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ABSTRACT

The emergence of advanced 3D printing techniques and the recent interest in architected materials have sparked a surge of interest in
mechanical metamaterials whose unusual properties are defined by their highly ordered microarchitectures. Mechanical metamaterials with
disordered microarchitectures have, however, not received as much attention despite their inherent advantages, such as robustness against
the precise arrangement and design parameters of individual unit cells. Here, we computationally studied the elastic properties of two
general types of disordered networks, namely, lattice-restricted and unrestricted networks that were made of beamlike elements and pos-
sessed mean connectivity values, Z, ranging between 2.5 and 7. We also additively manufactured a number of representative networks using
selective laser sintering and showed that their deformations are consistent with our computational predictions. Unrestricted networks exhib-
ited several advantages over the lattice-restricted ones including a broader range of achievable elastic modulus-Poisson’s ratio duos as well as
a higher probability of exhibiting auxetic and double-auxetic (i.e., auxetic behavior in both orthogonal directions) behaviors. Most interest-
ingly, we could find unrestricted auxetic networks for high connectivity levels of up to 4.5, while no lattice-restricted auxetic networks were
found for any connectivity level beyond 3.5. Given the fact that, according to Maxwell’s criterion, 3.5 is the highest Z for which both of our
lattice-restricted and unrestricted networks are bending-dominated, we concluded that unrestricted networks exhibit auxetic behavior well
into their stretch-dominated domain. This is a promising observation that underlines the potential of unrestricted networks for the challeng-
ing task of designing stiff auxetic metamaterials in the stretch-dominated domain (i.e., Z¼ 4–4.5).

Published under license by AIP Publishing. https://doi.org/10.1063/1.5096590

Mechanical metamaterials are a class of advanced engineered
materials whose unprecedented properties originate from their geo-
metrical design at smaller scales.1–3 Some of the examples of these
unusual properties include a negative Poisson’s ratio (i.e., auxetic meta-
materials),4–8 shape morphing,9,10 negative compressibility,11–13 and
negative stiffness.14 Mechanical metamaterials may be directly 3D
printed6,15,16 or be fabricated using crumpling-,17 origami-,18,19 or
mechanism-based20 approaches.

Mechanical metamaterials are often composed of repeating unit
cells that are rationally arranged in a highly ordered manner. The local
and/or global interactions of these unit cells define the anomalous
properties of metamaterials at the macroscale.21–23 Such building
blocks of engineered cellular metamaterials are often made of beamlike
structural elements and, depending on their level of connectivity, may
be stretch-dominated, bending-dominated, or a mixture of both.24,25

The proper positioning of stretch- or bending-dominated unit cells
can create heterogeneous stress and strain distributions in these struc-
tures with asymmetric deformations that can eventually lead to novel
properties.26 Therefore, devising the geometrical and topological
design of these unit cells is essential in developing metamaterials with
advanced functionalities and properties.

In addition to the regular arrangement of unit cells in space, the
geometry of cellular metamaterials can be created using random pro-
cesses. Nature uses irregular microarchitectures such as disordered
networks in the design of architected materials such as trabecular bone
and wood,27–29 polymer gels,30,31 protein networks,32 cytoskeletal
structures,33 and collagenous extracellular matrix.34,35 The advantage
of such random tessellation is that a wide range of possible properties
can be created without any need for precise and centralized control
over the microarchitecture. This allows for spatial and temporal
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changes in the properties, as a living organism may require high levels of
such variations to fulfill its functions. Moreover, unlike mechanical meta-
materials with regular unit cells, the mechanical properties of disordered
mechanical metamaterials are less sensitive to the precise arrangement of
the individual building blocks and their geometric cell parameters.22,36–39

Random networks can be also tuned or created so as to achieve specific
properties. Examples of such tunings include the pruning of random net-
works to achieve auxetic behavior,40 controlling brittle-ductile transitions,41

and controlling the mechanical properties of randommetamaterials.36,42

Random networks also have potential applications in the design
of porous (bio)materials.43,44 One of the critical aspects in the design
of such materials is independent tailoring of the elastic properties (e.g.,
the elastic modulus and Poisson’s ratio)38 through a random or disor-
dered arrangement of beamlike elements.

