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ABSTRACT
Knowledge about the organization of the main physical elements
(e.g. streets) and objects (e.g. trees) that structure cities is impor-
tant in the maintenance of city infrastructure and the planning
of future urban interventions. In this paper, a novel approach to
crowd-mapping urban objects is proposed. Our method capital-
izes on strategies for generating crowdsourced object annotations
from street-level imagery, in combination with object density and
geo-location estimation techniques to enable the enumeration and
geo-tagging of urban objects. To address both the coverage and pre-
cision of the mapped objects within budget constraints, we design a
scheduling strategy for micro-task prioritization, aggregation, and
assignment to crowd workers. We experimentally demonstrate the
feasibility of our approach through a use case pertaining to the
mapping of street trees in New York City and Amsterdam. We show
that anonymous crowds can achieve high recall (up to 80%) and
precision (up to 68%), with geo-location precision of approximately
3m. We also show that similar performance could be achieved at
city scale, possibly with stringent budget constraints.

CCS CONCEPTS
• Information systems → Geographic information systems;
Crowdsourcing; Web interfaces; • Human-centered comput-
ing→Collaborative and social computing systems and tools.
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1 INTRODUCTION
Streets, squares, plots, and buildings constitute the most important
elements that shape the physical form of cities [27]. Integral to
these elements are city objects such as trees, lamp posts, and other
artifacts of urban infrastructure (e.g. benches, fire hydrants etc.).
The combination and configuration of physical elements and their
constituent objects contribute to the "character" of a city [17] and
lead to different formations of the urban fabric [6, 15]. An up-to-date
knowledge of the amount and distribution of physical elements and
objects across the urban fabric is of vital importance in planning
future urban interventions.

At present, the process of constructing such body of knowledge
is based on two main approaches. The first, and more traditional
one, relies on commissioned authoritative work, bymeans of on-site
documentation conducted by municipal workers [2, 4]. This method
usually entails high costs, in addition to being laborious and time
consuming. The second approach involves the voluntary contribu-
tion of geographic information, which is enabled by collaborative
mapping platforms, e.g. OpenStreetMap [5, 12]. On one hand, its
participatory and voluntary nature makes it a less costly approach
to mapping the urban environment. On the other, it makes it prone
to limited participation and, subsequently, to variable spatial cover-
age and precision [24]. Moreover, it assumes a degree of familiarity
of the contributors with the places mapped [5]. Although it has
been shown that actual knowledge of a place contributes to the
amount and quality of the provided content [13, 24], it could also
be seen as a limiting factor, in terms of the number of individuals
who can actively create and assemble data about a place.

One way to make contributors familiar with an area of interest,
without requiring knowledge at the local level, is by means of
street-level imagery. The recent availability of this type of image
data through online platforms, such as Google Street View and
Mapillary, could enable the documentation of physical elements of
the urban environment from a wider pool of potential contributors.
Street-level imagery provides panoramic digital representations of
– mostly – open public spaces along the street network. Contrary
to the widely-used satellite imagery, it simulates the process of
a person walking along the streets, thereby providing a detailed
three-dimensional overview of visible spatial elements (e.g. building
frontages, trees, lamp posts, trash bins, and other objects of the built
environment). Given its high penetration rate, currently covering
all major cities in the world, it could open up new avenues in
perceiving, documenting, and understanding urban systems.
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The coupling of street-level imagery with state-of-the-art com-
puter vision andmachine learning techniques enables the automatic
discovery of highly recognizable recurring objects (e.g. traffic lights,
street lamps) [18, 35]. However, with object types characterized by
high visual variability (e.g. trees), automatic approaches suffer from
severe identification and geo-location accuracy issues.

Recent studies [8–11, 31] have shown that the combination of
street-level imagery with micro-task crowdsourcing can success-
fully engage a larger number of contributors – possibly unfamiliar
with the targeted urban area – through object annotation tasks.
While demonstrating the feasibility of a micro-task crowdsourcing
approach, these works do not fully address the important quality
and scalability issues that generally characterize large scale object
annotation campaigns. Two issues are of importance: 1) the preci-
sion of object detection and geo-location within an area of interest,
and 2) the ability to cover large areas within budget constraints.

Original Contributions. In this paper, we introduce a novel ap-
proach to crowd-mapping physical objects of the urban environ-
ment. Our method enables the annotation and geo-tagging of urban
objects along the street network, through the combination of (a)
cost- and worker quality-aware strategies for micro-task scheduling
and assignment, and (b) inference methods for object density and
geo-location estimation. We develop a dedicated Web user interface
that facilitates urban object annotation by crowd workers, using
Google Street View imagery as a proxy for real-world places. Anno-
tation, geo-location estimation, and aggregation techniques allow
us to map the objects in space, and to estimate their location. A
specifically designed scheduling strategy estimates the density of
objects in street segments in an iterative fashion, and uses it to pri-
oritize mapping tasks with the aim to maximize the coverage of the
mapped objects within budget constraints. Task assignment strate-
gies allocate workers in accordance to their measured annotation
quality, so as to improve the geo-location estimation quality.

To evaluate our method, we conducted two experiments. Specifi-
cally, we use areas of New York City and Amsterdam as case studies,
and focus on the estimation of the number and location of trees
along their street networks. Results show that through the proposed
Crowd Mapping interface and geo-location estimation techniques,
it is possible to engage anonymous crowd workers and achieve
high recall (up to 80%) and precision (up to 68%), with geo-location
precision of approximately 3m. Using a discrete event simulation
technique, we show that it is possible to obtain high object density
estimation precision (up to 80%) and promising geo-location preci-
sion (up to 85%) at city scale, also with limited budget availability.

The remainder of the paper is organized as follows: Section 2
discusses related work. In Section 3, we present the logical organiza-
tion of the proposed crowd-mapping method. Section 4 introduces
the Web interface for urban object annotation, and describes in
detail the methods used to geo-locate and aggregate the labeled
annotations. Section 5 describes the developed scheduling, task ag-
gregation, and task assignment strategies. In Section 6, we present
the configuration and metrics of the conducted experiments re-
garding the evaluation of our proposed method. In Section 7, we
present and discuss the results of the experiments. Finally, Section 8
summarizes the conclusions and discusses future lines of research.

