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‘Constant in gain Lead in phase’ element -
Application in precision motion control

Niranjan Saikumar, Rahul Kumar Sinha, S. Hassan HosseinNia
Precision and Microsystems Engineering,

Faculty of Mechanical Engineering, TU Delft, The Netherlands

Abstract—This work presents a novel ‘Constant in gain Lead
in phase’ (CgLp) element using nonlinear reset technique. PID is
the industrial workhorse even to this day in high-tech precision
positioning applications. However, Bode’s gain phase relationship
and waterbed effect fundamentally limit performance of PID
and other linear controllers. This paper presents CgLp as a
controlled nonlinear element which can be introduced within the
framework of PID allowing for wide applicability and overcoming
linear control limitations. Design of CgLp with generalized first
order reset element (GFORE) and generalized second order reset
element (GSORE) (introduced in this work) is presented using
describing function analysis. A more detailed analysis of reset
elements in frequency domain compared to existing literature
is first carried out for this purpose. Finally, CgLp is integrated
with PID and tested on one of the DOFs of a planar precision
positioning stage. Performance improvement is shown in terms
of tracking, steady-state precision and bandwidth.

Index Terms—Reset control, Precision control, Motion control,
Mechatronics, Nonlinear control

I. INTRODUCTION

P ID continues to be popular in the industry due to its wide
applicability, simplicity and ease of design and imple-

mentation. PID is used in high-tech applications from wafer
scanners for production of integrated circuits and solar cells to
atomic force microscopes for high-resolution scanning. With
well-designed mechanisms and feed-forward techniques, high
precision, bandwidth and robustness are being achieved. PID
also lends itself to industry standard loop shaping technique for
designing control using frequency response function obtained
from the plant. However, the constantly growing demands on
precision and bandwidth are pushing PID to its limits. PID
being a linear controller suffers from fundamental limitations
of Bode’s gain phase relationship and waterbed effect [1],
[2]. It is self-evident that these can only be overcome using
nonlinear techniques. However, most nonlinear techniques in
literature presented for precision control [3]–[6] are more
complicated to design and/or implement and do not fit within
techniques like loop shaping which are popular and widely
used in the industry.

Reset control is a nonlinear technique which has gained
popularity over the years and has the advantage of fitting
within the framework of PID for improved performance. Reset
involves the resetting of a subset of controller states when a
reset condition is met. Reset was first introduced by J C Clegg
in [7] for integrators to improve performance. Advantage of
reset is seen in reduced phase lag compared to its linear
counterpart [8]. This work has been extended over the years

with other reset elements from First Order Reset Element
(FORE) [9], Generalized FORE (GFORE) [10] and finally
to Second Order Reset Element (SORE) [11] introduced and
used in control applications. Significant work can be found
in literature showing the advantages of reset control [12]–
[21]. However, in most of these cases, reset control has mainly
been used for it’s phase lag reduction advantage. Some works
exist where reset has been used for phase compensation.
In [22], Ying et al. use the reset element to overcome the
waterbed effect through mid frequency disturbance rejection
by lowering the sensitivity peak. In this case, reset is used
to achieve a narrowband phase compensator, hence improving
phase margin and performance. This compensator was further
modified for improved performance and phase compensation
in [23] allowing for the use of notch for disturbance rejection
without affecting stability margins. Reset control with opti-
mized resetting action for improved performance has also been
presented in [24]. Some preliminary work towards broadband
phase compensation can be found in [25], [26].

In this work, we present a novel reset element termed ‘Con-
stant in gain Lead in phase (CgLp)’ element which extends
the use of reset to be used for broadband phase compensation.
The element is designed using describing function analysis to
work well within existing framework of PID, thus achieving
industry compatibility. Improvement in precision and tracking
is shown on a precision positioning stage. In Section II, basics
of reset systems are provided along with the definitions of reset
elements present in literature. The novel GSORE element is
presented in Section III. Further, while reset elements have
mainly been analysed for their phase lag reduction in literature,
other properties of generalized reset elements in frequency
domain critical to CgLp design are discussed. Design and
analysis of CgLp are presented in Section IV followed by the
inclusion of CgLp within framework of PID for broadband
phase compensation. The application of this modified CgLp-
PID controller on a precision positioning stage is dealt with
in Section V to show improvement in performance. The
conclusions and future work are provided in Section VI.