Here, we studied the elastic properties of mechanical metamateri-
als based on random networks through a computational study of half
a million arrangements as well as experiments on 3D printed models
of a number of selected designs. Our networks covered a wide range of
connectivity values, Z, ranging between 2.5 and 7. Two types of net-
works were considered, namely, lattice-restricted and unrestricted. In
the case of lattice-restricted structures, the nodal points of the beam-
like elements were restricted to a predetermined square lattice, while
the nodes of unrestricted networks were randomly picked within box-
restricted limits (Fig. 1). The geometrical parameters of each type of
network are presented in Figs. 1(a) and 1(b) and Table S1 (supplemen-
tary material). The total size of the networks (W, L) and the total num-
ber of nodes (n¼ 21� 21) were the same for both types of structures.
In both cases, the nodes could be randomly connected to their adja-
cent nodes, if their normal distances were below an upper limit (i.e.,
12mm). The upper limit was chosen such that, in the case of lattice-
restricted networks, diagonal connections were admissible.

The network connectivity was defined as the ratio of the sum of
the connectivity of all nodes to the total number of the nodes in the
structure. The minimum connectivity for each node was set to 2.
Moreover, if the random positioning of the elements resulted in islands
(i.e., isolated or disconnected substructures), the corresponding designs
were discarded. Ten levels of connectivity were considered between 2.5
and 7. The in-plane and out-of-plane thicknesses of both lattice-
restricted and unrestricted networks were similar and were 1mm and
10mm, respectively. Detailed information on the numerical simula-
tions and statistical analyses is given in the supplementary material.

We also 3D printed 8 specimens of selected networks using selec-
tive laser sintering (SLS, EOS Formiga P100). We used commercially
available materials (i.e., Oceanz Flexible, PrimePartV

R

ST PEBA 2301
from EOS GmbH) for fabrication of these specimens. To be able to
attach the specimens to the testing machine, they included two addi-
tional parts that were designed and 3D printed together with the net-
works. The specimens were then attached to a mechanical testing
machine via grippers and pins. The gripping systems and their pins
were designed and additively manufactured using a fused deposition
modeling (FDM) 3D printer (Ultimaker 2þ, Geldermalsen, The
Netherlands) from polylactic acid (PLA) (MakerPoint PLA 750 gr
Natural). Displacement-controlled mechanical testing (stroke rate:
2mm/min) was performed under tension using a LLOYD instrument
(LR5K) machine equipped with a 100N load cell. The deformations of
the specimens at strain levels equivalent to those applied in the numer-
ical models were captured using a digital camera.

The distributions of the elastic modulus-Poisson’s ratio duos exhib-
ited similar trends for both lattice-restricted and unrestricted networks
(Figs. 1, S1, and S2). However, the variations in the elastic properties
were much larger for the unrestricted networks as compared to the
lattice-restricted networks [Figs. 1(a) and 1(c)]. Instead, lattice-restricted
networks reached higher values of the elastic modulus as compared to
unrestricted networks [Fig. 1(d)]. In both groups, the variations in the
elastic properties were higher for the lower values of connectivity Figs.
1(c) and 1(d). Auxetic behavior could only be observed for the smaller
values of connectivity Figs. 1(c) and 1(d). The maximum level of connec-
tivity for which auxetic behavior could be observed was higher [i.e.,
Z¼ 4.5, Figs. 1(d) and 3(b)] for the unrestricted networks as compared
to the lattice-restricted networks [i.e., Z¼ 3.5, Figs. 1(c) and 3(a)]. For

