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Closed-Loop Control Through Self-Sensing of a Joule-Heated

Twisted and Coiled Polymer Muscle

Joost van der Weijde, Heike Vallery, and Robert Babuška∗

Abstract

The twisted and coiled polymer muscle has two major

benefits: low weight and low cost. Therefore, this new

type of actuator is increasingly used in robotic applica-

tions where these benefits are relevant. Closed-loop control

of these muscles, however, requires additional sensors that

add weight and cost, negating the muscles’ intrinsic bene-

fits. Self-sensing enables feedback without added sensors.

In this paper, we investigate the feasibility of using self-

sensing in closed-loop control of a Joule-heated muscle.

We use a hardware module capable of driving the muscle,

and simultaneously providing sensor measurements based

on inductance. A mathematical model relates the measure-

ments to the deflection. In combination with a simple force

model, we can estimate both deflection and force, and con-

trol either of them. For a muscle that operates within de-

flections of [10,30]mm and forces of [0.32,0.51]N, our

self-sensing method exhibited a 95% confidence interval

of 2.14mm around a mean estimation error of -0.27mm
and 29.0mN around a mean estimation error of 7.5mN,

for the estimation of respectively deflection and force. We

conclude that self-sensing in closed-loop control of Joule-

heated twisted and coiled polymer muscles is feasible and

may facilitate further deployment of such actuators in ap-

plications where low cost and weight are critical.

Introduction

The recently developed actuation principle represented by

the Twisted and Coiled Polymer Muscle (TCPM) has a

number of benefits that make it interesting for application

in soft robotics.1 Two major benefits are its low weight and

low cost. The working principle of this actuator is based

on the thermal torsion effect.2 Twisting a fiber with a sub-

structure highly aligned in the direction of the fiber, such as

polymer chains or carbon nanotubes, results in a helically

aligned substructure. Radial expansion of the twisted fiber

and entropic contractionof the helical substructuregenerate

a torque in the opposite direction of the twist. In nylon, both

effects can be induced through heating. These torsional ac-

tuators become linear actuators through coiling.2, 3

Of the varieties of the TCPM, the thermally-activated

Joule-heated nylon muscle receives the most attention.

This specific type already has a wide range of applica-
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PL L → F̂ , x̂ → P

Figure 1: Impression of a self-sensing muscle. A control signal

P is used to both drive the muscle to generate the force F and

measure the inductance L of the Joule-heating wire. Based on

the measurement and the previous control input, the self-sensing

and control module estimates the force F̂ and deflection x̂, and

subsequently determines the new control signal.

tions: robotic fingers,4–6 joints,7–9 orthoses,10, 11 complete

robots,12, 13 or being embedded in a silicon manipulator,14

silicon skin for robotic facial expressions,15 or a self-

adjusting sports bra.16

Systems that benefit most from TCPMs are typically

lightweight and inexpensive, and should function in versa-

tile environments. However, most TCPM control schemes

rely either on added sensors to enable feedback con-

trol,4–7, 17–20 or on predictable circumstances to enable feed-

forward control.21 Added sensors increase weight and cost,

negating two major benefits of these actuators. Accu-

rate feedforward control requires a controlled environment,

which limits its usability in real-life applications. One way

to enjoy the benefits of both without the drawbacks of added

sensors or complex models is through self-sensing. This

means that a system determines its state through the in-

terpretation of input-signal behavior, use of special input

signals, or connecting additional electrical leads to existing

hardware.22 Self-sensing in TCPMs will provide an inex-

pensive and light-weight way to implement feedback.

