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ABSTRACT

Based on a polynomial expansion of the failure surface, a general failure criterion,
satisfying equilibrium in all directions. was developed for woed long ago (IUFRO
Boras 1982) and shown to apply for clear wood. For wood with {small} defects and
{tocall grain deviations, equivalent strengths can be defined in the main directions
and a comparable equivalent fallure criterion applies as was shown by K. Hemmer
(PhD chesis 1985). It was shown at the fast COST-508 meeting that the second
order terms of the polynomial failure criterion represent the critical distorsional
energy of initial vield {or lailure at initial vield when the test becomes unstable at
this point}. It will be shown that the third order terms represent speclal hardening
effects (due to micro-crack arrest by strong layers), occurring after initial yield,
determining ultimate failure in longitudinal direction in a stable test.

As Rnown, the singularity approach of fracture mechanics predicts for the critical
energy release rate: GC = GIC *+ GIIC for coilinear crack propagation in grain direc-
tion. As p.e. mentioned in the RILEM State of the Art report on fracture mechanics
of wood. this is against experimental evidence and in stead, the empirical Wu-
equation is used for layered composites. It was shown at the COST 508-meeting
at Bordeaux that this wrong prediction is due to this singularity method that, by
the critical stress intensities, does not satisfy in all cases the failure criterion and,
although this method is generally applied in fracture mechanics of materials, it
therefore has to be rejected. It further was shown that the Wu-criterion can be
derived from oriented (in grain direction) crack propagation of elliptic micro-craciks
and is a necessary condition for the (right form of the) energy principle.

It now will be shown that this Wu- {or Mohr~) criterion is also determining the
failure criterion of wood, showing the same oriented micro-cracking to be respon~
sible for failure in general.

Based on this criterion, the existing criteria can be explained as the Hankinson,
Norris, and Coulomb criterion. A derivation is given of an exact modified Hankinson
criterion and of the general form of the higher order constants and how they can
(safely} be determined from uni-axial tests in the main plane.

The exact criterion is as easy to apply as the invalid approximations, now used for
the Codes.



INTRODUCTION

Faifure criteria, like the Norris-, Hoffmann-, Tsai-Wu~ criteria etc., can be seen as
forms of a polynomial expansion of the real failure surface. This expansion of the
failure surface in stress space into a polynomial, consisting of a linear combination
of orthogonal polynomials, provides easily found constants (by the orthogonality
property) when the expanded function is known, and the row can be extended,
when necessary, without changing the already determined constants of the row.
When choosing in advance a limited number of terms of the polynomial, up to
some degree, the expansion procedure need not to be performed, because the result
is in principle identical to a least square fit of the data to a polynomial of that
chasen degree. This cheoise of the number of terms may depend on the wanted
precision of the expansion and the practical use.

Based on this principle of a polynomial expansion of the failure surface, the failure
criterion is general, satisfying equilibrium in all directions, and was for wood first
developed in [1] and the most important aspects can be found in that publication.
The in [1] given explanation of the existing criteria and the approximation of the
coupling terms as F12’ are verified, p.e. in Madison [2], where it was shown that
Cowins approximation [11] does not apply for wood.

A general approach for anisotropic, not erthotropic, behaviour of joints, (as punch-
ed out metal plates), and the simplification of the transformations by 2 angles as
variables, is given in [3].

A confirmation of the resuits of {1} by means of coherent measurements {in the
radial-longitudinal planel and the generalization to an equivalent, quasi homogeni-
ous. failure criterion for wood with small defects is given in [4], showing, as will
be discussed here, a determining influence of crack propagation on the equivalent
main strengths. There thus is no reason to maintain the used invalid approximations
and to not apply this consistent criterion, also for the Codes, for all cases of com-
bined stresses. Thus far only this criterion gives the possibility of a definition of
the off-axis strength of anisotropic materials.

A GENERAL FAILURE CRITERION FOR WQOD

A yield-criterion gives the combinations of stresses whereby flow occurs in an
elastic-plastic material like wood in compression. When partial flow {of some com~
ponent) becomes noticeble, while most of the material remains elastic, initial yield
occurs where below the material is regarded to be elastic. For more brittle tensile
failures in polymers. there also is an initiai yield boundary where above the gradual
flow of components at peak stresses and micro-cracking may have a simular effect
on stress redistribution as flow. It Is discussed in [10] that these flow and failure
boundaries may be regarded as equivalent elastic-plastic flow surfaces.

The flow~ or fatlure criterion is a closed surface in the stress space (a more dimen-
sional space with coordinates G, Gy Gy O, O, 66).

A cut, (p.e. according to figure | through the plane of the co-ordinate axes y = 9,
and x = 02), will show a closed curve and such a curve always can be described by
a polynomial in x and v like:

2 : .
ax + by + ox” + dy® + exy + x° + gys s hody ¢ ixy® e e = | (1)
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Figure - 1. General form of a failure-ellipsoid and definition 6f positive stresses.

whereby as much as terms can be accounted for, as is necessary for the wanted
precision of the description. The surface will be convex because of the normality
principle, {the requirement that "plastic” work done must be positive), and higher
order terms, causing local peaks on the surface (and thus causing infiection points)
are only possible by local hardening effects depending on the loading path and are
outside the flow~-criterion. These effects can be treated as given in [1] at:

"2.2. Hardenings rules” or by the approach of [10].

It can also be seen that the constants f and g are indeterminate and have to be
taken zero because, for y = 0, eq.(l) becomes: ax + ex? + xS = k, or in the real

"o0ts X, - X, T X,

roots x,, T Xy

X = XD (x o+ x ) (xo+x) =0 2
X=X e s x ) xo+ x)) = 0 (2}
Because there are only two points of intersection possible of a closed surface with
a line, there are only two roots by the intersecting x-axis p.e. x = X, and x = - x

and the part {x + xz), being never zero within or on the surface and thus is indeter-
minate, has to be omitted. For a real convex surface f is necessarily zero.

The same applies for g, or: g = O following from the roots of ¥y when x = 0.

The equation can systematically be written as stress—polynomial like:

Fioi + Fijcioj + Pijkgicjck + oo =1 (i), k=1,2 3, 4,85 6) (3)
In [11 it is shown that clear wood can be regarded to be orthotropic in the main
planes and the principal directions of the strengths are orthogonal (showing the
common tensor transformations) and higher order terms normally {outer hardening)
can be neglected so that eq.{3) becomes:

I-".lcji + Fijgioj =1 (i, j k=12 3 4, 5 6 {4)

In {101 it is shown that this equation represents the critical distorsional energy of
failure. For reasons of energetic receprocity Fij = Fji (1 #j) and by orthotropic sym-
metry in the main planes (through the main axes along the grain, tangential and
radial) there is no difference in positive and negative shear-strength and terms
with uneven powers in s, thus are zero or: Fié = an = Fb = (0; and there (s no inter-
action between normal- and shear-strengths or: Fj] =0 0% 10 }=4 5 6.