II. PRELIMINARIES

A. Definition of Reset control

A general reset controller can be defined using the following
differential inclusions:

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 
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ΣR =


ẋr(t) = Arxr(t) +Bre(t) if e(t) 6= 0

xr(t
+) = Aρxr(t) if e(t) = 0

u(t) = Crxr(t) +Dre(t)

(1)

where Ar, Br, Cr, Dr are state-space matrices of the base
linear system, Aρ is reset matrix determining the state after
reset values. e(t) is the error signal fed to the controller and
u(t) is the output of controller which is used as control input
for plant. While other forms of reset like reset band and fixed
instant reset exist in literature, the form provided above is the
most popular, widely applied and tested. The reset controller
of Eqn. 1 generally consists of both linear and nonlinear reset
part. The Aρ matrix is defined to reset only the appropriate
states of controller.

B. Describing function

The nonlinearity of reset elements creates the problem of
designing controllers in frequency domain especially using
industry popular loop shaping technique which uses Bode,
Nyquist and Nichols plots. In literature, sinusoidal input
describing function analysis has been used to analyse reset
elements in frequency domain. In fact, the phase lag reduction
advantage was seen by Clegg in 1958 using this technique.
Although describing function does not accurately capture all
the frequency domain aspects of reset, it is useful in providing
necessary information for design and analysis.

The describing function of generic reset systems as defined
by Eqn. 1 is provided in [10] and this is used to obtain under-
standing of the system in frequency domain. The sinusoidal
input describing function is obtained as

G(jω) = CTr (jωI −Ar)−1(I + jΘρ(ω))Br +Dr (2)

where

Θρ =
2

π
(I + e

πAr
ω )
( I −Aρ
I +Aρe

πAr
ω

)((Ar
ω

)2
+ I
)−1

C. Stability of reset elements and systems

Stability conditions given in [27] can be used to check
closed-loop stability of reset control systems for SISO plants.
The following condition has to be satisfied for ensuring
quadratic stability:

Theorem 2.1: There exists a constant β ∈ <nr×1 and
positive definite matrix Pρ ∈ <nr×nr , such that the restricted
Lyapunov equation

P > 0, ATclP + PAcl < 0 (3)
BT0 P = C0 (4)

has a solution for P , where C0 and B0 are defined by

C0 =
[
βCp 0nr×nnr Pρ

]
, B0 =

 0np×nr
0nnr×nr
Inr

 (5)

Acl is the closed loop matrix A-matrix

Acl =

[
Ap BpCr
−BrCp Ar

]
(6)

in which (Ar, Br, Cr, Dr) are the state space matrices of the
controller defined by Eqn. 1 with nr being the number of states
being reset and nnr being the number of non-resetting states.
(Ap, Bp, Cp, Dp) are the state space matrices of the plant.

D. Reset elements

The reset part of controllers defined by Eqn. 1 have been
presented as different reset elements in literature.

1) Clegg Integrator (CI): Clegg or Reset integrator is the
first introduction of reset technique in literature [7]. The action
of resetting integrator output to zero when input crosses zero
results in favoured behaviour of reducing phase lag from
90◦ to 38.1◦. CI is the most extensively studied and applied
reset element in literature due to advantages seen in reduced
overshoot and increased phase margins.

The matrices of CI for Eqn. 1 are

Ar = 0, Br = 1, Cr = 1, Dr = 0, Aρ = 0

2) First Order Reset Element - FORE and its general-
ization: CI was extended to a first order element as FORE
by Horowitz et al. in [9]. FORE provides the advantage
of filter frequency placement unlike CI and has been used
for narrowband phase compensation in [22]. The matrices
of FORE for Eqn. 1 where the base linear filter has corner
frequency ωr are

Ar = −ωr, Br = ωr, Cr = 1, Dr = 0, Aρ = 0

FORE was generalized in [10] to obtain Generalized FORE
(GFORE) which provides the additional freedom of having
a non-zero resetting parameter Aρ and hence controlling the
level of reset. This is achieved by using an additional reset
parameter γ such that Aρ = γ, where γ = 1 results in a linear
filter. γ is used to influence the amount of nonlinearity and
hence phase lag. The influence of γ on phase lag and other
properties is studied in the next section.

3) Second Order Reset Element - SORE: SORE has been
recently developed by Hazelgar et. al. [11] opening new pos-
sibilities for reset controllers in the shape of notch and second
order low pass filters. SORE has the advantage of an additional
parameter, damping coefficient βr as seen in the base matrix
definitions below. This provides an extra degree of freedom in
the design of nonlinear resetting element. 2 identical FOREs in
series is a special case of SORE with βr = 1. The additional
parameters βr allows for achieving properties not possible by
combination of FOREs. The matrices of SORE as applicable
to Eqn. 1 are given as

Ar =

[
0 1
−ω2

r −2βrωr

]
, Br =

[
0
ω2
r

]