TCPMs with Joule heating possess self-sensing capabil-

ities, as we demonstrate in our previous work.23 We show

the potential to use both resistance and inductance of Joule

heating for self-sensing purposes. Next to our work, three

studies on sensing in TCPMs focus on modeling the resis-

tance of coated nylon muscles.24–26 Two of these works use

auto-coiled muscles.24, 25 The first work contributes a phe-

nomenological approach to derive a sensing model.24 They



+

+
+

Muscle Drive
Universal

Testing

Machine Physical

Muscle

Standard

Linear

Solid Model

Deflection and

Velocity

Estimator

Temperature

Model

Controller

F o

F̂ l

P

F or x

x or F

F̂ or x̂F̂F̂T
L

x̂

ˆ̇x

r

Figure 2: Block diagram for estimation and control. The gray dashed rectangle contains the functionality of the Muscle Drive (MD).

Within the MD, the switch indicates that either the deflection estimate x̂ or the force estimate F̂ is used as input for the controller,

alongside reference r, resulting in either control of deflection x or force F . The Universal Testing Machine (UTM) acts as a load on

the muscle. When the MD controls force, the UTM imposes deflection, and vice versa. The temperature model uses power input P

to compute the contribution of temperature to force F̂ T , as in (1). The deflection and velocity estimator represents the measurement

of deflection based on decay time L in (4), the subsequent low-pass filtering of the deflection measurement, and taking the backward

difference to find velocity ˆ̇x. The Standard Linear Solid model calculates the contribution F̂ l to force by deflection and velocity using

(6). The total force estimate F̂ is found by adding F̂ l, F̂ T and force offset F o. Finally, the PID controller with anti-windup determines

the control signal by using (7).

relate resistance of a coated fiber to geometric changes dur-

ing stretching of the coil. However, this approach does not

include actuation, and therefore cannot be applied as a self-

sensing model. The second work contributes an analysis

of the resistance when actuating the muscle.25 The au-

thors found nonlinearities in the resistance attributed to coil

windings making contact with each other. The third study

uses mandrel-coiled muscles embedded in a silicon manip-

ulator.26 The authors use the muscles purely as sensors, in-

stead of actuators, and propose a fourth-order polynomial

fit as measurement model. Although these contributions

demonstrate the capability for self-sensing, none use self-

sensing to close the feedback loop.

In this paper we close the feedback loop via self-sensing.

We first identify and validate parameters for two models:

one model to estimate deflection via the muscle’s induc-

tance, and another model to estimate force, with as input

power and the estimated deflection. Second, with the mod-

els applied, we implement a feedback loop through self-

sensing, and perform simple control tasks, as illustrated by

Figure 1.

We start with an explanation of the methods. The sub-

sequent section contains the experimental validation of our

methods. Next, we present the results of the experiments.

Finally, we discuss our work and provide conclusions.

Self-Sensing and Control Methods

We first describe the hardware that combines actuation and

sensing. Next, we introduce the models used for self-

sensing of deflection and estimation of force, as well as their

online implementations. Finally, we introduce the control

method.

Combined Actuation and Sensing

While several ways exist to activate the TCPM, we choose

Joule heating by means of a constantan resistance wire.

Joule heating has the benefit that it can be used for self-

sensing.23 In this paper, we make use of hardware that re-

alizes this principle.27 The so-called Muscle Drive (MD)

drives the TCPM by applying a Pulse Width Modulated

(PWM) signal with a controlled duty cycle D. The elec-

trical response of the TCPM during the off time of a sig-

nal period relates to inductance. Based on this response,

the MD determines a measure of inductance L called de-

cay time.27

Self-Sensing Model

In our previous work we have introduced a self-sensing

model to estimate deflection x, force F and temperature,

when measuring both inductance and resistance.23 In this

paper, we first use the actuation power P to estimate the

contribution of temperature to force FT . Next, we use L
to determine x and velocity ẋ. We calculate their contri-

bution to force F l via a mechanical model. Addition of

FT , F l and a force offset F o gives the total force. Figure 2

illustrates this process. Note that the symbol L in this pa-

per does not represent physical inductance, but an assumed

proportionally related measure thereof.

For the estimation of FT , we disregard the heating time

of the resistance wire and assume it heats the fiber homo-

geneously. We do not measure temperature independently,

and we want to use a minimal set of fitted parameters.

