸𝑔𝑔/Δ𝑡𝑡 

∀𝑔𝑔 ∈ 𝒢𝒢𝐸𝐸𝐸𝐸,  ∀ϕ ∈ Φ𝑔𝑔,  ∀𝑡𝑡 ∈ 𝒯𝒯  (5) 

 
Where 𝑆𝑆𝑆𝑆𝑆𝑆 is the state of charge of the storage system, 

and 𝑆𝑆𝑆𝑆𝐶𝐶𝑔𝑔,1
𝜙𝜙 = 𝑆𝑆𝑆𝑆𝐶𝐶𝑔𝑔,𝜏𝜏

𝜙𝜙 = 𝑆𝑆𝑆𝑆𝐶𝐶𝑔𝑔min.; 𝐸𝐸𝑔𝑔 is the maximum storage 
energy, and Δt = 1 hour. Additionally, each storage system 
has the following constraints for all 𝑔𝑔 ∈ 𝒢𝒢𝐸𝐸𝐸𝐸 and for all 𝜙𝜙 ∈
Φ𝑔𝑔: 

𝑆𝑆𝑆𝑆𝐶𝐶𝑔𝑔
𝜑𝜑 ≤ 1    (6) 

 
𝑃𝑃�𝑔𝑔
𝜑𝜑/𝜀𝜀in ≤ 𝑃𝑃𝑔𝑔

max.    (7) 
 

𝑃𝑃�𝑔𝑔
𝜑𝜑 × 𝜀𝜀ou ≤ 𝑃𝑃𝑔𝑔

max.    (8) 
 

3.2.  Demand  
 
Power distribution network demand depends heavily on 

the type of connection and on the changes in power 
consumed due to changes in the steady state voltage applied. 
The two basic types of load connection are the wye and delta 
connection (see Fig. 3). The three basic types of load 
behavior considered here are the constant power, constant 
current and constant impedance behavior. 

So, in first place, for any wye connected load, and 𝒩𝒩𝑆𝑆𝑆𝑆 
being the set of all nodes with constant (apparent) power 
injections; 𝒩𝒩𝐼𝐼𝐼𝐼 being the set of all nodes with constant current 
injections; and 𝒩𝒩𝑍𝑍𝑍𝑍 being the set of all nodes with constant 
impedance current injections; the demanded current 
equations are: 

 

Figure 3. Wye (left) and delta (right) load connections. Branch voltage for 
the wye load is equal to the phase-to-neutral voltage, while for the delta load 
is equal to the phase-to-phase voltage. 
Source: The authors. 

𝑆̃𝑆𝑑𝑑
𝜙𝜙 = 𝑉𝑉𝑛𝑛

𝜙𝜙�𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆
𝜙𝜙 �

∗
      ∀𝑛𝑛 ∈ 𝒩𝒩𝑆𝑆𝑆𝑆 ,  ∀𝑑𝑑 ∈ 𝒟𝒟𝑌𝑌𝑌𝑌 ,  ∀𝜙𝜙 ∈ Φ𝑑𝑑   (9) 

 
𝐼𝐼𝑑𝑑
𝜙𝜙 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝜙𝜙                    ∀𝑛𝑛 ∈ 𝒩𝒩𝐼𝐼𝐼𝐼 ,  ∀𝑑𝑑 ∈ 𝒟𝒟𝑌𝑌𝑌𝑌 ,  ∀𝜙𝜙 ∈ Φ𝑑𝑑 (10) 
 
𝐼𝐼𝑍𝑍𝑍𝑍𝑍𝑍
𝜙𝜙 = 𝑌𝑌�𝑑𝑑

𝜙𝜙𝑉𝑉𝑛𝑛
𝜙𝜙           ∀𝑛𝑛 ∈ 𝒩𝒩𝑍𝑍𝑍𝑍 ,  ∀𝑑𝑑 ∈ 𝒟𝒟𝑌𝑌𝑌𝑌 ,  ∀𝜙𝜙 ∈ Φ𝑑𝑑 (11) 

 
Where 𝒟𝒟𝑌𝑌𝑌𝑌 is the set of wye loads connected to node 𝑛𝑛, 

and 𝑆̃𝑆𝑑𝑑
ϕ, 𝐼𝐼𝑑𝑑

ϕ and 𝑌𝑌�𝑑𝑑
ϕ are the known wye load parameters of 

phase ϕ that remain constant in spite of steady state voltage 
variations. From here, the total current injected at phase ϕ of 
node 𝑛𝑛 from a wye load 𝑑𝑑 is defined as: 

 
𝐼𝐼𝑌𝑌𝑌𝑌
𝜙𝜙 = 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆

𝜙𝜙 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝜙𝜙 + 𝐼𝐼𝑍𝑍𝑍𝑍𝑍𝑍

𝜙𝜙     𝑑𝑑 ∈ 𝒟𝒟𝑌𝑌𝑌𝑌 ,  𝜙𝜙 ∈ Φ𝑑𝑑      (12) 
 
Secondly, for any delta connected load, and 𝒩𝒩𝑆𝑆Δ being the 

set of all nodes with constant (apparent) power injections; 
𝒩𝒩𝐼𝐼Δ the set of all nodes with constant current injections; and 
𝒩𝒩𝑍𝑍Δ the set of all nodes with constant impedance current 
injections; thus, the demanded current equations are: 