Cr =
[
1 0

]
, Dr =

[
0
]

where, ωr is the corner frequency of the filter; βr is the
damping coefficient
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III. FREQUENCY DOMAIN BEHAVIOUR OF RESET
ELEMENTS

A. Generalized SORE (GSORE) and generalization of reset
controller

Hazelgar et. al. introduced SORE in [11] where both states
are reset to zero when the reset condition is met. This can
be considered as traditional reset control system. Such a
system similar to FORE provides less flexibility of design and
overall design becomes dependent on the base linear system.
Hence, we present generalized SORE (GSORE) where Aρ ∈
R2×2 can be an arbitrary resetting matrix. While such a system
provides greater freedom in design, 4 additional parameters
also add to the complexity of analysis during design. Hence
we limit this freedom to one parameter by defining Aρ similar
to the manner in GFORE as

Aρ = γI2×2

Broadly, reset controllers can be generalized such that
resetting matrix Aρ in Eqn. 1 is no longer a zero matrix as
originally conceived, but is of form

Aρ =


γ1 0 . . . . 0 0
0 γ2 . . . . 0 0
0 0 . . . . γnr 0
0 0 . . . . 0 Innr×nnr


where nr and nnr are number of resetting and non-resetting
states of overall controller respectively. Each resetting state has
its own factor γ determining its after reset value as a fraction of
its pre-reset value. It must be noted that while this generalized
form provides a large degree of freedom in design, this might
not be useful or convenient in all cases. This is specially true
with loop shaping technique which is generally carried out by
experienced engineers and not algorithms; and hence having
too many variables for tuning might impede design rather than
aid it.

B. Analysis of reset elements using describing function

Frequency domain behaviour analysis of reset elements
in literature has mainly focussed on phase lag reduction.
However, loop shaping requires a more comprehensive un-
derstanding of the behaviour. This knowledge is also essential
for design of CgLp presented in the next section. This analysis
is carried out using describing function method explained in
Sec II-B for the reset elements. Describing function based
frequency behaviour is obtained for GSORE for different
values of γ ∈ [−1, 1] and is shown in Fig. 1. There are three
important characteristics, two in gain and one in phase, which
needs to be noted. While the change in phase behaviour has
been studied greatly in literature, the effect of reset on gain is
not found in literature to the best of authors’ knowledge.

• Shift in corner frequency: From the figure, it can be seen
that for values of γ ∈ [0, 1], gain behaviour of reset
element is similar to that of its linear counterpart (γ = 1).
However, for values of γ < 0, while the slope of gain is
still −40 db/decade at high frequencies, there is a shift
in the corner frequency of the filter. While this is shown
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Fig. 1: Describing function based frequency response of
GSORE for different values of γ with ωr = 2π100 and βr = 1

here for GSORE, this is also true for filters of other orders
[28]. This shift is parametrized as fraction α where

α =
Corner frequency of reset element

Corner frequency of base linear element

The value of α as a function of γ is plotted in Fig. 2
for GFORE and GSORE (βr = 1). While the value of α
can be used to modify the base linear system to ensure
that the corner frequency of reset filter is at the desired
value, these α values are close to 1 for values of γ ≥ 0.
However, they increase in an almost exponential manner
as value of γ is reduced further. This limits the values of
γ for which GFORE and GSORE can be effectively used
in practice.

• Phase lag reduction: While the difference in gain is only
seen for lower values of γ, reduction in phase lag is seen
to be sensitive and is seen for all values of γ < 1. The
phase lag of GSORE for different values of γ is shown in
Fig. 3. Phase lag achieved with GFORE is also shown in
the same figure for comparison. It can be seen that large
phase lag reductions are seen for smaller values of γ with
phase lag being zero at γ = −1. However, due to the
corresponding change in corner frequency of GSORE as
seen in Fig. 1, use of these generalized elements becomes
limited.

• Change in damping factor: Another interesting charac-
teristic of GSORE is seen in change in the damping
factor of the designed linear filter and achieved GSORE
filter. This is shown in Fig. 4 for different values of βr,
where it can be seen that even for βr = 0 (resulting in a
Q factor =∞ in the case of linear filter), the resonance
peak is less than 10 dB. Although change in gain plot
vs βr is negligible, there is change in phase plot with
changing βr values and this can be used advantageously
to obtain a sharp change in phase without the cost of a
resonance peak. This additional advantage is only seen
with GSORE due to presence of damping factor βr and
not in GFORE.