Therefore, rather than using temperature, we directly relate

input power P to the contribution of temperature to force

FT . A first-order model describes the relation between P ,

FT and its derivative with respect to time ḞT as a function

of time t:

ḞT (t) = κPP (t)− κcFT (t) , (1)

where κP and κc represent the coefficient of conductive

heating and convective cooling, respectively. Since FT
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represents the contribution of temperature to force, κP in-

cludes a factor modeling the influence of temperature on

force and a factor to correct for power dissipated by the wire

directly to the air. We find P by

P (t) = D (t)
2
Rm

(

Ub

Rb

)2

, (2)

where Ub is the voltage at the connectors of the drive when

D = 1, Rb the electrical resistance of the circuit as mea-

sured at the connectors, and Rm the electrical resistance of

the Joule-heating part of the circuit. Note that we neglect

the influence of reactive power on heating of the muscle.

The muscles used in this paper have an inductance in the

order of magnitude of 1µH. With a signal frequency in the

order of magnitude of 100Hz, the reactive power is around

0.01% of the total power.

The model for computing deflection is taken directly

from our previous work.23 It relates L to x and tempera-

ture T by

L (t) =
λx

x (t) + λl
+ λTT (t) + λo, (3)

with λx, λl, λT , λo as fitted parameters. In contrast to our

previous work,23 we use a constantan resistance wire, which

exhibits almost constant resistance regardless of tempera-

ture. We can therefore neglect the influence of temperature

on the actuation and measurement signal. We furthermore

neglect the potential influences of temperature on induc-

tance that do not also influence deflection. Omitting tem-

perature from (3) and rewriting the equation to act as a self-

sensing model results in

x (t) =
λx − λl (L (t)− λo)

L (t)− λo

. (4)

As a force model we combine the Standard Linear Solid

(SLS) model for the mechanical behavior,28 with a con-

tribution by temperature in parallel, as shown in Figure 3.

This makes the force model

F (t) = F l (t) + FT (t) + F o, (5)

in whichF o represents a force offset, and for which the con-

tribution by F l is governed by

Ḟ l (t) = −

k2
c
F l (t) +

k1k2
c

x (t) + (k1 + k2) ẋ (t) , (6)

with stiffnesses k1 and k2, and damping c. These three pa-

rameters, in addition to F o, are fitted parameters.

Estimator Implementation

FT and F l can be found by transferring their respective

models to discrete time. However, filtering is required to

process deflection measurements into usable estimates, and

we need to estimate ẋ as an input for the force model. To

that end, we apply a low-pass filter, with a cut-off frequency

at 1⁄9 Hz. Subsequently, we find the velocity by taking the

backward difference of the deflection estimate.

k1

k2 c

FF

FT

Figure 3: Representation of the force model used for the muscles:

the Standard Linear Solid model,28 with a contribution by temper-

ature in parallel.

Control Design

To keep control simple, we choose to use PID control with

anti-windup via back calculation to deal with the actuation-

signal limits.29 The control law to find the desired actuation

signal P d is given by

P d (t) = Kp

(

e (t) + Tdė (t) +
1

Ti

∫ t

z (τ) dτ

)

, (7)

with

z (t) = e (t)−
1

Kp

(P d (t)− P (t)) , (8)

with the error e and ė its derivative with respect to time.

Control parametersKp, Td and Ti respectively represent the

proportional gain, and the derivative and integral time con-

stants. We saturate P d using

P (t) = max (Pmin,min (Pmax, P d (t))) (9)

with Pmax and Pmin representing the respective upper and

lower bound of the actuation signal. We use this control law

for both deflection control and force control. Therefore, the

reference r can be either a deflection or a force, and we use

the corresponding estimate, x̂ or F̂ , to calculate e and ė.
We discretize the integral action by using Euler’s method.

