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Abstract: This paper addresses the dynamic response of an infinitely long 

cylindrical structure embedded in an elastic half-space. The structure has a circular 

cross-section and its axis is parallel to the half-space surface. Excitation can be 

incident body waves or forces applied on the surface of the half-space and/or the 

structure. The model can be used to assess the integrity of structures when acted 

upon by seismic waves, to predict ground-borne vibration due to circulation of 

vehicles, and to infer about the safety of vehicles during earthquake events. Because 

the half-space and the structure surfaces possess different symmetries, the solution 

is not straightforward. In order to circumvent this difficulty, the physical domain is 

conformally mapped onto an auxiliary domain with a cylindrical symmetry, in 

which the free surface of the half-space and the surface of the structure are located 

at concentric cylindrical surfaces. The solution of the original boundary value 

problem is finally obtained by solving a set of algebraic equations. Truncation of the 

summation over circumferential modes is needed in the numerical implementation. 

Convergence tests, validations and comparisons of stresses and motions for two- 

and three-dimensional cases are presented and discussed as well as the advantages 

and disadvantages of the proposed method. Additionally, the effect of the presence 

of the tunnel is analysed by considering a limiting case of the half-space with just a 

cylindrical cavity of the same radius as the outer radius of the tunnel. 

 

Keywords: Three-dimensional wave propagation; dynamic soil-structure 

interaction; underground structure; conformal mapping; steady-state dynamic 

response; semi-analytical solution 

1. Introduction 

The study of wave propagation in elastic solids has been of interest in seismology 

and civil engineering for a long time. Given the fact that more underground 

facilities (for instance, lifelines and tunnels) need to be designed and constructed 

with the development of the modern world, it is important to investigate the 

dynamic response of underground structures to either earthquake excitation or other 

dynamic loads if applicable. A detailed review of the earthquake response and 

seismic-resistant design of underground pipeline systems was presented by Ariman 

and Muleski [1]. The existing methods to solve the wave scattering problem by 



 

different types of inclusions embedded in a full space or a half-space were reviewed 

by Stamos and Beskos [2]. The advantages and disadvantages of each method were 

discussed in detail. 

The studies on three-dimensional wave scattering by inclusions are much less 

numerous than those on the two-dimensional ones. In this paper, a solution to the 

problem of the three-dimensional wave scattering by an infinitely long underground 

structure with a circular cross-section embedded in an elastic half-space is 

presented. 

Special attention is paid to a comparison of the obtained results with those of the 

previous works dealing with the same type of underground structures as in this 

paper. Luco and de Barros [3] investigated the two-dimensional response of a 

viscoelastic half-space containing a buried infinitely long cylindrical cavity of 

circular cross-section subjected to harmonic plane SH, P, SV and Rayleigh waves 

by using an indirect boundary integral method based on two-dimensional Green’s 

functions for a viscoelastic half-space. They also obtained the three-dimensional 

response of an infinitely long cylindrical shell of circular cross-section embedded in 

a layered viscoelastic half-space and subjected to harmonic waves impinging at an 

oblique angle with respect to the longitudinal axis of the shell [4, 5]. The procedure 

employed in the latter references combines an indirect integral representation for 

the field in the exterior half-space with a model of the pipeline or tunnel based on 

the Donnell shell theory. The integral representation for the soil is based on the use 

of the so-called moving Green’s functions for the layered viscoelastic half-space. In 

the paper [5], the authors validated the accuracy of the proposed method by 

extensive comparisons with the work by Wong et al. [6] who used the cylindrical 

eigenfunctions method and the work by Liu et al. [7] who used the boundary 

integral representation and finite element method for the three-dimensional cases. 

They also compared their results with those presented by Datta et al. [8] who 

employed a hybrid technique combining a finite element method with the 

eigenfunction expansion, Balendra et al. [9] who applied the method of wave 

function expansion and the image technique, Wong [6], and Liu [7] for the 

two-dimensional cases. 