 
𝑆̃𝑆𝑑𝑑Δ = 𝑉𝑉𝑛𝑛Δ�𝐼𝐼𝑆𝑆𝑆𝑆Δ �

∗     ∀Δ ∈ ℱ,  ∀𝑛𝑛 ∈ 𝒩𝒩𝑆𝑆Δ,  ∀𝑑𝑑 ∈ 𝒟𝒟Δ𝑛𝑛         (13) 
 

𝐼𝐼𝑑𝑑Δ = 𝐼𝐼𝐼𝐼𝐼𝐼Δ            ∀Δ ∈ ℱ,  ∀𝑛𝑛 ∈ 𝒩𝒩𝐼𝐼Δ,  ∀𝑑𝑑 ∈ 𝒟𝒟Δ𝑛𝑛             (14) 
 

𝐼𝐼𝑍𝑍𝑍𝑍Δ = 𝑌𝑌�𝑑𝑑Δ𝑉𝑉𝑛𝑛Δ         ∀Δ ∈ ℱ,  ∀𝑛𝑛 ∈ 𝒩𝒩𝑍𝑍Δ,  ∀𝑑𝑑 ∈ 𝒟𝒟Δ𝑛𝑛          (15) 
 
Where 𝒟𝒟Δ𝑛𝑛 is the set of delta loads connected to node n, 

Δ = {ϕ,𝛾𝛾} is a delta branch between phases 𝜙𝜙 and 𝛾𝛾, and 
ℱ = {(a, b), (b, c), (c, a)} (See Fig. 3); 𝑆̃𝑆𝑑𝑑Δ,  𝐼𝐼𝑑𝑑Δ and 𝑌𝑌�𝑑𝑑Δ are the 
known Δ branch load parameters that remain constant in spite 
of steady state voltage variations; and 𝑉𝑉𝑛𝑛Δ is the applied 
voltage to the Δ branch, i.e., 𝑉𝑉𝑛𝑛Δ = 𝑉𝑉𝑛𝑛

𝜙𝜙 − 𝑉𝑉𝑛𝑛
γ. Thus, the total 

current injected at phase 𝜑𝜑 of node 𝑛𝑛 from a delta load 𝑑𝑑 is 
defined as: 

 
𝐼𝐼Δ𝑑𝑑
𝜑𝜑 = ∑ 𝐼𝐼𝑆𝑆𝑆𝑆Δ𝛥𝛥 ∈ ℱ𝜑𝜑 + ∑ 𝐼𝐼𝐼𝐼𝐼𝐼Δ𝛥𝛥 ∈ ℱ𝜑𝜑 + ∑ 𝐼𝐼𝑍𝑍𝑍𝑍Δ𝛥𝛥 ∈ ℱ𝜑𝜑         

𝑑𝑑 ∈ 𝐷𝐷Δ𝑛𝑛, 𝜑𝜑 ∈ Φ𝑑𝑑   (16) 
 
Where, ℱ𝜑𝜑 is the set of delta branches connected to phase 

𝜑𝜑, e.g., for φ = a, ℱ𝜑𝜑 = {(a, b), (a, c)}. Adding up everything, 
the total current demanded by a load 𝑑𝑑 at phase 𝜙𝜙 of node 𝑛𝑛 
is: 

 
𝐼𝐼𝑑𝑑
ϕ = 𝐼𝐼𝑌𝑌𝑌𝑌

ϕ + 𝐼𝐼Δ𝑑𝑑
ϕ       𝑑𝑑 ∈ 𝒟𝒟𝑛𝑛,  ϕ ∈ Φ𝑑𝑑  (17) 

 
3.3.  Network  

 
Two network components are treated: Lines and nodes. 

In contrast with previous elements, line equations involve 
variables from two nodes. Let us apply KCL to the line model 
depicted in Fig. 4: 
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Figure 4. General current balance at node n. 
Source: The authors. 

 
 

𝐼𝐼(𝑛𝑛,𝑚𝑚) = 𝐼𝐼𝑟𝑟(𝑛𝑛) + 𝐼𝐼𝑟𝑟(𝑛𝑛,𝑚𝑚)   (18) 
 

𝐼𝐼(𝑛𝑛,𝑚𝑚) = 𝑗𝑗B𝑟𝑟(𝑛𝑛)𝑉𝑉𝑛𝑛 + 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)(𝑉𝑉𝑛𝑛 − 𝑉𝑉𝑚𝑚) (19) 
 

 𝐼𝐼(𝑛𝑛,𝑚𝑚) = �𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚) + 𝑗𝑗B𝑟𝑟(𝑛𝑛)�𝑉𝑉𝑛𝑛 − 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)𝑉𝑉𝑚𝑚   (20) 
 