In the above frequency domain analysis of reset elements,
sinusoidal input describing function analysis has been used
to obtain the frequency response. While this pseudo-linear
technique is useful, it is only an approximation technique. To
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Fig. 2: Fraction α denoting extent of change in corner fre-
quency as a function of γ for GFORE and GSORE (βr = 1)
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Fig. 3: Reduction in phase lag with reset for both GSORE and
GFORE

verify the accuracy of this method, we obtained the frequency
response of GSORE directly by applying chirp and step
inputs and using the tfestimate function of MATLAB and
comparing the response to the one obtained from describing
function. The coherence Cxy which gives a measure of the
accuracy of obtained frequency response using tfestimate
is also obtained and plotted in Fig. 5. The plots show good
match between the describing function based results and those
obtained through estimation in MATLAB.

IV. CONSTANT-GAIN LEAD-PHASE (CGLP)

Reset is used in controls for its phase lag reduction. SORE
helps in this regard, with generalization further providing the
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Fig. 5: Gain, Phase and Coherence relation for different values
of γ. Dashed line represents the values from the describing
function. ωr = 2π200

freedom to choose the level of reset and hence the level of
nonlinearity introduced. However, low pass filters are generally
used in controls at high frequency for noise attenuation. While
these can be replaced by reset low pass filters in the form of
GFORE or GSORE advantageously, this use of reset results
only in phase lag reduction. Reset for phase lead which can
be used advantageously in region of bandwidth has not been
explored sufficiently in literature. The main works in this
regard as noted earlier are [22] and [23]. Here, we introduce
a new reset element termed Constant in gain Lead in phase
(CgLp) which uses GFORE (or GSORE) to provide broadband
phase compensation in the required range of frequencies.

A. Definition

Broadband phase compensation is achieved in CgLp by
using a reset lag filter R (GFORE or GSORE) in series with
a corresponding order linear lead filter L as given below.

R(s) =
1

���
���

���
���

�: γ

(s/ωrα)2 + (2sβr/ωrα) + 1

or
1

���
��:

γ

s/ωrα + 1
(7)

and

L(s) =
(s/ωr)

2 + (2sβr/ωr) + 1

(s/ωf )2 + (2s/ωf ) + 1
or

s/ωr + 1

s/ωf + 1
(8)

correspondingly with ωf >> ωr, ωrα. The arrow indicates the
resetting nature of R. ωrα = ωr/α accounting for the shift in
corner frequency with reset as noted in Sec. II-B and can be
obtained from Fig. 2 for the chosen value of γ.

The reset state matrices of CgLp using GFORE are given
below as

Ar =

[
−ωrα 0
ωf −ωf

]
, Br =

[
ωrα
0

]
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Fig. 6: Broadband phase lead achieved with CgLp using
GSORE in range [ωr, ωf = 100ωr] with γ = 0 and βr = 1.
For γ = 0, value of α = 1.2 is obtained from Fig. 2 resulting
in ωrα = 0.8333ωr

Cr =

[
ωf
ωr

(
1− ωf

ωr

)]
, Dr =

[
0
]

Aρ =

[
γ 0
0 1

]
and CgLp using GSORE are given below as

Ar =


0 1 0 0
−ω2

rα −2βrωrα 0 0
0 0 0 1
1 0 −ωf 2 −2ωf

 , Br =


0
ω2
rα

0
0


Cr =

[
ωf

2

ωr2
0

(
ωf

2 − ωf
4

ωr2

) (
2βrωf

2

ωr
− 2ωf

3

ωr2

)]

Dr =
[
0
]
, Aρ =

[
γI 0
0 I

]
These matrices are used to describe CgLp element in the

general form of reset as in Eqn. 1.
In the conventional case, with both lag and lead filters

placed at the same frequency we have

Gain of linear lead filter− Gain of linear lag filter = 0 dB

Phase of linear lead filter− Phase of linear lag filter = 0◦

However, with reset applied to lag filter R, assuming that we
account for change in corner frequency with correct value of
α, the gains still cancel each other. But with phase,

Phase of linear lead filter− Phase of reset lag filter > 0◦

resulting in phase lead in range [ωr, ωf ] where the value of
phase lead obtained is dependent on choice of GFORE or
GSORE for design and also on value of γ providing freedom
of choice to the control engineer. Broadband phase lead
achieved through CgLp is shown in the frequency response
of an example CgLp element in Fig. 6.
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Fig. 7: Phase lead obtained through CgLp for different values
of γ

B. Comparison between CgLp using GSORE and GFORE

A first order lead filter can provide maximum of 90◦ phase
lead and a corresponding reset lag filter GFORE can have
a phase lag of 0◦ at γ = −1 as seen in Fig. 3, resulting
in a maximum phase compensation of 90◦. Similarly, with a
second order lead filter and GSORE, a phase lead of up to
180◦ can be achieved. However, as noted earlier, for values
of γ < 0, the value of α in Fig. 2 increases exponentially
and becomes very large. Hence we limit the value of γ ≥ 0
in this study. This correspondingly limits the maximum phase
compensation that can be achieved to 51.9◦ and 128.1◦ for
CgLp with GFORE and GSORE respectively. The phase lead
achieved at different values of γ is shown in Fig. 7.