In this paper, a semi-analytical method is proposed to calculate the scattering of 

elastic waves by an infinitely long cylindrical structure of circular cross-section 

embedded in an linearly elastic, isotropic and homogeneous half-space. The method 

can be considered to be a straightforward extension of the method used to solve the 

two-dimensional scattering problems of P, SV, Rayleigh waves [10] and SH waves 

[11]. 

When the scattered waves from the underground structure (tunnel) impinge on 

the half-space surface, a secondary reflected wave field is generated (the primary 

reflected wave field is generated directly by the incident plane wave that excites the 

system). In the spirit of the image technique [12], the latter are sought for in the 

form of cylindrical waves that are generated by an imaginary source of an apriori 

unknown intensity placed at the image point that is positioned symmetrically to the 

centre of the tunnel with respect to the half-space surface. One of the aims of this 

paper is to evaluate the contributions of the wave field directly scattered by the 

tunnel and the secondary reflected wave filed on the dynamic response of the 



system at the half-space surface and at the half-space interface with the tunnel. 

Different circumferential modes are taken into account in this evaluation and 

various convergence tests are presented. The hoop stresses and motions at the 

interface with the tunnel as well as the ground surface motions are also analysed for 

two- and three-dimensional cases in order to investigate the effects of the dimension 

and the presence of the tunnel on the system response. 

2. Statement of the problem 

Fig. 1 defines the problem to be analysed: an infinitely long cylindrical tunnel with 

a circular cross-section, whose axis is parallel to the half-space surface, is subjected 

to plane harmonic body waves of arbitrary propagation direction, which results in a 

three-dimensional problem. The materials of both the half-space and the tunnel are 

assumed isotropic and linearly elastic, and characterized by the Lamé parameters 

i , 
i  and densities 

i  (the subscripts 1,2i   refer to the half-space and the 

tunnel, respectively). The centre of the tunnel (
1o ) is at depth h  beneath the 

half-space surface. 
2o  is the image point that is positioned symmetrically to the 

centre of the tunnel with respect to the half-space surface. 
IR , 

OR  and 
CR  stand 

for the inner and outer radii of the tunnel, and the centre line of the tunnel, 

respectively. To aid in the mathematical description of the different waves, six 

reference systems are represented: the global Cartesian ( xyz ) and cylindrical 

( xr ) coordinate systems, the local Cartesian (
1 1xy z ) and cylindrical (

1 1xr ) 

coordinate systems centred at the tunnel, and (
2 2xy z ) and (

2 2xr  ) originated at the 

image of the tunnel. Anti-clockwise is defined as the positive direction in the 

cylindrical coordinate systems. 

The time dependence of the incident plane harmonic wave and the response of 

the system to this wave are assumed to be harmonic and proportional to 
i te 

, 

where i 1   is the imaginary unit and   is the angular frequency of the wave. 

In what follows, the factor 
-i te 

 will be dropped from all the expressions for brevity. 

The angle between the incident wave direction and the vertical axis z  is 
v  (see 

Fig. 1 (b), 0v   for vertical incidence). The horizontal projection of the 

propagation direction on xoy  plane forms an angle 
h  (see Fig. 1 (c)) with the x  

axis. The regions 
1  and 

2  refer to the domains of the soil medium and the 

tunnel, respectively. 
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Fig. 1  (a) The cross-section of the model; (b) The vertical incident angle; (c) The horizontal 

incident angle 

2.1. Governing equations 

In the absence of the body forces, the equations of motion in the mediums in terms 

of the displacement vectors 
iu  can be written as 

 

   2

i i i i i i i      u u u   (1) 

 

Substituting the Helmholtz decomposition i i i  u     into the governing 

equation Eq (1), we obtain two uncoupled scalar and vector potential Helmholtz 

equations: 

 

 
2 2 0i pi ik    (2) 

 2 2 0i si ik     (3) 

 

where i  and i  are the compressional and shear wave potentials, respectively, 

/pi pik c  and /si sik c  are the compressional and shear wavenumbers, 

respectively, and  2 /pi i i ic      and /si i ic    are the velocities of 

the compressional and shear waves, respectively. 