Where 𝑗𝑗𝑏𝑏𝑟𝑟(𝑛𝑛) = 𝑦𝑦𝑟𝑟(𝑛𝑛) is the shunt susceptance of branch 

𝑟𝑟 at node 𝑛𝑛, 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚) is the serial admittance of branch 𝑟𝑟, 𝐼𝐼𝑟𝑟(𝑛𝑛) 
is the current flowing through 𝑦𝑦𝑟𝑟(𝑛𝑛), 𝐼𝐼𝑟𝑟(𝑛𝑛,𝑚𝑚) is the current 
flowing from node 𝑛𝑛 to node 𝑚𝑚 through 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚), 𝑉𝑉𝑛𝑛 is the 
voltage at node 𝑛𝑛 and 𝑉𝑉𝑚𝑚 is the voltage at node 𝑚𝑚 -Note that 
𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚) = 𝑦𝑦𝑟𝑟(𝑚𝑚,𝑛𝑛) and 𝑦𝑦𝑟𝑟(𝑛𝑛) = 𝑦𝑦𝑟𝑟(𝑚𝑚). From eq. (20) and 
defining 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)

from = 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚) + 𝑦𝑦𝑟𝑟(𝑛𝑛) and 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)
to = −𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚), 

the current injected from the network at node 𝑛𝑛 is defined by: 
 

𝐼𝐼(𝑛𝑛,𝑚𝑚) = 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)
from 𝑉𝑉𝑛𝑛 + 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)

to 𝑉𝑉𝑚𝑚    (21) 
 
Similar calculations can be done to deduce the three-

phase line model, being the main difference the fact that each 
line shunt and series admittances are matrices for lines with 
more than one phase, hence, there are as much equations per 
branch as phases are on the branch: 

 
𝐼𝐼(𝑛𝑛,𝑚𝑚)
ϕ = � �𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)

ϕ,φ,from𝑉𝑉𝑛𝑛
φ + 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)

ϕ,φ,to𝑉𝑉𝑚𝑚
φ�

φ∈Φ𝑛𝑛

, 

 ∀ϕ ∈ Φ𝑟𝑟 ,  ∀𝑟𝑟 ∈ ℛ  (22) 

 
Where, Φ𝑟𝑟  is the set of all the phases connected to branch 

𝑟𝑟; and 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)
ϕ,φ,from = 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)

ϕ,φ + 𝑦𝑦𝑟𝑟(𝑛𝑛)
ϕ,φ , with 𝑦𝑦𝑟𝑟(𝑛𝑛)

𝜙𝜙,𝜑𝜑 = 0 if 𝜙𝜙 ≠ 𝜑𝜑; 
and 𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)

ϕ,φ,to = −𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)
ϕ,φ . 

In order to include a voltage regulator in any branch 𝑟𝑟, eq. 
(22) must be modified in the following way (with tap on node 
𝑛𝑛): 

 
𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)
ϕ,φ,from = �αϕ�∗ �𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)

ϕ,φ + 𝑦𝑦𝑟𝑟(𝑛𝑛)
ϕ,φ �αφ (23) 

 
𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)
ϕ,φ,to = �αϕ�∗ �−𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)

ϕ,φ �   (24) 

Where 𝛼𝛼𝜙𝜙 is the (constant) tap on phase ϕ. Furthermore, 
since 𝐼𝐼(𝑛𝑛,𝑚𝑚)

𝜙𝜙 ≠ 𝐼𝐼(𝑚𝑚,𝑛𝑛)
𝜙𝜙 : 

 
𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)
𝜙𝜙,𝜑𝜑,to = �−𝑦𝑦𝑟𝑟(𝑛𝑛,𝑚𝑚)

𝜙𝜙,𝜑𝜑 �𝛼𝛼𝜑𝜑  (25) 
 
With the generation, demand and line current injections 

defined at node n, current balance must satisfy (see Fig. 2): 
 

𝐼𝐼𝑔𝑔 − 𝐼𝐼𝑑𝑑 + 𝐼𝐼𝑛𝑛 = 0    (26) 
 
Where 𝐼𝐼𝑛𝑛 = 𝐼𝐼𝑛𝑛′ + 𝐼𝐼(𝑛𝑛,𝑚𝑚)  and 𝐼𝐼𝑛𝑛′ = 𝑦𝑦𝑛𝑛𝑉𝑉𝑛𝑛. Therefore, eq. 

(26) can be generalized as: 
 

∑ 𝐼𝐼𝑔𝑔
ϕ

𝑔𝑔∈𝒢𝒢𝑛𝑛 − ∑ 𝐼𝐼𝑑𝑑
ϕ

𝑑𝑑∈𝒟𝒟𝑛𝑛 = 𝐼𝐼𝑛𝑛
ϕ, ∀ϕ ∈ Φ𝑛𝑛,  ∀𝑛𝑛 ∈ 𝒩𝒩  

 (27) 
 
Where, 𝐼𝐼𝑛𝑛

ϕ = 𝑦𝑦𝑛𝑛
ϕ𝑉𝑉𝑛𝑛

ϕ + ∑ 𝐼𝐼(𝑛𝑛,𝑚𝑚)
ϕ

𝑟𝑟∈ℛ𝓃𝓃 . Note that 𝐼𝐼𝑛𝑛
𝜙𝜙 = 0 at 

nodes with neither generation nor demand. 
Lower and upper voltage limits are implemented as follows: 
 

|𝑉𝑉𝑛𝑛min|2 ≤ �𝑉𝑉𝑛𝑛
ϕ�

2
≤ |𝑉𝑉𝑛𝑛max|2  ∀ϕ ∈ Φ𝑛𝑛 ,  ∀𝑛𝑛 ∈ 𝒩𝒩 (28) 

 
At the system header, voltage angles are fixed so they are 

fully balanced: 
 

Im{𝑉𝑉ℎa} = 0   (29) 
 

Re{𝑉𝑉ℎb} tan(−2π/3) = Im{𝑉𝑉ℎb}  (30) 
 

Re{𝑉𝑉ℎc} tan(−4π/3) = Im{𝑉𝑉ℎc}  (31) 
 

4.  Model approximations 
 
So far, the model presented has two sources of non-

convexities: (1) The active/reactive power relationship with 
node voltages and currents (see eq. (1), (9), (13)); and, (2) 
The lower limit for the voltage magnitude (see eq. (28)). 
These set of equations will be treated as described below. 