2 RELATEDWORK
We address previous work on crowdsourcing with street-level im-
agery, and then discuss the relevant work about using street-level
imagery to mapping urban objects. We acknowledge the existence
of abundant literature related to task assignment and scheduling
strategies (e.g. [14, 34]) for crowdsensing. However, as this paper
specifically focuses on crowd-mapping with street-level imagery,
we consider the analysis of such literature outside of our scope.

2.1 Crowdsourcing using Street-level Imagery
Previous work has addressed the problem of integrating crowd-
sourcing and street-level imagery, to enable task execution by
workers through Web-based platforms. In an early feasibility study
[9] manually created a database consisting of 100 images from
Google Street View. Researches from the same group afterwards
studied the combination of crowdsourcing and Google Street View
to identify street-level accessibility problems [10] and developed
an online curb ramp data collection system Tohme [11]. The sys-
tem enables workers to remotely label curb ramps through Google
Street View with the assistance of computer vision and machine
learning techniques. The combination of crowdsourcing techniques
and street-level imagery has further applications in risk assessment
studies and, particularly, the vulnerability of structures against
earthquakes [28]. Relevant techniques have also been applied in
medical- and health-related research [3, 33]. Street-level imagery,
informed by data from parents of school children, has been used as
an efficient alternative to on-site observations for the assessment of
the environmental characteristics of cycling-to-school routes [33].

These studies show the feasibility of a crowdsourcing approach
to urban scenes and object labeling through street-level imagery.
However, issues of accurate object detection and geo-tagging, scala-
bility, and cost received limited attention. To the best of our knowl-
edge, our work is the first to fill this gap.

2.2 Mapping Urban Objects using Street-level
Imagery

Street-level imagery is increasingly used in studies concerned with
the mapping of urban objects.Mapillary 1 is a dataset consisting
of 400M street-level images covering 6M kilometers worldwide, in
which images are processed with computer vision, and identified
objects are connected to open-source and commercial mapping
platforms (such as OpenStreetMap, and Here) [26]. Street-level
imagery has already been an important data source for mapping
urban trees. Treepedia is a project estimating the vegetation index
of cities. Researchers proposed a method that can automatically de-
tect urban greenery with computer vision by assessing street-level
imagery from Google Street View [20, 21]. The urban canopy cover
was mapped in Singapore using the hemispherical photographs
from Google Street View [29]. Similar works are also conducted in
Chinese cities with alternative street-level imagery sources, such
as Tencent Street View [23]. It is also used in the detection and
mapping of other types of physical objects. Balali et al. used images
from Google Street View to detect, classify, and map traffic signs of
two interstate highways in the United States [1].

1https://www.mapillary.com/

1522



Street-level imagery has also been used in the classification of
POI types [25]. Previous work used deep learning techniques to
geo-locate and match a street-level image to an aerial one [22].

Work on the automatic analysis of street-level imagery still suf-
fers from geo-localization issues. Moreover, the lack of training
datasets results in limited applicability to object types that present
high visual variability (e.g. trees). Our work is complementary to
these effort, and can simplify the collection of street-level imagery
training data for computer vision.

3 METHOD
The Crowd Mapping method proposed in this paper is organized in
three sequential steps, elaborated in Algorithm 1: (1) initialisation,
(2) Crowd Mapping, and (3) geo-location prediction. The algorithm
takes as input a set of n streets ST = {st1, st2, · · · , stn } pertaining
to an urban area of interest. Streets are partitioned into segments,
where S (st ) = {s1, s2, · · · , sl } is the set of segments of a given
street st ∈ ST , and US = {S1, S2, · · · , Sn } is the set of all street
segments. The set E = {e1, e2, · · · , em } defines all the physical
objects of a given type that are present in the targeted area; in
the scope of our work, each object e = (lat , lnд) is described by
the World Geodetic System (WGS) coordinates of its lat and lnд.
We define xs the density2 of urban objects contained in a street
segment s ∈ US ; X (st ) = {x1,x2, · · · ,xl } is the corresponding set
of segment densities in a street st ; and UX = {X1,X2, · · · ,Xn } is
the universe of all sets densities.

Algorithm 1: The proposed Crowd Mapping method

Input: all the streets ST , workersW , and budдet .
Output: estimated physical elements of a given type Ê

// Step 1: Initialization

1 US ← Seдmentation(ST ) ;
2 T ← InitTaskGeneration(US ) ;
// Step 2: Crowd Mapping with Street Level Imagery

3 while budдet > TaskMaximumCost () ∨T = ∅ do
4 w ← GetNewWorker (W );
5 t ← TaskAssiдnment (T ,w );
6 A← A ∪AnnotationU I (w, t );
7 budдet ← budдet −TaskCost () ;
8 T ← T − t ;
9 Ê,UX̂ ← Aддreдation(A);

10 HPS ← SeдmentSchedulinд(US ,UX̂ );
11 T ← T ∪TaskGeneration(HPS ) ;
12 end

// Step 3: Geolocation Prediction

13 Ê ← Ê ∪GeoLocationPrediction(Ê,HPS , ST );

Given ST , a setW = {w1,w2, · · · ,wi } of available crowd work-
ers, and a budдet , the goal of our method is to calculate: (1) the
set Ê = {ê1, ê2, · · · êm } of estimated physical objects; and (2) the
setUX̂ = {X̂1, X̂2, · · · , X̂n } of estimated segments density. Indeed,

2With a slight abuse of terminology, we refer to density as to the normalized number
of objects in a given street segment.

|Ê ∪ E | , |E |, as the crowd mapping activity could miss existing
objects, or produce non existing ones, due to crowd mapping issues.
Conversely, all X̂n are estimated.

The first step, Initialisation, segments each street within
ST according to a defined segmentation policy (e.g. streets are
split in segments of at least 50 meters), to create the set US =
{S1, S2, · · · , Sn } of street segments. Here each s ∈ Sn is a unit of
work. The initial set of crowd tasks T = {t1, t2, · · · , tj } is then cre-
ated, where each task t contains one or more segments fromUS that
are selected and aggregated according to an initial task generation
strategy (e.g. include one random segment from each street).