Stability Analysis

Stability analysis requires knowledge of the full system: the

physical actuator, its controller and the load. However, for

the method in this paper we do not make assumptions re-

garding the behavior of the load. In other words, we do

not know the behavior of the blocks representing the Uni-

versal Testing Machine (UTM) and the physical muscle in

Figure 2 for arbitrary cases. This means that we cannot an-

alyze stability for the full system. However, we can analyze

the stability of the control loop within the gray dotted lines

representing the MD, by assuming a constant x, and hence

a constant L. This case represents force control with a con-

stant deflection. In this case, closed-loop control reduces

to the interaction between the temperature model in (1) and

the control law in (7). A potential source of instability is

the saturation in (9). Separating the nonlinearity from the

dynamics allows for stability analysis via describing func-

tions.30 To that end, we determine the transfer function
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from P to P d, and use a describing function to represent

the saturation in the controller. In the Laplace domain, the

transfer function that represents the interaction between (1)

and (7) is given by

P d

P
=

−KpTdκP s
2 +

(

1

Ti
− κPKp

)

s+
(

κc

Ti
−

κPKp

Ti

)

s2 +
(

1

Ti

+ κc

)

s+ κc

Ti

,

(10)

where s represents the Laplace variable. We can ana-

lyze the stability of this system via the describing-function

method.30 Given a properly tuned controller and positive

parameters, this system is stable.

Experimental Methods

In this section, we first describe the experimental setup, fol-

lowed by the construction method and limits of the mus-

cle. We then explain the signal construction for identifi-

cation, training and warming up, followed by the control

tasks. Then, we explain the experimental protocol. Lastly

we describe how we processed the data.

Experimental Setup

The MD applies the PWM signal, and measures L. To

cope with artifacts of the device that result in spikes and

predictable variations in the measurements, we apply a 2-

sample moving-average filter, and a 15-sample median fil-

ter. We use a UTM with a load cell to apply and measure de-

flection and force. The UTM is a Mark10 ESM303, which

has a resolution of 0.02mm. The load cell of the UTM is

a Mark10 M5-05 Force Gauge, which has a resolution of

0.5mN. We control both the UTM and the MD with cus-

tom Python code, running on a laptop. The perspex duct

surrounding the TCPM, and a GELID silent 12 120mm
fan directed at the TCPM, with 10V applied, ensures con-

trolled airflow. Figure 4 illustrates this setup.

Muscle Construction and Limits

For construction of the TCPM we use the method described

in our previous work:23 we align the precursor fiber and re-

sistance wire, with a load suspended at one end, blocking

rotation, and a rotary motor at the other. We twist the line

until it just starts to coil upon itself. Complete coiling can

be achieved either by letting the whole fiber coil upon it-

self, or by wrapping it around a mandrel. We choose the

latter, for it increases the sensitivity of inductance to mus-

cle deflection. Annealing finishes the muscle. The endings

of the resistance wire connected to the electrical leads are

shaped such that when the TCPM is under tension, their in-

fluence on the force measurement is minimal. The relevant

specifications for construction are shown in Table 1.

To obtain repeatable actuation behavior we had to train

the muscle.23 In addition, in pilot experiments we found

that trained muscles that had been inactive for a while

needed a warming up to regain that same behavior. There-

fore, we included a warming-up phase each time we started

an experiment and when we continued an experiment after

Muscle Drive

(a) (b)

Figure 4: Overall setup, with the Universal Testing Machine and

the Muscle Drive in (a), and the Twisted and Coiled Polymer Mus-

cle in (b).

a pause in the protocol.

Through pilot experiments we determined the following

limits of deflection and power. To be sure to have overcome

the preload knee and avoid nonlinear behavior due to touch-

ing coils,25, 31 we choose xmin = 10mm as the minimum

deflection for the experiments. To prevent overstretching,

we choose xmax = 30mm as the maximum deflection.

