
 
 

Delft University of Technology

Ab initio vibrational free energies including anharmonicity for multicomponent alloys

Grabowski, Blazej; Ikeda, Yuji; Srinivasan, Prashanth; Körmann, Fritz; Freysoldt, Christoph; Duff, Andrew
Ian; Shapeev, Alexander; Neugebauer, Jörg
DOI
10.1038/s41524-019-0218-8
Publication date
2019
Document Version
Final published version
Published in
npj Computational Materials

Citation (APA)
Grabowski, B., Ikeda, Y., Srinivasan, P., Körmann, F., Freysoldt, C., Duff, A. I., Shapeev, A., & Neugebauer,
J. (2019). Ab initio vibrational free energies including anharmonicity for multicomponent alloys. npj
Computational Materials, 5(1), Article 80. https://doi.org/10.1038/s41524-019-0218-8

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1038/s41524-019-0218-8
https://doi.org/10.1038/s41524-019-0218-8


ARTICLE OPEN

Ab initio vibrational free energies including anharmonicity for
multicomponent alloys
Blazej Grabowski 1, Yuji Ikeda 2, Prashanth Srinivasan 3, Fritz Körmann 2,3, Christoph Freysoldt 2, Andrew Ian Duff4,
Alexander Shapeev5 and Jörg Neugebauer 2

The unique and unanticipated properties of multiple principal component alloys have reinvigorated the field of alloy design and
drawn strong interest across scientific disciplines. The vast compositional parameter space makes these alloys a unique area of
exploration by means of computational design. However, as of now a method to compute efficiently, yet with high accuracy the
thermodynamic properties of such alloys has been missing. One of the underlying reasons is the lack of accurate and efficient
approaches to compute vibrational free energies—including anharmonicity—for these chemically complex multicomponent alloys.
In this work, a density-functional-theory based approach to overcome this issue is developed based on a combination of
thermodynamic integration and a machine-learning potential. We demonstrate the performance of the approach by computing the
anharmonic free energy of the prototypical five-component VNbMoTaW refractory high entropy alloy.

npj Computational Materials            (2019) 5:80 ; https://doi.org/10.1038/s41524-019-0218-8

INTRODUCTION
Recent developments in the field of multicomponent alloys (high
entropy alloys (HEAs) and compositionally complex alloys (CCAs))
have opened new materials design perspectives.1–4 The prediction
and exploration of thermodynamic properties and phase stabi-
lities are therefore of critical importance. To this end, parameter-
free ab initio calculations, particularly using density-functional
theory (DFT), are rapidly gaining popularity.5 However, the
requirement6–8 to accurately capture small free energy differences
(≈1meV/atom) poses severe challenges. Only very recently the
required tools to accurately compute free energies of selected
unary and ordered binary systems have been developed,8–10 while
efforts to treat the immense chemical complexity of multi-
component alloys are still in their infancy. Here, we propose a
highly efficient and accurate approach to compute the vibrational
contribution to the free energy of such multicomponent alloys.
We apply it to a prototypical five-component equiatomic body-
centered cubic (bcc) refractory VNbMoTaW HEA in its solid
solution. This alloy has attracted attention for its superior high-
temperature mechanical properties.11,12

The free energy is determined by different contributions such as
atomic vibrations, electronic excitations, or chemical configura-
tions (e.g., refs. 5,13). For a fixed atomic configuration, e.g., a given
chemically ordered or disordered atomic arrangements of atoms,
a main contribution is due to atomic vibrations, the leading term
of which can be captured by the quasiharmonic approximation.
However, the latter accounts only for the phonon softening due to
volume expansion and misses out the temperature-dependent
phonon softening and broadening. Effective harmonic Hamilto-
nians14–19 can approximately account for the temperature-
induced changes. Numerically exact vibrational free energies can

be obtained by thermodynamic integration,20–24

F ¼ Fref þ
Z1
0

dλ EDFT � Eref
� �

λ
; (1)

from a reference potential Eref with free energy Fref to DFT
energies EDFT, where 〈⋯〉λ denotes a thermal average on a mixed
potential Eλ= λEDFT+ (1− λ)Eref. Using a harmonic reference
would in principle give the exact anharmonic free energy,
including temperature-dependent phonon softening and broad-
ening, but such a brute-force integration is computationally
prohibitive in practice. The computational effort is dominated by
(1) the number of molecular-dynamics (MD) steps needed to
obtain a statistically converged average, (2) the number of λ-
values required to calculate the integral, and (3) the computa-
tional effort per MD step.
A state-of-the-art method, making the three steps more