 
4.1.  Power equations  

 
If 𝑒𝑒 denotes a circuit element (e.g., a generator or a constant 

apparent power component of a demand) for an operation point 
defined by the tuple (𝑣𝑣𝑒𝑒0r, 𝑣𝑣𝑒𝑒0i, 𝑖𝑖𝑒𝑒0r, 𝑖𝑖𝑒𝑒0i,𝑃𝑃𝑒𝑒0,𝑄𝑄𝑒𝑒0), eq. (1), (9), (13) are 
linearized using the First-Order Taylor approximation: 

 
𝑃𝑃𝑒𝑒 = 𝑖𝑖𝑒𝑒0r𝑉𝑉𝑒𝑒r + 𝑖𝑖𝑒𝑒0i𝑉𝑉𝑒𝑒i + 𝑣𝑣𝑒𝑒0r𝐼𝐼𝑒𝑒r + 𝑣𝑣𝑒𝑒0i𝐼𝐼𝑒𝑒i − 𝑝𝑝𝑒𝑒0  (32) 

 
𝑄𝑄𝑒𝑒 = 𝑖𝑖𝑒𝑒0

r𝑉𝑉𝑒𝑒
i − 𝑖𝑖𝑒𝑒0

i𝑉𝑉𝑒𝑒
r + 𝑣𝑣𝑒𝑒0

i𝐼𝐼𝑒𝑒
r − 𝑣𝑣𝑒𝑒0

r𝐼𝐼𝑒𝑒
i − 𝑞𝑞𝑒𝑒0  (33) 

 
With 𝑒𝑒 ∈ {𝒢𝒢 ∪ 𝒟𝒟𝑆𝑆𝑆𝑆 ∪ 𝒟𝒟𝑆𝑆Δ}, 𝒟𝒟𝑆𝑆𝑆𝑆 and 𝒟𝒟𝑆𝑆Δ being the sets of 

wye and delta constant power loads, and 𝑝𝑝𝑒𝑒0 + 𝑞𝑞𝑒𝑒0 = 𝑣𝑣𝑒𝑒0(𝑖𝑖𝑒𝑒0)∗. 
For example, from Fig. 3, one can see that for a wye or delta 
load, 𝑉𝑉𝑒𝑒 could be 𝑉𝑉ϕ or 𝑉𝑉Δ, respectively. 
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Figure 5. Rotating tangent line for a voltage at node n which is in the fourth 
quadrant and with δn ≈  − 30 °. The light gray area is the new feasible region, 
while all the area between both circumferences is the old feasible region. 
Source: The authors. 

 
4.2.  Voltage lower limit  

 
Preliminary testing with the linearized power equations 

resulted in good estimations for the active power injections 
and very poor approximations for the reactive power 
injections. Moreover, voltage angles were very close to those 
obtained by the non-linear model. This finding motivated the 
following approximation: Instead of the non-convex lower 
limit on eq. (28), the lower limit is modeled as a semiplane 
defined by a tangent line, so the upper and lower limits at 
phase ϕ of node 𝑛𝑛 are: 

 
(𝑉𝑉max.)2 ≥ �𝑉𝑉𝑛𝑛

ϕ�
2
    (34) 

 
(𝑉𝑉min.)2 ≤ 𝑉𝑉min. cos�δ𝑉𝑉𝑛𝑛

ϕ � 𝑉𝑉𝑛𝑛
ϕr + 𝑉𝑉min. sin�δ𝑉𝑉𝑛𝑛

ϕ � 𝑉𝑉𝑛𝑛
ϕi  (35) 

 
Where 𝛿𝛿𝑉𝑉𝑛𝑛

𝜙𝜙  is the phase 𝜙𝜙 angle of the voltage at node 𝑛𝑛. 
In Fig. 5 there is an example of the new feasible region for a 
voltage that is on the fourth quadrant in the complex plane. 

All other equations remain unaltered from the non-linear 
case, since they are linear or convex functions that can be 
handled by a Quadratically Constrained Programming (QCP) 
solver. 

 
5.  Problem definition  

 
The Power Flow Equations (PFE) are defined by the 

following equations: 
 

PFE: eq. (9-17), (22), (27), (29-31) 
 
Thus, the power flow solution without DERs can be 

calculated by solving the PFE for a known voltage magnitude 
profile at system header and with 𝑆𝑆ℎ

ϕ = 𝑉𝑉ℎ
ϕ�𝐼𝐼ℎ

ϕ�
∗
,ϕ ∈ Φℎ. 

5.1.  Non-linear formulation  
 
Objectives of the Non-linear Programming (NLP) model are 

presented below, followed by the complete NLP formulation. 
 