With a voltage of Ub = 7V applied on the electrical leads,

and a resistance at the connectors of Rb = 10.75Ω, of

which the resistance at the muscle is Rm = 10.18Ω, the

maximum power input would be 4.31W. However, to pre-

vent overheating, we choose a 85% duty cycle as the max-

imum, obtaining Pmax = 3.12W. In addition, the MD

requires a minimum duty cycle of 15% to provide accu-

rate measurements. This is a practical limitation of the

MD, when combined with constantan wire for Joule heat-

ing. This sets the lower limit at Pmin = 0.10W. Therefore,

the boundaries within which we performed the experiments

are [10, 30]mm for deflection and [0.10, 3.12]W for power.

Signal Construction

In training, warming up, identification and validation we

excited the muscle by letting the MD apply a power, and

the UTM apply a deflection. We used two signal types: a

multi-sine signal m, and random-step signal g.

We constructed the multi-sine signal withN components

as

m(t) = a0 +

N
∑

i=1

ai sin (2πfit+ φi) , (11)

with a0 the signal offset, ai the amplitude of the ith com-

ponent, fi its frequency and φi its phase. In construction
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we determine the phases as

φi = φ0 −

πi2

N
, (12)

where φ0 is a pseudo-randomly chosen phase offset. This

construction method avoids high peaks.32 We took equal

amplitudes, with the signal scaled such that it fit the deflec-

tion and power limits, respectively. The frequency interval

from which we took the N equally spaced frequencies was

[10−2.4, 10−1.1] Hz. To avoid producing the same signal

for deflection and power, we took two different prime num-

bers forN and produced two different values forφ0. For the

deflection excitation we chose N = 11, and for the power

excitation we took N = 7.

We constructed the random-step signal with H steps as

g(t) = b0 +

H
∑

i=1

bih (t− τi) (13)

with h representing the Heaviside step function, b0 the sig-

nal offset, bi the amplitude for each step and τi the step

times. We determined the step times with a random gen-

erator, following the construction of step times for general-

ized binary noise.33 Given a certain process time constant

τp and sampling frequency fs, for each sample time, the

probability p the signal switches is

p = 1−
1

0.5τpfs
, (14)

such that the average time between switching was half the

process time constant. Via pilot experiments we deter-

mined the approximate time constants for deflection and

power to be respectively τp ≈ 2 s and τp ≈ 35 s. However,

to not let the influence of deflection dominate in the identi-

fication data set, we chose the time constants for deflection

and power to be respectively τp = 12.5 s and τp = 20 s.
For the size and direction of the step, we used two pseudo-

random processes. First, we sampled the step size from a

uniform distribution [0, 0.25 (gmax − gmin)], with gmax and

gmin representing the upper and lower limit of deflection and

Table 1: Muscle Construction Specifications

Property Value

precursor fiber diameter 0.8mm

precursor fiber material nylon

resistance wire diameter 0.3mm

resistance wire material constantan

load at twisting ≈ 6.50N

mandrel diameter 5mm

mandrel length 50mm

annealing temperature 165 ◦

C

annealing time 1 hour

nr. of windings 46

Joule-heating resistance 10.18Ω

Joule-heating inductance ≈1.30µH

power, respectively. Next, a virtual coin toss determined the

direction of the step. However, if a step in either direction

would take the signal out of bounds, the opposite direction

was chosen. Finally, we scaled the signal to include the up-

per and lower limits of deflection and power.

Control Tasks

We performed several control tasks to quantify the self-

sensing performance and the closed-loop control perfor-

mance of the muscle. We had the muscle perform both

force and deflection control. Both consisted of step re-

sponses to determine control behavior, and tracking sinu-

soid references to find the bandwidth of the actuator. The

step references contained 7 steps, spread over the respec-

tive ranges of [0.375, 0.525]N and [10, 30]mm. Each step

was held for 20 s. The sinusoid reference swept over 15

subsequently applied frequencies. For force control the si-

nusoid had a 0.05N amplitude and a 0.40N offset. For de-

flection control the sinusoid had a 5mm amplitude, and a

20mm offset. The frequencies were logarithmically spaced

within the same frequency interval used for the multi-sine

identification signal. The application of each frequency

lasted for three periods. In pilot experiments we tuned the

gains of both controllers, via the Ziegler-Nichols method.34

For deflection control we used PID control, with Kp =
−1.08W/mm, Td = 0.625 s and Ti = 2.5 s. For force