The vector wave potential i  is chosen to satisfy the gauge condition 



0i   , therefore, only two of the three components of 
i  are independent. 

Correspondingly, Eq. (3) can be reduced to two uncoupled scalar Helmholtz 

equations [13, 14] 

 

 2 2 0i si ik    (4) 

 2 2 0i si ik    (5) 

 

by defining the vector wave potentials
i  as 

 

 
1 2ii i i     (6) 

 1 2

1
( )i

i i x

si

e
xk





 


   (7) 

 2

1
( )i i x

si

e
k

    (8) 

 

in which xe is the unit vector along x  axis. 

The displacement fields are written in terms of the scalar wave potentials i , 

i  and i  as 

 

 
2

2

2

1
( )i i

xi si i

si

u k
x k x

 


 
  
 

 (9) 

 
2

1i i i

yi

si

u
y z k x y

    
  
   

 (10) 

 
2

1i i i

zi

si

u
z y k x z

    
  
   

 (11) 

 

The stress components can be derived by the Hooke’s law [15]. The displacement 

vector u  and stress tensor  , where the subscript i  is omitted for brevity, can be 

further written in the cylindrical coordinate system defined as cosy r   and 

sinz r   according to the linear transformation 

 

 

1 0 0

0 cos sin

0 sin cos

x x

r y

z

u u

u u

u u

    
           
          

 (12) 

 

1 0 0 1 0 0

0 cos sin 0 cos sin

0 sin cos 0 sin cos

xx xr x xx xy xz

rx rr r yx yy yz

x r zx zy zz





  

     

     

     

      
                 
                

(13) 



 

 

This transformation is instrumental for description of the cylindrical displacements 

and stresses at the tunnel surfaces. 

2.2. Boundary conditions 

The method presented in this paper is general. It can be applied to analyse the 

dynamic response of the tunnel embedded in a half-space to either external dynamic 

forces or seismic waves. Considering the problem of vehicles moving either along 

the half-space surface or through the tunnel, external traction vector are acting 

either on the half-space surface ( 1 [ , , ]ext

zz zy zx   ) or on the inner surface of the 

tunnel ( 2 [ , , ]ext

rr r rx   ). The boundary conditions considering, for generality, 

both of the above excitations are written as 

 

 1

1 1 1[ , , ] ,                                                  0ext

zz zy zx z      (14) 

 2

2 2 2 1[ , , ] ,                                                 ext

rr r rx Ir R      (15) 

 

If only the incident harmonic plane wave excites the system, the external stresses 

acting on the half-space surface and the inner surface of the tunnel will vanish, 

resulting in the traction-free boundary conditions at these surfaces. 

We assume that the contact condition between the soil medium and the tunnel is 

perfect. This implies that there is neither partial nor full slip motion at the 

soil-tunnel interface and there is also no separation at the soil-tunnel interface along 

normal direction, which results in continuity conditions of all tractions and 

displacements. The equilibrium of the tractions and compatibility of the 

displacements at the soil-tunnel interface can be written as 

 

 1 2 1 2 1 2 1, ,  ,                                rr rr r r rx rx Or R           (16) 

 1 2 1 2 1 2 1, , ,                                          r r x x Ou u u u u u r R      (17) 

 

To demonstrate the merit of the proposed method, in what follows, we consider 

a harmonic compressional wave as external excitation. 

3. Solutions of the governing equations 

In this section, the obtained solutions of the governing equations using the method 

of separation of variables are given in the Cartesian and cylindrical coordinate 

systems [13]. These solutions are used to construct the complete wave field in the 

system [15]. 