feasible, is the two-stage upsampled thermodynamic integration
using Langevin dynamics (TU-TILD) method,9 which employs an
interatomic potential as an intermediate reference in the
thermodynamic integration. The thermodynamic integration is
split into two stages, first from the harmonic to the reference
potential, secondly from the reference potential to full DFT. The
intention is to reduce the number of steps necessary to converge
the thermal average in the second stage—containing the explicit
and costly DFT calculations—by fitting the potential as closely as
possible to the DFT data. The brunt of the statistical convergence
is then relegated to the thermal average in the first stage, which
does not contain explicit DFT calculations and can be thus
computed highly efficiently.
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The performance of this approach relies critically on the
feasibility of fitting a potential that accurately interpolates the
DFT data within the thermally accessible phase space. For HEAs
and CCAs, where the primary goal is the exploration of the large
compositional space and thus many different atomic structures,
the requirement of an efficient reference for thermodynamic
integration is even more critical. At the same time, for multi-
component alloys the number of fitting parameters drastically
increases, which results in a serious challenge to fitting reliable
potentials. A priori it is not clear whether such an approach is at all
feasible for HEAs and CCAs.
A possible solution to this problem could be offered by the

emerging class of machine-learning techniques, which have
recently been developed in various scientific fields.25 Several
machine-learning potentials have been proposed so far.26–31 For
example, Gaussian process regression was applied to approximate
the potential free energy surface of small and medium-sized
molecules across the slow degrees of freedom.32 First attempts
have been put forward to describe alloys,33 focussing on the
configurational degree-of-freedom of a ternary system. Whether a
machine-learning approach is applicable to compute the vibra-
tional free energy of chemically even more complex bulk materials
is so far unknown.
In this work we develop a new algorithm combining the TU-

TILD method with moment tensor potentials (MTPs), a class of
machine-learning potentials first proposed in ref. 34, and recently
shown to perform best among different machine-learning
models.35 MTP describes the atomic environment of the ith atom
by the moments of inertia of the neighboring atoms,

Mn;m ¼
X
j

fn;i;jðrijÞ rij � rij � ¼ � rij|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m times

:

Here the radial functions fn,i,j(rij), n= 1, 2, …, define different shells
around the ith atom; the contribution of the jth atom to the nth
shell can depend on the types of the ith and jth atom. When
m = 0, Mn,0 is a scalar quantity interpreted as the weight of the nth
shell. The set of these scalar descriptors is not complete. However,
this set can be made complete by adding vectorial “eccentricity”
of the nth shell Mn,1, the tensor of second moments of inertia Mn,2,
the third moments Mn,3, etc. Hence, MTP can approximate an
arbitrary local interaction energy by forming basis functions as
different ways of contracting these tensor-valued moment
descriptors to a scalar and considering an arbitrary linear
combination of these basis functions with parameters fitted from
data.33,34 In practice, this means that we can increase the number
of parameters until the fitting error stops decreasing—this would

indicate that we have reached a lower error bound that a local
model can achieve with a given cutoff radius.
We demonstrate here that the TU-TILD+MTP combination is an

ideal symbiosis for an efficient and accurate calculation of the full
vibrational free energy of disordered multicomponent alloys. In
particular, we apply an MTP as a reference potential within TU-
TILD for the chemically complex disordered VNbMoTaW HEA and
show that it is clearly superior to alternative reference potentials.

RESULTS AND DISCUSSION
Since machine-learning potentials have an inherently low extra-
polation capacity, stability over the relevant part of the phase
space is a critical issue. Detailed tests reveal that the MTP, fitted
according to the procedure described in section “Methods”, is
sufficiently stable in the relevant volume and temperature range
for the application within TU-TILD (see Fig. 1a). In fact the potential
can be also used at extrapolated volumes and temperatures and
predicts even the onset of the liquid phase. Only a small number
of MD runs in the range of a few percent (see gray contour lines)
becomes unstable. The results shown in Fig. 1a correspond to a
“single-shot” MTP potential fitted to an initial set of DFT data.
However, the MTP provides an inherent metric36 to quantify the
degree of extrapolation and thus offers the possibility to actively
sample configurations for fitting (as, e.g., employed in ref. 37),
ensuring stability for the temperatures of interest.
The performance of the MTP as a reference potential within TU-