The Crowd Mapping step, executed until either budдet is avail-
able or T = ∅, involves the creation of the object annotations set
A = {a1,a2, · · · ,aj } through a Web interface. An annotation a ∈ A
is a bounding box drawn on a street-level image by a worker w .
Annotations are aggregated by means of an aggregation function
that progressively populates the set Ê, and the setUX̂ for the con-
sidered segments. The details of the annotation user interface and
aggregation strategies are described in Section 4. As segments get
annotated, new tasks are created by a Segment Scheduling strategy,
which establishes the priority of all pending segments into a pri-
ority queue HPS that is then used to generate new tasks. A Task
Assignment strategy distribute tasks to available workers. Section 5
describes the segment scheduling and Task Assignment strategies.

The final Geo-location Prediction step enriches the set Ê
by predicting the location of urban objects in segments that are
not annotated by crowd workers. This could be done by using
the density information acquired from the second step, including
measured or estimated segment densities, and the location of objects
in nearby segments. The adopted geo-location prediction method
heavily depends on the targeted urban object, as the regularity of
spatial distribution varies significantly among different objects (e.g.
street trees and lamp posts are usually more regularly distributed
than trash bins). We describe a prediction method in Section 6,
where we elaborate on the use case addressed in the experiments.

4 CROWDMAPPING OF URBAN OBJECTS
WITH STREET-LEVEL IMAGERY

This section describes the Crowd Mapping step (i.e. Step 2). Section
4.1 describes the Web user interface supporting the annotation of
urban objects using Street-Level Imagery. Section 4.2 and Section
4.3 respectively elaborate on the methods used to geo-locate and
aggregate annotations for urban object mapping.

4.1 User Interface
Figure 1 presents the Web user interface for object annotation. The
top-left panel renders the Street-Level Imagery (SLI) exploration
widget; the worker can virtually visit an urban area of interest by
navigating between bubbles [16], i.e. 360◦ panoramas that provide
a photorealistic impression of an area as seen from a given view-
point. The user can pan and zoom inside the bubble, and move
towards contiguous bubbles. The ANNOTATE button activates
the object annotation interface, described below. The bottom-left
panel contains a map of the area under analysis, with the segments
pertaining to the current annotation tasks masked. Visual clues
provide the workers with an indication of the explored bubbles

1523



Google Street
View.  
The worker can
explore the
targeted area
using this panel.

ANNOTATE
Button.  
After the worker
clicks this button, 
the bounding-box
drawing tool will be
enabled. The
worker can then
draw the bounding
box on the object.

Top-down Map. 
It indicates the
whole targeted
area, explored
area, current
location and
heading.

List of
Annotations. 
It shows all the
objects that have
been annotated
by the worker. 
The worker can
review the result,
locate an object to
edit (re-draw) the
bounding box, or
remove an object. 

SUBMIT Button. 
After the worker
clicks this button, 
the result will be
sent to the sever. 

Segment
Switching
Buttons for
switching the
working street
segment 

Progress Bar for showing the task progress. Task Description for briefly introducing how to finish the task. 

Figure 1: Urban Object Annotation Web interface. In the example, workers are asked to annotate street trees.

(a) Choose the bottom of the tree. (b) Draw a bounding box. (c) If the bottom is blocked, the
worker should estimate where it is.

Figure 2: Object Annotation Procedure.

(red footprint dots), and of the location of the provided annotations
(green annotation dots). The bottom panel contains a task descrip-
tion, a task progress bar, and commands to teleport to the previous
or next segments to analyze. The right panel lists all the objects an-
notated in the current task, and allows the workers to teleport back
in the same bubble where the annotation has been made. Finally,
the SUBMIT button finalizes the task. The interface supports
different SLI and map services, including Google Street View.

The annotation interface is central to the mapping task, as it
allows for the estimation of an object’s geo-location. We assume an
object’s coordinates to indicate the centroid of its bottom surface.
As we show later, this is a precondition for geo-location estimation.
Workers are asked to draw the bounding box as described in Figure
2, according to the following steps: (1) Position the mouse pointer
at the center point of the object’s bottom surface. If this point is
not obvious or occluded by other objects, workers should estimate
the position of the point. (2) Click and drag the mouse upwards to
draw a symmetrical box that bounds the object.

Figure 3: Estimation of the distance between the observation
viewpoint and the object’s center (a) and geo-location (b).

4.2 Linking Individual Crowd Annotations to
Geo-Locations

Street-Level Imagery is typically acquired by vehicles (e.g. cars
and bicycles) equipped with 360◦ image acquisition devices. The
geo-location of a bubble (i.e. the virtual observation viewpoint) cor-
responds to the geo-location of the vehicle at the image acquisition
time, as acquired by a GPS device. As shown in Figure 3(a), the dis-
tance d between the bubble geo-location and the geo-location of the
annotated object can be calculated using h/ tan(90◦ − θpitch − α ),
where h is the height of the camera installed on the acquisition
vehicle. The pitch angle θpitch (i.e. the up or down angle of the cam-
era) is one of the essential parameters of a street-level panorama
image. The angle α and β (in Figure 3(b)) are the angles between
the central ray of camera and the ray casting to the bottom of the
object in vertical and horizontal plane respectively, which could
be estimated from the relative position of the bounding box on the
Street View panel.

1524



Figure 3(b) shows how the geo-location of an object could be
estimated, using the calculated distance, and the θheadinд could be
acquired from parameters of the panorama image. Then, assuming
the current latitude and longitude of the observation viewpoint
are (latcam , lnдcam ), the relative Cartesian coordinate (rxa , rya )
(if the coordinate origin is the location of camera) of an annotation
a can be calculated as:




rxa = Cx
a h,

rya = C
y
ah,




Cx
a =

cos (90◦−θheadinд−β )
tan (90◦−θpitch−α ) ,

Cy
a =

sin (90◦−θheadinд−β )
tan (90◦−θpitch−α ) .

(1)

where Cx
a and C

y
a are coefficients of the parameters (such as

heading, pitch, etc.) of the annotation a, and the arc length of each
degree of latitude is approximately L = 111300 meters. The WGS
coordinate of the annotation a can then be calculated as:




lata = latcam + rya/L,
lnдa = lnдcam + rxa/[L cos (latcam )].