3.1. The incident and the primary reflected waves 

In the absence of the underground structure in the half-space, the wave field is the 

sum of the incident ( i ) and the primary reflected wave fields ( r , r , r ): 

 

 1i i i

0
x y pzk x k y k zi e 
 

  (18) 

 1i i i

0
x y pzk x k y k zr A e 
 

  (19) 

 1i i i

0
x y szk x k y k zr B e 
 

  (20) 

 1i i i

0
x y szk x k y k zr C e 
 

  (21) 

 

with 
0  the amplitude of the incident compressional wave, A , B  and C  the 

unknown coefficients of the primary reflected waves r , r  and r , respectively, 

1/ sin( )cos( )x p v hk c     and 1/ sin( )sin( )y p v hk c    the wave numbers 

along x  and y  axis, respectively, 
1pc  the velocity of the incident wave, 

2 2

1 1pz pk k k   and 2 2

1 1sz sk k k   the wave numbers of the compressional and 

shear waves along z  axis in the soil medium, respectively, 
2 2 2

x yk k k  . The 

unknown coefficients A , B  and C  can be determined by satisfying the traction 

free boundary conditions at the half-space surface. 

3.2. Wave fields generated due to the presence of the tunnel 

Due to the presence of the tunnel, the scattered compressional and shear waves are 

generated at the outer surface of the tunnel; they are denoted as 11

s , 11

s , 11

s , 

respectively. When these scattered waves impinge on the half-space surface, a 

secondary reflected wave field is generated. In the spirit of the image technique [12], 

the generated secondary reflected waves are sought for in the form of cylindrical 

waves that are generated by an imaginary source of an apriori unknown intensity 

placed at 
2o  (see Fig. 1), and denoted as 12

s , 12

s , 12

s . All these wave potentials 

satisfy the Helmholtz equations in the two cylindrical coordinate systems shown in 

Fig. 1 (the origins of these systems are located at 
1o  and 

2o ) and are expressed as 

[13] 

 

 1 ii(1)

11 1 1( ) xk xns

n n

n

a H k r e e






   (22) 

 1 ii(1)

11 1 1( ) xk xns

n n

n

b H k r e e






   (23) 



 

 1 ii(1)

11 1 1( ) xk xns

n n

n

c H k r e e






   (24) 

 2 ii(1)

12 1 2( ) xk xns

n n

n

d H k r e e






   (25) 

 2 ii(1)

12 1 2( ) xk xns

n n

n

e H k r e e






   (26) 

 2 ii(1)

12 1 2( ) xk xns

n n

n

f H k r e e






   (27) 

 

where 
(1)

nH denotes the Hankel function of the first kind and order n , and stands for 

outgoing (propagating from the tunnel) waves considering the time dependent 

factor 
i te 

. 2 2

1 1a p xk k k   and 2 2

1 1s xk k k    are the cylindrical wave 

numbers of the compressional and shear waves in the soil medium, respectively. 

The wave fields in the tunnel also satisfy the Helmholtz equations in the 

cylindrical coordinate system and are written as 

 

 1 1i ii i(1) (2)

2 2 1 2 1( ) ( )x xk x k xn ns

n n n n

n n

g H k r e e h H k r e e 
 

 

 

    (28) 

 1 1i ii i(1) (2)

2 2 1 2 1( ) ( )x xk x k xn ns

n n n n

n n

i H k r e e j H k r e e 
 

 

 

    (29) 

 1 1i ii i(1) (2)

2 2 1 2 1( ) ( )x xk x k xn ns

n n n n

n n

k H k r e e l H k r e e 
 

 

 

    (30) 

 

where 
(2)

nH denotes the Hankel function of the second kind and order n , and stands 

for ingoing (propagating towards the origin of the coordinate system) waves 

considering the time dependent factor 
i te 

. 
2 2

2 2a p xk k k   and 2 2

2 2s xk k k    

are the cylindrical wave numbers of the compressional and shear waves in the 

tunnel, respectively. According to the phase matching principle, in both the soil 

medium and the tunnel, the wavenumbers of the compressional and shear waves 

along x  axis are the same as in the incident wave and, accordingly, are equal to 
xk . 

The unknown coefficients in Eqs. (22)-(30) will be determined from the boundary 

conditions. 

3.3. Total wave fileds 

The total wave field in the soil medium ( 1 , 1  and 1 ) consist of the incident, 

primary reflected, scattered and secondary reflected wave fields. The total wave 

field in the tunnel ( 2 , 2  and 2 ) are the sum of outgoing and ingoing wave 



fields. 