TILD can be quantified by the following: (1) the dependence of
〈EDFT−Eref〉λ on λ (Eq. (1); where Eref stands for MTP energies)
should be as smooth as possible, (2) the standard deviation of the
energy difference EDFT−Eref should be as small as possible, and (3)
the correlation in the forces should be as strong as possible. The
thermodynamic integration from the harmonic potential to MTP
will not be discussed since, as mentioned previously, this stage of
the integration can be computed highly efficiently given the fact
that the MTP is more than six orders of magnitude faster than DFT.
See Supplementary Information for detailed timings.
The excellent performance of the MTP is demonstrated in Figs. 2

and 3a. The MTP energies are so close to the DFT energies that the
thermal average 〈EDFT−Eref〉λ is almost independent of λ and close
to the targeted error of 1 meV (Fig. 2b, black curve), i.e., the
resulting MTP free energy is only 1 meV/atom away from the DFT
free energy (Fig. 2a). Computing this difference can be done
highly efficiently because of the small standard deviation in the
range of only 2 meV/atom (Fig. 2c). Consistently, the MD forces
predicted by the optimized MTP show a strong correlation with
the DFT forces (Fig. 3a). This good performance of the MTP is
found for the whole relevant volume range (see Supplementary

(a) MTP (b) EAM 

Fig. 1 Internal energy surfaces, U, as a function of lattice constant/volume and temperature, T, for a MTP and b EAM. Green dots mark the
volumes (at 3000 K) used for fitting the potentials. Black dotted lines emphasize the transition to the liquid phase. The squared volume and
temperature region is the region of interest (3.20–3.28 Å in terms of the lattice constant). The gray lines in a are contours at which 1 or 5% of
the MTP MD runs are unstable (see Supplementary Information), however, all the runs can be made stable by using active learning36
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Information) demonstrating that an efficient study of the thermal
expansion is possible as well.
We have investigated the MTP-based approach also for different

SQS permutations to simulate varying chemical environments for
the VNbMoTaW system. We find that the total vibrational free
energy varies only slightly between the four investigated super-
cells (standard deviation of 1.1 meV/atom). This indicates that the
employed supercell size provides a converged sampling of the
ideal disordered limit. Further we find a similarly good computa-
tional performance and stability for the individual MTPs for each
SQS. Additional tests also show that a single MTP with a similar
performance can be obtained by fitting to all SQS’ simultaneously.
To set a baseline for the performance of the MTP as compared

to alternative reference potentials that have been used previously

for chemically less complex unary and binary systems we study:
(1) 0 K harmonic,10,38,39 (2) effective harmonic,16 and (3)
embedded atom method (EAM).9,40 We start with the 0 K
harmonic potential computed for VNbMoTaW in ref. 41. As
mentioned in “Introduction”, using this reference in Eq. (1) directly
provides the anharmonic contribution.
Figure 2 highlights the difficulties. Figure 2b shows the very

nonlinear dependence of the thermodynamic average,
〈EDFT−Eref〉λ (where Eref stands now for the harmonic energies),
on the coupling constant λ (green curve). Due to this nonlinear
behavior, the evaluation requires many sampling points. Using the
MTP reference introduced above makes a highly accurate
calculation of this quantity possible. We find that at 3000 K the
anharmonic contribution is −31meV/atom. Due to their more
open structure, bcc materials are known to have a more complex
temperature dependence of the anharmonic free energy than
close-packed materials.42 Our calculations confirm this observa-
tion quantitatively: the anharmonic contribution is almost twice as
large as for previously investigated, close-packed face-centered
cubic (fcc) structures (range of 1–25meV/atom at the melting
point).10