Thus eq.(4) becomes for a plane stress state in a main plane:

2 2 2 .
O+ o5+ + 2 oo+ 5 = 5
Fio, + Fyo, + F o] Fi39%s * Fpety * Fip0, =1 (5)

For a thermodynamic allowable criterion {positive finite strain energy) the values
F, must be positive and the failure surface has to be closed and cannot be open-
ended and thus the interaction terms are constrained to:

2
FMFZZ > Flz' (6)



For the uniaxial tensile strength g = Xlo, =0 = 0) eq.(5 becomes:

2 b
=i S . B 2
r151 o= or:  F X + F“X = {7)
and for the compression strength g, = - X' this is:

. 2 a3
le FMX = 1 {8)
and it follows from eq.(7) and (8} that I- en Fn are knowi:
o=l L = 1_ |
Fo=g-yx and F = % (9)
In the same way is for 01 = o, = 0 in the direction perpendicular:

=L _ L
F,=¢ -y and F, YY {10)
Further is foliows For 5, = 0, = 0 (pure shear), for the shear strength 8, that:

F, = 1/8° (11)
and is according to eq.(6): - 1/ XX'YY' < f f/q/XX'YY' (12)

It can be shown (as discussed in [1]) that the restricted values of 2F ., based on
assumed coupling according to the deviator stresses, as given b) NOIHS (131, Hill
- Hoffmann [14] as: 21—12 = - 1/2XY or: 2F = - (/X% + 1Y% - 1/2%) are not
general enough for orthotropic materials and don't apply for wood. There also is
fio coercive reason to restrict F _ according to p.e. Tsai and Hahn [15] as:
')I' - 1//XX YY", or according to Wu and Stachurski [16] as: 9F - 2/XX
Thesc values suggest that 2F 1 18 ~ 0.2 to 0.5 times the extreme value of eq.(i2).
The properties of a real physical surface have to be independent on the orientation
of the axes and therefore the tensor transformations apply for the stresses o of
eq.(5). These transformation are derivable from the equilibrium of the stresses on
an element formed by the rotated plane and the original planes, or simply, by the
circle of Mohr construction. For the uni-axial tensile stress then is:

2 ) .
o, = 6,COSs 9, g, = 0.sin 3, G, = otsnﬂ'}cos-ﬂ.

Substitution in eq.(5) gives:

2, 2. .24 - 2 D . 2 2 4o
3 + | 2 F < 9 + F -
Fiotcos & ontsm &+ FuOtCOS oo+ (“Fiz + Péé)otcos Psin”$ Fzzotsm =1 (13}

and substitution of the values of F:

24y
§ . otcos ) ot sin®9

G,c0s™ ‘}(R - ) + Sm S(Y - v{.) YT ZFizotzsinz&cosZ& T yy

.0 2
g, sin“%cos“H

e (14)
g2

It can be seen that for & = O this gives the tensile- and compressional strength in

p.e. the grain direction: g, = X en oy = - X', and for % = 000 the tensile and com-

pressional strength perpendicular to the grain: =Y and G = - Y’ and that a

definition is given of the tensile and complessmna} strength in every direction.
These are the points of intersection of the rotated axes with the failure surface.
Eq.(13) thus can be read in this strength component along the rotated x-axis: G, =6,
according to:

. .2
I:lo1 + Fnol =1 | {15)



The same can be done for the other strengths giving the definition of the transfor-
mations of F. and F;. The transformation of F,. is also a tensortransformation (of
the fourth rank) thus following from the rotation of the symmetry axes of the
material. Transformation thus is possible in two manners. The stress-components
can be transformed to the symmetry directions according to eq.(5). Or the symmetry
axes can be rotated, leaving the stresses along the rotating axes unchanged. For
this case the general polynomial expression eq.(16) applies:

. , .2 . . 8 . . . 2
+ + + + + + + =
1‘7101 cmz Fnol 2F120102 F2202 Flbcloé Fzéozob beob i (16)

These transformations of F' are p.e. given in [1].

Transverse strengths

In {11 it is shown that for rotations of the 3~axis, when this axis is chosen along
the grain, eq.{5) and (16} may precisely describe the peculiar behaviour of the com-
pression- tension- and (rolling) shear-strength perpendicular to the grain and the
off-axis strengths without the need of higher order terms.

When for compression the failure limit is taken to be the stress value after that
the same, sufficient high, amount of flow strain has occured, then the differences
between radial- tangential~ and off-axes strengths may disappear and one directio-
nal independent strength value remains (see fig. 2). For tension perpendicular to
the grain, only in a rather small region (around 900, see fig. 2) in the radial direc-
tion the strength is higher and because in practise, the applied direction is not
precisely in that direction, there is some freedom, in timber, to choose the weakest
plane for failure and the lower bound of the strength will apply being independent
of the direction. This means that:

F -F, =0 and F, -F,=0

and that also F12 s limitted according to:

SRR TR ETERIE PP Y

Further then also is:

F =0 and F, =F, =1/15 .

From measurement it can be derived that F12 is small leading to:

Fm,) F“ F22 or T.,( is bounded by:
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Figure 2 - Yield stresses and hardening



T = VXX /2 =YY /2

and the behaviour can be regarded to be quasi isotropic in the transverse direction.
The measurements further show for this rotation around the grain-axis that the
“shear strengths” in grain direction in the radial- and the tangential plane, F,, and

F ., are uncoupled or F = 0, as is to be expected from symmetry considerations.

5§ 45

Longitudinal strengths

When now the 3-axis is chosen in the tangential or in the radial direction the same
relations apply (with indices 1,2,6) as in the previous case., The equations for this
case then give the strengths along and perpendicular to the grain and the shear-
strength in the grain direction.

When the test remains stable above initial yield, a type of hardening may occur
and third order terms are needed, according to eq.(3), to describe the behaviour. In
[1] it was shown (by tests of [11] with a, and I, only), that the longitudinal shear
strength in the radial plane increases with compression perpendicular to this plane
according to the coupling term Fe (direction 2 is the radial direction; direction 1
is in the grain direction):

, 5 ) 06 {1 - OZ/Y)'(I + OZ/Y')
Fo, + F2202 + F, 0.+ 3132()60206 =1 o == [+ oo, /Y (17

with: ¢ = 31:250\{'52 ~ 0.9 (0,8 a 0.99).