control we chose to use PI control, with Kp = 540W/N
and Ti = 1 s. During the control tasks the UTM respec-

tively imposed deflection and force. For deflection control,

we had the UTM maintain a constant force of 0.40N. For

force control, we had the UTM maintain a 20mm deflec-

tion.

As part of the control tasks, we implemented a calibra-

tion sequence for deflection measurements and force es-

timates. The calibration provided two offsets, compen-

sating for unmodeled effects, and disturbances happening

in between identification and control. For calibration of

the deflection measurements the UTM held a deflection of

20mm. The difference between the deflection estimate and

the actual deflection, averaged over 10 s, gave the calibra-

tion offset for the deflection measurements. For calibration

of the force estimates the UTM held a force of 0.40N, while

the MD controlled the deflection. The difference between

the force estimate and the actual force, averaged over 30 s,
gave the calibration offset for the force estimates.

Experimental Protocol

For training we first suspended the untrained TCPM and

set the load cell to zero. We then attached the bottom of

the TCPM to the UTM, and set the position of the UTM,

such that the TCPM just started to be under tension. At this

point, we set the deflection of the UTM to zero. Then, we

turned on the fan and the MD, and started the training. We

excited deflection and power for 600 s, using a multi-sine

signal for both.

The identification was initiated in the same way as train-
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ing. Prior to gathering identification data, we gave the

TCPM a warming up by means of a 250 s multi-sine on

deflection and power. For identification we subsequently

applied a 200 s multi-sine, and a 200 s random-step signal

on both deflection and power. For validation of the identi-

fication, we applied a 100 s multi-sine, followed by a 120 s
random-step signal on both deflection and power. Directly

after gathering identification data and preceding the con-

trol tasks, we identified the model parameters as described

in the following paragraph. During this time the TCPM was

still suspended in the UTM.

The control tasks were preceded with warming up the

TCPM by means of a 380 s multi-sine, and a 200 s random-

step signal on both deflection and power. After the warm

up, we calibrated the deflection measurements and force

estimates. Next, we started the force-control tasks. After

completion, we recalibrated the deflection measurements

and force estimates, to correct for numeric drifting or low-

frequency effects that were not included in the models. We

then continued the experiment with the position control

tasks.

Data Processing

The data acquired by the UTM and the MD had their own

respective time stamps. Using those, we aligned and re-

sampled both UTM and MD data to 16Hz.
To identify the 6 parameters for (1), (5) and (6), we min-

imized the squared error between the measured and esti-

mated force response. We obtained the estimated force re-

sponse by running a simulation of the dynamical system,

with the re-sampled power and deflection as input. With

MATLAB’s genetic-algorithm optimization we came close

to the absolute minimum. Subsequently, with MATLAB’s

nonlinear least-squares optimization, via the Levenberg-

Marquardt algorithm, we found the absolute minimum. We

found the 3 parameters for (4) in a similar fashion, min-

imizing the squared error between estimated and applied

deflection.

For analysis of the models, we first calculated the Root

Mean Square Error (RMSE) to quantify the estimation error

of deflection and force. Second, we assessed the quality of

the fit via the R2 value, given by

R2 = 1−

∑n
i=1

(yi − fi)
2

∑n
i=1

(yi − ȳ)2
, (15)

where yi are the n data points with ȳ as their mean, and

fi the estimates. We calculated the R2 and RMSE values

for the offline estimates belonging to the identification and

validation part, and online estimates of the control tasks.

In addition, we calculated the 95% confidence interval for

online estimation of both deflection and force. We used the

data gathered during deflection control to assess deflection

estimates, and data gathered during force control to assess

force estimates.

