

Delft University of Technology

12th International Scheduling and Planning Applications Workshop (SPARK'19)
Post-proceedings of SPARK 2019
Bernardini, Sara; Parkinson, Simon; Talamadupula, Kartik; Yorke-Smith, Neil

Publication date
2019
Document Version
Final published version
Citation (APA)
Bernardini, S., Parkinson, S., Talamadupula, K., & Yorke-Smith, N. (Eds.) (2019). 12th International
Scheduling and Planning Applications Workshop (SPARK'19): Post-proceedings of SPARK 2019.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Bernardini, Parkinson, Talamadupula, Yorke-Smith (Eds)

SPARK 2019

12th International Scheduling and Planning
Applications Workshop

11 July 2019
Berkeley, CA, USA

Co-located with ICAPS 2019

SPARK is not an archival venue. These post-proceedings of the workshop constitute the
working notes of the 2019 edition of the workshop. Copyright of papers is held by the
authors or as otherwise denoted.

This work is licensed under a Creative Commons BY-SA 4.0 licence.

https://creativecommons.org/licenses/by-sa/4.0/

Preface

These working notes contain the papers presented at SPARK 2019: the 12th Interna-
tional Scheduling and Planning Applications woRKshop held on 11th July in Berkeley,
California, USA. We are once more very pleased to continue the tradition of represent-
ing more applied aspects of the planning and scheduling community and to present a
pipeline that will enable increased representation of applied papers in the main ICAPS
conference. For the first time, SPARK 2019 used an open review process.

Application domains that entail planning and scheduling (P&S) problems present a set of
compelling challenges to the AI planning and scheduling community that from model-
ling to technological to institutional issues. New real-world domains and problems are
becoming more and more frequently affordable challenges for AI. The SPARK work-
shop series was established to foster the practical application of advances made in the in-
ternational AI P&S community. Building on antecedent events, SPARK 2019 is the
twelfth edition of a series designed to provide a stable, long-term forum where research-
ers and practitioners can discuss the applications of planning and scheduling techniques
to real-world problems. The webpage of the workshop series is found at: http://decsai.u-
gr.es/~lcv/SPARK/.

SPARK 2019 received eleven submissions. Each submission was reviewed by at least
three programme committee members. The committee decided to accept all papers. The
programme also included an invited talk (joint with the KEPS workshop), and two pa-
pers originally submitted to the COPLAS workshop (Ferrer et al. and Levinson), which
are also included in these SPARK post-proceedings. The thirteen papers were discussed
during three technical sessions.

We thank the Programme Committee for their commitment in reviewing, and the team at
OpenReview.net. We thank the ICAPS 2019 workshop and publication chairs for their
support.

Sara Bernardini, Royal Holloway University of London, UK
Simon Parkinson, University of Huddersfield, UK
Kartik Talamadupula, IBM Research AI, USA
Neil Yorke-Smith, Delft University of Technology, Netherlands

SPARK 2019 Co-Chairs

3

http://decsai.ugr.es/~lcv/SPARK/
http://decsai.ugr.es/~lcv/SPARK/
http://www.openreview.net/

Organising Committee

Sara Bernardini Royal Holloway University of London, UK
Simon Parkinson University of Huddersfield, UK
Kartik Talamadupula IBM Research AI, USA
Neil Yorke-Smith Delft University of Technology, Netherlands

Programme Committee

Laura Barbulescu Carnegie Mellon University
Anthony Barrett NASA Jet Propulsion Laboratory
Mark Boddy Adventium Labs
Gabriella Cortellessa ISTC-CNR, Italian National Research Council
Lukas Chrpa Czech Technical University in Prague
Minh Do NASA Ames
Andreas Ernst Monash University
Kshitij P. Fadnis IBM Research AI
Simone Fratini European Space Agency – ESA/ESOC
Christophe Guettier SAFRAN
Mark Giuliano Space Telescope Science Institute
Patrik Haslum Australian National University
Derek Long Schlumberger
Karen L. Myers SRI International
Angelo Oddi ISTC-CNR, Italian National Research Council
Nicola Policella European Space Agency – ESA/ESOC
Cédric Pralet ONERA Toulouse
Riccardo Rasconi ISTC-CNR, Italian National Research Council
Bram Ridder King’s College London
Mark Roberts Naval Research Lab, USA
Mauro Vallati University of Huddersfield
Michael A. Schaffner Sandia National Laboratories
Tiago Stegun Vaquero NASA Jet Propulsion Laboratory / Caltech
Terry Zimmerman North Seattle College
Yingqian Zhang TU Eindhoven

Workshop Series Steering Committee

Gabriella Cortellessa ISTC-CNR, Italy
Riccardo Rasconi ISTC-CNR, Italy
Steve Chien NASA JPL, USA
Neil Yorke-Smith TU Delft, Netherlands

4

Contents

Aerospace Applications

Richard Levinson
Constraint Integer Program Formulations for NASA Planning, Scheduling, and
Autonomy Problems . 8

Amruta Yelamanchili, Steve Chien, Alan Moy, Elly Shao, Michael Trowbridge,
Kerry Cawse-Nicholson, Jordan Padams, Dana Freeborn
Automated Science Scheduling for the ECOSTRESS Mission 17

Sreeja Nag, Alan S. Li, Vinay Ravindra, Marc Sanchez Net, Kar-Ming Cheung, Rod
Lammers, Brian Bledsoe
Autonomous Scheduling of Agile Spacecraft Constellations with Delay Tolerant
Networking for Reactive Imaging . 25

Wayne Chi, Steve Chien, Jagriti Agrawal
Scheduling with Complex Consumptive Resources for a Planetary Rover 35

Planning & Scheduling with Preferences

Karen L. Myers, Tom Lee, Laura Tam, Jose Manuel Calderon Trilla, Ben Davis,
Stephen Magill
Privacy-aware Adaptive Scheduling for Coalition Operations 45

Colja A. Becker, Ingo J. Timm
Planning and Scheduling for Cooperative Concurrent Agents with Different
Qualifications in the Domain of Home Health Care Management 54

Kevin Osanlou, Christophe Guettier, Andrei Bursuc, Tristan Cazenave, Eric
Jacopin
Learning-based Preference Prediction for Constrained Multi-Criteria Path-Planning . . 61

Saisubramanian, Sandhya, Basich, Connor, Zilberstein, Shlomo, Goldman, Claudia
The Value of Incorporating Social Preferences in Dynamic Ridesharing 68

Sergio Ferrer, Miguel A. Salido, Adriana Giret, Federico Barber
A Capacited Vehicle Routing and Scheduling Problem for Passengers: A Modelling and
Solution Approach . 76

5

Automated Reasoning in Real Domains

Jagriti Agrawal, Wayne Chi, Steve Chien, Gregg Rabideau, Stephen Khun, Daniel
Gaines
Enabling Limited Resource-Bounded Disjunction in Scheduling 86

Davide Venturelli, Minh Do, Bryan O’Gorman, Jeremy Frank, Eleanor Rieffel, Kyle
E. C. Booth, Thanh Nguyen, Parvathi Narayan, Sasha Nanda
Quantum Circuit Compilation: An Emerging Application for Automated Reasoning . . . 95

Hongtan Sun, Maja Vukovic, John Rofrano, Chen Lin
Advantages and Challenges of Using AI Planning in Cloud Migration 104

Elad Denenberg, Amanda Coles, Derek Long
Evaluating the Cost of Employing LPs and STPs in Planning: Lessons Learned From
Large Real-Life Domains . 106

6

Aerospace Applications

7

Constraint Integer Program Formulations for

NASA Planning, Scheduling, and Autonomy Problems

Rich Levinson
Planning and Scheduling Group, NASA Ames Research Center, Moffett Field, CA 94035

rich.levinson@nasa.gov

Abstract
We present constraint integer program (CIP) formulations
for NASA planning, scheduling and autonomy problems
along with a benchmark path planning application. CIP
combines constraint satisfaction (CS) with mixed integer
programming (MIP) methods. Our focus is primarily on ex-
ploring the use of CIP for planning problems, where the
solver must generate a set of actions (in addition to schedul-
ing them), particularly in the context of an autonomous sys-
tem, where the solver is embedded in real-time
sense/plan/act execution cycle. We describe challenging
NASA constraint optimization problems and explore trades
between model variations, in order to spur discussion and to
further improve our formulations and performance. We pre-
sent results from performance experiments showing high
sensitivity to model and problem configuration changes.

 Introduction
We present constraint integer program (CIP) formulations
for NASA planning, scheduling, and autonomy problems
along with a benchmark path planning domain. CIP com-
bines constraint programming (CP), mixed integer pro-
gramming (MIP) and linear programming (LP) methods.
 We are particularly interested in exploring how CIP
may be used for planning applications, where the planner
must generate the set of actions to perform in addition to
scheduling them. We are also interested in using CIP as the
planning component which is embedded in a real-time
sense/plan/act execution cycle.

This paper is organized as follows: We first introduce
the Rover domain, and then present CIP formulations for
three scenarios from a simulated autonomous space habitat
with integrated power and life support systems, identifying
the planning and execution context where appropriate.

Solving Constraint Integer Programs (SCIP). We im-
plemented the models presented below using SCIP
(Achterberg 2009, Heinz and Beck 2011). SCIP is a hybrid
solver that combines LP, MIP and CP into a unified Con-
straint Integer Program (CIP) system (https://scip.zib.de).
SCIP’s “under-the-hood” behavior involves tight integra-
tion between LP, MIP, and CP methods. When SCIP
solves a problem, it automatically combines methods from

Copyright © 2019. All rights reserved.

these paradigms which share data and search state. For
example, variable domain constraints from MIP may be
shared with CP. This integration is mostly behind the
scenes. For users who want to get under the hood, SCIP
provides heuristic and search control options to manage the
solving process details, and even to build custom constraint
handler plug-ins.

Rover: Path planning in grid with obstacles
 𝑂" Start

𝑂# 𝑂$ 𝑂%

Goal 𝑂&

Figure 1. Rover grid with 5 obstacles

To facilitate discussion, we begin with a classical plan-
ning benchmark domain known as Tileworld (Pollock and
Ringuette 1990, Levinson 1995) which involves path plan-
ning and execution in a grid world. We present a variant of
Tileworld called Rover with moving obstacles. The Rover
domain is a simple pedagogical scenario that has been use-
ful to develop our initial CIP formulations for planning
problems, which we then applied to the actual NASA prob-
lems described in this paper. We also use this domain for
performance experiments to understand the effects of mod-
el changes and scaling complexity.
 Problem: Find an optimal sequence of moves, N, S, E,
W to go from start position to goal position without step-
ping into a cell blocked by obstacle 𝑂'.
 Inputs define the x and y dimensions of the grid, the
starting and goal positions for the rover, and the maximum
execution time (max # of moves). These inputs are:
• xMax = grid x-dimension size
• yMax = grid y-dimension size
• tMax = the maximum execution time. Assuming each

move takes one time unit, tMax = the maximum num-
ber of rover moves.

• Starting position (𝑠*, 𝑠,)
• Goal position .g0,𝑔,2.	
Let T = {0, … , 𝑡𝑀𝑎𝑥} be the set of all execution times in
the plan window.

cba

Bernardini et al. (Eds): SPARK 2019 8

https://creativecommons.org/licenses/by-sa/4.0/

Rover position variables and constraints:
	𝑥= = Rover x-position at time t, 0 ≤ 	𝑥= ≤ 𝑥𝑀𝑎𝑥, ∀𝑡 ∈ 𝑇
	𝑦= = Rover y-position at time t, 0 ≤ 	𝑦= ≤ 𝑦𝑀𝑎𝑥, ∀𝑡 ∈ 𝑇	

Move constraints (1) define the move choices at each time
step. They are disjunction constraints which encode the 5
choices for moving: West, East, South, North, or no move.
They also enforce the constraint that rover can move only
one step at a time (no diagonal steps). ∀𝑡 ∈ 𝑇:
((𝑔* < 𝑥=) ∧ (𝑥=G# = 𝑥= − 1) ∧ (𝑦=G# = 𝑦=))				∨
((𝑥= < 𝑔*) ∧ (𝑥=G# = 𝑥= + 1) ∧ (𝑦=G# = 	𝑦=))			∨ (1)
((𝑔, < 𝑦=) ∧ (𝑦=G# = 𝑦= − 1) ∧ (𝑥=G# =	𝑥=)) 			∨
((𝑦= < 𝑔,) ∧ (𝑦=G# = 𝑦= + 1) ∧ (𝑥=G# =	𝑥=)) 			∨
((𝑥= = 𝑔*) ∧ .𝑦= = 𝑔,) ∧ (𝑦=G# = 𝑦=2 ∧ (𝑥=G# =	𝑥=))			

Constraints (1) say: If goal is to on left (west) of rover,
then decrement x and no change to y-position. If goal is on
right (east) of rover, then increment x and no change to y-
position. If goal is below (south of) rover, then decrement
y and no change to x-position. If goal is above (north of)
rover, then increment y and no change to x position. If rov-
er is at the goal then there is no move.

Move constraints (1) assume there are no cul-de-sacs or
blind alleys because the rover will never step in the oppo-
site direction from the goal. We can easily remove this
assumption by removing all terms containing 𝑔*	or	𝑔, (the
terms in (1) that compare rover position to goal position).

Disjunction constraints: We implement (1) using SCIP’s
disjunction constraint handler which ensures at least one of
the disjuncts must be true in any feasible solution. Model-
ing disjunction is a key benefit of CIP compared to MIP.
We find it more natural to model planning choices and
mutually exclusive state descriptions with disjunction
compared to use of slack variables or related methods re-
quired for strict MIP. All of the models in this paper use
SCIP’s disjunction constraint in some way.

Goal distance variables and constraints:
Rover x and y goal distances at time t, ∀𝑡 ∈ 𝑇:
𝑑𝑥= = x-distance from goal at time t, 0 ≤ 	𝑑𝑥= ≤ 𝑥𝑀𝑎𝑥
𝑑𝑦= = y-distance from goal at time t, 0 ≤ 	𝑑𝑦= ≤ 𝑦𝑀𝑎𝑥

Constraints (2) and (3) are disjunction constraints which
bind the 𝑑𝑥=	&	𝑑𝑦=	variables to the absolute value of the
goal distance at each time point.
∀𝑡 ∈ 𝑇:		(𝑥= + 𝑑𝑥= = 𝑔*)	∨ (𝑥= − 𝑑𝑥= = 𝑔*)	 (2)
																.𝑦= + 𝑑𝑦= = 𝑔,2	∨ .𝑦= − 𝑑𝑦= = 𝑔,2		 (3)

Moving obstacles: We now extend the model to include
obstacles which must be avoided. Obstacles may be mov-
ing if we are given their trajectories. The trajectories are
vectors of integers rather than decision variables, so there
is no additional computational complexity for moving vs.
stationary obstacles. Let O be a set of N moving obstacles

with known trajectories. ∀𝑜Q ∈ 𝑂:	𝑜Q=* 		= x position of	𝑜Q at
time t and 𝑜Q=

,
	
	= y	position	of	𝑜Q at time t.

Blocked position indicator 𝑏Q=	is a binary variable in-
dicating a plan where the rover is in the same position as
an obstacle, so those solutions can be rejected. 	∀𝑡 ∈
𝑇, ∀𝑜Q=: 𝑏Q= ∈ {0,1}, 𝑏Q= = 1⟺ (𝑥= = 𝑜Q=*)	∧ (𝑦= = 𝑜Q=

,)	
𝑏Q=	is true if and only if the rover’s x and y positions equal
x and y positions of obstacle 𝑜Q at the same time t.

Blocked position tracking constraints enforce seman-
tics for the blocked position variable 𝑏Q=	indicating when
rover and obstacle 𝑜Q are in the same position at time t.
Constraints (4) include 5 disjuncts: IF rover x & y equal
object 𝑜Q x & y at time t, THEN 𝑏Q= = 1, ELSE (in all other
cases) 𝑏Q== 0. ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ {1,… , 𝑁}:
((𝑥= = 𝑜Q=*) 	∧ (𝑦= = 𝑜Q=

,) ∧ (𝑏Q= = 1)) 	∨
 ((𝑥= < 𝑜Q=*)	∧ (𝑏Q= = 0)) ∨ (4)
 ((𝑜Q=* < 𝑥=)	∧ (𝑏Q= = 0)) ∨
 ((𝑦= < 𝑜Q=

,) 	∧ (𝑏Q= = 0)) ∨
 ((𝑜Q=

, < 𝑦=)	∧ (𝑏Q= = 0))

No blocked positions constraints reject any plan where
the rover steps into a position blocked by an obstacle.
∑ ∑ 	=^_*

=
`
Q 𝑏Q= 	= 0 (5)

Objective:
Minimize ∑ 	=^_*

= 𝑑𝑥= + 𝑑𝑦=
The objective is to minimize the sum of the x and y dis-

tances from the goal (Manhattan distance) for all times.
This model is very minimal and does not even include

decision variables representing each move or indicating
when the goal is reached. The sequence of moves can be
inferred from a solution’s 𝑥=	and	𝑦= assignments. It is an
indirect encoding of the model since the rover moves are
not explicitly modeled.

The model presented above is version 2. The first ver-
sion was complex and much slower. For comparison, we
describe key parts of version 1 below. Version 1 is a direct
encoding where x and y positions and moves are modeled
with separate constraints, and each move is explicitly mod-
eled with decision variables. It also tracked and rewarded
progress towards subgoals (being aligned with the goal in
either the x or y axis). It handles x and y positions and
moves independently with constraints (6, 7, 8) below:
((𝑔* < 𝑥=) ∧ (𝑥=G# = 𝑥= − 1) ∧ (𝑑*= = 1) ∧ (𝑚*= = 1)) 	∨
((𝑥= < 𝑔*) ∧ (𝑥=G# = 𝑥= + 1) ∧ (𝑑*= = 1) ∧ (𝑚*= = 2)) 	∨
((𝑥= = 𝑔*) ∧ (𝑥=G# = 𝑥=)	∧ (𝑑*= = 0) ∧ (𝑚*= = 3)) (6)

((𝑔, < 𝑦=) ∧ (𝑦=G# = 𝑦= − 1) ∧ (𝑑,= = 1) ∧ (𝑚,= = 4)) ∨
((𝑦= < 𝑔,) ∧ (𝑦=G# = 𝑥= + 1) ∧ (𝑑,= = 1) ∧ (𝑚,= = 5)) ∨
((𝑦= = 𝑔,) ∧ (𝑦=G# = 𝑦=)	∧ (𝑑,= = 0) ∧ (𝑚,= = 6))	 (7)
where 𝑑*=	&	𝑑,=	are x & y distances moved at time t.
𝑚*=	&	𝑚,= are the x & y move directions at t (1=East,
2=West, 3= no x-move.
Constraints (6) say: If goal is on left of rover, then decre-

CIP Formulations for NASA Planning, Scheduling, and Autonomy Problems 9

ment x, if goal is on right, then increment x, and if rover’s
x position is same as goal x-position, then no move in x
direction. Constraints (7) are the same, for y-positions.

Constraints (8) ensure that at any time the rover moves
only in the x or the y direction, but not both (no diagonals).
∀𝑡: 𝑑*= + 𝑑,= ≤ 1 (8)
Model version 1 scaled so poorly that we tried the minimal
approach of version 2, resulting in major improvements
shown in figure 2:

Rover experiments
Test V D Size

T O 1st Sol Bst

sol
Opt
sol

Sol
time

1 1 ↗ 6x6 13 0 45 526 --- ---
2 2 ↗ 6x6 13 0 20 20 --- ---

3 1 ↙ 6x6 13 0 0.1 0.1 0.1 180
4 2 ↙ 6x6 13 0 --- --- 0.1 3.4

5 1 ↗ 6x6 10 2 --- --- --- ---
6 1 ↙ 6x6 10 2 20 192 --- ---

7 2 ↗ 6x6 13 5 562 562 --- ---
8 2 ↙ 6x6 13 5 --- --- 0.28 1.4
9 2 ↘ 6x6 13 5 21 21 --- ---
10 2 ↖ 6x6 13 5 158 158 --- ---

 Figure 2. Subset of Rover Experiment Results

Performance experiments for the rover domain involve
varying the initial and goal positions, varying the grid size
(not shown), and varying the number and positions of ob-
stacles, and max number of moves. Figure 2 shows a sub-
set of our experiment results for the rover. We chose this
subset to highlight the differences between model version 1
(V1) and version 2 (V2), and to demonstrate the directional
asymmetries we observe. In model V1 the x and y move
choices were modeled using separate constraints. Model
V2 is the very minimal model with “unified” move choice
constraints to handle x and y movements together.

The columns in Table 2 are: V = the model version. D =
direction. In tests 1 and 2, the rover starts in the lower left
corner (0,0) and the goal is the upper right corner indicated
by the ↗ arrow. Tests 3 and 4 are the opposite, starting in
the upper right and goal in the lower left, indicated by the
↙ arrow. We observed significant performance asymmetries
based on which direction the rover goes. Size indicates the
width and height of the grid (e.g., 6 x 6). T is the maximum
number of moves in a solution (max execution time). O
shows number of the obstacles (if any). 1st sol shows the
time when the first solution was found. Bst sol shows the
time when the best solution (lowest objective) was found.
Opt sol shows the time when the optimal solution was
found. Sol time shows when the SCIP solver converged on
a solution and could verify that a previously found solution
was in fact optimal. All times are in seconds. All tests had
a maximum time limit of 10 minutes, after which SCIP
returned any solutions it found up to that point.

 The solver struggled when rover had to move to upper
right (the “hard” direction). It is unclear why these asym-
metries exist but they are extremely reproducible even after
changing from V1 to version V2.

 Tests 1 and 2 compare V1 vs. V2 without any obstacles.
V2 solves it in 20 seconds compared to 526 seconds for
V1. However, neither problem converged because it was
the “hard” direction. Tests 3 and 4 are the same except in
the “easy” direction, where both version 1 and 2 solved the
problem in 0.1 seconds, but it took 180 seconds for V1 to
prove optimality compared to 3.4 seconds for V2. Tests 5
and 6 both use version 1 with 2 obstacles, but in opposite
directions. Test 5, the hard direction, produced no solution.
Test 6, the easy direction, found a first answer in 20 sec-
onds and the best solution at 192 seconds before timing out
without converging. V1 could not solve any problems with
more than 2 obstacles. Tests 7-10 all use V2, with 5 obsta-
cles, but the direction is varied to test all 4 diagonals.

Even with V2, we see performance asymmetries favor-
ing the direction from upper right to lower left. Test 8
shows the best performance is when both x and y must
decrease to reach goal. Increasing y appears costlier than
increasing x (test 7 vs test 9). We also found high sensitiv-
ity to SCIP heuristics. SCIP includes 7 different node se-
lector heuristics to control selection of the next search
node. We tried every one of the options and found that
only depth-first search (DFS) produced any solutions be-
fore timing out at 10 minutes with no solutions. By default,
DFS is the last heuristic SCIP chooses, so we had to over-
ride the default settings to tell SCIP to prefer DFS.

Autonomous space habitat
NASA has demonstrated autonomy software to control a
simulated space habitat, similar to the International Space
Station (Aaseng et al. 2018). The demo involved manage-
ment of the habitat’s power and life-support systems while
a power distribution system fault occurs, reducing availa-
ble power and energy. The habitat includes various instru-
ments (power loads) like heaters, fans, and oxygen, CO2,
and methane processing. Each load has different power
demands, and some may have multiple power modes (off,
low, high) with different demands depending on the mode.

Operational constraints must be satisfied. For example,
two loads may need to stay synchronized so they are either
both on or both off, or possibly they cannot be on at the
same time. For example, only one heater may be on at any
time. There are also periodic duty cycle constraints requir-
ing loads to remain on (or off) for a given period of time
within a larger repeating period. For example, a load must
be ON for 15 minutes then off for 5 minutes.
 An autonomous power control (APC) system provides
low-level reactive “autonomy” for the power distribution
so that if a fault occurs it can immediately safe the system
by shutting off the lowest priority loads. APC ensures only

CIP Formulations for NASA Planning, Scheduling, and Autonomy Problems 10

that the power system, at the lowest level, will not exceed
power or energy constraints. It does not understand opera-
tional constraints (duty cycles and coordinated load re-
quirements), and does not understand how to balance
spacecraft-wide mission priorities and constraints involv-
ing other systems such as life support and avionics.

The Vehicle System Manager (VSM) maintains a higher-
level view compared to APC. VSM has the job of produc-
ing the mission-level plan which maintains that system
level perspective by integrating life support systems, sci-
ence experiments and power management. We have im-
plemented the VSM planner using SCIP.
 Every 5 minutes, APC tells VSM how much power is
available for the next 2 hours, then VSM produces a “pow-
er plan” covering the next 2 hours. The plan specifies the
priority for each load and when the load should be turned
on or off based on these spacecraft-wide constraints. The
planner considers power demand for each load at each time
to ensure that power demand never exceeds capacity and
that the cumulative energy consumed during the entire 2-
hour plan window never exceeds the total available energy.

When a fault occurs, APC will immediately safe the sys-
tem by shedding the low-priority loads (using the load pri-
orities set by the VSM planner) and then report the new
state to VSM, including the type of fault (which compo-
nents failed), the new (reduced) power availability, and a
list of loads which were shed while safing the system.
VSM then generates a new power plan to rebalance the
load priorities and schedule based on the new situation.
 We approach this as a job scheduling problem. Each
load is a job to be scheduled on a single machine with a
given power capacity. Multiple jobs can be scheduled at
the same time on the single machine but the total power
and energy demands cannot exceed the machine capacity.

In the nominal case, the objective is for all loads to ful-
fill their duty cycles and meet operational constraints. Af-
ter a fault occurs, the planner must decide which loads to
shed so that the new (reduced) energy and power availabil-
ity constraints are not violated. Fault recover may involve
adding actions too. If a load is turned off too long for fault
recovery, then an additional load may need to be turned on
to compensate, which may require turning something else
off. Parts of this model were informed by our rover exper-
iments. For example, maintaining a temperature setpoint is
similar to the minimizing the rover’s distance to the goal.
We’ve extracted and simplified 3 scenarios from the habi-
tat model which are explained below in isolation, although
they are parts of a larger system.

Scenario 1 - Surviving a temporary power loss
Given Inputs:
maxTime = plan horizon
𝑡 ∈ {0,… ,𝑚𝑎𝑥𝑇𝑖𝑚𝑒} = time index.
maxPriority = maximum (largest) load priority
minEnergy = minimum energy available limit (minimum
battery charge level)

𝑝=		= maximum power available (capacity) at time t	
L = Set of all loads.
Each load 𝑙'	 ∈ 𝐿	includes the following properties:
𝑙'
qrQ

	 = load 𝑙'	 	priority, 1 ≤ 	𝑙'
qrQ

	 ≤ 𝑚𝑎𝑥𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦
𝑙'uvr^_* = load 𝑙'	 	 max 	duration (the nominal duration,
unless load must be shed).
𝑙'uyu = load 𝑙'	 	power demand
𝑙'
yQ'z{{ = minimum time load 𝑙'	may be off between two

iterations (default is 0).
𝑙'
,y_*z{{ = max time load 𝑙'	may be off (default maxTime)
𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑑(𝑙'	 , 𝑙y) means loads 𝑙'	 	𝑎𝑛𝑑	𝑙ymust start
and end at the same time

Load iteration notation: 𝑙'Q= the ith iteration of 𝑙'	 	 (e.g.,
the 3rd time heater-2 is turned on). 𝑙'Q are “jobs” to be
scheduled. We use the term “job” interchangeably with
“load iteration” in this paper.

Start time and duration variables:

𝑙'�
�=_r=

	
 = Start time for ith iteration of load n

𝑙'�
uvr

	
 = Duration for ith iteration of load n:

 0 ≤ 𝑙'�
uvr ≤ 𝑙'uvr^_*

For VSM, maxTime = 24, representing 24 quanta, each
of 5 minute duration. Each time t represents a 5 minute
quantum of real-time. We have 15 loads with maximum
priority (lowest priority) = 15. Highest priority = 1.

Synchronization constraints: The Sabatier (SAB) and

the Plasma Pyrolysis Assembly (PPA) are two loads which
must be synchronized so that they are either both on or
both off at any time. SAB removes carbon dioxide from
the air using hydrogen and a catalyst, and produces me-
thane as a byproduct. The PPA is used to recover hydrogen
from methane byproduct. We model the requirement that
SAB and PPA either must both be on or must both be off at
the same time with synchronization constraint (9):
𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑑(𝑙'	 , 𝑙y) 	⟺	
																.𝑙'�

�=_r= = 	 𝑙y�
�=_r=2	⋀ 	 (𝑙'�

uvr = 	 𝑙y�
uvr) (9)

isActive binary variables indicate if a given job is active
at time t: 𝑙'�

Q���=Q��� = 1	 ⟺ 𝑙'Q	is	on	at	time	𝑡	
∀𝑙'� , ∀𝑡: 	 (10)
((.0 ≤ 𝑙'�

�=_r= ≤ 𝑡2⋀.𝑡 ≤ 𝑙'�
�=_r= +	 𝑙'�

uvr2⋀ 	(𝑙'�
Q���=Q��� = 1))			⋁	

																													(.0 ≤ 𝑙'�
�=_r= + 𝑙'�

uvr < 𝑡2⋀ 	(𝑙'�
Q���=Q��� = 0))				⋁	

																																																(.𝑡 < 𝑙'�
�=_r=2		⋀ 	(𝑙'�

Q���=Q��� = 0)))						
Constraints (10) say: If job starts before or at t, and ends at
or after t, then job is active, otherwise job is not active.

Power and energy variables track resource usage:
𝑑=	 =	total power demand at time t.
𝑑=	 = ∑ 𝑙'uyu∀���			

		𝑙'�
Q���=Q��� , ∀𝑡 (11)

∀𝑡:		𝑒= 	 = available energy at time t.

CIP Formulations for NASA Planning, Scheduling, and Autonomy Problems 11

Initial energy 𝑒� = ∑ 𝑝=y_*�Qy�
=��

∀𝑡:		𝑒=G# 	= 𝑒= −		𝑑= (12)
Power	demand	never	exceeds	available	power:	
∀𝑡:	𝑑= ≤ 𝑝= (13)
Available energy always exceeds minimum energy limit:
∀𝑡:		minEnergy	 < 𝑒= (14)

isShed binary variables and constraints indicate if load
iteration 𝑙'Qwas shed (truncated). If 𝑙'Q duration is shorter
than the load’s maximum duration, then isShed is true.
𝑙'�
Q����u = 1	 ⟺		𝑙'�

uvr 	< 𝑙'uvr^_*	
∀𝑙'�:		((.𝑙'�

uvr < 𝑙'uvr^_*2	⋀ 	�𝑙'�	
Q����u = 1�)		⋁ 	 (15)

														(.𝑙'�
uvr = 𝑙'uvr^_*2	⋀ 	�𝑙'�	

Q����u = 0�))

Separation constraints for duty cycles and periodic
loads specify the distance between successive load itera-
tions. Periodic duty cycles require that a load must remain
on for some duration, then off for some duration, within a
larger repeating period. A load is periodic if 𝑙'

yQ'z{{ =
	𝑙'
y_*z{{. For example, the Potable Water Dispenser

(PWD) must be on for 15 minutes then off for 5 minutes.
Constraints (16) enforce this periodic separation:
𝑙'���
�=_r=

	
= 𝑙'�	

�=_r= +	 𝑙'	
uvr^_* + 𝑙'

y_*z{{ (16)

Separation for non-periodic loads
𝑙'
yQ'z{{ + 1 ≤ 𝑙'���

�=_r=
	
−	 𝑙'�	

�=_r= − 𝑙'�	
uvr ≤ 𝑙'

y_*z{{ (17)
One is added to the lower bound because this constrains

the 𝑙'�
�=_r=lower bound for the next time after the load’s off

period. This ensures successor start time is not the same as
predecessor end time (iterations must start and end at dif-
ferent times). Note that (16) constrains the “start-to-start”
distance between the predecessor start and the successor
start. In contrast, (17) constrains the “end-to-start” dis-
tance between the predecessor end and the successor start.

We tried using (17) for both periodic and non-periodic
constraints (not using 16 at all). This had the appeal of
using a single constraint instead of two, but it turned out to
be a performance killer, probably because (17) includes
𝑙'�
uvr decision variables whereas (16) doesn’t.

Backup jobs held in reserve. The exact # of load itera-
tions required for an optimal solution is not known at mod-
el creation time (when we generate the SCIP variables and
constraints). Depending on how many loads are shed, more
jobs may be required. In nominal cases only one iteration
of EXP is required because it typically remains on. How-
ever, fault recovery may require that we shed the first EXP
job and then we need a new EXP iteration to schedule after
fault recovery. To address this, we create “benchwarmer”
jobs which are only scheduled if necessary to restart a load
after it’s been shed.

These benchwarmer jobs introduce several complica-
tions to the model. In particular, we must ensure that the
reserve jobs are “inert”, meaning their assigned start and

duration times don’t affect the objective function unless
they are called into action. The separation constraints en-
sure that the reserve jobs are sequenced after the nominal
jobs. We also want backup jobs to start at the plan horizon
and also have a duration of 0 (so backup job durations
don’t affect the objective), but unlike the “nominal” jobs,
which are penalized for being shed, we don’t want the pe-
nalize the backup jobs if their duration is 0. Another com-
plication is preventing premature shedding (stopping a job
early) and starting a benchwarmer immediately to follow
it. For example, if 𝐸𝑋𝑃	should remain on for 10 ticks, we
prefer a plan where 𝐸𝑋𝑃#remains on for the duration and
𝐸𝑋𝑃" never starts, compared to shedding 𝐸𝑋𝑃#after 5 ticks
and then starting 𝐸𝑋𝑃"to complete the remaining 5 ticks.
We are considering an alternative approach where
benchwarmers are created on-demand, only after a prior
job is shed, rather creating them in advance as part of the
initial model.

Objective: We maximize the durations of higher priori-

ty jobs and minimize the # of higher priority loads which
are shed. We prefer to complete earlier load iterations and
shed later ones. This is because we want to avoid prema-
ture shedding and want to keep the benchwarmers out of
action until required as described above. We prefer to
complete the first iteration if possible, and shed the second
iteration, rather than cutting the first iteration short then
starting the second iteration earlier prematurely. Thus, we
want to favor scheduling the earliest iterations of the high-
est priority loads.

We define a load’s weight: 𝑙'	
� = 10(y_*�rQG#) ��

¡¢�
	 . This

is the weighting factor for all load iterations 𝑙'�	
	 	of load 𝑙'	

	 .
We then define the job weight 𝑙'�	

� = 𝑙𝑛	
𝑤 + 1000/𝑖.

This scheme produces weights for the objective function
such that each higher priority load has weights that are an
order of magnitude higher the next lowest priority load,
and earlier jobs are weighted higher than later jobs. Sam-
ple job weights for our example are shown in figure 3:

Figure 3. Job weights 𝑙'�	
� used in objective function

Objective Function:
Minimize: ∑ −	𝑙𝑛𝑖	

𝑤 		𝑙'�
uvr

	
+ 𝑙𝑛𝑖	

𝑤 		𝑙'�
Q����u

	
∀���

This objective includes a reward for longer job durations

sab0: 1000000000000
sab1: 500000000000
ppa0: 100000000000
ppa1: 50000000000
pwd0: 100000000
pwd1: 50000000
pwd2: 33333333
exp0: 10000000
exp1: 5000000
exp2: 3333333
exp3: 2500000

CIP Formulations for NASA Planning, Scheduling, and Autonomy Problems 12

and a penalty for shedding jobs. The rewards and penalties
are proportional to the job weight.

Figure 4. VSM planner solution

Figure 4 shows a sample VSM solution. Each row repre-
sents a time, t. The columns SAB, PPA, PWD, EXP repre-
sent the power demand (watts) from each load at time t if
the load is scheduled to be on at t (entry is blank if load is
off). The avail column is available power, demand is the
total power demand from all loads, and energy is remain-
ing energy. Loads are shown in decreasing priority from
the left: SAB is highest priority and EXP is lowest (first to
be shed). These priorities reflect overall system-wide prior-
ities: First protect human life, then protect overall mission,
then protect science, then protect individual subsystems.
SAB, PPA and PWD are all life support systems which are
higher priority than EXP, which is a freezer containing
science specimens (to preserve the specimens, it shouldn’t
be off for more than 30 minutes). Notice PWD’s duty cycle
periodicity, which is on for 3 ticks then off for 1. Also note
that SAB and PPA are synchronized in their duty cycles.

Figure 4 illustrates a reduced power scenario. Available
power (avail) decreases from 500 to 400 watts, from t = 7
through t = 16 (highlighted by the box). This forces the
planner to shed EXP which has a max-separation constraint
that it may not be off for more than 6 time units (30
minutes). This forces the planner to turn EXP back on at t
= 11, but then turn it off again for another 5 time units, so
that EXP is never off too long.

Originally this solution took 1033 seconds (17.2 mins)
to find. We then changed the start time and duration deci-
sion variables from integer to continuous and it took 1/3 of
the time, solving this same problem in only 330 seconds
(5.5 mins). SCIP’s solution process involves first relaxing
the integral constraints, then solving the LP, then reintro-
ducing the integral constraints. Since our start times and

durations are integral seconds, it seemed natural to model
them as integers, but clearly SCIP incurs significant over-
head in relaxing then reintroducing the integral constraints.

Continuous replanning: The plan window rolls for-
ward. Every 5 minutes, the plan window’s lower and upper
bounds both increase by five minutes (a “quantum”). The
plan is updated to reflect the new time bounds. Model
variables and constraints from the past may be discarded
and new ones for the future may be created to cover the
new quantum extension. Load iterations are created as
necessary on each quantum update.

Plan Execution causes decision variables to be fixed to
their actual execution times. As the plan is executed, VMS
sends start and stop commands to each load at the sched-
uled times. Past start and stop times are now known, so
those start and end times are fixed to the actual time when
those commands were sent.

From an execution perspective, if a fault forces VSM to
stop a job earlier than planned, VSM simply sends com-
mands to the loads to turn off. From the planning perspec-
tive, it’s more indirect. We only model job start times and
durations (not stop times), so we cannot set the stop time
directly. Instead we shorten (and fix) the duration of the
current SAB and PPA iterations as follows:
𝑆𝐴𝐵	Q	uvr = 𝑓𝑎𝑢𝑙𝑡𝑇𝑖𝑚𝑒 − 𝑆𝐴𝐵Q	

�=_r= (18)
𝑃𝑃𝐴Q	

uvr = 𝑓𝑎𝑢𝑙𝑡𝑇𝑖𝑚𝑒 − 𝑃𝑃𝐴Q�=_r= (19)
where faultTime is the time when the fault starts.

If a power fault causes us to lose a battery, APC informs
VSM about the reduced energy capacity. VSM determines
it must shut down the lowest priority load, EXP (a science
experiment freezer), but not for more than 30 minutes. This
is modeled by separation constraint (17) and can be rewrit-
ten as: 𝐸𝑋𝑃	Q�=_r= + 𝐸𝑋𝑃Quvr ≤ 𝐸𝑋𝑃	QG#	

�=_r= 	≤ 	30, where
𝐸𝑋𝑃QG#	 is the next EXP iteration after faultTime and
𝐸𝑋𝑃Q	is the iteration that was shut stopped at faultTime.

Scenario 2 - Contingent Action Planning: This sec-
ond scenario involves planning (adding actions to the plan)
rather than scheduling times for a given set of actions. In
this scenario, fault recovery involves conditionally adding
a new load to the plan, compared to prior scenario where
we were strictly shedding loads. This is currently imple-
mented as a standalone SCIP model but some version will
eventually be integrated into the larger VSM application.

In this scenario, we have the SAB and PPA loads as be-
fore. The loads SAB and PPA should both remain on until
a fault occurs. A fault occurs when the PPA collects too
much residue to perform correctly. The only option is to
turn off the PPA to perform a cleaning action which at-
tempts to fix the problem. The duration of the cleaning
action depends on how much residue has collected. Since
SAB and PPA are synchronized, we must also turn off
SAB while the PPA is off for cleaning. However, if SAB is
turned off too long, then it will cool down so much that an
extra action “reheat” must be added to the plan to reheat

 t SAB PPA PWD EXP avail demand energy
--
 0: 100 100 22.75 200 500 422.75 10500.00
 1: 100 100 22.75 200 500 422.75 10077.25
 2: 100 100 22.75 200 500 422.75 9654.50
 3: 100 100 200 500 400.00 9231.75
 4: 100 100 22.75 200 500 422.75 8831.75
 5: 100 100 22.75 200 500 422.75 8409.00
 6: 100 100 22.75 200 500 422.75 7986.25
 7: 100 100 200 400 400.00 7563.50
 8: 100 100 22.75 400 222.75 7163.50
 9: 100 100 22.75 400 222.75 6940.75
10: 100 100 22.75 400 222.75 6718.00
11: 100 100 200 400 400.00 6495.25
12: 100 100 22.75 400 222.75 6095.25
13: 100 100 22.75 400 222.75 5872.50
14: 100 100 22.75 400 222.75 5649.75
15: 100 100 400 200.00 5427.00
16: 100 100 22.75 400 222.75 5227.00
17: 100 100 22.75 200 500 422.75 5004.25
18: 100 100 22.75 200 500 422.75 4581.50
19: 100 100 200 500 400.00 4158.75
20: 22.75 200 500 222.75 3758.75
21: 22.75 200 500 222.75 3536.00
22: 22.75 200 500 222.75 3313.25

CIP Formulations for NASA Planning, Scheduling, and Autonomy Problems 13

the SAB after cleaning has resolved the problem and be-
fore turning both SAB and PPA back on.

In other words, depending on how long SAB remains
off, we may have to add an additional recovery action to
the plan (to reheat the SAB before turning it back on). Spe-
cifically, if SAB remains off for 4 time units or less, then
we don’t need the contingent reheat action, but if it re-
mains off more than 4 time units (because the cleaning
action is taking a long time), then we must add the reheat
action to the plan. The model for this contingent action
behavior is below. For brevity, we omit the PPA variables
and constraints to illustrate the concept using SAB only.
Since PPA and SAB are synchronized (constraint 9) they
have nearly identical specifications.

In this simplified model we define 5 jobs:
𝑆𝐴𝐵# = first iteration of SAB load (before fault).
𝑆𝐴𝐵" = second iteration of SAB (after fault is resolved)
c = clean the PPA (fault recovery action)
r = reheat the SAB if necessary (contingent action)
f = fault “job” (exogenous activity triggered by sensors)

Variables:
𝑆𝐴𝐵#�, 𝑆𝐴𝐵#u,𝑆𝐴𝐵#� = start, duration, end times for 𝑆𝐴𝐵#
𝑆𝐴𝐵"�, 𝑆𝐴𝐵"u,𝑆𝐴𝐵"� = start, duration, end times for 𝑆𝐴𝐵"
𝑐�, 𝑐u, 𝑐� = start, duration, end times for c
𝑟�, 𝑟u, 𝑟�	= start, duration, end times for r
𝑓�, 𝑓u, 𝑓�	= start, duration, end times for f
Duration constraints:
𝑆𝐴𝐵#� = 		𝑆𝐴𝐵#� + 		𝑆𝐴𝐵#u (21)
𝑆𝐴𝐵"� = 		𝑆𝐴𝐵"� + 		𝑆𝐴𝐵"u (22)
𝑐� = 𝑐� + 𝑐u (23)
𝑟� = 𝑟� + 𝑟u (24)
𝑓� = 𝑓� + 𝑓u (25)
Sequence constraints:
𝑆𝐴𝐵"	 	starts	after	𝑆𝐴𝐵#	 ends: 					𝑆𝐴𝐵#� ≤ 𝑆𝐴𝐵"� (26)
𝑆𝐴𝐵#	 	ends when fault starts: 	𝑆𝐴𝐵#� = 𝑓� (27)
𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔	starts when fault starts: 	𝑐� = 𝑓� (28)
𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔	ends when fault ends: 			𝑐� = 𝑓� (29)

The fault f is an exogenous activity, which is triggered
by a PPA sensor. The fault is modeled as a “job” with start,
duration and end times, just like other jobs, except the start
time and duration are determined during execution by a
sensor which measures the PPA residue buildup. When a
sensor/state estimator tells VSM the fault has begun, then
VSM fixes 𝑓� to the current execution time, and when re-
ceives a message the fault has been repaired, then it fixes
𝑓� to the time when fault is fixed. Before 𝑓�	is fixed to an
actual value, the planner maximizes 𝑓� (expressed in the
objective function). If the fault never happens, this job
should start at the end of (outside) the plan horizon.

Conditional temporal network constraint:
(((𝑐u ≤ 4) ∧ (𝑆𝐴𝐵"� = 𝑐�)) ∨ (30)
		((4 < 𝑐u) ∧ (𝑟� = 	 𝑐�) 	∧ (𝑆𝐴𝐵"� = 	 𝑟�)))

Constraint (30) says: If the cleaning duration is less than
or equal to 4 tine units, then 𝑆𝐴𝐵"starts when the cleaning
ends, otherwise the contingent reheat action starts when
cleaning ends, and 𝑆𝐴𝐵"starts after the reheat action ends.
If cleaning takes too long, then the topology of the tem-
poral constraint network is modified by splicing the con-
tingent reheat action into place in between cleaning and
restarting SAB. Constraints (30) define a conditional tem-
poral network, where the network topology and distance
constraints are conditional on the length of the cleaning
operation. This approach is related work in constraint net-
works (Allen 1991) and constraint-based planning systems
(Muscettola et al. 2002).

Objective: Minimize: −𝑆𝐴𝐵#u − 	𝑆𝐴𝐵"u	−	𝑐� −	𝑟� − 𝑓�

An optimal solution has the longest durations for
𝑆𝐴𝐵#	and	𝑆𝐴𝐵" , and the latest start times for 𝑆𝐴𝐵" ,
𝑐, 𝑟	and	𝑓.	 If the fault never occurs then 𝑆𝐴𝐵",	c, r and f
never start (their start times are outside the plan horizon).

Scenario 3 - Thermostat with multi-mode heaters:
In this final scenario, we maintain a temperature setpoint
using 2 heater loads. Like the scenario in the prior section,
this has been implemented as a standalone problem but a
version of it will be integrated into the larger VMS model.

This scenario was designed to model loads with variable
power demands. Each heater may be in three different
modes: Off, Low-power, or High-power. Only one heater
may be on at any time. The objective is to minimize the
difference between temperature and a setpoint, and to min-
imize the power consumption.
 This model leverages methods developed for the Rover.
Here the current temperature corresponds to the rover’s
current position, and the setpoint to the rover’s goal posi-
tion. We are minimizing the temperature difference be-
tween the current temperature and the setpoint, using simi-
lar variables and constraints as the Rover used to minimize
distance from the goal.
 There are two heaters, H1 and H2, represented by
integer decision variables with range [0,2], representing 3
power levels (0 = off, 1 = low power, 2 = high pow-
er). High power demands more power and produces more
heat output. The low and high power levels each have as-
sociated demand (power consumption) and output (repre-
senting temp increase, in this simplified example).
• H1 = 0: Heater1 is off (no power is consumed and no

heat output is produced)
• H1 = 1: Heater1 is on low power: Demand = 1 unit

of power consumed, and output = 2 temp units (in-
creases temp by 2).

• H1 = 2: Heater1 is on high power: Demand = 2 units
of power consumed, and output = 4 temp units (in-
creases temp by 4).

The model includes ambient cooling. Temperature de-
creases by 1 unit each tick (if no heater is on, then the temp

CIP Formulations for NASA Planning, Scheduling, and Autonomy Problems 14

decreases by 1 each tick. If heater is on, then its output is
added to this ambient decrease).

Given Inputs:
maxTime = the plan length (each step takes one time unit)
maxTemp = maximum temperature
𝑠= = vector of set point temperatures for each time t
𝑐=	= vector of maximum power capacity for each time t
𝑎=	= vector of ambient cooling rate at each time t. Ambient
conditions cause temperature to decrease by this amount on
each time step.
𝑡𝑚𝑝� = initial temperature
Variables:
𝑡𝑚𝑝= = the	temperature	at	time	t, ∀	𝑡 < 𝑚𝑎𝑥𝑇𝑖𝑚𝑒
𝑝=			 = available power at time t, ∀	𝑡 < 𝑚𝑎𝑥𝑇𝑖𝑚𝑒
𝑒=						= available energy at time t, ∀	𝑡 < 𝑚𝑎𝑥𝑇𝑖𝑚𝑒
𝑑== absolute value of the difference between current tem-
perature 𝑡𝑚𝑝=	and set point s at time t.
𝑑= ∈ {0,… ,𝑚𝑎𝑥𝑇𝑒𝑚𝑝), ∀	𝑡 < 𝑚𝑎𝑥𝑇𝑖𝑚𝑒.
𝐻1=		y	 ∈ {0,1,2} = H1	power	mode	at	time	t
𝐻2=		y	 ∈ {0,1,2} = H2	power	mode	at	time	t
𝐻1=		u 	= H1 power demand at time t
𝐻2=		u 	= H2 power demand at time t
𝐻1=		® 	 	=	heat output produced by H1 at time t
𝐻2=		® 	 	=	heat output produced by H2 at time t

We noticed performance differences between equivalent
models, where both models produce feasible results using
different constraints. We evolved three different model
versions of heater constraints, with very different perfor-
mance results (described at the end of this section).

Model Version 1: Each heater is modeled separately:
Heater state power demand and output constraints: ∀𝑡:
(.(𝐻1=		y	 = 02	∧ .𝐻1=		u 	 = 0	2 	∧ .𝐻1=		® 	 	= 	0)2		∨		 (31)
		.(𝐻1=		y	 = 12	∧ .𝐻1=		u 	 = 1	2 	∧ .𝐻1=		® 	 	= 	2)2		∨		
			.(𝐻1=		y	 = 22 ∧ .𝐻1=		u 	 = 2	2 	∧ .𝐻1=		® 	 	= 	4)2)

(.(𝐻2=		y	 = 02	∧ .𝐻2=		u 	 = 0	2 	∧ .𝐻2=		® 	 	= 	0)2	∨ (32)
		.(𝐻2=		y	 = 12	∧ .𝐻2=		u 	 = 1	2 	∧ .𝐻2=		® 	 	= 	2)2	∨		
		.(𝐻2=		y	 = 22	∧ .𝐻2=		u 	 = 2	2 	∧ .𝐻2=		® 	 	= 	4)2)
Constraints (31,32) are disjunctions of each heater’s three
possible states: (mode is off, demand = 0, output = 0) or
(mode is low, demand = 1, output = 2) or (mode is high,
demand = 2, output = 4).

One-Heater constraints ensure that at most one heater
is on at any time: .𝐻1=		y	 = 02 	∨ 	.𝐻2=		y	 = 02,			∀𝑡	 (33)

Model Version 2: In this version we replace the previous
one-heater constraint (33) with constraint (34) below,
which ensures one heater at a time based on temperature
and setpoint variables.
.(𝑠= ≤ 𝑡𝑚𝑝=)	∧ (𝐻1=		y	 = 02							∧ .𝐻2=		y	 = 0)2 		∨ (34)
.(𝑡𝑚𝑝= < 𝑠=) ∧ (1 ≤ 𝐻1=		y	 ≤ 22	∧ .𝐻2=		y	 = 0)2	∨

.(𝑡𝑚𝑝= < 𝑠=)	∧ (1 ≤ 𝐻2=		y	 ≤ 22 	∧ .𝐻1=		y	 = 0)2
Constraints (34) describe three possible states:
(setpoint ≤ temperature, and both heaters are off), or
(temperature < setpoint, and H1 is on, and H2 is off), or
(temperature < setpoint, and H2 is on, and H1 is off). This
was an intermediate step towards model version 3.

Model Version 3: Unified constraints. This final version
replaces all prior constraints with a single disjunction con-
straint describing 5 operating states. Each disjunct fully
specifies the state vector for each heater including mode,
power demand and output. This was motivated by perfor-
mance improvements we saw after making similar changes
to the Rover model. In this version, all previous thermostat
constraints (31-34) are replaced with (35) shown below:
.(𝑠= ≤ 𝑡𝑚𝑝=) ∧ (𝐻1=		y	 = 02 ∧ .𝐻1=		u 	 = 02 ∧ .𝐻1=		® 	 = 02	 (35)
					∧ (𝐻2=y = 0)	∧ (𝐻2=		u 	 = 		0)	∧ (𝐻2=		® 	 = 		0))		 ∨
.(𝑡𝑚𝑝= < 𝑠=)	∧ (𝐻1=		y	 = 12	∧ .𝐻1=		u 	 = 		12 ∧ .𝐻1=		® 	 = 	22
					∧ (𝐻2=y = 0)	∧ (𝐻2=		u 	 = 		0)	∧ (𝐻2=		® 	 = 		0))	 ∨
.(𝑡𝑚𝑝= < 𝑠=)	∧ (𝐻1=		y	 = 22	∧ .𝐻1=		u 	 = 		22 ∧ .𝐻1=		® 	 = 42
					∧ (𝐻2=y = 0)	∧ (𝐻2=		u 	 = 		0)	∧ (𝐻2=		® 	 = 		0))		 ∨
.(𝑡𝑚𝑝= < 𝑠=)	∧ (𝐻2=		y	 = 12	∧ .𝐻2=		u 	 = 		12 ∧ .𝐻2=		® 	 = 	22
					∧ (𝐻1=y = 0)	∧ (𝐻1=		u 	 = 		0)	∧ (𝐻1=		® 	 = 		0))		 ∨
.(𝑡𝑚𝑝= < 𝑠=)	∧ (𝐻2=		y	 = 22	∧ .𝐻2=		u 	 = 		22 ∧ .𝐻2=		® 	 = 	42
					∧ (𝐻1=y = 0)	∧ (𝐻1=		u 	 = 		0)	∧ (𝐻1=		® 	 = 		0))	
	
Constraints (35) are a disjunction of these 5 possible states:
(setpoint ≤ temperature, and H1 & H2 are both off) or
(temperature < setpoint, and H1 is low and H2 is off) or
(temperature < setpoint, and H1 is high and H2 is off) or
(temperature < setpoint, and H2 is low and H1 is off) or
(temperature < setpoint, and H2 is high and H1 is off).

Temperature difference constraints bind 𝑑=to the abso-
lute value of temp difference from setpoint at each time.
These constraints are based on the rover goal distance con-
straints (2) and (3). ∀𝑡:
(𝑡𝑚𝑝= + 𝑑= = 𝑠=) 	∨ 	(𝑡𝑚𝑝= − 𝑑= = 	 𝑠=)	, 0 ≤ 𝑑= (36)
Temperature change constraints:
∀𝑡:	𝑡𝑚𝑝=G#	 = 𝑡𝑚𝑝= + 	𝐻1=		® 	 + 	𝐻2=		

®
	 − 𝑎= (37)

Available power constraints:
∀𝑡: 𝑝=G# = 𝑐= − 	𝐻1=		u 	 − 	𝐻2=		

u
		 (38)

Available energy constraints:
Initial energy	𝑒� = ∑ 𝑎=y_*�Qy�

=�� .
∀𝑡:		𝑒=G# 	= 𝑒= − 	𝐻1=		u 	 − 	𝐻2=		

u
		 (39)

	 Objective: The	objective	is	to	minimize	the	sum	of	the	
temperature	 differences	 from	 setpoint	 for	 all	 times,	
similar	to	the	rover	minimizing	goal	distance,	while	also	
minimizing	power	demand:			Min:		∑ 𝑑= + 𝐻1𝑡		

𝑑
	∀= + 𝐻2𝑡		

𝑑
	.

Reactive execution proceeds through a sense/plan/act

cycle. At each execution time t, the actual current tempera-
ture is read from sensors and the variable 𝑡𝑚𝑝= is fixed to

CIP Formulations for NASA Planning, Scheduling, and Autonomy Problems 15

the sensed temperature reading for t = the current execu-
tion time step. All future temperatures (𝑡𝑚𝑝=G#…)	are pre-
dicted by the planner using the above constraints, but the
first 𝑡𝑚𝑝= in each execution cycle comes from the sensor.
After fixing 𝑡𝑚𝑝= to the sensed value, SCIP is called to re-
solve the problem.

Model Version maxTime 1st sol Opt sol Solve time
1 6 4.05 6.92 32.07
2 6 --- 11.99 39.48
3 6 0.86 1.46 4.56

1 8 60.57 100.6 632.37
2 8 --- 140.33 491.5
3 8 --- 1.4 30.85

1 10 411.49 --- ---
2 10 897.92 --- ---
3 10 --- 12.23 222.72

Figure 5. Thermostat Results

Thermostat results are shown in Figure 5. For each model
version, we compare the times required to find a first solu-
tion, the time until finding the optimal solution, and the
“Solve time”, which is time when the solver converged to
prove optimality and returns before reaching the 30-minute
solver time limit. All times are in seconds.

Note the differences between 1st sol, opt sol, and solve
time. We compared three different problem sizes: 6, 8 and
10 (maxTimes), representing increasing difficulty. Most
notable is how well version 3 performs, which mirrors the
performance improvement we saw when we made similar
model changes to the rover. Version 3 strongly outper-
forms the others in every metric. It’s the only version to
find an optimal solution for the largest problem (maxTime
= 10). The other two versions timed out after 30 minutes
on this largest problem without converging. Version 2 only
outperforms version 1 in one case: a faster solve time for
the middle-sized problem (maxTime = 8).

Conclusion and future work
We presented CIP formulations for three NASA scenar-

ios from an autonomous space habitat project, focusing on
the use of CIP for planning and execution scenarios where
the set of actions to be scheduled is not known in advance
and execution-time faults require reactive replanning.
 Our overall conclusion is that it is possible to model
dynamic planning and execution problems using SCIP. In
particular the disjunction constraint is a natural way to
model action choices and action outcomes as disjunctive
states, which bind binary indicator variables to state de-
scriptions. Such planner choices would be much harder to
model with pure LP or MIP.

Performance within a real-time context is a key chal-
lenge. We demonstrated initial performance results show-

ing solution times are very sensitive to model changes and
problem configuration. Initial results show we can signifi-
cantly improve performance by unifying some constraints
(but not necessarily all of them). We also discovered sig-
nificant performance improvement when we changed VSM
decision variables from integer to continuous.

We will continue experiments to explore how formula-
tion variations affect performance, and to better understand
SCIP’s search heuristics and parameters. We will try to
identify the cause of the tenacious directional performance
asymmetry we observed in the Rover experiments. We
have not yet tested changing all integer variables to contin-
uous with all models presented above, but intend to do so.
We are updating and integrating the VSM subproblems
described above into a single model, and extending the
model to support a new set of loads and fault scenarios,
and integration with new habitat subsystem simulators.

Acknowledgements

Thanks to the NASA Ames Autonomy Systems and Operations
team for helpful discussions to clarify and spell out the problem
scenarios which have been presented above. In particular, thanks
to Jeremy Frank for fleshing out and articulating the autonomous
habitat operating constraints and scenarios. This	work	was	fund-
ed	by	the	NASA	Advanced	Exploration	Systems	Program.	

References
Aaseng, G.; Frank, J.; Iatauro, M.; Knight, C.; Levinson, R.;
Ossenfort, J.; Scott, M.; Sweet, A.; Csank, J.; Soeder, J.; Carrejo,
D.; Loveless, A.; Ngo, T.; and Greenwood, Z. 2018. Develop-
ment and Testing of a Vehicle Management System for Autono-
mous Spacecraft Habitat Operations, In Proceedings of AIAA
2018, Orlando FL.