It is seen from fig. 3, that ¢ <t is necessary to have a closed surface and thus

is determining for the upper bound of Fogor

When ¢ approaches ¢ & 1 (imeasurements of project A in fig. 3) eq.(17) becomes:
((;s_é)z* 'C;i . (17")

being the Mohr equation or the Wu-equation of fracture mechanics for mixed mode

[ - 11 failure (when expressed in stress intensity factors).
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Figure 3 - Combined shear-tension and shear-compression strengths.

This equation (17"} can fully be explained by collinear micro~crack propagation in
grain direction [9]. As derived in [9]. eq.(17') does not only apply for shear with
tension but also for shear with compression 5, perpendicular to the flat crack.

For a high stress 5, the crack is closed at o:'—: e and the crack tip notices only

P



the infuence of G, = O because for the higher part of s, the load is directly trans-
mitted through the closed crack and eq.(17") becomes:

or: g, =C+ uiozi (17}

where o, and ¢ are negative, giving the Coulomb-equation with an increased shear
capacity due to friction: wo,. This effect will be smail for wood. For micro-cracks
the cracik closure stress e will have about the value the tensile strength: d. ™ - Y.
For maximal compression (at maximal shear), G, M- 0.9Y", the shear strength wili
be maximal raised by a factor:{1 + H{0.9Y" - Y}/S). Inserting measurements of [4]
this factor is maximal: (Y2 + 0.3(0.9-5.6 - 3.7)/9.8)/¥2 = .03 with respect to the
failure without Coulomb friction. Because the possible parabolic fit by equation
(17") the co-efficient of friction {above 6, = o, ™~ Y)is probably smaller than 0.3,
It is thus seen that Coulomb friction is neglectable and does not increase the
shear-strength by compression perpendicular. This increase is an equivaient harde-
ning effect, caused by crack arrest by the strong layers, so that failure only is
possible by longitudinal crack propagation according to the Wu-equation. At higher
stresses d,, compressional piasticity perpendicular to the grain (project A of [113),
or earlier instabiiity of the test, (project B of [11] with oblique-grain compression
tests) may become determining. showing a lower value ¢ of eq.(17) than ¢ = 1.
Because the slopes of the lines (at small g,) of project A and B of [11} are the
same, there is no indication of an infiuence of the higher order terms: Flo Froo
Fl?_ and Fms of proj. B. Further the line of B is below the line of A and the c-value
of B is lower, closer to the eliptic failure criterion. This strongly is an indication
that hardening after initial yield (thus departure from the elliptic equation) of
project B, the oblique-grain compression test, is much less than that of project A,
and thus that the test is less stable. (Project C of [11] follows the elliptic failure
criterion because of the influence of transverse failure due to rolling shear that is
shown before to be elliptic).

The theory also explains why the parabolic Wu-equation of increased shear strength
by transverse compression, did not occur in the tangential plane. If, there are large
initial cracks in the tangential plane, (or trans-wall failures), the .crack-closure-
stress o is small and when also y is small: a, is about constant in the compres-
sional region (independent on the magnitude of the compression perpendicular)
untill there is influence of plasticity by compressional failure. This ultimate shear
condition in the weak plane, independent of compression, is predicted by the singu-
larity method and is the basis of the explantion of the Hankinson formula eq.(19},
for n = 2, by this method [91. As shown later n = 2 means that there are no higher
order coupling terms (no higher than order 2). Because there thus is no influence
of (the equivalent) F ). F,  of the radial plane di-

o 266 Fase 266
minishes quickly at axis-rotation (around the 1-axis), and this higher order effect

in the tangential plane (

is only a local effect, only noticeble when loading is in a plane rather close to the
radial plane. This thus will hardly be noticeble in timber when failure is free to
occur in the weakest plane. The high measured value of Foe (measured with o, = 0
may indicate that for clear wood, F122 will be zero in the radial plane according to
eq (22). It also can be deduced from published Hankinson lines of clear wood that
F ., and ons can be zero in the tangential plane, (confirming the results of proj.



A and B of [11i, mentioned above). For these Hankinson lines, n = 2 in eq.(19), show-
ing all higher order terms to be zero. There is an indication that this is a general
property of timber (111, because when shear failure is free to occur the plane of
minimum resistance, as usually in large timber beams and glulam, it occurs in the
tangential plane and n = 2, showing no higher order terms. On the other hand, this
needs not to be a general property for all species and tests because it generally is
mentioned by Kollmann that n = 2.5 for compression of clear wood showing that
F112 and F122 will in general not be zero outside the radial plane. This may indicate
some hardening by confined dilatation (depending on the test) as discussed in [10%L
Because of the oriented crack-propagation, explaining eq.(17), Fo~0 for ciear
wood because <, is in the same direction as the flat crack and thus not influenced
by that crack,

[t was shown in [10] that eq.(5) represents the initial vield condition, being the
extended critical distorsional energy principle. Because at initial yield both, the
elastic and yield conditions should be satisfied, the second order polynomial applies.
For elastic behaviour, this follows from the Hankinson equations (with n = 2) that
apply for the moduli of elasticity and because the modulus is proportional to the
yield strengths, the Hankinson equations (18} apply for initial yield (being the
second order polynomial). As mentioned In [0, for giulam in general, and for clear
wood in tension, n & 2 and there are measurements, depending on the type of test,
indicating that n % 2 is possible for compression of clear wood as well (by the
"Shereisen” test) or that n &~ 2 in the neighbourhood of the tangential plane (follow-
ing from oblique~grain compression tests), showing therefore no higher order terms
and thus failure after initial yield. Thus the second order polynomial then also gives
the failure condition. For this case, of no influence of higher order terms, eq.(13)
or (14) applies. for the off-grain-axis tensile- and compressional~ strengths and
eq.{14) can be resolved into factors as follows:

{ otc0528 G tsinz% i GtCOSZ'S‘ o tsinzq‘}
| + - 1 . : + ; e 1 = O (18)
L TX Y e Y

giving the product of the Hankinson equations for tension and for compression,

(where X and X'are the strengths in grain direction). This is possible when:

OF , + /8% % 1/ XY+ 1/XY

In this equation, derived in [1], (/XY + 1/XY") is of the same order and thus
about equal to 1/8% and 21:12 is of lower order with respect to 1/8% In [2] this
equation of [1] was used as a measure for F12’ thus: 2F12 = 1/X'Y + 1/XY' - 1/8%
what is a difference of two higher order quantities and thus gives no information
of the value of F1z that also can be neglected. In [171, wrongly the sum of: 1/8%
and (1/X'Y + 1/XY") is taken to be equal to 2F . being of higher order with res-
pect to the real value of F12 and it is evident that this value did not satisfy eq.(12).
Eq.{18) shows that the exponent n of the general Hankinson formula eq.(19):

g.cos ¢ 5, sin'y
t Lt - {19
X Y

is n = 2 for tension. For compressiona!l failure X and Y have to be replaced by

resp. X' en Y'in eq.(19} and eq.(18) shows that n = 2 for compression as well when

there are no higher order terms.