(2)

Camera Height Correction. The height h of the camera is the
only parameter that could not be measured nor estimated from
the user interface. In the case of Google Street View, online doc-
umentation suggests that the height of the camera is around 8.2
feet3. We however account for different acquisition configurations,
and for differences in altitude between the street and the object’s
bottom surface. The camera height might also be inconsistent due
to different vehicles and different acquisition time. Therefore, we
estimate an optimal camera height to minimize the measurement
error. High accuracy annotations can be acquired for the set of
objects SE ∈ E, and the relative Cartesian coordinate (rxe , rye ) of
the exact location of the urban object e ∈ E can be expressed as:




rxe = L(lnдe − lnдcam ) cos (latcam ),

rye = L(late − latcam ).
(3)

Having the Cartesian coordinates of all the real objects in the
sample set SE and the corresponding high-quality annotations, the
camera height correction minimizes the distances between these
pairs (e,ae ). Specifically, the following cost function indicating the
mean square error should be minimized:

J (h) =
∑
e∈SE

{[rxe − rxae (h)]
2 + [rye − ryae (h)]

2 }. (4)

After differentiation, the corrected camera height is:

ĥ =
∑
e∈T (rxeCx

ae + ryeC
y
ae )∑

e∈T (Cx
ae

2 +Cy
ae

2
)

. (5)

4.3 Aggregation of Crowd Annotations for the
Location Estimation of Urban Objects

To improve the quality of the estimation, the same object is anno-
tated multiple times, possibly by different crowd workers. While
each single annotation might be imperfect – as well as its geo-
location estimation – it is reasonable to assume that different labels
for the same object will be distributed around its centroid, and that
the location of the object should correspond to the highest den-
sity of annotations. Traditional density-based clustering algorithms
3A Glimpse of Google’s Fleet of Camera-Equipped Street View Cars. https://petapixel.
com/2012/10/15/a-glimpse-of-googles-fleet-of-camera-equipped-street-view-cars/

such as DBSCAN are sensitive to a density threshold parameter.
We use the clustering algorithm proposed in [30] and extend it to
account for the quality qualityw of the worker that performed the
aggregation. In Algorithm 2, the density ρ of objects is first cal-
culated (Lines 1–3). The function dis (a,a′) calculates the distance
between the estimated geo-locations of a and a′, and it is used to
estimate the minimum distance δa between the annotation a and
any other annotation with higher density (Lines 4–6). Finally, the
location of all objects Ê is calculated by selecting annotations whose
δa is larger than the minimum threshold δmin (Lines 8–14).

Algorithm 2: Geo-location aggregation algorithm

Input: all annotations A, the minimum distance threshold
between trees δmin , radius r = δmin/2 for calculating
density

Output: estimated geo-locations Ê

1 for each annotation a ∈ A do
2 ρa ←

∑
a′∈A:dis (a,a′)<r qualitywa′ ;

3 end
4 for each annotation a ∈ A do
5 δa ← mina′∈A:ρa>ρa′ {dis (a,a

′)} ;
6 end
7 Ê = ∅;
8 for each annotation a ∈ A do
9 if δa > δmin then

10 lat ←
∑
a′∈A:dis (a,a′)<r qualitywa′ lata′/ρa′ ;

11 lnд ←
∑
a′∈A:dis (a,a′)<r qualitywa′ lnдa′/ρa′ ;

12 Ê ← Ê ∪ (lat , lnд);
13 end
14 end

5 SEGMENT SCHEDULING AND TASK
GENERATION

To maximize the coverage and quality of estimation within budget
constraints, street segments must be scheduled, aggregated in tasks,
and assigned to crowd workers.

5.1 Segment Scheduling
The Segment Scheduling (Algorithm 1, Line 10 ) operation is re-
sponsible for the prioritization of segments to be allocated to crowd
masking tasks. Scheduling is logically organized around a priority
queue (heap) data structure, which orders segments to be analyzed
according to their priority. Segments with the highest priority are at
the head of the heap and are, therefore, selected first. Prioritization
is generally related to the likelihood of the successful prediction of
object densitiesUX̂ , while simultaneously optimizing budget con-
sumption. Such likelihood is assumed to be unknown in advance
andmust, therefore, be calculated dynamically from the annotations
produced by crowd workers on processed segments.

We define AS = {as1,as2, · · · ,asla },AS ∈ S as the set of seg-
ments that have been already annotated by crowd workers; PS =
{ps1,ps2, · · · ,pslp }, PS ∈ S is the set of segments yet to be anno-
tated. Clearly, AS ∩ PS = ∅, AS ∪ PS = S . Considering spatial
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dependence, deriving from Tobler’s first law of geography [32], we
assume that it is more likely for adjacent street segments to feature
a similar amount and configuration of urban objects. It is therefore
possible, with some degree of uncertainty, to walk a street in a given
direction and build a density model for that street. In other words,
we can assume that the probability of the object density of a street
segment depends on the object density of its previous segment. We
can easily calculate the density of the segment as ∈ AS using the
estimated objects Ê. The question is how to predict the missing
density of the segment ps ∈ PS .

Our solution, calledMaximum Likelihood (ML) of density pre-
diction is inspired by the Greedy-based Minimization Entropy al-
gorithm [14]. We model the object density of street segments as a
Markov model. X̂ = {x̂1, x̂2, · · · , x̂l } is the set of object densities of
all segments in S . The probability of object density x̂ of a segment
s is a function of the object density x̂ ′ of the previous segment s ′,
which is denoted as p (x̂ ′, x̂ ). When the densities x̂σ and x̂τ of two
segments (sσ and sτ ) from the same street are calculated, it is there-
fore possible to estimate the density of the other segments located
between them. Thus, the problem is to find the most likely density
sequence X̂σ→τ = {x̂σ+1, x̂σ+2, · · · , x̂τ−1}. The estimated density
is x̂ = k/lenдth, x̂ ∈ X̂σ→τ , where k ∈ K = {0, 1, 2, · · · ,kmax } is
the possible amount of objects and lenдth is the length of the street
segment s ∈ S . kmax is the maximum possible amount of object,
which is used for limiting the estimation range.