 

 
1 11 12

i r s s          (31) 

 
1 11 12

r s s       (32) 

 
1 11 12

r s s       (33) 

 
2 2

s   (34) 

 
2 2

s   (35) 

 
2 2

s   (36) 

4. Stresses and displacements expressed in terms of complex 

variables 

In this section, we introduce a complex variable 
iiy z re     and its conjugate 

iiy z re     , where y , z  and r ,   are the Cartesian and cylindrical 

coordinates introduced earlier. Using those, the polar angles 
1  and 

2  related to 

the local coordinate systems in Fig. 1 (a) can be written in terms of the complex 

variable   related to the global coordinate system as 

 

 1i 1

1

i

i

h
e

h

 

 

 
 


 (37) 

 2i 2

2

i

i

h
e

h

 

 

 
 


 (38) 

 

The components of the displacements and stresses in Cartesian coordinates 

xyz  can be expressed in terms of the complex variables   and   as 

 

 

2

i
i

xi x i i

si

k
u k

k


    (39) 

 
i

ii i i i x i i

yi

si

k
u

k

     

     

          
          

          
 (40) 

 i i i i i x i i

zi

si

k
u

k

     

     

           
          

          
 (41) 

 

2

2 2
2i

( 2 )
i x i

xxi i i x i i i i i

si

k k
k k

k






            (42) 



 

 

 
2 2 2 2

2 2

2 2 2 2

2 2 2

2 2

2 2i

i 2i

i i i i

yyi i x i i i i i i i

i x i i x i i

i

si si

k k

k k k

k k





   
       

   

   

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By applying the transformation relations between the Cartesian and cylindrical 

coordinate systems (Eqs. (12)-(13)), the expressions for the displacements and 

stresses in the cylindrical coordinate system xr  can be written in terms of the 

variables   and  as 
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5. Conformal mapping 

The problem under consideration is complicated by the fact that the half-space and 

the tunnel surfaces possess different symmetries. In order to circumvent this 

difficulty, the physical domain is mapped onto an auxiliary domain represented by a 

complex variable 
ii e        and its conjugate 

-ii e       . We 

search for two mapping functions to map the two regions 1  and 2  in the 

physical domain (as shown in Fig. 1) onto regions 1  and 2  in the image domain 

(as shown in Fig. 2), respectively, and make the two regions in the image domain 

possess the same symmetry and be concentric. 

The transformation of the region 1  in the physical domain into the region 1  

in the image domain is accomplished by the mapping function [16] 
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Where    2 21 / 1O OT h     ,  
2

/ / 1O O Oh R h R    . The half-space 

surface and the outer surface of the tunnel in the physical domain correspond to the 

circles 1   and 
O   in the image domain, respectively. 

The second mapping function determines a transformation of the region 
2  

into the region 
2 : 
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The outer and inner surfaces of the tunnel in the physical domain correspond to the 

circles 
O   and /I I O OR R     in the image domain, respectively. 

The relation between the angle   in the physical domain and the polar angle   

in the image domain is written as [17] 
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It can be shown that the mapping functions 
1( )w   and 2 ( )w   are analytic and 

their derivatives 
1 '( )w   and 

2 '( )w   are not zero in the regions 
1  and 

2 , which 

ensures the transformation be conformal, reversible and single-valued in each 

domain. 

Using conformal mapping functions 
1( )w   and 

2 ( )w  , a point B  at the outer 

surface of the tunnel in the physical domain (see Fig. 1) is mapped to two different 

points B  and B  in the image domain (as shown in Fig. 2), respectively. When we 

apply the continuity conditions at the soil-tunnel interface, we have to consider this 

discontinuous relation at 
O   in the image domain. Let    and   denote the 

angles between the vectors OB
 and OB

, and the horizontal axis in the image 

plane, respectively. The relation between these two angles is given as 
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Fig. 2  Image domain 

6. Derivation of the unknown coefficients using boundary 

conditions 

The traction-free boundary conditions at the half-space surface and at the inner 

surface of the tunnel, and the continuity conditions of the tractions and 

displacements at the soil-tunnel interface lead to a linear system of equations in 

terms of the unknown coefficients. 