The equations for timber with defects are in principle derivable from the clear
wood equations by analysing the stresses around knots, cracks etc. Descriptive, by
the polynomial approach, it is also possible to regard the many possible complica~
ted stress states leading to failure in timber with defects, when loaded in a direc-
tion as the strength by the mean stresses in that direction. In that case combined
stresses determine the axial strengths. Where due to the grain- and stress devia-
tions. the axial strength is determined by combined shear with tension perpendicu-
lar to the grain, stable crack propagation causing an increase of the effective shear-
strength (according to the Wu-equation) may occur. Because always shear is in-
volved in failure. also the higher order terms for (apparent pure) normal stresses
show this parabolic increase of the effective strength, and the higher order terms
are no longer neglectable.

For wood with small defects n can be as low as n = 1.0 in eq.(19) for tension show-
ing higher order terms to be no longer neglectable for tension. This also has to be
expected when knots and defects show a deviation of the grain-direction because
the line of the strength has to shift according to that deviation. For compression
about the same n % 2.5 can be expected because the strength depends on the mean
grain-direction at yield. In [4] it is shown that Fléé' er,s and F112 of the radial
plane have influence. what is shown here to represent the equivalent hardening
effect due to crack arrest. Eq.(18) thus needs to be extended to account for the
smaller Hankinson value of n < 2 for tension and n > 2 for compression.

An equation of the fourth degree (eq.(21) in Ot) can always be written as the pro-
duct of two quadratic equations, €q.(20). For a real failure surface the roots will
be real and because the measurements show that one of the quadratic equations is
determining for compression and the other for tension and must be valid for zero
values of Ct and/or Cd as well, this factorization leads as the only possible solu-
tion to be the product of the "Hankinson equations” for tension and compression:

2 .2 2 .z
{ 0,COS b . o (sin v I 2L} ZL}.C )( 0,008 ) . G ¢sin 5 i
< ¥ josin"Hcos™ ¢ e 7
+ cfsinz%cosgw‘}cd> =0 (20)

In general eq.(20} thus is (as can be seen by performing the multiplication):

Fictcoszﬁ + on sin’h + Fuczcos‘lﬁ * (21’-’12 + F )o%os%sin% + F? sZsin'y + 3(F o+

t t 66"t 27t 112
3 dg . 2 3.4 2 4 dg.. 4
A " = 2
+ Flbé)otcos Ssin®H + 3(F,, + F o es)0p sin 9cos™s + 12F g, cos 9sin'd = 1 (21)
giving the found, general valid, criterion of (41 where it appeared that F .y, and

other possible higher order terms can be neglected except F1265'

The values C, and Cy can be found by fitting of the modified "Hankinson equa-
tions” (20} for uni-axial off-axis tension and compression giving the constants:

2F = ' - 2 —_ . ~ = ! -

2F , = VXY + 1/XY" - 1/87 + Co-Cyqp 3F ,+F )=CrX + Cy/X;

11
< = " P » = - [~ 3] 29
, 1‘266) Ct/Y + Cd/Y and 12F thd 121‘1122 Cth. (22)

1266
Experimentally it is shown that a fit of the Hankinson eq.(19) always is possible.
Thus different n values for tension and compression from n = 2 means that there

3(1“12

are higher order terms and C, and C 4 are not zero as follows from eq.(22).
It was shown in [13 that Fi?_ is smalil and can not be known with a high accuracy.
Small errors in the strength values (X, X', Y, Y', 8) may change F12 by more than



00 % or even change its sign [1) and the value thus is not important. The data of
[41 of the principal stresses in longitudinal tension, being close to initial yield,
show [, to be zero at initial yield (when Ct =Cy =0, thus F12 will be proportio~
nal to Cd - Ct)' The passible estimate in [4], based on the third degree polynomial
for all data, shows 13'12 to be negative and to be of lower order with respect to
/82, showing I'—'12 hiere to be neglectable, and because also Cd - Ct is of lower
order, the equivalent shear-strength S follows from:

1/8% = /XY + 1/XY" + {1 - oa)-(Ct - Cd) & 1I/XY + /XY (23)
and consequently:
2F , = alCy-Cp (= 0, (24)

where o is a constant found from fitting. Inserting the estimated vafues of the
strengths of {41, based on ali data, {X = 555 X' = 43.1; Y = 3.7, Y = 5.6) and for
S =94 to 10.2, then u has values between a = 0 to o = 1. A lower value of S as
was measured for pure shear (S = 9), indicates a positive value of F12 and it 1s seen
that Fiz may easily switch between any (small) value (and thus can be neglected),
For a practical criterion, a safe lower bound should be used that ignores the in-
fiuence of numerous, still higher order terms, because it is not justified to use a
complicated equation to account for only small influences. This also applies for
Flo., Wherefore a good estimate (inciuding neglected highest order terms and thus
need not to be bounded) will be eq.(22):

121312‘5(J = Cth, (r O},

but will be shown to be neglectable.

As mentioned before, wa is small or zero for clear wood. However, because of
the grain- and stress deviations, ere will not be zero for timber, becatse crack
extension along the grain has components in longitudinal and transverse directions
when there is a grain deviation and F ., and Foco are connected as components
depending on the (local) structure. As crack extension component Fiae will have a
simular bound as given by eq.(17) for F o, s follows by replacing the index 2 by |
and Y by X. Thus:
3F 6 < 0.99/X'S". N
Determining for wood however will not be this bound but the value of Fmb’ foi-
lowing from eq.{(22), when Fuz is known, 1:112 shows to be high by the form of the
failure surface and an estimate of the bound of F,,, has to be made. This form of
the failure surface {for the principal stresses, where it is determined by Fnz), shows
a simular cut-off parabola as F, .o indicating a common cause with a value of Foo
close to its upper bound, as found for F266' A general method to determine this

bound of F ., is given in 11 (for F, o) For the purpose here it is sufficient to

satisfy eq.(29) of the following approximation.