Resetting parameter γ controls the deviation from linear
configuration and is associated with the level of nonlinearity.
Although we have considered describing function to analyse
frequency domain behaviour, the resetting action results in
higher order harmonics. And we can assume that higher the
level of nonlinearity, higher is the presence and negative effect
of harmonics on system performance. This leads to a trade-off
between phase compensation and effects of harmonics. So it
can be said that to minimize the effect of harmonics, GSORE
is the obvious choice in CgLp, since it minimizes |1− γ| for
the same phase lead compensation and reduces the inherent
trade-off. However, with GSORE, two states are being reset
and this could lead to more unwanted harmonics compared
to GFORE. These theories need to be investigated further in
future work to determine optimal design of CgLp.

C. CgLp in PID framework

The phase lead achieved over a large range of frequencies
with a corresponding 0 dB/dec slope line in gain allows
CgLp to overcome Bode’s gain phase relation which limits
linear controllers. While this broadband phase compensation of
CgLp can be used advantageously in different areas of control,
here we deal with integrating CgLp into framework of PID to
improve performance in terms of precision and tracking for
high-tech applications.
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The general structure of series PID as used in the industry
for loop shaping is given as:

PID = Kp

(
s+ ωi
s

)(
1 + s

ωd

1 + s
ωt

)(
1

1 + s
ωf

)
(9)

where ωi is the frequency at which integrator action is ter-
minated, ωd and ωt are the starting and taming frequencies
of differentiator action, and ωf is corner frequency of low
pass filter used to attenuate noise at high frequencies with
ωi < ωd < ωt < ωf . Additional notch, anti-notch or low
pass filters may also be included in design of PID depending
on system to be controlled. In this structure of PID, it is
easy to interpret the different functions of its parts. While
the integrator creates high gain at low frequencies improving
tracking, low pass filters reduces gain at high frequencies
improving noise attenuation and hence precision. Derivative
action adds phase in region of bandwidth and hence contributes
to stability and robustness.

To ensure that maximum phase achieved through derivative
action coincides with bandwidth (ωc), ωd and ωt are chosen
as ωd = ωc/a and ωt = aωc where a > 1. The value of scale
a determines the phase provided by derivative. [2] suggests
a = 3 as rule of thumb for design of PID for high-precision
mechatronic systems along with ωi = ωc/10 and ωf = 10ωc.

The value of scale a determines not only the phase margin
(PM) and hence stability/robustness of closed-loop system but
also the tracking and precision performances. This is because
derivative action adds gain at high frequencies and reduces
gain at low frequencies hence negatively affecting noise at-
tenuation and tracking respectively. Hence increasing value
of a to increase PM negatively affects the other performance
aspects and vice-versa. Bode’s gain-phase relation which de-
termines this behaviour is a limitation which affects all linear
controllers. This fundamental problem can be overcome by
integrating CgLp into framework of PID so that either a
fraction or complete phase to be added at bandwidth can be
obtained through CgLp.

Hence, 3 different extreme scenarios can be considered
where some of the performance criteria can be improved while
ensuring that the others are not compromised in the process.
These are listed out below.

• The values of ωd and ωt can be fixed to the values
obtained for linear PID and CgLp designed to add
required additional phase and hence improve stability
and robustness without affecting precision, tracking or
bandwidth.

• CgLp can be designed first to provide part of the phase
resulting in a smaller scale a for derivative action (to ob-
tain same PM) which should result in improved tracking
and precision without affecting stability and bandwidth.

• CgLp can be designed to provide part of the phase again
as in the second case, but instead of improving precision,
the closed loop bandwidth of the system can be increased
which thereby increases tracking as well without affecting
stability or precision.

While these are the extreme cases portrayed, intermediate
options where stability, robustness, tracking, precision and

CgLp PID System

Noise n

Reference r Output y

Feedforward

Cff(s)

+
+

+
+

+
-

Fig. 8: General block diagram of CgLp-PID controlled closed
loop system

bandwidth are simultaneously improved can also be explored.
Only the second option (same stability and bandwidth, im-
proved tracking and precision performance) and third option
(same stability and precision, improved bandwidth and track-
ing performance) are explored further in this paper and the rest
will have to be part of future work. The general block-diagram
of CgLp-PID can be visualized as shown in Fig. 8 which
also consists of a feedforward block for improved tracking
performance.