Achterberg, T.,2009. SCIP: solving constraint integer programs.
Math.Prog.Comp.,Vol.1,2009,pp.1–41.

Allen, J. 1991. Temporal reasoning and planning. In Reasoning
about plans, Ronald J. Brachman, James F. Allen, Henry A.
Kautz, Richard N. Pelavin, and Josh D. Tenenberg (Eds.). Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA 1-67.

Heinz, S., Beck. J.C. 2011. Solving Resource Alloca-
tion/Scheduling Problems with Constraint Integer Programming.
Proceedings of COPLAS 2011, pp 23-30.

Levinson, R. 1995. A General Programming Language for Uni-
fied Planning and Control. Artificial Intelligence, special issue on
Planning and Scheduling. Vol. 76. Elsevier Press. July 1995.

Muscettola, N., Dorais, G., Fry, C., Levinson, R., Plaunt, C. 2002.
IDEA: Planning at the Core of Autonomous Reactive Agents.
Proceedings of the 3rd International NASA Workshop on Plan-
ning and Scheduling for Space.

Pollack, M.E. and Ringuette, M. 1990 Introducing the Tileworld:
Experimentally evaluating agent architectures. Proceedings of
AAAI 90. Boston, MA

CIP Formulations for NASA Planning, Scheduling, and Autonomy Problems 16

Automated Science Scheduling for the ECOSTRESS Mission
Amruta Yelamanchili, Steve Chien, Alan Moy, Elly Shao, Michael Trowbridge,

Kerry Cawse-Nicholson, Jordan Padams, Dana Freeborn
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{firstname.lastname}@jpl.caltech.edu

Abstract

We describe the use of an automated scheduling system
for observation policy design and to schedule operations of
the NASA (National Aeronautics and Space Administration)
ECOSystem Spaceborne Thermal Radiometer Experiment on
Space Station (ECOSTRESS). We describe the adaptation of
the Compressed Large-scale Activity Scheduler and Planner
(CLASP) scheduling system to the ECOSTRESS schedul-
ing problem, highlighting multiple use cases for automated
scheduling and several challenges for the scheduling technol-
ogy: handling long-term campaigns with changing informa-
tion, Mass Storage Unit Ring Buffer operations challenges,
and orbit uncertainty. The described scheduling system has
been used for operations of the ECOSTRESS instrument
since its nominal operations start July 2018 and is expected
to operate until mission end in Summer 2019.

Introduction
NASA's ECOSTRESS mission (NASA 2019) seeks to bet-
ter understand how much water plants need and how they
respond to stress. Two processes show how plants use water:
transpiration and evaporation. Transpiration is the process of
plants losing water through tiny pores in their leaves. Evap-
oration of water from the soil surrounding plants affects how
much water the plants can use. ECOSTRESS measures the
temperature of plants to understand combined evaporation
and transpiration, known as evapotranspiration.

ECOSTRESS launched on June 29, 2018 to the ISS (In-
ternational Space Station) on a Space-X Falcon 9 rocket as
part of a resupply mission. The instrument is attached to
the Japanese Experiment Module Exposed Facility (JEM-
EF) on the ISS and targets key biomes on the Earth's sur-
face, as well as calibration/validation sites. Other science
targets include cities and volcanoes. From the orbit of the
Space Station (Figure 1), the instrument can see target re-
gions at varying times throughout the day, rather than at a
fixed time of day, allowing scientists to understand plant wa-
ter use throughout the day.

The instrument used for ECOSTRESS is a thermal in-
frared radiometer. A double-sided scan mirror, rotating at
a constant 25.4 rpm, allows the telescope to view a 53°-wide
nadir cross-track swath with one scan per 1.18 seconds. The

Copyright © 2019 California Institute of Technology. U.S. Govern-
ment sponsorship acknowledged.

nominal observation unit is a scene, made up of 44 scans,
and takes roughly 52 seconds to acquire. For simplification
of operations, we consider that ECOSTRESS scenes are 52
seconds long. About 1000 scenes may be acquired in a given
week. Figure 2 shows a set of planned observations over
North America. Each square represents one 52-second long
scene.

CLASP (Knight and Chien 2006) was initially used pre-
launch as a tool to analyze the addition of a new science
campaign. CLASP was then used for operations to generate
command sequences for the instrument. The command se-
quences are translated from the observation schedule gener-
ated by CLASP, and include other time and location depen-
dent instrument actions besides observations, such as hard-
ware power cycles through high radiation environments.

Figure 1: Three Orbital Tracks of the ISS (Robinson 2013)

Each mission comes with its own set of challenges, and
there were three specifically that required adaptations to
CLASP as follows.
• ECOSTRESS has a long-term science campaign that we

need to satisfy. From week to week, the orbital ephemeris
can change, and thus the schedule needs to be updated
each week. We need to be able to account for previously
executed observations when scheduling for the future.

• An issue with the instrument Mass Storage Unit (MSU)
was discovered, and rather than performing an instrument
firmware update, we proposed a ground-based solution
that accounts for this additional complexity in the data
modeling in the schedule.

• The uncertainty in the orbital ephemeris (predictions of

cba

Bernardini et al. (Eds): SPARK 2019 17

https://creativecommons.org/licenses/by-sa/4.0/

Figure 2: Observations Over North America

the spacecraft location) required scheduling additional
observation time to ensure no targets are missed.

In the remainder of this paper, we describe these opera-
tional challenges and how we addressed them successfully.
We also validate our methods used through computational
analysis.

Initial Scheduling Problem
CLASP recieves as input (Figure 3) the ephemeris of the ISS
(predicted time-tagged locations), instrument constraints,
and a set of set of science campaigns, which are made up
of:

• target regions of interest on the Earth’s surface (Figure 4)

• illumination constraints

• a priority

We want to produce an observation schedule to view these
regions as many times as possible while respecting con-
straints such as memory capacity, downlink rate, and keep-
out zones (e.g. high radiation environments) where we do
not want to take any observations. Science campaigns can be
target regions or single point locations. We generate a grid-
ded approximation of target regions for faster computation,
to get a set of target points.

CLASP uses the CSPICE Toolkit provided by the Navi-
gation and Ancillary Facility (NAIF) (Acton 1996) at JPL to
do geometric reasoning regarding the visibility swaths of in-
struments from the spacecraft they are attached to. The size,
shape, and location of the swaths depend on the position and
orientation of the spacecraft, and the field-of-view of the in-
strument. CLASP has the capability to schedule instruments
that can point off-nadir, but ECOSTRESS specifically has
no pointing capability, so each observation spans the whole
range of its field-of-view. The planning horizon is broken
up into fixed duration observations, and CLASP computes
the intersection between the target grid points and the ob-
servations. We use a one-pass greedy scheduling algorithm
to place observations according to the priority of the targets
they cover.

Figure 3: Scheduler inputs and outputs

Problem Statement
The CLASP problem statement (Knight and Chien 2006):

Given:

• a set of regions of interest R = {r1, ..., rn}
• a temporal knowledge horizon (hst, het) over which we

know the vehicle’s activities

• a set of observation opportunities O = {o1, ..., on} within
the horizon (hst, het) where each oi ∈ O consists of a
start (o.start) and a duration (o.duration)

• a set of instrument swaths I ={i1, ..., in} where ∀(oi ∈
O)∃(ri, ii) | (grid(oi) ∈ grid(ri))∧ (grid(oi) ∈ grid(ii))

• a scoring function U(ri)

• keepout zones where observations should not be taken

• a bound on memory Mmax

• a rate at which memory is used while the instrument is on
Ṁfill

• a rate at which memory is recovered during downlink
Ṁdrain, which occurs when the instrument is not observ-
ing and is not in a keepout zone

Our goal is to select A ⊆ O to maximize U(ri) ∀ri ∈ R
subject to instrument constraints involving available mem-
ory and keepout zones.

We introduce new and modified ECOSTRESS-specific
components to the problem statement in subsequent sec-
tions.

Figure 4: Science Campaigns can be made up of regions
(blue boxes) or point targets (purple dots)

Automated Science Scheduling for the ECOSTRESS Mission 18

Sliding Window Scheduling and Changing
Ephemeris

If we had perfect knowledge of the future and a perfect ob-
server, we could simply schedule the entire mission at once
and feed the instrument slices of the schedule to execute.
Unfortunately, there are uncertainties that require the sched-
ule to be updated:

• new or modified science campaigns

• special maneuvers for spacecraft docking that could put
the instrument in an unsafe position

• thruster burns to counteract orbital decay that change the
trajectory

The goal for most of the ECOSTRESS science campaigns
is to observe them whenever possible in daylight, to see how
their water use changes at different times throughout the
day over an extended period of time. During pre-operations
analysis, CLASP was used to understand how to effectively
make use of unused data volume. A new campaign was thus
inserted into the ECOSTRESS science operation goals - to
construct daytime maps of the global landmass. We found
that attempting to construct one global map per month would
not violate any instrument memory constraints, and allow all
of the primary science campaigns to still be fulfilled as much
as possible.

The ECOSTRESS payload is commanded weekly after
a new ISS ephemeris prediction is received, uploading two
weeks worth of command sequences to the instrument. Op-
erationally, only the first week of sequences will get exe-
cuted before the next set of sequences is uploaded, with the
second week only being executed if, for some reason, a new
schedule is not able to be uploaded the next week. Since
the global map takes four weeks to construct, but only two
weeks worth of sequences are planned, we need to deter-
mine which parts of the global landmass have been previ-
ously observed, so in the next schedule we can attempt to
observe currently unobserved regions. This required adapt-
ing CLASP to be able to receive a previous schedule as in-
put, and account for those observations in scheduling for the
current planning horizon.

Time is divided into three regions with varying certainty:
past (high certainty), current (moderate certainty) and future
(low certainty). All three regions contribute to the score of
a schedule against the science observation campaigns. We
force a boundary condition that the data recorder is empty at
the end of each planning period to simplify operations. We
add the following component to our problem statement:

• a planning horizon (phst,phet) ⊆ (hst,het) over
which the schedule may be modified
The schedule is a living document that is updated weekly

during operations. Figure 6 shows the inputs and outputs of
the scheduler for each week’s run.

Ring Buffer Scheduling Constraint
The MSU onboard ECOSTRESS is a ring buffer. Ring
buffers consist of two pointers - a read pointer (r(t)) and
a write pointer (w(t)) (Knuth 1997). During downlink, the

Past

Score everything

FutureCurrent Current
hst phst phet het

Scope the solver (scheduler) to modify
(phst, phet) ⊆ (hst,het)

+time

Figure 5: Planning horizon accounting for the past

Figure 6: Scheduler now takes in previous week’s schedule

data is read from the read pointer position, and the read
pointer advances. New data is written to the write pointer
position, and the write pointer advances. When functioning
correctly, the read and write pointers move back to the start
of memory when they reach the end of memory. An issue in
the instrument firmware causes the read pointer to stay at the
end of the memory rather than move to the start of memory
as expected, continuously reading the same data from that
position, even though new data may have been written at the
start of memory.

The undesired condition resulting in data loss occurs
when

w(t) < r(t) (1)

indicating the write pointer has wrapped back around but the
read pointer has not.

Rather than update the instrument firmware, which poses
a higher risk, we opted to attempt a ground-based solution.
A command can be issued that will reset the pointers back
to the start. When scheduling the pointer reset times as well
as the observations, we consider two constraints:

• Constraint 1: The amount of data acquired in between
reset commands should not exceed the capacity of the
buffer.

• Constraint 2: At the time of a reset command, the loca-
tions of the read pointer and the write pointer should be
equal.

Constraint 1 prevents the write pointer from wrapping
around the buffer, and Constraint 2 prevents any undown-
linked data from being in the buffer at the time of a reset. If
either constraint is not met, data will be lost.

Both constraints are specific to the ECOSTRESS mission
and does not apply to the CLASP problem in general. Our
scheduling goal then changes to:

Automated Science Scheduling for the ECOSTRESS Mission 19

• Our goal is to select A ⊆ O to maximize U(ri) ∀ri ∈
R subject to instrument constraints involving available
memory, keepout zones, and Constraints 1 and 2.

We schedule in two passes, outlined in Algorithm 1. The
first pass determines the ring buffer reset times, and the sec-
ond pass returns the final schedule. In the initial pass, the
scheduler is run with just the highest priority targets, with
reset times at the end of each week. New schedules are up-
loaded weekly, so having the buffer empty at the end of each
week allows for a more simple handover. When schedul-
ing the observations, CLASP enforces the above constraints.
We then examine the memory profile of the resulting sched-
ule. We search forward through the memory profile until
the point in time when the data has filled to some fraction
of the buffer. This fraction is an estimate of the amount of
memory going towards the high priority data, so there is
enough memory still available to observe lower priority tar-
gets. Moving backwards from this point, we look for a time
when the amount of memory onboard is lower than some
threshold. If there is no memory onboard at a specific time,
that means we are able to place a ring buffer reset there with-
out sacrificing observing an high priority targets for that time
period in the final schedule. The larger the amount of data
scheduled to be in the buffer, the more observations will fail
to be scheduled in the next run of CLASP. If a suitable point
is not found, the threshold increases and the process repeats
until a time for the reset is found. Then the search contin-
ues moving forward from the time chosen for the reset, and
this repeats until we reach the end of the planning horizon.
Figure 7 shows an example of reset times chosen after ex-
amining the memory profile.

Once all the reset times are found, the scheduler is run
again with high and low priority targets to produce the final
schedule, enforcing Constraints 1 and 2. Figure 8 shows the
memory profile with data from high and low priority cam-
paigns, and the buffer is empty at the reset times.

Figure 7: Scheduling resets after looking at memory profile
with data from high priority campaigns (blue)

Uncertainty of Predicted Ephemeris
The ISS is in a region of orbit known as Low Earth Or-
bit (LEO). Objects in LEO experience drag from the at-
mosphere, which results in the ISS experiencing some drift

Figure 8: Memory profile of final schedule with memory
from high priority campaigns (blue) and low priority cam-
paigns (green), with no data in the buffer when resets occur

from its predicted location. This can cause an observation to
be taken that misses the region it was intended to observe.

In the original version of CLASP, each observation has
a start time (o.start), and a duration (o.duration). For
ECOSTRESS, the duration is fixed at 52 seconds long. If a
target is predicted to be viewed at any time between o.start
and o.start + o.duration, that target is satisfied by that ob-
servation. If a target was predicted to be viewed near the
start or the end or the observation window, that target may
be missed operationally due to the uncertainty in the ISS po-
sition.

The initial solution to this problem was to spend extra
time observing before and after each set of contiguous ob-
servations. Because the ECOSTRESS instrument takes data
in scenes lasting 52 seconds, we add 26 seconds of obser-
vational time before and after, so each set of contiguous
observations still has a duration that is a multiple of an
ECOSTRESS scene. During scheduling, this extra time is
accounted for when checking data volume constraints, but
those times are not considered to satisfy any science tar-
gets. However, this extra time spent observing is wasteful
and takes up data volume that could potentially be used by
other productive observations.

A solution that could schedule observations such that no
science targets would be missed due to drift, but would also
allocate data volume efficiently, was warranted. Rather than
choosing from 52 second observations to add to the sched-
ule, we adapted CLASP to schedule from the second a target
was predicted to be observed, and then build the observa-
tions from there accounting for some amount of uncertainty
in the position and the fixed observation size.

The new method of scheduling observations is outlined
in Algorithm 2. When a target is attempted to be scheduled
that is visible at time t, we create an observation record that
holds the start time (st), end time (et), as well as the latest
start time (lst) and earliest end time (eet). These last two
parameters are necessary when merging observations. We
have two time-dependent functions pb and pa, which deter-
mine the amount of pad time necessary for a target visible
at time t to ensure it is not missed. The latest start time and
earliest end time will be t− pb(t) and t+ pa(t) respectively.
We consider three ways to determine st and et by shifting

Automated Science Scheduling for the ECOSTRESS Mission 20

procedure schedule()
write resets at week ends
run clasp with high priority campaigns
last reset point = start time
while progress is made do

last reset point =
findNextReset(last reset point)

write last reset point to file
end
run clasp with high and low priority campaigns

procedure findNextReset(lower bound)
upper bound = find upper bound based on

lower bound
while reset time not found do

t = upper bound
while t > lower bound do

if memory at time t < threshold then
return t

else
decrement t

end
end
increment threshold
t = upper bound

end
Algorithm 1: Algorithm for scheduling ring buffer resets

the observation forward or backwards. We choose the first
shifting strategy, if any, that results in the observation being
able to successfully be added to the schedule. We can center
the observation, so that the amount of pad time on either side
of lst and eet are equal. We can also make the observation
as early or as late as possible, by adding all extra time before
lst or after eet respectively.

Then we check to see if this observation is interfering with
any previously scheduled observations. Interference could
be a direct overlap in time spent observing, or it could violate
the minimum length necessary between observations. If this
observation does not interfere with any previously scheduled
observations, and it does not violate any other constraints
(memory, keepout times) it can be placed, and any targets
observed during (t, t + 1) have one viewing requirement
satisfied. If this observation does interfere with surrounding
observations that, we merge this observation and the inter-
fering one, and recursively merge until there are no inter-
fering observations. In the merging algorithm, we check for
interference between the newly created observation (x) and
its immediate neighbors. For the preceding neighbor n1, if
there is interference, we create a new observation that has

lst← min(x.lst, n1.lst)

and

eet← max(x.eet, n1.eet)

This ensures that for any targets satisfied by O or N, the
amount of pad time required on either side of them is main-
tained. Then we extend the observation to a multiple of a

scene by setting st and et using the current shifting strat-
egy. Figure 9 shows an example of created x′ from merging
x and n1. We then recursively merge with this new obser-
vation (x′), and check for interference with the following
neighbor n2 and recursively merge once again if necessary.
Once we obtain the newly merged observation, we can check
if it violates any other constraints. If it does not violate any
constraints, we can delete from the schedule any old obser-
vations that were merged to form this new one, and place
the new one in the schedule. If it does, we consider the next
shifting strategy for determining st and et, and return that
the observation is not able to be placed once we consider all
three strategies.

Figure 9: x′ is the result of merging the newly created obser-
vation x with its preceding neighbor n1

Validation
We validate the approaches previously presented with two
experiments. The first experiment is an analysis of how well
the algorithm for scheduling the ring buffer resets performs
compared to a schedule produced discounting the issue. The
second experiment is a comparison of the schedules pro-
duced by the two methods used to account for the uncer-
tainty in the ephemeris.

The algorithm for scheduling the ring buffer resets is ana-
lyzed by comparing the schedule produced when accounting
for the resets against a schedule produced when we only en-
force the data recorder being empty at the end of each week.
The goal with the algorithm is to avoid violating Constraints
1 and 2 while still taking as much high priority data as pos-
sible.

The change from adding one whole scene to each contigu-
ous set of observations to building observations up from the
second each target is observable will be validated by com-
paring the schedules produced by each method. We use a
constant padding function that gives a pad time of 10 sec-
onds on either side of each target. The schedules should have
similar numbers of observations, since this value is limited
by data constraints, but the resulting coverage should in-
crease with the second method since the data availability is
being used more effectively.

Automated Science Scheduling for the ECOSTRESS Mission 21

procedure canPlaceObservation(t)
for shift in shift strategies do

create observation x with lst = t− pb(t) and
eet = t+ pa(t), st and et according to shift
x′ = mergeObservations(x, shift)
temporarily delete any interfering observations

merged to create x′

if x′ does not violate any other constraints then
put back any deleted observations
return True

end
put back any deleted observations

end
return False

procedure mergeObservations(O, shift)
if x interferes with previous observation n1 then

x′ = merge x and n1 together according to
shift
x = mergeObservations (x′, shift)

end
if x interferes with next observation n2 then

x′ = merge x and n2 together according to
shift
x = mergeObservations (x′, shift)

end
return x

Algorithm 2: Algorithm for checking if observations can
be placed

Results
Ring Buffer Management
Figure 10 shows the coverage amount at each priority level
for a schedule produced when considering the ring buffer
constraint (orange), and one produced without considering
the constraint (blue). When adding in this additional con-
straint, we achieve a level of coverage of high priority data
that is very close to what we would achieve if this was not
an issue.

The minimal impact on acquiring the high priority data is
due to factors such as the locations of the high priority tar-
gets, the instrument data rate, and the downlink rate. There
exists times in the schedule with only high priority targets
when all of the data has been downlinked and the buffer is
empty, allowing resets to be placed with no negative im-
pacts. Had the downlink rate been slower, the instrument
data rate been higher, or if there were more high priority
targets, it is possible there would be no time when the buffer
would be empty.

Uncertain Ephemeris
Figure 11 shows the difference in target coverage when us-
ing the method of building up observations from a smaller
time, and Figure 12 shows the number of observations
scheduled. For the six weeks tested, there was an average of
29.9% increase in coverage and a 3.75% decrease in obser-
vations scheduled when comparing the method of building

Figure 10: Plot showing gridpoints covered at each priority
level by schedules produced when considering or not con-
sidering Constraints 1 and 2

scenes from a smaller time delta to adding a scene to each
contiguous set of scenes. This shows there had been a signif-
icant amount of data volume being wasted with the original
padding method. With the original method, the minimum ac-
quisition length was two scenes. In the absolute worst case,
if all targets were far enough apart that there were no con-
tiguous scenes, the first method of padding would require
double the scenes required by the second method of padding.

Figure 11: Plot showing coverage difference between the
two padding methods

Figure 12: Plot showing number of observations scheduled
with the two padding methods

Automated Science Scheduling for the ECOSTRESS Mission 22

Related Work
CLASP was previously used for on-orbit scheduling of the
IPEX CubeSat (Chien et al. 2015), but IPEX did not require
the scheduler to be aware of previously executed schedule
or long-term observational campaigns. This paper describes
extensions to CLASP that are aware of prior execution and
long term observational campaigns.

CLASP has been used for long term mission studies for
the upcoming Europa Clipper and JUICE missions (Troesch,
Chien, and Ferguson 2017), as well as the NISAR mis-
sion (Doubleday and Knight 2014). The ARIEL mission
study (Roussel et al. 2017) also focused on long term ob-
servation planning. The ARIEL and Europa Clipper stud-
ies assume perfect knowledge of future ephemeris and cer-
tain execution of scheduled observations, which is appropri-
ate for early mission design analysis, but not mission op-
erations. This paper focuses on the mission operations use
case, where the schedule is continously updated to handle
missed/unsatisfactory observations and changes in the ob-
server’s ephemeris.

CLASP was also used as a prototype for early stage
mission planning of the THEMIS instrument on the Mars
Odyssey spacecraft (Rabideau et al. 2010). The focus in
the THEMIS study is performance of the squeaky wheel
scheduling algorithm. This paper only considers a single
pass of squeaky wheel when scheduling.

The receding horizon, sliding window scheduling ap-
proach has been implemented for Earth observational
scheduling before (Lemaı̂tre et al. 2002; Aldinger et al.
2013; Lewellen et al. 2017). These three papers assumed
perfect knowledge of vehicle state, perfect execution and fo-
cused on optimization and orientation path planning for ag-
ile spacecraft. ECOSTRESS is not agile and this paper does
not explore optimization. This paper uses the sliding win-
dow scheme to address only imperfect state knowledge on
longer timescales.

Future Work
Our decision to require the data recorder to be empty al-
lowed for easier operations because it did not require an in-
terface between the actual vehicle telemetry and the initial
conditions of our data recorder fill state model. This simpler
interface came at a cost – we prevent the scheduler from
taking new science data near the end of each planning pe-
riod so that the data recorder can drain. ECOSTRESS could
produce more science data if we seeded the data recorder fill
state with a predicted fill level based on the prior schedule or
actual vehicle telemetry. Future missions should consider in-
terfacing data recorder telemetry with the initial conditions
of the scheduler’s data recorder resource model.

A correctly scheduled and executed observation may be
useless because of cloud cover at the time of observation.
System malfunctions may also prevent the instrument from
executing the scheduled observations. Both of these condi-
tions require an observation to be rescheduled. Future work
should handle the previous week’s schedule carefully, re-
moving activities that were not actually executed and pre-
serving the resource consumption, but removing the the

credit of unsatisfactory observations.
Currently a constant padding function is used when de-

ciding the earliest end and latest start times. This value is an
upper bound on the amount of drift there may be in a one
week period. The drift may be time-dependent. The farther
an observation from the creation of the ephemeris, the more
likely the drift is larger. A better understanding of the drift
may allow the padding functions to be truly time-dependent
and allow for more observations to be scheduled.

Conclusion
This paper has described the use of an automated scheduling
system in the analysis and operations for the ECOSTRESS
mission. Changing orbital ephemeris and long-term cam-
paign goals required adapting CLASP to consider past ob-
servations in scheduling for the future. The issue with the
instrument ring buffer required scheduling with additional
constraints, as well as scheduling another type of instrument
activity. The uncertainty of the ISS orbital position required
adapting how observations are scheduled. Through compu-
tational analysis we showed that our method for address-
ing the ring buffer approached the performance of schedules
produced that did not have the added constraints, and that
the second method of building observations up rather out-
performed the method of adding a fixed amount of observa-
tional time to ensure no regions of interest were missed.

Acknowledgements
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

References
Acton, C. 1996. Ancillary data services of nasa’s navigation
and ancillary information facility. In Planetary and Space
Science, volume 44, 65–70.
Aldinger, J.; Lohr, J.; Winker, S.; and Willich, G. 2013.
Automated planning for earth observation spacecraft under
attitude dynamical constrants. In Jahrbuch der Deutschen
Gesellschaft für Luft- und Raumfahrt.
Chien, S.; Doubleday, J.; Thompson, D. R.; Wagstaff, K. L.;
Bellardo, J.; Francis, C.; Eric Baumgarten, A. W.; Yee, E.;
Stanton, E.; and Piug-Suar, J. 2015. Onboard autonomy
on the intelligent payload experiment cubesat mission. vol-
ume 14, 307–315.
Doubleday, J., and Knight, R. 2014. Science mission plan-
ning for nisar (formerly desdyni) with clasp. In SpaceOps
2014.
Knight, R., and Chien, S. 2006. Producing large observa-
tion campaigns using compressed problem representations.
In International Workshop on Planning and Scheduling for
Space (IWPSS-2006).
Knuth, D. E. 1997. The art of computer programming. vol-
ume 1, 244–245.
Lemaı̂tre, M.; Verfaillie, G.; Jouhaud, F.; Lachiver, J.-M.;
and Bataille, N. 2002. Selecting and scheduling observa-

Automated Science Scheduling for the ECOSTRESS Mission 23

tions of agile satellites. Aerospace Science and Technology
6:367–381.
Lewellen, G.; Davies, C.; Byon, A.; Knight, R.; Shao, E.;
Tran, D.; and Trowbridge, M. 2017. A hybrid traveling
salesman problem - squeaky wheel optimization planner for
earth observational scheduling. In International Workshop
on Planning and Scheduling for Space (IWPSS 2017).
NASA. 2019. Ecostress https://ecostress.jpl.nasa.gov re-
trieved 2019-03-29.
Rabideau, G.; Chien, S.; Mclaren, D.; Knight, R.; Anwar, S.;
Mehall, G.; and Christensen, P. 2010. A tool for scheduling
themis observations. In International Symposium on Space
Artificial Intelligence, Robotics, and Automation for Space
(ISAIRAS 2010).
Robinson, J. A. 2013. The sense in earth remote sensing
from the international space station.
Roussel, S.; Pralet, C.; Jaubert, J.; Queyrel, J.; and Duong,
B. 2017. Planning the observation of exoplanets: the
ariel mission. In International Workshop on Planning and
Scheduling for Space (IWPSS 2017).
Troesch, M.; Chien, S.; and Ferguson, E. 2017. Using auto-
mated scheduling to assess coverage for europa clipper and
jupiter icy moons explorer. In International Workshop on
Planning and Scheduling for Space (IWPSS 2017).

Automated Science Scheduling for the ECOSTRESS Mission 24

Autonomous Scheduling of Agile Spacecraft Constellations with Delay
Tolerant Networking for Reactive Imaging

Sreeja Nag1, Alan S. Li1, Vinay Ravindra1, Marc Sanchez Net2, Kar-Ming Cheung2,
Rod Lammers3, and Brian Bledsoe3

1NASA Ames Research Center, Bay Area Environmental Research Institute, CA, USA
2Jet Propulsion Laboratory, California Institute of Technology, CA, USA

3University of Georgia, Athens GA, USA
sreejanag@alum.mit.edu

Abstract
Small spacecraft now have precise attitude control systems availa-
ble commercially, allowing them to slew in 3 degrees of freedom,
and capture images within short notice. When combined with ap-
propriate software, this agility can significantly increase response
rate, revisit time and coverage. In prior work, we have demon-
strated an algorithmic framework that combines orbital mechanics,
attitude control and scheduling optimization to plan the time-vary-
ing, full-body orientation of agile, small spacecraft in a constella-
tion. The proposed schedule optimization would run at the ground
station autonomously, and the resultant schedules uplinked to the
spacecraft for execution. The algorithm is generalizable over small
steerable spacecraft, control capability, sensor specs, imaging re-
quirements, and regions of interest. In this article, we modify the
algorithm to run onboard small spacecraft, such that the constella-
tion can make time-sensitive decisions to slew and capture images
autonomously, without ground control. We have developed a com-
munication module based on Delay/Disruption Tolerant Network-
ing (DTN) for onboard data management and routing among the
satellites, which will work in conjunction with the other modules
to optimize the schedule of agile communication and steering. We
then apply this preliminary framework on representative constella-
tions to simulate targeted measurements of episodic precipitation
events and subsequent urban floods. The command and control ef-
ficiency of our agile algorithm is compared to non-agile (11.3x im-
provement) and non-DTN (21% improvement) constellations.

Introduction
Response and revisit requirements for Earth Observation
(EO) vary significantly by application, ranging from less
than an hour to monitor disasters, to daily for meteorology,
to weekly for land cover monitoring (Sandau, Roeser, and
Valenzuela 2010). Geostationary satellites provide frequent
revisits, but at the cost of coarse spatial resolution, extra
launch costs and no polar access. Lower Earth Orbit satel-
lites overcome these shortcomings, but need numbers and
coordination to make up for response characteristics. Add-
ing agility to satellites and autonomy to the constellation im-
proves the revisit/response for the same number of satellites

Copyright © 2019. All rights reserved.

in given orbits. However, human operators are expected to
scale linearly with constellation nodes (Eickhoff 2011) and
operations staffing may be very costly.

Earth-Observing Constellation Autonomy
Scheduling algorithms for agile EO have been successfully
developed for single large satellite missions, examples being
ASPEN for EO-1, scheduling for the ASTER Radiometer on
Terra, high resolution imagery from the IKONOS commer-
cial satellite (Martin 2002), scheduling observations for the
geostationary GEO-CAPE satellite (Frank, Do, and Tran
2016), scheduling image strips over Taiwan by ROCSAT-II
(Lin et al. 2005), and step-and-stare approaches using matrix
imagers (Shao et al. 2018). The Proba spacecraft demon-
strated dynamic pointing for multi-angle imaging of specific
ground spots that it is commanded to observe (Barnsley et
al. 2004). Scheduling 3-DOF observations for large satellite
constellations has been formulated for the PLEIADES pro-
ject (Lemaı̂tre et al. 2002; Damiani, Verfaillie, and Char-
meau 2005) and COSMO-SkyMed constellation of syn-
thetic aperture radars (Bianchessi and Righini 2008). Sched-
uling simulations have demonstrated single Cubesat down-
link to a network of ground stations within available storage,
energy and time constraints. (Chien et al. 2019) has devel-
oped automated tasking for current sensors as a Sensor Web
to monitor Thai floods.

Recent advances in small and agile satellite technology have
spurred literature on scheduling fleet operations. Coordi-
nated planners in simulation (Abramson et al. 2013; Robin-
son et al. 2017) can handle a continuous stream of image
requests from users, by finding opportunities of collection
and scheduling air or space assets. Cubesat constellation
studies (Cahoy and Kennedy 2017) have successfully sched-
uled downlink for a fleet, aided by inter-sat communication.
Evolutionary algorithms for single spacecraft (Xhafa et al.
2012), multiple payloads (Jian and Cheng 2008) and

cba

Bernardini et al. (Eds): SPARK 2019 25

https://creativecommons.org/licenses/by-sa/4.0/

satellite fleets (Globus et al. 2002) are very accurate but at
large computational cost due to their sensitivity to initial
condition dependence (genetic algorithms), exponential
time to converge (simulated annealing) or large training sets
(neural nets). Agile constellation scheduling with slew-time
variations have shown reasonable convergence in the recent
past using hierarchical division of assignment (He et al.
2019). However, algorithms have not been developed for
onboard execution on real-time, fast-response EO applica-
tions and do not consider inter-sat comm scheduling in con-
junction with imaging operations.

We have recently demonstrated (Nag, Li, and Merrick 2018)
a ground-based, autonomous scheduling algorithm that op-
timizes spacecraft attitude control systems (ACS) to maxim-
ize collected images and/or imaging time, given a known
constellation. The algorithm is now broadened in applica-
tion scope by leveraging inter-satellite links and onboard
processing of images for intelligent decision-making. Im-
proving coordination among multiple spacecraft allows for
faster response to changing environments, at the cost of in-
creased scheduling complexity.

Figure 1—A constellation of satellites observing three points of in-
terest (POI) by agile steering of their body frames, based on infor-
mation shared when they have line of sight (LOS).

Networked Constellations and Reactive Science
DARPA’s delay/disruption tolerant network or DTN para-
digm (Cerf et al. 2007) is an emerging protocol standard for
routing in the dynamic and intermittent operation environ-
ment. DTN makes it possible to minimize replication and
improve the delivery probability within available resources,
but has never been applied to EO inter-sat data exchange.
We show that DTN enabled, agile constellations can re-
spond to transient, episodic and/or extreme events using an
autonomous scheduling algorithm that is executable
onboard. The target scenarios are simulated by a simplified
Observing System Simulation Experiment (OSSE) to eval-
uate the benefit of our proposed algorithm.
In the traditional sense, an OSSE is a data analysis experi-
ment used to evaluate the impact of new observing systems,

e.g. satellite instruments, on operational forecasts when ac-
tual observational data are not fully available (Arnold and
Dey, 1986). An OSSE comprises of a free-running model
used as the ground truth (‘nature run’), used to compute the
‘synthetic observations’ for any observing systems, with
added random errors representative of measurement uncer-
tainty. Synthetic observations represent a small, noisy sub-
set of the ground truth. They are used to forecast the full
ground truth, then compared with the nature run. The dis-
parity between the nature run of a chosen scenario, and the
instrument-derived forecasts is then used to inform better in-
strument or mission design (Feldman et al. 2011). OSSEs
can be used to train heuristics for mission planning, because
different operational options can be assessed for different
relevancy scenarios by changing the observing system char-
acteristics and nature run appropriately (Nag, Gatebe, and
Weck 2015; Nag et al. 2016).

Methodology

We propose a novel algorithmic framework that combines
physical models of orbital mechanics (OM), attitude control
systems (ACS), and inter-satellite links (ISL) and optimizes
the schedule for any satellite in a constellation to observe a
known set of ground regions with rapidly changing parame-
ters and observation requirements. The proposed algorithm
can run on the satellites, so that each can make observation
decisions based on information available from all other sat-
ellites, with as low a latency as ISL allows. Satellites gener-
ate data bundles after executing scheduled observations to
be broadcast by ISLs. Bundles contain information about the
ground points observed and meta-data parameters pre-deter-
mined by the OSSE. Considering networking delays in a
temporally varying disjoint graph (e.g. results in Figure 5)
and diminishing returns for observing fast-changing envi-
ronments, satellites are not expected to iterate on acknowl-
edgments to establish explicit consensus. Instead, the more
a satellite knows about a region before its observation op-
portunity, better its scheduler performance. The algorithm
may also run on the ground, i.e. the satellites can downlink
their observed data, the ground will run the proposed algo-
rithms, and uplink the resultant schedule to the satellite.
Since the ground stations are expected to be inter-connected
on Earth and in sync with each other at all times, the optimi-
zation is centralized and the resultant schedule avoids po-
tentially redundant observations due to lack of consensus
among the satellites. This approach also reduces the onboard
processing requirements on the satellites. However, since
information relay occurs at only sat-ground contacts (func-
tion of orbits, ground network), the scheduler would use sig-
nificantly information compared to the distributed, onboard
bundles. The transiency of the environment being observed
and its robustness to latency in exchanging inferences deter-
mines effectiveness of the onboard, decentralized vs.

POI#1

zTARGET

xTARGET

yTARGET

POI#2 POI#3

Autonomous Scheduling of Agile Spacecraft Constellations 26

Figure 2 – Major information flows between the modules in the proposed agile EO scheduler, expected to run onboard every satellite in a
given constellation, applied to global urban flooding in this paper. This framework can exchange information (as identified at the top) be-
tween the satellites via peer-to-peer communication or via the ground (reverse bent pipe architecture). The blue arrows/text represent newly
added components to the previous version of the algorithmic framework (Nag, Li, and Merrick 2018).

ground, centralized implementation of our proposed algo-
rithm (e.g. scenario results in Table 2). The algorithmic
framework and information flow summarized in Figure 2.

The OM module propagates orbits in a known constellation
and computes possible coverage of known regions of inter-
est (appropriately discretized into ground points – GP)
within a field of regard (FOR). It provides the propagated
states and possible access times per satellite, per GP to the
ACS. The ACS uses this information, with known satellite
and subsystem characteristics to compute: time required by
any satellite at a given time to slew from one GP to another
(including satellite movement), resultant power, momentum
and stabilization profiles. The OM also provides available
line-of-sight (LOS) availability, corresponding inter-sat dis-
tances at any time, as well as the priority of bundle delivery
to the Comm/ISL module so that it knows which satellites
need to receive the data sooner. The comm. module com-
putes the link budget for a known set of specifications and
protocols, and uses the resultant data rate to simulate DTN
and compute bundle drop rates and latency to deliver any
known bundle between any given pair of satellites. Bundles
exchanged between the satellites are modeled to contain
seen GPs time series (Ω) or new GPs of interest, and their
re-computed value (Δ), either in full, an update to the origi-
nal, or as parametric meta-data. The mechanism of re-com-
puting value at a GP (input on the left of Figure 1) is de-
scribed on pg.4.
The optimization module ingests the outputs of the OM,
ACS and Comm modules to compute the schedule of when
each satellite should capture any GP. The executed schedule
dictates the number of observations a satellite will make

over any region, which dictates the number, size and timing
of bundles generated for broadcast, therefore, we include a
feedback loop between the optimizer and the comm. mod-
ule. Slew characteristics depend on the previous GPs the sat-
ellite was observing and intended next, thus a feedback loop
between the ACS and optimizer. If the constellation specifi-
cations, e.g. number of satellites, their arrangement, instru-
ments, FOR, are expected to change over operational life-
time, a feedback between the OM and the optimizer may
also be added. In the current implementation, we assume
that the proposed real-time scheduling will take a fixed time
interval and that other operations, e.g. downlink, calibration,
maintenance, etc., will be scheduled separately.

Orbital Mechanics and Attitude Control
The main revision to the OM and ACS modules comprehen-
sively described in (Nag, Li, and Merrick 2018) is that we
now compute slewing time as a function of a pair of satt,s-
gpi , each representing a vector from satellite s at time t to
ground point i. The dynamic programming (DP) algorithm
in the optimizer now uses observable GPs as potential states,
instead of discrete pointing options. Since the DP scheduler
iteratively calls ACS for any pair of vectors, the ACS slew
time cannot be pulled from a static table using the starting
and ending satellite pointing direction as before, and are
computed real-time. Onboard processing constraints limit
our use of the full physics-based ACS simulator (developed
on MATLAB Simulink), therefore we developed weighted
least squares on a third order polynomial whose coefficients
are a function of the satellite mass, ACS and other specifi-
cations that served as knobs in the original model. The pol-
ynomial provides a very efficient implementation of the

Orbital
Mechanics

Scheduling Optimization
(Dynamic Programming, validated with Mixed Integer Programming)

Attitude
Control

Access times (A)
per satellite, image,

off-nadir angle

Power, Slewing
times per satellite
(Γ), Satellite-Ground
pairs (s-gpi,s-pj)

Ground Points (GP),
Field of Regard (FOR),

Current Sat States (S)

Schedule of pointing commands and broadcast
(Ω=pathsat[gpi,ti], see algorithm)

Data bundle
priority (BP),
Inter-sat distances

Communication

Bundle delivery
latency (L) per
satellite pair, per
observed GP

Comm specs (C),
Protocol (Ψ),
Contact Plan
(π=f(S))

Satellite ACS
characteristics (X)
+ GP, S

Exchange telemetry (S, Ω, GP, Δ)

Tele-command
(Δ, GP, Ω, S)

Bundle
traffic
generated
(N)Value Δ per

GP,
Spatial Σ,
Temporal Σ

Prev
GPs
seen

Autonomous Scheduling of Agile Spacecraft Constellations 27

ACS-DP feedback loop in Figure 2, by allowing fast com-
putation of slew time as a function of α, the angle between
any pair of vectors satt,s-gpi. This process is adaptable to
non-planar angle dependencies as well, in case a full body
re-orientation of the satellite is necessary, not just re-point-
ing an instrument.

The OM module has been developed in house, leveraging
NASA GSFC’s open-source General Mission Analysis Tool
(Hughes 2007). The OM also generates data bundle priority,
to be ingested by the comm. module as follows: The data-
bundle is tagged with the corresponding region or point of
observation (where the data is generated). Priority is given
to the next satellite to be able to access the same region or
point, after the bundle generation, so that when it reaches
the said region, it is up-to-date about it, as inferred by the
last observing satellite. For example, if Sat11 generates data
over “Dallas”, and Sat12 is the next satellite on scene, Sat12
is given highest priority for the data-bundle to be delivered.
If some satellites do not ever visit “Dallas”, they are re-
moved from the recipient queue.

Delay/Disruption Tolerant Networking
Delay/Disruption Tolerant Networking (DTN) is a new set
of communication protocols developed with the intent of ex-
tending the Internet to users that experience long delays
and/or unexpected disruptions in their link service. At its
core, DTN defines an end-to-end overlay layer, termed
“bundle layer”, that sits on top of the transport layer (i.e.,
TCP or UDP in the Internet, CCSDS link layer standards in
space) and efficiently bridges networks that may experience
different types of operational environments. To achieve that,
it encapsulates underlying data units (e.g., TCP/UDP data-
grams) in bundles that are then transmitted from bundle
agent to bundle agent, who store them persistently for safe-
keeping until the next network hop can be provisioned. This
hop-to-hop philosophy is at the core of DTN and differenti-
ates it from the Internet, where transactions typically occur
by establishing end-to-end sessions (between the data origi-
nator and data sink).

At present, DTN is comprised of a large suite of specifica-
tions that encompass all aspects of network engineering, in-
cluding its core protocols (e.g., the Bundle Protocol (Scott
and Burleigh 2007), the Licklider Transmission Protocol
(Farrell, Ramadas, and Burleigh 2008), or the Schedule
Aware Bundle Routing (Standard and Book 2018)), adapters
for bridging different types of underlying networks, network
security protocols and network management functionality
(Asynchronous Management Protocol). For the purposes of
this paper, however, only the parts of the Bundle Protocol
and Schedule Aware Bundle Routing Protocol were imple-
mented. Together, they provide a medium to high fidelity

estimate of how bundles would move in a DTN consisting
of near-Earth orbiting spacecraft and allow us to quantify
network figures of merit such as bundle loss or average bun-
dle latency. Our DTN model is implemented in Python using
Simpy (Matloff 2008), a discrete-event engine built upon
the concept of coroutines (or asynchronouos functions in the
latest Python versions).

Quantifying Value: Observing System Simulations
We apply our proposed framework to episodic precipitation
and resultant urban floods, to demonstrate its utility and
scalability. We used the Dartmouth Flood Observatory
(Brakenridge 2012) to study the frequency of global floods
in 1985 – 2010, and identified 42 large cities that are within
floodprone areas and marked a 100 km radius buffer around
them to define the watersheds. We assume a 6 hour planning
horizon, during which 5 of the 42 cities (Dhaka, Sydney,
Dallas, London, Rio de Janeiro) flood to varying degrees as
modeled by an OSSE nature run. For example, London tends
to get slower, longer rains that might cause the Thames to
flood, Dallas is more concerned with short, intense thunder-
storms causing flooding on smaller creeks. The OSSE de-
veloped for this paper uses an area of 80km x 80km, and is
currently agnostic to flood-type disparities between cities.

Figure 3 – Example of the spatial distribution of value (8-bit
scale) of an ~80 km square region around Atlanta, GA (X/Y axis
in degrees), for a single snapshot in time.

To quantify value for the optimizer’s objective function, we
modeled riverine flooding in the Atlanta metropolitan area
for a single storm event from April 5-6, 2017, using the
WRF-Hydro hydrologic model version 5 (Gochis et al.
2018). The model was run with a grid resolution of 900 m,
and was calibrated by adjusting parameters until modeled
streamflow matched measured flow at nine U.S. Geologic
Survey gages in the Atlanta metro area. The modeled chan-
nel flow rates were then normalized by the 2-year recurrence
interval flow rate (Q2), as estimated from the USGS re-
gional regression equations for urban streams in that region
(Feaster, Gotvald, and Weaver 2014). Q2 is the flow that has
a 50% chance of happening in any year, and is an estimate
of what constitutes a “flood” at any location. Finally, these
normalized flood rates were then transformed on a log-scale
to integer values between 1 and 256. We estimated the

Autonomous Scheduling of Agile Spacecraft Constellations 28

watershed land area draining to each channel point and the
[1,256] value of that point was assigned to the entire water-
shed area. Areas with high value correspond to watersheds
with active flooding. In these watersheds, it is important to
obtain satellite-derived estimates of precipitation to deter-
mine if this flooding will worsen (with more rainfall) or
abate. This process provides an expected value of observing
every point in a region of interest at 15 min resolutions, to
be used by the satellite scheduler, absval([gpx,ty]) in the next
section. One snapshot is shown in Figure 3.

This paper uses the following statistical model for value re-
computation. Since the OSSE time resolution is 15min, the
cumulative value of observing any GP within 15min should
be constant, i.e. if it has been seen once, subsequent obser-
vations within 15min are of zero value. Since value re-com-
putation based on collected data is not physically simulated,
we estimate it from OSSE output (absval) in the following
ways: The value of observing any GP after 15min is consid-
ered a fraction (=1/number_of_times_seen) of its OSSE-
provided value with some random noise added. This re-
computation ensures that a diversity of GPs is observed over
time. Similarly, the value of observing a GP can be inversely
proportionate to its distance to already observed GPs, to
maximize the spatial spread of information collected and
characterize the region better. The time-stepping nature of
our algorithm causes it to be agnostic to the future value of
any GP, therefore it can ingest changing values as they come
along and compute schedules accordingly. We applied a
standard normal distribution with a 2%-8% (uniformly ran-
dom) standard deviation to the OSSE-provided values, to
generate slightly different value functions to be used by each
satellite’s optimizer. This was to simulate different infer-
ences by satellites after onboard processing their different
observations, owing to different schedules. If they observed
the same GPs at the same time, they would have the same
inference, but that is obviously not possible. We are devel-
oping a high fidelity, value re-computation model to replace
this statistical model, whose onboard processing algorithms
and predictive technology will be described in a future pub-
lication. It will simulate processing data collected from ex-
ecuted observing schedules, updating future value, re-com-
puting schedule and passing along insights the other sats.

Dynamic Programming based Scheduler
Our proposed optimization algorithm (Table 1) uses dy-
namic programming (DP) to greedily optimize the sched-
uler. Each satellite is theorized to possess its own DP sched-
uler on board (or its own thread on ground) - a cartoon ver-
sion is in Figure 4, where the gradient of the nodes repre-
sents varying absval([gpx,ty]), "xÎ [1,numGP], yÎ
[1,horiz_tSteps], as obtained from the OSSE. The scheduler
outputs a vector of tuples [gpi,ti]"iÎ[1,pathLength], which
is the schedule for sat to observe gpi at ti. Compared to our

previous implementation, the state space that the optimized
path has to trace is now a graph of time steps and GPs, in-
stead of time steps and satellite pointing directions. At any
time tPlan during mission operations, a schedule can be
computed for a future planning_horizon. The scheduler (line
4) processes bundles received until tPlan through the DTN
and updates its knowledge of all other sats c as broadcasted
at tSrcc, i.e. pathc[gpi,ti≤tSrcc], and its insights of the re-
gions, i.e. modelParams(ti≤tSrcc). For every time step tNow,
it then steps through the GPs gpNow within the sat’s FOR,
and computes the cumulative value val([gpNow,tNow]) of
each path ending at [gpNow,tNow], e.g. in Figure 4. Via DP,
line 11’s computation entails adding val([gpNow,tNow]) to
val([gpBef,tBef]) for all possible nodes [gpBef,tBef] "
gpBefÎ[1,numGP], tBef Î[tNow-max(slewTime), tNow-
min(slewTime)]. slewTime is the full y-space of Eq.(2) for
representative set of reorientations in the current mission
scenario. The nodes between the red horizontal lines in Fig-
ure 4 are examples of [gpBef,tBef]; searching only a practi-
cal portion of the space (e.g., t-2 through t-9) mitigates some
of the computational load that has been added due to the dy-
namic slew computation, instead of the previous static, slew
time table. Note that val is re-computed using absval and the
satellite’s knowledge of the executed observations by the
rest of the constellation and their insights. Cumulative value
is computed statistically as:

computeValue() = ∑ ∑ 𝑣𝑎𝑙([𝑔𝑝𝑥, 𝑡𝑦])
ℎ𝑜𝑟𝑖𝑧_𝑡𝑆𝑡𝑒𝑝𝑠
89:

𝑛𝑢𝑚𝐺𝑃
𝑥=1

(1)
A future scheduler will implement a higher fidelity cross-
correlation function which extends the current OSSE. If the
scheduling sat’s FOR at tNow overlaps with any other’s
FOR (line 9), it must computeValue() for all possible paths by

Figure 4—State space searched by the scheduler to compute the
optimum path ending at [gpNow,tNow], with no FOR overlaps

tNow-min(slewTime)

tNow-max
(slewTime)

gpNow @ tNow

Examples of
gpBef @ tBef

Autonomous Scheduling of Agile Spacecraft Constellations 29

the other s, and maintain cumulative value numbers for pos-
sible paths by every permutation of sats in set satsWoverlap-
pingFOR (line 13). Starting with the paths with maximum
cumulative value, slew time of the last leg
[gpBef,tBef]®[gpNow,tNow] (or combination of legs for over-
lapping sats) is dynamically computed. For the first instance
where the time required is shorter than allowed between the
tBef®tNow gap, the path is stored as the optimum path
pathsat[gpNow,tNow], and all other paths ending at
[gpNow,tNow] discarded (to prevent memory becoming as-
tronomical). Future implementations may explore ways to
preserve some dominated paths since potentially optimum
solutions, although tied with sub-optimum ones at tNow, are
lost in the process.

Table 1—Summarized Scheduling Algorithm
1: Inputs – sat, absval([gpx,ty])
2: Output – pathsat[gpi,ti]
3: For c in Constellation-{sat} do
4: modelParams(ti≤tSrcc), pathc[gpi,ti≤tSrcc] ¬
 DTN(c,tSrcc,sat,tPlan)
5: End For
6: For tNow in planning_horizon do
7: For gpNow in GroundPntsInFOR(sat, tNow) do
8: GroundPntsInBND=[tNow-max(slewTime):
 tNow-min(slewTime),1:numGP]
9: For s in satsWoverlappingFOR(sat,gpNow) do
10: For [gpBef,tBef] in GroundPntsInBND do
11: v[s]=computeValue(paths[gpBefs,tBefs]+

 [gpNow,tNow],absval, pathcÎConst

 [gpi,ti≤tSrcc], modelParams(ti≤tSrcc))
12: End For
13: v_combi = v[permute(s in satsWoverlappingFOR)]
14: For vn in reverse_sort(v_combi)
15: tslew=computeManueverTimes(s_combi,
 [gpBefs_combi,tBefs_combi], [gpNow,tNow])
16: If tslew≤[tNow-tBefs_combi] then
17: paths[gpNow,tNow]¬
 paths[gpBefs,tBefs]+[gpNow,tNow]
18: break // forLoop for vn
19: End If
20: End For
21: End For
22: End for
23: End for

The advantages of this algorithm are:
1. Runtime is linearly proportionate to the number of time

steps in planning horizon n(T). The scheduler may be run
for only the duration of FOR access over a region. It needs
to be rerun only if value of the GPs (expected to be ac-
cessed) changes, as inferred or informed.

2. Since the scheduler steps through the planning horizon, it
can be stopped at any given point in the runtime, and the
resultant schedule is complete until that time step. Sched-
ules can thus be executed as future schedules are being
computed by the onboard processor.

3. A complex value function with non-linear dependencies
(e.g. on viewing geometry or solar time) or multi-system
interactions (e.g. Simulink or proprietary software calls)
are easy to incorporate.

4. Algorithmic complexity per satellite per region to be
scheduled is O(n(T)×n(GP)2×n(S)), where n(GP) is the
number of ground points within FOR and n(S) is the num-
ber of satellites that can access the same GPs at the same
time, i.e. GPs within FOR overlaps. Since GPs are typi-
cally designed to Nyquist sample the footprint, runtimes
are instrument dependent. If satellite FORs are non-over-
lapping, runtime or space complexity does not depend on
the size of the constellation. For well-spread constella-
tions observing non-polar targets, n(S) = 1, or a couple.

Integer programming (IP) was able to verify that optimality
of the above algorithm for single satellites was within 10%,
and find up to 5% more optimal solutions (Nag, Li, and Mer-
rick 2018). The DP solution was 22% lower than the IP op-
timality bounds for constellations, which is well within the
optimality bounds of greedy scheduling for unconstrained
submodular functions (Piacentini, Bernardini, and Beck
2019). The DP schedules were found at nearly four orders
of magnitude faster than IP, therefore far more suited for real
time implementations. Currently, the scheduler is (re)run at
the same frequency as DTN-informed value (re)processing,
however future implementations will explore methods to de-
couple them, because rapider value updates but longer plan-
ning horizon are better for solution quality.

Results
We simulate a case study of 24 (20 kg cubic) satellites in a
3-plane Walker constellation observing floods in 5 global
regions over a 6-hour planning horizon. All satellites are
simulated at a 710 km altitude, 98.5 deg inclination, circular
orbits similar to Landsat. The constellation is a homogene-
ous Walker Star-type, with 3 orbital planes of 8 satellites
each. While the gap between satellite accesses to a region is
~10 mins when there is an orbital plane overhead, a mini-
mum of 3 planes is needed for the maximum gap to be
within 4.5 hours (median gap ~ 1hr). Two planes would not
be able to appropriately respond to a 6-hr flood phenomenon
even with agile pointing, crosslinks onboard autonomy. For
the chosen altitude, at least 8 satellites per plane ensures
consistent in-plane LOS (cross-plane LOS in polar regions
only), therefore the 24-sat topology is the minimum nodes
for continuous DTN to enable <6-hr urban flood monitoring.

Instruments potentially used for precipitation and soil mois-
ture sensing are narrow field of view (FOV) radars, which
justify the need to continuously re-orient the <10 km foot-
print to cover a large flooding area. Examples are the Ka-
band radar on a cubesat called RainCube (Peral et al. 2015)
for precipitation, L-band bistatic radar on CYGNSS, and a
Cubesat P-band radar (Vega Cartagena et al. 2018) for soil
moisture. This paper presents results for an 8km footprint

Autonomous Scheduling of Agile Spacecraft Constellations 30

instrument. The field of regard (FOR) which limits the max-
imum off-nadir angle of the payload/instrument is set to 55
deg, because it corresponds to 5x distortion of the nadir
ground resolution, which is the OSSE’s limit to allow com-
bining observations in a given region. Spatial resolution de-
pendence of value can also be included in the objective func-
tion. The presented scenario will be varied in terms of the
mission epoch and regions of interest since it affects access
intervals, observations and bundle traffic, and performance
sensitivity reported in a future publication.
The ACS model, characterized with the satellite specs from
(Nag, Li, and Merrick 2018), is fitted by the following pol-
ynomial, where t is time for maneuver, and α is angle to
span. The standard deviation is around 0.2116, so add
0.4232 to get ~95% percentile.
𝑡
= 6.1974 × 10IJ × αL + 1.3904 × 10IL × αO
+ 1.4165 × 10I: × α + 4.6231

(2)
While we present results based on full body re-orientations
of a small satellite, our proposed algorithm can support con-
straints from the gimbaled re-orientation of payloads for
fixed, larger satellites, by replacing the tslew computation
model in Table 1 line 15.

Performance of Inter-Satellite Networking
To estimate the performance of the DTN protocol stack, we
first evaluated the supportable data rate in the inter-satellite
links between spacecraft in the constellation. We make the
following assumptions: All spacecraft transmit at S-band
within the 6MHz typically available to class A missions; the
link distance is set to 6000km (from the OM module; we use
the worst case for the inter-plane links since their distances
are variable); they are equipped with an SSPA that can de-
liver up to 5W of RF power, and a dipole placed parallel to
the nadir/zenith direction (typical for small sats). This de-
sign ensures minimal complexity since the SSPA can be di-
rectly connected to the antenna without needing splitters.
Since the orientation of the spacecraft at any point in time is
highly variable, we close the link budget assuming that both
the transmitting and receiving antennas operate at the edge
of the -3dB beamwidth. We consider that no atmospheric
effects impair the links, and we select a ½ LDPC coding
scheme together with a BPSK modulation, SRRC pulse
shaping and NRZ baseband encoding. Using these inputs,
we pessimistically estimate the link performance at 1kbps.
Since multiple spacecraft can be in view of each other at any
point in time (especially over the poles), and they carry om-
nidirectional antennas, there is potential for interference.
For the physical layer, we assume that signal interference is
mitigated using some form of multiple access scheme (e.g.
Frequency or Code Division Multiplexing) – the reported
1kbps data rate must be interpreted as that presented by the

multiple access scheme to the upper layers of the protocol
stack. Interference can also affect DTN’s routing layer.

To route data through the time-varying topology of the 24
satellite constellation, we simulate the system assuming that
each of them is a DTN-enabled node with a simplified ver-
sion of the Bundle Protocol and the Schedule Aware Bundle
Routing Protocol. The DTN simulation uses the following
inputs: The OM-provided contact plan (opportunities be-
tween any satellite pair in the network) is the basis for all
routing decisions, and is specified as a six element tuple:
Start time, end time, origin, destination, average data rate,
range in light seconds. Second, the traffic generated in the
constellation, provided by the optimizer as a function of av-
erage collections, indicating when bundles are created, who
sources them, who they are destined for, and the OM-
provided relative priority flag with 14 levels. Bundles of size
of 2000 bits (1645 bits of observational inference data plus
20% of overhead due to the protocol stack) are generated
and broadcasted for every GP observation, and communica-
tions are assumed error-less at 1kbps. The priority levels are
also used to set the Time-To-Live (TTL) property of all bun-
dles such that: Priority 1 has a 15min TTL, priorities 2 and
3 have a 30min TTL, and priorities 4 to 15 have a 50min
TTL. These rules let the network automatically discard stale
information and minimize traffic congestion.