FIG. 1. Schematic drawings of lattice-restricted (a) and unrestricted (b) networks. The
placement of the nodes for lattice-restricted networks is predetermined, while in the case
of unrestricted networks, nodes can be placed randomly within a box shown in (b). The
geometrical parameters are as follows: Dx ¼ Dy ¼ 7:5 mm and W ¼ L ¼ 150mm.
The number of nodes in each side, n, is similar for both types of networks and is equal to
21. The elastic modulus-Poisson’s ratio duos calculated for two types of random net-
works, namely, lattice-restricted (c) and unrestricted (d). The strain distributions below
each graph (A–C) belong to some representative cases with low connectivity values (i.e.,
Z¼ 2.5, 3, and 3.5). For each level of connectivity, 10 000 simulations were performed.
In the case of unrestricted random networks, 100 000 simulations were performed for the
lower connectivity values (i.e., 2.5, 3, and 3.5). These simulations are presented as an
inset in subfigure (d). More representative cases with connectivity values (i.e., Z¼ 2.5, 3,
and 3.5) and representative cases for the other levels of connectivity (i.e., Z¼ 4.5, 5.5,
and 6.5) are presented in Figs. S1 and S2 of the supplementary material, respectively.
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both lattice-restricted and unrestricted networks, the deformation
observed in the networks appeared to have high nonaffinity with high
levels of localized strain concentrations in certain regions of the network,
while some other regions hardly deformed [Figs. 1(c) and 1(d)].

The Maxwell stability number, M,25,45 is defined as M ¼ 2b� j
þ3, where b and j are the numbers of the struts and joints in a 2D
frame, respectively. The Maxwell number can be used as a criterion to
determine whether a network is stretch-dominated (for M � 0) or
bending-dominated (for M < 0). For each connectivity value, the
Maxwell number was exactly the same for lattice-restricted and unre-
stricted networks (Table S1). The maximum connectivity for which
the networks were still bending-dominated was Z¼ 3.5 (Table S1). In
the case of lattice-restricted networks, that Z value was coincident with
the highest connectivity for which auxetic structures could be still
found. In the case of unrestricted networks, however, auxetic struc-
tures could be found for networks with much higher connectivity val-
ues (i.e., up to Z¼ 4.5) and highly positive Maxwell numbers (Table
S1), indicating that they were stretch-dominated. Given that stretch-
dominated networks exhibit higher stiffness values, this clearly shows
the utility of unrestricted random networks for expanding the range of
the elastic properties that could be achieved including stiffer auxetics.

The level of anisotropy was highly dependent on the size of the net-
works (Fig. 2 and Table S2). In all cases, the level of anisotropy decreased
as the size of the networks increased (Fig. 2 and Table S2). This is expected
given the random nature of the networks that increases the directional
similarity for the larger sizes of networks. As far as the anisotropy of the

stiffness values is concerned, the lattice-restricted and unrestricted net-
works showed different types of dependencies on the connectivity value
(Fig. 2—left subfigures). In the case of lattice-restricted networks, themaxi-
mum level of anisotropy in the stiffness values was observed for the inter-
mediate values of connectivity (i.e., Z¼ 4.5, 5.5). In contrast, the level of
anisotropy appeared to increase with connectivity in the case of unre-
stricted networks up to a certain point (i.e., Z¼ 5.5), after which it
remainedmore or less constant (Fig. 2—left subfigures). The change in the
level of anisotropy was the opposite in the case of Poisson’s ratio: it
decreasedwith connectivity for both lattice-restricted and unrestricted net-
works (Fig. 2—right subfigures). For all sizes of networks, the probability
of finding auxetic networks was higher in the case of unrestricted networks
as compared to lattice-restricted networks (Fig. 2—right subfigures).
Moreover, the probability of exhibiting an auxetic behavior was lower for
the networks with larger sizes as compared to the smaller networks, as
Poisson’s ratio in both directions converged to 0.33 for the largest networks
((Fig. 2—right subfigures), Tables S2 and S3). The probability of finding
networkswith double-auxetic behavior (i.e., auxetic behavior in both direc-
tions) was small (ranging between 0.4% and 1.62%) and decreased with
the size of the networks (Fig. 2—right subfigures).