Based on the relation between the complex variables   and   defined by the 

conformal mapping functions (Eqs. (56)-(57)), the wave potentials and the 

expressions for the displacements and stresses can be derived in terms of the 

complex variables   and  . The expressions are not given in this paper for brevity, 

they are similar to those presented in the papers on the two-dimensional problems 

[10, 11]. The derivatives of the cylindrical wave potentials with respect to the 

complex variables are given by Liu et al in [18]. Substituting Eqs. (31)-(36) into Eqs. 

(45)-(53) and taking into account the formulated boundary conditions (14)-(17) we 

obtain a set of algebraic equations in terms of the complex variables   and  . 

Finally, using the mapping functions (Eqs. (56)-(57)), a set of algebraic equations in 

terms of the complex variables   and   can be formulated as 
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where 
 1

n nX a , 
 2

n nX b , 
 3

n nX c , 
 4

n nX d , 
 5

n nX e , 
 6

n nX f , 

 7

n nX g , 
 8

n nX h , 
 9

n nX i , 
 10

n nX j , 
 11

n nX k , 
 12

n nX l ; each i  and j  

correspond to an unknown coefficient and a boundary condition, respectively. 



 

1,2,3j   refer to the traction-free boundary conditions at the half-space surface, 

4,5,6j   refer to the traction-free boundary conditions at the inner surface of the 

tunnel, 7,8,9j   and 10,11,12j   refer to the traction and displacement 

continuity conditions at the soil-tunnel interface, respectively. 
 ij

nK  and  j
R  are 

functions of the complex variables   and  ; they are not given in this paper for 

brevity. For the set of algebraic equations ( 7 12j   ) formulated based on the 

continuity conditions, all the tractions and displacements related to soil medium, 

namely, 
1rr , 

1r , 
1rx , 

1ru , 
1u  and 

1xu , are functions of  
 while those related 

to the tunnel are all functions of  . 

It is obvious that 
( )ij

nK  and ( )jR  are functions of   in the image domain. 

Multiplying both sides of Eq. (60) by a weighting function  exp is  and 

integrating over the interval  0,2 , we obtain: 
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To compute the unknown coefficients, the summation over circumferential modes is 

truncated. When we use the same modes N  for both the waves scattered by the 

tunnel and the secondary reflected waves, we use the weighting function: 

 

  exp i ,  ( 1,...,12;  0, 1, 2,... )s j s N       (62) 

 

When we use N  modes for the directly scattered waves by the tunnel and M  

modes for the secondary reflected waves, in order to formulate a square matrix, Eq 

(60) are multiplied by different weighting functions, according to 
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7. Convergence tests, validations and numberical analysis 

In this paper, a stiff soil medium and a concrete tunnel are considered. The stiff soil 

medium has a modulus of elasticity 9 2

1 7.567 10 N/mE   , Poisson’s ratio 

1 0.333   and mass density 3 3

1 2.664 10 kg/m   , while for the concrete tunnel 



10 2

2 1.6 10 N/mE   , 
2 0.2   and 3 3

2 2.24 10 kg/m   . A dimensionless 

frequency is defined as 
1/O sR c   . The normalized displacement vector and 

the stress tensor are given by 
0/ uU u  and  1 1 0/ sc u  , where 

0u  denotes 

the displacement amplitude of the incident wave. 