An even more serious issue than the strongly nonlinear
dependence of 〈EDFT−Eref〉λ for the harmonic reference is the fact
that long MD runs are required to statistically converge each of
these points. The underlying reason is that the standard deviation
of the energy difference, EDFT−Eref, is large as shown in Fig. 2c. The
large difference in the energies is also reflected in the weak
correlation between the harmonic and DFT forces during an MD
run as shown in Fig. 3d.
We now investigate an effective harmonic force constant matrix

constructed at finite temperature as a reference. Such a matrix is
employed, e.g., in the temperature-dependent effective potential
(TDEP) method,16 and provides the advantage that analytical
formulas can be used to compute the vibrational free energy. Our
tests show that including pair interactions up to the first- and
second-nearest neighbors gives similar results as with an
additional third shell (see Supplementary Information). Results
for three shells will be discussed in the following. The interactions
are determined from a least-square fit of the forces from more
than 1500 configurations of an MD run at 3000 K at the target
lattice constant. Owing to the harmonic approximation, the fitting
problem is linear43 and is solved with a standard algebraic
method, namely the pseudo-inverse from singular value decom-
position to avoid accidental ill-conditioning. The zero-force
reference structure, where the potential attains its minimum is
set to the 0 K equilibrium geometry.
The forces from such an effective harmonic potential show a

slightly better correlation with the DFT MD forces at the target
temperature than the 0 K harmonic forces (cf. Fig. 3c vs. d).
Correspondingly the dependence of 〈EDFT−Eref〉λ on λ, where Eref

now stands for the effective harmonic energies, is less nonlinear
than for the 0 K harmonic energies (Fig. 2b, red vs. green).
However, the standard deviation is smaller only at λ > 0.5. Thus an
effective harmonic potential offers only a slightly improved
reference for thermodynamic integration (≈1.5 times faster). The
respective vibrational free energy obtained using the standard
harmonic formulas including a correction of the internal energy as
introduced in the TDEP method16 gives a slightly reduced error of
19meV/atom compared to −31meV/atom for the 0 K harmonic
reference (Fig. 2a).
The still rather large error of the effective harmonic matrix is

related to strong local pairwise anharmonicity.10 The inherent
asymmetry of the nearest neighbor potential when atoms move
together or apart cannot be captured in general by any harmonic
potential irrespective of the temperatures it is fitted to. To take the
required asymmetry properly into account, an asymmetric
potential parametrization is required. Asymmetric potentials are

Fig. 2 Results of thermodynamic integration to DFT for VNbMoTaW
using different references at 3000 K. The integral over the curves in
b gives the difference in free energy between DFT and the reference
shown in a. The smaller the standard deviation shown in c, the
quicker the statistical convergence of the curves in b as indicated on
the right axis in c. For the CPU time calculation a standard error of
1meV/atom, a CPU time of 4 h per ionic step, and a correlation
length of 15 steps were taken
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offered by the MTP discussed already above or likewise by an EAM
parametrization.
We thus investigate whether an EAM fit for the complex

disordered VNbMoTaW HEA is possible and, if it is, how it performs
for thermodynamic integration. We employ the MEAMfit v2
package.44,45 Our tests show that the number of expansion
parameters has only a small influence (see Supplementary
Information). Results shown in the following refer to our best
EAM with 3 embedding terms per species, with 11 parameters for
the electron densities, and 19 for the pair-potentials. In total there
are 355 independent parameters for this chemically highly
complex quinary system, rendering the extraction of an accurate
potential particularly challenging. To address this challenge we fit
initially to a subset of the ≈8000 energies available across all
volumes. This subset consists of ≈2000 uniformly-spaced energies,
providing sufficient points per parameter to prevent over-fitting.
We then take the best performing potential as a starting point for
a single shot conjugate gradient fit to all ≈8000 energies.
During the optimization, energies are computed relative to the

0 K relaxed structure for the corresponding volume. A cutoff radius
of 5 Å (as for MTP) is imposed for the pairwise terms, and negative
“electron’’ densities are allowed—although positive background
densities are required overall—to provide maximum variational
flexibility. The resulting potential is stable across a wide range of
volumes and temperatures (see Fig. 1b) and predicts the onset of
the liquid phase.
The forces obtained with the fitted EAM potential show a better

correlation with DFT MD forces (Fig. 3b) than the harmonic
potentials. Consistently, the dependence of 〈EDFT−Eref〉λ on λ,
where Eref stands now for the EAM energies, is more linear and the
standard deviation is smaller for all λ (blue curves in Fig. 2). Using
the EAM as a reference is more than three times faster than an
effective harmonic potential. However, the EAM cannot compete
with the MTP as a reference potential, which further increases the
efficiency by about an order of magnitude as compared to
the EAM.
An attempt has been made to optimize a reference-free