The optimal density sequence is efficiently calculated with dy-
namic programming. Let Ds,k record the maximum likelihood of
the sequence (the product of all the transition probabilities) from
the crowd-annotated density x̂σ = kσ /lenдth to a possible density
x̂s = k/lenдth,σ < s < τ . The final goal is to maximize Dτ ,kt and
estimate the most likely sequence X̂σ→τ = {x̂σ+1, x̂σ+2, · · · , x̂τ−1}.
Ds,k can be calculated using the following equations (here s ′means
the previous segment of s):




Dσ ,kσ = 1,
Ds,k = maxk ′∈K {p (k ′,k )Ds ′,k ′ }

(6)

Algorithm 3 describes how the most likely sequence is finally
calculated. During the process of predicting the density of pending
segments, the likelihood π of optimal prediction of the street can
be calculated by the following equation:

π =
∏

s ∈AS :s ′∈PS
Ds ′, x̂ ′s lenдth (7)

For each street, the scheduling strategy calculates the priority of
segments by first calculating the product of likelihood of the optimal
prediction of all streets, which is denoted as

∏
π . Then, we use the

predicted density x̂ of the pending segment as “true” analyzed data,
and take it together with the density values of analyzed segments
AS to re-calculate the product of likelihood of the optimal prediction
of all streets, which is denoted as

∏′
π . The final segment priority

is then determined as priority =
∏′

π −
∏

π .

5.2 Task Generation
Task generation is performed 1) at task initialization time (Algo-
rithm 1, Line 2), when no prior information about the distribution
of urban objects is available; and 2) at run time (Algorithm 1, Line

Algorithm 3: Dynamic programming. Find the most likely state
sequence
Input: Initial density xσ = kσ /lenдth and xτ = kτ /lenдth,

the set of possible number of objects
K = {0, 1, 2, · · · ,kmax }, transition probability function
p

Output: the most likely density sequence
X̂σ→τ = {x̂σ+1, x̂σ+2, · · · , x̂τ−1}

1 Dσ ,kσ ← 1 ;
2 for each s ∈ {σ + 1,σ + 2, · · · ,τ } do
3 for each k ∈ K do

// s ′ means the previous segment of s.

4 Ds,k ← maxk ′∈K {p (k ′,k )Ds ′,k ′ } ;
// Variable pre records the sequence.

5 pres,k ← argmaxk ′∈K {p (k ′,k )Ds ′,k ′ } ;
6 end
7 end
// Get the most like sequence using pre.

8 k = preτ ,kτ ;
9 for each s ∈ {τ − 1,τ − 2, · · · ,σ + 1} do

10 x̂s ← k/lenдth ;
11 k ← pres,k ;
12 end

11), after segment scheduling. We employ a street-based initializa-
tion strategy where, for each street, the first and the last segments of
streets are first selected. At run-time, tasks are selected by drawing
street segments from the heap, as shown in Figure 4.

As tasks are typically published in batches having the same
monetary compensation for workers, it is important to balance the
total amount of time needed to complete a task. Segments might
have variations in length; their explorationmight, therefore, require
different amounts of time. Similarly, segments contain a varying
amount of objects to be annotated. We, therefore, introduce the
notion of segment workload, which is defined as follows:

workload = lenдth +w · x̂ · lenдth, (8)
wherew is used to balance the effort needed for exploration (that

is proportional to the segment length), and the effort needed for
annotation, which is proportional to both the segment length and
the estimated amount of objects in it. In a set of preliminary experi-
ments conducted with crowd workers of the FigureEight4 platform,
we found that the average time needed for object annotation (8.05
seconds) is 2.5 times longer than the time needed for exploration
(3.20 seconds per meter). We therefore setw = 2.5. At task initial-
ization, when no prior information is available about the density
of objects, the workload is calculated only using segment length
information.

Segments are, therefore, included in tasks in a greedy fashion,
until the sum of their workload reaches a predefined minimum
value that is proportional to the targeted total task execution time
and compensation.

4https://www.figure-eight.com
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5.3 Worker Quality-Aware Task Assignment
A task includes several street segments. To acquire annotations for
the same street segments and objects, tasks are assigned to multiple
workers. The quality of incoming workers is assessed through an
initial evaluation task.
Worker Quality Evaluation. After reading the task instructions,
the worker is offered an assessment task to perform on segments
and objects with known geo-location. The quality of the worker
is assessed according to three properties: the annotation recall (R),
precision (P ), and root mean square error (RSME):

R =
# of annotated objects

# of objects in assessment
P =

# of correct annotations
# of annotations of the worker

RMSE =

√∑
(distance from groundtruth annotations)2

# of correct annotations
We consider an annotation to be correct if its distance from the

targeted objects is lower than a given threshold . The worker quality
score is evaluated by synthesizing these three properties as:

quality score = (1 − RMSE/threshold ) + r ecall + precision (9)

Task Assignment Strategies. We consider two strategies.
Single-queue Assignment Strategy. This task assignment strategy

is commonly used in microtask crowdsourcing. Tasks are pushed in
an execution queue, and then served to workers according to their
order of arrival (Figure 5). Tasks are de-queued when the number
of required workers is reached.

Multi-queue Assignment Strategy. The final annotation quality
can be significantly affected by the performance of their workers.
Previouswork [36] suggests that the overall quality can be increased
by assigning workers with different quality levels, while keeping
the average worker quality of each task as high as possible. Inspired
by the finding in skill-and-stress-aware assignment [19], the Multi-
queue Assignment Strategy divides workers into three groups (low,
medium and high) by ranking them according to their quality score,
and equally splitting the rank in three groups.

Themultiple-queue strategy builds three tasks queue correspond-
ing to three quality levels. After evaluating the quality level of the
worker, the task at the head of queue of the same quality level will
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Worker Worker 
(high skill-level) 

9/10
Task 1 

Task 1 

Task 2 

Task 2 

dequeue 

Worker Worker 
(low skill-level) 

2/10
Task 1 

Task 1 

Task 2 

Task 2 

Empty - add a new task.

enqueue

enqueue

Task Queues

Tutorial 
(Quality Evaluation) 

Task Queues

(a)

(b)
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Figure 6: Multi-queue Task Assignment Strategy.

be de-queued and assigned to the worker (Figure. 6 (a)). If there is
no task in the queue of the same quality level as worker’s, a new
task will be generated and assigned to the worker. Meanwhile, this
task will be queued into the other two queues, waiting for being
assigned to workers with different quality levels (Figure. 6 (b)).