5.1.1.  Active power losses  
 
Total losses for each period of time in a three-phase 

power distribution system can be calculated as: 
 

𝑃𝑃loss = ∑  ∑ Re �𝑉𝑉𝑛𝑛
ϕ �𝐼𝐼(𝑛𝑛,𝑚𝑚)

ϕ �
∗

+ 𝑉𝑉𝑚𝑚
ϕ �𝐼𝐼(𝑚𝑚,𝑛𝑛)

ϕ �
∗
�ϕ∈Φ𝑟𝑟𝑟𝑟∈ℛ   (36) 

 
Assuming 𝐼𝐼(𝑚𝑚,𝑛𝑛) ≈ −𝐼𝐼(𝑛𝑛,𝑚𝑚): 
 

𝑃𝑃loss = ∑  ∑ Re ��𝐼𝐼(𝑛𝑛,𝑚𝑚)
𝜙𝜙 �

∗
�𝑉𝑉𝑛𝑛

𝜙𝜙 − 𝑉𝑉𝑚𝑚
𝜙𝜙��𝜙𝜙∈Φ𝑟𝑟𝑟𝑟∈ℛ  (37) 

 
Then, if 𝐼𝐼𝑟𝑟(𝑛𝑛,𝑚𝑚) ≈ 𝐼𝐼(𝑛𝑛,𝑚𝑚), and since 𝑧𝑧𝑟𝑟(𝑛𝑛,𝑚𝑚)

ϕ,φ = 𝑧𝑧𝑟𝑟(𝑛𝑛,𝑚𝑚)
φ,ϕ  and 

with Re�𝑧𝑧𝑟𝑟(𝑛𝑛,𝑚𝑚)
ϕ,φ � = R𝑟𝑟(𝑛𝑛,𝑚𝑚)

ϕ,φ  for all connected phases, eq. (37) can 
be written as: 

 
𝑃𝑃loss = ∑  ∑ 𝑅𝑅𝑟𝑟(𝑛𝑛,𝑚𝑚)

ϕ,ϕ �𝐼𝐼(𝑛𝑛,𝑚𝑚)�
2

ϕ,φ∈Φ𝑟𝑟 +𝑟𝑟∈ℛ

∑ 𝑅𝑅𝑟𝑟(𝑛𝑛,𝑚𝑚)
ϕ,φ �Re �𝐼𝐼(𝑛𝑛,𝑚𝑚)

ϕ �𝐼𝐼(𝑛𝑛,𝑚𝑚)
φ �

∗
��ϕ,φ∈{ℱ∩Φ𝑟𝑟}   (38) 

 
Note that eq. (36) gives the exact value for losses, while 

eq. (38) give a good estimate for distribution network losses. 
Therefore, the total active power losses can be defined as: 

 
𝑓𝑓 loss = ∑ 𝑃𝑃𝑡𝑡loss

𝑡𝑡∈𝒯𝒯    (39) 
 

5.1.2.  Storage arbitrage benefits  
 
As reported in [29], by assuring that the round-trip 

efficiency of the storage system is less than one (i.e., 
ε𝑖𝑖𝑖𝑖ε𝑜𝑜𝑜𝑜 < 1), if power injections are meant to be maximized, 
and power withdrawals are meant to be minimized, one can 
model the storage device behavior without discrete variables 
if the following objective function is used: 

 
𝑓𝑓ES = ∑  ∑  ∑ π𝑡𝑡�𝑃𝑃�𝑔𝑔,𝑡𝑡

ϕ − 𝑃𝑃�𝑔𝑔,𝑡𝑡
ϕ �𝑡𝑡∈𝒯𝒯ϕ∈Φ𝑔𝑔𝑔𝑔∈𝒢𝒢𝐸𝐸𝐸𝐸  (40) 

 
Assuming that energy is bought at the system header for 

a given price at each time t given by π𝑡𝑡 ∈ ℝ+, so π ∈ ℝ+
τ . 

5.1.3 Problem formulation  
The non-linear problem including PV reactive power 

compensation can be stated as follows: 
 

𝑚𝑚𝑚𝑚𝑚𝑚�𝑓𝑓ES − 𝑓𝑓 loss�  s.t.  PFE, eq. (1-3), (4-8), (28) 
 

5.2.  Convex formulation  
 
In addition to objectives described in eq. (39), (40), and 

to improve the quality and speed of the linearized power 
solution, the following objective function is included: 
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𝑓𝑓tr = ρ� � � ���𝑃𝑃𝑔𝑔,𝑡𝑡
ϕ − 𝑃𝑃𝑔𝑔,𝑡𝑡

ϕ0�
2

+ �𝑄𝑄𝑔𝑔,𝑡𝑡
ϕ − 𝑄𝑄𝑔𝑔,𝑡𝑡

ϕ0�
2
�

𝑡𝑡∈𝒯𝒯ϕ∈Φ𝑔𝑔𝑔𝑔∈𝒢𝒢pv

 

+∑ ∑ ∑ �𝑃𝑃𝑔𝑔,𝑡𝑡
ϕ − 𝑃𝑃𝑔𝑔,𝑡𝑡

ϕ0�𝑡𝑡∈𝒯𝒯ϕ∈Φ𝑔𝑔𝑔𝑔∈𝒢𝒢ss �   (41) 
 
This trust-region objective assures that the next operation 

point does not fall too far from the current operation point 
depending on the value of ρ. This is useful near a NLP 
feasible operation point and, in most cases, it helps to find a 
better answer in terms of NLP primal feasibility. 