V. APPLICATION ON PRECISION MECHATRONIC SYSTEM

A. Design of CgLp-PID for performance comparison

The world of precision high-tech industry is pushing to-
wards faster, more precise and better tracking systems con-
stantly. Hence we explore the option of using CgLp-PID to
improve these performance aspects while maintaining stability
margins at same level. Since the controllers are designed for
performance comparison, we have established a baseline in
design. For design of PID part, ωi = ωc/10 and ωf = 10ωc
which are rules of thumb are used for all controllers designed.
For design of CgLp, we have chosen ωr = ωc as common.
CgLp designs using both GFORE and GSORE are considered
for improved performance in terms of tracking and precision
improvement, while only CgLp using GFORE is considered
and tested for improvement in bandwidth and tracking.

1) Tracking and precision improvement: In this part, we
look at CgLp-PID design for improvement in tracking and pre-
cision without compromising stability and bandwidth. These
are the steps followed in detail.

(i) For CgLp element, choose ωr = ωc, ωf = 10ωc.
(ii) Choose value of γ ∈ [0, 1] and correspondingly choose

value of α from Fig. 2 to calculate ωrα to account for
shifting of corner frequency.

(iii) Compute phase added by CgLp element at ωc using
describing function analysis as Phnl.

(iv) For PID, choose ωi = ωc/10, ωf = 10ωc.
(v) Additional phase that needs to be obtained through

derivative action within PID = Required PM − Phnl.
(vi) Choose scale a and obtain values of ωd and ωt such

that this additional phase is achieved to ensure overall
Required PM .

2) Bandwidth and tracking improvement: Here, closed-loop
bandwidth of system is increased using CgLp-PID design
which results in improvement in tracking. This improvement is
achieved without compromising precision and stability. While
the steps in the previous case are straightforward, this is
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Fig. 9: 3 DOF planar precision positioning ‘Spyder’ stage.
Voice coil actuators 1A, 1B and 1C control 3 masses (indicated
as 3) which are constrained by leaf flexures. The 3 masses
are connected to central mass (indicated by 2) through leaf
flexures. Linear encoders (indicated by 4) placed under masses
’3’ provide position feedback.

not true here with multiple iterations required. These are the
steps followed to design a separate set of controllers. Since
the controllers are designed to achieve same precision, it
is necessary to calculate the precision achieved with linear
PID. This can be obtained from the open-loop gain value at
a sufficiently high frequency ωhigh, where the behaviour is
asymptotic. Let this value be Gpre.
(a) Choose bandwidth ωc.
(b) Follow steps (i) - (vi) from Sec. V-A1.
(c) Calculate gain of open-loop at ωhigh to check if same

precision is achieved (with a margin of error). If achieved
precision is higher than Gpre, increase ωc and go back
to step (b). If lower, reduce ωc and go back to step (b).

B. Precision positioning stage

A precision planar positioning stage shown in Fig. 9 is
used for validation and performance analysis of developed
CgLp-PID controllers. 2 sets of controllers are designed for
both the cases considered above in terms of performance
improvement. For sake of simplicity, only one of the actuators
(1A) is considered and used for controlling position of mass
’3’ attached to same actuator resulting in a SISO system. All
designed controllers are implemented on FPGA of NI Myrio
system to achieve fast real-time control. LM388 linear power
amplifier is used to power the actuator and Mercury M2000
linear encoder is used to obtain position feedback with a
resolution of 100 nm.

In keeping with industry techniques, frequency response
data of system is obtained by applying a chirp signal and this is
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Fig. 10: Frequency response data of system as seen from
actuator ’1A’ to position of mass ’3’ attached to same actuator.
Frequency response of simplified estimated transfer function
is also plotted for comparison.

shown in Fig. 10. The system behaviour is similar to that of a
collocated double mass-spring-damper system with additional
dynamics at higher frequencies. The system can, however,
be simplified to a second-order system as given below. The
frequency response of this simplified second order system is
also given in Fig. 10 for comparison. This transfer function
is used for stability analysis using theorems presented in Sec.
II-C.

System G(s) =
1.429e8

175.9s2 + 7738s+ 1.361e6
(10)

Although we design the controllers using frequency re-
sponse data with the assumption that the system is linear, it
must be noted that the spring stiffness of the leaf flexures used
is not constant over the full stroke length and hence results in
variations in gain and resonance frequencies over the tested
stroke.

C. Designed controllers

Controllers are to be designed to achieve a bandwidth of
ωc = 100 Hz along with PM of 30◦. The phase of system
at ωc is −195◦ and hence a phase lead of 45◦ needs to be
achieved by all the designed controllers.