Figure 5 – Latency of data bundle delivery over all satellite pairs
compared to the gaps between satellite FOR access to any region.
For any satellite pair of given priority of DTN comm, if longest
latency is less than shortest gap, each satellite can be considered
fully updated with information the other, i.e. perfect consensus in
spite of distributed scheduling on a disjoint graph. Each box repre-
sents 25%-75% quartiles, circle is median, whiskers show max/min

End-to-end latency experienced by 8341 bundles generated
and sent over a 6 hour simulation (<1min DTN runtime) is
shown in Figure 5. This latency is computed on a bundle-
per-bundle basis, and measures the absolute time difference
between the instant a bundle is delivered to the destination’s
endpoint (akin to TCP port), and the time it was originally
created. Assuming a perfect multiple access scheme, any

Autonomous Scheduling of Agile Spacecraft Constellations 31

spacecraft might receive a copy of a bundle that was not
originally intended for it, causing the problem of packet du-
plication in the system due to physical interference. If not
dealt with, these extra copies would be re-routed and create
exponential replication problem that would overwhelm the
entire system. To mitigate this, we take advantage of the ex-
tension blocks defined in the Bundle Protocol (Scott and
Burleigh 2007). Particularly, every time router decides the
next hop for a bundle, it appends an extension block with
the identifier of the intended next hop. If another spacecraft
receives a copy inadvertently, the router simply discards it.

Results indicate that latency is indeed affected by the bundle
prioritization, however the effect is not monotonic because
prioritization only happens at the bundle layer (e.g., radios
have queues of frames, but they do not know about priorities
in upper layers). Bundles with priorities 1-6 typically expe-
rience latencies of ~10s, with few outliers up to 15 minutes.
This is quick enough for most of any satellite’s knowledge
to be transferred to the next two approaching any region
(Figure 5). Also, no high priority bundles were dropped due
to TTL expiration. Bundle with lower priorities experience
larger latencies of ~2 minutes on average. The time to reach
a region by satellites with priority³3 is long enough for all
bundles to be delivered, therefore all generated schedules by
individual satellites have implicit consensus (because they
use the same inputs). Access gaps for satellites with prior-
ity³4 is out of Figure 5’s Y-axis range. Latency was found
to deteriorate non-linearly with increasing number satellites,
bundle size due to more model parameters, and bundle traf-
fic due to more observations. Future implementations will
model bundle interference, trade-offs between omni vs. di-
rectional antennas, variations in bundle size and broadcast
frequency, and their impact on latency.

Performance of the Imaging Scheduler
The DP-based optimizer ingests outputs from all modules to
find the best observational path that maximizes cumulative
value till any given time, per satellite. We compare results
from the use case in running the proposed algorithmic
framework in 2 scenarios. One, the scheduler runs on
onboard and uses collected information from other satellites
as they come through the DTN every 10 minutes. Lowering
(increasing) this re-scheduling frequency based on onboard
power or processing constraints will improve (lower) the
quality of results. Two, the scheduler runs on the ground and
uses collected information from other satellites as they
downlink. The ground stations are placed near both poles to
emulate an optimistic scenario of ground contacts (thus,
value update and rescheduling) twice an orbit i.e. ~30 per
day. Lowering the contact frequency will lower the quality
of results, e.g. current Cubesat missions commit to 2 con-
tacts per day at NASA and 4-5 per day commercially.

The onboard run uses updated value of any GP, based on all
bundles about that GP that have arrived (executed schedule
and inference data from others ingested in Table 1 line 5).
Since the scheduler is distributed and runs per satellite, it
risks knowing everything or nothing about any GP, based on
DTN’s relay from other satellites. Our implementation
shows that the constellation predicts GP value at an average
of 4% different from their actual value, due to bundles about
GPs arriving later than the satellite already observes them.
This happens only for some outliers in the one or two hop
connections (Figure 5), thus >95% of the GPs in all 5 re-
gions are observed. Longer the DTN latency, more the dif-
ference between the assumed (“what it thinks it’s seeing”)
and recorded value (“what it’s actually seeing”) of fast-
changing phenomena, lower the cumulative value.

Table 2—Comparison of optimizers run Onboard vs. Ground. A
constellation with no agility sees 8.4% of the GPs, in either case)

Scenario#1

(Distributed)
Scenario#2

(Centralized)
Cumulative Value (6h) 26347 21820
% of all GP observed 95.2% 99.2%

The centralized run has no risk of overlapping observations
because all sats “know” every other’s schedule, allowing for
>99% of GPs seen. However, value functions are based on
information obtained approximately an orbit earlier, due to
collection-uplink-reschedule-downlink latency between any
satellite pair. Our implementation shows that the constella-
tion assumes GP value at an average of 70% different from
recorded value, due to lack to timely communication of
value updates. While the exact difference is a function of
sensitivity of value updates to schedules executed by differ-
ent sats (currently fractional decay with observation, 2%-8%
variation in inference), it shows that in fast changing envi-
ronments, a responsive constellation’s performance is better
captured by OSSE-driven metrics beyond simple coverage.

In the presented case study, the DTN-enabled decentralized
solution provides 21% more value over 6 hours than the cen-
tralized implementation of the same algorithm. If we lower
the transiency of the phenomena to an hour (currently 15
mins for precipitation) i.e. time resolution of OSSE-outputs;
or if we focus on the poles (currently mid-latitude floods)
where there is more FOR overlap i.e. increased processing
complexity, and ISL interference i.e. more DTN latency, the
centralized solution may provide more value. The proposed
scheduler may be evaluated for a given user scenario, and
run either way or as a combination.

The time taken to run the algorithm per sat was 1% of the
planning horizon, evaluated on MATLAB installed in a Mac
OS X v10.13.6 with a 2.6 GHz processor and 16 GB of 2400
MHz memory.

Autonomous Scheduling of Agile Spacecraft Constellations 32

Acknowledgements
Funded by the NASA New Investigator Program, Earth Sci-
ence Technology Office, and the Interplanetary Network Di-
rectorate at the Jet Propulsion Laboratory.

References
 Abramson, Mark R., Stephan Kolitz, Eric Robinson, and

Dorri Poppe. 2013. “Earth Phenomena Observa-
tion System (EPOS) for Coordination of Asynchro-
nous Sensor Webs.” In AIAA Infotech@ Aerospace
(I@ A) Conference, 4813.
https://arc.aiaa.org/doi/abs/10.2514/6.2013-4813.

Arnold Jr, Charles P., and Clifford H. Dey. 1986. “Observ-
ing-Systems Simulation Experiments: Past, Pre-
sent, and Future.” Bulletin of the American Mete-
orological Society 67 (6): 687–695.

Barnsley, M. J., J. J. Settle, M. A. Cutter, D. R. Lobb, and
F. Teston. 2004. “The PROBA/CHRIS Mission: A
Low-Cost Smallsat for Hyperspectral Multiangle
Observations of the Earth Surface and Atmos-
phere.” Geoscience and Remote Sensing, IEEE
Transactions On 42 (7): 1512–1520.

Bianchessi, Nicola, and Giovanni Righini. 2008. “Planning
and Scheduling Algorithms for the COSMO-
SkyMed Constellation.” Aerospace Science and
Technology 12 (7): 535–544.

Brakenridge, G. R. 2012. Global Active Archive of Large
Flood Events, Dartmouth Flood Observatory, Uni-
versity of Colorado.

Cahoy, Kerri, and Andrew K. Kennedy. 2017. “Initial Re-
sults from ACCESS: An Autonomous CubeSat
Constellation Scheduling System for Earth Obser-
vation.” In . Logan, Utah. http://digitalcom-
mons.usu.edu/smallsat/2017/all2017/98/.

Cerf, Vinton, Scott Burleigh, Adrian Hooke, Leigh Torg-
erson, Robert Durst, Keith Scott, Kevin Fall, and
Howard Weiss. 2007. “Delay-Tolerant Networking
Architecture.”

Chien, Steve, David Mclaren, Joshua Doubleday, Daniel
Tran, Veerachai Tanpipat, and Royol Chitradon.
2019. “Using Taskable Remote Sensing in a Sensor
Web for Thailand Flood Monitoring.” Journal of
Aerospace Information Systems 16 (3): 107–119.

Damiani, Sylvain, Gérard Verfaillie, and Marie-Claire
Charmeau. 2005. “An Earth Watching Satellite
Constellation: How to Manage a Team of Watch-
ing Agents with Limited Communications.” In
Proceedings of the Fourth International Joint Con-
ference on Autonomous Agents and Multiagent
Systems, 455–462. ACM. http://dl.acm.org/cita-
tion.cfm?id=1082543.

Eickhoff, Jens. 2011. Onboard Computers, Onboard Soft-
ware and Satellite Operations: An Introduction.

Springer Science & Business Media.
https://books.google.com/books?hl=en&lr=&id=J
UYo2E9UB18C&oi=fnd&pg=PP2&dq=jens+eick
hoff+onboard&ots=pzlK4F7Qt1&sig=wlngMSJI
L3uI_tEeCjc3ndNHzmQ.

Farrell, Stephen, Manikantan Ramadas, and Scott Burleigh.
2008. “Licklider Transmission Protocol-Security
Extensions.”

Feaster, Toby D., Anthony J. Gotvald, and J. Curtis Weaver.
2014. “Methods for Estimating the Magnitude and
Frequency of Floods for Urban and Small, Rural
Streams in Georgia, South Carolina, and North
Carolina, 2011.” US Geological Survey, SIR 5030.

Feldman, Daniel R., Chris A. Algieri, Jonathan R. Ong, and
William D. Collins. 2011. “CLARREO Shortwave
Observing System Simulation Experiments of the
Twenty-First Century: Simulator Design and Im-
plementation.” Journal of Geophysical Research:
Atmospheres (1984–2012) 116 (D10).
http://onlineli-
brary.wiley.com/doi/10.1029/2010JD015350/full.

Frank, Jeremy, Minh Do, and Tony T. Tran. 2016. “Sched-
uling Ocean Color Observations for a GEO-
Stationary Satellite.” In Proceedings of the
Twenty-Sixth International Conference on Interna-
tional Conference on Automated Planning and
Scheduling, 376–384. AAAI Press.
http://dl.acm.org/citation.cfm?id=3038642.

Globus, Al, James Crawford, Jason Lohn, and Robert Mor-
ris. 2002. “Scheduling Earth Observing Fleets Us-
ing Evolutionary Algorithms: Problem Description
and Approach.”
https://ntrs.nasa.gov/search.jsp?R=20020091594.

Gochis, D.J., Michael Barlage, A. Dugger, K. Fitzgerald, L.
Karston, M. McAllister, J. McCreight, et al. 2018.
“The WRF-Hydro Modeling System Technical
Description, (Version 5.0).” NCAR Technical
Note DOI:10.5065/D6J38RBJ.

He, Lei, Xiao-Lu Liu, Ying-Wu Chen, Li-Ning Xing, and
Ke Liu. 2019. “Hierarchical Scheduling for Real-
Time Agile Satellite Task Scheduling in a Dy-
namic Environment.” Advances in Space Research
63 (2): 897–912.
https://doi.org/10.1016/j.asr.2018.10.007.

Hughes, Steven P. 2007. “General Mission Analysis Tool
(GMAT).”
http://ntrs.nasa.gov/search.jsp?R=20080045879.

Jian, Li, and Wang Cheng. 2008. “Resource Planning and
Scheduling of Payload for Satellite with Genetic
Particles Swarm Optimization.” In Evolutionary
Computation, 2008. CEC 2008.(IEEE World Con-
gress on Computational Intelligence). IEEE Con-
gress On, 199–203. IEEE. http://ieeex-
plore.ieee.org/abstract/document/4630799/.

Autonomous Scheduling of Agile Spacecraft Constellations 33

Lemaı̂tre, Michel, Gérard Verfaillie, Frank Jouhaud, Jean-
Michel Lachiver, and Nicolas Bataille. 2002. “Se-
lecting and Scheduling Observations of Agile Sat-
ellites.” Aerospace Science and Technology 6 (5):
367–381.

Lin, Wei-Cheng, Da-Yin Liao, Chung-Yang Liu, and Yong-
Yao Lee. 2005. “Daily Imaging Scheduling of an
Earth Observation Satellite.” IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems
and Humans 35 (2): 213–223.

Martin, William. 2002. “Satellite Image Collection Optimi-
zation.” Optical Engineering 41 (9): 2083–2087.

Matloff, Norm. 2008. “Introduction to Discrete-Event Sim-
ulation and the Simpy Language.” Davis, CA. Dept
of Computer Science. University of California at
Davis. Retrieved on August 2 (2009): 1–33.

Nag, Sreeja, Charles K. Gatebe, and Olivier de Weck. 2015.
“Observing System Simulations for Small Satellite
Formations Estimating Bidirectional Reflectance.”
International Journal of Applied Earth Observa-
tion and Geoinformation 43: 102–18.
https://doi.org/10.1016/j.jag.2015.04.022.

Nag, Sreeja, Charles Gatebe, D. W. Miller, and O. L. De
Weck. 2016. “Effect of Satellite Formation Archi-
tectures and Imaging Modes on Global Albedo Es-
timation.” Acta Astronautica 126 (April): 77–97.
https://doi.org/10.1016/j.actaastro.2016.04.004.

Nag, Sreeja, Alan Li, and James Merrick. 2018. “Scheduling
Algorithms for Rapid Imaging Using Agile Cu-
besat Constellations.” COSPAR Advances in Space
Research 61 (3): 891–913.

Peral, Eva, Simone Tanelli, Ziad Haddad, Ousmane Sy,
Graeme Stephens, and Eastwood Im. 2015. “Rain-
cube: A Proposed Constellation of Precipitation
Profiling Radars in CubeSat.” In Geoscience and
Remote Sensing Symposium (IGARSS), 2015 IEEE
International, 1261–1264. IEEE. http://ieeex-
plore.ieee.org/abstract/document/7326003/.

Piacentini, C., S. Bernardini, and C. Beck. 2019. “Autono-
mous Target Search with Multiple Coordinated
UAVs - Research - Royal Holloway, University of
London.” Journal of Artificial Intelligence

Research. https://pure.royalholloway.ac.uk/por-
tal/en/publications/autonomous-target-search-
with-multiple-coordinated-uavs(6b804079-8369-
43f8-bb68-2f3f981dc0de).html.

Robinson, Eric, Hamsa Balakrishnan, Mark Abramson, and
Stephan Kolitz. 2017. “Optimized Stochastic Co-
ordinated Planning of Asynchronous Air and Space
Assets.” Journal of Aerospace Information Sys-
tems.
https://arc.aiaa.org/doi/full/10.2514/1.I010415.

Sandau, R., H. P. Roeser, and A. Valenzuela. 2010. Small
Satellite Missions for Earth Observation: New De-
velopments and Trends. Springer Verlag.
http://books.google.com/books?hl=en&lr=&id=D
6LaoU-
VsxQC&oi=fnd&pg=PR6&dq=sandau+small+sat
ellite+missions+for+earth+observa-
tion&ots=VjuMKOSfDa&sig=reMkSbdiHAfAu-
UWUpH8X5D8FupQ.

Scott, K., and S. Burleigh. 2007. “RFC 5050: Bundle Proto-
col Specification.” IRTF DTN Research Group.

Shao, Elly, Amos Byon, Chris Davies, Evan Davis, Russell
Knight, Garett Lewellen, Michael Trowbridge, and
Steve Chien. 2018. “Area Coverage Planning with
3-Axis Steerable, 2D Framing Sensors.” In Sched-
uling and Planning Applications Workshop , Inter-
national Conference on Automated Planning and
Scheduling. Delft, The Netherlands.

Standard, Proposed Draft Recommended, and Proposed Red
Book. 2018. “Schedule-Aware Bundle Routing.”

Vega Cartagena, Manuel A., Jeffrey R. Piepmeier, James
Garrison, Joseph J. Knuble, Cornelis F. Du Toit,
and Matthew A. Fritts. 2018. “Signals of Oppor-
tunity-Airborne Demonstrator (SoOP-AD): Instru-
ment Overview, Performance during First Flights
and Future Instrument Concept [STUB].”

Xhafa, Fatos, Junzi Sun, Admir Barolli, Alexander Biberaj,
and Leonard Barolli. 2012. “Genetic Algorithms
for Satellite Scheduling Problems.” Mobile Infor-
mation Systems 8 (4): 351–377.

Autonomous Scheduling of Agile Spacecraft Constellations 34

Scheduling with Complex Consumptive Resources for a Planetary Rover

Wayne Chi, Steve Chien, Jagriti Agrawal
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{firstname.lastname}@jpl.nasa.gov

Abstract
Generating and scheduling activities is particularly chal-
lenging when considering both consumptive resources and
complex resource interactions such as time-dependent re-
source usage. We present three methods of determining valid
temporal placement intervals for an activity in a tempo-
rally grounded plan in the presence of such constraints. We
introduce the Max Duration and Probe algorithms which
are sound, but incomplete, and the Linear algorithm which
is sound and complete for linear rate resource consump-
tion. We apply these techniques to the problem of schedul-
ing awfor a planetary rover where the awake durations are
affected by existing activities. We demonstrate how the
Probe algorithm performs competitively with the Linear al-
gorithm given an advantageous problem space and well-
defined heuristics. We show that the Probe and Linear algo-
rithms outperform the Max Duration algorithm empirically.
We then empirically present the runtime differences between
the three algorithms. The Probe algorithm is currently base-
lined for use in the onboard scheduler for NASA’s next plan-
etary rover, the Mars 2020 rover.

Introduction
In many space missions, consumptive resources such as en-
ergy or data volume limit the number of activities that can be
scheduled. These consumptive resources are oftentimes re-
plenished periodically or gradually over time. For example,
data is downlinked—replenishing data capacity—or energy
is generated by solar panels or radioisotope thermoelectric
generator (RTG) power supplies. The scheduler must there-
fore schedule activities while staying aware of resource re-
plenishment in order to ensure that the resource state does
not violate constraints (e.g. energy below a specified level
or data buffers overflow). We focus on awake and asleep
scheduling for a planetary rover, but our techniques general-
ize scheduling in the presence of complex consumptive re-
source activities.

We focus on the onboard scheduler for NASA’s next plan-
etary rover, the Mars 2020 (M2020) rover (Jet Propulsion
Laboratory 2018a). Since the heart of our paper is awake and
asleep scheduling, we concentrate on energy as the limit-

Copyright c© 2019, California Institute of Technology. Govern-
ment Sponsorship Acknowledged.

ing consumptive resource. The M2020 rover’s power source
is a Multi-Mission Radioisotope Thermoelectric Generator
(MMRTG) (Jet Propulsion Laboratory 2018b). The MM-
RTG constantly generates energy for the rover’s battery, but
the CPU’s awake and “idle” state (i.e. no other tasks) con-
sumes more energy than the MMRTG provides. Therefore,
the rover can only increase its energy, measured as battery
state of charge (SOC), when the rover is asleep. The rover,
however, must stay awake to not only execute activities, but
also (re)-invoke the scheduler to generate a schedule. The
M2020 onboard scheduler is responsible for generating and
scheduling these awake periods.

In order to generate and schedule awakes, the scheduler
must compute valid start times for awakes and activities
jointly to ensure that there is sufficient energy for both the
awake and the activities. Each activity, however, requires
varying awake sizes depending on existing awake periods
and the activity’s scheduled start time. If the activity is close
to an existing awake, it may be necessary to extend an exist-
ing awake rather than generating a new awake as this would
require the rover to shutdown and wakeup in quick succes-
sion (Figure 1) which may lead to issues if the shutdown
runs longer than nominally expected. Due to its varying du-
ration, an awake’s energy consumption and valid start times
are challenging to determine.

The remainder of the paper is organized as follows. First,
we describe the timeline representation, which is also used
by the M2020 onboard scheduler. We discuss calculating
valid start time intervals—intervals in which starting the
activity would not violate any constraints—and define the
problem in relation to the timeline framework. Second, we
discuss a general case-by-case approach to handling au-
tomatically generated awakes and the challenges specific
cases pose. Third, we present three specific approaches to
handling these challenges when generating and scheduling
awakes: a) an over-conservative approach that always uses
the maximum awake period potentially required by the ac-
tivity when calculating valid intervals; b) a “probing” ap-
proach that only considers a single point in time rather than
the entire interval; and c) a linear algebra approach that cal-
culates exact valid intervals given the linear rate of energy
replenishment and consumption. The “probing” approach
is currently base-lined for the M2020 onboard scheduler.
Fourth, we present empirical analysis to compare their de-

cba

Bernardini et al. (Eds): SPARK 2019 35

https://creativecommons.org/licenses/by-sa/4.0/

(a)

(b)

Figure 1: When scheduling activity B, the scheduler should
extend the existing awake rather than creating a new one
to account for the possibility that the shutdown runs longer
than nominally expected. W is a wakeup and S is a shut-
down.

grees of completeness and runtime performance. Lastly, we
reference related works, describe future works, and discuss
conclusions.

Timeline Representation
Timelines are commonly used to model resource utilization
and temporal constraints (Chien et al. 2012) and are used for
the M2020 onboard scheduler as well. The timeline frame-
work used for the M2020 onboard scheduler projects the im-
pact of activities on shared states and resources (Rabideau
and Benowitz 2017). The following is a summary of the
timeline library; more detail can be found in Rabideau and
Benowitz 2017.

A timeline, T1〈N1, C1, B1〉 . . . Tl〈Nl, Cl, Bl〉, is a collec-
tion of:

• Timeline impacts, n ∈ Ni, which are a change in the time-
line at a specific time, t(n), such as a value assignment or
a change in incremental rate.

• Timeline constraints, c ∈ Ci which are maximum or min-
imum limits for timeline values over a period of time; if a
value exceeds the limit then there is a conflict.

• Timeline bounds, b ∈ Bi, which are maximum or mini-
mum range for values. Values that fall outside the range
are truncated, but not conflicts. This is useful to portray
the maximum battery capacity, for example.

• Timeline values—where vi(t(u)) is the value (e.g. SOC,
current state) at time t(u) for timeline Ti—may be calcu-
lated from the timeline impacts, Ni.

Each timeline also has the ability to find a) any conflicts
that currently exist on the timeline and b) valid intervals for
a new set of impacts, N ′. Activities scheduled in their valid
intervals create no new conflicts on the timeline. Methods
(a) and (b) can also be limited to certain intervals.

There are multiple types of timelines based on practical
and specific use cases (Chien et al. 2012; Rabideau et al.
1999; Knight, Rabideau, and Chien 2000), but we focus in
particular on the Cumulative Rate timeline. Cumulative Rate

timelines allow changes in incremental rate in addition to
changes in value. This allows us to represent the incremental
SOC drained and gained from being awake and asleep.

Valid Intervals Typically, valid intervals for a Cumula-
tive Rate timeline are calculated by taking in activities as
a set of impacts, N ′, and temporarily placing N ′ at the time
of each existing impact, n ∈ N . Activities are each rep-
resented as a set of start and end impacts separated by the
duration of the activity. The offset between each impact in
N ′ is fixed in relation to the earliest impact, n′

earliest ∈ N ′.
N ′ is temporarily placed at the time of each impact, n ∈ N ,
such that t(n′

earliest) = t(n). This determines if any con-
flicts are generated and, thus, determines N ′’s valid inter-
vals. The impacts in N ′ are applied based on their offset
from n′

earliest. There are potentially O(N) impacts making
this anO(N ′ ·N) operation. When an impact is applied, the
effects to the timeline must be propagated into the future of
which there are O(N) potential impacts. Thus, the overall
runtime is O(N ′ · N2). N >> N ′ resulting in an effective
runtime of O(N2). Constant time slope and intercept calcu-
lations compute any values between impacts.

These calculations are dependent on fixed impact offsets
in N ′. When impact offsets are not fixed, as is the case with
non-constant awake durations, valid interval calculations are
more complex. At each impact, the offsets in N ′ are derived
from a function rather than a constant. Intercept calculations
further exacerbate this complication as values can change
between impacts. Therefore, we must either heuristically de-
termine fixed offsets or calculate valid intervals using a dif-
ferent algorithm. We present methods for both approaches.

Problem Definition
Assume that the scheduler is given:
• a list of activities

A1〈w1, d1, e1, r1, Z1, S1〉 . . .
Aτ 〈wτ , dτ , eτ , rτ , Zτ , Sτ 〉,

• where wi is the scheduling priority of Ai,
• di is the nominal, or predicted, duration of Ai,
• ei is the rate at which the consumable resource energy is

consumed by Ai,
• ri is the preferred start time for Ai,
• Zi is the set of physical rover zones or instruments (e.g.

arm, mastcam) zi1 . . . zik that Ai requires to be heated
before and during use,

• Si is the set of start time windows si1 . . . siq that Ai must
respect.
The scheduler is also given a global minimum SOC con-

straint, C min
soc . Each activity may also require the auto-

matic generation of: 1) a set of preheat activities, Pi =
{pi1 . . . pik}, 2) a set of maintenance heating activities,
Mi = {mi1 . . .mik}, or 3) an awake activity, ai. Preheats
are setup activities (i.e. they occur before the activity), while
maintenance heating and awakes are companion activities
(i.e. they occur during or with the activity).

Our goal is to calculate valid intervals for activity Ai with
a focus on its required awake activity, ai. For this paper, we

Scheduling with Complex Consumptive Resources for a Planetary Rover 36

Algorithm 1 General Scheduling Algorithm

Input:
A〈w, d, e, r, Z, S〉: List of activities and their attributes
and resources
C: Constraints for the whole plan (e.g. available cumu-
lative resources)
E: Current state of the spacecraft (state of charge, data
volume, activity status)

Output:
U : Resulting schedule

1: U ← ∅
2: Sort(A) . By highest to lowest priority
3: for each Ai ∈ A do
4: Pi ← ∅
5: Mi ← ∅
6: if Zi 6= ∅ then
7: Pi ← generate preheats(Ai〈Zi〉)
8: Mi ← generate maintenances(Ai〈Zi, di〉)
9: end if

10: // Consider Si as a set of disjoint valid intervals
11: I ← ∅
12: for each Sij ∈ Si do
13: I ← I

⋃
Split(sij) . Based on four cases

14: end for
15: Sort(I) . By proximity to t
16: for each Ij ∈ I do
17: // Calculate Ij using either
18: // Max Duration, Probe, or Linear
19: Ij , ai ← valid intervals with awake(

Ai〈d, e〉, Ij , Pi,Mi)
20: if Ij 6= ∅ then
21: // start is the scheduled start time for Ai
22: start← schedule activity(Ai, Ij , U)
23: schedule activity(ai, start, Ij , U)
24: for each pik ∈ Pi do
25: schedule activity(pik , start, Ij , U)
26: end for
27: for each mik ∈Mi do
28: schedule activity(mik , start, Ij , U)
29: end for
30: end if
31: end for
32: end for

refer to valid intervals as valid start time intervals for activ-
ity Ai. An awake activity is always composed of a wakeup
and shutdown. When valid interval calculations involve ex-
tending an existing awake rather than creating a new one, an
existing wakeup or shutdown may be shifted to match the
extended awake. Wakeups are all the same duration, as are
shutdowns. If x is the duration:

• The MMRTG generates g(x) SOC consistently.

• The rover consumes f(x) SOC when it is awake and
“idle”.

• Thus, when the rover is awake and “idle” the net change
in SOC is h(x) = g(x)− f(x).

• g(x) ∝ x and f(x) ∝ x.

• g(x) ≥ 0 and f(x) ≤ 0.

• |f(x)| > |g(x)| as more energy is consumed when awake
and idle than can be generated by the MMRTG.

• h(x) is negative since |f(x)| > |g(x)|.
The overall scheduling algorithm is described in Algo-

rithm 1. Scheduling an awake activity mainly involves SOC,
which is represented as a Cumulative Rate Timeline. Re-
call that we can limit the interval considered for valid inter-
val calculations to improve runtime; we consider Si as such
limiting intervals. We assume that Si is computed or given
before the problem begins. In the Mars 2020 use case, Si
is actually the set of intervals after all other resources (e.g.
state, dependencies) are considered. These are computed be-
fore SOC is considered due to their less significant runtime.
As such, they can be generalized as Si, and used to improve
runtime by limiting valid interval calculation ranges.

After valid intervals are calculated, the scheduler will
place the activity according to its preferred time. Each ac-
tivity’s preferred time, ri is a soft constraint for activity, Ai.
The scheduler will prefer to schedule the start of the activity
as close to its preferred time as possible, but is not required
to schedule it at that time. Although the actual M2020 sched-
uler allows multiple preferred times (one for each start time
window), we will assume without a loss in generality that
there is only one preferred time per activity.

Interval Cases
Valid interval calculations for non-constant duration awakes
are complicated for two reasons. a) Standard valid interval
calculations assume that the relative time between impacts is
constant. This allows the same set of input impacts to be eas-
ily and repeatedly applied at different points on the timeline.
b) Knowledge about each activity’s duration is usually prior
knowledge and independent from where the activity will be
scheduled; this allows valid interval calculations to focus on
one variable (e.g. SOC) as a function of time. Determin-
ing valid intervals when duration is dependent on scheduled
time is challenging because the calculation must account for
multiple variables as a function of time.

In order to schedule awakes, an activity’s input intervals,
si, are split into smaller intervals (I in Algorithm 1). Each
smaller interval matches one of the four types dependent on
the activities’ proximity to existing awakes and constraints.
These cases are:

1. Fully Encompassed by an Existing Awake. If the set of
activities can be scheduled entirely within an existing
awake, then there is no need for a new awake activity to
be generated.

2. Disjoint from Existing Awakes. If the set of activities can
be scheduled such that any new awake is completely dis-
joint from an existing awake, then a new awake that en-
compasses all the activities must be generated and sched-
uled.

3. Overlap with an Existing Awake (Straddle). If the set of
activities overlaps with an existing awake, but is not fully

Scheduling with Complex Consumptive Resources for a Planetary Rover 37

(a) Intervals leading an awake. (b) Intervals trailing an awake

Figure 2: Intervals for each case. The awakes required at the earliest and latest times are shown. Note that these are start time
intervals for activity Ai given the known offset of activities in the set of activities Ai, Pi,Mi, ai

encompassed by the awake, then the overlapped existing
awake must be extended to encompass the set of activities.

4. Overlap with a Minimum Asleep Constraint (Stretch). To
prevent degradation from excessive rover on-off throt-
tling, after each shutdown the rover must stay asleep for a
minimum amount of time before waking up again; there-
fore, there is a minimum asleep constraint both after a
shutdown and before a wakeup. In addition, activities re-
quiring an awake cannot be scheduled during a wakeup or
shutdown. If the set of activities overlaps with a wakeup,
shutdown, or minimum asleep constraint, then the exist-
ing awake nearest to that constraint must be extended to
encompass the set of activities.

Awake duration is independent of an activity’s scheduled
start time for intervals matching cases 1 and 2. Case 1 re-
quires no additional awake since it is fully encompassed by
an existing awake. Case 2 requires an awake that is equal
in duration to the makespan of the set of activities since
there are no nearby awakes to potentially extend off of. Thus,
these intervals can be handled through previously described
valid interval calculations.

For intervals matching cases 3 and 4, the duration of the
awake is dependent on where the activities will be sched-
uled. Case 3 is the straddle case as the activities straddle
an existing awake. Case 4 is the stretch case as the exist-
ing awake must stretch to encompass the activities. Both the
straddle and stretch cases are similar in that they require the
extension of an existing awake, of which the duration (and
therefore energy consumption) will vary depending on the
placement of the activity. In addition, these intervals can
be further categorized depending on if the extension leads
(Figure 2a) or if it trails (Figure 2b) the existing awake.
The scheduling algorithm splits the timeline into intervals
each matching one of the above cases (Line 13 in Algo-
rithm 1) and calculates valid intervals depending on each
case (valid intervals with awake in Algorithm 1).

In the following sections we discuss algorithms specifi-
cally designed to handle the straddle and stretch cases. Each

method describes a way to determine the awake duration.
The first assumes an overestimation, the second determines
exact durations, but only for a certain times, and the third
computes a range of valid durations. The algorithms dis-
cussed are all sound, but some are incomplete. Violating
mission constraints such as minimum battery SOC would
be a significant problem (soundness), and we show in our
empirical results that, for both the mission and in general,
the incomplete solutions perform acceptably.

Max Duration Algorithm
The Max Duration algorithm assumes the maximum awake
duration required to schedule a set of activities. This is
a simple, but over-conservative approach to handling non-
constant awake duration. Let start(Ij) and end(Ij) be
the start and end of the start time interval considered, Ij ,
for activity Ai. Also let start(awake) and end(awake)
be the start and end of the nearest existing awake. The
maximum awake duration is start(awake) − start(Ij) −
max(duration(pik) ∈ Pi) for leading interval cases and is
end(Ij) + di − end(awake) for trailing interval cases. Fig-
ure 2 showcases examples of the maximum awake required
for both leading and trailing interval cases.

The benefit of assuming the maximum awake duration is
that it allows for simpler valid interval calculations. Con-
stant awake duration leads to a constant relative offset be-
tween impacts allowing for previously described valid inter-
val calculations. The downside is that this approach is over-
conservative. Depending on where the activities are to be
scheduled, a portion of the new awake may overlap with an
existing awake resulting in a “double-dipping” of resources.
As the approach is over-conservative, it is sound, but incom-
plete; sometimes it will not find a valid interval to schedule
the activities when such an interval exists.

Probe Algorithm
The Probe approach determines the exact duration of the
awake, but only for specific points of time in the input in-
terval. Instead of computing valid intervals throughout the

Scheduling with Complex Consumptive Resources for a Planetary Rover 38

entire input interval, the Probe algorithm checks for conflicts
at specific points in time. At each specific point in time, the
exact awake duration needed is known, thus avoiding the
complications of having a non-constant awake duration.

The algorithm’s simplicity is both its strength and weak-
ness. First, the overall runtime is drastically reduced. If k
points in time are checked for conflicts instead of at each ex-
isting impact, then the runtime for valid intervals is O(kN)
rather than O(N2). Usually, only a few specific points are
checked (e.g. earliest, latest, midpoint); hence, k < N . In
our specific approach, we only check at the point nearest to
the activity’s preferred time; thus, the runtime isO(N). Due
to this runtime improvement, the Probe algorithm is also ap-
plied to intervals of cases 1 and 2. Second, while the Max
Duration algorithm is over-conservative in terms of awake
duration, the Probe algorithm is exact. The downside is that
the search does not span the entire interval, only “probing”
certain predetermined points of time; therefore, in a sense
the Probe algorithm is under-conservative in terms of the in-
terval search space. The Probe algorithm is also sound, but
incomplete. While its calculations will be accurate given its
knowledge of the exact awake duration, the Probe algorithm
will miss valid solutions if the probe locations are not well-
defined or unlucky.

Linear
While the other two algorithms are simple or fast, the Linear
algorithm uses the linear increase in energy cost and awake
duration to calculate exact valid intervals. There are two
distinctions to the Linear algorithm. First, the straddle and
stretch cases can be regarded as one singular extension case
because the linear rate of energy does not change between
the stretch and straddle cases. Second, the specific steps of
this algorithm vary slightly depending on whether the exten-
sion leads the existing awake (Figure 2a) or if it trails the
existing awake (Figure 2b); we will discuss the trailing case
first.

For activity Ai and input interval Ij the algorithm is as
follows:

1. Temporarily apply the activities to the start of the interval,
start(Ij), and determine if any conflicts are generated. If
conflicts are generated, then there is no valid solution in
Ij . If no conflicts are generated, then start(Ij) is the start
of the valid interval.

2. Temporarily apply the activities to the end of the interval,
end(Ij), and determine if any conflicts are generated. If
no conflicts are generated, then all of Ij is a valid interval.
If a conflict is generated at end(Ij), then a valid interval
exists between [start(Ij), end(Ij)).

3. Recall that Ni is the set of timeline impacts currently
existing on the timeline Ti, t(n) is the time of im-
pact n, and vi(t) is the value at time t for timeline
Ti. Let l be the point where the asleep begins between
[start(Ij), end(Ij)). Calculate the valid interval between
[start(Ij), end(Ij)).

(a) Determine the point in time, t(u) such that the
SOC at that time, vsoc(t(u)), satisfies both a)

Figure 3: Energy changes from extending an awake. l is the
point where the asleep begins without the awake extension.

min∀n∈Nsoc vsoc(t(n)) and b) t(u) > l). In other
words, t(u) is the lowest point on the energy timeline
after l.

(b) Recall that f(x) is the energy consumed while stay-
ing awake and that C min

soc is the global minimum SOC
constraint. Calculate x 3 f(x) = vsoc(t) − C min

soc −
energy cost(Ai, Pi,Mi).

(c) Determine the point in time, t(u′) such that its SOC,
vsoc(t(u

′)), satisfies both a) min∀n∈Nsoc vsoc(t(n))
and b) start(Ij) ≤ t(u′) ≤ l.

(d) Recall that h(x) = g(x) − f(x) is the net change in
SOC while the rover is awake. Calculate x′ 3 h(x′) =
vsoc(t(u

′))− C min
soc − energy cost(Ai, Pi,Mi).

(e) [start(Ij), start(Ij)+min(x, x′)] is the valid interval
for the activity.

Since steps 1 and 2 are evaluated at a single point in
time—similar to the Probe algorithm—the exact duration of
the awake is known. For step 1, it is the minimum awake
and, thus, if a conflict is generated there is no valid solu-
tion in Ij . For step 2, it is the maximum awake and, thus,
if there is no conflict the entire range must be valid. In
step 3a, we determine the maximum amount of energy that
can be used without violating the minimum soc constraint
as vsoc(t) − C min

soc . In step 3b, we use this and the en-
ergy cost function to determine exactly how long the awake
can potentially be. We can subtract the energy cost of the
other activities (Ai, Pi,Mi) because they are not affected
by their placement. Steps 3c and 3d differ only slightly from
steps 3a and 3b. The difference occurs because of how the
awake affects the SOC timeline. In steps 3a and 3b, any

Scheduling with Complex Consumptive Resources for a Planetary Rover 39

point (including the minimum point t(u)) after end(Ij) de-
creases by f(x) as seen in Figure 3. Recall that energy is
only gained when the rover is asleep. Staying asleep be-
tween (l, end(Ij)] generates g(end(Ij)− l). For simplicity,
let us temporarily assume end(Ij) − l as x. Any point after
end(Ij) must deduct g(x) since that energy will not be gen-
erated if the awake is extended.−f(x) = h(x)− g(x) is the
resulting energy lost from any point after end(Ij). Between
[start(Ij), l], however, the energy has not been gained yet.
As a result, g(x) does not need to be deducted from any point
in [start(Ij), l]. Using the energy function, we can calculate
how long the maximum awake can be without violating the
minimum SOC constraint. Step 3e simply translates the now
known awake duration into valid intervals.

The main difference when applying this algorithm to
the trailing case is that the existing awake extends in the
opposite direction. This results in several changes. First,
at end(Ij) the awake duration is the minimum, and at
start(Ij) the awake duration is the maximum; therefore,
do steps 2 and then 1. Secondly, steps 3c and 3d can be
eliminated. Extending the awake from end(Ij) makes it
impossible for any point between [start(Ij), end(Ij)] to
violate the minimum SOC constraint without a point af-
ter end(Ij) violating the constraint first. Lastly, in step 3e
[end(Ij)−min(x, x′), end(Ij)] is the valid interval.

This algorithm is both sound and complete. We can
show that it is complete through a proof by contradiction.
Let us assume we are scheduling in a trailing extension
interval and a point, t(u′′), exists between (start(Ij) +
min(x, x′), end(Ij)] such that Ai can be scheduled without
violating C min

soc . The awake extension duration needed is
x′′ = t(u′′) − start(Ij). We know that x′′ > min(x, x′)
otherwise it would have been in our solution. For any
point after end(Ij), the total energy consumed is f(x′′) +
energy cost(Ai, Pi,Mi). Recall that vsoc(t(u)) is the SOC
of the lowest point after end(Ij). Therefore, a) vsoc(t(u))−
(f(x′′) + energy cost(Ai, Pi,Mi)) ≥ C min

soc otherwise
the minimum SOC constraint would be violated. For any
point after end(Ij), the total energy consumed is h(x′′) +
energy cost(Ai, Pi,Mi). Recall that vsoc(t(u′)) is the SOC
of the lowest point between [start(Ij), l]. Therefore, b)
vsoc(t(u

′))− (h(x′′)+ energy cost(Ai, Pi,Mi)) ≥ C min
soc

otherwise the minimum SOC constraint would be vio-
lated. However, both statements (a) and (b) cannot be true
as f(x′′) > f(min(x, x′). Therefore, a point between
(start(Ij) + min(x, x′), end(Ij)] that does not violate the
minimum SOC constraint cannot exist. This proof can be
similarly done for leading extension intervals.

The trade off for completeness, however, is that each valid
interval requires more calculations. As a result, it increases
both code complexity and runtime costs. The question is: Is
the increased completeness worth the costs?

Empirical Results
To evaluate the performance of each method, we apply each
algorithm to various sets of inputs comprised of activities
and their constraints. The inputs are derived from sol types
which are currently the best available data on expected Mars

2020 rover operations (Jet Propulsion Laboratory 2018a).
Each input file contains between 20 and 40 activities, and
our goal is to schedule as many activities as possible. We ap-
ply our algorithms on top of the M2020 surrogate scheduler
- a Linux workstation implementation of the same algorithm
as the M2020 onboard scheduler (Rabideau and Benowitz
2017) - to construct a schedule and simulate plan execution.
The M2020 surrogate scheduler is expected to produce the
same schedules as the operational scheduler, but lends itself
to more rapid research and development on a linux worksta-
tion environment. While the baseline scheduler utilizes the
Probe algorithm, we interchange with the Linear and Max
Duration algorithms; the remainder of the algorithm is iden-
tical to the operational scheduler.

We compare each method against varying incoming SOC
levels to vary the level of difficulty for scheduling. The in-
coming SOC is the SOC remaining after the previous sched-
ule; therefore, it is the SOC that the current schedule begins
with. Since energy consumption is the main constraint and
focus of sleep scheduling, varying the incoming SOC will
vary the set of correct valid intervals and, by extension, the
difficulty of the problem. If the incoming SOC is sufficiently
high, the sleep scheduling problem is easy as there is suffi-
cient energy for the rover to constantly stay awake and activ-
ities can be scheduled more freely. This is because each sol
type was specifically constructed so that all activities would
be schedulable given a reasonable (e.g. 75 percent) incoming
SOC. As the incoming SOC decreases, the sleep schedul-
ing problem gets harder as the algorithms must determine if
there is sufficient energy to schedule a new awake or extend
an existing awake when considering activity placement. We
first analyze which algorithm performs the best as the prob-
lem difficulty increases. Secondly, we evaluate the runtimes
of each algorithm.

Results
Completeness Figure 4a showcases how the scheduler
performs with each respective sleep scheduling algorithm.
As the incoming SOC decreases, the problem difficulty in-
creases and fewer activities are scheduled. While the conser-
vative Max Duration approach clearly performs worse than
the others, the distinction between the Probe and Linear ap-
proaches seems unclear. This may seem surprising given that
the Linear algorithm is more complete than the Probe algo-
rithm; there are, however, multiple reasons as to why the al-
gorithms perform similarly despite their difference in com-
pleteness.

First, the scheduler focuses on finding the locally opti-
mal state—where the local optimal is scheduling the cur-
rent considered activity as close to its preferred time as
possible—but does not focus on global optimality. Due to
the rover’s computational limitations, the M2020 onboard
scheduler is a one-shot, non-backtracking scheduler. When
considering each activity, the scheduler attempts to sched-
ule it as close to the activity’s preferred time as possible, but
does not consider the impact it may have to any future ac-
tivities. Since activities are not moved or removed after they
have been considered for the schedule, the current scheduler
cannot guarantee global optimality, regardless of the valid

Scheduling with Complex Consumptive Resources for a Planetary Rover 40

(a) Full schedules generated. Baseline wakeup (5 minutes) and
shutdown (10 minutes) durations.

(b) Partial schedules generated. Baseline wakeup (5 minutes)
and shutdown (10 minutes) durations.

(c) Full schedules generated. Extended wakeup (30 minutes) and
shutdown (60 minutes) durations.

(d) Partial schedules generated. Extended wakeup (30 minutes)
and shutdown (60 minutes) durations.

Figure 4: As the Incoming SOC Increases, resources are less constrained and more activities are able to be scheduled. When
generating a schedule for all activities from an empty schedule, the differentiation between the Probe and Linear algorithms
is unclear. When using the baseline wakeup and shutdown durations, it is clear that the Max Duration algorithm performs
the worst; if the wakeup and shutdown durations are extended, however, the Max Duration algorithm starts to perform better.
When scheduling only one activity at a time from a partial schedule, the Linear algorithm strictly outperforms the other two
algorithms. When the wakeup and shutdown durations are extended, the difference becomes even more clear.

interval algorithm chosen. To account for this, the M2020
team has developed Copilot, a ground based tool that uses
Monte Carlo and Squeaky Wheel Optimization (Joslin and
Clements 1999) to adjust scheduling priorities before the
plan is uplinked to the rover. To read more about how ac-
tivity priorities are set, see (Chi et al. 2019).

Take for instance the following example: the Linear algo-
rithm successfully finds valid intervals for a longer activity
for which the Probe algorithm cannot. This may, however,
result in the Linear algorithm being unable to schedule ei-
ther multiple shorter activities or an activity that multiple
future activities depend on, while the Probe algorithm (due
to having excess energy from not scheduling the activity)
may successfully schedule multiple future activities.

To balance the scheduler’s focus on local optimality, we
considered scenarios where only the next activity in the
scheduling algorithm is considered. To do this, we generated
partial schedules where the first i activities are scheduled by
the same algorithm, but the i + 1 activity is scheduled with
the different algorithms and compared. This is repeated for
every i ∈ m so that every activity is scheduled with the
same algorithm for the first i activities. We used the Probe

algorithm to schedule the first i activities as it is the current
baseline for the M2020 scheduler. In Figure 4b, we see that
the Linear algorithm strictly outperforms (although the out-
performance is minimal) the Probe method while the Max
Duration method strictly under-performs. These results reaf-
firm our initial belief that the Linear algorithm is complete
and more locally optimal than the other methods. The fix
to the local vs global optimality issue thus lies more with
the overall scheduling algorithm than with the valid interval
calculations.

Second, the stretch and straddle regions are not large
enough to cause a drastic difference between algorithms.
Currently, wakeups are 5 minutes, shutdowns are 10 min-
utes, and the minimum sleep duration is 20 minutes. The
makespan of meaningful activities in a sol is around 8 to
10 hours of which there are usually only a few wakeups
and shutdowns. Since the algorithms only differ in how the
stretch and straddle regions—regions encompassing wakeup
and shutdowns—are handled, the differences in the algo-
rithms are minute. By increasing the length of the stretch and
straddle regions, the differences between the algorithms be-
come more clear. In Figures 4c (full schedule) and 4d (partial

Scheduling with Complex Consumptive Resources for a Planetary Rover 41

schedule), we increased the wakeup duration to 30 minutes
and shutdown durations to 60 minutes. Indeed, the Linear al-
gorithm starts to perform better in comparison to the Probe
algorithm with the differences especially evident in Figure
4d. The Max Duration algorithm also performs better than
before as its advantage over the Probe algorithm (it searches
the entire range rather than just one point) is able to be more
utilized.

Figure 5: Left is the runtime for the overall scheduling al-
gorithm. Right is the runtime sleep scheduling part of the
algorithm only (i.e. valid intervals with awake). The Probe
algorithm greatly outperforms the other algorithms while the
Max Duration algorithm greatly underperforms.

Runtime While completeness is important, the runtime
performance of each algorithm is equally critical to deter-
mining which algorithm to use. To accurately compare the
algorithms, we compare both the total scheduling runtime
(left) and the runtime of the algorithms after prior compu-
tations and constant factors are deducted (right). In figure
5, the Probe algorithm significantly outperforms the other
two algorithms as expected. Recall that the Probe algorithm
is an O(N) algorithm while both Linear and Max Duration
are O(N2). Not only that, but the Probe algorithm can be
applied to non stretch and straddle intervals as well, further
speeding up runtime. Despite its simple nature, the Max Du-
ration algorithm is the slowest algorithm by a wide margin.
Since the Max Duration algorithm is often unable to find
valid intervals due to its conservatism, it must often search
through and calculate valid intervals for multiple stretch and
straddle regions. As a result, its simple valid interval calcula-
tions is offset by its need to do this calculation multiple times
for each activity. On the other hand, the Linear algorithm
may take longer per region, but needs to explore less regions
overall. This is further evidenced by the large standard devi-
ation seen in the Max Duration algorithm’s runtime; if it can
find a valid interval within the first few regions it considers
it is fast, but if it cannot then it is incredibly slow. Although
the difference between tenths of a second may seem small,
these computations are done on a linux workstation instead

of onboard the rover; when eventually run onboard, a sin-
gle scheduler run can take up to 1 minute. As a result, the
two factor increase in total runtime between the Probe and
Linear algorithms is substantial.

Future Work
There are a few topics to be considered for future research.
First, preheat and maintenance heating pose a similar energy
management challenge to the scheduler. While they have
been intentionally glossed over for this paper, preheat and
maintenance heating are also dependent on existing preheats
and maintenances; an existing maintenance may be extended
instead of requiring a new preheat. Preheats differ in that
an activity may require preheats for multiple regions on the
rover and preheat durations may vary depending on thermal
conditions (Rabideau and Benowitz 2017). We would like to
analyze the different algorithms used to schedule preheats
and maintenances as well. Second, we would like to analyze
runtimes onboard the rover. In this paper, we analyzed the
runtimes on a linux workstation and compared it against an
estimate of how long a scheduler run takes on a flight-like
processor. The onboard scheduler runtime estimate is, how-
ever, only run with the baseline algorithm (i.e. Probe); our
analysis would be further substantiated if we were able to
run each algorithm onboard a flight-like processor.

Related Work
Schedulers have a long history of handling consumptive re-
sources.

ASPEN-EO-1 not only took into account onboard data
storage (among other constraints) when scheduling plan ob-
servations, but summarized or deleted data depending on on-
board data analysis (Chien et al. 2005a; 2005b; 2010).

MEXAR2 addressed Mars Express’s Spacecraft Mem-
ory Dumping Problem (MEX-MDP) and synthesized data
downlink plans that took into account data storage capacity
(Cesta et al. 2007).

MAPGEN was used to plan operations for Mars Explo-
ration Rovers (MER) Spirit and Opportunity(Bresina et al.
2005). MAPGEN similarly managed battery SOC as a con-
sumptive resource, but MER rovers relied on solar power
rather than a MMRTG. In addition, this system addresses
ground-based rather than onboard planning.

Remote Agent is an onboard autonomous agent archi-
tecture that takes into account consumptive resources such
as energy and data volume (Muscettola et al. 1998). It
mainly utilizes constraint posting and propagation rather
than “fixed” start times and is a more general architecture
compared to our specific solution to scheduling consump-
tive resources.

Conclusion
Generating and scheduling activities in the presence of con-
sumptive regenerative resources is especially challenging
when a driving factor of feasibility of placement is depen-
dent on interactions with the existing schedule. Schedul-
ing activities and their awake periods is particularly chal-
lenging in the context of M2020 because the awake’s

Scheduling with Complex Consumptive Resources for a Planetary Rover 42

duration is dependent on existing awakes. We presented
three algorithms—Max Duration, Probe, and Linear—for
scheduling awakes and analyzed their completeness and run-
time. Despite being a locally sound and complete algorithm,
the Linear algorithm was not always able to outperform in
the global problem space. We demonstrated how a simple
and incomplete algorithm can perform both suboptimally,
as seen with the Max Duration algorithm, and also close to
optimal, as seen with the Probe algorithm, dependent on the
heuristic and input parameters. We showed that the Probe
algorithm is a fair alternative to a more complete algorithm,
especially considering its ease of implementation and run-
time improvement.

Acknowledgments
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

References
Bresina, J. L.; Jónsson, A. K.; Morris, P. H.; and Rajan, K.
2005. Activity planning for the mars exploration rovers.
In International Conference on Automated Planning and
Scheduling (ICAPS 2005), 40–49.
Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and Po-
licella, N. 2007. An innovative product for space mis-
sion planning: An a posteriori evaluation. In International
Conference on Automated Planning and Scheduling (ICAPS
2007), 57–64.
Chi, W.; Chien, S.; Agrawal, J.; Fosse, E.; and Guduri, U.
2019. Optimizing parameters for uncertain execution and
rescheduling robustness. In International Conference on Au-
tomated Planning and Scheduling (ICAPS 2019).
Chien, S.; Cichy, B.; Davies, A.; Tran, D.; Rabideau, G.;
Castano, R.; Sherwood, R.; Mandl, D.; Frye, S.; Shulman,
S.; et al. 2005a. An autonomous earth-observing sensorweb.
IEEE Intelligent Systems 20(3):16–24.
Chien, S.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau,
G.; Castano, R.; Davis, A.; Mandl, D.; Trout, B.; Shul-
man, S.; et al. 2005b. Using autonomy flight software
to improve science return on earth observing one. Journal
of Aerospace Computing, Information, and Communication
2(4):196–216.
Chien, S. A.; Tran, D.; Rabideau, G.; Schaffer, S. R.; Mandl,
D.; and Frye, S. 2010. Timeline-based space operations
scheduling with external constraints. In International Con-
ference on Automated Planning and Scheduling (ICAPS
2010), 34–41.
Chien, S.; Johnston, M.; Policella, N.; Frank, J.; Lenzen, C.;
Giuliano, M.; and Kavelaars, A. 2012. A generalized time-
line representation, services, and interface for automating
space mission operations. In International Conference On
Space Operations (SpaceOps 2012).
Jet Propulsion Laboratory. 2018a. Mars 2020 rover mission
https://mars.nasa.gov/mars2020/ retrieved 2018-12-17.

Jet Propulsion Laboratory. 2018b. Mars 2020 rover mission
https://mars.nasa.gov/mars2020/mission/rover/electrical-
power/ retrieved 2018-12-17.
Joslin, D. E., and Clements, D. P. 1999. Squeaky wheel
optimization. Journal of Artificial Intelligence Research
10:353–373.
Knight, R.; Rabideau, G.; and Chien, S. A. 2000. Computing
valid intervals for collections of activities with shared states
and resources. In AIPS, 339–346.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no ai system has
gone before. Artificial intelligence 103(1-2):5–47.
Rabideau, G., and Benowitz, E. 2017. Prototyping an on-
board scheduler for the mars 2020 rover. In International
Workshop on Planning and Scheduling for Space.
Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; and
Govindjee, A. 1999. Iterative repair planning for spacecraft
operations using the aspen system. In Artificial Intelligence,
Robotics and Automation in Space, volume 440, 99.

Scheduling with Complex Consumptive Resources for a Planetary Rover 43

Planning & Scheduling with Preferences

44

Privacy-aware Adaptive Scheduling for Coalition Operations
Karen L. Myers,1 Thomas Lee,1 Laura Tam,1 José Manuel Calderón Trilla,2 Benjamin Davis,2 Stephen Magill2

Artificial Intelligence Center, SRI International1
333 Ravenswood Ave., Menlo Park, CA 94025

firstname.lastname@sri.com
Galois, Inc.2

421 SW 6th Avenue, Suite 300
Portland, Oregon 97204

firstname.lastname@galois.com

Abstract

Coalition operations are essential for responding to the
increasing number of world-wide incidents that require
large-scale humanitarian assistance. Many nations and non-
governmental organizations regularly coordinate to address
such problems but their cooperation is often impeded by lim-
its on what information they are able to share. In this pa-
per, we consider the use of an advanced cryptographic tech-
nique called secure multi-party computation to enable coali-
tion members to achieve joint objectives while still meet-
ing privacy requirements. Our particular focus is on a multi-
nation aid delivery scheduling task that involves coordinating
when and where various aid provider nations will deliver re-
lief materials after the occurrence of a natural disaster. Even
with the use of secure multi-party computation technology,
information about private data can leak. We describe how the
emerging field of quantitative information flow can be used to
help data owners understand the extent to which private data
might become vulnerable as the result of possible or actual
scheduling operations, and to enable automated adjustments
of the scheduling process to ensure privacy requirements.

Introduction
Coalition operations are becoming an increasing focus for
many nations. The need for collaboration derives from in-
creasing awareness of mutual interests among both allies and
nations that traditionally have not worked closely together.
For example, coalition operations for Humanitarian Assis-
tance and Disaster Relief (HADR) have increased substan-
tially in recent years in both numbers and scope. With the
impact of global warming, it is anticipated that there will be
even more large-scale humanitarian crises resulting from ad-
verse weather-related events and sea-level rises. These coali-
tions often involve not just government and military orga-
nizations but also non-governmental organizations (NGOs)
and commercial entities.

A key challenge facing coalitions is how to collaborate
without releasing information that could jeopardize national
(or organizational) interests. Information security mecha-
nisms for the military to date have focused on safeguarding
information by limiting its access and use. This approach has
lead to a significant undersharing problem, which impedes

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited.

effective joint operations. Recent work on defining access
control mechanisms is useful for enabling selective sharing
of information that is safe to release (Phillips, Ting, and De-
murjian 2002). However, many coalition tasks require infor-
mation that participants do not wish to make available to
others.

For example, consider the problem of scheduling the de-
livery of aid (food, water, medicine, fuel) to impacted na-
tions after a natural disaster. Historically, international re-
sponse has involved dozens of countries and NGOs, each
with the desire to contribute in interconnected and po-
tentially conflicting ways. Ideally coordination would be
achieved by directly sharing information about the amount
of aid each contributor has available or can produce, where
that aid is situated, the position and storage capacity of ships
for delivering the aid, harbor facilities where aid ships could
dock, etc. But the owners of this data may be unwilling to
directly share it with coalition partners, for fear of revealing
information that impacts national security (e.g., ship loca-
tions) or competitive advantages (e.g., a company’s backlog
of inventory).

To address this problem of coalition collaboration with-
out revealing private information, we exploit a cryptographic
technology called secure multi-party computation (MPC)
(Yao 1982). MPC protocols enable mutually distrusting par-
ties to perform joint computations on private information
while it remains encrypted. In our work, we use MPC to
enable privacy-preserving computations over several types
of coordination tasks related to scheduling aid delivery.

While participants cannot directly learn others’ private in-
puts from the process/protocol of a secure multi-party com-
putation, they may be able to infer something about private
data based on the results of the computation. For this reason,
our privacy-aware scheduling solution makes use of a com-
plementary technology called quantitative information flow
(QIF) to measure the degree to which private data used in
the scheduling task might leak to other participants. Insights
gained from this analysis are folded back into the schedul-
ing process via an adaptive workflow capability, to ensure
that the vulnerability of private data stays within acceptable
thresholds.

The paper is organized as follows. We begin by sum-
marizing our aid distribution task, including a description
of the core scheduling problem and the data (private and

cba

Bernardini et al. (Eds): SPARK 2019 45

https://creativecommons.org/licenses/by-sa/4.0/

non-private) belonging to the various coalition members. We
then provide a short overview of secure multi-party compu-
tation followed by a description of how we employ it within
a broader adaptive workflow framework to address the aid
delivery scheduling task. Next, we describe our use of quan-
titative information flow to assess the vulnerability of private
information as the scheduling progresses and to adapt the
scheduling workflow in light of those assessments to ensure
adherence to predefined privacy requirements. We conclude
by identifying directions for future work and summarizing
our contributions.