The upper bound of Fnz described above applies for G, = 0. Because for nearly clear
wood, the longitudinal crack extension theory predicts Fibb and sz to be small,
the following equation applies:

2 2
1ot Loy, S % 2, )
GL(X X') N 02<Y Y'> XX Y yy ! 3Fu26201 =1 (25)

This can be written:
/ - A P n ' — ‘. [N €
X = X+ o1+ BF o XX} = (1= 6, /Y)-(1+ 0 /) XX (26)



anc, neglecting the first term, it can be seen that this equation reduces to a para-
bola when about: 313112 = I/XX'Y' lwhen the first term is small). The critical value
of the bound of F“2 (to just have a closed surface) will occur at high absolute
values of o and ¢, and can be expected to occur in the neighbourhood of g, & = X\
For 9, approaching: 9, W = X', the first term of eq.(26) is small with respect to the
second term and because the compression strength perpendicular to the grain hard-
Iy is effected by the longitudinal stress, this maximal value can be inserted, as a
good approximation, in this small term giving:

o (1 3F Lo, XX+ (X = X0/ X0) = (1= 0,/Y) (1 + 0 /v ) XX

or:

o, (1 - OZ/Y)'(l + oz/Y‘}
X7 1+ coz/Y'

. = AT iyt 2 )
where ¢ = 3I'112Y X (27}

It can be seen that when ¢ = {, the curve reduces to a parabola and the requirement
to have a closed curve is ¢ < 1. Thus: 311'112 < 1/(Y'X'?). The same may apply at the
tensile side giving the same equation (27), when X' is replaced by X, or:

9 (1 - cz/Y)-(l + o?/Y') 9
- ] . - » . %
< s coZ/Y' where ¢ SFHZY X (28)

The found parabolas are equivalent to the Wu~equation for shear with tension or
compression. Because for wood with defects there aiways are deviations of the
stress or of the grain for the regarded main directions, there always is shear pre-
sent and when this shear, in the real material planes, is the cause of the failure
then according to the maximal stress criterion (eq.{23) of [103) 9,/ X of eq.(28)
should be replaced by 9,/8 of the main plane. By this replacement eq.(28) is iden-
tical to eq.{17) and F122 is determined by szb of the real material planes.

More general, when Fm and sz are not neglectable, the bound: ¢ < 1 becomes:

C F SFMZX'ZY' - 21312X'Y' + SFIQZY'EX' <1 for compression (29)

where, besides g, M - X', also G, R - Y' is substituted in the contribution of the
small term, as assumed determining point to just have a closed surface.
In the same way is, at the tensile side (replacing - X' by X):

. CAV L o . 2 . . 50"
c 3!:112)\ Yo 2F XY 3F122Y X <t for tension (297)
To connect the longitudinal tension region, where F112’ F12
(when this region is separately regarded), to the longitudinal compression region,

where F dominates, it is necessary that for compression:

i12
2F, - 3F, Y =< 3F X (30)

- are about zero,
and Fizz

However for a precise fit still higher order terms (F } are necessary.

o900 Fring Fiigs

With the estimates of Fz&'b and Fnz to be close to their bounds for compression,

and with zero normal coupling terms for tension, all constants of the general

failure criterion eq.(2l) are known, according to eq.(22), depending on C, and Ce

d
from uni-axial off-axis tension~ and compression~ tests.
Performing always the stress-transformation to the main planes, as done here, only

simple transformation rules (circle of Mohr) have to be known for application.



Estimation of the polynomial constants by uni-axial tests

In fig. 4, a determination of Cd and Ct is given. In this figure of [4], the measure-
ment Y'/X' = 0.204 is reduced to obtain a value of Y'/X' = 0.13 {at 90°) to be able
to use the measured constants of the bi-axial tests. It is not mentioned how that
possibly can be done but the drawn lines in the figure give the prediction of the
uni~axial values based on the measured constants according to the general eq.(21)
(given in [4] in the strength tensor form as given here by eq.(15)). For comparison
the fits of the Hankinson equations are given here, following these drawn lines.
For tension the equivalent Hankinson equation (20) becomes (by scratching the non
zero term of the product);

2 .2
G.cos"d . G ,sin B . 2
X Y t
and this equation fits the line for tension in fig, 4 when Ct ~ 11.9/%X% The Hankin-

son equation {19} fits in this case for n &~ 1.8 and all 3 equations (21), (31) and (19)

sinz%COSZSCt = 1 (31)

give the same result aithough for the Hankinson equations only the main tension-
and compression strength have to be known and the influence of all other quanti-
ties are given by: n or C_.

For compression, the same line as found in [4) was found in [1], (see fig. 11 of
[11}, by the second order polynomial with the minimal possible value of F12 (accor-
ding to eq.(12)), showing that except a negative F122 {as used<in {11} also a high
negative Flz may cause the, strong peak at small angles. Because such a peak never
is measured, the drawn line of [4] is only followed for the higher angles by the
Hankinson equation. For the low angles, the line is drawn through the measured
point at 15 giving the expectable Hankinson value of n = 2.4 of ¢q.(19) and for
eq.(32): Cd ~ 4/X'?, Because of this low measured value, the predicted peak at 10 o
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Figure 4 - Uni~axial tension- and compression strengths



is not probable (although theoretically possible, for a high shear strength, to occur
at 18° in stead of 10° with Cd is 7.6/%X* in the Hankinson eq.(32));

o,cos 24 otsin 29 0 9 )
T + 7 + ctsln Jcos %}Cd = - (32)

This shows that the fit of the polynomial constants, based on the best fit of the
measurements of [4], is not well for the oblique grain test. The explanation of
this deviation is probably the different state of hardening that can be more or less
strong, depending on the stability of the type of test and is less in the Hankinson
test. This, for instance, follows from the ratio of the compression strengths per-

pendicular to the grain and along the grain of 0.2 in the uni-axial tests and 0.1 in
the bi-axial tests showing more hardening in the bi-axial test. Further the strong
local peak is never measured In the common oblique grain test showing less sta-
bility than in the bi-~axial test.

An analoguous behaviour occurs in the oblique-grain test of clear wood where the
tensile test shows Ct = 0 in eq.(20) and the compression test shows Cq4 to be not
zero. A zero value of Ct indicates no higher order terms and thus Cd should be
zero. However the tensile test will show unstable fracture at yield what need not
to be so for the compression test that may show additional hardening.

Thus the criterion eq.(20) with only Ct = 0 may show two different hardening
states. For the different hardening states in the two different types of tests, uni-
axial and bi-axial, the lowest always possible value should be used for practise.