6 EXPERIMENTAL SETUP
We conducted a number of experiments to investigate: (RQ 1) to
what extent can the designed interface, geo-location annotation,
and aggregation algorithms lead to correct and complete maps of
urban objects when operated by crowd workers from micro-task
crowdsourcing platform; and (RQ 2) to what extent the proposed
segment scheduling and task assignment strategies can provide
correct and complete maps within budget constraints. In this sec-
tion, we provide details on the case study, the adopted datasets,
experimental configuration, and evaluation metrics.

6.1 Case Study: Mapping Street Trees
Urban green infrastructure (e.g. street trees, parks etc.) is an integral
set of physical objects and elements comprising the urban fabric
[15] [6]. Trees have obvious ecological benefits in terms of air
quality and heat regulation, and further contribute to defining the
“character” of an urban area. It is therefore important to regularly
record information about their location, properties (e.g. tree type),
and status for maintenance and planning purposes. American cities
such as NewYork5 and San Francisco6 have tree census projects that
are run in collaboration, between the municipalities and volunteer
organizations. The municipality of Amsterdam, began to record
the information about trees since 1875.7 Although of significant
value for cities and communities, tree mapping is still a tedious and
expensive task to perform.

6.2 Cities and Datasets
The experiments focus on two regions of two world cities [7], re-
spectively New York City’s Manhattan borough, and the area of
Amsterdam that is defined by the ring of the A10 highway. We re-
trieve information about the street networks from OpenStreetMap8,
excluding pedestrian ways, bicycle ways, and other similar types

5https://tree-map.nycgovparks.org
6https://urbanforestmap.org
7www.amsterdam.nl/bomen
8https://www.openstreetmap.org/. We selected streets whose tag is motorway, trunk,
primary, secondary, tertiary, residential or unclassified.
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of streets for which associated street-level imagery might not be
available. Ground truth data about the location of trees have been
collected from the New York City Street Tree Map project9 and the
official trees dataset from the municipality of Amsterdam.10

We removed from the ground truth datasets trees that are at a
distance larger than 30 meters from the street’s mid-line, to heuris-
tically exclude trees that could belong to parks or other public
spaces (e.g. squares). Table 1 provides basic statistics on the number
of streets and the total number of urban trees in the considered
datasets. While these datasets are extensive, they are difficult to
maintain and can contain errors. The Google Street View panel
has been configured to display the latest available version of SLI.
We acknowledge the likely presence of temporal mismatches be-
tween SLI acquisition time and the dataset update. We address the
issue when manually refining the set of street segments used in
RQ1 (Section 7.1). However, we ignore such inconsistencies in the
experiments addressing RQ2, considering the emerging differences
negligible in the context of the experimental goal.

Table 1: Dataset Statistics on the Two Areas of Interest.

# Urban elements and objects Manhattan Amsterdam

# Streets 4081 9084
# Trees 57499 88512

# Segments 18676 23974
Segment Length (m) 44.60 ± 6.45 39.46 ± 10.81
Segment Tree density (#/100m) 3.15 ± 7.34 5.77 ± 11.75

6.3 Configurations
Our crowd-mapping method has a number of parameters that can
be configured.
Street Segmentation. We set the maximum length of each seg-
ment to 50 meters, to allow for short micro-tasks and reduce an-
notation fatigue. All segments belonging to the same street have
equal length, which is calculated as lenдthst /(⌈lenдthst /50⌉ + 1).
The resulting number of segments is reported in Table 1.
Camera Height Correction. For each city, we manually select 10
segments with abundant vegetation, and accurately annotate the
trees they contain. The locations of these trees are used to estimate
the corrected camera heights, which are set to 1.979 and 1.730
meters in Manhattan and Amsterdam, respectively.
Geo-location Prediction. The last step of the crowd-mapping
method must be customized for the urban object at hand. For the
targeted use case, we designed a simple interpolation method that
predicts the location of trees in non-annotated segments from the
estimated location of objects in contiguous street segments. To
achieve this, we calculate (1) the distance between the centroid
of the tree (on both sides of the street) and the mid-line of the
street, and (2) the distance between the centroids of adjacent trees
in the annotated segments. Based on the corresponding measured
distances of the last trees in the annotated segments, we perform

9https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/
pi5s-9p35. Last update 2015.
10https://maps.amsterdam.nl/open_geodata/. Last update 2017.

the interpolation to estimate the number and location of trees in
the non-annotated parts.
Annotation Task Configuration. The urban object annotation
Web interface has been deployed on the Figure-Eight platform. For
each segment, we collected three judgments. To maximize diversity
in the pool of recruited workers while providing sufficient incen-
tives for participation, we allowed workers to perform a maximum
of three annotation tasks per city. As a quality control mechanism,
workers were allowed to submit the task (and receive compensation)
only if the whole area covered by the task segments was explored,
and if the exploration of each segment lasted at least 60 seconds.
The minimumworkload for each task has been set to 500 (see Sec-
tion 5.2), with an average hourly compensation greater than the
current US minimal wage. In Figure Eight preliminary experiments,
each task contains one segment.

For each city, 50 segments were selected (for RQ1) as follows.
We retrieved the vegetation index for each segment in the street
networks of New York City and Amsterdam from Google satellite
imagery using the vegetation index equation from previous work
[21]. We then performed importance sampling on the segments,
where the frequencies of samples were sorted according to the
vegetation index (importance weight) on the segments. Given that
the vegetation index is measured from satellite imagery, it cannot
fully reflect the amount of trees at the street level. Therefore, we
excluded some street segment that were selected by the sampling
method, but were not compatible with our experimental setup.
These street segments are usually at the outskirts of the areas in
question and contain a large amount of trees that are not included in
the ground truth data set. Eight segments fromManhattan and nine
segments from Amsterdam were, respectively, excluded, resulting
in 42 remaining sampled segments for Manhattan (i.e. 2.2‰of the
total number of street segments, 5.4‰of the total number of urban
trees) and 41 for Amsterdam (i.e. 1.7‰of the total number of street
segments, 3.8‰of the total number of urban trees).

6.4 Evaluation Metrics
We evaluate the performance of crowd workers, annotation aggre-
gation, density prediction, and geo-location prediction against the
ground truth in the selected datasets. We consider an annotation
correct if its distance from the corresponding tree in the ground
truth dataset is equal to or lower than 5 meters.