HADR Aid Delivery Problem
The aid delivery problem that we consider involves two cat-
egories of participants:

• N Aid Provider nations, each of which has some number
Sn of ships with aid (e.g., food, medicine) to be delivered

• a single Aid Recipient nation that has P ports to which aid
can be delivered

Collectively, these participants need to formulate a sched-
ule for delivering aid on board the Aid Provider ships to
ports belonging to the Aid Recipient, ensuring delivery prior
to a specified deadline. As summarized in Figure 1a , a so-
lution involves assigning to each Aid Provider ship: a port to
which its aid should be delivered, a berth at the port, and a
docking time. These assignments are subject to various con-
straints on ship and port characteristics to ensure physical
compatibility between the ship and the port/berth, schedule
availability of the berth, and the ability for the ship to com-
pleting the docking before the assigned deadline. We further
seek an assignment that optimizes according to the follow-
ing load-balancing criteria.

Optimization Criteria: Load-balancing across ports.
Let Assigned(Porti) designate the number of aid provider
ships assigned to aid recipient port Porti. An optimal solu-
tion is a set of assignments that minimizes

MAXj,k(| Assigned(Portj)− Assigned(Portk) |)
Generating a solution to this scheduling problem re-

quires information from the various parties about their assets
(ships, ports), some of which they would prefer not to share
with other coalition members. Figure 1b summarizes this
private data. In both Figure 1b and Figure 1a the problem
data is color-coded, with blue used for private data belong-
ing to an Aid Provider nation and green for private data be-
longing to the Aid Recipient nation. As the coloring clearly
shows, determining a solution requires combining private in-
formation from multiple parties, which motivates our use of
secure multi-party within our scheduling algorithm.

Secure Multi-Party Computation
To address privacy concerns in our aid delivery use case,
we leverage MPC. MPC protocols compute a function and
reveal the output of the computation without revealing pri-
vate inputs to any other participant. Early MPC work was
based on two-party problems (Yao 1982), and subsequent

work produced general approaches for any number of par-
ticipants to participate in shared computation without learn-
ing private information (Goldreich, Micali, and Wigderson
1987).

Most MPC approaches involve modeling the desired algo-
rithm as a boolean circuit (fixed-time algorithms expressed
as a combination of AND, OR, and NOT logic gates). How-
ever, circuit-based approaches may require unrolling loops,
introducing potential performance implications. Alternate
approaches based on Oblivious RAM (Goldreich and Os-
trovsky 1996) do not require this full unrolling though have
other performance trade-offs. We use a circuit-based MPC
approach in our scenario, though our privacy analysis and
adaptive scheduling do not depend on the specifics of the
underlying MPC approach.

MPC has proven to be a powerful tool to enable a wide
range of use cases. For example, private keys can be split
among several hosts in order to reduce the number of hosts
that must be compromised in order to obtain the key. A com-
putation that requires the decryption operation can then be
done under MPC between the hosts, ensuring that the whole
key is never revealed in the clear (Archer et al. 2018). MPC
can also be used between companies in collaborative supply-
chain management, where the reluctance to share sensitive
data (such as costing and capacities) can lead to sub-optimal
production plans. The use of MPC allows for collaborative
supply-chain planning without compromising sensitive data
(Kerschbaum et al. 2011).

In our setting, each data owner provides their private in-
put to a MPC circuit designed such that their inputs are
not revealed to other participants. Then participants follow
the protocol for the multi-party computation, which allows
them to collectively compute the solution to the planning
and scheduling optimization problem. In the end, only the
final result (schedule) is revealed to the relevant parties.

Scheduling Workflow
Creating a single MPC circuit to solve the full optimized
scheduling problem in a general way is not practical at this
point in time. For this reason, our solution approach consists
of a workflow that decomposes the scheduling task into the
following sequence of steps.

Step A. Collect relevant inputs:

• Aid Provider: determine ports that can be reached by
each ship before the deadline D
• Aid Recipient: select ports to which aid will be ac-

cepted

Step B. Determine ports that satisfy joint ship/harbor phys-
ical compatibility constraints:

• Aid Provider ship draft is compatible with the harbor
depth in the port
• Aid Recipient port has sufficient offload capacity

Step C. Determine all berths within each feasible port from
Step B that satisfy joint ship/berth compatibility and berth
availability constraints:

• Aid Provider ship fits within the berth

Privacy-aware Adaptive Scheduling for Coalition Operations 46

For a Ship to be scheduled to dock at a given Docking Time at
a Berth belonging to a Port, the following must hold:

Port

• ship-draft ≤ port-harbor-depth
• ship-cargo-amount ≤ port-cargo-offload-capacity
• ship-earliest-arrival = EarthDistance(ship-location,port)

ship-maxspeed
• ship-earliest-arrival ≤ deadline

Berth in Port

• ship-length ≤ berth-length
Docking Time at Berth

• ship-earliest-arrival ≤ docking-time ≤ deadline
• berth-availability (pairs of berth-occupied-start and

berth-occupied-end) for berth at docking-time

(a) Constraints in the Scheduling Problem

Aid Provider Aid Recipient
Ship Info Port Info Berth Info

ship-location port-available berth-length
ship-length port-cargo-offload-capacity berth-occupied-start
ship-draft port-harbor-depth berth-occupied-end

ship-maxspeed

(b) Summary of Private Data by Data Owner

Figure 1: Constraints over the private data and the relationship of private data to the data owners

• Aid Recipient berth is available at planned ship arrival
time

Step D. Schedule the aid ships across possible ship-port-
berth-arrival-time options (from Step C) in accordance
with the optimization goal of load-balancing across ports.

Step A is a simple information gathering/filtering task per-
formed locally by individual participants. Step B requires
computation over private inputs from both the Aid Provider
and the Aid Recipient. Steps C and D combine private in-
puts with intermediate results from earlier steps. For these
reasons, we use three secure multi-party circuits within our
workflow:

• A two-party circuit for the physical compatibility test in
Step B (Aid Provider and Aid Recipient)

• A two-party circuit for the viability test in Step C (Aid
Provider and Aid Recipient)

• An N-party circuit for optimizing berth allocation in Step
D (all N Aid Providers)

The circuits for Steps B and C are straightforward but
must be run for each possible ship/port (Step B) and
ship/berth (Step C) combination. The circuit for Step D is
more complex. Because it is not possible to implement a
truly optimized solution in the MPC circuit model, we in-
stead opted for the following greedy approach to load bal-
ancing across ports.

1. Initialization: set the list of ship-port-berth solutions to be
empty and the working set of options to be the set of ship-
port-berth-unload time entries from Step C

2. Select a port P with the fewest number of assignments and
for which there remain options

3. Select earliest ship-port-berth-unload time entry for P and
add to the solutions list

4. Remove from the set of options all entries for the ship and
berth selected in Step 3

5. Repeat steps 2-4 until no more ship-port-berth solutions
remain

6. Output the solution list
We use the Lumen agent technology (described in (My-

ers et al. 2011)) to provide an adaptive workflow capabil-
ity for executing this scheduling process. Although we de-
pict only one workflow here, more generally our adaptive
workflow capability draws from a library of alternative ap-
proaches to a range of aid distribution scheduling problems,
enabling solution approaches to be matched to the specifics
of a given situation. For example, we have defined alter-
native workflows that embed different scheduling and op-
timization strategies and that make use of secure multi-party
computation in different ways as a means of investigating
tradeoffs between efficiency and privacy.

Quantifying Information Vulnerability
In this section we describe what is involved in using QIF to
reason about questions of how private data can be inferred
from the results of a computation.

Limitations of Multi-Party Computation
The “Millionaires’ Problem” (Yao 1982) is an early use-
case for multi-party computation in which two people, Alice
and Bob, use MPC to securely determine which of them is
richer without revealing their actual wealth to each other.
But while they don’t learn the other’s precise values, they do
learn something about each other.

Privacy-aware Adaptive Scheduling for Coalition Operations 47

The nature of the relationship between the revealed output
and the private inputs determines how much one may infer
about the inputs from the result. For example, if Alice and
Bob use MPC to instead compute the arithmetic mean of
their net worths, Alice could use the input she provided and
the resulting mean from the computation to solve for Bob’s
exact net worth. Alice may not be able to extract Bob’s input
via examination of the MPC circuit itself, but MPC cannot
change the relationship between inputs and output that exists
outside the circuit.

In our Aid Delivery scenario, private “inputs” may involve
sensitive capability and operational details. As the scenar-
ios increase in scope and complexity, it becomes difficult to
reason informally about what an adversary may be able to
infer.1 We use Quantitative Information Flow (QIF) to ad-
dress these concerns by characterizing an adversary’s abil-
ity to make these inferences based on information-theoretic
bounds on the relationship between results and private in-
puts.

Modeling Workflows
A QIF analysis begins by transforming a program (such
as our aid distribution workflow) into a model that repre-
sents the relationship between the (private) inputs and out-
puts. Specifically, these models are based on information-
theoretic channels, which we use to construct a mapping
from prior2 distributions on private data to distributions on
posterior distributions (Smith 2011; Smith 2009).

We use these models to support “predictive-mode” adap-
tive workflows in which we reason about what an adversary
could learn from any possible set of private inputs, as well
as “posterior-mode” in which we determine how much an
adversary may learn from some specific concrete result.

Quantifying Inference Capabilities
We can construct games in which we quantify the adver-
sary’s inference capability by measuring how their chances
of “winning” (i.e., guessing a piece of private data) improve
given additional information. We call the probability that an
adversary can with one chance correctly guess a piece of
private data the vulnerability of that variable.

In the “prior game,” the defender picks a private input
value by sampling from the prior distribution of possible
input values. The adversary makes their best guess of the
defender’s input based only on their knowledge of the prior
distribution of possible input values. The prior vulnerability

1In this work, an ‘adversary’ is a so-called honest-but-curious
actor who attempts to infer the values of private data by observing
the public results of each step in the workflow. Adversaries could
be other coalition partners or an unrelated third party that has ac-
cess to the computational framework.

2A ‘prior’ can be thought of as the initial set of beliefs that an
adversary has about a system. An adversary may have a prior over
the lengths of naval ships (e.g., between 10 and 1,500 feet long), or
the possible locations of the ships. If an adversary has no reason to
believe one value is more likely than any other then the prior is a
uniform distribution over the space of secrets, hence it is known as
a uniform prior.

is the probability the adversary will correctly guess the de-
fender’s private input (without any additional information).

In the “posterior game,” the defender again picks a pri-
vate input, but then performs the computation using that in-
put and shares (only) the result with the adversary. We also
assume the adversary has full knowledge of how the inputs
relate to outputs in the computation (e.g., could construct an
identical channel-based model of the computation). Here the
chance the adversary correctly guesses the defender’s private
input is called the posterior vulnerability.

To summarize, the prior game is how likely an adversary
is to guess the private input before seeing the result of the
computation, the posterior game is how likely the adversary
is to guess the private input after seeing the specific output
of the computation.

The Use of Vulnerability as a Metric
Vulnerability as a metric of risk is appealing because of its
relatively intuitive nature. The caveat to vulnerability as a
metric is that it is extremely sensitive to the chosen prior
belief. Therefore, care must be taken in deciding upon a prior
in order to assure that the metric reflects reality as much as
possible.

Supporting Workflow Adaptation
Our predictive-mode adaptation strategy is based on QIF
predictive leakage, which attempts to predict how much will
be leaked about the private data before the computation is
run on the concrete private values. We can also approximate
predictive leakage using Monte Carlo simulation, permitting
the use of these metrics even in scenarios where operational
requirements make it infeasible to complete the precise pre-
dictive leakage within a desired time frame. Incorporating
predictive leakage metrics into our workflows enables iden-
tification of potentially higher-risk situations where it may
be preferable to adapt or halt the workflow (based on some
policy) rather than participating in a computation that may
reveal too much.

Our posterior-mode adaptation strategy is based on QIF
dynamic leakage, which takes into account the actual results
of a computation. As opposed to the predictive leakage’s as-
sessments, that average all possible private input values, dy-
namic leakage enables our workflows to incorporate more
accurate assessments of what was actually revealed in the
specific ongoing workflow.

Sample Vulnerability Analysis
As discussed previously, the HADR aid delivery problem
provides a strong foundation for analyzing adaptive work-
flows in a privacy-aware setting. In this section we describe
how the notion of vulnerability can be used to inform the
cooperating parties of risk to their private data.

A Simplifying Example
To begin our discussion we first describe a simplified version
of the HADR aid delivery problem involving a single ship,
S, and a single port, P . In this simplified scenario, the only
private data is S’s location (ship_loc). We assume that

Privacy-aware Adaptive Scheduling for Coalition Operations 48

other relevant data (such as ship maximum speed) is known
publicly.

def reachable(deadline):
dist = distance(ship_loc, port_loc)
return (dist <= (max_speed * deadline))

Figure 2: The pseudo-code for a simple query

The channel is “is S able to reach port P within d hours?”.
As pseudo-code we write this channel as a function of d,
over some global set of private (ship_loc) and public
(port_loc, max_speed) variables.

Prior Belief In our simplified scenario an adversary who
wants to determine S’s private data will have some prior be-
lief about that data. In this case, the prior belief will be some
area of the ocean where S could be located. This may or may
not be informed by other information available to the adver-
sary. While QIF can be calculated over non-uniform priors,
in this exposition we assume uniform priors for the sake of
simplicity. Figure 3a shows a graphical representation of a
possible prior for the simplified scenario.

Because our prior is uniform, the adversary’s chance of
guessing the ship’s position (the prior vulnerability, Vprior),
is simply

Vprior =
1

number of possible locations in the prior

This makes intuitive sense: under a uniform prior, the ad-
versary’s likelihood of winning the prior game is equivalent
to choosing a point out of the prior at random.

Posterior Belief When ship S, cooperating in the simpli-
fied scenario, responds to the reachable query in Figure
2, the adversary is able to observe the output of the chan-
nel. This observation allows the adversary to rule out entire
sections of the space of possible locations.

If the result of the query is True, then the adversary
can infer that the location of S is within a circle of ra-
dius r, where r is the distance that the ship can travel at
max_speed with deadline amount of time. Inversely, if
the result of the query is False, then the adversary could
infer that the ship must be outside of the same circle. Ob-
serving False is the circumstance illustrated in Figure 3b.

The important point is to see that regardless of the result
of the query, the adversary may be able to infer rule out sub-
sets of possible values for the private data.

The probability the adversary has of guessing the ship’s
position after seeing the channel output (the posterior vul-
nerability, Vpost) is simply

Vpost =
1

number of possible locations in the posterior

Further Queries Because cooperation is the goal, it is
likely that the coordinator of our simple scenario will need
to query S multiple times. This is particularly true if the ini-
tial query’s result was False. The coordinator may query

S with reachable(d2), where d2 is a new, longer, dead-
line. If the result is then True then the adversary is able to
infer that S resides within the ring formed by two overlap-
ping circles: an inner circle with radius r, described above,
and a wider circle with radius r2, where r2 is the distance
that S is able to travel at max speed in time d2. This circum-
stance is illustrated in Figure 3c.

Worst-Case Simple Scenario If we add another port, P2,
to the simple scenario above, but keep all other details the
same, it may be possible for S’s location to be determined
within a very small tolerance. If the result of reachable
is True for both P and P2, then (using the same process as
above) the adversary would intersect the appropriate circles.
The smaller the intersection, the more the adversary knows
about the ship’s position.

Analysis of the Aid Distribution Scenario
The simplified scenario above only has one piece of private
data: the ship’s position. As a reminder, Figure 1b shows
the private data in the full HADR scenario. In this section
we present some results from an analysis over a model of
the full scenario, using a single ship (Ship #9) as a running
example.

Prior Vulnerability As discussed above, an adversary has
some notion of the possible values that a secret can take on
even before running any computations over that secret data.
This is referred to as the Prior. When analyzing a system, the
analyst must choose appropriate ranges for the private data
in question. For some variables this may be straightforward
(e.g., the ocean sector in question when deciding on a prior
for a ship’s location), for others it may depend on domain
knowledge (e.g., the appropriate range for naval ship drafts).

We can visualize the prior vulnerability over location eas-
ily. Figure 5 shows several aspects of the HADR scenario.
The boundaries of the map in the image are the boundaries
of the prior belief over ship position. It is important to re-
mind ourselves that the choice of prior (part of which is de-
termined by the geographic area under consideration) affects
the vulnerability metric significantly. Increasing the area de-
creases the prior vulnerability, while decreasing the area in-
creases the prior vulnerability. Because the prior models the
adversary’s view of the world, it should be constructed care-
fully.

Predictive Vulnerability for Steps A+B In resource-
constrained systems, it is useful to be able to predict how
much of a given resource would be used if a certain action
were to be executed. Private data can similarly be viewed
as a form of resource for which predictive analysis can be
applied to assess the impact of planned or possible actions.

The ability to predict the future vulnerability can be im-
plemented in several ways, the practicality and efficiency
of different methods depends heavily on the constraints of
the system, imposed by the state-space and the adversarial
model.3

3In the QIF literature, this ability is knowns as Static Leakage
Analysis (Smith 2009; Alvim et al. 2012).

Privacy-aware Adaptive Scheduling for Coalition Operations 49

(a) The initial prior belief: no reason to be-
lieve the ship is in one location over any
other.

(b) Posterior belief after observing a
False: The ship must be outside the dis-
tance of the reachable query.

(c) If a subsequent query for a further
distance returns True the ship must be
within the newly formed ring.

Figure 3: The effects of observing query results on a prior belief over the simplified scenario.

In our system we have chosen an approximate method that
enables an analyst to calculate a histogram over the possi-
ble vulnerability outcomes without any access to the private
data. This method uses Monte Carlo simulation to run our
analysis over randomly sampled points from the space of
possible private data values.

Figure 4: Predictive Vulnerability of Steps A+B

Figure 4 shows the results of a Monte Carlo simulation
of the predictive vulnerability of running Steps A+B (using
13788 samples4). The vertical dotted line shows the median
value (6.847603e−6%) of all the samples. This method of
approximation provides analysts with various options. In a
scenario where the preservation of privacy is paramount, the
analyst may focus on the right-hand side of the figure, where
the potential vulnerability is higher, 0.03039514%, though
still unlikely.

This method also adapts well to use cases where an ana-
lyst may have access to some of the private data. For exam-
ple, an analyst for one of the coalition partner nations might
have access to that nation’s private data, but not the private
data of the ports. Using this same method of sampling from
the space of (unknown) private data, such an analyst would
be able to approximate the future vulnerability of their data
if they were to respond to a query.

Posterior Vulnerability for Steps A+B Once a step is
taken, we can calculate the posterior vulnerability of the
private data. Unlike the predictive analysis in the previous

4The sampling procedure is time based, hence the seemingly
arbitrary number of samples.

section, this analysis is ‘exact’ in that the real vulnerability
cannot be more than what the analysis reports.

Ship #9 Position 6.847603e−6%

In this case, the posterior vulnerability coincides with the
median of the predictive vulnerability. This is not too sur-
prising as the median was also the most likely value by a
significant margin.

Predictive Vulnerability for Step C Figure 6 shows the
Monte Carlo simulation for vulnerability of a ship after Step
C is completed.5 The median predicted value in this in-
stance, 6.644298e−4%, is two orders of magnitude higher
than the vulnerability after Steps A+B alone. This makes in-
tuitive sense as much more information is revealed after Step
C that can be used to infer a ship’s private data. Unsurpris-
ingly, the maximum sampled predictive vulnerability is also
substantially higher: 0.2012072%.

Posterior Vulnerability for Steps C As with the posterior
vulnerability for Steps A+B, the posterior vulnerability for
Step C is based on a sound analysis using the real results of
the workflow step, and are not simulated as in the predictive
vulnerability.

Ship #9 Position 2.049806e−4%

In the case of Step C, the posterior vulnerability for
Ship #9 is lower than the median of the predictive result
(6.644298e−4%). From an analyst’s perspective, this could
mean that Ship #9 has revealed even less about its private
data than the ‘average’ ship would in this scenario.

Why Step D doesn’t leak Step D has no meaningful con-
sequences on the vulnerability of the private data for any
stakeholder in the HADR scenario if the result of Step C has
been observed by the adversary. The reason for this is that
Step D’s algorithm can be computed completely from the
results of previous steps in the workflow, i.e. it does not re-
quire the values of the private data directly. Interestingly, this
point reinforces an important aspect of QIF analysis: even
though Step C’s result was computed with private data, the
vulnerability metrics from the QIF analysis of Step C take

5Note that the range of the x-axis has changed in order to better
display the data.

Privacy-aware Adaptive Scheduling for Coalition Operations 50

Figure 5: The posterior belief over the position of Ship #9 in the HADR scenario after cooperating in all steps.
(Map cartography and tiles c© OpenStreetMap contributors.)

Figure 6: Predictive Vulnerability of Step C

into account any possible use of the result. Therefore addi-
tional computation over the results of Step C (or any prior
step) does not affect the vulnerability of private data.

Privacy-aware Workflow Adaptation
The vulnerability assessment computed by the QIF capabil-
ity provides insights to data owners as to the security of pri-
vate information that they wish to protect. We exploit these
insights within our workflow manager to adapt the schedul-
ing process in order to ensure adherence to privacy objec-
tives. More specifically, we use the QIF capability in two
ways: in a predictive mode to estimate the amount of leakage
associated with potentially performing a particular query or
task and in a posterior mode to track actual leakage based
on the specific values that a query or task returns.

When executing a particular task our workflow manager
invokes the predictive mode to estimate leakage. If the esti-
mate of aggregate leakage for designated private data does
not exceed set thresholds, then the workflow proceeds and
the posterior leakage analysis is invoked to determine ac-

tual leakage values. If the estimate does exceed the thresh-
old then the workflow is either terminated or (if possible)
modified via a remediation strategy to keep leakage below
the threshold.

The idea behind a remediation strategy is to modify the
problem or state in ways that will likely reduce impacts on
private data. For example, our aid delivery problem requires
computing the reachability of a port by a given deadline.
Knowing that a given ship can reach the port by that dead-
line reveals information about the combination of ship posi-
tion and maximum speed. One simple remediation strategy
is to postpone the deadline, which will reveal less informa-
tion about the position and speed values (e.g., the fact that a
ship can reach a port by a given deadline reveals something
about the lower bound for its max-speed; a later deadline in-
troduces greater uncertainty as to what that speed might be
by decreasing that lower bound). Our Lumen-based adaptive
workflow engine includes such remediation strategies to en-
able adaptivity based on QIF predictive analyses.

Privacy thresholds are implemented using an existing pol-
icy framework within Lumen that was developed previously
to enable users to impose boundaries on the behaviors of
autonomous agents (Myers and Morley 2003). The privacy
policies have the general form:

Keep below <percentage>
the probability of knowing
<private-data> within <tolerance>

Below we show two examples used in the system, one for
the Aid Provider nation and one for the Aid Recipient nation.

Aid Provider Sample Policy:

“Keep below 10 % the probability of knowing the loca-
tion of my ships within 50 NMs”

Aid Recipient Sample Policy:

Privacy-aware Adaptive Scheduling for Coalition Operations 51

https://www.openstreetmap.org/copyright

Figure 7: Comparison of initial (prior) and post-task (poste-
rior) vulnerability assessments

“Keep below 20 % the probability of knowing the port
harbor depth within 40 feet”

Figure 7 shows sample vulnerability assessments for two
types of private data (max-speed, location) for a select set
of ships belonging to an individual Aid Provider nation. The
top image shows the initial vulnerabilities of the data, prior
to performing any computations; the bottom image shows
the vunlerabilities after workflow completion. The display
shows the QIF-derived vulnerability level as a colored bar
representing the adversary’s likelihood of guessing the pri-
vate data within the specified tolerance. The vertical line bi-
secting the display for each piece of private data marks the
policy-prescribed threshold of acceptability for the vulner-
ability. We note that the initial vulnerabilities for the ship
locations are non-zero but so small as to not be perceptible
in the image.

Future Work
Here, we consider two avenues for future work.

Analogs can be drawn between our use of the QIF analy-
sis to predict and track vunlerabilities of private data within
the scheduling workflow and prior work on estimating re-
source usage in workflows (Morley, Myers, and Yorke-
Smith 2006). Although we currently consider individual ac-
tions incrementally as the workflow executes, we envision
performing predictive vulnerability assessments of entire
workflows prior to execution, to enable informed choices
about alternative approaches before any information usage
has occurred. Generating useful assessments will require
predictive QIF techniques that consider cases beyond worst-
case leakage, whose inherent pessimism can make them
of limited value for certain vulnerability assessment tasks.
Longer term, such analyses could also potentially open the
door to using first-principles planning techniques to synthe-
size privacy-aware workflows on an as needed basis that are
tailored to the specifics of a given task and privacy require-
ments.

The scalability of QIF techniques can be an issue for sys-
tems where there are complex relationships between sets of
variables. Some work has been done on attaining scalability
by enhancing static analysis techniques with approximations
that speed up analysis with probabilistic bounds on certainty
(Sweet et al. 2018). However, there is still further work re-
quired before the QIF analysis of arbitrary channels could
scale to use cases such as the end-to-end HADR scenario
considered in this paper. In particular, the methods described
in this paper utilize bespoke analyses for the channels un-
der consideration, providing a more scalable approach at the
cost of generality. One future direction may be to design Do-
main Specific Languages that enable description of a sce-
nario and its analysis in tandem.

Conclusion
A key challenge facing coalitions is how to collaborate with-
out releasing information that could jeopardize national (or
organizational) interests. In this paper, we consider this chal-
lenge for a realistic scheduling problem tied to aid deliv-
ery. Our work makes several contributions. First, we show
how state-of-the-art secure multi-party computation can be
used to safeguard private information with an overall dis-
tributed scheduling solution to the aid delivery problem. A
second contribution relates to the use of quantitative infor-
mation flow (QIF): even with secure multi-party computa-
tion, scheduling outputs can reveal information about coali-
tion members’ private data. We show how QIF can be ap-
plied to assess the vulnerability of providate data for both
prospective (i.e., where results are not known) and actual
(i.e., where results are known) computations. As a third
contribution, these assessments can be used to adapt the
scheduling algorithm to ensure it remains within accepted
vulnerability thresholds established by data owners.

Acknowledgments
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA), the United
States Air Force, and the Space and Naval Warfare Systems
Center, Pacific (SSC Pacific) under Contracts No. FA8750-
16-C-0022 and N66001-15-C-4071. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect
the views of DARPA, the Department of Defense, the United
States Air Force, or SSC Pacific.

The authors thank Stealth Software Technologies, Inc.
(in particular; Steve Lu, Rafail Ostrovsky, Paul Bunn, and
Chongwon Cho) for providing the MPC software that was
used on this effort.

References
[Alvim et al. 2012] Alvim, M. S.; Chatzikokolakis, K.;
Palamidessi, C.; and Smith, G. 2012. Measuring informa-
tion leakage using generalized gain functions. In 2012 IEEE
25th Computer Security Foundations Symposium, 265–279.
IEEE.

[Archer et al. 2018] Archer, D. W.; Bogdanov, D.; Lindell,
Y.; Kamm, L.; Nielsen, K.; Pagter, J. I.; Smart, N. P.; and

Privacy-aware Adaptive Scheduling for Coalition Operations 52

Wright, R. N. 2018. From Keys to Databases—Real-World
Applications of Secure Multi-Party Computation. The Com-
puter Journal 61(12):1749–1771.

[Goldreich and Ostrovsky 1996] Goldreich, O., and Ostro-
vsky, R. 1996. Software protection and simulation on obliv-
ious rams. J. ACM 43(3):431–473.

[Goldreich, Micali, and Wigderson 1987] Goldreich, O.;
Micali, S.; and Wigderson, A. 1987. How to play any
mental game. In Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing, STOC ’87,
218–229. New York, NY, USA: ACM.

[Kerschbaum et al. 2011] Kerschbaum, F.; Schroepfer, A.;
Zilli, A.; Pibernik, R.; Catrina, O.; de Hoogh, S.; Schoen-
makers, B.; Cimato, S.; and Damiani, E. 2011. Secure col-
laborative supply-chain management. Computer 44(9):38–
43.

[Morley, Myers, and Yorke-Smith 2006] Morley, D. N.; My-
ers, K. L.; and Yorke-Smith, N. 2006. Continuous Refine-
ment of Resource Estimates . In Proceedings of the 5th
International Joint Conference on Autonomous Agents and
Multi Agent Systems, 858–865.

[Myers and Morley 2003] Myers, K., and Morley, D. 2003.
Policy-based Agent Directability. In Hexmoor, H.; Castel-
franchi, C.; and Falcone, R., eds., Agent Autonomy. Kluwer.
143–162.

[Myers et al. 2011] Myers, K.; Kolojejchick, J.; Angiolillo,
C.; Cummings, T.; Garvey, T.; Gervasio, M.; Haines, W.;
Jones, C.; Knittel, J.; Morley, D.; et al. 2011. Learning
by demonstration technology for military planning and de-
cision making: A deployment story. In Twenty-Third IAAI
Conference.

[Phillips, Ting, and Demurjian 2002] Phillips, Jr., C. E.;
Ting, T.; and Demurjian, S. A. 2002. Information shar-
ing and security in dynamic coalitions. In Proceedings of
the Seventh ACM Symposium on Access Control Models and
Technologies, SACMAT ’02, 87–96. New York, NY, USA:
ACM.

[Smith 2009] Smith, G. 2009. On the foundations of quan-
titative information flow. In International Conference on
Foundations of Software Science and Computational Struc-
tures, 288–302. Springer.

[Smith 2011] Smith, G. 2011. Quantifying information flow
using min-entropy. In Proceedings of the 2011 Eighth In-
ternational Conference on Quantitative Evaluation of Sys-
Tems, QEST ’11, 159–167. Washington, DC, USA: IEEE
Computer Society.

[Sweet et al. 2018] Sweet, I.; Calderón Trilla, J. M.; Scher-
rer, C.; Hicks, M.; and Magill, S. 2018. What’s the
over/under? probabilistic bounds on information leakage.
In International Conference on Principles of Security and
Trust, 3–27. Springer, Cham.

[Yao 1982] Yao, A. C. 1982. Protocols for Secure Com-
putations. In 23rd Annual Symposium on Foundations of
Computer Science (sfcs 1982), 160–164.

Privacy-aware Adaptive Scheduling for Coalition Operations 53

Planning and Scheduling for Cooperative Concurrent Agents with Different
Qualifications in the Domain of Home Health Care Management

Colja A. Becker and Ingo J. Timm
Business Informatics I, Trier University

Behringstrasse 21 - Campus II
54296 Trier, Germany

Abstract

Rising demand for home health care services combined with
a shortage of professionals leads to increasing workload of
existing employees. However, there is a performance limit
so that it will no longer be possible to offer these services
maintaining quality and economic viability without changing
operational management. To cope with this situation, we pro-
pose a concept of task bundle splitting options among several
cooperative agents with different qualifications. Further, we
integrate this concept in a planning and scheduling algorithm
for multiple concurrent agent actions which can increase ef-
ficiency and can improve use of limited resources in oper-
ational processes. For this purpose, possible concurrent ac-
tions of agents with different qualifications were evaluated
combined with the scheduling process and compared to alter-
natives. As a first step, this contribution presents the concept
as well as an algorithm generating an optimal solution and
gives an insight into future work.

Introduction
Many countries face the challenge of coping with increas-
ing demand for care services. For example, in Germany the
number of people in need of care will rise by around 32
percent by 2030, resulting in a shortage of care personnel
(Rothgang et al. 2016). Besides stationary facilities and the
support of relatives, home health care (HHC) is one possi-
bility to receive care services. Here, caregivers are equipped
with cars and drive to the patients’ homes to render the re-
quired services.

To cope with an increasing demand in HHC, additional
caregivers must be hired by service providers. However, the
availability of (professional) caregivers on the labor market
is very limited. Rising demand for HHC services combined
with a shortage of professionals leads to the problem that the
workload of existing employees increases. There is a perfor-
mance limit so that it will no longer be possible to offer HHC
services maintaining quality and economic viability without
a change in operational management. Following this, man-
aging existing human resources in HHC gains in relevance
to enable efficient employment.

Inspired by cooperative multiagent planning as well as
task decomposition in hierarchical task network planning,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

we propose a concept of task bundle splitting options among
several cooperative agents (caregivers) with different quali-
fications. Further, we integrate this concept in a planning and
scheduling algorithm for multiple concurrent agent actions
which can increase efficiency and can improve use of limited
resources in operational processes in the domain of HHC.

Literature Review
Since an increase in efficiency and an improvement in us-
ing limited resources can rise coordination effort, the us-
age of methods from the field of multiagent systems seems
suitable. Moreover, knowledge and scheduling issues have
a distributed structure among the participants in the do-
main of HHC. Here, operational management processes
in terms of planning and scheduling can be supported by
multiagent systems as well as decision support systems us-
ing agent technology (Becker, Lorig, and Timm 2019).

López-Santana et al. developed an MAS combined with
a mixed integer programming model which takes cargivers’
qualifications into account such that corresponding schedul-
ing and routing is achieved (López-Santana, Espejo-Dı́az,
and Méndez-Giraldo 2016). The approach aimed at mini-
mizing travel times of caregivers as well as delays in ar-
rival times at customer locations. Similar, the approach by
Xie and Wang focuses on minimizing service costs by creat-
ing an initial schedule using an optimization model and the
schedule will be updated periodically during runtime (Xie
and Wang 2017). The latter is based on communication be-
tween agents and a central re-scheduling. The approach by
Marcon et al. uses a global optimizer to assign each care-
giver to a set of customers with a corresponding route pro-
posal, which can be adapted later by the caregiver (Marcon
et al. 2017). Following this, a scheduling and routing so-
lution is given. Here, each caregiver interacts with his own
patients, so interchangeability is not possible, and there is
no coordination between caregivers in order to reach a bet-
ter joint solution. By changing the local decision-making
mechanisms, different higher-level objectives can be pur-
sued, e.g., minimizing waiting times. Remaining approaches
which support planning and scheduling in operational HHC
management surveyed by Becker et al. provide information
management, standard scheduling solutions, frameworks,
communication platforms, and basic coordination solutions.

Considering all approaches, the use of several different

cba

Bernardini et al. (Eds): SPARK 2019 54

https://creativecommons.org/licenses/by-sa/4.0/

qualifications in conjunction with joint processing of subsets
of tasks for better deployment of limited resources has not
been considered so far.

Problem Description
In cooperation with an experienced HHC provider, we ana-
lyzed different processes related to the operational manage-
ment of service provision. This also includes planning and
scheduling in this domain. The following description of the
problem is derived from the associated observations.

A service provider employs a set of caregivers C and each
of them has his or her own level of education. These qual-
ification levels are given by the set Q. Every service from
the set of all provided services S is assigned to a qualifica-
tion level, too. Further, each service s ∈ S has a specific
duration.

u : C → Q w : S → Q Q ⊂ N
Following this, executing a service by a caregiver requires a
qualification level at least equal (or greater) to the assigned
qualification level. Further, an HHC provider has a set of
patients P , which is called customers, who request services
for certain times of a day. For this purpose, a day is divided
into different time intervals Y based on the set T of all time
points of a day.

Y = { (ynstart, ynend) | ynstart, ynend ∈ T ∧ ynstart < ynend
∧ yn−1

end < ynstart ∧ ynend < yn+1
start }

For example, a day might be divided into an early shift, a
midday shift, and a late shift. A customer is able to request a
service for one or more shifts per day and may also request
different services in the same shift. All possible customer or-
ders (service requests) are specified by the Cartesian product
of services S and time intervals Y . Thus, using the power set
the function r expresses the demand of a customer p ∈ P .

r : P → P(S × Y)

One order (s, y) ∈ r(p) of customer p will be assigned to a
caregiver and a certain time window by the function a which
corresponds to an operational management task in order to
generate a schedule for the considered day. The caregiver as-
signment has to satisfy the required qualification level q ∈ Q
and the time window must be completely within the time in-
terval given by the corresponding shift y ∈ Y .

a : r(p)→ T × T × C, (s, y) 7→ (tstart, tend, c)

where c ∈ C ∧ y = (ystart, yend)
∧ ystart ≤ tstart < tend ≤ yend
∧ u(c) ≥ w(s)

The full schedule Z is often created manually at present by
an operational manager for each day in advance using simple
scheduling support software without specific scheduling al-
gorithms. A schedule entry contains a customer p as well as
one of his orders x = (s, y) and an assigned caregiver c ∈ C
who has to render the requested service in the time window
starting at tstart and ending at tend at the respective cus-
tomer’s location.

Z = { (p, x, j) | p ∈ P ∧ x ∈ r(p) ∧ j = a(x) }

In operations, caregivers are often equipped with mobile de-
vices and corresponding software for knowledge sharing and
documentation tasks. Customer data and related order data
as well as central schedule data is linked with the software.
By using these devices, caregivers know where to go and
what to do. Meanwhile, process times for internal documen-
tation associated with service provision at each customer lo-
cation are automatically recorded by the mobile devices.

The environment is represented by a directed graph
g = (V,E) where each customer p ∈ P is assigned to a def-
inite node v ∈ V and each node is linked to each other node
by a directed edge e ∈ E. Further, each edge is assigned
to a value which describes the related travel time. For sim-
plicity, all caregivers start at the HHC office which is also
represented by a node of the graph.

k : P → V f : E → N
All services for a customer p ∈ P in a single day’s time
interval can be referred to as a requested task bundle for this
customer. More precisely, a task bundle is a subset of the
assigned subset by the function r(p), such that all primitive
tasks (services) for the customer p in a specific time interval
on a certain day will be performed directly in sequence at
the customer’s node.

In the following, as a first step the concept will focus on
only one time interval without certain time windows for or-
ders. The accomplishment of all task bundles in this time in-
terval is the goal of the problem, i.e. one task bundle for each
customer, while minimizing the overall processing time. De-
pending on the number of caregivers C, the task bundles can
be performed concurrently.

Concept
According to the classification by Torreno et al., the concept
presented below belongs to the conceptual scheme ”Plan-
ning for multiple agents” (Torreño et al. 2018), in which
one agent plans and n agents execute the plan. In Addition,
scheduling is done by using the duration of the actions S as
well as the travel times given by the function f(e) for edges
e ∈ E. The number of execution agents corresponds to the
cardinality of the set C and the planning agent can be seen
as a central planning unit at the HHC office. As mentioned
before, caregivers are cooperative agents, which share the
same goal, and act concurrently. Further, all actions are con-
sidered to be deterministic. An action is either an element of
the set S, which requires a certain qualification level q ∈ Q
or just a move action to get from one node of the graph g to
another one. Obviously, moving between nodes does not re-
quire a certain qualification level unlike rendering a specific
service at a customer’s node.

Task Bundle Splitting
Different qualifications are provided by the agents C and
assigning each task bundle to exactly one agent, i.e. assign-
ing each customer to only one caregiver, can result in idle
times of some agents with certain qualifications and over-
load of others depending on the actual conditions, e.g., order
situation, travel distances, and distribution of qualifications.
Caregivers with a high qualification level are considered as

P&S Cooperative Concurrent Agents in Home Health Care Management 55

Figure 1: Two alternatives to accomplish a task bundle.

a very limited resource and it is assumed that more agents
with a lower qualification level exist. Since some services
in a task bundle can require a lower qualification level than
other services in the same task bundle, assigning each task
bundle to exactly one caregiver may require them to do some
work for which they are overqualified. The latter can lead
to error susceptibility and dissatisfaction among employees.
Especially if caregivers with a high qualification level are
highly requested due to the current order situation, the time
for tasks of lower qualification levels is quite costly for these
employees.

As a main part of this concept, we suggest to compare
splitting of task bundles with the conventional procedure
as an inherent component of the planning and scheduling
process. In Figure 1, the two alternatives of processing a
task bundle are depicted. The first variant (a) is the con-
ventional procedure where one task bundle is assigned to
exactly one agent. All contained tasks, consisting of mov-
ing to the corresponding node and rendering requested ser-
vices, are performed one after the other by the assigned
agent. Here, the agent’s qualification level must be suffi-
ciently high to perform all primitive tasks of this task bundle.
The alternative (b) shows the splitting procedure. First, the
lower qualified agent moves to the customer and makes the
usual preparations as well as the other requested services ac-
cording to its qualification. After completion of these tasks,
the higher qualified agent arrives at the customer’s location
and the two employees exchange information about current
customer-related content. The information exchange is en-
capsulated with a fix time value as a overlapping coordina-
tion task for each of these agents starting with the arrival
of the second agent. Further, this joint task can be used for
customer-related issues which require two caregivers at the
same time, e.g., lifting the patient out of bed. In some cases,
the second agent does not arrive seamlessly with the com-
pletion of the last task of the first agent, so the latter has to
wait for the arrival of the second agent, and this time can
be used for further concerns of the customer like different
human needs or desires. After the joint coordination task,

the lower qualified agent moves on with its schedule and
the agent with the higher qualification performs the high-
qualification services. It is important to note that by accu-
mulating all individual task durations in a task bundle, the
entire splitted task bundle takes a greater duration value due
to the additional coordination task. Since the agent with the
higher qualification level is considered as a very limited re-
source, the splitted task bundle always starts with the lower
qualified agent in order to avoid idle times of the more scarce
resource. In addition, the whole customer service, i.e. the en-
tire task bundle, should not be interrupted out of considera-
tion for a humane treatment of the customer. Following this,
leaving the customer’s location before arriving of the second
agent is not permitted to the lower qualified agent.

Temporal Planning
In this concept, planning and scheduling based on the order
data for a chosen time interval is executed as forward state
space search. The initial state contains order data and envi-
ronment data. The order data comprises all task bundles for
the selected time interval, i.e. one task bundle for one cus-
tomer containing all primitive tasks s ∈ S. To include the
customer’s location, a node attribute is given for each indi-
vidual task bundle. As mentioned before, in the goal state all
task bundles are accomplished.

Since this phase of our research project neglects runtime
complexity, the search for a goal state is performed as sim-
ple tree-based breadth-first search in which the scheduling
process is integrated. In Algorithm 1, the pseudocode for
planning and scheduling in the domain of HHC is presented.
In order to process every state, a queue is used with a loop
and generated successors are added to the queue. If a state
still contains task bundles to be done, all possible actions of
idle agents were gathered in according to each agent’s qual-
ification level. Here, an action means taking a task bundle
which is not in progress and not accomplished so far. Fur-
ther, every combination of the possible actions of all idle
agents are computed. In this procedure, a combination con-
tains only actions which are not already assigned to another
agent in the same combination. Because agents are acting
concurrently, we do not care about the order in this combina-
tion, so the term combination is used instead of permutation.
Each generated combination represents a successor link and
is then used to create further states. So, a state will be linked
to a successor if the state is not a goal state and it contains
one or more idle agents which can choose an action to per-
form. Otherwise, there is still work in progress, so any task
bundle already have been done or is currently in progress
and the successor state will be a goal state.

As mentioned before, in this concept scheduling is an in-
herent process using action durations. While creating a suc-
cessor state by applying an action combination of the respec-
tive link, agents which are currently performing an action re-
main in their statuses and idle agents which are affected by
the generated combination will be assigned to further work.
Following this, a search procedure is conducted in order to
find the next earliest event to set a time value for the state’s
clock. Such an event is either an accomplished task bundle
of an operating agent, i.e. changing the status of an agent,

P&S Cooperative Concurrent Agents in Home Health Care Management 56

Input: initial state

Output: schedule/schedules Z

1 initialState← init();

2 queue.add(initialState);

3 WHILE queue.containsElement() {
4 state← queue.get(0);

5 IF state.orderData.containsElement() {
6 idleAgents← getAgents(C, state);

7 agentOptions← ∅;

8 FOREACH c ∈ idleAgents {
9 acts← computeOptions(c, state);

10 agentOptions.add((c, acts));

11 }
12 sLinks← combinatorics(agentOptions);

13 FOREACH k ∈ sLinks {
14 successor← createState(k);

15 successor.clock← searchEvent();

16 queue.add(successor);

17 }
18 ELSE
19 goalStates.add(state)

20 }
21 queue.remove(state);

22 }
23 rStates← minProcessingTime(goalStates);

24 minZ← rStates.getSchedules();

25 RETURN minZ

Algorithm 1: Pseudocode for planning and scheduling
of cooperative agents with concurrent actions.

or a buffer event which is introduced to allow for idle agents
to perform an action as a second part of a splitted task bun-
dle which require travel time by moving from one node to
the other. By this means, all possibilities of idle agents to
take action in time were covered. If one or more agents ac-
complish a task bundle, they will be added to the set of idle
agents which is the starting point of the new state. There
is a possibility that these agents may take further actions,
and again, every combination of possible actions of all idle
agents are computed and further successors are generated.

The possibility of splitting a task bundle is integrated as
a part of an action combination, too. If respective qualifica-
tions among agents are available, generating action combi-
nations comprises performing a task bundle conventionally
by one agent as well as splitting a task bundle into two parts
as described in the previous section. While splitting a task
bundle, the first part of the lower qualified agent is directly
integrated in the action combinations and the second part of
this task bundle is added to the order data to allow for suc-
cessor states to generate further action combinations at the
corresponding time value.

In the end, all goal states’ processing times are examined.
As a result, one or more goal states containing an equal value
as the minimum time value of all goal states are used to ex-
tract related schedule data. This output provides the optimal
solution to the problem.

Evaluation
The previously described concept has been implemented in
the Java programming language. This allows for evaluation
and further experiments. As a first step, a small example sce-
nario was created and applied to the prototype. In the follow-
ing, the scenario is presented together with the experiment
results.

The example scenario comprises four customers and two
caregivers. One agent has the qualification level ”1” and the
other agent has the qualification level ”3”. In Table 1, all
services for this example are listed. This data fragment was
extracted from real-world data. The second column shows
the corresponding durations in minutes and the third col-
umn shows the required qualification levels. In Table 2,
the example order data is given. Each line shows one task

Table 1: Service data used in the example scenario.

S.-ID Min. Q. Description

1 3 3 Eye rinsing
2 5 3 Respiratory toilet
3 3 2 Glucose measurement
4 2 2 Injection of medication
5 8 1 Assistance with movements
6 5 1 Assistance with excretions
7 5 1 Assistance with bedding
8 25 1 Washing and dressing extended
9 17 1 Washing and dressing basic

P&S Cooperative Concurrent Agents in Home Health Care Management 57

Table 2: Example order data.

Order-ID Node Services Involved Q. Level(s)

1 4 { 5, 6, 9 } 1
2 2 { 1, 8 } 1, 3
3 1 { 4, 6, 7 } 1, 2
4 3 { 2, 3 } 2, 3

Table 3: Ten best solutions of the experiment.

Plan-ID Rank Processing Time Splitting

1 1 54 1
2 1 54 1
3 1 54 1
4 2 63 0
5 2 63 0
6 2 63 0
7 2 63 0
8 3 65 2
9 3 65 2

10 4 71 1

bundle requested by a customer at a certain node on the
graph g, which represents the environment. For simplifica-
tion, the HHC office as starting location for all agents was
set to node 4. Further, all edges e ∈ E were assigned to
the value ”5”. So, moving from one node to another node
takes 5 minutes. Because some of the entries of Table 2 con-
tains services with different qualification levels, these task
bundles can be splitted in the planning process. The last col-
umn shows the involved qualification levels for each task
bundle to clarify the relationships. The time value for the
coordination task of a splitted task bundle was set to the con-
stant value ”1” as a simple example.

The application of the prototype generates 30 goal states.
In Table 3, some results of the experiment are given. Each
line shows a goal state with its related processing time in
minutes in decreasing order. So, the ten best solutions are
shown in the table and the first three entries contains the
shortest processing time. Further, the information about us-
ing task bundle splitting in a solution plan is given by the
last column. If one or more task bundles are splitted in
a plan, the line shows the number of splitted task bun-
dles in this column otherwise zero, which corresponds to
a conventional solution method without splitting. In order
to give more insight into the comparison, the schedules of
the solutions 3, 4, and 9 are given in Table 4. Note that the
schedule entries’ time intervals include times for moving
from one node to another node at the beginning of each
interval. For example, the first entry of the schedule for
solution plan 3 contains the processing of task bundle 4
while driving to the related node takes 5 minutes and ren-

Table 4: Schedules of solution plan 3, 4, and 9.

Plan-ID Agent-ID Time Order-ID

3 2 00 - 13 4
3 1 00 - 15 3 Part-1
3 2 13 - 21 3 Part-2
3 1 19 - 54 1
3 2 21 - 54 2

4 2 00 - 33 2
4 1 00 - 35 1
4 2 33 - 50 3
4 2 50 - 63 4

9 2 00 - 35 1
9 1 00 - 30 2 Part-1
9 2 35 - 44 2 Part-2
9 2 44 - 57 4
9 1 41 - 56 3 Part-1
9 2 57 - 65 3 Part-2

dering all services of this task bundle takes 8 minutes, which
adds up to 13. During agent 2 accomplishes task bundle 4,
agent 1 processes the frist part of the splitted task bundle 3,
which continues until minute 15. After that, agent 1 has to
wait three minutes until agent 2 arrives. This additional time
can be used for unscheduled customer desires. When the
second agent arrives, the joint coordination task takes one
minute. Then, with the beginning of minute 19 the first agent
moves on to the next node according to its schedule, while
the second agent processes the second part of the splitted
task bundle.

As shown in the result in Table 3, in this scenario an im-
provement of processing time in the amount of 14.3 percent
can be achieved by using task bundle splitting (line 1-3) in-
stead of the conventional solution method (line 4-7). The
simple planning and scheduling algorithm works well for
small scenarios, but takes too long for greater real-word sce-
narios. Nevertheless, the concept of task bundle splitting can
be successful as shown above, so handling with greather
real-world scenarios will be part of further work.

Future Work
As a next step, we will work on reducing search space as
well as using technologies for increasing performance. The
former will focus on applying heuristics to the concept.
The latter will focus on methods using GPU computational
power. Moreover, we will investigate how more general ex-
isting planning techniques can deal with this problem. For
further evaluation, we have already gathered real-world data
in oder to examine further steps of our concept with order
data, travel times, and more service data taken from the real-
world domain of HHC. In addition, comparing our proto-
type to state of the art temporal planners will be part of fur-
ther evaluation steps. Moreover, we are working on integrat-

P&S Cooperative Concurrent Agents in Home Health Care Management 58

ing a standard planning domain definition language (PDDL)
into our prototype as well as extending the concept regard-
ing planning and scheduling for several time intervals and
with respect to different time windows of customer orders.

One of the biggest next steps in the long term will be
the extension of our concept to a dynamic runtime solution.
In current operational management in the domain of HHC,
delays in operational processes result in overtime hours of
employees and potential time gains in these processes can-
not be used to compensate for time delays with other em-
ployees. In addition, caregiver outages and unplanned urgent
customer requests are possible in daily operations and make
efforts for efficiency more difficult. Hence, low cost flexible
adjustment of individual tasks or schedules for adaptively
dealing with a dynamic environment is desirable. Espe-
cially multiagent technology is known for offering flexible
solutions and adaptive IT systems (Kirn 2006). Moreover,
knowledge and scheduling issues have a distributed struc-
ture among the participants and taking up-to-date local data
of the real world into account can be necessary to achieve a
proper planning result.

Dynamic Planning and Scheduling
To increase flexibility in caregivers’ operations and effi-
ciency in the use of resources, we further propose an agent-
oriented framework for dynamic planning and scheduling,
which will be described in the following. In Figure 2, the
framework is depicted. Before the beginning of the day, ini-
tial planning and scheduling as presented in the previous
sections provide the schedule Z. The connected database
includes the current schedule and all information described
before, e.g., customer orders for several time intervals. After
computing an initial solution, this schedule can be modified
by a dynamic planning and scheduling procedure. Especially
during the service delivery process, the schedule Z will be
modified to cope with a dynamic environment. For this pur-
pose, the database provides required information during run-
time as well, e.g., assigned qualification levels.

The inner HHC system components and their environ-
ment can be distinguished into real-world and virtual layer.
Each real-world caregiver c ∈ C is represented by a soft-
ware agent in the virtual layer and is able to communicate
with other agents. Using caregivers’ mobile devices, a dis-
tributed structure can be established. During the service de-
livery process, each caregiver agent reacts on environmental-
based planning disturbances like delays in service execu-
tions or travel times. If the further compliance with the own
schedule segment is at risk, the agent tries to modify its
schedule by searching alternative plans on its own as well as
in combination with coordination and communication with
other agents. Alternatively, a central re-planning is initiated.
In addition, during the service delivery process, an agent
checks several group-related task lists of new urgent cus-
tomer orders and computes possible schedule modifications
to include one or more new requests like every other agent
does. The schedule modification with the lowest costs for
the entire group of caregivers will be chosen. Also positive
schedule deviations are used to reach a better joint solution.
For example, there is a greater saving of time while render-

Figure 2: Agent-oriented Framework for Automated Dy-
namic Planning and Scheduling in HHC Management.

ing services at a customer’s location, so the caregiver agent
searches and compares alternative schedules under the new
circumstances.

Caregivers of the real-world layer are continuously in-
structed with the next task bundle of the current schedule by
their virtual agents using mobile devices. So, if something
is changed in the background regarding scheduled tasks af-
ter the next task bundle, the caregiver does not have to worry
about it, but simply continues to follow the instructions from
one task bundle to the next.

Further, customers P , a road network including traffic,
and the operational manager are parts of the environment
of the real world. In Figure 2, the latter is referred to as
m and is capable of influencing the coordination between
the caregivers. During the service delivery process, the man-
ager filters new short-term customer requests and adds ur-
gent requests to the group-related task lists mentioned be-
fore. Usually, customers with urgent medical issues call the
HHC provider’s office and the operational manager decides
what to do. For every shift y ∈ Y of the current day, a group-
related task list containing new urgent customer orders exists
and the lists are checked by the caregiver agents in order to
assign new entries during runtime.

Furthermore, caregiver outages during the service deliv-
ery process are possible, e.g., car accidents or private emer-
gencies of employees, but the medical care of customers
have to be ensured. To this end, an affected caregiver can

P&S Cooperative Concurrent Agents in Home Health Care Management 59

use his or her mobile device to announce the outage and
the virtual representative handles the allocation of his or her
customer orders to the remaining caregivers. If the outage is
announced to the office before starting the service delivery
process the operational manager will just invoke the initial
scheduling algorithm again.

Using Advanced Data and Learning Mechanisms
Besides the data described previously, further data is nec-
essary for planning and scheduling in order to generate bet-
ter results in the long run. Initially, each service s ∈ S is
assigned to a time value which is required for basic schedul-
ing issues. Furthermore, constraints based on different rela-
tionships between customers and caregivers exists. For in-
stance, a female customer only wants to be treated by a fe-
male caregiver or a caregiver does not want to treat a spe-
cific person. Maintaining a long-term assignment of a care-
giver to a customer instead of having alternating caregivers
might also be in customer’s interest which could increase
scheduling effort. In addition, some caregivers do not want
to perform certain services even though they have the ap-
propriate qualification level. The reasons for this may vary,
such as uncertainty due to lack of experience or physical ap-
titude. Beyond that, there are legal requirements for various
aspects like break time specifications which are available in
the database and must be taken into account in the schedul-
ing process.

Regarding spatial aspects, the HHC office and all cus-
tomer locations form a structure of nodes and weighted
edges, which was introduced as the graph g. In this sense,
static travel time matrices for different hours of a day are
also stored in the database and they will be used for ini-
tial scheduling. During service delivery process, the traffic
data module as shown in Figure 2 requests public traffic data
for each edge using different real-world sources and updates
edge weights at short time periods. Also the static travel time
matrices will be updated periodically by the traffic data mod-
ule. Traffic data and corresponding route data will be queried
by caregiver agents during runtime for application in search-
ing scheduling alternatives and in order to keep to the current
schedule.

At runtime, different learning mechanisms working on
the virtual layer generating additional data and update exist-
ing values in the database. Close to the stored traffic data,
deviations related to certain routes are learned from care-
giver agents’ movement in the real world. For example,
reinforcement learning can be applied to allow for a better
routing in terms of cargiver’s movement from one node to
another using travel times for feedback information to the
respective caregiver agent. Further, a value for deviations
in service execution at customer’s location is learned for
each customer using automated documentation data from
caregivers’ mobile devices. Because recorded documenta-
tion times refer to entire customer visits instead of single
service executions, a learned value is assigned to a set of
services (task bundle). It is not uncommon for certain task
bundles to be repetitively requested by a customer on a daily
or weekly basis. The learned values can be used for other
scheduling processes to obtain better planning results over

time. With the approval of employees, these planning val-
ues can also be extended to include caregivers performing
service execution. As a result, more differentiated values are
available for planning and scheduling for each agent.

Conclusion and Outlook
Increasing demand in the domain of home health care as
well as a shortage of professionals faces the operational
management with challenges regarding usage of limited re-
sources and increasing efficiency while taking human needs
and desires into account. For this reason, improvements of
planning and scheduling issues in the domain of HHC are
desirable. As a first step, we introduced a concept of splitting
task bundles in temporal planning for cooperative agents
with different qualifications. By applying this concept, con-
current processing of several task bundles can be improved
due to better usage of limited resources as shown in an ex-
ample scenario.

Future work will focus on further investigating what can
AI Planning do for the described problem. Using this knowl-
edge, we will extend our concept and reduce search space by
applying heuristics. Furthermore, using real-world data and
comparing our prototype to state of the art temporal planners
will be part of next evaluation steps. In the long term, we
aim at developing a dynamic planning and scheduling ap-
proach including the presented concept in order to increase
efficiency in operational processes.

References
Becker, C. A.; Lorig, F.; and Timm, I. J. 2019. Multia-
gent Systems to Support Planning and Scheduling in Home
Health Care Management: A Literature Review. In Koch
et al., ed., Artificial Intelligence in Health, 13–28. Springer
International Publishing.
Kirn, S. 2006. Flexibility of Multiagent Systems. In Kirn,
S.; Herzog, O.; Lockemann, P.; and Spaniol, O., eds., Multi-
agent Engineering: Theory and Applications in Enterprises.
Springer Berlin Heidelberg. 53–69.
López-Santana, E. R.; Espejo-Dı́az, J. A.; and Méndez-
Giraldo, G. A. 2016. Multi-agent Approach for Solving the
Dynamic Home Health Care Routing Problem. In Workshop
on Engineering Applications, 188–200. Springer.
Marcon, E.; Chaabane, S.; Sallez, Y.; Bonte, T.; and Trente-
saux, D. 2017. A Multi-Agent System Based on Reactive
Decision Rules for Solving the Caregiver Routing Problem
in Home Health Care. Simulation Modelling Practice and
Theory 74:134–151.
Rothgang, H.; Kalwitzki, T.; Unger, R.; and Amsbeck, H.
2016. Pflege in Deutschland im Jahr 2030 - regionale
Verteilung und Herausforderungen LebensWerte Kommune.
Gütersloh: Bertelsmann Stiftung.
Torreño, A.; Onaindia, E.; Komenda, A.; and Štolba, M.
2018. Cooperative Multi-Agent Planning: A Survey. ACM
Computing Surveys (CSUR) 50(6):84.
Xie, Z., and Wang, C. 2017. A Periodic Repair Algorithm
for Dynamic Scheduling in Home Health Care Using Agent-
Based Model. 245–250. IEEE.