As the connectivity increased, the mean value of the stiffness
increased in both lattice-restricted and unrestricted networks (Figs. 3(a)
and 3(b)—left subfigures). The highest amount of variation in the stiff-
ness values was observed for the intermediate values of connectivity (i.e.,
Z¼ 4.5–5.5) in the cases of both lattice-restricted and unrestricted net-
works (Figs. 3(a) and 3(b)—left subfigures). The mean value of Poisson’s
ratio initially increased with connectivity until a maximum was reached
at Z¼ 4.5 for lattice-restricted networks (Table S4, supplementary mate-
rial) and at Z¼ 4.5–5.5 for unrestricted networks (Table S5, supplemen-
tary material). A further increase in connectivity reduced Poisson’s ratio
with a mean converging to 0.33–0.34 for both lattice-restricted and unre-
stricted networks (Tables S4 and S5, supplementary material).
Comparing Poisson’s ratio of lattice-restricted and unrestricted networks
showed that lattice-restricted structures converge faster than unrestricted
networks [Figs. S3(a)–S3(j), right subfigures]. The stiffness values exhib-
ited significant positive-skewness in the case of low connectivity values
(i.e., Z¼ 2.5), which gradually decreased as connectivity increased [Figs.
S3(a) and S3(b), left subfigures, Tables S4 and S5, supplementary mate-
rial]. There was no significant skewness in the values of Poisson’s ratio
regardless of the connectivity value [Figs. S3(a)–S3(j), right subfigures].
The mean value of Poisson’s ratio was positive for all connectivity values
(Tables S4 and S5, supplementary material). The probability of finding
an auxetic network was p¼ 26% for unrestricted and p¼ 20% for
restricted networks in the case of Z¼ 2.5 and gradually decreased to zero
for the higher values of connectivity (Table S3, supplementary material).

The changes in the elastic modulus with the relative density, /, fol-
lowed a similar nonlinear trend for both lattice-restricted and unre-
stricted networks. The range of the elastic moduli achieved here is within
the theoretical limits given by the Hashin–Shtrikman bounds21,46–48 for
the positive values of Poisson’s ratio [Figs. 3(a) and 3(b)]

0 < E �ð Þ < �2C1tþ 2C1; 0 < E �ð Þ < 2C2tþ 2C2;

C1 ¼
Eb

2 1� tbð Þ þ
Eb 1� /ð Þ

/ 1� t2b
� �

� 2 1� tbð Þ
;

C2 ¼
Eb

2 1þ tbð Þ þ
1� /

/
2

3� �ð Þ � 2 1þ tbð Þ
Eb

;

FIG. 2. The effects of the network size on the (anisotropic) elastic properties of
lattice-restricted and unrestricted networks. Three different sizes were considered
for the simulations, namely, 75 mm � 75 mm [lattice-restricted (a) and unrestricted
(b)], 150 mm � 150mm [lattice-restricted (c) and unrestricted (d)], and 300 mm
� 300mm [lattice-restricted (e) and unrestricted (f)]. The anisotropic properties
were tested in the directions 1 and 2. The numerical simulations were performed
for networks with 5 different levels of connectivity (i.e., 2.5, 3.5, 4.5, 5.5, and 6.5).
The 95% confidence ellipses are added to each cluster of data. The principal radii
of the confidence ellipses are listed in Table S2 (supplementary material).
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where the bulk properties of the material from which beamlike struc-
tural elements are made are given as Eb ¼ 0:6MPa and tb ¼ 0:3.

The local values of connectivity in unrestricted lattices varied
between 2 and 10, while the maximum local connectivity at each node
was limited to 8 in the case of lattice-restricted networks [Figs. 3(c)
and 3(d)]. We divided the range of Poisson’s ratios into four regions
(i.e., t < �0:5;�0:5 < t < 0; 0 � t < 0:5; and t > 0:5) and com-
pared the statistical distributions of the local connectivity values for
both types of networks. We found no statistically significant differ-
ences between the local connectivity values of those four groups [Figs.
3(c) and 3(d)]. This suggests that the statistical distribution of the local
connectivity values does not control the level of auxeticity.

We performed further statistical analyses to study the statistical
distributions of the (bond) angles in lattice-unrestricted networks
(Figs. S4 and S5 of the supplementary material). We calculated the
angles of all the ligaments reaching individual nodes (with respect to
the horizontal direction, x). In a different definition, we defined the
bond angle as the angle between the highest and lowest ligaments con-
nected to each node. All the specimens with connectivity values

between 2.5 and 4.5 were pooled and were divided into four groups
according to the value of their Poisson’s ratio (i.e., t < �0:5;�0:5
< t < 0; 0 � t < 0:5; and t > 0:5). We used a nonparametric test
(Wilcoxon test) to compare whether the statistical distributions of
these four groups were significantly different from each other. We also
used a Benjamini–Hochberg method to adjust the p-value. For both
definitions of the bond angle in unrestricted networks, we found sig-
nificant differences between the statistical distributions corresponding
to the negative and positive ranges of Poisson’s ratio.