In terms of density estimation, we measure Density Prediction
(DP ) and Density Mean Square Error (DE) as follows:

DP =
| {s |Density Error = 0, s ∈ S } |

|US |
DE = x̂s −

|Es |
lenдths

(10)

where Es is the set of physical objects (i.e. street trees in this
case) of the segment s . In terms of object geo-location, we measure
Recall (R), Precision (P), and Root Mean Square Error as follows:

R =
# annotated objects

|E |
P =

# of correct annotations
# of all aggregated annotations

RMSE =

√∑
correct annotations (annotation error)2

# of correct annotations
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Figure 7: Performance distribution of FigureEight workers.

7 RESULTS AND DISCUSSION
7.1 RQ1: Crowd Mapping with Street-Level

Imagery
A total of 71 and 63 unique workers (Level 3) from Figure-Eight
selected the annotation tasks for Manhattan and Amsterdam, re-
spectively. On average, N = 44 workers were Somewhat Satisfied
by the task (3.9/5); they were neutral with regard to task difficulty
(2.9/5); they found the instructions and the interface Somewhat
Clear (3.8/5), the quality control Somewhat Fair (3.9/5), and the
compensation Somewhat better than similar tasks (3.8/5).

We manually processed the results. From the Manhattan experi-
ment, we excluded 26 task executions where workers provided no
annotations, or the annotation was of bad quality. In Amsterdam,
9 task executions were excluded for the same reasons. With the
remaining judgments, we split workers into three quality classes
(High, Medium, and Low) of equal size.

Table 2 and Figure 7 show the performance of crowd workers.
The precision, recall, and RSME of high-quality individual workers
are remarkably high. As expected, worker annotation recall and
precision decrease with the worker quality level (high to low) in
both Manhattan and Amsterdam, while RMSE increases. The result-
ing density error is good in general, with larger standard deviation
at lower quality levels. Interestingly, workers in Manhattan have
(on average) a positive density error, whereas the Amsterdam ones
have a negative error. A manual inspection of the worker annota-
tions shows no significant difference between workers of similar
quality. We, therefore, account the issue to the mismatch between
the tree datasets (the latest updated Manhattan dataset is from
2015) and Google Street View imagery. The aggregation method
generally mitigates the impact of low-quality annotations, although
the precision is negatively affected. Workers of lower quality tend
to speed through tasks, but only the difference in exploration time
between the low-quality level and the other two levels in Manhat-
tan is of statistical significance (Wilcoxon rank-sum test, p < 0.1).
Furthermore, the differences in recall, precision, and RMSE across
quality levels are also of statistical significance. Other metrics are
of no statistical significance across all quality levels (p > 0.1).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

de
ns

ity
 p

re
ci

si
on

Manhattan
(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Amsterdam
(b)

RD ML

0 0.2 0.4 0.6 0.8 1
Coverage of annotated segments

0

0.5

1

ag
gr

eg
at

ed
 re

ca
ll

(c)

0 0.2 0.4 0.6 0.8 1
Coverage of annotated segments

0

0.5

1
(d)

Figure 8: Density precision and Aggregated Annotations Re-
call for increasing segment coverage with SQ task assign-
ment strategy.

7.2 RQ2: Segment Scheduling and Task
Assignment

To test the performance of the segment scheduling and task assign-
ment strategies, we simulated the behavior of workers by drawing
their annotation performance (in terms of precision, recall, and
RSME) from the distribution of the workers that participated in
the previous experiment. We fed these distributions to a Discrete
Event Simulation (DEVS) system that mimics the exploration and
annotation behavior of workers of different quality.

When a simulated worker annotates an object, the Precision
similation parameter decides whether the annotation is correct
or not; the error (distance) between simulated annotations and
the object following normal distribution N (0,RMSE), while the
direction of annotation follows a uniform distributionU (0,π ). The
Recall parameter controls the number of correctly annotated objects
in a segment. For each experimental configuration, the simulation
has been run five times.

Segment scheduling strategy. We first test the performance of
the Maximum Likelihood (ML) scheduling strategy (Section 5.1). We
employ the single-queue (SQ) task assignment strategy, and compare
ML against a random segment scheduling baseline, where segments
fromUS are picked randomly. Figure 8 (a) and (b) illustrates how
the density precision increases, with regard to increased annotated
segments – i.e. allocated budдet : 100% of segment coverage can
be achieved with infinite funds. Note that density precision mea-
sures density estimation with zero estimation error. ML can achieve
greater density precision at lower coverage levels. The maximum
performance gain of ML against RD is respectively obtained in at
35% segment coverage, with 35% increase in Manhattan and 22.23%
increase in Amsterdam. Table 3 (µ±σ of five simulation executions)
shows that the average density prediction error also decreases.

Figure 8 (c) and (d), and Table 3 show that ML can provide small im-
provements in terms of predicted tree locations. This is an expected
result, as the Geo-location step implemented in this experiment
does not make use of the predicted segment density.
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Table 2: µ ± σ (average and standard deviation) of recall, precision, RMSE (meter), density error (# of objects per 100 meters), normalized
exploration time (second/meter), and normalized annotation time (second/annotation) of Figure Eight workers.

Parameters Manhattan Amsterdam

High Medium Low Aggregation High Medium Low Aggregation
Recall 0.85 ± 0.15 0.61 ± 0.19 0.33 ± 0.18 0.75 ± 0.33 0.85 ± 0.17 0.64 ± 0.22 0.38 ± 0.21 0.80 ± 0.23
Precision 0.79 ± 0.14 0.66 ± 0.16 0.35 ± 0.18 0.54 ± 0.20 0.96 ± 0.07 0.81 ± 0.17 0.48 ± 0.25 0.68 ± 0.26
RMSE 2.75 ± 0.62 3.41 ± 0.60 3.35 ± 0.80 3.19 ± 0.73 2.26 ± 0.50 2.59 ± 0.74 3.36 ± 0.70 2.74 ± 0.73
Density error 1.28 ± 2.65 1.56 ± 8.32 0.20 ± 8.20 2.16 ± 4.19 −0.97 ± 2.19 −1.71 ± 7.13 −0.53 ± 10.08 −0.39 ± 5.37
Exploration Time 3.55 ± 1.99 3.88 ± 3.05 2.54 ± 1.27 / 2.97 ± 2.03 3.10 ± 2.07 3.21 ± 2.33 /
Annotation Time 8.06 ± 3.66 7.98 ± 5.00 6.48 ± 3.53 / 8.69 ± 5.71 9.25 ± 7.06 7.82 ± 4.70 /