P&S Cooperative Concurrent Agents in Home Health Care Management 60

Learning-based Preference Prediction for Constrained Multi-Criteria
Path-Planning

Kevin Osanlou1,3, Christophe Guettier1, Andrei Bursuc2, Tristan Cazenave3, Eric Jacopin4,
1 Safran Electronics & Defense

2 valeo.ai
3 LAMSADE, Université Paris-Dauphine
4 CREC, Ecoles de Saint-Cyr Coëtquidan

kevin.osanlou@safrangroup.com christophe.guettier@safrangroup.com andrei.bursuc@valeo.com
tristan.cazenave@lamsade.dauphine.fr eric.jacopin@st-cyr.terre-net.defense.gouv.fr

Abstract
Learning-based methods are increasingly popular for search
algorithms in single-criterion optimization problems. In con-
trast, for multiple-criteria optimization there are significantly
fewer approaches despite the existence of numerous appli-
cations. Constrained path-planning for Autonomous Ground
Vehicles (AGV) is one such application, where an AGV is
typically deployed in disaster relief or search and rescue ap-
plications in off-road environments. The agent can be faced
with the following dilemma : optimize a source-destination
path according to a known criterion and an uncertain criterion
under operational constraints. The known criterion is associ-
ated to the cost of the path, representing the distance. The un-
certain criterion represents the feasibility of driving through
the path without requiring human intervention. It depends on
various external parameters such as the physics of the vehi-
cle, the state of the explored terrains or weather conditions.
In this work, we leverage knowledge acquired through of-
fline simulations by training a neural network model to pre-
dict the uncertain criterion. We integrate this model inside a
path-planner which can solve problems online. Finally, we
conduct experiments on realistic AGV scenarios which illus-
trate that the proposed framework requires human interven-
tion less frequently, trading for a limited increase in the path
distance.

1 Introduction
Operations carried out by an autonomous ground vehicle
(AGV) are constrained by terrain structure, observation abil-
ities, embedded resources. For instance, in disaster relief op-
erations or area surveillance, maneuvers must consider ter-
rain knowledge. In most cases, the AGV ability to maneu-
ver in its environment has direct impact on operational effi-
ciency. Several perception capabilities (online mapping, ge-
olocation, optronics, LIDAR) enable it to update its envi-
ronment awareness online. Different mission planning lay-
ers can then provide continued navigation plans which are
used for controlling the robotic platform, enabling it to ful-
fill a set mission. The AGV automatically manages its tra-
jectory and follows navigation waypoints using control and
time sequence algorithms.

Such mission planners could integrate A* algorithms
(Hart, Nilsson, and Raphael 1968) as a best-first search

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approach in the space of available paths. For a complete
overview of static algorithms (e.g., A*), replanning algo-
rithms (e.g., D*), anytime algorithms (e.g., ARA*), and
anytime replanning algorithms (e.g., AD*), we refer the
reader to (Ferguson, Likhachev, and Stentz 2005). Algo-
rithms stemming from A* can handle some heuristic metrics
but can become complex to develop when dealing with sev-
eral constraints simultaneously like mandatory waypoints
and distance metrics, or several optimization criteria. Our
approach is based on Constraint Programming (CP). CP pro-
vides a powerful baseline to model and solve combinatorial
and / or constraint satisfaction problems (CSP). It has been
introduced in the late 70s (Laurière 1978) and has been de-
veloped until now (Hentenryck, Saraswat, and Deville 1998;
Ajili and Wallace 2004; Carlsson 2015), with several real-
world autonomous system applications, in space (Born-
schlegl, Guettier, and Poncet 2000; Simonin et al. 2015),
aeronautics (Guettier and Lucas 2016) and defense (Gold-
man et al. 2002).

Nevertheless, difficult weather and off-road conditions
can make it impossible for an AGV to proceed through some
paths autonomously. The intervention of a human, either on-
board or with a remote control system, would be required in
such situations. However, the purpose of an AGV is to re-
duce the crew workload in the first place. Coming up with
a navigation plan which requires minimum human interven-
tion and remains acceptable in terms of a metric such as the
total distance is therefore critical. This work focuses on this
particular issue, especially in a context where the decision
criterion for human intervention is uncertain and needs to
be learned offline. We refer to this uncertain criterion as au-
tonomous feasibility. In our approach, we learn this criterion
to assess where human intervention would be needed.

To this purpose, we use a simulated AGV environment
that includes a decision function for this criterion as part of
a higher-level environment representation. Computing the
autonomous feasibility by running this function for online
mission planning would require simulating the entire envi-
ronment. This is impractical for real-time applications. In-
stead, we train a neural network to approximate this crite-
rion offline. When planning the mission online, we use the
neural network to make predictions for the autonomous fea-
sibility. We define an optimization strategy for a CP-based
planner and use it to compute navigation plans. We conduct

cba

Bernardini et al. (Eds): SPARK 2019 61

https://creativecommons.org/licenses/by-sa/4.0/

Figure 1: Search and rescue mission. Potential paths for an
AGV throughout a flooded area between the Seine and the
Vanne rivers in the area of Troyes, France. The blue area
represents the expected flooded area. Orange, red and blue
circles represent different positions the AGV can proceed
to. Red circles are possible waypoints while blue circles are
mandatory ones. Orange edges represent trafficability and
blue ones a potential optimal solution in terms of distance
cost.

experiments on realistic scenarios and show that the pro-
posed framework reduces need for human interactions, trad-
ing with an acceptable increase of the total path distance.

2 Context and Problem Formalization
AGV operations require online path-planning, done accord-
ingly with the demands of an operator who defines the objec-
tives of a mission. For instance, in disaster relief, the vehicle
has to perform some reconnaissance tasks in specific areas.
Figure 1 shows a flooded area and possible paths to assess
disaster damages. Possible paths are defined using a graph
representation, where edges and nodes represent respec-
tively ground mobility and accessible waypoints. Graphs are
defined during mission preparation by terrain analysis and
situation assessment. The AGV system responds to an oper-
ator demand by finding a route from a starting point to a des-
tination, and by maneuvering through mandatory waypoints.
During the mission, some paths may not be trafficable or
new flooded areas to investigate may be identified, requiring
immediate replanning. Additionally, some paths may prove
difficult for the AGV given weather and road conditions and
require the crew to take control of the vehicle to proceed for-
ward. Aside from the terrain structure itself, these issues are
mainly caused by changes in weather conditions:

• Rainfall: heavy rain may cause new muddy areas to occur,
affecting cross-over duration between two waypoints or
increasing the risk of losing platform control.

• Fog: heavy fog may cause a performance drop of the LI-
DAR, making it harder for the AGV to keep track of the
surrounding environment.

• Wind: heavy winds may require a high level of corrections
in the followed trajectories.

In Figure 1, the AGV starts from its initial position (posi-
tion 1). Areas in blue are flooded and the disaster perimeter
must be evaluated by the vehicle. All nodes circled in red
have to be visited, e.g., refugees and casualties are likely to
be found there. A typical damage assessment would require
up to 10 mandatory nodes to visit. The first criterion is the
global traverse distance that meets all visit objectives, and
must be minimized. The second criterion is the autonomous
feasibility, which needs to be maximized so as to reduce the
likelihood of requiring human intervention.

Let G = (V,E) be a connected weighted graph. Each
edge has a weight representing a distance metric. In addition
to this weight, a binary feature represents the autonomous
feasibility of the edge, which is not known a priori and
depends on both weather conditions and terrain structure.
While terrain structure mostly depends on the graph G, the
weather affecting the AGV is defined by three variables:

• x1 ∈ {0, 1, ..., 10} is the intensity of rainfall,
• x2 ∈ {0, 1, ..., 10} is the thickness of the fog,
• x3 ∈ {0, 1, ..., 10} is the strength of the wind

A typical instance I of the path-planning problem we con-
sider is defined as follows:

I = (s, d,M)

where:
• s ∈ V is the start node in graph G,
• d ∈ V is the destination node in graph G,
• M ⊂ V is a set of distinct mandatory nodes that need to

be visited at least once, regardless of the order of visit.
In order to solve instance I , the AGV has to find a path

from node s to node d that passes by each node in M at
least once. There is no limit to how many times a node can
be visited in a path. The solution path should compromise
between minimizing the total path distance and maximizing
the autonomous feasibility.

3 Environment Simulation
The environment in which the AGV evolves is modelled in
a 3D map. Vertices defined in G represent positions in the
environment, while edges are represented by a set of con-
tinuous sub-positions linking vertices. Figure 2 shows a typ-
ical environment simulated by the 4d Virtualiz software in
which the AGV proceeds. The simulation is realistic as it
takes into account not only vehicle physics, but more im-
portantly the vehicle’s sensors, as well as core programs.
Among such programs lie the environment-building func-
tions, which enable the vehicle to build a state of its sur-
rounding environment from its sensors. Key functions such
as obstacle avoidance or waypoint-follow functions are also
implemented in the simulator mimicking real life situations
with high fidelity. We leverage the simulated environment
to design and test out our autonomous system in scenarios
similar to real life conditions.

Learning-based Preference Prediction for Constrained Multi-Criteria Path-Planning 62

Figure 2: An AGV evolving in an environment created by
the 4d Virtualiz simulator.

When a graph is defined, the simulator links it to the 3D
map and several built-in functionalities become available.
We can thus generate custom missions for the AGV by defin-
ing a start position, an end position, and a list of mandatory
waypoints. Additional environment parameters are available
in such simulators and we consider a few representative ones
in this work. In particular, we experiment with the rain vari-
able x1, the fog variable x2 and the wind variable x3. When
sending the AGV on a defined mission I = (s, d,M) taking
a path P , the simulating system will make the vehicle drive
on a set of edges e ∈ P . Edges resulting in autonomous fail-
ure (vehicle getting stuck or taking longer than a set time-
out threshold) Q ⊂ P correspond to difficult sections of
the path, which would require manual control of the vehicle.
The criteria for autonomous feasibility depends on both cur-
rent weather conditions and terrain structure and topology,
as well as the vehicle’s autonomous capabilities.

In order to learn to approximate the autonomous feasi-
bility criterion, we use this simulated environment to cre-
ate training data. To this end, we generate different weather
conditions by changing the variables x1, x2, x3 and send
the vehicle on random missions. For a given set of val-
ues x1, x2, x3 and a path P that the vehicle has to fol-
low, we retrieve the list of edges Q ⊂ P which the simu-
lator judges difficult for autonomous maneuvers. For each
edge ei ∈ Q, we store in a dataset D a feature vector
xi = [x1, x2, x3,max(slopei), disti] and yi = 0. Variable
max(slopei) is the maximum slope of edge ei, disti the dis-
tance of edge ei and yi is the preference label associated with
xi. With yi = 0, the edge should be avoided if possible when
planning under these weather conditions. Similarly for each
edge ei ∈ P\Q, we store the value xi and yi = 1. These
edges should be preferred when planning under these con-
ditions. Regarding the structure of the terrain, we are unable
to retrieve more information for an edge than only its dis-
tance and maximum slope. While this lack of information
results in a limitation for learning performance, our experi-
ments show that the performance of our framework remains
satisfying.

4 Neural Network Training
In this section, we first provide a brief introduction to neural
networks and then describe the manner we leverage them for
our problem. We train the neural network for identifying the

difficult areas on the map using terrain and weather infor-
mation and supervision from the decisions of the simulator
concerning the respective sections on the map.

Neural networks (NNs) allow computing and learning of
multiple levels of abstraction of data through models with
millions of trainable parameters. It is known that a suffi-
ciently large neural network can approximate any continu-
ous function (Funahashi 1989). Although the cost of training
such a network can be prohibitive, modern training practices
for multi-layer networks usually allow reasonable approxi-
mations for a large variety of problems. With this in mind,
we attempt to train a neural network to approximate the de-
cisions of the 3D simulator over edges of the graph map.

4.1 Neural Networks
Recently NNs, in particular deep neural networks, made
a comeback in the research spotlight after achieving ma-
jor breakthroughs in various areas of computer vision
(Krizhevsky, Sutskever, and Hinton 2012), (Simonyan and
Zisserman 2014), (He et al. 2016), (Ren et al. 2015), (Red-
mon et al. 2016), (Long, Shelhamer, and Darrell 2015), neu-
ral machine translation (Sutskever, Vinyals, and Le 2014),
computer games (Silver et al. 2016) and many more fields.
While the fundamental principles of training neural net-
works are known since many years, the recent improvements
are due to a mix of availability of large image datasets,
advances in GPU-based computation and increased shared
community effort.

In spite of the complex structure of a NN, the main mech-
anism is rather straightforward. A feedforward neural net-
work, or multi-layer perceptron (MLP), with L layers de-
scribes a function f(x;θ) : Rdx 7→ Rdy that maps an input
vector x ∈ Rdx to an output vector or scalar value y ∈ Rdy .
Vector x is the input data that we need to analyze (e.g., an
image, a graph, a feature vector, etc.), while y is the ex-
pected decision from the NN (e.g., a class index, a scalar, a
heatmap, etc.). The function f performs L successive oper-
ations over the input x:

h(l) = f (l)(h(l−1); θ(l)) = σ
(
θ(l)h(l−1) + b(l)

)
(1)

where h(l) is the hidden state of the network and f (l) is
the mapping function performed at layer l and parameter-
ized by trainable parameters θ(l) and bias b(l), and piece-
wise activation function σ(·); h(0) = x. We denote by
θ = {θ(1), . . . , θ(L)} the entire set of parameters of the net-
work. Intermediate layers are actually a combination of lin-
ear classifiers followed by a piece-wise non-linearity from
the activation function. Layers with this form are termed
fully-connected layers.

NNs are typically trained with labeled training data, i.e. a
set of input-output pairs (xi, yi), i = 1, . . . , N , where N is
the size of the training set. During training we aim to mini-
mize the training loss:

L(θ) =
1

N

N∑

i=1

`(ŷi, yi), (2)

Learning-based Preference Prediction for Constrained Multi-Criteria Path-Planning 63

where ŷi = f(xi;θ) is the estimation of yi by the NN and
` : RdL × RdL 7→ R is the loss function. The loss ` mea-
sures the distance between the true label yi and the estimated
one ŷi. Through backpropagation (Rumelhart et al. 1988),
the information from the loss is transmitted to all θ and gra-
dients of each θl are computed w.r.t. the loss `. The optimal
values of the parameters θ are then found via stochastic gra-
dient descent (SGD) which updates θ iteratively towards the
minimization of L. The input data is randomly grouped into
mini-batches and parameters are updated after each pass.
The entire dataset is passed through the network multiple
times and the parameters are updated after each pass until
reaching a satisfactory optimum.

4.2 Training Setup
We define a neural network f that takes as input a vector
xi = [x1, x2, x3,max(slopei), disti] and outputs the proba-
bility ŷ of the edge ei being a preferred edge for autonomous
navigation or not. The network f consists of 4 fully-
connected layers interleaved with ReLU non-linearities and
with a sigmoid activation at the end. The output of the sig-
moid ∈ [0, 1] is rounded to the closest integer 0 or 1 when
classifying an edge under given weather and terrain condi-
tions.

The simulator serves as teacher to the NN, which learns
here to mimic the simulator’s decisions based on the path
configuration and weather. Following the creation of dataset
D in section (§ 3) we use the pairs of edges and labels
(xi, yi) to train the neural network to correctly predict the la-
bel node ŷi. For supervision we use the binary cross-entropy
loss, typically used for binary classification tasks:

`(ŷi, yi) = −[yi log ŷi + (1− yi) log(1− ŷi)] (3)

We train the NN using SGD with momentum. In order to
prevent overfitting, we do early stopping, i.e., we halt the
training once the average loss on the validation set stops de-
creasing and starts increasing. In our experiments, the neu-
ral network f achieves an accuracy of 79% on the validation
set. This is due to the lack of features which come into play
in deciding the autonomous feasibility for an edge. In sec-
tion (§6), this performance is tested and evaluated on new
situations. In comparison, we also ran a logistic regression
on the same training set, which achieved a validation accu-
racy of 71%. We believe some feature engineering may be
necessary to provide slightly more relevant features for the
logistic regression.

5 Constrained Multi-Criteria Optimization
for Navigation and Maneuver Planning

We aim to compute an optimized navigation plan in cross-
country areas. In our approach, the navigation plan is rep-
resented as a path sequence of waypoints in a predefined
graph. A ”good” plan must minimize distance and max-
imize autonomous feasibility while satisfying mandatory
waypoints.

Path planning is achieved using Constraint Programming
(CP), here with a model-based constraint solving approach
(Guettier and Lucas 2016) and cost objective functions

(equations 7 and 8). The problem is formulated in CP as
a Constraint Optimization Problem (COP). Distance and
autonomous feasibility are considered as primary and sec-
ondary cost objectives, respectively. We propose a multi-
criteria optimization algorithm, based on global search, and
adapted from branch and bound (B&B) techniques (Naren-
dra and Fukunaga 1977).

Both COP formulation and search techniques are imple-
mented with the CLP(FD) domain of SICStus Prolog li-
brary (Carlsson 2015). It uses the state-of-the-art in discrete
constrained optimization techniques and Arc Consistency-5
(AC-5) (Deville and Van Hentenryck 1991; Van Hentenryck,
Deville, and Teng 1992) for constraint propagation, imple-
mented as CLP(FD) predicates.

The search technique is hybridized with a probing method
(Guettier and Lucas 2016), allowing automatic structuring
of the global search tree. In this paper, probing focuses on
learned and predicted autonomous feasibility in order to de-
fine an upper bound to the secondary metric. Probing takes
as input predicted autonomous feasibility, builds up a heuris-
tic sub-optimal path based on it as a preference, and lastly
initializes the secondary cost criterion. The resulting algo-
rithm is a Probe-based Constraint Multi-Criteria Optimizer
denoted as PCMCO.

5.1 Planning Model with Flow Constraints for
Multi-Criteria Optimization

The PCMCO elaborates a classical flow formulation with
integrals, widely used in operation research (Gondran and
Minoux 1995). For a given path-planning problem I =
(s, d,M), the set of possible paths is modelled as a graph
G = (V,E), where V is the set of vertices and E the set
of elementary paths between vertices. A set of flow vari-
ables ϕe ∈ {0, 1}, where e ∈ E, models a possible path
from start ∈ V to end ∈ V . A flow variable for an edge
e = (v, v′) is denoted as ϕvv′ . An edge e belongs to the
navigation plan if and only if ϕe = 1. The resulting navi-
gation plan is represented as Φ = {e| e ∈ E, ϕe = 1}.
From an initial position to a requested final one, path con-
sistency is enforced by flow conservation equations, where
ω+(v) ⊂ E and ω−(v) ⊂ E represent respectively out-
going and incoming edges from vertex v ∈ V . Since flow
variables are {0, 1}, equation (4) ensures path connectivity
and uniqueness while equation (5) imposes limit conditions
for starting the path at s and ending it at d:

∑

e ∈ ω+(v)

ϕe =
∑

e ∈ ω−(v)

ϕe ≤ N (4)

∑

e ∈ ω+(s)

ϕe = 1,
∑

e ∈ ω−(d)

ϕe = 1, (5)

These constraints provide a linear chain alternating pass-
by waypoint and navigation along the graph edges. Con-
stant N indicates the maximum number of times the vehi-
cle can pass by a waypoint. With this formulation, the plan
may contain cycles over several waypoints. Mandatory way-
points are imposed using constraint (6). Path length is given
by the metric (7), and we will consider the path length as

Learning-based Preference Prediction for Constrained Multi-Criteria Path-Planning 64

the primary optimization Dend criterion to minimize, where
constants dvv′ represent elementary path distance between
vertices. They are provided off-line, at mission preparation
time. Likewise, the secondary criterion Pend has the same
formulation and is based on autonomous feasibility (8). In
turn, constants pvv′ are edge preferences resulting from the
predictions of the neural network f on autonomous feasibil-
ity for each edge e ∈ E.

∀v ∈M
∑

e ∈ ω+(v)

ϕe ≥ 1 (6)

∀v ∈ V,Dv =
∑

v′v ∈ ω−(v)

ϕv′vdvv′ (7)

∀v ∈ V, Pv =
∑

v′v ∈ ω−(v)

ϕv′vpvv′ (8)

5.2 Global Search Algorithm
The global search technique underlying PCMCO guarantees
completeness, as well as proof of completeness. It is based
on classical algorithmic components:
• Variable filtering with correct values, using specific la-

beling predicates to instantiate problem domain variables.
AC-5 being incomplete, value filtering guarantees search
completeness.

• Tree search with standard backtracking when instantiating
a variable fails.

• Branch and Bound (B&B) for both primary and secondary
cost optimization, using minimize predicate.
Within the B&B algorithm, the primary cost Dend drives

the optimization loop. We extend the algorithm with prefer-
ence optimization Pend to converge towards a pareto opti-
mal solution. At each iteration k, we impose that P k+1

end ≤
P k
end as a secondary optimization schema. This constraint is

weaker than Dk+1
end < Dk

end, classically applied to the pri-
mary distance cost, which corresponds to the default oper-
ational semantic predicate minimize of the SICStus Prolog
library. The P 0

end is initialized by probing with an arbitrary
heuristic solution obtained with the Dijsktra algorithm. In
this manner, B&B will favor learned preferences.

Note that in general probing techniques (Sakkout and
Wallace 2000), the order can be redefined within the search
structure (Ruml 2001). Similarly, in our approach, the vari-
able selection order provided by the probe can still be iter-
atively updated by the labeling strategy that makes use of
other variable selection heuristics. Mainly, first fail variable
selection is used in addition to the initial probing order.

These algorithmic designs have already been reported
with different probing heuristics (Guettier and Lucas 2016),
such as A* or meta-heuristics such as Ant Colony Optimiza-
tion (Lucas et al. 2010),(Lucas, Guettier, and Siarry 2009).
However, other multi-criteria optimization techniques could
be used, for instance based on valued constraint satisfaction
problems (VCSP) (Schiex et al. 1995) or soft constraints
(Domshlak et al. 2003). In our design, the search is still com-
plete, guaranteeing proof of completeness, but demonstrates
efficient pruning.

6 Experiments
For a given problem, minimizing the total distance of a solu-
tion path while maximizing autonomous feasibility are con-
tradictory objectives requiring a compromise. This section
carries two purposes. The first is to verify that the neural net-
work f is capable of making consistent predictions to avoid
difficult edges. The second is to evaluate the compromise
made by the CP-based solver described previously.

We generate 200 random benchmark instances associated
with a graph G (Guettier 2007) that is representative of real
scenarios for AGV search & rescue operations. We consider
three different types of weather conditions: fine, moderate
and difficult. For each weather type, we randomly select
50 instances, and we compare the solutions given by two
solvers. The first solver is the reference probe-based con-
strained optimizer (PCO), which does not explore any pref-
erence criterion and only optimizes the distance. The second
solver is the upgraded version with multi-criteria optimiza-
tion (denoted as PCMCO). It takes into account the prefer-
ence predictions of the neural network f for current weather
conditions. For each edge ei ∈ E, the preference predic-
tion is obtained with a forward pass of the feature vector
described in section (§4). We denote the resulting hybridiza-
tion as NN + PCMCO.

Table 1: Experiments carried out on benchmark instances
of graph G. The first metric reported is the distance of the
solution path, in meters. The second one is the number of
human interventions required in the solution path. For both
metrics, we compute the mean, median (med) and standard
deviation (std) over all benchmark instances.

Weather & Method: Distance (m) Interventions
mean med std mean med std

Fine weather
PCO 4463 4246 840 1.6 2 1.1

NN + PCMCO 4912 5016 954 0.1 0 0.3

Moderate weather
PCO 4166 4102 675 2.3 2 1.2

NN + PCMCO 5431 5390 1003 0.4 0 0.6

Difficult weather
PCO 4207 4115 687 4.1 4 1.2

NN + PCMCO 5153 5256 881 2.5 2 1.4

We study the influence of the edge preferences given by
the neural network f on the solution path. For each instance,
we compute the solution path given by each solver. The total
distance is then computed by summing the distances of all
edges in the solution path. The solution path is also simu-
lated in the 3D simulation environment to count the number
of required human interventions. The human intervention
count used in this section is a criterion which is opposite to
the autonomous feasibility criterion, and should therefore be
minimized. Results are averaged per instance and reported in
table 1.

For fine weather conditions, the use of the neural network

Learning-based Preference Prediction for Constrained Multi-Criteria Path-Planning 65

preferences enables NN + PCMCO to almost never require
human assistance in exchange for a 10% higher distance cost
than PCO’s. On the other hand, PCO requires more than
1 human intervention per instance on average. For mod-
erate weather conditions, we see those gaps widening. A
30% higher distance cost allows NN + PCMCO to require
far less human interventions than PCO. Lastly, for difficult
weather conditions, we observe that NN + PCMCO incurs
a 22% higher distance cost. While NN + PCMCO requires
far less human interventions than PCO, it still requires more
than 2 human interventions on average. This is explained by
the fact that difficult weather conditions cause a majority of
edges to be difficult for autonomous driving. The solution
path has no choice but to include some of those edges. This
also explains the lower distance cost increase than for mod-
erate weather conditions.

Additionally, we run statistical tests to compare PCO
and NN+PCMCO and summarize them in table 2. Firstly,
a paired sample t-test is done, for each weather condi-
tion, to compare the mean path distance given by PCO and
NN+PCMCO. The high t-values obtained, combined with
very low p-values, indicate that the distance costs found by
PCO and NN+PCMCO differ significantly and that it is very
unlikely to be due to coincidence. Secondly, a χ̃2 test is per-
formed on the intervention count criterion for each weather
condition. The high p-values observed validate the hypothe-
sis that NN+PCMCO acts independently of PCO in terms of
autonomous feasibility.

Table 2: Statistical tests run on benchmark results. The
paired sample t-test is run on the distance criterion, while
the χ̃2 test is run on the intervention count criterion.

Test Method Paired t-test χ̃2 test
t-value p-value χ̃2-value p-value

Fine weather 7.28 10−9 19.1 0.99

Moderate weather 8.18 10−9 19.4 0.89

Difficult weather 6.51 10−7 9.37 0.99

These results highlight the fact that the neural network f
makes consistent predictions, and that NN + PCMCO of-
fers a good compromise between distance metric and au-
tonomous feasibility.

7 Conclusion
We introduced a method for online constrained path-
planning problems with two optimization criteria, based on
learned preferences. The distance criterion needs to be min-
imized, while the autonomous feasibility criterion, which is
uncertain, has to be maximized. Our approach proposes of-
fline learning of a model for autonomous feasibility in sim-
ulation environments. We also introduced a CP-based algo-
rithm which takes into account the model’s prediction of au-
tonomous feasibility and compromises between both crite-
ria for online path-planning. Experiments suggest the pro-
posed framework is capable of finding a good compromise

which offers a higher autonomous feasibility for an accept-
able increase in distance cost. AGV crew could benefit from
such an approach, mostly in situations where their workload
needs to be reduced.

References
Ajili, F., and Wallace, M. 2004. Constraint and integer pro-
gramming : toward a unified methodology. Operations re-
search/computer science interfaces series.
Bornschlegl, E.; Guettier, C.; and Poncet, J.-C. 2000. Au-
tomatic planning for autonomous spacecraft constellations.
In Proceedings of the 2nd International NASA Workshop on
Planning and Scheduling for Space.
Carlsson, M. 2015. SICSTUS Prolog user’s manual.
Deville, Y., and Van Hentenryck, P. 1991. An efficient arc
consistency algorithm for a class of csp problems. In Pro-
ceedings of the 12th International Joint Conference on Arti-
ficial intelligence (IJCAI), volume 1, 325–330.
Domshlak, C.; Rossi, F.; Venable, K. B.; and Walsh, T.
2003. Reasoning about soft constraints and conditional pref-
erences: complexity results and approximation techniques.
In IJCAI.
Ferguson, D.; Likhachev, M.; and Stentz, A. T. 2005. A
guide to heuristic-based path planning. In Proceedings of
the International Workshop on Planning under Uncertainty
for Autonomous Systems, International Conference on Auto-
mated Planning and Scheduling (ICAPS).
Funahashi, K.-I. 1989. On the approximate realization of
continuous mappings by neural networks. Neural networks
2(3):183–192.
Goldman, R.; Haigh, K.; Musliner, D.; and Pelican, M.
2002. Macbeth: A multi-agent constraint-based planner. In
Proceedings of the 21st Digital Avionics Systems Confer-
ence, volume 2, 7E3:1–8.
Gondran, M., and Minoux, M. 1995. Graphes et algo-
rithmes.
Guettier, C., and Lucas, F. 2016. A constraint-based ap-
proach for planning unmanned aerial vehicle activities. The
Knowledge Engineering Review 31(5):486–497.
Guettier, C. 2007. Solving planning and scheduling prob-
lems in network based operations. In Proceedings of Con-
straint Programming (CP).
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems, Science and Cybernetics
4(2):100–107.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hentenryck, P. V.; Saraswat, V. A.; and Deville, Y. 1998. De-
sign, implementation, and evaluation of the constraint lan-
guage cc(fd). J. Log. Program. 37(1-3):139–164.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-

Learning-based Preference Prediction for Constrained Multi-Criteria Path-Planning 66

works. In Advances in neural information processing sys-
tems, 1097–1105.
Laurière, J.-L. 1978. A language and a program for stating
and solving combinatorial problems. Artificial Intelligence
10:29–127.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully con-
volutional networks for semantic segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 3431–3440.
Lucas, F.; Guettier, C.; Siarry, P.; de La Fortelle, A.; and
Milcent, A.-M. 2010. Constrained navigation with manda-
tory waypoints in uncertain environment. International
Journal of Information Sciences and Computer Engineering
(IJISCE) 1:75–85.
Lucas, F.; Guettier, C.; and Siarry, P. 2009. Hybridisation of
constraint solving with an ant colony algorithm for on-line
vehicle path planning. In Proceedings of the 4th Workshop
on Planning and Plan Execution for Real-World Systems,
ICAPS’09.
Narendra, P. M., and Fukunaga, K. 1977. A branch and
bound algorithm for feature subset selection. IEEE Trans-
actions on Computers C-26:917–922.
Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016.
You only look once: Unified, real-time object detection. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 779–788.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal net-
works. In Advances in neural information processing sys-
tems, 91–99.
Rumelhart, D. E.; Hinton, G. E.; Williams, R. J.; et al. 1988.
Learning representations by back-propagating errors. Cog-
nitive modeling 5(3):1.
Ruml, W. 2001. Incomplete tree search using adaptive prob-
ing. In Proceedings of the 17th International Joint Confer-
ence on Artificial Intelligence, volume 1, 235–241. Morgan
Kaufmann Publishers Inc.
Sakkout, H. E., and Wallace, M. 2000. Probe backtrack
search for minimal perturbations in dynamic scheduling.
Constraints Journal 5(4):359–388.
Schiex, T.; Fargier, H.; Verfaillie, G.; et al. 1995. Valued
constraint satisfaction problems: Hard and easy problems.
IJCAI (1) 95:631–639.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
nature 529(7587):484–489.
Simonin, G.; Artigues, C.; Hebrard, E.; and Lopez, P. 2015.
Scheduling scientific experiments for comet exploration.
Constraints 20:77–99.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence

to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Van Hentenryck, P.; Deville, Y.; and Teng, C. 1992. A
generic arc-consistency algorithm and its specializations.
Artificial Intelligence 57:291–321.

Learning-based Preference Prediction for Constrained Multi-Criteria Path-Planning 67

The Value of Incorporating Social Preferences in Dynamic Ridesharing

Sandhya Saisubramanian1 Connor Basich1 Shlomo Zilberstein1 Claudia V. Goldman2

1College of Information and Computer Sciences, University of Massachusetts Amherst, USA
2General Motors, Advanced Technical Center, Israel

{saisubramanian, cbasich, shlomo}@cs.umass.edu, claudia.goldman@gm.com

Abstract

Dynamic ridesharing services (DRS) play a major role in im-
proving the efficiency of urban transportation. User satisfac-
tion in dynamic ridesharing is determined by multiple fac-
tors such as travel time, cost, and social compatibility with
co-passengers. Existing DRS optimize profit by maximizing
the operational value for service providers or minimize travel
time for users but they neglect the social experience of riders,
which significantly influences the total value of the service to
users. We propose DROPS, a dynamic ridesharing framework
that factors the riders’ social preferences in the matching pro-
cess so as to improve the quality of the trips formed. Schedul-
ing trips for users is a multi-objective optimization that aims
to maximize the operational value for the service provider,
while simultaneously maximizing the value of the trip for the
users. The user value is estimated based on compatibility be-
tween co-passengers and the ride time. We then present a real-
time matching algorithm for trip formation. Finally, we eval-
uate our approach empirically using real-world taxi trips data,
and a population model including social preferences based on
user surveys. The results demonstrate improvement in riders’
social compatibility, without significantly affecting the vehi-
cle miles for the service provider and travel time for users.

Introduction
Dynamic ridesharing services, such as UberPool and Lyft-
Line, are becoming an increasingly popular means of com-
mute, especially in large cities (Chan and Shaheen 2012;
Bathla et al. 2018). Dynamic ridesharing is characterized
by matching multiple requests that arrive in real-time, for
a one-way and one-time trip. We consider a setting in which
a service provider operates a vehicle fleet and schedules cars
to pick up and drop off passengers in response to a stream of
requests, which includes matching requests with each other.
There are two important factors that explain the growing at-
tractiveness of DRS for customers: (i) cost effectiveness and
(ii) ease of finding a ride in large cities where it is compara-
tively hard to find a taxi otherwise. For a service provider,
dynamic ridesharing helps serve customers with possibly
fewer vehicles, thus reducing their operational cost.

A common objective for optimizing riders’ satisfaction in
existing ridesharing systems is to minimize travel time (Ma,
Zheng, and Wolfson 2013; Agatz et al. 2012; Bathla et al.
2018). In practice, however, there are many other factors that
affect user satisfaction in dynamic ridesharing, apart from

(a) (b) (c)

Figure 1: An example illustrating the influence of social
preferences in trip formation. P denotes a pickup location
and D denotes a dropoff location. A trajectory that maxi-
mizes operational value to the service provider is shown in
(a). Incorporating and satisfying users’ social preferences
may lead to modification in the trajectory (b) or result in
a different trip formation (c).

travel time. Since a user could be traveling with strangers in
the ride, their compatibility plays a major role in the user’s
satisfaction. In fact, there is growing evidence that desire for
personal space and security when riding with strangers pose
a major barrier to using ridesharing for many users (Tao and
Wu 2008; Agatz et al. 2012). For example, a female pas-
senger may prefer to ride only with female co-passengers.
The user may have a different set of preferences depending
on the time of day and the location — preferences are trip-
specific and not necessarily user-specific.

Consider a scenario with three requests where r1 and r2

are male and r3 is a female passenger. Let these requests
arrive at the same time (Figure 1), such that optimizing the
operational value for the service provider forms a trip with
these requests (1(a)). However, this may violate the users’
social preferences and the trip may need to be altered to sat-
isfy the preferences, such as the following:

• If the passengers prefer riding with co-passengers of
the same gender but are indifferent to riding with co-
passengers of a different gender, then it is desirable to
minimize their ride time overlap in the vehicle by alter-
ing the pick up and drop off order (Figure 1(b)); and

• When the riders prefer co-passengers of the same gender
and wish to avoid co-passengers of other gender, then it
is better to form two trips (Figure 1(c)).

cba

Bernardini et al. (Eds): SPARK 2019 68

https://creativecommons.org/licenses/by-sa/4.0/

If the service does not provide a mechanism to express such
social preferences and forms trips that violate these prefer-
ences (as in 1(a)), the customers may not use the service.
Current DRS, however, do not account for social prefer-
ences in their optimization, despite being indicated as a ma-
jor concern for users in several surveys (Agatz et al. 2012;
Michalak et al. 1994; Furuhata et al. 2013; Svangren, Skov,
and Kjeldskov 2018).

We present DROPS (Dynamic Ridesharing Optimization
using social PreferenceS), a dynamic ridesharing framework
that facilitates incorporating social preferences of the users
in the trip formation process. A weight vector over pref-
erences indicates the importance of each factor in deter-
mining the trip value to the user. The goal is to form trips
that optimize both operational value for the service provider
and value of the trip to the passengers, which incentivizes
them to continue using the service and benefits the service
provider. The value of a trip to a user is calculated based
on their social compatibility with other co-passengers, the
ride time, and ride cost. We solve this bi-objective optimiza-
tion problem using scalarization (Roijers et al. 2013), which
solves a linear combination of the multiple objectives. The
relative importance of each objective can be controlled us-
ing the weight vector for the objectives. Given a set of riders,
we evaluate their potential shared trip using an optimal tra-
jectory planning algorithm. Candidate trips are formed using
our real-time greedy algorithm that adds customers to a trip
only if the trip’s value is above a certain threshold.

We consider three basic social factors — age, gender, and
user rating— along with a time preference indicating if the
user is in a rush. The viability of factoring social preferences
into the trips scheduling process is evaluated empirically.
The experiments examine the impact of matching with so-
cial preferences (social matching) on users and the service
provider. We test our approach on a real-world taxi trips
dataset and compare the results with that of three baselines,
each focusing on optimizing different components of the ob-
jective for trip formation. The population model and pref-
erences used in our experiments were acquired using web-
based user surveys, which was conducted in two phases and
had 489 responses. The survey was conducted specifically
to determine how different potential riders evaluate social
ridesharing. Our results show that incorporating social pref-
erences of users in the trip formation improves the overall
user satisfaction, without significantly affecting the opera-
tional cost for the service provider.

Our primary contributions are: (i) presenting DROPS, a
system for dynamic ridesharing with social preferences; (ii)
proposing a real-time greedy algorithm for trip formation;
and (iii) extensive empirical evaluation showing the benefits
of social matching in dynamic ridesharing using real-world
taxi data and a population model based on user surveys.

Related Work
Dynamic ridesharing has gained popularity since the early
2000’s due to the cost benefits it offers to the users and
service providers, apart from its contributions to sustain-
able environment resulting from efficient vehicle usage. Dy-
namic ridesharing is characterized by user requests that ar-

rive in real-time and are matched with vehicles (Levofsky
and Greenberg 2001). Another popular ridesharing setting
is the car-pooling where users travel together for a partic-
ular purpose and the trips are usually recurring (Chan and
Shaheen 2012). Our work differs from car-pooling as we fo-
cus on a dynamic ridesharing setting with a service provider
who operates the vehicle fleet instead of individual car own-
ers and trips that are typically non-recurring.

Optimizing dynamic ridesharing services has been an ac-
tive research area, attracting researchers from diverse fields
such as operations research, transportation, and artificial
intelligence (Agatz et al. 2012; Chan and Shaheen 2012;
Di Febbraro, Gattorna, and Sacco 2013; Alonso-Mora et
al. 2017). Existing literature on dynamic ridesharing can be
classified broadly based on the objective function and the
solution method employed. Optimization-based approaches
are the common solution technique employed (Santos and
Xavier 2013; Ma, Zheng, and Wolfson 2013; Di Febbraro,
Gattorna, and Sacco 2013; Biswas et al. 2017; Alonso-
Mora et al. 2017; Dickerson et al. 2018; Bei and Zhang
2018). Other approaches include partition-based (Pelzer et
al. 2015), auction-based mechanisms (Cheng, Nguyen, and
Lau 2014), and genetic algorithms (Herbawi and Weber
2012). Researchers have employed these techniques largely
to optimize the routing or travel time (Furuhata et al. 2013;
Agatz et al. 2012; Herbawi and Weber 2012; Pelzer et
al. 2015; Santos and Xavier 2013; Biswas et al. 2017).
Specifically, the commonly used objectives for determin-
ing ridesharing matches are: (i) minimizing system-wide
vehicle-miles; (ii) minimizing system-wide travel time; and
(iii) maximizing number of participants.

A critical missing component of these objectives is the
in-ride user experience. Numerous studies have outlined
the need for learning and understanding user preferences
in the context of ridesharing, beyond simple factors like
time windows (Chan and Shaheen 2012; Agatz et al. 2012;
Thaithatkul et al. 2015). Multiple surveys have acknowl-
edged that it is essential to account for users’ social pref-
erences to improve dynamic ridesharing (Agatz et al. 2012;
Di Febbraro, Gattorna, and Sacco 2013; Furuhata et al.
2013; Selker and Saphir 2010; Chan and Shaheen 2012;
Montazery and Wilson 2016; Tao and Wu 2008; Miller and
How 2017; Svangren, Skov, and Kjeldskov 2018; Bistaffa,
Farinelli, and Ramchurn 2015). To address this discrepancy,
we present a dynamic ridesharing framework that allows
for representing and satisfying the social preferences of the
users in trip formation.

Problem Formulation
The DROPS framework facilitates customizing rides to im-
prove user compatibility by incorporating the social prefer-
ences of users. LetRt denote the finite set of unserved (non-
dispatched) requests at time t and Vt denote the finite set of
available vehicles at time t. Each request r ∈ Rt is denoted
by 〈s, e, i, ~p, U〉. Each vehicle v∈Vt is denoted by the tuple
〈ID, ω〉. Refer Table 1 for the definitions of variables and
constants employed in the formulation.

We consider social preferences in each request that corre-
spond to three social factors: age, gender, and rating of users.

The Value of Incorporating Social Preferences in Dynamic Ridesharing 69

Additionally, we consider a time preference to indicate if the
user is in a rush. We identified these factors based on the re-
sults of our user surveys, conducted specifically to determine
user expectations in ridesharing services. The preferences
(~p) are denoted as +1, −1, or 0, indicating the user’s desir-
ability, undesirability, or indifference about a certain value
of a factor. For example, a preference of +1 for rating ≥ 4
denotes that the person prefers riding with co-passengers
who have a minimum rating of 4, and a preference of−1 for
rating ≤ 3 denotes that the person wishes to avoid riding
with co-passengers who have a rating of 3 or below. That
is, if rating on a scale of 1 to 5 is treated as a vector, then
these preferences are denoted as 〈−1,−1,−1,+1,+1〉. The
weights ~w = [wt, wa, wg, ws]

T correspond to the time, age,
gender, and rating, respectively.

A solution to an instance of this problem is a set of trips Λ,
where each trip λ∈Λ is a matching of requests to a vehicle
and is denoted by 〈R, v, τ〉. The value of a trip is denoted by
V (λ). The objective is to maximize the cumulative value of
all trips dispatched in a given horizon H ,

max
∑

t∈H

∑

λ∈Λt

V (λ).

Multi-objective formulation Since the goal is to sched-
ule trips that maximize the operational value for the service
provider as well as maximizing the overall user value, this
is naturally a bi-objective optimization. To solve this, we
employ scalarization (Roijers et al. 2013), which projects a
multi-objective value to a single scalar value by parameter-
izing the objectives using a weight vector. The weight value
for each objective indicates its relative importance, thus re-
sulting in a single objective function for optimization. Let
βo denote the weight corresponding to the operational value
and let βu denote the weight corresponding to the user value.
Then, ∀λ, the trip value is:

V (λ) = βo
∑

r∈Rλ
(xr − dr)− cτλ

︸ ︷︷ ︸
operational value

+βu
∑

r∈Rλ
(αr + dr)

︸ ︷︷ ︸
user value

(1)

The operational value and the user value are measured in
dollars ($) and normalized to the same scale before scalar-
ization. The operational value to the service provider de-
pends on the cost of operating the vehicle for the trip cτλ
and the amount paid by the riders, which is the difference
between the amount charged for the trip (xr) and the dis-
count offered for using ridesharing (dr). The value of the
trip to a user depends on the user utility (αr) and the dis-
count gained for using ridesharing (dr). The user utility (αr)
is the difference between the users’ social compatibility with
all their co-passengers and the extra travel time incurred by
using ridesharing. The social compatibility for a request is
calculated as the cumulative weighted difference between
the preferences ~pr and demographics of each co-passenger.

We now explain the social utility calculation using a
simple example. Consider two requests r1 (female) and r2

(male) that arrive at the same time and have the same source
and destination coordinates, same age (30), and rating (4).

Variables Definitions
Λt Set of trips formed at time t
V (λ) Value of trip λ
βo, βu scalarization weights
Rλ = {r1, . . . rk} Set of requests matched for the trip
cτλ Cost of using the vehicle for the trip

corresponding to the ride route τ
ωv Passenger capacity of vehicle
sr, er Start (pick-up), end (drop-off)

locations of r for the trip
αr User’s social utility
xr Amount charged to r for the trip
dr Discount for using ridesharing
ir Request initiation time
~pr Social and time preferences of r
~wr User’s weights for preferences ~pr
Ur User demographics: {age, gender,

rating}
IDv Vehicle ID

Table 1: Notations

r1 prefers (+1) female co-passengers with age in the range
20-40 with rating ≥ 4 and expresses undesirability (−1) for
all other values of social factors. Let the weights of these so-
cial preferences be ~wr1 =[0.3, 0.3, 0.2, 0.5]T , corresponding
to time, age, gender, and rating. The social compatibility for
r1 with respect to r2 is 0.3− 0.2 + 0.5 = 0.6. Let the extra
trip time be 2 minutes, then αr1 = 0.6− 0.3 ∗ 2 = 0.

Solution Approach
Given a set of requests and vehicles, our solution approach
consists of two components: (i) trip formation and (ii) trip
dispatch. Figure 2 is an illustration of our solution ap-
proach. In each decision cycle, the trip formation component
matches requests with each other and to vehicles, and the
dispatch component decides which trips are dispatched. We
restrict the scope of matching in this paper to requests and
vehicles that have not been dispatched. That is, we do not
consider a vehicle en-route (already driving on the road) in
the scheduling process and therefore do not match requests
to such vehicles. The route planner calculates the optimal
trajectory for picking up and dropping off a given set of re-
quests.

Trip Formation
In this phase, requests are matched with other requests and
assigned a vehicle to form a trip. The matching is performed
using a greedy approach outlined in Algorithm 1. The in-
put to the algorithm is the set of requests and a trip value
threshold δ that indicates the required minimum improve-
ment in trip value to form trips. The algorithm adds a request
to the best trip (maximum improvement) that improves the
trip value at least by a factor of δ and if the trip size has
not exceeded the maximum capacity of the vehicle (Lines
7-16). Standard hyperparameter tuning or sample average

The Value of Incorporating Social Preferences in Dynamic Ridesharing 70

Figure 2: Overview of the solution method.

approximation (Kleywegt, Shapiro, and Homem-de Mello
2002) may be used to estimate δ. The trip value is estimated
using Equation 1.

Each request is assigned to the best trip that satisfies the
threshold improvement. If no such trip is found, then a new
trip is created with the request (Lines 19-22). This ensures
that all requests are associated with a trip. The route planner
computes trajectories that determine the pick up and drop
off order for a given set of requests. All possible trajectories
are generated and the one that maximizes the trip value for
a given set of requests is selected as the route τ for the trip.
During the trip formation, the best route is updated whenever
a new request is added to a trip (Line 8, 21). The output of
this algorithm is the set of all trips formed, Λt.

Partitioning Requests for Scalability The computational
complexity of the matching algorithm discussed above in-
creases rapidly with the increase in number of requests. To
counter this computational complexity, we exploit the notion
of independence among requests. Two requests q and r are
said to be independent if serving them together in the same
trip is not desirable in terms of trip value. Hence, all the re-
quests over different days or requests with non-overlapping
source-destination pairs are independent. The requests can
be partitioned based on their dependence and matches may
be formed among each partition in parallel. Sometimes, it is
non-trivial to estimate an exact partitioning of requests with
respect to routes, without forming trips and calculating the
best route possible. In such cases, the underlying map may
be partitioned into geographic zones to form trips in each
zone independently by considering the requests originating
in that zone, as in our experiments.

Trip Dispatch
The trips formed in the matching phase are dispatched in this
phase if at least one of the following conditions is satisfied:
(i) trip value is above the predefined dispatch threshold; or
(ii) a request in the trip has remained unserved for a certain
period of time since its arrival (queue time). The dispatch
threshold for trip value and the queue time for the requests
are determined by the service provider. For example, all re-
quests that are unserved for five minutes or more since their
arrival time may be dispatched irrespective of the trip value,
depending on vehicle availability. In our experiments, trips

Algorithm 1: Greedy Matching (Rt, δ)
1 Λt ← ∅
2 foreach r ∈ Rt do
3 matched = false
4 if |Λt| > 0 then
5 λbest , λrem ← ∅
6 Best Value = −∞
7 foreach λ ∈ Λt with |Rλ| < ωλ do
8 Calculate best route for λ′ = λ+ r

9 if V (λ′)−V (λ)
V (λ)

≥ δ and V (λ′) > Best Value
then

10 λrem ← λ;λbest ← λ′

11 Best Value = V (λbest)
12 matched = true
13 end
14 end
15 if matched = true then
16 Λt ← (Λt\λrem) ∪ λbest

17 end
18 end
19 if matched = false then
20 Create new trip λ with request r
21 Calculate best route for λ
22 Λt ← Λt ∪ λ
23 end
24 end
25 return Λt

that satisfy the queue time threshold are given a higher pri-
ority over the trips with lower queue time but higher trip
value. This ensures that certain requests do not remain un-
served forever due to lower trip value. The trips are then
dispatched based on availability of vehicles, Vt. At the end
of decision cycle t, all unserved requests — requests in trips
that are not dispatched — are added to the requests set for
the next decision cycle,Rt+1.

Experimental Results
The experiments evaluate the impact of using social prefer-
ences in ridesharing, with respect to users and the service
provider. We built a realistic simulator of ridesharing using
the Chicago taxi trips dataset1 and a population model based
on extensive user surveys. We compare the results obtained
using social preferences in dynamic ridesharing matching
(SM) with that of three baselines: (B1) maximizing only the
operational value, βu = 0, βo = 1; (B2) maximizing only
user value, βu = 1, βo = 0; and (B3) maximizing the com-
prehensive trip value in Equation 1 but without considering
user’s social preferences corresponding to age, gender, and
rating, wa = 0, wg = 0, ws = 0, for the trip formation. Al-
gorithm 1 is used to form trips using each baseline objective.

The algorithms and the simulation system were imple-
mented by us on an Intel Xeon 3.10 GHz computer with
16GB of RAM, using a homogeneous vehicle fleet with a

1https://data.cityofchicago.org/Transportation/Taxi-
Trips/wrvz-psew

The Value of Incorporating Social Preferences in Dynamic Ridesharing 71

(a) Op. Value (Z8) (b) User Value (Z8) (c) Op. Value (Z28) (d) User Value (Z28) (e) Op. Value (Z56) (f) User Value (Z56)

Figure 3: Heat map of the operational (Op.) value and user value corresponding to different weights in each zone.

Figure 4: A map of Chicago divided into zones.

seat capacity of 4 for the evaluation. Each decision cycle is
30 seconds in real-time and the horizon H is one day. We
assume that the number of vehicles is not bounded since the
benefits of social matching are best illustrated in this case
and all techniques are equally affected by vehicle restriction.
We set the trip threshold δ to zero for the greedy algorithm;
requests are added to the best trips possible as long as the
current value of the trip is not diminished. This allows us
to examine the benefit of social matching uniformly across
zones by using a conservative value. However, in practice
this hyperparameter may be tuned to further optimize per-
formance subject to the service provider’s objective. The re-
quest queue time threshold for dispatch is set to five minutes.
The travel time and distances are calculated using straight
line distances between the coordinates and a vehicle speed of
30 miles per hour. While these experiments do not account
for the actual routes and traffic conditions, these factors are
not likely to change the relative merits of each approach and
the conclusions of the study.

Population Model and Dataset
The population model considered in our experiments is
based on the results of online surveys that was conducted
in North America. The survey had 489 responses which in-
dicated that users would like to be matched with people who
are similar to them. The demographic information such as
age and gender, for our experiments, is drawn from the ac-

tual Chicago demographic distributions2. The preferences
(~p) and the weights (~w) are based on the survey results. The
survey also indicates that some users are unwilling to use
ridesharing when social preferences are not taken into ac-
count. To reflect this, certain users were marked as reluctant
for ridesharing in the absence of social matching and these
users were always dispatched as solo rides, when forming
trips with the baseline objectives.

The Chicago taxi trips data consists of trip-specific infor-
mation such as start time and end time of the taxi ride, trip
duration, trip fare, and the latitude and longitude coordinates
for pick up and drop off locations along with the geographic
zone corresponding to these locations. A map of Chicago di-
vided into zones3 is shown in Figure 4. We partition the data
from each zone into training and testing sets. The weights
for scalarization were estimated empirically using the train-
ing data (Figure 3). In Figure 3, the x-axis is the weight for
operational value (βo) and the y-axis denotes the weight cor-
responding to user value (βu). The weights used for the test
sets are βo = 0.8 and βu = 0.6 for zones 8 and 28, and
we used βo = 0.5 and βu = 0.5 for experiments on zone
56. Our algorithm is evaluated along different metrics on the
test set which uses data from two consecutive weeks in April
2015. We consider requests originating in zones 8, 28, and
56, whose requests densities are high, medium, and low re-
spectively. The average number of requests per day in each
of these zones is 20000, 7000, and 1500 respectively.

Analysis of Tradeoffs
Since user value and the operational value are often com-
peting metrics, we analyze the quality of trips formed with
respect to each of these.

Impact on Users We measure the impact on users based
on the total user value (Figure 5), average social utility per
minute (Figure 6), and the increase in ride time, relative to a
solo trip (Figure 7).

Trips formed by maximizing operational value (B1) have
the least user value across all zones, as expected. Our ap-
proach (SM) achieves user value close to that of optimiz-

2http://chicago.areaconnect.com/statistics.htm
3https://en.wikipedia.org/wiki/Community areas in Chicago

The Value of Incorporating Social Preferences in Dynamic Ridesharing 72

(a) Zone 8 (b) Zone 28 (c) Zone 56

Figure 5: Total user value of trips dispatched on each day.

(a) Zone 8 (b) Zone 28 (c) Zone 56

Figure 6: Average social utility per minute for users on each day. This measures the social compatibility of users with their
co-passengers in the trips formed using each objective function.

Figure 7: Average increase in ride time of users compared to
solo rides. Our approach, on average, increases the ride time
by at most 2.5 minutes, well within the acceptable range
found in our user surveys.

ing for user value alone (B2), and sometimes better than
B2. This is because, in some cases, the values of the trips
formed by optimizing B2 objective may not meet the dis-
patch threshold in which the case the trips are dispatched
after five minutes, which eventually reduces the user value.
Our approach overcomes this drawback by optimizing for
both the objectives, providing greater cumulative value for a
given trip and enabling it to be dispatched more quickly.

The social utility (αr) per minute measures the average
social compatibility of users with their co-passengers. To ac-
count for the different ride times of the trips, we measure the

average utility per minute, along with standard error (Fig-
ure 6). We observe that SM consistently performs similar to
or better than B2, showing that the user value is improved
through better matching, and not merely based on the ride
time or discount offered.

We also evaluated the increase in ride time of the different
techniques, compared to solo ride (Figure 7). The average
ride times are in the range 10-20 minutes for requests origi-
nating in zones of interest. Though the increase in ride time
of our technique is around three minutes, note that rideshar-
ing, in general, incurs additional ride time. The increase in
ride time of our technique is well within the range that users
consider acceptable (at most 5 minutes) according to the sur-
vey results. The social compatibility typically offsets the in-
crease in ride time for the users, thus resulting in increased
user utility when forming trips using our approach.

Impact on the Service Provider The impact on service
provider is determined based on the operational value and
the total miles driven, to give a sense of degree of variation
induced by social matching on the trip routes and quality of
service. As expected, objective B1 achieves the highest op-
erational value and maximizing B2 objective has the lowest
operational value (Figure 8). The operational value achieved
by our approach (SM) is closer to that of B1, with a slightly
higher miles driven (Figure 9) and higher user utility. The to-
tal number of trips formed by our approach is also compara-
ble to that of B1. This shows that our approach improves the
quality of trips without significantly affecting the total miles
driven or the cost of operating the service by the provider.

The Value of Incorporating Social Preferences in Dynamic Ridesharing 73

(a) Zone 8 (b) Zone 28 (c) Zone 56

Figure 8: Total operational value of trips dispatched on each day.

(a) Zone 8 (b) Zone 28 (c) Zone 56

Figure 9: Total miles driven on each day.

Scalability and Robustness
Since matching is performed every 30 seconds, it is impor-
tant to ensure that the matching algorithm is fast so that it
may be effectively used in real-time. The run time (in sec-
onds) of our matching algorithm is 0.5 on average in the
zone with high request density (zone 8), 0.12 in zone 28, and
0.003 in zone 56, demonstrating the scalability of DROPS.

We also compared our matching algorithm to a hindsight
greedy matching with access to all the requests in a day, in-
cluding future ones. The purpose of this experiment is to
evaluate the gain in operational value and user value that
could be achieved when knowledge of future requests is
available. We compare the total operational value obtained
using our approach with that of optimizing only for oper-
ational value with all requests in a day. Similarly, the total
user value obtained with our approach, with requests arriv-
ing in real-time, is compared with that of optimizing for user
value only and with access to all requests in a day. Trips are
formed using the best-fit greedy algorithm (Algorithm 1) for
our approach and for the hindsight evaluation.

The results, summarized in Table 2, show that our ap-
proach achieves at least ∼89% of the operational value and
up to ∼84% of the user value compared to the hindsight

XXXXXXXXMetrics
Zone Zone 8 Zone 28 Zone 56

Operational Value 91.96% 93.03% 89.87%
User Value 83.62% 82.43% 66.71%

Table 2: Performance relative to hindsight optimization.

matching in all three zones, indicating that any prediction
method of future requests would yield very limited perfor-
mance gains in the operational value. However, some im-
provements in user value could be achieved with knowledge
of future requests by forming trips where the users have a
higher social compatibility with co-passengers.

Conclusion and Future Work
Dynamic ridesharing is an increasingly appealing commuter
option. However, numerous surveys have indicated that
users’ concerns, primarily about the social characteristics of
co-passengers, pose a major barrier to using ridesharing for
a segment of the population. We present the DROPS system
for optimizing dynamic ridesharing with social preferences
and present an efficient real-time matching algorithm that
can handle effectively high density zones.

Our results demonstrate that factoring social preferences
into the matching process helps improve the user value,
without significantly affecting the operational value to the
service provider. Furthermore, survey results indicate that
services that perform social matching are likely to incen-
tivize more individuals to use the service. We conclude that
while social matching is beneficial overall, it is not always
guaranteed to result in improved performance. Factoring so-
cial preferences into the matching process is most beneficial
in zones with a high request density per decision cycle and
greater compatibility among ridesharing users.

In the future, we aim to examine ways to extend the
matching model to consider nearby trips that have already
been dispatched and are currently en-route. We will also

The Value of Incorporating Social Preferences in Dynamic Ridesharing 74

consider more complex ways to factor the competing ob-
jectives using more general multi-objective planning algo-
rithms (Wray, Zilberstein, and Mouaddib 2015). Addition-
ally, based on the performance analysis of our approach with
that of a hindsight trip formation, we aim to employ a pre-
dictive model for future requests to improve the user value.
While we anticipate some performance gains, we do not ex-
pect the relative benefits of social matching to diminish.