We performed numerical simulations for regular (i.e., nonrandom,
unit cells ¼ re-entrant) lattices with values of negative Poisson’s ratios
that were comparable with those calculated for unrestricted networks. We
compared the specific elastic moduli of the ordered lattices with those of
the unrestricted networks presented here (Table S6 of the supplementary
material). We could clearly see that the mean ratio of the elastic modulus

FIG. 3. The change in the elastic modulus and relative density for lattice-restricted (a,
right) and unrestricted (b, right) networks. The solid lines in the right subfigures (a and
b) show the Hashin–Shtrikman bounds for three values of the relative density.
Poisson’s ratios of lattice-restricted (a, left) and unrestricted (b, left) networks as func-
tions of the connectivity values. The trend lines show 95% confidence intervals in the
left subfigures (a and b). The histograms of the local connectivity values for restricted
(c) and unrestricted (d) networks with different levels of Poisson’s ratio.

FIG. 4. The trajectories of the lateral node that exhibited the maximum displace-
ment in unrestricted random networks (Z¼ 2.5–3.5). The deformation trajectories
for eight representative cases are highlighted with different colors in the graph. The
corresponding deformation patterns (same color code) obtained from numerical
simulations and experiments are presented for three levels of applied strain (i.e.,
0%, 5%, and 10%). A comparison between the finite element simulations and
experimental data is presented in Table S7 (supplementary material). The test
setup is shown in Fig. S6 (supplementary material).
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of the unrestricted random networks to that of ordered lattices always
exceeded unity and increased with the degree of connectivity (Table S6 of
the supplementary material). This is due to the fact that unrestricted net-
works exhibit auxetic behavior also for higher degrees of connectivity,
which is well into the stretch-dominated range of deformations, whereas
the deformation of regular auxetic lattices is dominated by bending.

Some of the most negative values of Poisson’s ratio were observed
for the networks that exhibited large lateral openings due to limited con-
nectivity on their sides (Fig. 4). Plotting the time history of the position
of the nodes that moved the most in such networks showed that very
diverse movement trajectories could be achieved using random network
designs (Fig. 4). Comparing the results of computational simulations
with experimental observations indicated a good agreement between
them, confirming that the applied 3D printing technique is capable of
fabricating the studied random networks and that the behavior exhib-
ited by the actual specimens is comparable with computational predic-
tions even in the case of the very large deformations observed here
(Fig. 4). For this particular type of network (i.e., those with large lateral
openings), the boundary between mechanical metamaterials and com-
plaint mechanisms49–51 whose displacements are driven by the elastic
deformation of their constituting linkages (and not their rigid body
movements) is blurred. The random networks studied here could, there-
fore, be also seen as some type of complaint mechanisms particularly
when multiple networks are combined with each other to create more
complex movement patterns than those observed in Fig. 4.

In summary, we studied the elastic properties of lattice-restricted
and unrestricted random networks with different levels of connectivity
to gain a better understanding that could aid us in the design of disor-
dered mechanical metamaterials. Our results show that unrestricted
networks have a number of clear advantages over lattice-restricted net-
works that make them particularly attractive for that purpose. This
includes a much wider range of elastic modulus-Poisson’s ratio duos as
well as a higher probability of exhibiting auxetic and double-auxetic
behaviors. Interestingly, as opposed to lattice-restricted networks that
do not exhibit any auxetic behavior in their stretch-dominated range
(i.e., positive values of the Maxwell metric), unrestricted networks
could exhibit auxetic behavior also when in the stretch-dominated
domain. This is another advantage of unrestricted networks that makes
them particularly useful for the design of stiff auxetic metamaterials.

See the supplementary material for detailed information on the
numerical simulations and statistical analyses.

The authors declare no competing interests.
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