1) Controllers using Reset Integrator: Reset integrator has
been popularly used in literature for its phase lag reduction
advantage. As a benchmark for comparison, 6 controllers are
designed for different values of γ with the integrator part of
Eqn. 9, i.e., (1/s) being reset and the rest of the equation used
as the linear controller. The controllers are designed using
the same 6 steps mentioned for design of CgLp-PID with
the modification that the phase compensation comes from the
reduced phase lag of the resetting integrator and not from
CgLp. The value of scale a obtained in step (vi) for each
corresponding value of γ is provided in Table. I.
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Reset Integrator CgLp with GFORE CgLp with GSORE
γ scale a

1.0 2.9 2.9 2.9
0.8 2.35 2.63 2.27
0.6 1.89 2.43 1.81
0.4 1.52 2.27 1.46
0.2 1.23 2.12 1.24
0.0 1.01 1.98 1.09

TABLE I: Values of scale a used in derivative action corre-
sponding to value of γ used in the designed controllers. In
combination, they achieve phase lead of 45◦ at ωc = 100 Hz.
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Fig. 11: Frequency response of 2 controllers designed with
GFORE for improvement in precision and tracking obtained
through describing function analysis.

2) Controllers for increase in tracking and precision:
6 controllers are designed with CgLp using GFORE and 6
other controllers with CgLp using GSORE according to the
steps mentioned in Sec. V-A1 for values of γ ranging from 1
resulting in purely linear controller to 0 in steps of 0.2. The
value of scale a obtained in step (vi) for each corresponding
value of γ is provided in Table. I.

The frequency responses of designed controllers for the two
extreme cases of CgLp with GFORE, i.e., γ = 1 (resulting in
linear PID) and γ = 0 obtained through describing function
are shown in Fig. 11. It can be seen that for γ = 0, since
a large phase lead is achieved through CgLp element, phase
lead required from derivative action is less resulting in a much
smaller value of scale a as seen in Table. I. Further, this
value of scale a is even more reduced in the case of CgLp
with GSORE and also reset integrator. This results in reduced
gain at high frequencies and increased gain at low frequencies
and hence better precision and tracking respectively are to be
expected.

3) Controllers for increase in bandwidth and tracking: A
separate set of controllers are designed to obtain the same
precision. In this case, only controllers with CgLp using
GFORE are designed for comparison. For this, the controller
with γ = 1 which results in linear PID is designed at
ωc = 100 Hz as before. The theoretical precision that can
be achieved with this is estimated by obtaining the open-loop
gain at 10 KHz and this is found to be Gpre = −76.18 dB.
This along with PM = 30◦ is used as reference to design 5
other controllers for values of γ from 0.8 to 0 in intervals of

γ Bandwidth (Hz) scale a

1.0 100 2.9
0.8 107 2.73
0.6 113 2.60
0.4 118.5 2.47
0.2 123 2.35
0.0 127 2.27

TABLE II: Values of bandwidth ωc and scale a used in
derivative action corresponding to value of γ used in CgLp
with GFORE. In combination, they achieve PM of 30◦ and
same open-loop gain value at ωhigh = 10 KHz resulting in
same precision theoretically.
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Fig. 12: Frequency response of 2 controllers designed for
improved bandwidth and tracking obtained through describing
function analysis.

0.2 by following the steps given in Sec. V-A2. The bandwidth
and scale a values obtained for the designed controllers are
provided in Table. II. The frequency response of the two
extreme cases is obtained using describing function analysis
and shown in Fig. 12. The additional increase in tracking as
compared to the extreme cases of Fig. 11 can be seen due
to the increase in bandwidth. Further, it can also be noticed
that since phase of the system decreases at higher frequencies,
additional phase has to be generated to ensure required PM .
This is the reason that values of scale a in Table. I for CgLp
with GFORE and Table. II do not match each other.

D. Results

All designed controllers are discretized with sampling fre-
quency of 10 KHz and implemented on the practical setup.
Tracking and precision performance aspects are analysed. For
the purpose of tracking a fourth order prefiltered trajectory
is planned as explained in [29] for a triangular reference of
peak-to-peak amplitude of 1 mm. The inverse of estimated
system transfer function of Eq. 10 is made strictly proper
with a third order filter with corner frequency of 1000 Hz
(same corner frequency as that of LPF used in PID) and
is used as feedforward controller (Cff (s)). The RMS error
values for the controllers designed to check improvement
in tracking and precision are given in Table. III, while the
results for the second set of controllers designed for evaluating
improvement in bandwidth and tracking are provided in Table.
IV. For evaluating precision, although the sensor signal is
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noisy, additional noise is added at the point shown in Fig. 8
in the form of uniform gaussian noise of maximum amplitude
5000 nm. The reference is made zero for this and the output
precision analysed. The RMS and maximum error values
obtained are given in the same tables, Table. III and Table.
IV.