Acknowledgments
We thank Shannon Roberts and Fangda Zhang for conduct-
ing the user survey and for fruitful discussions on designing
the population model.

References
Agatz, N.; Erera, A.; Savelsbergh, M.; and Wang, X. 2012.
Optimization for dynamic ride-sharing: A review. European
Journal of Operational Research 223(2):295–303.
Alonso-Mora, J.; Samaranayake, S.; Wallar, A.; Frazzoli, E.;
and Rus, D. 2017. On-demand high-capacity ride-sharing
via dynamic trip-vehicle assignment. National Academy of
Sciences 114(3):462–467.
Bathla, K.; Raychoudhury, V.; Saxena, D.; and
Kshemkalyani, A. D. 2018. Real-time distributed taxi
ride sharing. In Proc. of the 21st International Conference
on Intelligent Transportation Systems.
Bei, X., and Zhang, S. 2018. Algorithms for trip-vehicle
assignment in ride-sharing. In Proc. of the 32nd AAAI Con-
ference on Artificial Intelligence.
Bistaffa, F.; Farinelli, A.; and Ramchurn, S. D. 2015. Shar-
ing rides with friends: A coalition formation algorithm for
ridesharing. In Proc. of the 29th AAAI Conference on Artifi-
cial Intelligence.
Biswas, A.; Gopalakrishnan, R.; Tulabandhula, T.; Mukher-
jee, K.; Metrewar, A.; and Thangaraj, R. S. 2017. Profit
optimization in commercial ridesharing. In Proc. of the 16th
Conference on Autonomous Agents and MultiAgent Systems.
Chan, N. D., and Shaheen, S. A. 2012. Ridesharing in north
america: Past, present, and future. Transport Reviews 32:93–
112.
Cheng, S.-F.; Nguyen, D. T.; and Lau, H. C. 2014. Mech-
anisms for arranging ride sharing and fare splitting for last-
mile travel demands. In Proc. of the 13t International Con-
ference on Autonomous agents and MultiAgent systems.
Di Febbraro, A.; Gattorna, E.; and Sacco, N. 2013. Op-
timization of dynamic ridesharing systems. Transportation
Research Record: Journal of the Transportation Research
Board (2359):44–50.
Dickerson, J. P.; Sankararaman, K. A.; Srinivasan, A.; and
Xu, P. 2018. Allocation problems in ride-sharing platforms:
Online matching with offline reusable resources. In Proc. of
the 32nd AAAI Conference on Artificial Intelligence.
Furuhata, M.; Dessouky, M.; Ordóñez, F.; Brunet, M.-E.;
Wang, X.; and Koenig, S. 2013. Ridesharing: The state-
of-the-art and future directions. Transportation Research
57:28–46.

Herbawi, W., and Weber, M. 2012. The ridematching prob-
lem with time windows in dynamic ridesharing: A model
and a genetic algorithm. In Proc. of the IEEE Congress on
Evolutionary Computation.
Kleywegt, A. J.; Shapiro, A.; and Homem-de Mello, T.
2002. The sample average approximation method for
stochastic discrete optimization. SIAM Journal on Optimiza-
tion 12(2):479–502.
Levofsky, A., and Greenberg, A. 2001. Organized dynamic
ride sharing: The potential environmental benefits and the
opportunity for advancing the concept. In Transportation
Research Board, 7–11.
Ma, S.; Zheng, Y.; and Wolfson, O. 2013. T-share: A large-
scale dynamic taxi ridesharing service. In Proc. of the 29th
International Conference on Data Engineering.
Michalak, S.; Spyridakis, J.; Haselkorn, M.; Goble, B.; and
Blumenthal, C. 1994. Assessing users’ needs for dynamic
ridesharing. Proc. of the Transportation Research Record
32–32.
Miller, J., and How, J. P. 2017. Predictive positioning and
quality of service ridesharing for campus mobility on de-
mand systems. In Proc. of the IEEE International Confer-
ence on Robotics and Automation.
Montazery, M., and Wilson, N. 2016. Learning user prefer-
ences in matching for ridesharing. In Proc. of the Interna-
tional Conference on Agents and Artificial Intelligence.
Pelzer, D.; Xiao, J.; Zehe, D.; Lees, M. H.; Knoll, A. C.; and
Aydt, H. 2015. A partition-based match making algorithm
for dynamic ridesharing. IEEE Transactions on Intelligent
Transportation Systems 16(5):2587–2598.
Roijers, D. M.; Vamplew, P.; Whiteson, S.; and Dazeley,
R. 2013. A survey of multi-objective sequential decision-
making. Journal of Artificial Intelligence Research 48:67–
113.
Santos, D. O., and Xavier, E. C. 2013. Dynamic taxi and
ridesharing: A framework and heuristics for the optimization
problem. In Proc. of the 23rd International Joint Conference
on Artificial Intelligence.
Selker, T., and Saphir, P. H. 2010. TravelRole: A carpool-
ing/physical social network creator. In Proc. of the IEEE
Int’l Symp. on Collaborative Technologies and Systems.
Svangren, M. K.; Skov, M. B.; and Kjeldskov, J. 2018. Pas-
senger trip planning using ride-sharing services. In Proc. of
the CHI Conf. on Human Factors in Computing Systems.
Tao, C., and Wu, C. 2008. Behavioral responses to dy-
namic ridesharing services- the case of taxi-sharing project
in Taipei. In Proc. of the International Conference on Ser-
vice Operations and Logistics, and Informatics.
Thaithatkul, P.; Seo, T.; Kusakabe, T.; and Asakura, Y. 2015.
A passengers matching problem in ridesharing systems by
considering user preference. Journal of the Eastern Asia
Society for Transportation Studies 11:1416–1432.
Wray, K. H.; Zilberstein, S.; and Mouaddib, A.-I. 2015.
Multi-objective MDPs with conditional lexicographic re-
ward preferences. In Proc. of the 29th Conference on Ar-
tificial Intelligence.

The Value of Incorporating Social Preferences in Dynamic Ridesharing 75

A Capacitated Vehicle Routing and Scheduling Problem for Passengers: A
Modelling and Solution Approach

Sergio Ferrer, Miguel A. Salido, Federico Barber and Adriana Giret
{serfers2, msalido,fbarber, agiret}@dsic.upv.es

Universitat Politècnica de València
Spain

Abstract

In main cities, many of our daily transport requirements are
executed by service provider’s that must optimize their re-
sources in order to provide the services. Some examples of
such services are transportation of school children, courier
services, bus tour, etc. In these services, delivery or timely
arrival are very important and desirable features that require
scheduling and routing of vehicles. One of the most studied
combinatorial optimization problems is the Vehicle Routing
Problem (VRP) due to its directly application to many real-
world cases. This paper describes a novel version of the VRP,
named Capacitated Vehicle Routing and Scheduling Prob-
lem for Passengers (CVRSPP). The aim of this problem is
to schedule a set of buses to different services satisfying a set
of constraints. This problem models a real case of the actual
discretionary transport industry for groups of passengers, in
which every group can hire a bus to travel from one city to
any other. The travelers have some requirements that must be
satisfied by the transport company and the solution must sat-
isfy the needs from the transport company. When all these
constraints are considered, the proposed problem (CVRSPP)
can be considered a Capacitated with Fixed Service Time,
Maximum Waiting Time and No Depots VRP problem. To
this end, a formal mathematical model is proposed and two
metaheuristics are developed to solve real-life instances. The
empirical results show that the proposed techniques are more
competitive than other adapted approaches for solving the
VRP.

Introduction
The Vehicle Routing and Scheduling Problem (VRSP) is a
well-known problem studied in the literature. The interest
and relevance of the VRSP comes from its directly applica-
tion in real-world environments where the problem is solved
by many industries in order to provide their services or to
schedule their resources to optimize the associated costs to
the logistic needs (Uchoa et al. 2017). The VRP is a com-
plex combinatorial optimization problem that can be seen
as a combination of 2 problems: the Travelling Salesperson
Problem (TSP) and the Bin Packing Problem (BPP) which
are well known NP-hard problems (Tavares et al. 2003;
Korf 2002).

The basic version of the VRP (Dantzig and Ramser 1959)
consists of delivering a set of packages to a set of customers

distributed on a map taking into account that all delivery ve-
hicles start and finish their service at one single depot, min-
imizing the cost of the routes and the size of the required
fleet. This first approach of the VRP makes some assump-
tions in order to simplify the problem, such as: having one
single depot, a homogeneous fleet of vehicles, infinite load
for each vehicle, etc.

Due to the high applicability of this problem to multiple
contexts, the VRP basic assumptions make it difficult to di-
rectly apply it to real life problems, so several variants of
the basic version have been proposed. They try to adapt the
formalization of the problem to the real needs of the applica-
tion environment by removing the basic assumptions or by
adding new ones. Some of the most studied versions of the
VRP are:

• Capacitated Vehicle Routing Problem (CVRP)(Gen-
dreau, Laporte, and Potvin 2002a). In this version all ve-
hicles have a maximum capacity that cannot be exceeded
and the whole fleet is considered to be uniform, so the
maximum capacity is the same for all vehicles. A more
complex version of this approach, but also more realistic,
can be formalized. In the Multi-Capacity VRP (MCVRP)
version (Baldacci, Battarra, and Vigo 2008), every single
vehicle has associated a maximum-capacity, that might
vary among vehicles.

• Multiple Depot Vehicle Routing Problem (MDVRP)
(Lahyani, Coelho, and Renaud 2018). This version mod-
els the case in which a delivery company has different
depots spread across the map. If the costumers are orig-
inally clustered on depots, the problem could be solved
by solving multiple VRPs independently, but when de-
pots and customers are not related, the problem must be
modeled as MDVRP. Solving a MDVRP requires to as-
sign each customer to a depot and then sort them in order
to minimize the cost of the travel time and the size of the
fleet.

• Vehicle Routing and Scheduling Problem with Time
Windows (VRPTW)(Solomon 1987; El-Sherbeny 2010).
In this generalization of the VRP each costumer i is asso-
ciated with a time-window [ai, bi]. Delivery to the cus-
tomer i must be made before bi, the time-window upper
bound. The vehicle can arrive to the customer address i
before ai, the time-window lower bound, but in order to

cba

Bernardini et al. (Eds): SPARK 2019 76

https://creativecommons.org/licenses/by-sa/4.0/

service the client, it must have to wait until ai. In some
contexts, the VRPTW also has a time window [a0, b0] for
the depot. Vehicles cannot leave the depot before a0 and
must be back before b0.
Many techniques of different nature can be found in lit-

erature to solve VRP and its several versions. It is well-
known that exact algorithms can only solve small instances
of the problem (Laporte 1992; Dinh, Fukasawa, and Luedtke
) and they become unviable quickly as the problem grows.
Given the intrinsic difficulty of this problem, approximation
methods seem to be the most promising for practical size
problems. In (Rey et al. 2018), the authors propose a new
hybrid approach based on Ant Colony Optimization (ACO)
combined with Route First-Cluster Second methods and Lo-
cal Search procedures to produce high quality solutions for
the VRP. Furthermore, the implementation can be executed
on multicore CPUs and GPUs using the computing power
of modern GPUs programming technologies. It outperforms
current ACO-based VRP solvers and proves to be competi-
tive with other high performing metaheuristic solvers.

In (Wei et al. 2018), the VRP with two-dimensional load-
ing constraints (2L-CVRP) is studied (Iori 2005). It designs
a set of min-cost routes that start and finish their paths in the
depot in order to serve all customers with two-dimensional
rectangular weighted items. The paper proposes a Simu-
lated Annealing algorithm with a special mechanism that
allows to cooling and raising the temperature repeatedly in
order to solve four different versions of 2L-CRVP. The re-
sults outperform all existing algorithms on the four versions
and reach or improve the best-known solutions for most in-
stances.

In (Yi and Bortfeldt 2018), the capacitated vehicle rout-
ing problem with three-dimensional loading constraints (3L-
CVRP) (Gendreau et al. 2006) is solved. The authors com-
bine existing state-of-the-art approaches in a high-level
framework that stepwise solves the problem. In the first step,
a Genetic Algorithm (GA) (Moura and Oliveira 2009) is pro-
posed for solving the container loading problem to find good
placements for the packages inside the vehicles. Finally, in
the second step, the routing problem is solved by means of a
hybrid algorithm which combines a Tabu Search with a Tree
Search Algorithm (Bortfeldt 2012). The results show that us-
ing the proposed high-level system, the computational effort
can be significantly reduced.

In this paper, a new version of the VRSP to transport
groups of passengers is proposed. In state-of-the-art ap-
proaches, the majority of VRP works are focused on pack-
age delivery scenarios. Some applications on passengers
bus transportation can be found in (Bowerman, Hall, and
Calamai 1995; Özkan Ünsal and Yiǧit 2018; Miranda et al.
2018). Nevertheless, they are normally focused on optimiz-
ing regular or school routes with a cyclic behavior (the same
route and/or schedule every day). The problem we are deal-
ing with in this paper does not have cyclic behavior since it
is focused on on-demand discretionary routes for transport-
ing groups of passengers instead of groups of packages. We
propose and compare several techniques in order to study
which of them are better for this new context for VRP.

It is also interesting to distinguish between routing prob-

lems and scheduling problems. If the customers being ser-
viced have no time restrictions and there are no precedence
relationships, then the problem is a pure routing problem.
However, if there is a specified time for the service to take
place, then a scheduling problem exists. Otherwise, we are
dealing with a combined routing and scheduling problem
(Haksever et al. 2000). In our case, both time and precedence
constraints are in place, which define a combined routing
and scheduling problem. In (Beck, Prosser, and Selensky
2003), the authors propose a mapping for any VRP to get
an equivalent Job Shop Scheduling problem (JSP). Follow-
ing that approach the services and vehicles from VRP are
respectively treated as jobs and machines in JSP.

Problem proposal
In this section, a new version of the VRP is proposed. The
main objective of the proposed version is to schedule a set
of trips/jobs in a set of vehicles/machines trying to mini-
mize the total traveled distance. Through out this paper, the
trips definition and features are from a real company case
that tries to optimize passenger transportation at a national
level. Passengers transportation entails a set of constraints
that change the nature of the pure VRP and compels us to
consider new features: Capacitated with Fixed Service Time,
Maximum Waiting Time and No Depots:
• Capacitated: if a group of N passengers needs to travel

from one city to another, the assigned vehicle (machine)
for this service (job) must have, at least,N available seats.
As in the classical version of the CVRP, the selected ve-
hicle may exceed the needs of the service. Henceforth, it
is assumed that, for each group of passengers of size K,
there is always one vehicle with size greater or equal to
K. Furthermore, group partitioning is not allowed , i.e. a
given group cannot simultaneously travel in multiple ve-
hicles.

• Fixed Service Time (FST): if a group of passengers trav-
els from city A to city B, the service time (time needed
to travel from A to B) is fixed and no pre-emption is al-
lowed. Notice that this is not the conventional Time Win-
dow (TW) in VRPTW. TW is defined as a temporal slot
in which a package must be delivered to a customer, but
within the TW the vehicle may do different deliveries to
multiple customers and it has freedom to decide when to
service the customer associated with the TW. Due to the
time constraint added by this feature, the VRP is trans-
formed into a VRSP as concluded in (Haksever et al.
2000).

• No Depots (ND): a group of passengers may hire a bus
from any city of the network. All cities are supposed to
have available buses, so the concept of depot, which is
a requirement for delivery industry, is not required for
passengers transportation industry. Also notice that this
is not the Multiple Depot (MD) approach from MDVRP.
The main difference between MD and ND is that, in MD
approaches, depots are normally supposed to be a small
subset of the whole set of cities but in ND every single
city can indistinctly be a depot or not and it can change
its condition depending on the needs of the problem. This

A Capacited Vehicle Routing and Scheduling Problem for Passengers 77

approach forces to consider that each vehicle has its own
depot corresponding to its native city.

• Maximum Waiting Time (MWT): all vehicles must re-
turn to their native/origin cities, i.e. the vehicles first de-
parting city, but they can perform more services until re-
turning to their hometown. To wait in a non-native city
until the next service starts is allowed but it implies ex-
tra costs (subsistence and accommodation allowance for
the vehicle driver, taxes for parking fees on public roads,
etc.). Thus, MWT is the maximum time that the vehicles
are allowed to wait between services instead of returning
to their native city.
If all these features are considered, the classical VRP is

transformed into the new proposed version of the problem:
Capacitated Vehicle Routing and Scheduling Problem for
Passengers (CVRSPP).

Problem specification
An instance of the proposed problem is the combination of
four elements: a graph G = (V,E,C), representing the
map, a specification of the customers demand D, a maxi-
mum waiting time MWT and a set B of available vehicles.
Each element is formalized as follows:
• G = (V,E,C) where

– V = {v1, v2, . . . , vm} is the set of vertices of the
graph, each one representing a city, where m = |V |
is the total number of cities.

– E = {(vi, vj) | i 6= j; vi, vj ∈ V } is a set of edges
of the graph. An edge between 2 cities means that it is
possible to travel between them.

– C = {cvi,vj = [ti,j , di,j], ∀(i, j) ∈ E} is the set of
costs associated to the edges in E. Notice that each
edge has two different associated costs:
∗ ti,j : is the time needed for traveling from vi to vj .
∗ di,j : is the distance between cities vi and vj .

• D = {d1, d2, . . . , dN} is the set of N requested services.
Each service di = [pi, qi, ri, si] is composed of four pa-
rameters:
– pi ∈ V : is the departure city for service i.
– qi ∈ V : is the arrival city for service i.
– ri: is the departure time for service i. Service i must

start at ri in pi and must end at ri + tpiqi in qi. Delays
are not allowed.

– si: is the size (number of passengers) of service i.
• MWT : is the global parameter for the whole instance

indicating the Maximum Waiting Time allowed between
services.

• B = {b1, b2, . . . , ba}: is the set of available vehicles. A
vehicle bi can transport a maximum of ci passengers. The
number of total available buses is a = |B|.
In many environments, where this problem can be ap-
plied, the set B is not taken into account. For example,
let’s suppose a travel agency that wants to hire buses for
the transportation of its customers to different airports
from multiple cities during a large period of time. In this

context, the agency can hire as many buses as it needs
from multiple bus companies around the country. Hence-
forth this approach will be used, which, in practice, only
implies that consider B as an infinite set, or at least, a
large enough set to assign one different vehicle to each
service.
An instantiation of the problem is a tuple s =

[x1, x2, . . . , xN] | xi ∈ B where xi is the vehicle/machine
assigned to service/job i. Notice that, in the proposed prob-
lem, the departure and arrival time is fixed, so the objective
is not to sort the services/jobs, but how to schedule them in
vehicles/machines in order to save resources. Thus, a com-
plete solution is an assignment of machines to all jobs. Jobs
assigned to the same machine are sorted by their departure
time. An instantiation s is a solution S if the following con-
straints are satisfied:

1. All services/jobs assigned to the same vehicle/machine
must be compatible. Two services/jobs are compatible if
they satisfy the following constraints:
• They do not overlap in time, and also there is enough

time for traveling from the arrival city of the first ser-
vice to the departure city of the second service (eq. 1).

rj > ri+tpiqi+tqipj ∀i, j ∈ D | xi = xj ∧ rj ≥ ri
(1)

• The waiting time between two services is less or equal
to MWT (eq. 2).

rj − (ri + tpiqi + tqipj
) ≤MWT

∀i, j ∈ D | xi = xj ∧ rj > ri
(2)

2. The capacity of the vehicle is not exceeded (eq. 3).

cxi ≥ si ∀xi ∈ s (3)

The cost of a solution S = [x1, x2, . . . , xM] | xi ∈
B can be measured in terms of multiple factors, such as:
the size of the fleet needed or the total unused kilometers
(unused kilometers are the kilometers that the vehicles need
for traveling between jobs without passengers). The size of
the fleet can be defined as:

|F | : F = {xi ∈ S} (4)

To formally define unused kilometers, some auxiliary def-
initions are provided:
• SVv = {i | xi ∈ S ∧ xi = v}: is the set of services

assigned to vehicle v.
• SBj = {i ∈ {1, N} | ri + tpiqi < rj ∧ xi = xj}:
SBj : is the set of services assigned to the same vehicle
than service j but scheduled before it.

• JPj = argmax
i∈SBj

ri is the job that immediately precede

job j.
Using these definitions, the total unused kilometers (UK)
traveled by all the vehicles of a given solution can be for-
mally defined as:

UK =
∑

v∈F
(
∑

j∈SVv

dq
JPj

pj
) + dqyvpzv

(5)

where:

A Capacited Vehicle Routing and Scheduling Problem for Passengers 78

Figure 1: Solution example

• yv = argmax
i : xi∈s ∧ xi=v

ri: is the last service assigned to ve-

hicle v.
• zv = argmin

i : xi∈s ∧ xi=v
ri: is the first service assigned to ve-

hicle v.
• dqyvpzv

: is the distance between the last visited city by ve-
hicle v and the first one. This distance must be added to
the evaluation since returning to its own depot is manda-
tory for every vehicle.

The objective of the search process could be to minimize
both factors |F | and UK in a multi-objective way in or-
der to minimize both, the needed fleet and the total unused
kilometers traveled by the vehicles. To minimize |F | can be
very helpful in companies that have a small or medium fleet.
However in this work, we will focus on minimizing only
UK since the real world case under investigation does not
have any constraint on the number of available vehicles be-
cause we can hire any number of needed vehicles all around
the country.

Solving Techniques
In order to solve the proposed problem we have designed
and tested different techniques. In this section, two differ-
ent metaheuristics for solving the proposed problem are pre-
sented.

Solution representation
All the proposed techniques will use the same represen-
tation of an instantiation. Let’s suppose a problem with 6
services that can be carried out by 3 vehicles as is shown
in figure 1. This instantiation could be expressed unam-
biguously in the terms described in the previous section as
s = [2, 1, 3, 2, 2, 1]. This representation is formally use-
ful because of its simplicity but it has some computational
problems: for example, the computational cost to determine
whether an instantiation s is feasible or not is high.

In order to find a computationally affordable represen-
tation, a procedure based on push forward proposed in
(Solomon 1987) have been developed. With this new proce-
dure, an instantiation s takes the form of a list containing all
the services IDs in any order. Feasibility of a solution is not
compromised by the selected order for the services, that is,
all possible permutations of the services represent a feasible
solution, which also means that every possible instantiation
s is also a solution S . Using the proposed procedure, the
instantiation showed in figure 1 could be represented as:

s = [2, 6, 1, 5, 4, 3]

Algorithm 1: Compatibility checking
input : Pair of jobs=(s1,s2)
output: True if s1 and s2 are compatible. False

otherwise.

1 Function compatibles(s1,s2):
2 condition 1 = rs2 ≥ rs1 + tps1qs1 + tqs1ps2

//(eq. 1) ;
3 condition 2 =

rj − (ri + tpiqi + tqipj
) ≤MWT //(eq.2) ;

4 return condition 1 ∧ condition 2 ;

Notice that there is no separator to indicate when the next
service is assigned to a new vehicle. This is because, if a
separator exists, some combinations could be unfeasible. So,
given a list of services IDs in any order (a solution, by def-
inition), it is necessary to carry out a technique to build a
schedule and then evaluate it. Thus, 2 different modifica-
tions of the push forward technique have been developed:
Light Evaluation (LE) and Heavy Evaluation (HE).

Light Evaluation (LE) Let’s suppose a solution S =
[9, 2, 1, 3, 5, 7, 4, 10, 6, 11, 8, 12] for an instance problem of
12 jobs (see fig. 2). LE technique divides, by a Greedy Algo-
rithm, the whole set of services in multiple subsets, each one
corresponding to a different vehicle. This Algorithm (alg. 2)
checks, for each used vehicle (line 4), if the job could fit the
last position in that vehicle (line 6) and add it in that posi-
tion (line 7). If the job does not fit any available vehicle (line
10), a new vehicle is added and the job is introduced on it
(line 11). Figure 2 better depicts the positions that LE checks
in order to introduce a new service into the current vehicle.
Gray squares are the tested position. If a service does not fits
any gray square according to the constraints (lines 2 and 3
from alg. 1), then a new vehicle is added with the service
inside itself (line 11).

Algorithm 2: LE algorithm
input : A list of services IDs: solution S
output: A division of the services IDs in subsets,

each one corresponding to a vehicle.

1 vehicles = [] ;
2 for s ∈ S do
3 introduced = False ;
4 for b ∈ vehicles do
5 last position = Length(b) - 1 ;
6 if compatibles(b[last position], s) then
7 b.append(s) ;
8 introduced = True ;
9 break;

10 if ¬introduced then
11 vehicles.append([s]) ;
12 return vehicles;

Heavy Evaluation (HE) LE is a fast way to build a feasi-
ble schedule from any solution s because it only checks one

A Capacited Vehicle Routing and Scheduling Problem for Passengers 79

Figure 2: LE checked positions

Algorithm 3: HE algorithm
input : A list of services IDs: solution S
output: A division of the services IDs in subsets,

each one corresponding to a vehicle.

1 vehicles = [] ;
2 for s ∈ S do
3 introduced = False ;
4 for b ∈ vehicles do
5 for s1 ∈ b do
6 if compatibles(s1, s) then
7 b.append(s, position(s1)) ;
8 introduced = True ;
9 break;

10 if introduced then
11 break;
12 if ¬introduced then
13 vehicles.append([s]) ;
14 return vehicles;

single position for each available vehicle. This procedure
can be modified to check all positions in the vehicle. This
variation will probably find better solutions but the compu-
tational cost is higher. This alternative is presented as Heavy
Evaluation. A comparison between these 2 procedures will
be carried out in the evaluation section. Algorithm 3 shows
the HE procedure and figure 3 shows the positions (gray
squares) that HE checks for introducing a new service into
the current vehicle.

GRASP
Greedy Randomized Adaptive Search Procedure (GRASP)
is a metaheuristic commonly used to solve combinatorial op-
timization problems. The GRASP metaheuristic proposes a
constructive phase, where a solution is found in a random-
ized greedy way and a local search phase where the solu-
tion is improved. The first phase is executed until a timeout
is reached and the process returns the best solution found.
Afterwards the second phase tries to improve the solution.
Two variants of the GRASP algorithm have been imple-
mented: GRASP with local search after the constructive pro-
cess (GRASP after) and GRASP with local search during the
constructive process (GRASP during). Algorithm 4 shows
the GRASP procedure. Line 4 is used only in ”GRASP dur-

Figure 3: HE checked positions

Algorithm 4: GRASP algorithm
input : A list S of sorted services and a timeout T
output: A division of the services IDs in subsets,

each one corresponding to a vehicle.

1 best eval = inf;
2 while ¬timeout do
3 sched = constructive phase(S);
4 sched = local search(sched) //GRASP

DURING;
5 if evaluation(sched) < best eval then
6 best eval = evaluation(sched);
7 best = sched;
8 best = local search(best) //GRASP AFTER;
9 return best ;

ing” version and line 8 is used only in ”GRASP after” ver-
sion. Evaluation in line 5 is carried out in terms of UK (see
eq. 5)

GRASP constructive phase works as follows:
1. Services are introduced, sorted by their ri (input).
2. A process looks for a subset of compatible services (lines

7-8) and schedule them in the same vehicle (line 10).
Scheduled services are removed from the list (line 11) and
the process continues with the remaining services (line 7).
The probability of linking two services (line 9) i, j is in-
versely proportional to the distance that separates them:

1− dqipj

max dqwpz∀w, z ∈ [1, d]
(6)

3. The process continues until the list of services remains
empty (line 3). Algorithm 5 shows the GRASP construc-
tive phase procedure.
Local search phase is executed after the constructive

phase or after the timeout assigned to the constructive phase,
depending on the GRASP version that is being executed.
The algorithm that implements the local search phase is a
simple process that iteratively tries to swap the position of
two services, to analyze if the new solution improves the
previous one, according to eq. 5. This procedure is proposed
in alg. 6. Swap function in line 4 is a simple script that swaps
the position in the schedule of the 2 services passed as pa-
rameters. All possible pair of jobs are checked for swapping
(lines 1-2) in a O(n2) algorithm and the GRASP process

A Capacited Vehicle Routing and Scheduling Problem for Passengers 80

Algorithm 5: GRASP constructive phase
input : A list S of sorted services
output: A division of the services IDs in subsets,

each one corresponding to a vehicle.

1 vehicles = [] ;
2 max distance = max dqwpz

∀w, z ∈ [1, d] ;
3 for s ∈ S do
4 last = s ;
5 new vehicle = [s] ;
6 S.remove(s) ;
7 for s2 ∈ S do
8 if compatibles(last, s2) then
9 if random() ≤ 1− dlastis2j

max distance then
10 new vehicle.append(s2) ;
11 S.remove(s2) ;
12 last = s2 ;
13 vehicles.append(new vehicle) ;

14 Function compatibles(s1,s2):
15 condition 0 = s1 6= s2 ;
16 condition 1 = rs2 ≥ rs1 + tps1qs1 + tqs1ps2

//(eq. 1 ;
17 condition 2 =

rj − (ri + tpiqi + tqipj
) ≤MWT //eq.2 ;

18 return condition 0 ∧ condition 1 ∧ condition 2

ends giving as output an improved solution or the original
one.

Simulated Annealing (SA)
Simulated Annealing (Gendreau, Laporte, and Potvin
2002b) is a metaheuristic that tries to emulate the behavior
of hot materials cooling down slowly until reaching regular
solid structures. It is supposed that the slower the material
cools, the more regular and perfect will be the solid structure
reached. An iteration of the SA consists on transforming a
current solution st into a new solution s′t by making random
minor changes on st. If s′t is better than st, then st+1 will be
s′t, otherwise s′t is accepted as st+1 with a probability that is
usually decreasing as execution progresses. Formally:

st+1 =

s′t if f(s′t) > f(st)
s′t with probability pt if f(s′t) ≤ f(st)
st otherwise

where:
• f(x) is the application of equation 5 to the solution x.
• pt is the probability to accept a solution that worsens the

current solution. This probability is normally defined as:

pt = exp

(
−f(st)− f(s

′
t)

θt

)

where θt is the current time-step of the algorithm exe-
cution. This time-step allows that, as the execution pro-
gresses, it is increasingly difficult to accept solutions that
worsen the current solution.

Algorithm 6: GRASP local search phase
input : A schedule SCH = list of services

separated in vehicles
output: An improved schedule, if found.

Otherwise, the input schedule

1 for s1 ∈ vehicles do
2 for s2 ∈ vehicles do
3 eval1 = evaluation(SCH);
4 SCH.swap(s1,s2);
5 eval2 = evaluation(SCH);
6 if eval2<eval1 then
7 break;
8 else
9 SCH.swap(s2,s1) //undo swap

10 return SCH;

The proposed SA (alg. 7) transforms a solution st into s′t
by swapping the position of two randomly selected services
(lines 8-14). Evaluation of a solution is carried out by us-
ing equation 5 after the LE or HE procedures (line 15). The
SA needs an initial solution to start its execution. In order
to build this initial solution, two different approaches have
been developed:

• The initial solution is the result of randomly shuffle all
services.

• The initial solution comes from sorting all services by
their departure time ri.

Evaluation
To evaluate the proposed techniques, it is necessary to cre-
ate some problem instances. Since the CVRSPP is a new
version of the problem, there is no benchmark available in
the literature to test different solving techniques. Thus, some
real data instances provided by a confidential collaborating
company have been analyzed to generate a new synthetic but
realistic benchmark. The collaborating company is a touris-
tic operator that works at a national level in Spain, hiring and
combining the services in a centralized way. We received
the whole set of services that the company carried out dur-
ing one complete year, and the created benchmark tries to
respect the nature of this real data.

An instance of the problem is composed of 2 parts: a map
and a set of services to be carried out by vehicles. The gen-
eration of maps and services are independent processes.

A map is actually the graph G = (V,E,C) defined in
the problem specification section. The map has been created
following the following steps:

1. A 2-dimensional Euclidean grid of size 100x100 is cre-
ated.

2. 50 points, each one representing a city, are randomly lo-
cated on the grid. Each city is a vertex of the graph.

3. Vertices are located in a Euclidean space, so there exists
an Euclidean distance between each pair of vertices. This
also means that you can travel from every city to any other

A Capacited Vehicle Routing and Scheduling Problem for Passengers 81

Algorithm 7: Simulated Annealing
input : A List S of services and initial

temperature K
output: A scheduled solution

1 best s = S ;
2 current s = S ;
3 current eval = evaluation(LE(current s)) // or HE ;
4 best eval = current eval ;
5 iterations = 0 ;
6 while T>1 do
7 iterations += 1 ;
8 pos1 = random.int(0, length(S)) ;
9 pos2 = random.int(0, length(S)) ;

10 new s = copy(current s);
11 //swap positions ;
12 aux = new s[pos1] ;
13 new s[pos1] = new s[pos2] ;
14 new s[pos2] = aux ;
15 new eval = evaluation(LE(new s)) // or HE ;
16 if new eval < current eval then
17 best s = new s ;
18 current s = new s ;
19 current eval = new eval ;
20 else
21 energy = exp

(
− current eval−new eval

iterations

)
;

22 if energy<random() then
23 current s = new s ;
24 current eval = new eval ;
25 T = T*0.99 ;
26 return best s ;

city in the map in a straight line. The edges of the graph
represent these straight lines.

4. Distances between two cities di,j in C are the Euclidean
distances in the grid. Assuming that distances are mea-
sured in kilometers and that vehicles travel at v km/h, the
times ti,j in C between cities are defined as:

ti,j =
di,j + random(−1, 1) ∗ 0.25 ∗ di,j

v

The random component can add or subtract up to 25% of
the real distance between cities (function random(a, b)
returns a float number ∈ [a,b]). This causes that, as hap-
pens in the real-world cases, smaller distances could need
more time to be traveled than bigger ones.
The set of services D = {[pi, qi, ri, si] | ∀i ∈ [1, d]} is

also generated in a randomized way, but in this case, some
features of the real-world have been emulated in order to
have more realistic instances:
• pi: In real-world instances, it has been observed that about

10% of cities on the map were chosen by 62% of the ser-
vices as departure cities. This commonly occurs with im-
portant cities of a country. In order to emulate this behav-
ior, 10% of the cities are randomly selected as important
cities and 62% of the pi in services are select from the set

of important cities while the 38% of the remaining pi are
randomly selected.

• qi: The important cities that are commonly selected by
passengers as departure cities are also selected as arrival
cities by the 32% of the services. Again, this situation is
emulated by assigning 32% of the services to qi from the
set of important cities. Again, the remaining services are
randomly assigned as arrival city.

• ri: The time horizon for each instance is set to 15 days. In
order to have a discrete quantization of the 15 days, they
are measured in ”number of quarter hours”. Accordingly,
the departure time (ri) for each service is randomly se-
lected in the interval [0, 1440] (1440 is the total number
of quarter hours in 15 days). For example, if a service i
has its ri = 136 means that its departure time is 10:00
AM of the second day.

• si: The most commonly vehicles used for passengers
transportation have one of the following sizes: 30, 54, 55
or 70 seats. In real-world cases, 70% of the services use
vehicles with 54 or 55 seats, so si is assigned respecting
this percentage. Remaining 30% is randomly assigned.

Different sizes of instances were generated by modifying
the parameter d (number of total services). 3 classes of in-
stances were built, depending on the size, with 50 instances
each class. Table 1 shows a description of the benchmark.

The proposed benchmark for the CVRSPP were solved
with 3 different techniques: GRASP and SA from the previ-
ous section and an adaptation of the Genetic Algorithm (GA)
proposed in (Baker and Ayechew 2003). The parametriza-
tion for this GA can be summarized as:

1. the representation of an individual is made according to
LE and HE techniques. Both versions will be compared.

2. the size of the population is fixed to 600 individuals.

3. 300 individuals are selected to be crossed.

4. each individual has 30% of mutation probability. Muta-
tion consists on swapping two randomly selected services.

5. crossover is carried out by 2-Point Crossover (Kora and
Yadlapalli 2017).

6. fitness of a solution is calculated in terms of unused kilo-
meters (UK) (eq. 5).

7. regarding the substitution method, all the new individuals
that are inserted into the population are ordered by fitness
and the best 600 individuals are selected.

All techniques have been executed with a 300 seconds
timeout or a convergence criterion. This criterion stops the
search if it performs 1000 iterations without improvement.

Class name Size Number of instances
I 250 250 services 50
I 500 500 services 50
I 1000 1000 services 50

Table 1: Benchmark

A Capacited Vehicle Routing and Scheduling Problem for Passengers 82

Unused Kilometres (eq.5)
Technique Variant I 250 I 500 I 1000

GA LE 128695,44 268615,94 547433,06
HE 80089,4 158643,53 304641,56

SA

LE 79879,88 170450,52 346754,82
HE 82983,04 163806,78 309075,5

LE+sort 65660,04 117246,74 196706,14
HE+sort 65961,04 117.022’32 196.462’4

GRASP After 48763,74 87410,34 148574,12
During 50839,06 93497,38 159622,9

Table 2: Unused kilometers for different techniques

Table 2 shows the unused kilometers reached for each
technique with all techniques and variations. The table
shows the arithmetic average of the 50 instances per class.
GRASP has no LE and HE versions because LE and HE are
procedures to build the schedule from a representation, but
GRASP has its own procedure (algorithm 5). The annealing
versions tagged with ”+sort” means that the initial solution
for the SA was created sorting the services by their ri while
SA versions without this tag were executed initializing the
solution randomly.

As shown in table 2 it is not easy to determinate which
of the HE or LE procedures are the best options for the pro-
posed problem because on each technique, they obtain dif-
ferent results: on GA the best results come from HE but with
SA the best results come from LE, depending on the instance
size. It is also interesting to point out that, in all techniques,
when the problem doubles its size; the evaluation function
(unused kilometers) has a similar behavior since it doubles
its value, approximately.

Table 3 shows the average execution time for solving each
instance size. It can be observed that SA and GRASP have
better behavior that GA in all instances. It is also observed
than GA exceeds the timeout (300 s.) in all its executions.
This is due to the fact that GA spends all the time evaluat-
ing the initial population (the process cannot be interrupted
during the initialization). When the initialization is finished,
the search process should start but the timeout has been ex-
ceeded, so the process finishes its execution returning the
best value in the initial population. The main problem of the
GA is that the search process needs, at least, a medium-size
population to find good solutions but this population has a
very high computational cost to be maintained (evaluated
and checked for feasibility). Notice that SA and GRASP
finish the execution by the convergence criterion without
reaching the timeout. Finally, GRASP maintains the best be-
havior minimizing the unused kilometers and converging in
low time. Particularly, depending on the location of the local
search in the GRASP algorithm, the best results are obtained
in unused kilometers or in execution time. In any case, a
GRASP algorithm is considered a competitive metaheuris-
tic for solving this class of problems.

Figure 4 shows the number of buses and the number of
unused kilometers for solving all instances of class I 1000.
It can be observed that most of the instances use between
175 and 210 buses to solve their problems. The number of

Execution time (s)
Technique Variant I 250 I 500 I 1000

GA LE 306,33 315,39 343,87
HE 356,5 523,5 647,57

SA

LE 5,23 15,38 45,38
HE 6,12 26,07 106,668

LE+sort 6,93 19,9 59,16
HE+sort 68,85 229,68 836,96

GRASP After 5,7 7,68 16,43
During 5,14 5,62 7,6

Table 3: Execution time for different techniques

unused kilometers was ranged between 142000 and 154000
kms for most instances. However there is no relationship be-
tween both parameters. Using more buses does not represent
a lower amount of unused kilometers. Similar results were
obtained for I 250 and I 500.

Figure 4: Unused kilometers vs Number of buses for I 1000

Conclusions and Future Work
This paper proposes a novel version of the VRP, named Ca-
pacitated Vehicle Routing and Scheduling Problem for Pas-
sengers (CVRSPP). The main objective of this problem is
to schedule a set of buses to different services satisfying a
set of constraints. When all these constraints are considered,
the proposed problem can be considered a Capacitated with
Fixed Service Time, Maximum Waiting Time and No De-
pots VRP problem. This problem models a real case of the
actual discretionary transport industry for groups of passen-
gers. The formal mathematical model has been presented
and two metaheuristics have been developed to solve this
problem. A benchmark for the proposed problem has been
developed and it will be available at the research group web-
page. The generated benchmark respects the nature of real-
world cases providing realistic instances. The results shows
that GRASP is a competitive technique compared with other
adapted approaches for solving the VRP. It is able to save
up to 30% of unused kilometers with respect the solutions

A Capacited Vehicle Routing and Scheduling Problem for Passengers 83

obtained by experts in real life instances.
As future work it is proposed to add more constraints to

the problem in order to make it more realistic. Such con-
straints are related with including a maximum driving time
per driver, including some special features in some buses and
services (fridge, access for the handicapped, TV, etc.). It is
also a future work to tackle the dynamic rescheduling of this
problem since, in real-world cases, vehicles are often dam-
aged during services, traffic jams can delay arrival times,
etc. These situations can transform a feasible solution into
a non-feasible solution that requires to solve these problems
in a dynamic way.

Acknowledgements
The paper has been partially supported by the Spanish re-
search project TIN2016-80856-R and TIN2015-65515-C4-
1-R.

References
Baker, B. M., and Ayechew, M. 2003. A genetic algorithm
for the vehicle routing problem. Computers and Operations
Research 30(5):787 – 800.
Baldacci, R.; Battarra, M.; and Vigo, D. 2008. Routing a
Heterogeneous Fleet of Vehicles. Boston, MA: Springer US.
3–27.
Beck, J. C.; Prosser, P.; and Selensky, E. 2003. Vehicle
routing and job shop scheduling: What’s the difference? In
ICAPS.
Bortfeldt, A. 2012. A hybrid algorithm for the capaci-
tated vehicle routing problem with three-dimensional load-
ing constraints. Comput. Oper. Res. 39(9):2248–2257.
Bowerman, R.; Hall, B.; and Calamai, P. 1995. A multi-
objective optimization approach to urban school bus routing:
Formulation and solution method. Transportation Research
Part A: Policy and Practice 29(2):107 – 123.
Dantzig, G. B., and Ramser, J. H. 1959. The truck dispatch-
ing problem. Management Science 6(1):80–91.
Dinh, T.; Fukasawa, R.; and Luedtke, J. Exact algorithms
for the chance-constrained vehicle routing problem. Mathe-
matical Programming 172(1):105–138.
El-Sherbeny, N. A. 2010. Vehicle routing with time
windows: An overview of exact, heuristic and metaheuris-
tic methods. Journal of King Saud University - Science
22(3):123 – 131.
Gendreau, M.; Iori, M.; Laporte, G.; and Martello, S. 2006.
A tabu search algorithm for a routing and container loading
problem. Transportation Science 40(3):342–350.
Gendreau, M.; Laporte, G.; and Potvin, J.-Y. 2002a. 6. Meta-
heuristics for the Capacitated VRP. 129–154.
Gendreau, M.; Laporte, G.; and Potvin, J.-Y. 2002b. 6. Meta-
heuristics for the Capacitated VRP. 129–154.
Haksever, C.; Render, B.; Russell, R. S.; and Murdick, R. G.
2000. Service Management and Operations (2nd Edition).
Iori, M. 2005. Metaheuristic algorithms for combinatorial
optimization problems. 4OR 3(2):163–166.

Kora, P., and Yadlapalli, P. 2017. Crossover operators in ge-
netic algorithms: A review. International Journal of Com-
puter Applications 162(10).
Korf, R. E. 2002. A new algorithm for optimal bin packing.
In Eighteenth National Conference on Artificial Intelligence,
731–736. Menlo Park, CA, USA: American Association for
Artificial Intelligence.
Lahyani, R.; Coelho, L. C.; and Renaud, J. 2018. Alterna-
tive formulations and improved bounds for the multi-depot
fleet size and mix vehicle routing problem. OR Spectrum
40(1):125–157.
Laporte, G. 1992. The vehicle routing problem: An
overview of exact and approximate algorithms. European
Journal of Operational Research 59(3):345 – 358.
Miranda, D. M.; de Camargo, R. S.; Conceição, S. V.; Porto,
M. F.; and Nunes, N. T. 2018. A multi-loading school bus
routing problem. Expert Systems with Applications 101:228
– 242.
Moura, A., and Oliveira, J. F. 2009. An integrated approach
to the vehicle routing and container loading problems. OR
Spectrum 31(4):775–800.
Özkan Ünsal, and Yiǧit, T. 2018. Using the genetic algo-
rithm for the optimization of dynamic school bus routing
problem. BRAIN. Broad Research in Artificial Intelligence
and Neuroscience 9(2):6–21.
Rey, A.; Prieto, M.; Gómez, J. I.; Tenllado, C.; and Hidalgo,
J. I. 2018. A cpu-gpu parallel ant colony optimization solver
for the vehicle routing problem. In Sim, K., and Kauf-
mann, P., eds., Applications of Evolutionary Computation,
653–667. Cham: Springer International Publishing.
Solomon, M. M. 1987. Algorithms for the vehicle rout-
ing and scheduling problems with time window constraints.
Oper. Res. 35(2):254–265.
Tavares, J.; Pereira, F. B.; Machado, P.; and Costa, E. 2003.
Crossover and diversity: A study about gvr. In In Proceed-
ings of the Analysis and Design of Representations and Op-
erators (ADoRo’2003, 27–33.
Uchoa, E.; Pecin, D.; Pessoa, A.; Poggi, M.; Vidal, T.; and
Subramanian, A. 2017. New benchmark instances for the
capacitated vehicle routing problem. European Journal of
Operational Research 257(3):845 – 858.
Wei, L.; Zhang, Z.; Zhang, D.; and Leung, S. C. 2018. A
simulated annealing algorithm for the capacitated vehicle
routing problem with two-dimensional loading constraints.
European Journal of Operational Research 265(3):843 –
859.
Yi, J., and Bortfeldt, A. 2018. The capacitated vehicle rout-
ing problem with three-dimensional loading constraints and
split delivery—a case study. In Fink, A.; Fügenschuh, A.;
and Geiger, M. J., eds., Operations Research Proceedings
2016, 351–356. Cham: Springer International Publishing.

A Capacited Vehicle Routing and Scheduling Problem for Passengers 84

Automated Reasoning in Real Domains

85

Enabling Limited Resource-Bounded Disjunction in Scheduling

Jagriti Agrawal, Wayne Chi, Steve Chien, Gregg Rabideau, Stephen Kuhn, and Dan Gaines
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{firstname.lastname}@jpl.nasa.gov

Abstract
We describe three approaches to enabling an extremely com-
putationally limited embedded scheduler to consider a small
number of alternative activities based on resource availabil-
ity. We consider the case where the scheduler is so compu-
tationally limited that it cannot backtrack search. The first
two approaches precompile resource checks (called guards)
that only enable selection of a preferred alternative activity if
sufficient resources are estimated to be available to schedule
the remaining activities. The final approach mimics back-
tracking by invoking the scheduler multiple times with the
alternative activities. We present an evaluation of these tech-
niques on mission scenarios (called sol types) from NASA’s
next planetary rover where these techniques are being eval-
uated for inclusion in an onboard scheduler.

Introduction
Embedded schedulers must often operate with very limited
computational resources. Due to such limitations, it is not
always feasible to develop a scheduler with a backtracking
search algorithm. This makes it challenging to perform even
simple schedule optimization when doing so may use re-
sources needed for yet unscheduled activities.

In this paper, we present three algorithms to enable such a
scheduler to consider a very limited type of preferred ac-
tivity while still scheduling all required (hereafter called
mandatory) activities. Preferred activities are grouped into
switch groups, sets of activities, where each activity in the
set is called a switch case, and exactly one of the activities
in the set must be scheduled. They differ only by how much
time, energy, and data volume they consume and the goal is
for the scheduler to schedule the most desirable activity (co-
incidentally the most resource consuming activity) without
sacrificing any other mandatory activity.

The target scheduler is a non-backtracking scheduler to
be onboard the NASA Mars 2020 planetary rover (Rabideau
and Benowitz 2017) that schedules in priority first order and
never removes or moves an activity after it is placed during
a single run of the scheduler. Because the scheduler does
not backtrack, it is challenging to ensure that scheduling a
consumptive switch case will not use too many resources

Copyright c© 2019, California Institute of Technology. Govern-
ment Sponsorship Acknowledged.

and therefore prevent a later (in terms of scheduling order,
not necessarily time order) mandatory activity from being
scheduled.

The onboard scheduler is designed to make the rover
more robust to run-time variations by rescheduling multiple
times during execution (Gaines et al. 2016a). If an activity
ends earlier or later than expected, then rescheduling will al-
low the scheduler to consider changes in resource consump-
tion and reschedule accordingly. Our algorithms to schedule
switch groups must also be robust to varying execution du-
rations and rescheduling.

We have developed several approaches to handle schedul-
ing switch groups. The first two, called guards, involve re-
serving enough sensitive resources (time, energy, data vol-
ume) to ensure all later required activities can be scheduled.
The third approach emulates backtracking under certain con-
ditions by reinvoking the scheduler multiple times. These
three techniques are currently being considered for imple-
mentation in the Mars 2020 onboard scheduler.

Problem Definition
For the scheduling problem we adopt the definitions in (Ra-
bideau and Benowitz 2017). The scheduler is given

• a list of activities
A1〈p1, d1, R1, e1, dv1,Γ1, T1, D1〉 . . .
An〈pn, dn, Rn, en, dvn,Γn, Tn, Dn〉

• where pi is the scheduling priority of activity Ai;

• di is the nominal, or predicted, duration of activity Ai;

• Ri is the set of unit resources Ri1 . . . Rim that activity Ai

will use;

• ei and dvi are the rates at which the consumable resources
energy and data volume respectively are consumed by ac-
tivity Ai;

• Γi1 . . .Γir are non-depletable resources used such as se-
quence engines available or peak power for activity Ai;

• Ti is a set of start time windows [Tij start
, Tij preferred

,
Tij end

]. . . [Tik start
, Tik preferred

, Tik end
] for activity Ai.

1 ;

1If a preferred start time, Tij preferred is not specified for win-
dow j then it is by default Tij start

cba

Bernardini et al. (Eds): SPARK 2019 86

https://creativecommons.org/licenses/by-sa/4.0/

• Di is a set of activity dependency constraints for activity
Ai where Ap → Aq means Aq must execute successfully
before Ap starts.

The goal of the scheduler is to schedule all mandatory
activities and the best switch cases possible while respecting
individual and plan-wide constraints.

Each activity is assigned a scheduling priority. This prior-
ity determines the order in which the activity will be consid-
ered for addition to the schedule. The scheduler attempts to
schedule the activities in priority order, therefore: (1) higher
priority activities can block lower priority activities from
being scheduled and (2) higher priority activities are more
likely to appear in the schedule.

Mandatory Activities are activities, m1 . . .mj ⊆ A, that
must be scheduled. The presumption is that the problem as
specified is valid, that is to say that a schedule exists that in-
cludes all of the mandatory activities, respects all of the pro-
vided constraints, and does not exceed available resources.

In addition, activities can be grouped into Switch Groups.
The activities within a switch group are called switch cases
and vary by how many resources (time, energy, and data vol-
ume) they consume. It is mandatory to schedule exactly one
switch case and preferable to schedule a more resource in-
tensive one, but not at the expense of another mandatory ac-
tivity. For example, one of the Mars 2020 instruments takes
images to fill mosaics which can vary in size; for instance we
might consider 1x4, 2x4, or 4x4 mosaics. Taking larger mo-
saics might be preferable, but taking a larger mosaic takes
more time, takes more energy, and produces more data vol-
ume. These alternatives would be modeled by a switch group
that might be as follows:

SwitchGroup =

Mosaic1x4 d = 100 sec
Mosaic2x4 d = 200 sec
Mosaic4x4 d = 400 sec

(1)

The desire is for the scheduler to schedule the activ-
ity Mosaic4x4 but if it does not fit then try scheduling
Mosaic2x4, and eventually try Mosaic1x4 if the other two
fail to schedule. It is not worth scheduling a more consump-
tive switch case if doing so will prevent a future, lower pri-
ority mandatory activity from being scheduled due to lack
of resources. Because our computationally limited scheduler
cannot search or backtrack, it is a challenge to predict if a
higher level switch case will be able to fit in the schedule
without consuming resources that will cause another lower
priority mandatory activity to be forced out of the schedule.

Consider the following example in Figure 1 where the
switch group consists of activities B1, B2, and B3 and dB3

> dB2 > dB1. Each activity in this example also has one
start time window from Tistart to Tiend

.
B3 is the most resource intensive and has the highest pri-

ority so the scheduler will first try scheduling B3. As shown
in Figure 1a, scheduling B3 will prevent the scheduler from
placing activity C at a time satisfying its execution con-
straints. So, B3 should not be scheduled.

The question might arise as to why switch groups cannot
simply be scheduled last in terms of scheduling order. This is
difficult for several reasons: 1) We would like to avoid gaps

(a) Scheduling B3 first prevents activity C from
being scheduled within its start time window.

(b) B2 can be successfully scheduled without
dropping any other mandatory activities.

Figure 1: Challenge to Schedule Switch Cases.

in the schedule which is most effectively done by scheduling
primarily left to right temporally, and 2) if another activity
is dependent on an activity in a switch group, then schedul-
ing the switch group last would introduce complications to
ensure that the dependencies are satisfied.

The remainder of the paper is organized as follows. First,
we describe several plan wide energy constraints that must
be satisfied. Then, we discuss two guard approaches to
schedule preferred activities, which place conditions on the
scheduler that restrict the placement of switch cases under
certain conditions. We then discuss various versions of an
approach which emulates backtracking by reinvoking the
scheduler multiple times with the switch cases. We present
empirical results to evaluate and compare these approaches.

Energy Constraints
There are several energy constraints which must be satisfied
throughout scheduling and execution. The scheduling pro-
cess for each sol, or Mars day, begins with the assumption
that the rover is asleep for the entire time spanning the sol.
Each time the scheduler places an activity, the rover must be
awake so the energy level declines. When the rover is asleep
the energy level increases.

Two crucial energy values which must be taken into ac-
count are the Minimum State of Charge (SOC) and the Min-
imum Handover State of Charge. The state of charge, or
energy value, cannot dip below the Minimum SOC at any
point. If scheduling an activity would cause the energy value
to dip below the Minimum SOC, then that activity will not
be scheduled. In addition, the state of charge cannot be be-
low the Minimum Handover SOC at the Handover Time, in
effect when the next schedule starts (e.g., the handover SOC
of the previous plan is the expected beginning SOC for the
subsequent schedule).

In order to preserve battery life, the scheduler must also
consider the Maximum State of Charge constraint. Exceed-
ing the Maximum SOC hurts long term battery performance
and the rover will perform shunting. To prevent it from ex-
ceeding this value, the rover may be kept awake.

Enabling Limited Resource-Bounded Disjunction in Scheduling 87

Guard Approaches
First we will discuss two guard methods to schedule switch
cases, the Fixed Point guard and the Sol Wide guard. Both
of these methods attempt to schedule switch cases by re-
serving enough time and energy to schedule the remaining
mandatory activities. For switch groups, this means that re-
sources will be reserved for the least resource consuming
activity since it is mandatory to schedule exactly one ac-
tivity in the switch group. The method through which both
of these guard approaches reserve enough time to schedule
future mandatory activities is the same. They differ in how
they ensure there is enough energy. While the Fixed Point
guard reserves enough energy at a single fixed time point -
the time at which the least resource consuming switch case
is scheduled to end in the nominal schedule, the Sol Wide
guard attempts to reserve sufficient energy by keeping track
of the energy balance in the entire plan, or sol.

In this discussion, we do not attempt to reserve data vol-
ume while computing the guards as it is not expected to be
as constraining of a resource as time or energy. We aim to
take data volume into account as we continue to do work on
this topic.

Both the time and energy guards are calculated offline be-
fore execution occurs using a nominal schedule. Then, while
rescheduling during execution, the constraints given by the
guards are applied to ensure that scheduling a higher level
switch case will not prevent a future mandatory activity from
being scheduled. If activities have ended sufficiently early
and freed up resources, then it may be possible to resched-
ule with a more consumptive switch case.

Guarding for Time
First, we will discuss how the Fixed Point and Sol Wide
guards ensure enough time will be reserved to schedule re-
maining mandatory activities while attempting to schedule a
more resource consuming switch case.

If a preferred time, Tij preferred
, is specified for an activ-

ity, the scheduler will try to place an activity closest to its
preferred time while obeying all other constraints. Other-
wise, the scheduler will try to place the activity as early as
possible.

Each switch group in the set of activities used to create
a nominal schedule includes only the nominal, or least re-
source consuming switch case, and all activities take their
predicted duration. First, we generate a nominal schedule
and find the time at which the nominal switch case is sched-
uled to complete, as shown in Figure 2.

Figure 2: A, B1, C, and D are all mandatory activities in
the nominal schedule. TNominal is the time at which B1 is
scheduled to end.

We then manipulate the execution time constraints of the

more resource intensive switch cases, B2 and B3 in Figure
2, so that they are constrained to complete by TNominal as
shown in Equation 2. Thus, a more (time) resource consum-
ing switch case will not use up time from any remaining
lower priority mandatory activities. If an activity has more
than one start time window, then we only alter the one which
contains TNominal and remove the others. If a prior activ-
ity ends earlier than expected during execution and frees up
some time, then it may be possible to schedule a more con-
sumptive switch case while obeying the time guard given by
the altered execution time constraints.

TBij end
= TNominal − dBi

(2)

Since we found that the above method was quite con-
servative and heavily constrained the placement of a more
resource consuming switch case, we attempted a preferred
time method to loosen the time guard. In this approach, we
set the preferred time of the nominal switch case to its lat-
est start time before generating the nominal schedule. Then,
while the nominal schedule is being generated, the sched-
uler will try to place the nominal switch case as late as
possible since the scheduler will try to place an activity as
close to its preferred time as possible. As a result, TNominal

will likely be later than what it would be if the preferred
time were not set in this way. As per Equation 2, the lat-
est start times, TBij end

, of the more resource consuming
switch cases may be later than what they would be using
the previous method where the preferred time was not al-
tered, thus allowing for wider start time windows for higher
level switch cases. This method has some risks. If the nomi-
nal switch case was placed as late as possible, it could use up
time from another mandatory activity with a tight execution
window that it would not otherwise have used up if it was
placed earlier, as shown in Figure 3.

Figure 3: Scheduling B1 at its latest start time prevents C
from being scheduled within its start time window.

Guarding for Energy
Fixed Point Minimum State of Charge Guard The
Fixed Point method attempts to ensure that scheduling a
more resource consuming switch case will not cause the en-
ergy to violate the Minimum SOC while scheduling any fu-
ture mandatory activities by reserving sufficient energy at
a single, fixed point in time, TNominal as shown in Fig-
ure 4. The guard value for the Minimum SOC is the state
of charge value at TNominal while constructing the nominal
schedule. When attempting to schedule a more resource in-
tensive switch case, a constraint is placed on the scheduler so
that the energy cannot fall below the Minimum SOC guard
value at time TNominal. If an activity ends early (and uses

Enabling Limited Resource-Bounded Disjunction in Scheduling 88

fewer resources than expected) during execution, it may be
possible to satisfy this guard while scheduling a more con-
sumptive switch case.

Figure 4: A, B1, C, and D, are mandatory activities in the
nominal schedule. A constraint is placed so that the energy
cannot dip below Min SOC Guard V al at time TNominal

while trying to schedule a higher level switch case.