It thus has to be concluded that the strong hardening in the bi-axial test, will not
occur in all circumstances and the hardening parameter F ., should be small or
omitted for a safe lower bound criterion {according to the oblique grain test).
As generally found in [1] for spruce clear wood, a fit is possible for off-axis ten-
sion by a second order polynomial with F12 = 0. This also applies for wood with
defects, as follows from a fit of the data of [4] by the second order polynomial
lellipse) for the principal stresses o, and o, (when g, = 0}, for longitudinal tension
(o1 > 0 F., = 0), see fig. 5. This means that ng and F , are zero (for g, > 0) i
the radial plaue and because the Hankinson value for tension n is differ ent from

n = 2, there must be higher order terms for shear (Fwa’ ero)'
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Figure 5 - First vield criterion eq.(5). with F__ = 0, for g, = 0.
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A first hypothesis thus is (by eq.(22)):
3F2% = Ct/Y': 313“)6 = Ct/X" (with FMZ = 3:122 = 0) for tension and (by eq.(22))
3F ., =C /Y and 3F,__ = Cy/X. Awith F = Fos = Q) for compression, This gives

122 d 112 166
maximal values of F122 and F112 for the total fit.
The strength values according to this fit of [4] are (in N/mm2):
X =595 X' = 465 Y = 35 Y = 5.9 8 % 10 and with: C, = 11.9/X% ¢ = 4/X’
ZFIZ% a- Ct’ the predicted values are given in table 1 at column: hyp.1. It is seen
that these values fit better than the best fit of the comparable eq.(62) of [4], given
in the column indicated with {4]. However for ¢, =0, F122 must be negative for a
precise fit when o, < 0 and about zero when g > 0, showing that F 2o has got the
function to lep!ace neglected still higher order terms, and a pnemse fit only can
be expected to be possible with multiple higher order terms (with indices 1 and 2).
As mentioned in [4], the values of o, can be corrected by F ., to be slightly lower
when the sign of ¢, and o, Is the same and to be slightly higher when the sign is
opposite. This means that the first and third column value of column: hyp.l (being
1.1 and 1.0} can be around 1.05. This shows that introduction of F (266 only gives a
correction of a few percent and justifies the neglection of F s The column vaiues
further are slightly too high when ¢ ¢, > 0 and to low for o, < 0, indicating that Fles
is not precise. Neglecting the muitiple higher order terms, the hypothesis has to
be rejected. because F ,, s too high, distorting the ellipse (at o, > 0) too much for
high negative values of o, and causing the surface to be open at g, < 0 and high
negative O, It thus is probable that F__ is much smaller.
Whithout the higher order terms, F has to satisfy eq.(29) and the highest possible
positive vaiue of F 5, becomes about 0.0001, being about 5 times smaller than ac-
cording to first hypothesis. The fit now, with this small positive value of F122’ is
about comparable with the best fit of [4] (that is based on a negative value of
F122) but now satisfies eq.{22) and will not show the compression peak in the
Hankinson test (fig. 4). The fit is in total not better than a fit with changed con-
stants and is also in total not better than assuming F12 (92 and Fnz to be zero
for 9, > 0. This leads to the second hypothesis that the higher order terms for nor-
mal stresses are small at fracture (that thus is close to initial yield when o > )
and can be neglected.
In table f, column hyp.2, the fit is given for F F,=F .= F.,, = 0. Because the fit
does not change much when data above the uni-axial compression strength: X' = 41,7
are neglected, the fit is based on this value and column hyp.2 gives the prediction
of failure by the same hardeining state as in to the oblique-grain test (where the
strong compressional hardening does not occur). The constants are:

C, = 11.9/X% = 11.9/59.5” = 0,00336; Cy = /X% = 4/41.7% = 0.00230 and

by eq.{22): 3F = C /X" + C /X = 0.00336/41.7 + 0.0023/59.5 = 0.000119 or:
C e = 0.000119-9.7%41.7 = 0,47

3F,, # C/Y "+ C /Y = 0.00332/5.95 + 0.0023/3.5 = 0.00122 or:

Cypp = 0.00122:9.7%595 = 0.08
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Vo= ~1-- - -1-— = ¢ ~ 4. = e 2. = ! = g 5.3 = 4.0

I"l %% 17595 ~ 1/41.7 0.0072; Iii X% 1/759.5-41.7 = 0.0004
P —1— . -L = — { = g2. K = -——i— = . ¢ = 1 .

F2 vy 1/3.5 - 1/5.95 = 0.092; I“zz vy 1/3.5-5.95 = 0.048  and:



N 2 _ . _ _ -
TR 1/9.77 = 0.0100; F, =F, = E,, =0

The only strong deviation from the last supposition (of having small normal stress
coupling terms) thus occurs in the torsion tube test for the principal compressional
stresses (55 = Q) o, < 0, o, < 0). The form of the curve is parabolic close to the
Wu-equation, showing F112 to be high. However the fit is not precise because there
appears to be also an other hardening effect, raising the longitudinal compression
strength by lower and intermediate values of compression perpendicular S, and
F122 and F12 are also needed to describe this additional hardening effect.

For comparison the strength values of the best fit of all data of [4] are regarded:
X.= 555 X' =434 Y = 3.7, Y' = 56, The shear strength § of 10 is too high as
shown by table | and is taken to be 9.4. giving a mean factor of 1.0 in the table
for this fit. This leads to the relation of S:

/8% % 1.201/X'Y + 1/XY") = 1.2(1/(43.1-3.7) + 1/{55.5-5.6)} = 1.2(0.00627 + 0.00322) =
= 1.2:0.00949 = 0.0113, giving the wanted S & 9.4,

For the constants now ls:

= L - -1— = 5 - 1 = - 2. = —1—~ = 5.5 = 2.
Fl < % 1/55.5 - 17431 0.0052; Fn XK 1/55.5-43.1 = 0.00042;
S N _ = 0097 = . 56 = 00
F2 YTy 1/3.7 - 1/5.6 = 0.092; F22 vy S 1/3.7-5.6 = 0.048.
Further is:

Cp = 1L9/X = 11.9/55.5 = 0.00386 and C4 = 4/X'* = 4/43,1* = 0.00215.

F12 is the only unknown and gives a reasonable fit with o ~ { in eq.(24} or:

2F, = Cy - C, =~ 0.0017.

This value satifies eq.{(30) and eq.{29) for compression, but not eq.(29") for tension,
(showing the surface to be open for tension).

By the strong development of cracks, F o5 and F112 will be high, giving:

3F,,, = 0.9/8%Y" = 0.9/9.4%5.6 = 0.00184

and according to eq.(22):

3F12q = Ct/Y' + Cd/Y - 31:2@0 = 0.00386/5.6 + 0.00215/3.7 - 0.00184 = - 0.00057

3F ., = 0.9/5.6-43.1% = 0.000086, (and consequently 3F,,, = 0.000042 with: .
2F12 % - 0.0014) gives the best fit for g, = 0. However, for combined shear, given
in table {, column 3-compr., the values are comparable with those of column [4]
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Figure 6 - Yield criterion for compression (s, < 0) for 5, = 0.