Sequential Quadratic Constrained Quadratic Programing 
(S-QCP) formulation consists of 4 steps: 

1) Initialize: All voltages initiate as a set of balanced 
phasors with a magnitude of 1 Vp.u.. Storage injections are set 
to 0, PV injections are equal to the given irradiance and for 
the trust-region objective function ρ = 0. Only initial values 
near the answer have significant impact on the method 
performance, otherwise, the problem final answer seems to 
be insensitive to initial values. 

2) Solve: The QCP problem including PV reactive power 
compensation can be stated as follows: 
𝑚𝑚𝑚𝑚𝑚𝑚�𝑓𝑓ES − 𝑓𝑓 loss − 𝑓𝑓tr�  s.t.  PFElin, eq. (3), (4-8), (34), (35) 

Where PFElin are the power flow equations with the non-
linear power injections replaced by their equivalent 
linearized power injections, i.e., with eq. (32)-(33) instead of 
eq. (1), (9), (13). In order to know when the trust-region 
objective must be included, the following index is calculated 
for all linearized power equations: 

 
𝑚𝑚𝑃𝑃,𝑒𝑒 = 𝑃𝑃𝑒𝑒⋆ − (𝑉𝑉𝑒𝑒r𝐼𝐼𝑒𝑒r + 𝑉𝑉𝑒𝑒i𝐼𝐼𝑒𝑒i )⋆ 

 
𝑚𝑚𝑄𝑄,𝑒𝑒 = 𝑄𝑄𝑒𝑒⋆ − (𝑉𝑉𝑒𝑒i𝐼𝐼𝑒𝑒r − 𝑉𝑉𝑒𝑒r𝐼𝐼𝑒𝑒i )⋆ 

 
Where 𝑃𝑃𝑒𝑒⋆ and 𝑄𝑄𝑒𝑒⋆ are the last optimal solution of the 

linearized model for element 𝑒𝑒. So, if max{ |𝑚𝑚𝑃𝑃|, �𝑚𝑚𝑄𝑄�} ≤ ϵ�, 
for a given tolerance ϵ�, ρ = 1; on the contrary ρ = 0. 

3) Stop: The algorithm will stop if max{ |𝑚𝑚𝑃𝑃|, �𝑚𝑚𝑄𝑄�} ≤ ϵ, 
given a tolerance level 𝜖𝜖. It worth noticing that if all 
mismatch indices are zero, then, the S-QCP solution is a 
primal feasible point for the NLP problem. Additionally, 
NLP model simulation time is also used as stopping criteria. 
Also, every time the algorithm finishes this step, it is said that 
an outer iteration has been completed. 

4) Update: If the tuple �𝑉𝑉𝑒𝑒r,𝑉𝑉𝑒𝑒i,𝑃𝑃𝑒𝑒 ,𝑄𝑄𝑒𝑒�
⋆
 is the last solution of 

the QCP, then the next operation point is computed as follows: 
 

(𝑣𝑣𝑒𝑒0
r,𝑣𝑣𝑒𝑒0

i, 𝑝𝑝𝑒𝑒0, 𝑞𝑞𝑒𝑒0)new ← (𝑉𝑉𝑒𝑒
r,𝑉𝑉𝑒𝑒

i,𝑃𝑃𝑒𝑒 ,𝑄𝑄𝑒𝑒)⋆ 

𝑖𝑖𝑒𝑒0r = (𝑝𝑝𝑒𝑒0𝑣𝑣𝑒𝑒0r + 𝑞𝑞𝑒𝑒0𝑣𝑣𝑒𝑒0i)/|𝑣𝑣𝑒𝑒0|2 
𝑖𝑖𝑒𝑒0i = (𝑝𝑝𝑒𝑒0𝑣𝑣𝑒𝑒0i − 𝑞𝑞𝑒𝑒0𝑣𝑣𝑒𝑒0r)/|𝑣𝑣𝑒𝑒0|2 

 
After this, the rotating tangent lines are updated with the 

last solution for δ𝑉𝑉𝑛𝑛, and the algorithm returns to step 2. 
 

6.  Test cases  
 
Models are tested for modified versions of the 13, 34 and 

123 node IEEE test feeders [30]. Additionally, two scenarios 
were simulated for each circuit: a minimum scenario and a 

maximum scenario, having the latter twice the load and DER 
levels than the former; and both having 60% of PV 
penetration, i.e., total available irradiance accounts for 60% 
of the total active power imports at the header. Also, cases 
with and without PV reactive power compensation were 
simulated for each circuit and scenario, resulting in a total of 
twelve cases. Simulations were done for a 24 hour time lapse 
with a Δt equal to one hour. Solver tolerance parameters were 
set at 1 × 10 − 6. The S-QCP tolerances where set to 
ϵ� = 1 × 10 − 2 and ϵ = 1 × 10 − 3. 

Test feeders differ from the reference parameters only on 
tap setting values. On the other hand, load and available PV 
power are known. Load profiles were constructed from three 
basic types, while the PV profile is taken from available 
measures. All calculations are done under a per unit system, 
with a power base of 100 kVA and proper voltage bases. 