Fixed Point Handover State of Charge Guard The
Fixed Point method guards for the Minimum Handover SOC
by first calculating how much extra energy is left over in the
nominal schedule at handover time after scheduling all ac-
tivities, as shown in Figure 5.

Figure 5: A, B1, C, and D, are mandatory activities in the
nominal schedule. A constraint is placed so that the extra
energy a higher level switch case consumes cannot exceed
Energy Leftover.

Then, while attempting to place a more consumptive
switch case, a constraint is placed on the scheduler so that
the extra energy required by the switch case does not exceed
Energy Leftover from the nominal schedule as in Figure 5.
For example, if we have a switch group consisting of three
activities, B1, B2, and B3 and dB3 > dB2 > dB1 and each
switch case consumes e Watts of power, we must ensure that
the following inequality holds at the time the scheduler is
attempting to schedule a higher level switch case:

(dBi
× eBi

)− (dB1
× eB1

) ≥ Energy Leftover (3)

There may be more than one switch group in the sched-
ule. Each time a higher level switch case is scheduled, the
Energy Leftover value is decreased by the extra energy re-
quired to schedule it. When the scheduler tries to place a
switch case in another switch group, it will check against
the updated Energy Leftover.

Sol Wide Handover State of Charge Guard The Sol
Wide handover SOC guard only schedules a more resource
consumptive switch case if doing so will not cause the en-
ergy to dip below the Handover SOC at handover time. First,
we use the nominal schedule to calculate how much en-
ergy is needed to schedule remaining mandatory activities.

Having a Maximum SOC constraint while calculating this
value may produce an inaccurate result since any energy that
would exceed the Maximum SOC would not be taken into
account. So, in order to have an accurate prediction of the
energy balance as activities are being scheduled, this value is
calculated assuming there is no Maximum SOC constraint.
8. The Maximum SOC constraint is only removed while
computing the guard offline to gain a clear understanding
of the energy balance but during execution it is enforced

As shown in Figure 6, the energy needed to schedule the
remaining mandatory activities is the difference between the
energy level just after the nominal switch case has been
scheduled, call this E1, and after all activities have been
scheduled, call this energy level E2.

(a) E1 is the energy level of the nominal schedule with
no Maximum SOC constraint after all activities up to
and including the nominal switch case (A, D, B1) have
been scheduled.

(b) E2 is the energy level of the nominal schedule with
no Maximum SOC constraint after all activities in the
nominal schedule have been scheduled. The activities
were scheduled the following order: A, D, B1, C, E.

Figure 6: Calculating Energy Needed to Schedule Remain-
ing Mandatory Activities.

Energy Needed = E1− E2 (4)
Then, a constraint is placed on the scheduler so that the

energy value after a higher level switch case is scheduled
must be at least:

Energy Level ≥Minimum Handover SOC

+Energy Needed
(5)

By placing this energy constraint, we hope to prevent
the energy level from falling under the Minimum Handover
SOC by the time all activities have been scheduled.

Sol Wide Minimum State of Charge Guard While we
ensure that the energy will not violate the minimum Han-
dover SOC by keeping track of the energy balance, it is pos-
sible that scheduling a longer switch case will cause the en-
ergy to fall below the Minimum SOC. To limit the chance
of this happening, we run a Monte Carlo of execution of-
fline while computing the sol wide energy guard. We use
this Monte Carlo to determine if a mandatory activity was

Enabling Limited Resource-Bounded Disjunction in Scheduling 89

not scheduled due to a longer switch case being scheduled
earlier. If this occurs in any of the Monte Carlos of execu-
tion, then we increase the guard constraint in Equation 5.
We first find the times at which each mandatory activity was
scheduled to finish in the nominal schedule. Then, we run
a Monte Carlo of execution with the input plan containing
the guard and all switch cases. Each Monte Carlo differs in
how long each activity takes to execute compared to its orig-
inal predicted duration in the schedule. If a mandatory activ-
ity was not executed in any of the Monte Carlo runs and a
more resource consuming switch case was executed before
the time at which that mandatory activity was scheduled to
complete in the nominal schedule, then we increase the Sol
Wide energy guard value in Equation 5 by a fixed amount.
We aim to compose a better heuristic to increase the guard
value as we continue work on this subject.

Multiple Scheduler Invocation Approach
The Multiple Scheduler Invocation (MSI) approach em-
ulates backtracking by reinvoking the scheduler multiple
times with the switch cases. MSI does not require any pre-
computation offline before execution as with the guards and
instead reinvokes the scheduler multiple times during ex-
ecution. During execution, the scheduler reschedules (e.g.,
when activities end early) with only the nominal switch case
as shown in Figure 7a until an MSI trigger is satisfied. At
this point, the scheduler is reinvoked multiple times, at most
once per switch case in each switch group. In the first MSI
invocation, the scheduler attempts to schedule the highest
level switch case as shown in Figure 7b. If the resulting
schedule does not contain all mandatory activities, then the
scheduler will attempt to schedule the next highest level
switch case, as in 7c, and so on. If none of the higher level
switch cases can be successfully scheduled then the sched-
ule is regenerated with the nominal switch case. If activities
have ended early by the time MSI is triggered and resulted
in more resources than expected, then the goal is for this
approach to generate a schedule with a more consumptive
switch case if it will fit (assuming nominal activity durations
for any activities that have not yet executed).

There are multiple factors that must be taken into consid-
eration when implementing MSI:

When to Trigger MSI There are two options to trigger
the MSI process (first invocation while trying to schedule
the switch case):

1. Time Offset. Start MSI when the current time during exe-
cution is some fixed amount of time, X , from the time at
which the nominal switch case is scheduled to start in the
current schedule (shown in Figure 8).

2. Switch Ready. Start MSI when an activity has finished ex-
ecuting and the nominal switch case activity is the next
activity scheduled to start (shown in Figure 9).

Spacing Between MSI Invocations If the highest level
switch case activity is not able to be scheduled in the first in-
vocation of MSI, then the scheduler must be invoked again.
We choose to reschedule as soon as possible after the most
recent MSI invocation. This method risks over-consumption

(a) MSI has not yet begun. Currently, the
nominal switch case, B1, is scheduled.

(b) MSI begins. Scheduling the highest
level switch case, B3, prevents D from
being scheduled. Therefore, try B2.

(c) B2 is successfully scheduled along with the
other mandatory activities so MSI is complete.

Figure 7: Order of MSI Invocations.

Figure 8: MSI Time Offset.

of the CPU if the scheduler is invoked too frequently. To
handle this, we may need to rely on a process within the
scheduler called throttling. Throttling places a constraint
which imposes a minimum time delay between invocations,
preventing the scheduler from being invoked at too high of a
rate. An alternative is to reschedule at an evenly split, fixed
cadence to avoid over-consumption of the CPU; we plan to
explore this approach in the future.

Switch Case Becomes Committed In some situations, the
nominal switch case activity in the original plan may be-
come committed before or during the MSI invocations as
shown in Figure 10. An activity is committed if its scheduled
start time is between the start and end of the commit window
(Chien et al. 2000). A committed activity cannot be resched-
uled and is committed to execute. If the nominal switch case
remains committed, the scheduler will not be able to elevate
to a higher level switch case.

There are two ways to handle this situation:

1. Commit the activity. Keep the nominal switch case activ-
ity committed and do not try to elevate to a higher level
switch case.

2. Veto the switch case. Veto the nominal switch case so that
it is no longer considered in the current schedule. When
an activity is vetoed, it is removed from the current sched-
ule and will be considered in a future invocation of the
scheduler. Therefore, by vetoing the nominal switch case,

Enabling Limited Resource-Bounded Disjunction in Scheduling 90

(a) B1 is the nominal switch case. Since
an activity has not finished executing and
B1 is not the next activity, MSI cannot
begin yet.

(b) Since A finished executing early, and
B1 is the next activity, the MSI process
can begin.

Figure 9: MSI Switch Ready.

Figure 10: Switch case is committed during MSI. Tcurr is
the current time during execution. MSIstart is the time at
which MSI begins. The nominal switch case, B1, is commit-
ted when MSI begins.

it will no longer be committed and the scheduler will con-
tinue the MSI invocations in an effort to elevate the switch
case.

Handling Rescheduling After MSI Completes but before
the Switch Case is Committed After MSI completes,
there may be events that warrant rescheduling (e.g., an activ-
ity ending early) before the switch case is committed. When
the scheduler is reinvoked to account for the event, it must
know which level switch case to consider. If we successfully
elevated a switch case, we choose to reschedule with that
higher level switch case. Since the original schedule gener-
ated by MSI with the elevated switch case was in the past
and did not undergo changes from this rescheduling, it is
possible the schedule will be inconsistent and may lead to
complications while scheduling later mandatory activities.
An alternative we plan to explore in the future is to disable
rescheduling until the switch case is committed. However,
this approach would not allow the scheduler to regain time
if an activity ended early and caused rescheduling.

Empirical Analysis
In order to evaluate the performance of the above meth-
ods, we apply them to various sets of inputs comprised of
activities with their constraints and compare them against
each other. The inputs are derived from sol types. Sol types
are currently the best available data on expected Mars 2020
rover operations (Jet Propulsion Laboratory 2017a). In order
to construct a schedule and simulate plan execution, we use
the Mars 2020 surrogate scheduler - an implementation of
the same algorithm as the Mars 2020 onboard scheduler (Ra-

bideau and Benowitz 2017), but intended for a Linux work-
station environment. As such, it is expected to produce the
same schedules as the operational scheduler but runs much
faster in a workstation environment. The surrogate scheduler
is expected to assist in validating the flight scheduler imple-
mentation and also in ground operations for the mission (Chi
et al. 2018).

Each sol type contains between 20 and 40 activities. Data
from the Mars Science Laboratory Mission (Jet Propulsion
Laboratory 2017b; Gaines et al. 2016a; 2016b) indicates that
activity durations were quite conservative and completed
early by around 30%. However, there is a desire by the mis-
sion to operate with a less conservative margin to increase
productivity. In our model to determine activity execution
durations, we choose from a normal distribution where the
mean is 90% of the predicted, nominal activity duration.
The standard deviation is set so that 10 % of activity exe-
cution durations will be greater than the nominal duration.
For our analysis, if an activity’s execution duration chosen
from the distribution is longer than its nominal duration,
then the execution duration is set to be the nominal dura-
tion to avoid many complications which result from activ-
ities running long (e.g., an activity may not be scheduled
solely because another activity ran late). Detailed discussion
of this is the subject of another paper. We do not explicitly
change other activity resources such as energy and data vol-
ume since they are generally modeled as rates and changing
activity durations implicitly changes energy and data volume
as well.

We create 10 variants derived from each of 8 sol types by
adding one switch group to each set of inputs for a total of
80 variants. The switch group contains three switch cases,
Anominal, A2x, and A4x where dA4x

= 4 × dAnominal
and

dA2x = 2× dAnominal
.

In order to evaluate the effectiveness of each method, we
have developed a scoring method based on how many and
what type of activities are able to be scheduled successfully.
The score is such that the value of any single mandatory
activity being scheduled is much greater than that of any
combination of switch cases (at most one activity from each
switch group can be scheduled).

Each mandatory activity that is successfully scheduled,
including whichever switch case activity is scheduled, con-
tributes one point to the mandatory score. A successfully
scheduled switch case that is 2 times as long as the original
activity contributes 1/2 to the switch group score. A suc-
cessfully scheduled switch case that is 4 times as long as
the original, nominal switch case contributes 1 to the switch
group score. If only the nominal switch case is able to be
scheduled, it does not contribute to the switch group score
at all. There is only one switch group in each variant, so
the maximum switch group score for a variant is 1. Since
scheduling a mandatory activity is of much higher impor-
tance than scheduling any number of higher level switch
case, the mandatory activity score is weighted at a much
larger value then the switch group score. In the follow-
ing empirical results, we average the mandatory and switch
groups scores over 20 Monte Carlo runs of execution for
each variant.

Enabling Limited Resource-Bounded Disjunction in Scheduling 91

We compare the different methods to schedule switch
cases over varying incoming state of charge values (how
much energy exists at the start) and determine which meth-
ods result in 1) scheduling all mandatory activities and 2)
the highest switch group scores. The upper bound for the
theoretical maximum switch group score is given by an om-
niscient scheduler- a scheduler which has prior knowledge
of the execution duration for each activity. Thus, this sched-
uler is aware of the amount of resources that will be available
to schedule higher level switch cases given how long activ-
ities take to execute compared to their predicted, nominal
duration. The input activity durations fed to this omniscient
scheduler are the actual execution durations. We run the om-
niscient scheduler at most once per switch case. First, we try
to schedule with only the highest level switch case and if
that fails to schedule all mandatory activities, then we try
with the next level switch case, and so on.

First, we determine which methods are able to success-
fully schedule all mandatory activities, indicated by the
Maximum Mandatory Score in Figure 11. Since schedul-
ing a mandatory activity is worth much more than schedul-
ing any number of higher level switch cases, we only com-
pare switch group scores between methods that successfully
schedule all mandatory activities.

Figure 11: Mandatory score vs Incoming SOC for various
Methods to Schedule Switch Cases

In order to evaluate the ability of each method to schedule
all mandatory activities, we also compare against two other
methods, one which always elevates to the highest level
switch case while the other always elevates to the medium
level switch case. We see in Figure 11 that always elevat-
ing to the highest (3rd) level performs the worst and drops
approximately 0.25 mandatory activities per sol, or 1 activ-
ity per 4 sols on average while always elevating to the sec-
ond highest level drops close to 0.07 mandatory activities
per sol, or 1 activity per 14 sols on average. For comparison,
the study described in (Gaines et al. 2016a) showed that ap-
proximately 1 mandatory activity was dropped every 90 sols,
indicating that both of these heuristics perform poorly.

We found that using preferred time to guard against time

Figure 12: Switch Group Score vs Incoming SOC for Meth-
ods which Schedule all Mandatory Activities

caused mandatory activities to drop for both the fixed point
and sol wide guard (for the reason described in the Guarding
for Time section) while using the original method to guard
against time did not. We see in Figure 11 that the preferred
time method with the fixed point guard drops on average
about 0.04 mandatory activities per sol, or 1 activity every
25 sols while the sol wide guard drops on average about
0.1 mandatory activities per sol, or 1 activity every 10 sols.
We also see that occasionally fewer mandatory activities are
scheduled with a higher incoming SOC. Since using pre-
ferred time does not properly ensure that all remaining ac-
tivities will be able to be scheduled, a higher incoming SOC
can allow a higher level switch case to be scheduled, pre-
venting future mandatory activities from being scheduled.

The MSI approaches which veto to handle the situation
where the nominal switch case becomes committed before
or during MSI drop mandatory activities. Whenever an ac-
tivity is vetoed, there is always the risk that it will not be
able to be scheduled in a future invocation, more so if the sol
type is very tightly time constrained, which is especially true
for one of our sol types. Thus, vetoing the nominal switch
case can result in dropping the activity, accounting for this
method’s inability to schedule all mandatory activities. The
MSI methods that keep the nominal switch case committed
and do not try to elevate to a higher level switch case suc-
cessfully schedule all mandatory activities, as do the guard
methods.

We see that the Fixed Point guard, Sol Wide guard, and
two of the MSI approaches are able to successfully sched-
ule all mandatory activities. As shown in Figure 12, the Sol
Wide guard and MSI approach using the options Time Offset
and Commit result in the highest switch group scores clos-
est to the upper bound for the theoretical maximum. Both
MSI approaches have increasing switch group scores with
increasing incoming SOC since a higher incoming energy
will result in more energy to schedule a consumptive switch
case during MSI. The less time there is to complete all MSI

Enabling Limited Resource-Bounded Disjunction in Scheduling 92

invocations, the more likely it is for the nominal switch case
to become committed. Since we give up trying to elevate
switch cases and keep the switch case committed if this oc-
curs, fewer switch cases will be elevated. Because our time
offset value, X , in Figure 8 is quite large (15 minutes), this
situation is more likely to occur using the Switch Ready ap-
proach to choose when to start MSI, explaining why using
Switch Ready results in a lower switch score than Time Off-
set.

The Fixed Point guard results in a significantly lower
switch case score because it checks against a state of charge
constraint at a particular time regardless of what occurs dur-
ing execution. Even if a switch case is being attempted to
be scheduled at a completely different time than TNominal

in Figure 2, (e.g., because prior activities ended early), the
guard constraint will still be enforced at that particular time.
Since we simulate activities ending early, more activities
will likely complete by TNominal, causing the energy level
to fall under the Minimum SOC Guard value. Unlike the
Fixed Point guard, since the the Sol Wide guard checks if
there is sufficient energy to schedule a higher level switch
case at the time the scheduler is attempting to schedule it,
not at a set time, it is better able to consider resources re-
gained from an activity ending early.

We also see that using the Fixed Point guard begins to re-
sult in a lower switch group score with higher incoming SOC
levels after the incoming SOC is 80% of the Maximum SOC.
Energy is more likely to reach the Maximum SOC constraint
with a higher incoming SOC. The energy gained by an ac-
tivity taking less time than predicted will not be able to be
used if the resulting energy level would exceed the Maxi-
mum SOC. If this occurs, then since the extra energy cannot
be used, the energy level may dip below the guard value in
Figure 4 at time TNominal while trying to schedule a higher
level switch case even if an activity ended sufficiently early,
as shown in Figure 13.

Figure 13: Fixed Point Guard Schedules Fewer Mandatory
Activities with Higher Incoming SOC

Related Work
Just-In-Case Scheduling (Drummond, Bresina, and Swan-
son 1994) uses a nominal schedule to determine areas where
breaks in the schedule are most likely to occur and produces
a branching (tree) schedule to cover execution contingen-
cies. Our approaches all (re) schedule on the fly although the
guard methods can be vewied as forcing schedule branches
based on time and resource availability.

Kellenbrink and Helber (Kellenbrink and Helber 2015)
solve RCPSP (resource-constrained project scheduling

problem) where all activities that must be scheduled are not
known in advance and the scheduler must decide whether
or not to perform certain activities of varying resource con-
sumption. Similarly, our scheduler does not know which of
the switch cases to schedule in advance, using runtime re-
source information to drive (re) scheduling.

Integrated planning and scheduling can also be consid-
ered scheduling disjuncts (chosen based on prevailing con-
ditions (e.g., (Barták 2000))) but these methods typically
search whereas we are too computationally limited to search.

Discussion and Future Work
There are many areas for future work. Currently the time
guard heavily limits the placement of activities. As we saw,
using preferred time to address this issue resulted in drop-
ping mandatory activities. Ideally analysis of start time win-
dows and dependencies could determine where an activity
could be placed without blocking other mandatory activities.

Additionally, in computing the guard for Minimum SOC
using the Sol Wide Guard, instead of increasing the guard
value by a predetermined fixed amount which could result in
over-conservatism, binary search via Monte Carlo analysis
could more precisely determine the guard amount.

Currently we consider only a single switch group per
plan, the Mars 2020 rover mission desires support for mul-
tiple switch groups in the input instead. Additional work is
needed to extend to multiple switch groups.

Further exploration of all of the MSI variants is needed.
Study of starting MSI invocations if an activity ends early
by at least some amount and the switch case is the next ac-
tivity is planned. We would like to analyze the effects of
evenly spacing the MSI invocations in order to avoid relying
on throttling and we would like to try disabling rescheduling
after MSI is complete until the switch case has been commit-
ted and understand if this results in major drawbacks.

We have studied the effects of time and energy on switch
cases, and we would like to extend these approaches and
analysis to data volume.

Conclusion
We have presented several algorithms to allow a very com-
putationally limited, non-backtracking scheduler to consider
a schedule containing required, or mandatory, activities and
sets of activities called switch groups where each activity
in such sets differs only by its resource consumption. These
algorithms strive to schedule the most preferred, which hap-
pens to be the most consumptive, activity possible in the set
without dropping any other mandatory activity. First, we dis-
cuss two guard methods which use different approaches to
reserve enough resources to schedule remaining mandatory
activities. We then discuss a third algorithm, MSI, which
emulates backtracking by reinvoking the scheduler at most
once per level of switch case. We present empirical anal-
ysis using input sets of activities derived from data on ex-
pected planetary rover operations to show the effects of us-
ing each of these methods. These implementations and em-
pirical evaluation are currently being evaluated in the con-
text of the Mars 2020 onboard scheduler.

Enabling Limited Resource-Bounded Disjunction in Scheduling 93

Acknowledgments
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

References
Barták, R. 2000. Conceptual models for combined planning
and scheduling. Electronic Notes in Discrete Mathematics
4(1).
Chi, W.; Chien, S.; Agrawal, J.; Rabideau, G.; Benowitz, E.;
Gaines, D.; Fosse, E.; Kuhn, S.; and Biehl, J. 2018. Em-
bedding a scheduler in execution for a planetary rover. In
ICAPS.
Chien, S. A.; Knight, R.; Stechert, A.; Sherwood, R.; and
Rabideau, G. 2000. Using iterative repair to improve the
responsiveness of planning and scheduling. In Artificial In-
telligence Planning and Schedling, 300–307.
Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-case scheduling. In AAAI, volume 94, 1098–1104.
Gaines, D.; Anderson, R.; Doran, G.; Huffman, W.; Justice,
H.; Mackey, R.; Rabideau, G.; Vasavada, A.; Verma, V.; Es-
tlin, T.; et al. 2016a. Productivity challenges for mars rover
operations. In Proceedings of 4th Workshop on Planning
and Robotics (PlanRob), 115–125. London, UK.
Gaines, D.; Doran, G.; Justice, H.; Rabideau, G.; Schaffer,
S.; Verma, V.; Wagstaff, K.; Vasavada, A.; Huffman, W.; An-
derson, R.; et al. 2016b. Productivity challenges for mars
rover operations: A case study of mars science laboratory
operations. Technical report, Technical Report D-97908, Jet
Propulsion Laboratory.
Jet Propulsion Laboratory. 2017a. Mars 2020 rover mission
https://mars.nasa.gov/mars2020/ retrieved 2017-11-13.
Jet Propulsion Laboratory. 2017b. Mars science laboratory
mission https://mars.nasa.gov/msl/ 2017-11-13.
Kellenbrink, C., and Helber, S. 2015. Scheduling resource-
constrained projects with a flexible project structure. Euro-
pean Journal of Operational Research 246(2):379–391.
Rabideau, G., and Benowitz, E. 2017. Prototyping an on-
board scheduler for the mars 2020 rover. In International
Workshop on Planning and Scheduling for Space.

Enabling Limited Resource-Bounded Disjunction in Scheduling 94

Quantum Circuit Compilation:
An Emerging Application for Automated Reasoning

Davide Venturelli‡,∗, Minh Do†,∗∗, Bryan O’Gorman‡,×, Jeremy Frank†, Eleanor Rieffel†,
Kyle E. C. Booth+, Thanh Nguyen?, Parvathi Narayan±, Sasha Nanda∓

†Planning and Scheduling Group, NASA ARC; ‡Quantum Artificial Intelligence Laboratory, NASA ARC;
∗USRA Research Institute for Advanced Computer Science, USA; ∗∗Stinger Ghaffarian Technologies, Inc., USA;

+Dept. of Mechanical & Industrial Eng., University of Toronto, Canada; ?Computer Science Dept., Dartmouth College, USA;
±Computer Science Dept., Washington University in St. Louis, USA;

∓Physics Department, Caltech, USA ×Depts. of Chemistry and EECS, University of California, Berkeley, USA

Abstract

Quantum computing is an information processing paradigm
with the potential to solve certain problems faster than any
algorithm running on classical computer architectures. In the
next few years, new processors will be developed that sup-
port quantum computations exceeding the simulation abil-
ity of even the largest classical computer systems. A num-
ber of academic and industrial groups are developing pro-
totypes of such devices, also known as NISQ (Noisy Inter-
mediate Scale Quantum) processors. Much as software must
be compiled to run on classical computers, quantum algo-
rithms must be compiled to take into account the constraints
of particular NISQ devices. Especially in these early proto-
types, algorithm performance degrades with runtime due to
noise; for this reason, minimizing the runtime of the com-
piled algorithm (which is represented by a ”quantum circuit”)
is critical. We describe a software framework to enable an
automated reasoning approach to Quantum Circuit Compi-
lation for NISQ architectures (QCC-NISQ), and our current
implementation of it as part of software suite for automated,
architecture-aware, compilation for emerging quantum com-
puters. The key components of this suite are a circuit synthe-
sizer, a QCC solver, and a visualizer. These tools provide crit-
ical support for the continued development of practical quan-
tum computers and research into quantum algorithms.

1 Introduction
Quantum computing is an emerging computational
paradigm with the potential to solve certain problems faster
than any algorithm running on classical computer architec-
tures. The breadth of quantum computing applications will
become clearer in the next few years as new processors are
developed that support quantum computations exceeding
the simulation ability of even the largest classical supercom-
puters. The emerging gate-model noisy, intermediate scale
quantum (NISQ) processor units, currently in the prototype
phase, are universal in that, once scaled up, they can run
any quantum algorithm.

Much as software must be compiled to run on classi-
cal computers, quantum algorithms, also referred to as log-
ical quantum circuits, must be compiled to take into ac-
count the constraints of particular NISQ devices. Especially
in these early prototypes, algorithm performance degrades
with runtime due to noise; for this reason, minimizing the
runtime of the compiled circuit is critical. Current NISQ ar-

chitectures have geometric limitations (e.g., connectivity),
the specifics of which vary from processor to processor.
In this paper, we concentrate on the problem of produc-
ing optimally-compiled circuits given the geometric limita-
tions of the processor. Variants of this problem are known as
the qubit mapping, qubit routing, qubit allocation, and qubit
movement problem. We refer to this problem as Quantum
Circuit Compilation for NISQ architectures (QCC-NISQ).

We focus on solid-state architectures based on supercon-
ducting quantum bits (qubits), which are among the most
advanced NISQ processors. As one example of a geomet-
ric limitation, the planar architecture of these processors
means that quantum operations can be carried out only be-
tween nearest-neighbor locations (qubits). A variety of small
superconducting processors, with varying architectures, al-
ready exist. Such processors include the 20-qubit IBMQ20
by IBM made available through the Q-Network (IBM Corp.
2018); the 8-, 16-, and 19-qubit chips by Rigetti Comput-
ing (Rigetti Computing 2018), and the 72-qubit Bristlecone
processor unveiled recently by Google (Google AI Blog
2018). The 50-qubit Intel Tangle Lake chip (Intel Corp.
2018) and a new IBM 50-qubit device are under test and
evaluation. Other commercial players in the superconduct-
ing NISQ race include Alibaba (Alibaba Cloud 2018) and
Quantum Circuits Inc. (Ofek et al. 2016).

In this paper, we detail our software suite based around
applying AI Planning, aided by Constraint Programming
(CP), to solve the QCC-NISQ problem. Our suite targets:
(1) multiple gate-model quantum computing hardware plat-
forms built by different companies (specifically, at the time
of writing, Google, Rigetti, and IBM), and (2) different com-
binatorial optimization problems that can be solved with
specific quantum algorithms such as the quantum alternating
operator ansatz algorithm (QAOA) (Hadfield et al. 2019)
(e.g., Max-Cut, graph coloring, and job shop scheduling).
While we have previously published technical details on
how we model and solve the QCC-NISQ problem, in this
paper we report not only on the actual QCC-NISQ solver,
but also on our software suite in its entirety: its components,
engineering, and deployment in this promising application
area for AI technologies.

cba

Bernardini et al. (Eds): SPARK 2019 95

https://creativecommons.org/licenses/by-sa/4.0/

2 QCC for NISQ Devices
In the circuit model of quantum computation, a quantum
algorithm is expressed conceptually as a logical quantum
circuit, consisting of a series of quantum operations called
quantum logic gates. Quantum processors are physical de-
vices that implement these quantum logic gates so that the
desired quantum operations can be carried out on the quan-
tum states stored in the qubits. In simple cases, the quantum
logic gates directly correspond to physical quantum gates
on the quantum processor, but more typically the processor
has physical constraints that prevent a quantum logic circuit,
describing the desired algorithm, from being directly imple-
mented.

At a high level, these constraints can be classified into
two types: (1) gate set constraints (i.e., those that specify
the set of logic gates the processor is capable of applying),
and (2) geometric constraints (i.e., those that specify upon
which sets of qubits the available logic gates can be applied,
limited by, for example, processor connectivity). Although
these constraints differ among quantum processors, quan-
tum algorithms can be re-expressed respecting the processor
constraints with polynomial overhead in the number of gates
(Brierley 2017). As such, for theoretical algorithmic work,
the design of logical quantum circuits without concern for
the implementation constraints of physical devices is suf-
ficient. However, to implement a quantum algorithm on an
actual device, these constraints must be efficiently addressed
to take full advantage of NISQ processors.

In this work, we focus on a particular approach to address-
ing geometric constraints associated with processor connec-
tivity. The approach maps logical qubits to physical qubits
on the processor and iteratively updates the mapping through
the insertion of additional gates in the course of the com-
putation so as to enable the logical operations to be imple-
mented respecting the physical contraints. This problem is
often referred to as “quantum compilation,” though quan-
tum compilation usually involves addressing gate set con-
straints as well as geometric (e.g., connectivity) constraints.
Another simple constraint is that gates involving the same
qubit cannot be executed in parallel. A generalization of this
constraint is a “cross-talk” constraint that may prevent gates
in physical proximity from being executed at the same time
(Booth et al. 2018).

QCC-NISQ frequently requires adding supplementary
operations supported by the hardware to those specified
in the idealized circuit. Current superconducting quantum
processors have planar architectures with connections only
between nearest-neighbor locations (qubits), resulting in
restrictions as to where gates can be applied. Specifically,
a gate can operate only on qubit states located on adjacent
qubits on the chip. To compensate for the nearest-neighbor
limitation, swap gates can move qubit states between
connected qubits to reach a configuration where the desired
gate, specified in the idealized circuit, can be applied. Cur-
rent quantum computational hardware suffers greatly from
decoherence (akin to noise), which degrades the fidelity of
the computation (Bishop 2017). In NISQ processors, deco-
herence is intimately linked to the duration of the executed
circuit that carries out the quantum computation, so it is

X

X

q1
q2
q3
q4

q8

q1

q2

q3

q4

q5
q6

q7

q8

n1

…

Idealized Quantum
Circuit: sequential gates,

no hardware
constraints

Idealized Quantum
Hardware: commuting

gates, no hardware
constraints

n8

n7

n3

n4

n5

n2

n6

NISQ Chip: nearest
neighbor constraints,

different gate durations
(red/blue arcs),

swap gates (curved arcs),
crosstalk constraints (Xs),

initialization
qi -> ni (dashed arc)

Figure 1: Pictorial view of QCC-NISQ concepts. At the
highest level, an idealized quantum circuit specifies a se-
quence of quantum logical gates over qubit states that
solves a specified problem (top). The idealized quantum cir-
cuit could conceptually be implemented on fully-connected
quantum hardware in which gates can be carried out between
all pairs of physical qubits, which is depicted here by a fully-
connected graph. Qubit states in an idealized quantum cir-
cuit are mapped onto physical qubits in the fully-connected
architecture. At this level, gates are specified between phys-
ical qubits and can be executed in parallel if they do not in-
volve the same qubit (middle). In an actual NISQ chip, phys-
ical gates can only be carried out between a subset of pairs
of qubits, usually nearest neighbors in a 1D or 2D array. To
carry out 2-qubit gates specified in idealized quantum cir-
cuits between qubits that are not connected, swap gates are
added to route logical qubit states to physical qubits that are
connected so that the desired gates can be applied (bottom).

critical to minimize the duration of compiled circuits. Thus,
compilation is challenging due to: the parallel execution of
gates with different durations, the planar or quasi-planar
topology of the qubit locations on the chip, the ordering
constraints from the original idealized circuit, as well as
additional constraints such as cross-talk.

Example: Figure 1 shows a concrete QCC example requir-
ing gate operations gA = G(q1, q2) and gB = G(q3, q8). At
the top, the algorithm is specified, as is typically done in the
gate-model quantum computing literature, as an idealized
quantum circuit, with sequential specifications of 2-qubit
gates over qubit states. There are no hardware constraints;
further, some ordered pairs of gates in the idealized circuit
may commute (i.e., could execute in arbitrary order, even
simultaneously, and still produce correct results). A fully-
connected quantum hardware, with no hardware constraints

Quantum Circuit Compilation: An Emerging Application for Automated Reasoning 96

except that two gates involving the same qubit cannot be
carried out at the same time, is represented in the middle
as a complete graph connecting all possible pairs of qubits.
The gates gA and gB are indicated as a subset of this graph
(yellow edges). A corresponding real-world NISQ chip has
gates between only a small subset of qubit pairs (bottom).
For instance, the gates acting respectively on qubit states q1
and q2 and on q3 and q8 can be executed, even concurrently,
when these states are located at pairs qubits connected in
the chip. Furthermore, on the actual chip, gate execution du-
rations may differ depending on the actual location they are
executed, indicated by red or blue edges in the chip (bottom).
Cross-talk constraints preclude operations on qubits that are
physically located nearby an activated gate. A 2-qubit gate
operating on the quantum state residing on qubit n1 and n2

will prevent any other gate operating concurrently on n3 or
n8; this is shown by the yellow Xs (bottom). In this example,
we assume the initial assignment of quantum states to qubits
allocates qi to qubit ni, shown as a dashed line. We see that
gA can be applied immediately, but gB involves two qubit
states that are not mapped to nearest neighbors. One solu-
tion is for the QCC software to add additional “swap” gates.
For instance, swap(n1, n8) and concurrently swap(n2, n3),
shown in bold (bottom), will bring the states q3 and q8 to
qubits where gB can be applied. This highlights that the
QCC procedure can also determine the initial assignment
task (i.e., decide the initial qubit location for each qubit state
on the idealized hardware) to optimize the gate schedule. For
example, the QCC solver could decide to initialize q3 and q8
on two adjacent qubits on the actual hardware chip, avoiding
all swaps for executing the idealized circuit in question.

To summarize, to compile from the idealized quantum
circuit illustrated at the top of Figure 1 consisting of two
gates {G(q1, q2),G(q3, q8)} and no hardware constraints,
into the sequence of (parallel) gates that can be executed in
the actual NISQ hardware chip at the bottom of Figure 1,
the QCC solver will: (1) first find the initial locations for the
four qubit states q1, q2, q3, and q8 on the NISQ chip; then
(2) add auxiliary swap gates to bring the two pairs (q1, q2)
and (q3, q8) to adjacent physical qubits that are connected
and execute the required operations; and (3) schedule all
the gates, each with possibly different duration, to execute
in parallel in the shortest amount of time, while obeying all
hardware constraints such as cross-talk constraints.

Existing Work on QCC: Since the development of NISQ
superconducting processors, there has been development of
software libraries to synthesize and compile quantum cir-
cuits from algorithm specifications (Wecker and Svore 2014;
Smith, Curtis, and Zeng 2016; Steiger, Häner, and Troyer
2018; Barends and others 2016), including work explicitly
addressing theoretical bounds on the overhead introduced by
swap gates (Beals and others 2013; Brierley 2017; Bremner,
Montanaro, and Shepherd 2017). Recently, it was proven
that the QCC problem and its common variants are NP-
Complete (Botea, Kishimoto, and Marinescu 2018). (Bhat-
tacharjee and Chattopadhyay 2017) investigated approaches
with off-the-shelf MILP solvers, such as Gurobi, for solv-
ing QCC. (Guerreschi and Park 2018; Zulehner and Wille

2018) developed heuristics that address NISQ constraints
while minimizing the number of required swap gates. The
initial assignment task has been recently addressed in (Paler
2019). Policies for compilation in chips with variable per-
formance parameters among different qubits and gates have
been studied in (Tannu and Qureshi 2018), as well as in (Mu-
rali et al. 2019). In (Oddi and Rasconi 2018; Rasconi and
Oddi 2019), the authors present heuristics (greedy random-
ized search, and genetic algorithms) specifically designed to
solve the QCC Max-Cut benchmark set that was introduced
in (Venturelli et al. 2018). In (Booth et al. 2018), CP is ex-
plored as an alternative and complementary approach to the
temporal planning methods introduced in (Venturelli et al.
2018). Other methods are proposed in (Li, Ding, and Xie
2018) and in (Childs, Schoute, and Unsal 2019), where the
crosstalk-free compilation of circuits is handled heuristically
on benchmarks for the IBM chip. In (Khatri et al. 2018),
an approach based on iteratively learning a sequence of na-
tive gate implementing a target unitary is introduced, solving
the problem of compilation with that of gate-synthesis at the
same time, for small shallow circuits. Another recent learn-
ing approach in (Jones and Benjamin 2018) converts the ap-
proximate compilation problem into an auxiliary quantum
variational algorithm native on the hardware. In (Nash, Ghe-
orghiu, and Michele 2019) and (Kissinger and Meijer-van de
Griend 2019) the QCC problem is solved heuristically for
circuits consisting of CNOT gates only.

3 Automated Reasoning for QCC-NISQ
Our approach to solve the QCC-NISQ problem is to deploy
a general-purpose software suite that leverages model-based
approaches, including temporal planning and constraint
programming (CP) for the solution of the actual combinato-
rial problem. Since quantum computing is still a relatively
new paradigm, different quantum hardware architectures
and algorithms running on them are introduced and revised
frequently, with no current clear winner. Therefore, instead
of a machine-specific QCC tool, there is a tremendous
benefit in developing a general-purpose QCC software suite
that is capable of addressing different hardware architec-
tures, different quantum algorithms running on them, and
different optimization problems that can be solved by those
algorithms. Furthermore, our approach is a very attractive
option because: (1) declarative model adjustment (e.g.,
through a declarative planning model) can adapt quickly
to revised hardware designs and constraints, and can also
cover a wide range of hardware architectures; (2) existing
hardware from various companies are still limited in size,
thus even general-purpose algorithms can quickly find good,
sometimes proven optimal, solutions.

Why AI Planning? In planning, a planner searches for a
set of actions that can be executed in sequence to achieve
the pre-defined set of goals, while satisfying all domain
constraints. In model-based temporal planning, specifically
PDDL-based planning, actions can have different durations
and can be executed in parallel. We choose planning to be
the center piece of the QCC solver suite because:

Quantum Circuit Compilation: An Emerging Application for Automated Reasoning 97

• The action model and plan constraints in PDDL planning
can be used to describe gate operation naturally, capturing
chip layout, gate duration, and domain constraints such as
“cross-talk”. This flexibility lets us model various chips
from all of the groups mentioned above developing NISQ
chips.

• Any new adjustment or hardware updates from the man-
ufacturer can also be reflected easily in planning model
updates, without extensive writing of new software.

• The default objective function of optimizing makespan for
most temporal planners fits well with quantum decoher-
ence (discussed in the previous section).

• There are multiple off-the-shelf open-sourced PDDL tem-
poral planners that have been tested through multiple In-
ternational Planning Competitions (IPC), providing a rich
set of algorithms, ranging from exact to anytime, to test
on the NISQ-QCC problem.

For more details on the AI planning approach to NISQ-
QCC, see (Venturelli et al. 2018).

Why Constraint Programming? Constraint Programming
(CP) is a paradigm for modeling and solving combinato-
rial optimization problems, leveraging a diverse set of tech-
niques from fields including operations research and arti-
ficial intelligence (Rossi, Van Beek, and Walsh 2006). CP
is more general than other discrete optimization paradigms,
such as integer programming, as it allows variable types be-
yond integer and continuous (e.g., interval and set variables),
and drops the linearity on the constraints and objective func-
tion. CP complements PDDL-based planning for the QCC
software suite for a number of reasons, including:
• The scheduling characteristics of QCC (i.e., gate du-

rations, precedence constraints, makespan minimization,
and unary qubit capacity) are readily modeled within
modern CP solver software.

• Solutions found by PDDL-based planning or a heuristic
method can be used as a starting point for the CP search,
leading to subsequently better solutions.

• The CP search is an exact algorithm, ensuring that, given
enough runtime, the optimal quantum circuit compilation
will be found. Additionally, modern CP solvers provide
anytime bounds on solution quality in the form of an op-
timality gap.

For more details on the CP approach to optimize circuits
together with planners, see (Booth et al. 2018).

4 System Architecture
The objective of the whole framework is to provide to quan-
tum computing researchers the ability to efficiently deploy
executables of specific quantum algorithms by keeping con-
trol over the tradeoffs imposed by the different choices re-
lated to what strategy to adopt to solve the QCC-NISQ prob-
lem. While the key component of our suite is the QCC solver
that does the compilation, multiple additional tools comple-
ment the software suite.

Schedule

Problem Instance
Machine Specs

Quantum Computer Interface
(or Simulator)

Visualizer

Op�mizer

QCC
Solver

Algorithm parameters

Abstract Device
Circuit DAG

Synthesizer

Gate
Decomposi�ons

Planner

Planning Instance Machine Code Generator

Executable Circuit
Circuit Plan

Figure 2: The software suite architecture. Arrows indi-
cate input-output relationship between data structures (black
text) and software components (red text). The visualizer can
be optionally available (dashed lines) to display the data
structure that interacts with the QCC solver in a compelling
way. See text of section 4 for details.

Figure 2 shows the architecture of our software suite, with
the initial inputs provided by the users consisting of two
main components: the problem instance containing details
on the problem for which we attempt to solve using a quan-
tum algorithm, and the machine configuration specifying the
details of the gate-model quantum chip (e.g., physical lay-
out, gate durations, constraints). (A third input, the algo-
rithm parameters, concerns the setting of the classical pa-
rameters of the gates once they are already compiled, and
will be discussed in connection with the generation of the
executable.)

These inputs are provided to the Synthesizer that gen-
erates three different outputs (described in later sections),
that can be fed into two other components: the QCC Solver
and the Machine Code Generator (MCG). The QCC Solver
generates planning problems in the standard Planning Do-
main Definition Language (PDDL) and generates plans in
the standard IPC format, which can then be parsed in a cir-
cuit plan representation or fed into the CP solver (the ”opti-
mizer”) to generate a better quality solution.

The last two components are: the Visualizer, which can
show graphically the machine logical layout, the high-level
problem specifications, and the QCC solutions; and the
Machine Code Generator, which maps the QCC solution
and information on how to synthesize gates onto a particular
hardware architecture to produce the machine-specific
executable file (e.g. a python script) that can submit a job on
the cloud to a quantum NISQ device through its public API.

In the rest of this section, we will describe in more detail
the different components and their inputs and outputs.

(Circuit) Synthesizer (CS): the CS is in charge of two main
tasks: (1) generate the low-level gate synthesis (gate decom-

Quantum Circuit Compilation: An Emerging Application for Automated Reasoning 98

positions) to act as one input to the MCG; and (2) generate
the inputs for the QCC Solver (circuit DAG and abstract de-
vice).

The first task is meant to decompose the abstract gates,
which appear in the idealized circuit of the quantum al-
gorithm, into elementary gates supported by the hardware,
whose duration in nanoseconds is known at all possible loca-
tions in the chip. This decomposition is known as the gate-
synthesis problem. It is non-trivial in the general case, but
for many quantum algorithms and for standard universal el-
ementary gate sets, optimal decompositions are known. Cur-
rently, the CS implementation just consists of a lookup li-
brary of known decompositions into elementary gates 1. This
decomposition library has been found by various methods,
including proven optimal results (Vatan and Williams 2004).
The CS assigns a total duration (in standardized clock units)
to each possible logical gate, to inform the second compo-
nent of the module that will have to generate the input files
to the QCC solver.

The second task is to instantiate an abstract device soft-
ware object, which is representing the topology of the hard-
ware but is aware only of the different types of gates that
need to be scheduled (including swaps), which are repre-
sented as edges, and their duration obtained through syn-
thesis (the edge weight). The abstract device includes infor-
mation about crosstalks/simultaneity constraints in the form
of an extra graph whose vertices are the edges of the hard-
ware graph and whose edges indicate impossibility of con-
current gate operations using the corresponding edges of the
hardware graph. Fig. 1 (bottom) is a pictorial representa-
tion of some informations contained in the abstract device.
While the properties described in the Abstract Device in-
stance are tailored to the QCC solver capabilities, the device
class should be used by different solvers. For instance, if a
non-temporal method is used as a solver instead of temporal
planning, the gate durations could be discarded.

Finally, the CS composes a Directed Acyclic Graph (Cir-
cuit DAG) representation of the problem instance, which
takes care of defining the partial ordering rules of the gates
composing the circuit. The vertices of the DAG correspond
to gates on specified qubits and the arcs correspond to
precedence constraints; operations that are incomparable by
this relation can be scheduled in any order relative to each
other. This freedom arises naturally in quantum computation
for quantum gates that “commute” with each other, i.e.,
produce the same effect regardless of the order in which
they are applied. But can also be used in the context of
heuristic algorithms that try to balance the effectiveness of
the logical circuit and cost of implementing it as a physical
circuit. The DAG includes only the synthesized two-qubit
gates that are necessary for the logical description of the
algorithm.

QCC Solver: The QCC solver takes the SC input and pro-
duces internally the PDDL files that represent the planning
instances. The ultimate objective of this module is to output

1Elementary gates might include CZ, CNOT, iSWAP, the
PhasedXPowGate of Google’s chip and single qubit rotation gates.

the circuit plan, which is the compiled representation of the
target algorithm. The following options are currently imple-
mented:
• With/without cross-talk constraints: specifying whether

or not the underlying hardware has cross-talk constraints
between adjacent qubits; see Figure 1 (bottom).

• With/without qubit initialization: specifying whether or
not the QCC Solver should decide (as part of the plan-
ning objective) the mapping of specific qubits to quan-
tum states at the beginning of the algorithm; see Figure 1
(dashed line, middle-bottom).

• Single or multiple phases: specifying if the idealized
circuit should be executed multiple times in sequence
(see Section 2). This is particularly important for QAOA
circuits, which require insertion of alternating “phase-
separation” and “mixing” sets of gates to increase the ac-
curacy of the solution returned by the algorithm. Require-
ments on running multiple phases will lead to CS gener-
ating PDDL files with different sets of actions and goals.
The planning instance is processed by a Planner to obtain

a temporal plan, which is a sequence of gates to be executed
on the designated hardware architecture. Specifically, at the
moment we use two different macro-approaches to generate
the final plan2:

• Use off-the-shelf temporal planners that can take the stan-
dard PDDL input. The following planners have been used:
LPG, TFD, POPF, CPT, and SGPlan; all previous winners
at different IPC. The performance of different individual
planners is reported on in (Venturelli et al. 2018).

• Use a combination of planning and CP in a hybrid setting
where plans found by any temporal planner can then be
used to warm-start (i.e., seed) the CP model that in turn is
solved by the commercial software CP Optimizer to find
a new, better quality plan. The evaluation of this approach
is described in (Booth et al. 2018) 3.

Results on the use of the QCC solver with the various
variants for MaxCut QAOA are presented in (Venturelli et
al. 2018) and (Booth et al. 2018). The QCC solvers have
been also configured for tests on Graph Coloring, which are
currently being performed. The versatility of our approach
utilizing off-the-shelf domain-independent PDDL temporal
planners is reflected in the ability to quickly test machine
models from different companies (Rigetti, Google, IBM) at
different scales and diffferent chip layouts, for different set
of gate operations, gate durations, and gate constraints.

Figure 3 shows the visualizer displaying a single phase
of QAOA to solve a Maxcut problem (referred to below as
Maxcut-QAOA) on the Google Bristlecone chip. The figure
shows the following components:
• Goal Graph: at the top-left corner, the goal graph shows

the gates to be scheduled (colored edges) according to the
2The plans generated either by planner or CP Optimizer are val-

idated by the official plan validator software VAL before passing on
to the next component.

3The CP model is not automatically generated.

Quantum Circuit Compilation: An Emerging Application for Automated Reasoning 99

Figure 3: Our visualizer interface with: Goal Graph (top-left), Machine Graph (top-right), and QCC plan (bottom).

idealized quantum circuit. For Maxcut-QAOA, the goal
graph is identical to the actual graph that we want to cut.
The goal graph contains essentially information related to
the circuit DAG (Fig. 2).

• Machine Graph: at the top-right corner, the machine
graph represents the underlying logical layout of the
NISQ processor target (in this case, a portion of Google’s
Bristlecone chip). Multiple connections between a given
pair of qubits represent different types of gates that can
be applied to the nearest-neighbor connected qubits. Each
type of gate has a different duration. The machine graph
contains essentially information related to the abstract de-
vice (Fig. 2).

• QCC plan: this shows the temporal schedule of gate op-
erations as a Gantt chart, each with its starting time, du-
ration, and the qubits involved in that particular gate op-
eration. The gates are color coded to match the high-level
goals (see the matching edge color on the Goal Graph
described above). Sliding over the timeline of this Gantt-
chart representation will also highlight on the machine
graph the qubit set and the active gates operating on that
set, at the timepoint selected on the timeline of the plan.
For reference, in Figure 3, the slider has been set on time
slot number 5. The QCC plan contains essentially the
same information related to the circuit plan (Fig. 2).
For the case of graph coloring, the QAOA algorithm

logical gates require multiple kind of two qubit gates,
as explained in (Hadfield et al. 2019). A more advanced
visualizer that is able to show the various steps by using
different colors, graphic notations and animations is under
development.

Machine Code Generator (MCG): this component out-
puts the machine instructions that perform the compiled
algorithm on the target quantum processor or in a simulator
(the Executable circuit). The MCG integrates the abstract
QCC solution (the circuit plan) with the gate synthesis in-
structions generated by the CS, and sets the parameters that
are required for the execution of the algorithm, which are
given as inputs (Algorithm parameters). More specifically,
it unwinds the duration abstraction of the gates that has
been scheduled and replaces the composite gate with the
code that activates the exact sequence of native gates on
the chip with the correct parameters. For instance, for the
case of QAOA, these includes the angles for the alternating
unitary transformations that compose the algorithm. The
algorithm specifications not only set the individual gate
parameters, but also many control-loop policies for hybrid
classical-quantum computation. Examples include the mea-
surement and accuracy evaluation functions that determine
whether the algorithm needs to be iterated one more time
with different parameters after execution.

Current deployment and implementation details: The
software suite we describe ultimately will be integrated with
the general software framework for programming quantum
processors QuaSar (NASA’s Quantum user-assisting Soft-
ware for applied research. QuaSar is a high-level back-
end and frontend system, soon to be released, which sup-
port transparent inter-operability between code written for
most quantum computers that released APIs, including Cirq,
Rigetti Computing PyQuil as well as QASM 2.0.

Quantum Circuit Compilation: An Emerging Application for Automated Reasoning 100

The current implementation of the CS, and of the
QCC Solver is in Cirq (Google AI 2018)4, an opensource
framework that conveniently abstracts several aspects of
temporal manipulation of operations in quantum circuits.
This excludes the actual implementation of the planner
and the CP optimizer, that varies case by case (they
are considered external black boxes to be interfaced).
The output of the MCG is a Cirq schedule object; such
an object can be run directly on Google’s hardware or
converted by QuaSar to the common quantum circuit for-
mat QASM for compatibility with other hardware providers.

Relation to existing work on software frameworks: as re-
viewed in (LaRose 2019), most quantum computing com-
panies have released software frameworks that allow end-
to-end deployment of quantum algorithms. These packages
could be as simple as generic wrappers around machine in-
struction languages, or include suites for handling specific
aspects. For instance, Xanadu’s PennyLane focuses on facil-
itating aspects of development of (quantum) machine learn-
ing algorithms (Bergholm et al. 2018), Microsoft’s Quantum
Development Kit (Svore et al. 2018) focuses on resource
estimation for fault-tolerant quantum computers, and Zap-
ata’s algo2qpu (Sim et al. 2018) focuses attention on the
hybridization of variational algorithms with classical opti-
mization techniques.

Our framework focuses on facilitating the optimization of
the compilation by allowing the user to use alternative com-
pilation strategies, possibly hybridizing them, and allowing
the inspection of the results of the compilation.

5 Conclusions and Future Work
We have introduced a framework for applying AI Planning
to the QCC-NISQ problem, and developed a software suite
that implements components of that framework. The frame-
work and suite are completely general and can be used to tar-
get quantum computing hardware devices of different types
and by different companies. Different planning algorithms,
complemented by hybrid algorithms using Constraint Pro-
gramming, can be used to compile a qunatum circuit to a
specified hardware device. The compiled circuit can be vi-
sualized, enabling users to understand how the compilation
of the circuit interacts with the constraints of the device. The
resulting compiled circuit can then be run on actual hard-
ware, or simulators therof, by different companies. The flex-
ibility of declarative AI planning models allows us to solve
the QCC-NISQ problem for these diverse hardware architec-
tures, and to evolve our solutions as the details of the hard-
ware evolve.

The suite integrates several planners (LPG, POPF, TFD,
CPT, and SGPlan), together with IBM’s CP Optimizer suite,
the best performing commercial software of its kind. We
have generated tens of thousands of instances of the QCC-
NISQ problem based on pairing QAOA for MaxCut on ran-
dom graphs with quantum computer architectures of varying
size and constraints. Performance comparisons of different
planners and hybrid approaches are reported in (Booth et

4https://github.com/quantumlib/Cirq

al. 2018; Venturelli et al. 2018) and benchmark instances
are available online5 and have already been used to test
other QCC-NISQ solver approaches (e.g. in (Oddi and Ras-
coni 2018)). Future hybrid efforts are under development,
including the use of different planners hybridized with LPG,
which can take as input a “seed” plan. While CP improves on
seed plans, it requires a separate modeling effort; hybridiz-
ing multiple planners uses multiple algorithms but requires
no additional modeling effort.

We claim that a general-purpose software suite built on
declarative planning algorithms and constraint programming
is a promising approach to addressing the constraints of
NISQ devices. A highly optimized problem-specific tool
may perform better in some cases, but at the cost of signif-
icant engineering effort that cannot be reused for new prob-
lems. Our model-based, automated reasoning approach is
very flexible with respect to features of the hardware graph,
including irregular structures, as often arise from manufac-
turing imperfections. The ease and expressiveness of PDDL
modeling facilitates the inclusion of additional features that
are characteristic of quantum computer architectures, such
as the ability to quantum teleport quantum states across the
chip (Copsey et al. 2003), providing more flexibility than
mere nearest-neighbor swap.

The modularity of the software suite we introduced al-
lows it to be improved iteratively, giving a foundation for
future work on the application artificial intelligence methods
to quantum computing. Here, we focused on the makespan
of the compiled circuit as the objective function to minimize,
but data from ongoing experimental work will likely yield
more sophisticated quantities to optimize. We are also ac-
tively looking at compiling circuits corresponding to QAOA
for different combinatioral optimization problems (e.g. job
shop scheduling), many of which involve new types of
multi-qubit gates with different characteristics from the sim-
ple ones used in illustrative examples in this paper and in
other introductory publications. Another avenue of exten-
sion of our work is to generalize the NISQ-QCC problem
and our software suite to the specificities of quantum pro-
cessors that are dramatically different than superconducting
NISQ devices. For instance, soon to made available Ion-
trap processors such as the one of IonQ (Nam et al. 2019)
or of Honeywell International Inc. feature a number fully-
connected cells of qubits (where qubits interact through a
different set of native gates than the ones of superconduct-
ing processors) which are in communinication to each other
through the ability to swap quantum information via pho-
tonic interfaces. In a future work, we intend to provide ex-
amples for different architectures including sample code. We
plan to make the architecture available (to be interfaced with
a planner and optionally a CP optimizer) as an opensource
package.

Finally we believe that our approach should be
of great interest to the community developing low-
level quantum compilers for generic architectures
(Steiger, Häner, and Troyer 2018; Häner et al. 2018),

5https://ti.arc.nasa.gov/m/groups/asr/planning-and-schedul-
ing/QCC ICAPS18.zip.

Quantum Circuit Compilation: An Emerging Application for Automated Reasoning 101

to designers of machine-instructions languages for
quantum computing (Smith, Curtis, and Zeng 2016;
Bishop 2017), and to developers of unifying frameworks
for quantum computing software toolchains and interface to
solvers (McCaskey et al. 2018).

Acknowledgement: The authors would like to acknowledge
support from the NASA Advanced Exploration Systems pro-
gram, NASA Academic Mission Services (NNA16BD14C)
and the NASA Ames Research Center. B.O. was supported
by a NASA Space Technology Research Fellowship.

References
Alibaba Cloud. 2018. Alibaba Cloud and CAS Launch
One of the Worlds Most Powerful Public Quantum Comput-
ing Services. http://engineering.purdue.edu/
˜mark/puthesis.
Barends, R., et al. 2016. Digitized adiabatic quan-
tum computing with a superconducting circuit. Nature
534(7606):222–226.
Beals, R., et al. 2013. Efficient distributed quantum com-
puting. Proceedings of the Royal Society A. 469(2153):767
– 790.
Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; and Kil-
loran, N. 2018. Pennylane: Automatic differentiation of
hybrid quantum-classical computations. arXiv:1811.04968.
Bhattacharjee, D., and Chattopadhyay, A. 2017. Depth-
optimal quantum circuit placement for arbitrary topologies.
arXiv:1703.08540.
Bishop, L. S. 2017. QASM 2.0: A quantum circuit inter-
mediate representation. Bulletin of the American Physical
Society 62.
Booth, K. E. C.; Do, M.; Beck, J. C.; Rieffel, E.; Venturelli,
D.; and Frank, J. 2018. Comparing and integrating con-
straint programming and temporal planning for quantum cir-
cuit compilation. In Proceedings of the Twenty-Eighth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS2018), 366–374.
Botea, A.; Kishimoto, A.; and Marinescu, R. 2018. On the
complexity of quantum circuit compilation. In Proceedings
of the Eleventh International Symposium on Combinatorial
Search (SoCS2018), 138–142.
Bremner, M. J.; Montanaro, A.; and Shepherd, D. J. 2017.
Achieving quantum supremacy with sparse and noisy com-
muting quantum computations. Quantum 1:8.
Brierley, S. 2017. Efficient implementation of quantum cir-
cuits with limited qubit interactions. Quantum Information
& Computation 17(13-14):1096–1104.
Childs, A. M.; Schoute, E.; and Unsal, C. M. 2019.
Circuit transformations for quantum architectures.
arXiv:1902.09102.
Copsey, D.; Oskin, M.; Impens, F.; Metodiev, T.; Cross, A.;
Chong, F. T.; Chuang, I. L.; and Kubiatowicz, J. 2003. To-
ward a scalable, silicon-based quantum computing architec-
ture. IEEE Journal of Selected Topics in Quantum Electron-
ics 9(6):1552–1569.