- 15 -

and not well enough for practise. A better fit for the shear strengths is obtained
by a slightly reduced factor 0.8 in stead of 0.9 for I* (Lhus a diminished crack
development simular to the oblique-grain test pr oj. B of fig. 3) giving:

SF, ., = 0.8/5.0-43.1 = 0.000077,

3F .= C /X" = Cyq/X - SFHZ = 0. 000198 - 0.000077 = (.000051

giving the c-values: C,.e = -000051-9, 17431 =02 .2, and: Cope = 0.9 (starting point).
The combined shear strengths are given in table 1, COlul'nﬂ 4 (compressional fit),
and it is seen that the fit is still less well than according to the 2 foregoing
columns due to the negative value of F 4, a5 mentioned before.

Further for G, = 0. the "fit" is given in ﬁg 6 for compression while for longitudi-
nal tension (01 > 0) combined with high compression 6, perpendicular to the grain,
the surface is open and still higher order terms are needed for a closed surface.

Table 1. Shear strength o, for combined normal stresses

factor: Ué,thE‘Ol‘)’ /Oe,test
s s o
! 2 6 [413 hyp.1 hyp.2 3 4
test tens. compr.  compr.
30 1.5 5.8 1.07 (.10 .03 0.9 1.02
30 0 8.5 0.88 0.97 0.91 0.77 0.92
30 -25 7.9 0.99 1.00 1,10 0.91 £.29
7.3 0 9.2 1.04 1.07 1.03 0.96 1.01
0] 2.9 3.7 1.38 ¢ £.25 1.13 1.39 ¢ 1.19
0 1.5 8.5 0.90 0.95 0.89 0.93 0.86
0 0 9.0 .1 .41 1.08 1.04 1.04.
0 - 25 10.9 0.96 0.98 1.05 0.86 1.07
0 - 5.4 6.8 0.53 1 0.82 1.12 0.45 1 112
-7.7 0 9.6 .05 1.04 1.01 1.03 0.96
- 20 1.5 7.7 0.84 0.89 0.83 0.93 0.68
- 20 0 9.6 0.99 0.98 0.96 .10 0.88
-30 =25 11.3 1.04 0.98 0.90 1.16 0.94
mean factor .99 1.01 1.0 0.96 1.0

To avold many higher order terms separate criteria have to be used for longitudinal
compression and tensmn Fon compression (o < 0) eq.{21) becomes:

7 2 2
F101 * Fz 2 " I:1 of + F O * ‘F126162 F6606 31:112610 3F122 t 2 31:166 176
2
31:2650206 = ] (33}

Because the Ct’ Cd and n-values of the Hankinscn equations are sufficiently close
to the published extreme values of n, the here calcuiated c-values can be used in
general and inserting F-values in eq.(33). this equation becomes:



2
o] [#] < o] o] ] Lo}
o 2 TR D L T N P 20, 2
s-’-(“w v o2 ‘)"(1 x)(”x)*(i Y)(1+Y')+
2 2
[¢ 3l o] le 2N ¢ [s I}
—(wo.s- 2 12- 0.77-—1—22—0.41-1—2) (34)
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For tension (01 z 0) eq.(21) becomes (in the radial plane):

2
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s? (1+0'68 Y 0.47 X‘) (1 X ) (1+ X‘) +( Y ) (1+ Y') ! (35)

Because the compressional hardening according to eq.(34) only occurs for low
values of g, only in the torsional tube test, eq.(35) more generally represents the
failure criterion for both tension and compression for the more common loading
case as occurs in the oblique-grain test. Neglecting the higher compression
strengths far above the uni-axial compression strengths, at o, = 0, the overall fit
is very well and much better than the proposed fit of [41.

For the tangential plane there is a strong indication that the higher order terms

are zero (causing n = 2 for timber and glulam). When this is the case, eq.(35) only

aplies locally near the radial plane and the mostly determining criterion becomes:
2

<} o] o] G o
VRS RATRE
g2 X X Y Y

or worked out, identical to eq.(5) with F12 =0

02 g o} 02 02

o e
-——9——+m-1--——1'+———-1——_+—2——~—~27+—2—.:1 {36)
52 X X XX Y Y YY

It therefore is necessary to use eq.(36) for the Codes in all cases, for timber and
clear wood to replace the equivalent, now commonly used, not valid Norris~equa=

tions.
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Figure 7 - Combined longitudinai shear with normal stress in grain direction.



For general applications and analysis of test result, the constants can be based on
the measured Cd and Ct values or on the Hankinson equations (20} or (i9) for the
uni-avial stress case when n different from n = 2.

For o, = 0. determining F_ , a plot is given in fig. 7.

164
For ¢ = 0, giving F, e @ plot is given in fig. 8.
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Figure 8 - Longitudinal shear strength (o1 = 0} depending on the normal stress g,

Application for tapered beams

These type of beams are designed according to the theory of orthotropic elasticity
and for failure the Norris criterion is used (see eq.{26) of [101). As shown in [10]
this criterion may represent initial yield because, for the determining uni-axial
stress state along the boundary, this equation is identical to the Hankinson equa-
tion with n = 2. Tests of {5] suggest, for not too small angles «, elastic behaviour
up to failure because tension perpendicular is determining. However, for clear
wood. for o below 5% to 10°, the elastic values do not apply because of plastic flow
in compression (as follows from the much higher value of f, with respect to f )

and the used Norris-criterion based on Fn [8] is not right and the theory should
be adapted for this case. Further also for higher values of o above about 15°, the
slope may act as a notch and theory should be adapted to account for this, by
fracture mechanics determined, strength.

As a scheme, in the elastic range, the beam is regarded as a wedge loaded at the
top, wherefore the stress distribution is known [6], {7], what applies at a sufficient
distance from the support. Based on this theory, the curve fitting, using one fictive

shear strength for longitudinal tension as well as compression, (f co = 44, f o0 " 4.0
fv = 5 MPa. for compression and F = Ly f = 0.6; f =5 \/IPa for tens;on) did
not show a good fit. Following 583 bv using a value of f = 3.6 for tension, the fit

is good and in accordance with the derived value of the ﬁctwe shear-strength of:
/‘(Y/" = = /Jml 0.672 = 3.6. If the given values in [7] and [8] of the uni-axial

stnenvths (Fco' oo fo ft ny are representative, the best fits for glulam (in the
whole range of ), and for clear wood (above o = 10%) are obtained with lower fic-
tive shear strengths of about f = ¢/ XY/3 for tension and higher values of f, than

£, =/ XY /2 for compression. showmg that higher order terms have an influence and
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the Norris-equations (being equivalent to the Hankinson equations for n = 2) have
to be replaced by the Hankinson equations (19) with n different from n = 2 {oy the
exact eq.(20) should be used). This has to be proposed for the future Codes.