To take a closer look at the performance and limita-

tions of control, we calculated the rise times of the step

Table 2: Fitted parameters for measuring deflection and estimat-

ing force. The unit at ∗ proportionally relates to µHmm. The unit

at ∗∗ proportionally relates to µH.

x F

λx 2.81 ∗ κP 7.2 10
−3

N/J k1 10.8 10
−3

N/mm

λl 28.8 mm κc 131.6 10
−3 1/s k2 2.7 10

−3
N/mm

λo 0.433 ∗∗ F o 106.9 10
−3

N c 4.3 10
−3

N.s/mm

responses. In addition, to determine the bandwidth of the

actuator, we fit the amplitude, phase and offset of a sinu-

soid with a given frequency to the respective responses to

the last two periods of the sinusoid reference. We approx-

imated the bandwidth by determining the -3dB point via

linear interpolation of the resulting magnitudes.

Results

Figure 5 shows the time series of the identification and val-

idation experiment. Table 2 gives the fitted parameters for

(1), (4), (5) and (6). Table 3 shows the quality of the fit and

the estimation error resulting from these parameters.

Figure 6 highlights the online estimation of deflection

and force, by directly comparing the estimates to the true

values. We achieved 95% confidence intervals of respec-

tively 2.14mm around a mean error of -0.27mm for de-

flection estimation, and 29.0mN around a mean error of

7.5mN for force estimation. Figure 7 shows the resulting
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Figure 5: Time series of the identification and validation. The top

figure shows the applied power. The middle figure shows the ap-

plied deflection in black, and the fit deflection estimate in red. The

bottom figure shows the measured force in black and the fit force

in red. In all figures, the black vertical line shows the separation

of identification and validation data.
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Figure 6: Estimation data during respectively deflection control (a) and force control (b). The gray dots represent the estimates given

at the true value. The red line represents bisector of the graph, indicating what the correct values would be. The area between the

black lines indicates the 95% confidence interval, which is ±2.14mm around a mean error of -0.27mm for deflection, and ±29.0mN

around a mean error of 7.5mN for force.

Table 3: Fit quality measures for deflection and force, for data

regarding fitting, validation and control.

Fit Validation Control

R
2 RMSE R

2 RMSE R
2 RMSE

x 0.96 0.97mm 1.00 0.39mm 0.93 1.10mm

F 0.97 12.8mN 0.98 12.7mN 0.86 16.3mN

time series of the control experiment. Herein, Figure 7a

and Figure 7b show the step responses during deflection

and force control, respectively. Figure 7c and Figure 7d

show four representative periods of the respective sine

sweeps. In Figure 8 we show the frequency responses of

the sine sweeps during deflection control, and during force

control. The step responses during deflection control had

rise times between 4.2 s and 14.1 s, and during force control

they had rise times between 2.1 s and 5.1 s. Both ranges had

outliers at 20 s, indicating that the response did not reach

the reference value. We found the bandwidth for deflection

control to be approximately 1⁄25 Hz, and for force control ap-

proximately 1⁄18 Hz.

Discussion

Our method and implementation of self-sensing resulted in

a 95% confidence interval of 2.14mm around a mean er-

ror of -0.27mm for estimation of deflection, and 29.0mN
around a mean error of 7.5mN for estimation of force.

Combined with our control implementation we achieved a
1⁄25 Hz for deflection control, and 1⁄18 Hz for force control.