When the incident harmonic wave propagates in the direction perpendicular to 

the axis of the tunnel, the problem reduces to a two-dimensional one. Fig. 3 depicts 

various convergence tests for a two-dimensional wave scattering problem of a 

half-space with a cavity (limiting case of the half-space with just a cylindrical cavity 

of the same radius as the outer radius of the tunnel) under a relatively high 

excitation frequency of 0.5   ( 51 Hzf  ). Figs. 3 (a-c) show that, considering 

6N   for the directly scattered waves by the cavity, 3 and 9 modes for the second 

reflected waves are needed to get the hoop stress (  ) at the cavity surface and the 

ground surface motions (
yU , 

zU ) to converge, respectively. Figs. 3 (d-f) show that, 

considering 9M   for the secondary reflected waves, 5 and 2 modes for the waves 

directly scattered by the cavity are needed to get the hoop stress and the ground 

surface motions to converge, respectively. Therefore, 5 modes for the directly 

scattered waves by the cavity and 9 modes for the secondary reflected waves are 

enough to represent the wave fields in the half-space due to presence of the cavity 

under the high-frequency excitation of 0.5  . 

Fig. 4 depicts various convergence tests of a three-dimensional wave scattering 

problem of a tunnel embedded in the half-space under a low-frequency excitation of 

0.105   (  10.8 Hzf  ). Figs. 4 (a-c) show that for the secondary reflected 

waves with 3N  , 3 modes are needed to get convergence for the hoop stress and 

the motion at the tunnel surface, as well as for the ground surface motion. Figs. 4 

(d-f) show that for the waves directly scattered by the tunnel with 3M  , 3 modes 

are needed to get convergence for the hoop stress, while 2 modes are needed to get 

the convergence for the motions at both the tunnel and half-space surfaces. 

Therefore, 3 modes for both the directly scattered waves and the secondary 

reflected waves are sufficient to accurately represent the wave fields in the system 

under the low-frequency excitation of 0.105  . 

As shown in Figs. 3 and 4, the results are in good agreement with those 

presented by Luco and de Barros [3] for the two-dimensional case and by de Barros 

and Luco [4, 5] for the three-dimensional case, which confirms the accuracy of the 

proposed method. There are some benefits of using different numbers of 

circumferential modes for the waves directly scattered by the tunnel and for the 

secondary reflected waves compared with the case of using the same number of 

modes for both waves as done in [10, 11]. The size and condition number of the 

coefficient matrix in Eq. (61) become smaller and the computational time is reduced. 

It is also helpful to understand that under low-frequency excitation only a few 

modes are needed to model the cylindrical waves fields due to presence of the 

tunnel, while under high-frequency excitation we need more modes to model the 

secondary reflected waves. In addition, the waves directly scattered by the tunnel 

affect the satisfaction of the boundary conditions and responses at the tunnel 

surfaces and barely affect those at the half-space surface. Correspondingly, the 



 

secondary reflected waves contribute to the satisfaction of the boundary conditions 

and responses at the half-space surface and barely contribute to those at the tunnel 

surfaces. The reason for this phenomenon is the geometrical attenuation of the 

cylindrical waves. Obviously, the wave potentials have stronger contributions in the 

near field compared with the far field. 

 

 

 

 
Fig. 3  Two-dimensional case convergence tests and validations: (a-c) Modes M  for the 

secondary reflected waves with 6N  ; (d-f) Modes N  for the directly scattered waves by 

the cavity with 9M  ; (a), (d) Normalized hoop stress at or R ; (b), (e) Normalized 

horizontal displacement at 0z  ; (c), (f) Normalized vertical displacement at 0z  ; 0v  , 

90h  , / 5oh R  , 0.5   

 



 

 

 
Fig. 4  Three-dimensional case convergence tests and validations (a-c) Modes M  for the 

secondary reflected waves with 3N  ; (d-e) Modes N  for the directly scattered waves by 

the cavity with 3M  ; (a), (d) Normalized hoop stress at Cr R ; (b), (e) Normalized radial 

displacement at Or R ; (c), (f) Normalized vertical displacement at 0z  ; 30v  , 0h  , 

5 4.545i oh R R  , 0.105   

 

Fig. 5 (a) shows the hoop stresses at the soil-tunnel interface from the soil side 

(
Or R ) for the two- and three-dimensional cases with cavity and tunnel. Fig. 5 (b) 

shows the hoop stresses on the centreline of the tunnel ( Cr R ) for the two- and 

three-dimensional cases with tunnel. It is observed that the distributions of the hoop 

stress in each case are similar, though the magnitudes are quite different. 