Table 3: µ ± σ density error (# objects / 100m), annotation
precision and RMSE (meter) of predicted annotations, with SQ task

assignment, unlimited budдet

City Strategy Density Prediction Predicted Annotations

Error Precision RMSE

Manhattan RD 1.22 ± 0.05 0.04 ± 0.00 3.51 ± 0.07
ML 1.11 ± 0.02 0.04 ± 0.00 3.51 ± 0.02

Amsterdam RD 0.64 ± 0.03 0.05 ± 0.00 3.50 ± 0.01
ML 0.55 ± 0.03 0.05 ± 0.01 3.51 ± 0.01

Task assignment strategy. We compare the performance of the
multiple-queue (MQ) task assignment strategies against the single-
queue (SQ) baseline. In both cases, we employ the ML scheduling
strategy, and we simulate an unlimited budдet . As the MQ task as-
signment is designed to mitigate the impact of low-quality workers,
we progressively skew the distribution of workers towards the low-
quality end: in MQ2, half of the workers are of low quality, a third of
medium quality, and a sixth of high quality. In MQ3 only low quality
workers are simulated. Results (µ ± σ of five simulation executions)
are summarized in Table 4. While recall remains similar to SQ, the
precision of the aggregated annotations substantially increases, and
the RSME also lowers. Density estimation error and precision also
improve. Table 4 reports the performance variations brought by
lower quality workers. As the proportion of low-quality workers
increases, recall, precision, and RSME progressively worsen. When
half of the worker population is of low quality, the recall (-0.03
and -0.01) and RMSE (+0.05 and +0.03) variations in Manhattan and
Amsterdam respectively are still acceptable, but the precision is
still significantly higher than for the SQ strategy. MQ3 brings more
extreme performance decay, especially for recall. In terms of den-
sity estimation, precision remains generally similar; density error
substantially increases only in the MQ3 configuration.

Table 4: Estimation performance with multiple-queues (MQ)
scheduling strategy, and unlimited budдet .

City Strategy Aggregated Annotations Object Density

Recall Precision RMSE Error Precision

Manhattan SQ 0.87 ± 0.00 0.44 ± 0.00 3.04 ± 0.01 1.71 ± 0.02 0.80 ± 0.00
MQ 0.87 ± 0.00 0.67 ± 0.01 2.89 ± 0.01 0.13 ± 0.01 0.84 ± 0.00
MQ2 0.84 ± 0.00 0.62 ± 0.00 3.09 ± 0.01 0.11 ± 0.03 0.83 ± 0.00
MQ3 0.60 ± 0.01 0.46 ± 0.00 3.46 ± 0.00 −0.54 ± 0.05 0.82 ± 0.00

Amsterdam SQ 0.83 ± 0.00 0.55 ± 0.00 2.36 ± 0.01 1.10 ± 0.04 0.73 ± 0.00
MQ 0.83 ± 0.00 0.87 ± 0.00 2.18 ± 0.01 −0.72 ± 0.02 0.80 ± 0.00
MQ2 0.82 ± 0.00 0.79 ± 0.00 2.39 ± 0.01 −0.69 ± 0.01 0.78 ± 0.00
MQ3 0.71 ± 0.01 0.58 ± 0.01 3.32 ± 0.00 −1.37 ± 0.09 0.74 ± 0.00

7.3 Discussion
RQ1. Results show that the designed user interface and overall an-
notation experience have been positively received by workers. The
task has been perceived as moderately difficult, yet the overall judg-
ment has been positive. The annotation, geo-location estimation,
and aggregation methods also proved reasonably accurate: despite
the approximations introduced by the different technologies (e.g.
the α and β angles estimated through the position of the bound-
ing box, Figure 3), our interface achieved geo-location accuracy
comparable to GPS-enabled smartphones11. A main simplification
in the proposed approach concerns the estimation of the camera
height h (Section 4.2). The difference of the height of the camera
with regard to the terrain level of the targeted object could vary
greatly, thus leading to inaccurate annotation geo-location estima-
tion. Workers of high quality achieved remarkable precision, recall,
and RSME performance. The impact of low quality workers on the
aggregated annotations suggest the introduction of better in-task
quality control mechanisms. Considering the average exploration
and annotation time, the annotation of Manhattan and Amsterdam
would take a total of 4.11 and 5.85 man months, and would cost
33K$ and 46K$ respectively.
RQ2. TheMaximum Likelihood (ML) scheduling strategy allows for
good density prediction and errors, also at low segment coverage
levels.While the performance increase as regards the random sched-
uling strategy is not overwhelming, it is important to notice that the
method is not informed by any prior knowledge about the distribu-
tion of physical objects in the city. We believe that the integration
of third-party data sources in the density prediction could result
in better coverage/recall ratio. On the other hand, we observed
that the prediction performance of the geo-location estimation step
is relatively low. This is neither surprising nor discomforting, as
the developed method is rather simple. The multi-queue task as-
signment strategy brought clear benefits in terms of aggregated
annotation precision, and proved reasonably robust to workers
with lower annotation quality.

8 CONCLUSION
In this paper, we have presented an approach to crowd-mapping
urban objects from street-level imagery. The proposed method is
novel with regard to the combination of an object annotation Web
interface for micro-task crowdsourcing with object density and
geo-location inference methods. Task scheduling and assignment
strategies provide increased performance in terms of cost/quality

11https://www.gps.gov/systems/gps/performance/accuracy/
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ratio. Through a use case pertaining to the mapping of urban green-
ery along streets, we have demonstrated the feasibility of the ap-
proach, showing very good annotation, geo-location estimation,
and aggregation figures, and promising object density prediction
performance. This work is only the first step towards a better un-
derstanding of how crowd-mapping with street-level imagery can
provide accurate and economic object annotation data. In future
work, we plan to improve the density and object geo-location esti-
mation methods by incorporating third-party sources (e.g. greenery
indexes) and machine learning techniques for object identification.
We believe that active learning techniques and hybrid workflows
could lead to more accurate and cheaper annotations. Finally, we
aim to extend our experiments to other cities and classes of objects.
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