All cases were implemented using GAMS 24.5.4, using 
IPOPT 3.12 solver (with MUMPS as linear solver) for the 
NLP model; and using CPLEX 12.6.2.0 solver for the S-QCP 
model. Simulations were done on a laptop computer with an 
Inter(R) Core(TM) i7-4700MQ processor (2.4GHz) with 
6GB of RAM.  

In addition to the decision variables and objective 
function optimal values, for each case is also computed the 
total active power consumption costs at the header 
(∑ π𝑡𝑡𝑃𝑃ℎ,𝑡𝑡𝑡𝑡∈𝒯𝒯 ), and the average positive sequence node 
voltage, and negative and zero sequence Voltage Unbalance 
Factor (VUF) for each node. 

Table 1 describes the nodes where PV and ES systems are 
connected (DER nodes). Also, there are described the 
maximum and minimum voltage magnitude values for each 
circuit, along with the regulator tap settings and the ES 
parameters. 

 
Table 1. 
Nodes with DER generation, voltage limits, regulator nodes and tap position, 
and storage system parameters for each simulated case.  

Circuit 
(nodes) 

DER nodes 
Voltage limits 

[ Vp.u. ] 

Regulators (from-to 
nodes) 

a b c 

13 
645, 684, 671, 632, 
633, 675  

0.97 to 1.07 
650-632 

0 0 0 

34 

810, 820, 826, 864, 
890, 848, 840, 838, 
856, 844, 830, 802, 
832  

0.90 to 1.05 

814-850 
14 7 7 

852-832 
12 10 11 

123 

30, 22, 50, 45, 36, 
68, 59, 113, 110, 
105, 100, 70, 78, 
89, 96, 16, 31, 73, 
92, 103 

0.95 to 1.05 

150-149 
0 0 0 

25-26 
0 - 1 

60-67 
8 1 5 

9-14 
1 - - 

Storage system parameters 
εin=0.9, εou=0.8, SOCmin =0.1, SOCmax =1  
Source: The authors. 
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Figure 6. DER active power injections of the 123 node test feeder for the 
maximum scenario for selected ES (up) and PV (down) systems. 
Source: The authors. 

 
 

7.  Results  
 
Table 2 shows the percentage differences between the 

NLP model and the S-QCP model for each of the twelve 
cases described in section 6. Note that the objective function 
from the S-QCP model differs by less than 0.25% with 
respect to its NLP counterpart in every tested case. Similarly, 
network losses and costs at the system header are very close 
between models. This is reaffirmed in Fig. 6, which depicts 
the active power injections for both models and all DERs of 
the IEEE 123 node test feeder. In general, both sets of active 
power injections are very alike. 

Additionally, the S-QCP model finds a solution in less 
time than the NLP model (up to 87% faster, as seen in Table 
2), and the maximum mismatch value is near 4.27 × 10 − 4. 
Therefore, the computed solution can be considered as primal 
feasible for the NLP for a precision lower than 5 × 10 − 4. It 
worth noticing that the mismatch is usually between 1 × 10 − 5 

and 1 × 10 − 13, and such maximum values are uncommon. 
In Figs. 7 and 8 are depicted the voltage magnitude for 

all the twelves cases, for all the nodes and time periods of  

the 123 IEEE test feeder. There it is shown that the voltage 
differences are due to the approximation itself. For a given 
power injection, the relationship between node voltage and 
injected current is hyperbolic, thus, voltage profile is very 
sensitive to current injection variations, and therefore, voltage 
profile has sharp changes in the NLP model. In contrast, for 
the S-QCP model, for a given power injection the relationship 
between node voltage and injected current is linear, and so, the 
voltage profile is flatter because it is less sensitive to current 
injections than the NLP model. The latter can be seen in Fig. 7 
and 8 as a more uniform distribution of color in the results of 
the S-QCP. As can be seen in Table 2, these flatter voltage 
profile in the S-QCP model causes higher differences on PV 
active power injections for the case without PV reactive 
compensation as well as higher differences in PV reactive 
compensation. In Fig. 9 are shown the voltage differences 
between the S-QCP model and the NLP model, for all the 
phases and PV penetration levels of the 123 node test feeder. 
There, a darker color indicates that the NLP model results in a 
lower voltage, while a lighter color indicates that the NLP 
model has a higher voltage. Therefore, the darker zone around 
the 19:00 hours for phases a and b and the maximum PV 
penetration, it is indicating that the NLP model decides to drop 
the node voltage as much as possible in order to withstand the 
active power injection. Additionally, the lighter zone before 
the 6:00 hours for the phase b of the minimum penetration 
scenario, it is indicating that the NLP model decides to increase 
the node voltage as much as possible in order to withstand the 
active power withdraw. 

Also note that voltage differences of Fig. 9 are lacking 
vertical lighter or darker areas. This means that voltage 
differences between nodes for the NLP and the S-QCP 
models are very similar. Voltage differences are then more 
sensitive to changes between time periods, because of the 
differences between the active/reactive power needed to 
maintain the optimal voltage magnitude. 

 
 

 
Table 2. 
Sequential QCP model percentage differences with respect to NLP model for each case. Time reference correspond to the NLP model. 