Additionally, the hoop stresses in the two-dimensional cases are larger than those in 

the three-dimensional cases, and the hoop stresses in the cavity cases are larger than 

those in the tunnel cases. Furthermore, the hoop stress in the three-dimensional 

cavity case is greater than that in the two-dimensional tunnel case. The hoop stress 

at the soil-tunnel interface from the soil side is reduced mainly due to the fact that 



 

the waves also propagate in the longitudinal direction of the structure and also due 

to the presence of the scattered waves in the tunnel, both taking away energy. For 

the two- and three-dimensional cases, we observe that the hoop stress on the centre 

line of the tunnel are larger than that at the soil-tunnel interface from the soil side. 

 

 
Fig. 5  (a) Normalized hoop stress at Or R ; (b) Normalized hoop stress at Cr R ; 

4N M  , 5 Oh R , 0.105  , 2D case ( 0v  , 90h  ), 3D case ( 30v  , 0h  ) 

 

Figs. 6 (a-c) and (d-f) show the motions at 
Or R  and 0z   for all cases. We 

observe the same trend for the normal and tangential displacements at 
Or R  and 

vertical displacements at 0z   as for the hoop stress, but the motions in the 

two-dimensional tunnel case are greater than those in the three-dimensional cavity 

case. The horizontal displacements at 0z   are smaller compared with the vertical 

and x  axial displacements. That is because the horizontal motions are barely 

excited under nearly vertically incident wave. 
 

 

 



 
Fig. 6  (a-c) Normalized displacements at Or R ; (d-f) Normalized displacements at 0z  ; 

4N M  , 5 Oh R , 0.105  , 2D case ( 0v  , 90h  ), 3D case ( 30v  , 0h  ) 

8. Conclusions 

A semi-analytical method was presented for the theoretical analysis of two- and 

three-dimensional seismic responses of a tunnel embedded in an elastic half-space. 

The complex variable theory, conformal mapping and the spirit of the image 

technique were applied to solve the problem. The results obtained using the 

proposed method for both the two- and three- dimensional cases are in good 

agreement with those obtained by the other methods, which confirms the accuracy 

of the proposed method. This paper also evaluates the contribution of the wave field 

directely scattered by the tunnel and the secondary reflected wave field on the 

satisfaction of the bounary conditions at the half-space surface and at the soil-tunnel 

interface. It was shown that the waves directly scattered by the tunnel affect the 

satisfaction of the boundary conditions and responses at the soil-tunnel interface 

and barely affect those at the half-space surface. Correspondingly, the secondary 

reflected waves contribute to the satisfaction of the boundary conditions and 

responses at the half-space surface and barely contribute to those at the soil-tunnel 

interface. The investigation of the effects of the dimension and the presence of the 

tunnel on the system response showed that the additional dimension and the 

presence of the tunnel reduce the hoop stress at the interface form the soil side. If the 

design of the underground structure is based on a simple two-dimensional cavity 

model, it would be a conservative design according to our analysis. 

The advantages of the proposed method are as follows. First, it is a 

semi-analytical solution of the problem which reveals that the directly scattered 

waves and the secondary reflected waves contribute to the system response 

differently. Secondly, the traction-free boundary conditions are in principle satisfied 

at the entire half-space surface without truncating at a certain distance from the 

tunnel. Thirdly, when compared with numerical methods, the computational time is 

significantly reduced. Furthermore, the solution in the half-space can be combined 

with a finite-element representation for embedded structures that are complex in 

shape. 

The disadvantage of the proposed method is that the matrix used to determine 



 

the unknown coefficients of the cylindrical waves becomes ill-conditioned when we 

consider very high-frequency excitation, very large shear modulus ratio of the 

tunnel to the medium and very small depth ratio of the embedded depth to the radius 

of the tunnel. Correspondingly, the far-field boundary conditions at the half-space 

surface cannot be satisfied exactly due to some numerical issues, even though the 

boundary conditions are supposed to be satisfied exactly. Other techniques or a 

hybrid method will be investigated in the future to overcome this problem. 
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