CONCLUSION

- All foliowing conclusions apply for the normally used softwoods.

~ The tensor polynomial failure criterion can be regarded as an polynomial expan-
sion of the real failure criterion. As a consequence, when a least square fitting pro-
cedure is used in stead of the expansion procedure, a, in principle, compiete poly-
nomial up to the chosen degree is necessary (whereby terms of this compound po-
lynomial may vanish by general symmetry conditions}. Further this fit by a limited
number of terms need not to show the precise right values of the expanded com-
ponents and need not to pass all mean values of the measurements precisely and
also p.e. the normality rule and convexity requirement need not to apply exactly.

- In transverse direction a second order polynomial (eq.{36)) is sufficient to describe
the strength. When for compression (perpendicular to the grain) the strength is
defined as the vaiue after flow and some strain hardening. a lower bound of the
overall strength can be chosen that will be directional independent and the beha-
viour can be regarded to be quasi isotropic in the transverse direction.

- There is a strong indication that for initial yield, or when the tangential plane is
determining (as follows from direct measurements and the oblique-grain test), also
for the longitudinal strengths a second order polynomial (with FIZ = 0) is sufficient
as yvield criterion. When the test becomes unstable early, at initial crack extension,
as for instance in the oblique-grain tension test or for compression in the "Sher-
eisen” test (probably also in the radial plane), there are no higher order terms.
Higher order terms thus are due to hardening effects (real hardening or equivalent
hardening by crack arrest) depending on the type of test that may provide stable
or unstable crack propagation after initial yield.

- It is shown that, when the Hankinson parameter n = 2 in eq.(19) for tension and
compression, all higher order terms are zero. It is probable that this is a general
property for timber [1il, because when shear failure is free to occur the plane of
minimum resistance, as usually in large timber beams and in glulam, it occurs in
the tangential plane, showing no higher order terms.

- For clear wood (and wood with small defects), in a stable test, the longitudinal
shear strength in the radial plane increases parabolical with compression perpen-
dicular to this plane depending on the coupling term F, = giving the Mohr equation
or the Wu- equation, that can be explained by collinear micro-crack propagation
in grain direction [9]. This increase Is an eguivalent hardening effect, due to crack
arrest by the strong layers, causing failure only to be possible by longitudinal crack
propagation. It is shown that the increase of the shear strength is not due to
Coulomb friction, being small for wood.

- Because of the criented craclk-propagation, explaining the Wu-equation, Fuss &
for clear wood because o, is in the same direction as the flat crack and thus not
influenced by that crack. Exept for small clear specimens at compression, (pro-
viding a high shear strength by the volume effect), there also is no indication of

. and Fu (due to hardening by

an influence of the normal coupling terms Fzz’ F” 5
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confined dilatation).

- For wood with (small) defects and local stress and grain deviations, an equivalent
polynomial failure criterion is possible, showing therefore an influence of higher
order terms. At least an fourth order polynomial is necessary for a reasonable
description. A precise description by a third order polynomial is possible when 2
different criteria are regarded, one for longitudinal tension and for longitudinal
compression {simular to the 2 Hankinson equations).

~ The general form of the criterion for the uni-axial off-axis strength for wood
with defects, is at least determined by a the fourth degree equation (eq.(21) in Ot)
and can always be factorized as a product of two quadratic equations, eq.(20). This
leads to extended Hankinson egquations, eq.(20), for higher order terms, when n of
eq.(19) is different from n = 2,

- Because of grain- and stress deviations, Fwa will not be zero for timber, as for
clear wood, because crack extension along the grain has components in longitudi-
nal and transverse directions when there is a grain deviation and F.,and F,  are
connected as components depending on the (local) structure. As crack extension
component ch will show a simular cut-off parabola as Fz&a’ indicating the com-
mon cause.

- For the same reason. the uni-axial tensile strength in the main direction is deter-
mined by the shear strength of the oblique material planes and and F , represents
F . of the real material planes, showing the same Wu-parabola. Simular to Fmb,
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F122 may act as component in transverse direction of FMZA

- For wood with defects, when the principal strengths in the main planes (o6 = Q)
are determining, Flzz’ Fiz and }7122 are zero, for longitudinal tension (due to early
instability of the test). For combined shear failure {equivalent hardening}, there are,
for this case, smali positve values of F112 and F " It is however shown that for a
practical criterion these terms can be neglected and only Fjaa and F%() remain for
longitudinal tension.

For lengitudinal compression at o, = 0, equivalent hardening by crack arrest, (high
Fuz) as well as hardening by confined dilatation (showing a negative Fo, and FIZ)
may occur. This last type of hardening probably only occurs in the torsion tube

test, because the negative F . and F , predict a compression peak (see fig.4) that

does not occur in the obl]qulez.zgrain test. For structural elements, this effect thus
has to be neglected and the tower bound criterion with only wa and szé {and zero
F, F122 and Fiio) applies also for compression in the radial plane as follows from
the good fit.

- Because in the tangential plane, the higher order terms can be zero, the quadra-
tic polynomial eq.(36):

2 2
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should be used as lower bound for the Codes in all cases, for timber and clear
wood, and because the equation represents initial vield as well it will apply for
the lower 5th percentile of the strength.
- For large sized timber and glulam, where shear failure (or longitudinal tensile
failure) may pass radial as well as in tangential directions in the same failure plane,

the following (eq.(35) will apply:
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where ¢, and ¢, follows from oblique-grain tests according to eq.(22) based on
the measured C‘d and Ct values: Fu,z, = Ct/X‘ * Cd/X; Fzéa = Ct/Y' + Cd/Y.

- For general applications and analysis of test results, eq.{52) can be used or for
the uni-axial loading case, the Hankinson equations (20} or (19).

~ The Norris equations are not generally valid and only apply for uni-axial loading,
identical to the Hankinson equation with n = 2, when the right (mostly) fictive
shear-strength is used. These equations thus should not be used any more,

- Therefore, for tapered beams and for all other cases with determining off-axis
uni-axial strength, the general Hankinson equations for tension and compression
(with n different from n = 2, depending on the measurements) should be used or
the exact equations {31) and (32) (or of course eq.(52}),
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