modified EAM (RF-MEAM) potential, however, due to the size of
the potential parameter space we were unable to obtain an RF-
MEAM potential, which improved on the EAM potential. It is worth
noting that this is an area of active research, with recent
improvements by one of us (A.I.D.) to the underlying MEAMfit
algorithm as well as, e.g., consideration of preconverged binary
and ternary potentials as starting points, likely to render such
optimizations feasible in the near future.
Overall, the results of the present study reveal that the

combination of TU-TILD with MTP represents the presently most
efficient combination to compute the vibrational free energy
contribution of chemically complex alloys. Ongoing investiga-
tions46 indicate that this applies not only to equiatomic
compositions such as the one studied in the present study, but
likewise to arbitrary nonequiatomic compositions, and further also

to different crystallographic lattice types such as hcp or fcc and
even to the liquid phase.
The underlying physical reason for the excellent performance of

the TU-TILD+MTP combination is the fact that the vibrational free
energy is determined by a rather well-defined, sufficiently smooth,
and local—although strictly anharmonic—part of the phase space.
Several other studies10,47,48 have already indicated that long-
ranged interactions that maybe present at T= 0 K due to
quantum-mechanical interference effects, vanish when explicit
vibrations are introduced at finite temperatures due to the
breaking of the crystal symmetries. Effective interactions at finite
temperatures are thus localized and can be well fitted by a local
approach. These interactions are strongly anharmonic requiring an
anharmonic description as provided by the MTP or EAM, with a
greater flexibility offered by the MTP. It should be stressed that
this greater flexibility comes with a lower extrapolation capability
(see Fig. 1 and corresponding discussion). A main achievement of
the present work is having shown that, for free energy calculations
within the TU-TILD+MTP approach, the stability of the MTP is
sufficient and that providing a set of well-distributed fitting data
renders the sampling of the thermally accessible phase space an
interpolation task—a task optimally suited for a machine learning
approach.
To put the here proposed method into a practical perspective,

we foresee a number of potential applications such as, e.g.,
computing transition temperatures between ordered and dis-
ordered phases as recently performed within the quasiharmonic
approximation for the V-Mo-Nb-Ta-W system by Wang et al.49 or
by coupling it to the recently developed low-ranked potential
method,50 which has been successfully applied to refractory
multicomponent alloys.51 Other potential applications are melting
temperature calculations based on the method developed in ref. 8

or accurate stacking-fault energy calculations.48 Of interest would
be an extension to magnetic materials, in particular for efficiently
treating vibrations in the paramagnetic state.52–54 The key step
towards such an extension would be the development of efficient
machine-trained magnetic potentials, which capture the magnetic
degree of freedom. Despite recent progress employing Gaussian
approximation potentials on purely ferromagnetic iron,55 the
explicit inclusion of the magnetic degree of freedom has yet to be
achieved in one of the current machine-learning potential
frameworks.
To open the approach to a broad community, we are

presently implementing it into the pyiron environment (http://
pyiron.org).56 This, together with the performance of the new
approach, paves the route to compute vibrational free energies
not only highly accurately but with a computational perfor-
mance adequate for high-throughput screening of multicompo-
nent alloys.

Fig. 3 Correlation of the DFT forces versus forces from the different approximations at 3000 K. The color represents the local density. The
numbers in the right lower corners represent the root mean square error of the distributions
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METHODS
Chemical disorder is modeled by a special quasirandom structure (SQS) in
a 125 atomic supercell.57 DFT calculations are performed with VASP58,59

employing PAW,60 and GGA-PBE.61 Tests for different chemical permuta-
tions of the SQS revealed similar results. The impact of electronic
excitations on the interatomic interactions has been taken into account
by employing finite-temperature DFT as developed by Mermin62 (see also,
e.g., ref. 47). For further details we refer to the Supplementary Information.
We consider temperatures up to 3000 K, which is close to the estimated
melting point.12 In accord with our previous works,8,40 we use DFT MD
simulations at several volumes at a high temperature to provide sufficient
fitting data for MTP (green dots in Fig. 1a). We choose a cutoff radius of 5 Å
(including the first up to the third neighbor shell). Additional tests for a
smaller cutoff including two shells show a small change (see Supplemen-
talary Information).
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