The RMSE and 95% confidence interval we achieved for

estimation of deflection were sufficient for feedback con-

trol. From these results, we conclude that our measurement

model in (4) includes the most important effects. Still, tai-

loring the hardware to the range of inductance of this spe-

cific muscle would likely improve the measurements. In ad-

dition, we needed an averaging filter and a rather strong me-

dian filter to avoid spikes in the data. These artifacts should

be taken care of in a new version of the hardware. Further-

more, in the measurement model we neglected the poten-

tial influence of the applied control signal and the influence

of temperature. The former requires additional research,

in combination with developments in hardware. The lat-

ter requires a measurement of temperature, for example via

resistance, as in our previous work.23

The presented implementation for force estimation also

captures the most important effects, and allows for feedback

control. However, it does need improvement of both preci-

sion and accuracy. The force estimates in Figure 7b and

Figure 7d show underestimation at the bottom edge of the

achievable force interval, when the control signal is at the

lower saturation limit. This indicates that the experimental

procedure to find the Joule-heating parameters might un-

derestimate the contribution by convective cooling. More-

over, the peaks in deflection measurements propagate in the

force estimate. This explains the peaks in Figure 7b. In ad-

ditional future work, we aim to quantify the repeatability

of the behavior of the muscles, both within and between

muscles. We included a warming-up phase in the experi-

mental protocol, to ensure repeatable behavior. The muscle

seems to have a relaxation effect with a low time constant.

Endurance tests will reveal this time constant. Subsequent

modeling thereof allows for omission of the warming up.

Figure 7a and Figure 7b illustrate the response of the

muscle to step inputs on the reference during respectively
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(a) Step response during deflection control.
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(b) Step response during force control.
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(c) Sine sweep during deflection control.
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(d) Sine sweep during force control.

Figure 7: Time series data regarding the control experiment. The top figures show the step responses with respectively deflection

control (a) and force control (b) over time. The bottom figures show four sample periods during the sine sweep with respectively

deflection control (c) and force control (d). In all four figures, the black solid line indicates the true value, the red line indicates the

estimate, and the dashed black line indicates the reference.
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ear interpolation between these points. This shows that the -3dB

point for deflection control lies at approximately 1⁄18Hz, and for

force control approximately at 1⁄25 Hz.

deflection and force control. The rise times vary from 2.1 s
to 14.1 s, excluding outliers at 20 s. The control action gets

saturated for the majority of the step responses.

Figure 8 shows a limited bandwidth, while a high band-

width is beneficial for robotic applications. TCPMs inher-

ently suffer from this issue, because in practice heating and

cooling are slow processes. However, these actuators are

suitable for tasks that do not require a high bandwidth. For

example, in compliant structures they can slowly change

the configuration or stiffness, or apply pre-tension. Fur-

thermore, there are possibilities to increase the bandwidth

reported in this study by optimizing material properties,

the activation principle, muscle configurations and control

methods. For example, we recommend to use smaller di-

ameter fibers or a suitable configuration of several muscles,

like an antagonistic setup.19, 35 In addition, we see oppor-

tunities for improving the implementation of the activation

principle by expanding the control action space. For exam-

ple, active cooling stimulates muscle expansion.36 Chang-

ing the cooling medium from air to liquid improves the per-

formance as well.17, 35, 37 Moreover, when the application of

the actuator is known, a feedforward signal could improve

the control performance.

A drawback of the TCPM is the poor scalability when

considering a single muscle. Using a structure of TCPMs

to perform as one actuator increases the scalability and ver-

satility.1, 38 However, closely packing the muscle might lead

to interaction of actuation and sensing. In future work, we

will investigate these potential disturbances for self-sensing

and actuation in muscle structures, and methods to cope

with those disturbances.

Conclusion

In this study, we aimed at strengthening the position

of TCPMs as a feasible actuator in inexpensive and

lightweight control systems. To that end, we closed the

feedback loop of a controlled TCPM via self-sensing. We

estimated both the deflection and force, using the applied

power and self-sensing measurements of deflection as in-

put. Subsequently, this allowed us to control either deflec-

tion or force. We achieved a 95% confidence interval of

2.14mm around a mean estimation error of -0.27mm and

29.0mN around a mean estimation error of 7.5mN, for re-

spectively deflection and force. This work validated the

used sensing model, and laid the foundation for further de-

velopments of research and hardware. It demonstrated the

increase in potential of TCPMs to be the actuators in inex-

pensive and lightweight control systems.
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