The performance indices values from Table. III clearly show
the improvement in both tracking and precision as expected
with CgLp compared to linear controller (γ = 1). In fact, in
all cases irrespective of value of γ < 1, tracking and precision
have improved significantly. However, it is also seen that while
these improvements were also expected for γ = 0 compared
to γ = 0.2, this is not the case. Performance improves as
γ is reduced from 1 and is best close to 0.4 for both cases
of CgLp controllers and then slightly deteriorates again. The
role of the higher order harmonics on performance can also
be noted from these results. From Table. I, it is seen that
the value of scale a is the same for CgLp with GFORE and
GSORE for γ = 0.4 and γ = 0.8 respectively. From describing
function analysis, this should result in matching tracking and
precision performance for both these controllers. However
from the results of Table. III, it is clear that CgLp with GSORE
outperforms the other. The role of higher order harmonics on
performance needs to studied for accurate analysis of these
reset elements.

In the case of reset integrator, the introduction of reset
results in large increase in tracking error. This is due to the na-
ture of resetting integrator action. Since, the integrator is reset
when the error crosses zero, limit cycles are seen in position
tracking. This is a well studied problem in literature. This
problem is generally solved using a feed-forward controller
in parallel which ensures that required steady state output is
maintained when the integrator is reset. In the experiments
conducted, although a feed-forward controller was used as
shown in Fig. 8, the feed-forward controller is designed using
the inverse of the estimated plant transfer function. Errors
in estimation coupled with non-linearity of the leaf flexure
stiffness result in an incorrect steady state output from the
feed-forward and hence limit cycles. These results further
confirm the advantage of using reset action through CgLp
for broadband phase compensation rather than the traditional
method of resetting the integrator.

From the results of Table. IV, while tracking performance
improvement is seen with use of CgLp, large improvement is
not seen from γ = 0.4 to γ = 0 with deterioration in tracking
performance seen. Interestingly, although the controllers were
designed to obtain similar precision performance in terms of
gain at high frequencies, improvement is also seen in precision.
Additionally, similar to the performance seen in Table. III, it
is noticed that while precision improves with use of CgLp, it
does not consistently improve as value of γ is lowered, but
instead increases again for lower values of γ.

In the analysis and design of CgLp for both cases, de-
scribing function has been used to obtain frequency response
behaviour. However, this is only an approximation method.
From the results obtained, it can be positively said that this
approximation is useful for design. However, from the seen
deterioration of results from γ = 0.4 to γ = 0 in first case and

also deviation of precision performance (although resulting in
improvement) in second case, it can be said that more accurate
methods than describing function are needed. Since resetting
action results in higher order harmonics, these need to be
considered to get a more accurate representation of system
in frequency domain.

VI. CONCLUSION AND FUTURE WORK

Industrial workhorse PID is limited by linear controller
limitations which can only be overcome by nonlinear con-
trollers. Reset is one such controller which lends itself to
standard loop shaping techniques through describing function
analysis. While most works in reset have focussed on reduced
phase lag of reset filters, this paper has presented a more
detailed analysis of reset elements in frequency domain. This
knowledge has been used to develop the novel ’Constant in
gain Lead in phase’ (CgLp) element which is capable of
providing broadband phase compensation which had not been
explored in literature.

CgLp-PID controller where the additional phase lead pro-
vided by CgLp can be used to improve performance metrics is
explained in detail. This concept is tested on one of the DOFs
of a precision planar positioning stage and the results validate
the improvement expected from theoretical analysis.

However, it is also noted that while all controllers designed
for first set with γ < 1 outperformed the linear controller
(γ = 1), performance slightly deteriorated at smaller val-
ues of γ. Similarly deviation in precision performance was
noted. While describing function analysis is accurate enough
for understanding and preliminary design analysis of CgLp,
alternative methods which take the higher order harmonics
introduced by reset into consideration are needed to better
explain results. Such a tool would also help in better design
of reset elements including CgLp.

Also since this paper presents preliminary performance
comparison and validation using CgLp, design using GFORE
and GSORE (with βr = 1) has been tested. Further, fre-
quencies ωr and ωf of CgLp are heuristically chosen using
rules of thumb. However considering the presence of higher
order harmonics, the choice of these values will play a
significant role in determining performance and this needs to
be investigated further. Additionally, if CgLp is designed using
GSORE, the value of βr can be used to shape the phase of
open loop further. In summary, tuning of CgLp needs to be
investigated further to obtain best possible performance.
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