Google AI Blog. 2018. A Preview of
Bristlecone, Googles New Quantum Processor.
https://ai.googleblog.com/2018/03/
a-preview-of-bristlecone-googles-new.
html.
Google AI. 2018. Cirq, a python framework for
creating, editing, and invoking Noisy Intermediate Scale
Quantum (NISQ) circuits. https://github.com/
quantumlib/Cirq.
Guerreschi, G. G., and Park, J. 2018. Two-step approach
to scheduling quantum circuits. Quantum Science and Tech-
nology 3(4):045003.
Hadfield, S.; Wang, Z.; O’Gorman, B.; Rieffel, E. G.; Ven-
turelli, D.; and Biswas, R. 2019. From the quantum ap-
proximate optimization algorithm to a quantum alternating
operator ansatz. Algorithms 12(2):34.
Häner, T.; Steiger, D. S.; Svore, K.; and Troyer, M. 2018.
A software methodology for compiling quantum programs.
Quantum Science and Technology 3(2):020501.
IBM Corp. 2018. IBM Q Network. https://www.
research.ibm.com/ibm-q/network/.
Intel Corp. 2018. The future of quan-
tum computing is counted in qubits.
https://newsroom.intel.com/news/
future-quantum-computing-counted-qubits/.
Jones, T., and Benjamin, S. C. 2018. Quantum com-
pilation and circuit optimisation via energy dissipation.
arXiv:1811.03147.
Khatri, S.; LaRose, R.; Poremba, A.; Cincio, L.; Sornborger,
A. T.; and Coles, P. J. 2018. Quantum assisted quantum
compiling. arXiv:1807.00800.
Kissinger, A., and Meijer-van de Griend, A. 2019. CNOT
circuit extraction for topologically-constrained quantum
memories. arXiv:1904.00633.
LaRose, R. 2019. Overview and comparison of gate level
quantum software platforms. Quantum 3:130.
Li, G.; Ding, Y.; and Xie, Y. 2018. Tackling the
qubit mapping problem for NISQ-era quantum devices.
arXiv:1809.02573.
McCaskey, A.; Dumitrescu, E.; Liakh, D.; and Humble, T.
2018. Hybrid programming for near-term quantum comput-
ing systems. arXiv:1805.09279.
Murali, P.; Baker, J. M.; Abhari, A. J.; Chong, F. T.;
and Martonosi, M. 2019. Noise-adaptive compiler map-
pings for noisy intermediate-scale quantum computers.
arXiv:1901.11054.
Nam, Y.; Chen, J.-S.; Pisenti, N. C.; Wright, K.; Delaney, C.;
Maslov, D.; Brown, K. R.; Allen, S.; Amini, J. M.; Apisdorf,
J.; et al. 2019. Ground-state energy estimation of the water
molecule on a trapped ion quantum computer. arXiv preprint
arXiv:1902.10171.
Nash, B.; Gheorghiu, V.; and Michele, M. 2019.
Quantum circuit optimizations for NISQ architectures.
arXiv:1904.01972.

Quantum Circuit Compilation: An Emerging Application for Automated Reasoning 102

Oddi, A., and Rasconi, R. 2018. Greedy randomized search
for scalable compilation of quantum circuits. In Proceedings
of the Fifteenth International Conference on the Integration
of Constraint Programming, Artificial Intelligence, and Op-
erations Research (CPAIOR2018), 446–461.
Ofek, N.; Petrenko, A.; Heeres, R.; Reinhold, P.; Leghtas, Z.;
Vlastakis, B.; Liu, Y.; Frunzio, L.; Girvin, S.; Jiang, L.; et al.
2016. Extending the lifetime of a quantum bit with error cor-
rection in superconducting circuits. Nature 536(7617):441.
Paler, A. 2019. On the influence of initial qubit placement
during NISQ circuit compilation. In Proceedings of the First
International Workshop on Quantum Technology and Opti-
mization Problems (QTOP2019), 207–217.
Rasconi, R., and Oddi, A. 2019. An innovative genetic algo-
rithm for the quantum circuit compilation problem. In Pro-
ceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence (AAAI2019), In press.
Rigetti Computing. 2018. Acorn QPU Properties. http:
//docs.rigetti.com/en/latest/qpu.html.
Rossi, F.; Van Beek, P.; and Walsh, T. 2006. Handbook of
constraint programming. Elsevier.
Sim, S.; Cao, Y.; Romero, J.; Johnson, P. D.; and Aspuru-
Guzik, A. 2018. A framework for algorithm deployment on
cloud-based quantum computers. arXiv:1810.10576.
Smith, R. S.; Curtis, M. J.; and Zeng, W. J. 2016. A practical
quantum instruction set architecture. arXiv:1608.03355.
Steiger, D. S.; Häner, T.; and Troyer, M. 2018. ProjectQ:
An open source software framework for quantum comput-
ing. Quantum 2:49.
Svore, K. M.; Geller, A.; Troyer, M.; Azariah, J.; Granade,
C.; Heim, B.; Kliuchnikov, V.; Mykhailova, M.; Paz, A.; and
Roetteler, M. 2018. Q#: Enabling scalable quantum com-
puting and development with a high-level domain-specific
language. arXiv:1803.00652.
Tannu, S. S., and Qureshi, M. K. 2018. A case for
variability-aware policies for NISQ-era quantum computers.
arXiv:1805.10224.
Vatan, F., and Williams, C. 2004. Optimal quantum
circuits for general two-qubit gates. Physical Review A
69(3):032315.
Venturelli, D.; Do, M.; Rieffel, E.; and Frank, J. 2018. Com-
piling quantum circuits to realistic hardware architectures
using temporal planners. Quantum Science and Technology
3(2):025004.
Wecker, D., and Svore, K. M. 2014. LIQUi|>: A software
design architecture and domain-specific language for quan-
tum computing. arXiv:1402.4467.
Zulehner, A., and Wille, R. 2018. Compiling SU (4) quan-
tum circuits to IBM QX architectures. arXiv:1808.05661.

Quantum Circuit Compilation: An Emerging Application for Automated Reasoning 103

Advantages and Challenges of Using AI Planning in Cloud Migration

Hongtan Sun, Maja Vukovic, John Rofrano, Chen Lin
IBM T.J. Watson Research Center

1101 Kitchawan Rd,
Yorktown Heights, New York 10598

hongtan.sun@ibm.com, { maja, rofrano }@us.ibm.com, liana.lin@ibm.com

Abstract

Cloud Migration transforms customer’s data, application and
services from original IT platform to one or more cloud en-
vironment, with the goal of improving the performance of
the IT system while reducing the IT management cost. The
enterprise level Cloud Migration projects are generally com-
plex, involves dynamically planning and replanning various
types of transformations for up to 10k endpoints. Currently
the planning and replanning in Cloud Migration are generally
done manually or semi-manually with heavy dependency on
the migration expert’s domain knowledge, which takes days
to even weeks for each round of planning or replanning. As
a result, automated planning engine that is capable of gener-
ating high quality migration plan in a short time is particu-
larly desirable for the migration industry. In this short paper,
we briefly introduce the advantages of using AI planning in
Cloud Migration, a preliminary prototype, as well as the chal-
lenges the requires attention from the planning and schedul-
ing society.

Introduction
Automated planning and AI planning have been investi-
gated extensively by researchers and successfully applied
in many areas for decades, for example, health care (Car-
doen, Demeulemeester, and Beliën 2010), semiconductor
manufacturing (Uzsoy, Lee and Martin-Vega 1992), and avi-
ation (Bazargan, M. 2010), to name a few. Meanwhile, at-
tracted by the promise of the scalability, flexibility and po-
tentially lower cost of the resources, more and more enter-
prises are considering moving their IT infrastructure and
applications to Cloud or Hybrid Cloud service platforms,
which is called Cloud Migration in general (Armbrust et.
al. 2010, Khajeh-Hosseini, Greenwood, and Sommerville
2010). Noticing that the discussions of using AI planning
in the Cloud Migration are limited both in academia and in
industry, in this short paper we identify the advantages and
challenges of applying AI planning to Cloud Migration by
(i) introducing Cloud Migration and its planning problem;
(ii) demonstrate problem feasibility by showing a prototype
AI planning model; and (iii) discuss the limits of current
model and future research.

Copyright c© 2019, All rights reserved.

Planning in Cloud Migration
Cloud Migration transforms customer’s data, application
and services from original IT platform, hosted on servers
hosted in-house or cloud environment, to one or more cloud
environment, with the goal of improving the performance of
the IT system while reducing the IT management cost. Gen-
erally speaking, enterprise-level Cloud Migration is a com-
plex and usually long running process that requires careful
planning.

Cloud Migration includes four major steps: Discovery,
Planning, Execute and Validation (Vukovic and Hwang
2016). In the Discovery stage, migration experts investi-
gate the current IT system, collect data and identify cus-
tomer’s migration goals. Then migration experts allocate re-
sources and schedule the executions activities, refer to as the
Planning stage. Next the migration are executed as planned,
which is called Execute stage. In the last Valication stage,
all the applications are tested that they are running as ex-
pected on the new cloud environment. Due to the complexity
of the IT system and IT infrastructure, there may not be clear
boundaries between the major steps. It could happen that in
the Planning stage some data inconsistency were observed
and additional discoveries are performed and the migration
execution needed to be re-scheduled or re-planned.

Due to the complexity of migration projects, low tol-
erance on errors and its heavy dependence on the mi-
gration expert’s domain knowledge, current practitioners
mostly perform migration planning either manually. or us-
ing tools manually created runbooks (Transition Manager,
Velostrata). For example, in Transition Manager, the user
has to upload manually scripts, e.g. groovy scripts (The
Apache Groovy Programming Language), and ask the tool
to generate runbook for existing wave bundles. Meanwhile,
Velostrata Manager would create a .csv format template for
the user to manually put tasks in and create the runbook
(Creating and modifying runbooks). These planning and re-
planning approaches rely heavily on the practitioner’s previ-
ous migration experience and domain knowledge, hence is
not scalable.

With the fast evolution of computing speed and ma-
chine learning technologies, domain-independent AI plan-
ners are becoming more and more powerful (Ghallab, Nau,

cba

Bernardini et al. (Eds): SPARK 2019 104

https://creativecommons.org/licenses/by-sa/4.0/

Server
Data

Migration
Goals

Migration
Actions

AI Planning Problem
Language Generator

AI Planning Domain
Language Generator

Problem
PDDL

Domain
PDDL

AI Planner
AI Wave

Plan

Figure 1: Overview for the prototype AI planner

and Traverso 2004). Better planners emerge and demon-
strate their performance and capability every year on the
International Planning Competition (ICP) and the Interna-
tional Conference on Automated Planning and Schedul-
ing (ICAPS). As result, taking advantage of the domain-
independent planners to automate the planning of Cloud Mi-
gration is extremely desirable for migration practitioners.

Prototype AI Planner
In a Cloud Migration planning problem, there are N assets
to be migrated. Assets may communicate with each other,
for example, an application reads/writes a database, hence
causes dependencies between assets and enforces prece-
dence constraints for migration tasks. For instance, if asset A
depends on asset B, the migration of asset A has to be done
before asset B’s migration. The goal of migration planning
is to allocate resources and create sequence of tasks to be
executed. In the case of enterprise level migration, the ex-
ecution should be performed in a limited time window to
minimize potential business disruption.

From application point of view, the main step in develop-
ing an AI planner based on domain-independent planner is
to formulate the planning problem in Cloud Migration as a
planning problem for the planner. In one of our prototype
AI planner, a simplest scenario, in which only migration
of physical servers and virtual machines are considered, is
modeled as Domain file and Problem file using Planning Do-
main Definition Language (PDDL). The objects in the do-
main file are server and wave. Each server has is assigned
a numeric value called ’effort hours’, which represents the
cost of migrating this server. Each wave is assigned a nu-
meric value called ’effort hour limit’, which enforces a ca-
pacity constraint for the number of servers to be migrated
in each wave. The goal is to migrate all the servers without
violating the capacity constraint.

A planner supported by Metric-FF planner is developed
to test the performance and a graphical UI is created for
users to upload spreadsheet containing server’s information
(Jackson, Rofrano, Hwang, and Vukovic 2018). In partic-
ular, translation engines are developed to generate the Do-
main.pddl file and Problem.pddl file automatically. When
there are limited number of servers, the planner finds so-
lution in a few seconds. However, when tested with 500
servers, the planner did not find any solution in 2 hours. Fig-
ure 1 shows an overview of the prototype planner.

Challenges and Future Research Directions
In conclusion, in this short paper, the Cloud Migration pro-
cess is investigated and a prospective research direction is

identified around using domain-independent AI planner in
Cloud Migration Planning. Automate migration planning is
desirable for practitioners from both the cost perspective and
the quality consideration. It also brings in new research top-
ics. Some of them are listed as following.
• Optimize the modeling of migration planning problem so

that the domain and problem file can be generated faster,
shorten the auto-planning time.

• Noticing that many top-performed planners in ICP does
not support metric feature, efficient algorithms that re-
moves the metric requirements in the resource planning
part of a migration planning problem needs to be devel-
oped.

• Improve planner’s computational speed or develop algo-
rithms so it can generate migration plan for thousands as-
sets and more complicated migration scenarios.

References
Cardoen, B., Demeulemeester, E., and Beliën, J. 2010. Oper-
ating Room Planning and Scheduling: A Literature Review.
European Journal of Operational Research, 201: 921–932.
Uzsoy, R., Lee, C., and Martin-Vega, L.A. 1992. A Review
of Production Planning and Scheduling Models in the Semi-
conductor Industry Part 1: System Characteristics, Perfor-
mance Evaluation and Production Planning. IIE Transac-
tions, 24(4): 47–60.
Bazargan, M. eds. 2010. Airline Operations and Scheduling
London, UK.: Ashgate Publishing Co.
Armbrust, M., Fox, A., Griffith R., Joseph A. D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I.,
and Zaharia, M. 2010. A View of Cloud Computing. Com-
munications of the ACM, 53(4): 50–58.
Khajeh-Hosseini, A., Greenwood, D., and Sommervile, I.
2010. Cloud Migration : A Case Study of Migrating and
Enterprise IT System to IaaS. In Proceedings of 2016
IEEE/IFIP Network Operations and Management Sympo-
sium, 96–103. Istanbul, Turkey.
Vukovic, M., and Hwang J. 2016. Cloud Migration using
Automated Planning. In Proceedings of 2010 IEEE 3rd In-
ternational Conference on Cloud Computing, 450–457. Mi-
ami,FL.
Transition Manager, https://www.transitionaldata.com/
transitionmanager−data−center−migration−tools/
Velostrata, https://cloud.google.com/velostrata/
The Apache Groovy Programming Language,
http://groovy−lang.org
Creating and modifying runbooks,
https://cloud.google.com/velostrata/docs/how−to/
organizing−migrations/creating−and−modifying−
runbooks
Ghallab, M., Nau D., and Traverso, P. 2004. Automated
Planning Theory and Practice San Francisco, CA.: Elsevier.
Jackson, M., Rofrano, J., Hwang, J., and Vukovic M. 2018.
BluePlan: A Service for Automated Plan Construction using
AI. In International Conference on Service-Oriented Com-
puting, Demo Session. Hangzhou, China.

Advantages and Challenges of Using AI Planning in Cloud Migration 105

Evaluating the Cost of Employing LPs and STPs in Planning:
Lessons Learned From Large Real-Life Domains

Elad Denenberg and Amanda Coles and Derek Long
Department of Informatics, King’s College London, UK.

email: {elad.denenberg,amanda.coles,derek.long}@kcl.ac.uk

Abstract

When solving real-life problems we often encounter issues that
are not captured by academic benchmark domains. In this paper
we consider an application problem, representative of a class of
real-world problems that have interesting properties: long solution
plans with many temporal/numeric constraints. We identify a
number of limitations of a popular family of planners in solving
these problems. This family of planners perform Forward Search
and call a Linear Programming (LP) solver multiple times at
every state to check for consistency, and to set bounds on the
numeric variables in order to determine action applicability. These
checks during search allow the pruning of branches; however,
they do carry computational cost. In this paper we investigate
and analyse this trade-off, with particular reference to our class of
application problems, and show that adapting the planners to call
the LP solver less often, and using a cheaper consistency check
at each state, can improve performance.

1 Introduction
Automated Planning is concerned with using a planner to
formulate a sequence of actions that transforms a given initial
state into a desired goal state. One strength of planning is
domain-independence: a single general planner can plan in a
wide range of different application domains. For example, space
(Chien et al. 2000), battery usage (Fox, Long, and Magazzeni
2011) and software penetration testing (Obes, Sarraute, and
Richarte 2013). In order to facilitate their application in realistic
problems planners need to reason with expressive models of
the world. Such models can be temporal: finding a plan with
timestamped actions, taking into account action durations and
concurrency; as well as numeric: considering numeric variables
that change discretely, or in hybrid problems also continuously,
over time (Fox and Long 2003).

When planning in expressive domains a planner needs a
mechanism to schedule the plan, i.e. assign timestamps to
actions to meet the temporal and numeric constraints. One
option is the decision epoch mechanism of SAPA (Do and
Kambhampati 2001) and Temporal Fast Downward (Eyerich,
Mattmüller, and Röger 2009); alternatively, one can use simple
temporal networks (STNs) (Dechter, Meiri, and Pearl 1991)
e.g. as in the planner Crikey 3 (Coles et al. 2009). Approaches
to hybrid planning employ more complex mechanisms include
compiling the problem into SAT Modulo Theories (Cashmore

et al. 2016), interval relaxation (Scala et al. 2016), time
discretization (Piotrowski et al. 2016) and convex optimization
(Fernández-González, Karpas, and Williams 2017).

In this work we focus on a family of planners that make use
of LP solvers to schedule the plan. This family includes COLIN
(Coles et al. 2012), POPF (Coles et al. 2010) and OPTIC (Benton,
Coles, and Coles 2012). These planners perform forward state-
space search starting from the initial state. At each state in the
search a LP solver is used once to determine whether there
exists a consistent schedule for the plan (adhereing to temporal
and numeric constraints). If a no consistent schedule exists for
the plan to the current state, the search branch can be pruned.
If the state is consistent, the LP is then used multiple more
times to bound the numeric variables and thus prune the space of
applicable actions in this state, narrowing the search space ahead.

In this work, we analyse the performance of these planners on
a particular interesting class of real-world application problems,
illustrated in a domain provided by our industrial partner. This
domain highlights issues they encountered in using this family
of planners in their deployed applications. Specifically, the
problems require long solution plans, with large numbers of
numeric variables and temporal constraints. An important
observation made in this class of application problems is
that whilst the traditional planning benchmarks, on which the
planners were initially evaluated, lead typically to small LPs
being generated at each state (Coles et al. 2012); LP solving in
this class of application domains is much more expensive as the
long plans, hence large numbers of variables, lead to larger LPs,
which hinders planner performance.

In this paper we consider the trade-offs involved in solving
LPs to check for consistency and bound variables at every state:
theoretically, since we only require the final plan to be valid,
we could simply complete the consistency check on states the
planner believes to be goal states. The conventional wisdom has
been that checking for inconsistent plans at each state allows
pruning of the search space thus expanding fewer nodes to reach
the goal; however, this does come at the cost of a higher per-node
expansion overhead, especially if the LPs to be solved are large
and complex. Our contribution here is propose and evaluate a
range of strategies for using schedulers to prune, ranging from
the traditional use of a LP for consistency and bounds checking
at every state; though to using just an STN to check only tem-

cba

Bernardini et al. (Eds): SPARK 2019 106

https://creativecommons.org/licenses/by-sa/4.0/

Leg1 Leg2

Obs1 Obs2 Obs3 Obs4
Obs1 start dist. Obs3 start dist.

m

Figure 1: The flying observer

poral consistency at each state to checking only for consistency
in goal states. We thoroughly analyse planner performance
with respect to different configurations on our representative
application problems and show that we can obtain better
performance in these domains with an approach that performs
cheaper STN consistency checking on a per-state basis, whilst
stil guaranteeing plan consistency using a LP in the goal state.

2 Problem Definition
A temporal planning problem with discrete and linear continuous
numeric effects is a tuple:

〈I,G,A,P,V〉 (1)
where P is a set of propositions and V a set of numeric variables.
I is a set of value assignments to these propositions and numeric
values, representing the initial state of the problem,G is the goal:
a conjunction of propositions in P and linear numeric conditions
over the variables in V , of the formw1v1+w2v2+...+wivi{<
,≤,=,≥>}c (w1...wi and c are constants ∈R). A is a set of
actions defined by the tuple:

〈d,pre`,eff `,pre↔,eff↔,prea,eff a〉 (2)

where d is the duration of the action constrained by a conjunc-
tion of numeric conditions. pre` and prea are conjunctions of
preconditions (facts and numeric conditions) that must be true
at the start and end of the action, pre↔ are invariant conditions
(preconditions that must hold throughout the action’s duration),
eff ` and eff a are instantaneous effects that occur at the start and
end of the action. Such effects may add or delete a proposition
p ∈ P (eff +, eff −) or update a numeric variable vi ∈ V ac-
cording to a linear instantaneous change (eff num). In this work
all effects in eff num are assumed to be linear and of the form:
vk{+=,=,-=}w1v1+w2v2+ ...+wivi+wj ∗durA+c where
durA is a special variable representing the duration of the action
A of which this is an effect (w1...wj and c∈R). eff↔ is a con-
junction of continuous effects operating throughout the duration
of the action. In this work each continuous effect is linear, i.e. of
the form dv

dt {+=,=,-=}c where c∈R is a constant.

3 Example Representative Application Domain
This example was supplied by our industrial partner. It
encapsulates the structure of problems that arise when using an
LP planner in their target application domains.

In this domain, named flying observer, the planner is required
to plan a Unmanned Aerial Vehicle (UAV) observation mission.
The UAV is required to fly legs over a desired streach of land
containing objects to be observed. Each leg is of different
length. Each observation has a different duration and requires
a different type of equipment. To mark the area within the

time

distance

Precondition

Can start
observing

Figure 2: Distance Requirement

Fly Leg 1

Configure Observe

Distance requirement

(a) Possible Plan

Fly Leg 1

Configure Observe

Distance requirement

(b) Impossible Plan

Figure 3: Durative Meaning of Distance Requirement

leg in which the observation must take place a target-start
distance is defined. The observation can take place only when
the UAV has flown more than the target-start distance of that leg
(flownl ?leg≥ target-starto). A continous numeric effect of the
flyl action updates the distance flown so far in a leg: dflownl

dt =1.
Fig 1 illustrates an instance of this domain: in this instance two

legs are defined (marked in solid blue lines), in each leg two ob-
servations are required (marked in red, pattern filled lines). All ob-
servations have a target-start distance defined, but for clarity only
the starting distance of the first and third observations are shown.

In order to perform an observation a defined piece of
equipment needs to be calibrated and configured for a specific
observation. Once the observation is done the equipment needs
to be released to become available for future observations. The
domain comprises the following actions:
• take-offl: dur = 5; pre` ={on-ground,first-legl};
eff ` ={¬on-ground, flownl = 0}; eff a ={flyingl};
• set-coursel1,l2: dur = 1; pre` ={donel1,nextl1,l2};
eff ` ={¬donel1}; eff a ={flyingl2, flownl2 = 0};
• flyl: dur=distancel/speedl;
pre` ={flyingl}; pre↔ ={flownl ≤ distancel};
eff a ={donel, ¬flyingl}; eff↔ ={dflownl/dt += 1};
• configureo,e: dur = 1; pre` ={availablee, optionforo,e};
eff ` ={¬availablee}; eff a ={configuredforo, pendingo,e};
• observel,o: dur = time-foro; pre` ={configuredforo,

containsl,o, awaitingo, target-starto≤flownl};
pre↔ ={flyingl}; eff ` ={¬awaitingo}; eff a={observedo}
• releaseo,e: dur = 1; pre` ={pendingo,e};
eff ` ={¬configuredforo, ¬pendingo,e}; eff a ={availablee};
The target distance precondition and temporal constraints of

this problem force the configure/observe actions to fit within
the fly action. The meaning of the precondition is illustrated in
Fig 2: The red line is a depiction of the distance change as the
UAV flies over the leg. The dashed blue line is the precondition
signifying the distance required for the start of the observation.

Cost of LPs and STPs in Planning: Lessons Learned From Large Real-Life Domains 107

Algorithm 1: Overview of OPTIC’s Search
Data: Planning Problem 〈I,G,A,P,V 〉
Result: A solution plan

1 Q← [I];
2 whileQ is not empty do
3 S←pop the next state fromQ;
4 app←a∈Asnap·S |=pre(A);
5 foreach ai∈app do
6 S′= apply(a,S);
7 if ¬ isConsistent(S′) then continue;
8 ;
9 if S′ |=G then return plan to S′;

10 ;
11 UpdateNumericVariableRanges(S ′);
12 h(S′)=ComputeHeuristicValue(S ′);
13 if h(S’) 6=∞ then Q.enqueue(S′);
14 ;

15 return problem unsolvable;

When the distance reaches the value required in the precondition
the observation can start. The meaning of the numeric constraint
as it is manifested in the temporal state can be seen in Fig 3a.

Notice that by defining containsl,o for multiple legs the plan-
ner can be given a choice of multiple legs in which it can decide
to perform observation o. Further, notice that the legs must be
flown in the order defined by the predicates nextl1,l2, therefore, a
leg may not be skipped even if it does not contain an observation.

4 Linear Programming (LP) based planners
The mechanism described here allows planners to reason with
continuous numeric change. It was first described in COLIN
(Coles et al. 2012), then used in POPF and OPTIC. An overview
of this search is given in Algorithm 1.

4.1 Search In OPTIC
OPTIC performs forward search from the initial state and
branching over applicable actions, exploring partially-ordered
but un-time-stamped sequences of snap-actions. Snap-actions
are instantaneous actions marking the start (A`) and end (Aa)
of a durative action A: A` has preconditions pre` A A and
effects eff ` A; Aa has preconditions prea A and effects eff a
A. For brevity of notation we define the set Asnap to contain
all snap actions corresponding to the start and end of actions in
A (A`,Aa such that a∈A) and all instantaneous actions inA.

Each stateS in search comprises the set of propositions (S.p⊆
P) that are true in S and optimistic upper (S.max(v)) and lower
(S.min(v)) bounds on the value each variable in V can hold in
S. In the initial state all variables have max(v)=min(v)= the
value of v specified in the initial state; max(v) and min(v) will
only differ from each other in subsequent states if/when a vari-
able has been subject to continuous change in the plan so far, as
the value of v will then change as time elapses in S. Search pro-
ceeds by popping the first state from the openlist: in our work, we
use WA* (W=5) so sort the openlist by h(S)+5.g(s), using the
temporal-numeric RPG heuristic of COLIN (Coles et al. 2012).

At line 4 the planner identifies the actions applicable in S, i.e.
those whose preconditions are satisfied in S (and do not lead to a
state in which the invariants of the currently executing actions are
violated). A propositional precondition p is satisfied if it is true in
the state, i.e. p∈S.p. Numeric preconditions, of the formw1v1+
w2v2+ ...+wivi{≥,>,=,<,≤}c, are deemed satisfied if the
values of max(v) and min(v) optimistically satisfy them: that is,
for example, we consider v1−v2>=5 to be satisfied ifub(v1)−
lb(v2)≥5. Next (line 6) we use the applicable actions to generate
all successors S′ of S by adding/deleting all propositions in eff +a
and eff −a respectively, and applying all discrete numeric effects
to bothmax(v) andmin(v) for all v∈V affected by eff numa . At
this point OPTIC also adds the necessary ordering constraints to
the plan: the action that has just been applied is ordered after the
last actions to add each of its preconditions, after actions whose
preconditions it deletes, and after actions with numeric effects on
variables it updates or refers to in preconditions/effects: all such
constraints are of the form tj−ti≥ε, where tj/ti are the times
at which the new and existing action must occur respectively and
ε is a small constant enforcing separation.

4.2 Checking Temporal/Numeric Consistency
Whilst the plan generated by the above search is guaranteed
to be propositionally consistent (all propositional preconditions
are satisfied when an action is applied) it might not be tempo-
rally or numerically consistent. Temporal/numeric consistency
of plans must be explicitly checked, this is done at Line 7, using
either an STN or LP as appropriate. To illustrate why this in
the case, consier the partial plan: take-off,fly`l0, configure`o1,e2,
configureao1,e2,flyal0 in our application domain. This plan is propo-
sitionally sound, but if the duration of configure exceeded the du-
ration of fly then this would not be a temporally consistent plan.

First, consider the case where there are no continuous or
duration dependednt numeric effects in the plan (like the one
given above). In this case we can update the values of all
numeric variables in each state according to discrete numeric
effects, and know the exact values of vi in each state, allowing
us to enforce numeric preconditions correctly during search
(max(v) = min(v) = the known value of v in S). The only
remaining constraints we have are temporal constraints: ordering
constraints of the form tj− ti ≥ ε and duration constraints of
the form taa− ta`{≤,=≥}c, where c is a constant (without
loss of generality, c can be computed from the known values
of variables vi ∈ v in the state in which a` was applied). It is
well known that such a set of constraints constitutes a simple
temporal network (STN) (Dechter, Meiri, and Pearl 1991): a
solution to this represents a valid schedule for the snap-actions
in the plan. This can be solved (or proven unsolvable) in
polynomial time using an all-pairs shortest path algorithm.

Consider now the more complex case where we have a partial
plan that has a precondition on a variable that has undergone
continuous numeric change, e.g.: take-off,fly`l0, configure`o1,e2,
configureao1,e2, observe`l0,o1, observeal0,o1,flyal0. We can as above,
equally check that the plan is temporally consistent (the duration
of configure and observe actions are less than the fly action)
using a simple temporal network; if the plan were temporally
inconsistent we could prune it using only an STN. However,
we cannot be certain using an STN that this plan is valid as the

Cost of LPs and STPs in Planning: Lessons Learned From Large Real-Life Domains 108

STN does not take into account the precondition of observel0,o1:
target-starto1 ≤ flownl. It might be that there is insufficient
time within the leg l0 action to wait until this constraint is met
(e.g. if leg l0 has duration 15 and observel0,o1 duration 10 and
target-start distance 11) then the plan would not be temporally
and numerically sound (this is illustrated in Fig 2–3). In this
case we need to use an LP to encode both the temporal and
numeric constraints of the problem. Section 5 details how this
LP is built in such a way that a solution is a valid assignment of
time stamps to the snap actions in the partial plan that satisfies
the temporal and numeric constraints of the problem.

At line 7 OPTIC intelligently selects the scheduler used based
on the constraints in the plan and will use the cheaper STN by
default, using the LP only when constraints that necessitate it are
present. If the LP, or STN, determines that there is no consistent
schedule for the plan reaching a state, the plan is temporally
or numerically invalid and so the state is pruned. If the LP
determines there is a valid schedule of the actions that satisfies
the temporal/numeric constraints thenS′ is a valid successor ofS.
If S′ satisfies the goal, we have as solution plan. Otherwise, the
LP is used again to find the range on each state variable (line 11)
prior to heuristic evaluation, using the standard temporal/numeric
relaxed planning graph heuristic of Colin (Coles et al. 2012). It
is then inserted into the openlist, providing h(S′) 6=∞, i.e. the
heuristic does not indicate S′ is a dead-end.

To understand this use of the LP consider the partial plan:
take-off,fly`l0, flyl0`, configure`o1,e1, configureao1,e1. As soon as
the action fly`l0 is applied we have a continuous effect increasing
the value of the numeric variable flownl0, so we can now no
longer say flown is in the range [0,0] (as in the initial state) but
it could be anywhere in the range [0,∞] as an effect increasing
it has started but not yet ended. In the general case we can
exploit the same LP we used for consistency checking to tighten
the bounds on numeric variables in each state: for each v∈V
that has been subject to any continuous or duration-dependent
change in the plan to reach S′ we set the LP objective function
to maximise (and then minimise) v to find out the maximum
possible value of v admitted by the plan. Again, we explain how
the LP is used to do this in Section 5.

We make two observations about this use of the LP to tighten
variable bounds. First it is effectively optional: even if we as-
sumed the bounds on v were [0,∞] then when S′ is later ex-
panded, and isConsistent() is used on its successors, this would
prune any reached by an action whose preconditions were not
satisfiable in S′. Though, the use of the LP to generate tighter
bounds on the value of v helps prune the list of applicable actions:
if an action can be pruned because its numeric preconditions are
unsatisfied according to the tighter bounds on v, this saves build-
ing another LP and using isConsistent for the corresponding suc-
cessor: this is a key trade-off that we investigate in this paper. The
second observation is that these bounds are optimistic: that is, we
ask the LP to maximise v and separately to minimisew however,
it might be the case that the maximum value of v and the mini-
mum value of w are not achievable by the same schedule; so the
precondition v−w>=5 might still not be satisfiable even if the
bounds state that it is; thus we always need the is consistent check
upon expanding S′ to confirm its preconditions are satisfied;
although this would be needed anyway, to ensure any other tem-

Step Action variables constraints comment
0 TakeOff t0 ≥0

1 Fly`l0

t1 −t0≥ε Step1 afer Step0
flown l01 =0 Initial Assignlemt

flown l0′1
flown l01 Value after action
≤distance l0 Invariant

2 Configure`o1,e1

t2 −t1≥ε Step2 after Step1

flown l02
=flown l0′1+1∗(t2−t1) Value before action
≤distance l0 Invariant

flown l0′2
=flown l02 Value before Action
≤distance l0 Invariant

3 Configureao1,e1

t3 −t2≥ε Step2 after Step1

flown l03
=flown l0′2+1∗(t3−t2) Value before action
≤distance l0 Invariant

flown l0′3
=flown l02 Value before Action
≤distance l0 Invariant

4 Observe`o1,l0

t4 −t3≥ε Step3 after Step2

flown l04

=flown l0′3+1∗(t4−t3) Value before action
≥target-start o1 Start precondition
≤l0 dist Invariant

flown l0′4
=flown l04 Value after action
≥Target dist o1 Strat precondition
≤l0 length Invariant

5 Observeao1,l0

t5
−t4≥ε Step4 after Step3
−t4≤time−for Action duration

flown l05
=flown l0′4+1∗(t5−t4) Value before action
≤distance l0 Invariant

flown l0′5
=flown l05 Value after action
≤l0 length Invariant

6 now tnow
−t5≥ε,−t4≥ε,−t3≥ε, After All Steps−t2≥ε,−t1≥ε,−t0≥ε

flown l0now =flown l0′5+1∗(tnow−t5) Value Now

Table 1: LP Equations of a Partial Plan

poral/numeric constraints are satisfied when applying the action.

5 Building LPs in OPTIC
In this section we detail how the LP to check plan consistency
is formulated at each state. We refer throughout to Table 1
which shows an example LP for the partial-plan: take-off, fly`l0,
configure`o1,e1, configureao1,e1, observe`o1,l0, observeao1,l0.

To represent the planning problem as an LP the following LP
variables are defined for each step i of the partial plan: ti defining
the time at which the step is to be taken, vi the value of variable
v∈V just before the application of the action and v′i ∈V the
value of variable v just after the application of the action.
Temporal Constraints: Ordering constraints can be enforced
exactly as written, when step j must occur after step i we write:

tj−ti≥ε (3)

Duration constraints can also be formulated directly:

tj−ti{≥,≤,=}w1
i v

1
i +w

2
i v

2
i +...c (4)

For example, in Table 1 ordering constraints enforce that
observe`o1,l0 occurs at least ε after configureao1,e1 as the latter
achieves a precondition of the former; and duration constraints
enforce that observeao1,l0 occurs exactly the defined duration
after observe`o1,l0 (tObs1a−tObs1` =durObs1). Recall that in the
absence of continuous numeric effects and duration-dependent
effects, the LP need only contain these temporal constraints,
and the right hand sides of all duration constraints are known
constants, therefore an STN solver suffices.
Numeric Constraints: To manage linear continuous change
an additional variable δvi stores the sum of change acting on

Cost of LPs and STPs in Planning: Lessons Learned From Large Real-Life Domains 109

variable v after step i. IfA is a durative action with a continuous
linear effect, and cA the constant defining said linear change
(i.e. dvi

dt +=cA). Then δvi is calculated thus:

δvi=

{
δvi−1+cA ifAi=A`
δvi−1−cA ifAi=Aa

(5)

This, ifA starts at stepi, cA will be added to δvi. IfA ends at
stepj, cA will be removed from δvj. Thus δvi is the sum of all ef-
fects currently active on v∈V after stepi. We use δvi to compute
the value of variables undergoing continuous numeric change:

vi=v
′
i−1+δvi−1.(ti−ti−1)

This can be seen in Table 1: the only continuous effect is acting
on flown l0i from step 2 onward. Thus δflown l0i = 1 (for
i≥2) and the value of flown l0i is calculated according to this
at each step (e.g. flown l02=flown l0′1+1.(t2−t1)).

Numeric preconditions pre` and prea are formulated over
the respective variables vi. We formulate the invariant conditions
pre↔ of actions at the start and end steps of the action and at
every step between them. This is sound because all effects are
linear so no turning points can be present between the steps.

In the example LP for the flying observer (Table 1) the
distance-flown (flownl1) precondition on the observe`o1,l1 action
is encoded at step3 over the variable (flown l03); and the
invariant (flownlegj≤distancel0) of flyl0 can be seen enforced
immediately after step1 (i.e. on flown l0′1) and before and after
all subsequent steps that refer to flown l0 (over flown l0i and
flown l0′i).

A solution to this LP gives us an assignment to each ti
representing a valid time stamp for each stepi in the partial plan;
if the LP solver reports that no solution exists then the plan is
inconsistent and we can prune the resulting state. If the state
is deemed consistent the formulated LP problem is used again
(Algorithm 1, Line 11) to determine bounds on the numeric
variables. To do this we create new step now, with associated
timestamp variable tnow ordered after all existing steps; then
for each variable v∈V we create vnow, and calculate its value
at tnow in the usual way. The LP is solved with an objective
minimise (then again to maximise) vnow yielding the minimal
(maximal) possible value v may hold in the current state. Table 1
illustrates this for the variable flown l0. tnow is constrained to
come after all other plan steps, and the value of flown l0now
is computed as flown l0′5+1.(tnow− t5); using the objective
miminise (maximise) flown l0now will tell us the maximum
and minimum feasible values of flown l0 we can expect to rely
on for the precondition of any action to be applied in this state.

Prior work observed that the formulation of the LP was
expensive and solving was cheap (Coles et al. 2012). Therefore
since the LP is not reformulated, but simply resolved for
different vnows, computing bounds was relatively inexpensive.
However, this did not match our observations when examining
our complex real-life problems with large LPs1.

6 LP vs STN Scheduling in OPTIC
It is well known that the scalability of planners is affected by
both the number of applicable actions per state (branching

1OPTIC’s LP building code is also more optimized than COLIN’s

Instance Observations Legs Observations
Required in Goal

1 10 28 4
2 15 38 6
3 20 48 8
4 25 58 10
5 30 68 12

Table 2: Single Observation Per-Leg Instances

factor) and the length of the required solution plan (depth to
which the search tree must be explored). The latter of these
factors is magnified in planners using LP schedulers because
the size of the LP being solved increases with the length of the
plan being scheduled. In this section we explore the scalability
of LP based planners in our complex real-life observer domain,
which involves continuous numeric change and requires long
solution plans compared to conventional benchmark domains.

6.1 Standard OPTIC Performance
To explore this behaviour we ran the flying observer domain on
5 instances increasing in difficulty. In this domain, there is never
more than one observation that can be chosen to happen in each
leg (i.e. if containsl1,o1 is defined then there does not exist any
other observation oi such that containsl1,oi is defined). Further,
there is no choice over which leg each observation can occur
in (i.e. if containsl1,o1 is defined then there does not exist any
other leg li such that containsli,o1 is defined). Each observation
requires one piece of equipment out of the three available. The
number of observations defined, the number of legs, and the
number of observations required in the goal differs between the
instances as specified in Table 2.

Note that to emulate a real life scenario where the instance of
the problem may contain many optional actions, not all of which
are required for the goal, the number of observations and legs
here is much greater than is required for the goal. For instance,
leg number 25 and higher is not required, yet is a possibility
that the planner might consider. The same goes for observation
number 20 - it is defined, but not required for the goal. Solving
the hardest instance of this domain was slow and took OPTIC
about 260 seconds on an Intel i7 2.80GHz.

A second variant of the domain, again representing an
additional challenge encountered in our application, adds
a global variable counting the total distance flown, and a
precondition to the “configure” action requiring that this is not
greater than 1000 units. The changed actions would therefore be:
1. flyl: dur=distancel/speedl; pre` ={flyingl};
pre↔ ={flownl ≤ distancel}; eff a ={donel, ¬flyingl};
eff↔ ={dflownl/dt += 1,dtotalFlown/dt += 1};

2. configureo,e: dur = 1; pre` ={availablee,
optionforo,e, totalFlown≤1000}; eff ` ={¬availablee};
eff a ={configuredforo, pendingo,e};

Before adding this variable the “configure” action was entirely
propositional, and therefore consistency of plans containing it
could be confirmed using an STN. Now it has a precondition
that inspects a variable affected by continuous numeric change
so, as discussed in Section 4, any plan containing this action
requires a LP to confirm consistency.

Cost of LPs and STPs in Planning: Lessons Learned From Large Real-Life Domains 110

51%
30%

18%
1%

(a) With Total-Flown
Precondition

33%

27%

38%

2%

(b) Without Total-Flown
Precondition

Update Bounds Consistency Check Forward Search Other

Figure 4: Single Observation Per Leg Profiling (Instance 5)

Solving the hardest instance without the total-flown variable
(the initially described domain) took about 260 seconds 60%
of which were spent solving the LP. However, when solving the
hardest instance with the total-flown variable and precondition,
planning took about 560 seconds 81% of which were spent in
the LP. Fig 4 shows the profiling results of the 5th instance in
the domain with the total-flown precondition and without. STN
solving takes negligible time, and is included in the ‘Forward
Search’ measurement; LP takes the most time, particularly
with ‘total-flown’. Inspecting further, the more nodes generated
during search (the more LPs solved) the slower it is. For instance,
in general it was seen that running the domain lacking the
total-flown requirement was faster, however, in instance 3 of the
domain, more nodes were visited during search, and the runtime
on that instance specifically was slower.

Also notable is that in our domain, more time is spent com-
puting variable bounds than consistency checking. This suggests
these LP calls are expensive, so avoiding them may be beneficial.

6.2 Proposals to Improve Performance
Since the LP solving is computationally expensive, we try to
reduce the number of times the LP solver is called during search.
Four options for reducing the amount of calls for the solver are
presented here:

1. Call updateVariableRanges (Algorithm 1 Line 11) only for
the variables which have an active continuous effect acting
on them in the partial plan (i.e. an action with a continuous
effect on v has started, but not yet finished);

2. Solve the LP only to check for consistency (Line 7), and don’t
call updateVariableRanges for any variables (i.e. skip Line 11);

3. Solve an STN to check only temporal consistency (at Line 7)
even if an LP would normally be used. Solve the LP to check
for consistency only in possible goal states (i.e. at Line 9);

4. Solve neither the LP nor an STN at each state (remove
Line 7), and solve the LP only in possible goal states.

The first option, updating only the active variables, reduces
the number of LPs solved in each state by only increasing
bounds due to effects, but not always tightening them based on
the preconditions. A continuous change can increase the bounds
on a variable, whereas preconditions may only tighten the

Nodes Nodes STN Nodes LP
Generated Expanded Evaluated Checked Pruned Checked Pruned

N
or

m
al

1 413 41 407 309 0 309 2
2 4976 395 4750 4855 0 4855 222
3 28465 1570 28032 28315 0 28315 429
4 92358 6683 91115 92195 0 92195 1239
5 135043 10479 133251 134879 0 134879 1788

LP
fo

rG
oa

ls 1 413 41 409 409 0
2 4976 395 4972 4972 0
3 28465 1570 28461 28461 0
4 92358 6683 92354 92354 0
5 135043 10479 135039 135039 0

Table 3: Nodes in Search, Single Observation Per Leg

bounds. In the default configuration OPTIC updates bounds on
all variables that have ever been subject to continuous numeric
change; here we suggest optimizing only the variables that are
acted upon by currently executing actions. This is a compromise:
by checking the effect we guarantee the most optimistic bounds,
while reducing the number of LPs solved.

The second option is to solve the LP only for consistency
checks (i.e. do not use the LP to update variable bounds). This
means fewer actions will be marked as inapplicable, and the
pruning of branches is done based on consistency only. Updating
bounds is done to narrow the search space; however, if the cost
of this is more expensive than the search effort saved this is not
worthwhile.

The third option is to solve the LP only on the states which
the forward search finds as possible goal states. This means
that fewer actions are marked as inapplicable during the search
and the states are only tested for temporal consistency, not for
numeric consistency, until branching reaches a goal state. Search
finds an ordering of actions that transform the initial into a
goal state, here the LP solver is called to schedule the ordered
actions. If a schedule is found then this indeed is a goal state.
If a schedule cannot be found than this is an invalid branch and
the planner needs to backtrack.

The fourth option is ploughing through forwards search
disregarding any temporal or numerical constraints, then, when a
possible goal state is reached, solve a LP to check whether it can
be scheduled. When this method finds a solution, it is not much
faster than method 3. Sadly though, it almost never finds one.
In the domains we checked this method was only able to solve
the first and second instances of the single observation-per-leg
domain, and did so quite quickly. However, it timed out on
all other instances and domains we checked. Because hardly
any pruning is done it is quite easy for search to get stuck in a
fruitless subspace when this method is employed. It is therefore
not recommended, and is not shown in the results.

6.3 Comparison of Proposals
Fig 5 presents the results of the first three options on the 5 in-
stances. Fig 5a lists the results on the domain with the total-flown
precondition on the “configure” action, and Fig 5b without.

The slowest method, named “Normal” (blue, northeast to
southwest pattern) is running OPTIC with the default configura-
tion: solving the LP for consistency, then several more times to
find the bounds on the numeric variables, and is always the most
computationaly expensive. Next (olive, dotted pattern) is the

Cost of LPs and STPs in Planning: Lessons Learned From Large Real-Life Domains 111

0 100 200 300 400 500 600

1

2

3

4

5

0.5

7.09

48.59

274.7

565.58

0.1

1.52

13.04

70.68

159.41

0.3

4.36

31.9

194.2

373.74

0.39

6.42

43.71

241.24

452.15

Normal

On Goal

Only Consistency

Only Active

(a) With Total Flown Constraint

0 100 200 300 400 500 600

1

2

3

4

5

0.59

5.62

80.83

160.69

262.06

0.12

1.28

25.23

65.63

125.44

0.35

3.31

51.59

110.92

191.33

0.44

4.84

70.75

143

238.19

(b) Without Total Flown Constraint

Figure 5: Single Observation Per Leg Runtime (seconds)

option that solves the LP for consistency checking, but updates
only the bounds of the variables currently subject to continuous
numeric change. Faster still is the option that solves the LP only
for consistency checking (gray, horizontal pattern) but does not
update bounds. Finally, the fastest option on these instances is
the third option: solving the LP only at at the goal state while
using STN in non-goal states for the consistency check (marked
red, with northwest to southeast pattern). As stated before the
4th option performance was too poor to include here.

Table 3 shows the number of nodes generated, expanded
and evaluated during the search, as well as the number of times
STN and LP solvers were called for consistency checks and the
number of times each found a branch to be inconsistent. The
number of nodes examined in the default configuration was
identical to those in the update of the active variables only and
when no update took place, and therefore are not shown here.
The fact the number of nodes were similar suggests that setting
and updating the bounds on the variables did not help flagging
actions as invalid, and therefore, in these domains and problem
instances slowed the planning process down. In addition, the
number of nodes examined when calling the LP only on the
goal state was not greatly different to the normal run, suggesting
the consistency check of the LP also did little to prune branches.

These results show that in this case, whilst the small cost
of the STN is outweighed by significant search pruning; it is

0 100 200 300 400

1

2

3

4

5

7.48

38.4

126.58

279.29

338.02

6.56

32.06

103.81

225.37

249.19

Normal

On Goal

Only Consistency

Only Active

(a) With Total Flown Constraint

0 100 200 300 400

1

2

3

4

5

6.36

31.88

103.25

221.6

249.53

5.71

26.86

85.56

179.39

193.44

(b) Without Total Flown Constraint

Figure 6: Multiple Observation Per Leg Runtime (seconds)

most beneficial to avoid LPs as much as possible using them only
when necessary, to check whether a goal is valid or not. However,
not solving the LP might have a hindering effect on the search.

Fig 7 supports the above claim. It presents the profiling of
the different methods. It shows the correlation between the total
runtime and the call for the LP solver. The less time is invested in
the solving of the LP the faster the planner reaches the goal state.

The above claim, however, cannot be said to be generally
true. We tested the same two domains with a different set of
problem instances which also represent a problem that may arise
in real life. Here, instance n-1 contains n legs (0..n-1) with 6
observations that must take place in each leg (i.e. for k∈1...n,
i ∈ [6k,6k+5] containslk,oi) all of which are required in the
goal (and require a different one of 6 pieces of equipment).
There is no choice over which leg each observation can occur
in (i.e. if containsl1,o1 is defined then there does not exist any
other leg li such that containsli,o1 is defined); except for o5,
which can be performed in either leg0, or legn−1 (containsl1,o5
and containsln−1,o5). To compensate for this legn−1 has only
5 additional observations (o6n to o6n+4) rather than the usual
6. The instances are engineered such that the duration of leg0
is too short for o6 to fit inside: target-starto6 is defined such
that waiting long enough for (target-starto6 ≤ flownleg1) to be
satisfied, means o6 cannot finish within leg0 as illlustrated in

Cost of LPs and STPs in Planning: Lessons Learned From Large Real-Life Domains 112

48.7%

27%

23%
1.3%

(a) Update Only Variables on which the Current
Action is Operating

64.5%
35%

0.5%

(b) Only Solve LP for Consistency

98% 2%

(c) Solve LP on Goal States Only

Update Bounds Consistency Check Forward Search Other

Figure 7: Profiling Suggested Improvements, Single Observation Per-Leg, Instance 5

Nodes Nodes STN Nodes LP
Instance Generated Expanded Evaluated Checked Pruned Checked Pruned

1 3510 1316 3393 3470 112 3358 0
2 11170 3631 10956 11111 208 10903 0
3 24639 7778 24280 24523 352 24171 0
4 38244 11309 37812 38108 425 37683 0
5 38981 11336 38549 38840 425 38415 0

Table 4: Nodes in Search, Multi Observation Per Leg

Fig 3b. legn is, however, long enough to accomodate o6 with
the precondition satisfied.

Fig 6 presents the results of these multiple-observations per
leg instances. Fig 6a on the domain with the precondition for the
total-flown in the “configure” action, and Fig 6b without. Table 4
presents the number of nodes using option 1 and the normal
configuration, as did Table 3 in the previous set of instances.

As can be seen in Fig 6, on these instances when solving
without checking for consistency at each state (option 3) the
planner timed out (1000 seconds). Inspection of the states the
planner visited during the forward search revealed that this is
because the planner added the invalid action to the first leg, and
went on searching down the branch. When it reached the goal
state it found that it was inconsistent, and started backtracking,
but never backtracked enough to find the valid solution. This can
also be inferred from Table 4, unlike in the previous case, search
makes use of the updated bounds on the variables to prune some
branches, similarly actions are being marked as innaplicable in
the search (specificially it can infer target−starto6≤flownleg1
will never be satisfied so does not consider putting o6 in leg0).

When solving using the second option, the planner timed
out as well. This is because the planner kept trying to add the
non-valid action, and found it inconsistent. Since there are
ordering constraints on the observations, the planner would try
to fit the inconsistent observation as the first observation, then,
when failed, it would try it as the second, then the third, and so
on. This is an expensive process, and it timed out as well.

In this instance updating the bounds was beneficial. Updating
only for the active variables was more efficient, as this
guaranteed that each variable would be updated at least once,
and therefore narrowed down the search space by marking the
problematic observation as a non valid action for the first leg.

7 Discussion and Conclusions
The profiling results presented here suggest that the Simple
Temporal Network (STN) is much faster than the LP solver.
In the domain discussed, which was supplied by an industrial
partner, it was shown that the time to solve many LPs which
grow in size may not be negligible, and may lead to the planner
having difficulties reaching a solution.

Four options were proposed for reducing planning time:
updating the bounds on fewer variables by selecting only those
currently undergoing continuous numeric change; not updating
the bounds at all (solving the LP only for consistency); using an
STN on non goal states (while solving the LP only on possible
goal states) and not using any solver on a non-goal state (calling
the STN and LP only at a goal state).

Solving the STN on non-goal states allows a large number
of states to be explored quickly. However, this is only useful
in the cases in which actions cannot be marked as inapplicable
by their numerical preconditions (they can only be marked as
such by their propositions). Using this option in problems with
non-cosmetic numeric precondition might cause the planner
to search down a branch that is not valid, and to remain in that
branch for too long to practically be able to reach a solution.

Solving the LP only to check consistency speeds search up
by avoiding LP calls to determine variable bounds. But, again,
this increases the branching factor, generating more states, thus
slowing the search down.

The last option, not calling any solver on non-goal, was
shown to be inefficient, it carries no advatages over the others.

Finally, updating only the active variables was found to
be a good compromise. It reduces the per-state LP overheads
compared to the default configuration of OPTIC, with a net
reduction in planning time; in principle, it has a higher branching
factor, so it is not guaranteed to pay off, but we did not encounter
such a case in this work.

These four options have been implemented in an updated ver-
sion of OPTIC, allowing the user to choose from them if needs
be. Future research would involve the automatic identification
of cases in which per-node LP solving is non beneficial, and
the selective update of the variables to facilitate faster search.

Acknowledgements
This work was supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) grant EP/R511559/1

Cost of LPs and STPs in Planning: Lessons Learned From Large Real-Life Domains 113

(Deployment of Expressive Continuous Numeric Planners in
Large Scale Applications).

References
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal planning
with preferences and time-dependent continuous costs. In
ICAPS, volume 77, 78.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
Proceedings of ICAPS.
Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt,
B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett, T.;
Stebbins, G.; and Tran, D. 2000. Aspen - automated planning
and scheduling for space mission operations. In in Space Ops.
Coles, A. I.; Fox, M.; Halsey, K.; Long, D.; and Smith, A. J.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artificial Intelligence 173.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In Twentieth International
Conference on Automated Planning and Scheduling.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012. Colin:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research 44:1–96.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49.
Do, M. B., and Kambhampati, S. 2001. Sapa: a domain-
independent heuristic metric temporal planner. In Proc.
European Conf. on Planning (ECP’01).
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
context-enhanced additive heuristic for temporal and numeric
planning. In Proceedings of the 19th International Conference
on Automated Planning and Scheduling (ICAPS 2009).
Fernández-González, E.; Karpas, E.; and Williams, B. C. 2017.
Mixed discrete-continuous planning with convex optimization.
In AAAI, 4574–4580.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of artificial
intelligence research 20:61–124.
Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic
construction of efficient multiple battery usage policies.
In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence - Volume Volume Three,
IJCAI’11, 2620–2625. AAAI Press.
Obes, J. L.; Sarraute, C.; and Richarte, G. 2013. Attack planning
in the real world. CoRR abs/1306.4044.
Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and
Mercorio, F. 2016. Heuristic planning for PDDL+ domains,
volume 2016-January. International Joint Conferences on
Artificial Intelligence. 3213–3219.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In ECAI,
655–663.

Cost of LPs and STPs in Planning: Lessons Learned From Large Real-Life Domains 114

Author Index

A
Agrawal, Jagriti, 35, 86

B
Barber, Federico, 76
Basich, Connor, 68
Becker, Colja A., 54
Bledsoe, Brian, 25
Booth, Kyle E. C., 95
Bursuc, Andrei, 61

C
Cawse-Nicholson, Kerry, 17
Cazenave, Tristan, 61
Cheung, Kar-Ming, 25
Chi, Wayne, 35, 86
Chien, Steve, 17, 35, 86
Coles, Amanda, 106

D
Davis, Ben, 45
Denenberg, Elad, 106
Do, Minh, 95

F
Ferrer, Sergio, 76
Frank, Jeremy, 95
Freeborn, Dana, 17

G
Gaines, Daniel, 86
Giret, Adriana, 76
Goldman, Claudia, 68
Guettier, Christophe, 61

J
Jacopin, Eric, 61

K
Khun, Stephen, 86

L
Lammers, Rod, 25

Lee, Tom, 45
Levinson, Richard, 8
Li, Alan S., 25
Lin, Chen, 104
Long, Derek, 106

M
Magill, Stephen, 45
Moy, Alan, 17
Myers, Karen L., 45

N
Nag, Sreeja, 25
Nanda, Sasha, 95
Narayan, Parvathi, 95
Net, Marc Sanchez, 25
Nguyen, Thanh, 95

O
O’Gorman, Bryan, 95
Osanlou, Kevin, 61

P
Padams, Jordan, 17

R
Rabideau, Gregg, 86
Ravindra, Vinay, 25
Rieffel, Eleanor, 95
Rofrano, John, 104

S
Saisubramanian, Sandhya, 68
Salido, Miguel A., 76
Shao, Elly, 17
Sun, Hongtan, 104

T
Tam, Laura, 45
Timm, Ingo J., 54
Trilla, Jose Manuel Calderon, 45
Trowbridge, Michael, 17

115

V

Venturelli, Davide, 95

Vukovic, Maja, 104

Y
Yelamanchili, Amruta, 17

Z
Zilberstein, Shlomo, 68

116

	Title Page
	Preface
	Organisation
	Contents
	Aerospace Applications
	Constraint Integer Program Formulations for NASA Planning, Scheduling, and Autonomy Problems – Richard Levinson
	Automated Science Scheduling for the ECOSTRESS Mission – Amruta Yelamanchili , Steve Chien , Alan Moy , Elly Shao , Michael Trowbridge , Kerry Cawse-Nicholson , Jordan Padams , Dana Freeborn
	Autonomous Scheduling of Agile Spacecraft Constellations with Delay Tolerant Networking for Reactive Imaging – Sreeja Nag , Alan S. Li , Vinay Ravindra , Marc Sanchez Net , Kar-Ming Cheung , Rod Lammers , Brian Bledsoe
	Scheduling with Complex Consumptive Resources for a Planetary Rover – Wayne Chi , Steve Chien , Jagriti Agrawal

	Planning & Scheduling with Preferences
	Privacy-aware Adaptive Scheduling for Coalition Operations – Karen L. Myers , Tom Lee , Laura Tam , Jose Manuel Calderon Trilla , Ben Davis , Stephen Magill
	Planning and Scheduling for Cooperative Concurrent Agents with Different Qualifications in the Domain of Home Health Care Management – Colja A. Becker , Ingo J. Timm
	Learning-based Preference Prediction for Constrained Multi-Criteria Path-Planning – Kevin Osanlou , Christophe Guettier , Andrei Bursuc , Tristan Cazenave , Eric Jacopin
	The Value of Incorporating Social Preferences in Dynamic Ridesharing – Saisubramanian, Sandhya , Basich, Connor , Zilberstein, Shlomo , Goldman, Claudia
	A Capacited Vehicle Routing and Scheduling Problem for Passengers: A Modelling and Solution Approach – Sergio Ferrer , Miguel A. Salido , Adriana Giret , Federico Barber

	Automated Reasoning in Real Domains
	Enabling Limited Resource-Bounded Disjunction in Scheduling – Jagriti Agrawal , Wayne Chi , Steve Chien , Gregg Rabideau , Stephen Khun , Daniel Gaines
	Quantum Circuit Compilation: An Emerging Application for Automated Reasoning – Davide Venturelli , Minh Do , Bryan O'Gorman , Jeremy Frank , Eleanor Rieffel , Kyle E. C. Booth , Thanh Nguyen , Parvathi Narayan , Sasha Nanda
	Advantages and Challenges of Using AI Planning in Cloud Migration – Hongtan Sun , Maja Vukovic , John Rofrano , Chen Lin
	Evaluating the Cost of Employing LPs and STPs in Planning: Lessons Learned From Large Real-Life Domains – Elad Denenberg , Amanda Coles , Derek Long