 Feeder - Q pv ≠ 0  
 13 nodes 34 nodes 123 nodes 
Case max. min. max. min. max. min. 
Objective -0.043 0.002 0.012 0.101 0.233 0.002 
Simulation time -22.89 -45.19 -72.12 -59.22 -5.052 -30.22 
Time Ref. [s] 4.656 4.625 87.58 112.7 62.45 38.31 
Network       
Total costs  -0.565 -0.613 -1.826 -1.742 -0.782 0.399 
𝑃𝑃loss -0.067 -0.246 -0.641 -0.579 -0.160 0.297 
Total Ph  -0.535 -0.496 -1.576 -1.455 -0.636 0.241 
Total Qh  3.014 15.34 8.416 68.30 3.571 8.841 
Vavg( + )  -0.191 -0.380 -0.306 -0.407 -0.100 0.510 
VUFavg.( - )  -9.048 -18.02 -11.27 -9.101 -10.25 -17.98 
VUFavg.( 0 )  -4.576 -12.78 -18.60 -15.95 -18.14 -14.73 
PV       
Total Ppv  -0.086 0.106 0.705 0.443 0.275 0.103 
Total Qpv  -1.155 -1.439 -5.423 -9.660 -1.897 -9.747 
Total Ppv (curt.)  0.215 -0.255 -2.494 -1.397 -0.295 -0.112 
SS       
𝑓𝑓ES -0.043 0.002 0.002 0.097 0.232 0.002 
Total PES (in)  0.310 0.000 0.008 0.085 -0.075 0.000 
Total PES (ou)  0.329 0.000 0.013 0.095 -0.077 0.003 
 

 Feeder - Q pv =0  
 13 nodes 34 nodes 123 nodes 
Case max. min. max. min. max. min. 
Objective -0.056 0.002 0.024 0.095 0.183 0.005 
Simulation time -2.862 -33.94 -65.22 -87.07 -22.87 -51.16 
Time Ref. [s] 3.250 3.656 150.6 260.8 94.56 61.09 
Network       
Total costs  -1.098 -0.413 -1.089 0.390 -0.121 0.516 
𝑃𝑃loss 0.093 -0.205 -1.237 -0.423 -0.171 0.367 
Total Ph  -0.877 -0.334 -0.771 0.127 -0.176 0.214 
Total Qh  1.464 7.530 0.075 6.763 1.312 0.331 
Vavg( + )  -0.096 -0.473 -0.407 -0.711 -0.690 0.510 
VUFavg.( - )  -1.371 -4.194 -13.20 -4.664 -10.82 -17.71 
VUFavg.( 0 )  1.705 -2.011 -17.88 -14.35 -19.14 -11.88 
PV       
Total Ppv  0.944 -0.477 0.134 -3.551 -1.307 0.174 
Total Qpv  - - - - - - 
Total Ppv (curt.)  -2.154 1.105 -0.438 11.60 1.410 -0.184 
SS       
𝑓𝑓ES -0.056 0.002 0.003 0.091 0.183 0.005 
Total PES (in)  0.404 0.000 0.010 0.085 -0.068 0.004 
Total PES (ou)  0.429 0.000 0.015 0.090 -0.071 0.005 
 

Source: The authors. 
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Figure 7. 123 node test feeder voltage magnitudes for the max. scenario, 
with PV reactive compensation (first two rows) and without PV reactive 
compensation (last two rows).  
Source: The authors. 

Figure 8. 123 node test feeder voltage magnitudes for the min. scenario, 
with PV reactive compensation (first two rows) and without PV reactive 
compensation (last two rows).  
Source: The authors. 

 
 

Figure 9. Voltage differences between S-QCP model and NLP model, for 
each phase (a -up, b -middle, c -down) and each scenario (minimum -left- 
and maximum -right- load and DER levels) of the 123 node test feeder with 
PV reactive compensation. 
Source: The authors. 

 
 
Despite of the differences listed above, resulting reactive 

power, voltage magnitude and voltage unbalance differences 
are not large enough to change the active power flows in the 
system. Tested cases suggest that those differences depend 

mainly on the system topology and the required operation 
parameters (e.g. PV curtailment and voltages limits). Also 
note that the S-QCP model has a lower average positive 
sequence voltage magnitude and unbalance factor (See Table 
2), thus resulting in lower losses and costs in most of the 
cases. Additionally, lower unbalance is mainly due to the 
reduced voltage feasible region of the S-QCP formulation, 
since after constraining voltage unbalance in the NLP 
formulation, the active power schedule is barely changed. 

 
8.  Conclusions  

 
A novel solution for the full 3φ-ACOPF based on a 

Sequential Quadratically Constraint Quadratic Programing 
formulation (S-QCP) was presented. Each QCP is convex and 
the algorithm is able to find a primal feasible point for the Non-
Linear Programming formulation. Besides, this formulation is 
computationally more efficient than the tested Interior Point 
algorithm, it leads to flatter voltage time profiles and to more 
balanced answers. Elements such as ZIP loads, voltage regulators 
and delta loads are easily included, making it ideal for active 
distribution networks analysis. Future works will be focused on 
the algorithm analysis [31, 32], on the inclusion of integer 
variables, and its application to decentralized and asynchronous 
dispatch of distributed energy resources. 
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