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Summary

Magnets are indispensable for compact data storage such as hard disks, and are
proposed to improve logic devices due to their robust and low power data processing
capabilities. YIG (Yttrium iron garnet) stands out among all magnets for a very
high magnetic quality. In a YIG sample under a magnetic field, a large majority of
electrons have spins opposite to the magnetic field and it costs energy to flip any
of them. A minority are parallel to the magnetic field due to thermal noise, from
which energy can be extracted in principle.

Shining laser at a magnet flips the spins therein. An optical method to manipulate
spins facilitates information exchange between fast carriers (photons) and a storage
element (magnet). However, in typical experiments, the probability of a spin flip in
YIG is so low that spins are nearly unaffected. As discussed in this thesis, we can
make this probability significant by confining photons inside a YIG sphere such that
they interact with each electron multiple times.

In this thesis, I develop a theory of the effect of photons on spins in a YIG sphere
and vice versa. I discuss how to optically extract energy from or inject energy into
the magnet in a controllable fashion, useful for making thermodynamic engines.
While laser is known to heat substances, it can, counter-intuitively, cool a magnet.
I discuss how to optimize this cooling effect and argue that it is feasible to experi-
mentally observe it. We envision our theory to help develop technology for arbitrary
manipulation of spins using light.

vii





Samenvatting

Magneten zijn onmisbaar voor compacte computergeheugen, zoals harde schij-
ven, en worden voorgesteld om logic devices te verbeteren vanwege hun robuuste
en energiebesparende gegevensverwerkingsmogelijkheden. YIG (Yttrium ijzer gra-
naat) is speciaal onder alle magneten voor een zeer hoge magnetische kwaliteit.
In een YIG-monster onder een magnetisch veld heeft een grote meerderheid van
elektronen spins tegengesteld aan het magnetische veld en het kost energie om
ze om te draaien. Een minderheid is parallel aan het magnetisch veld vanwege
thermische fluctuaties, waaruit in principe energie kan worden onttrokken.

Schitterende laser op een magneet draait de spins daarin om. Een optische me-
thode om spins te manipuleren helpt in bij de uitwisseling van informatie tussen
snelle fotonen en een geheugen (magneet). In typische experimenten is de waar-
schijnlijkheid van een spin flip in YIG zo laag dat spins bijna niet worden beïnvloed.
Zoals in dit proefschrift geschreven, kunnen we deze kans vergroten door foto-
nen binnen een YIG-bol in te vangen, zodat ze meerdere keren met elk elektron
interactie hebben.

In dit proefschrift ontwikkel ik een theorie van het gevolg van fotonen op spins in een
YIG-bol en vice versa. Ik schrijf hoe je energie kunt uittrekken uit of energie kunt
insturen in de magneet, nuttig voor het maken van thermodynamische motoren.
Hoewel het bekend is dat de laser verwarmt, kan het, tegen intuïtief, een magneet
koelen. Ik schrijf hoe dit afkoeling kan worden geoptimaliseerd en beargumenteer
dat het haalbaar is om het experimenteel te observeren. We stellen ons onze
theorie voor om technologie te ontwikkelen voor willekeurige manipulatie van spins
met behulp van licht.
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1
Introduction

Never underestimate the joy people derive
from hearing something they already know.

Enrico Fermi

I introduce the background necessary for understanding our research on ma-
nipulating magnetization using light. This includes a theory of magnetic and
optical modes in a sphere along with their interaction.

1
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2 1. Introduction

The ‘bizarre’ quantization of angular momentum observed in the classic Stern Ger-
lach experiment lead to the notion of spin. It is an intrinsic property of most ele-
mentary particles, analogous to rotation of a classical object. A macroscopic con-
sequence thereof can be witnessed in a ferromagnet, which is distinguished by a
strong tendency of neighbouring electrons to have parallel spins. In equilibrium, a
ferromagnetic sample gets partitioned into domains, within each of which the spins
of the electrons are parallel. By applying a sufficiently strong magnetic field, these
domains get aligned and a large magnetic field is generated outside the sample.

Commercial applications of ferromagnets include hard disks, read and write me-
dia and sensitive gyroscopes [1]. They have benefits over conventional logic de-
vices due to their non-volatility, reconfigurability and low-power consumption [2, 3].
Magnets which are electrically insulating are materials of choice for microwave tech-
nology such as filters and oscillators due to their high quality factors [4, 5]. A rep-
resentative material for such is the ferrimagnet yttrium iron garnet (YIG) which, at
low energies (∼ 50𝜇eV ≡ 10GHz ≡ 500mK), behaves as a ferromagnet [6]. Its
high transparency at infrared and strong spin-orbit interaction makes it useful in
commercial optical isolators (devices which allow transmission of light in only one
direction). The elementary excitations of the magnetic order, called magnons, are
long lived in YIG [6, 7]. This makes it promising for low power logic devices [8],
and long-range information transfer [9].

In addition to long lifetimes, magnons in YIG are expected to have long coher-
ence times [10], making them suitable for applications in quantum information [11].
However, studies on quantum properties of magnons are scarce and it is desirable to
have an interface with high coherence such as photons. At microwave frequencies
∼ GHz, photons have ∼ cm wavelengths and can couple strongly even with magnons
having sub-mm wavelengths [10, 12, 13]. However, the coupling is weaker for
smaller samples and wavelengths. Optical light with frequencies ∼ 100THz and
sub-𝜇m wavelengths is used to measure the dispersion of magnons in a wide range
of wave-vectors [14, 15], known as Brillouin light scattering (BLS) spectroscopy. In
this thesis, I argue that light can also be used to study and manipulate magnons at
a quantum level.

BLS refers to inelastic scattering of photons by absorbing or creating magnons.
Typical BLS measurements require strong light-matter interaction which are usually
accompanied with high optical losses into the material. However, pioneering exper-
iments on YIG spheres carried out independently in three labs [16–18] showed dy-
namical interaction between magnons and photons at wavelengths of transparency:
> 1.3𝜇m in free space. They found that magnon-photon coupling is enhanced by
confining light inside the magnet, by using it as a whispering gallery mode (WGM)
cavity. Predictions of using light to manipulate magnons followed, such as Pur-
cell effect (optically enhanced linewidth of magnons) [19], chaos in magnetic order
[20], and magnon cooling [21] (discussed in Chapter 4).

In this thesis, I theoretically discuss the interaction of infrared photons and
magnons in a setup shown in Fig. 1.1. A ferromagnetic sphere is touching a prox-
imity coupler (an optical fiber or a prism), whose transmission and reflection is
affected by the magnons. In turn, with an input light of sufficiently high power, the
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Figure 1.1: A magnetic sphere is coupled to an evanescent coupler to excite optical modes inside the
sphere. Incident photons (I) in the coupler scatter inelastically by the magnetic order in the sphere,
which can be observed in the reflected (R) and transmitted (T) light that leads back into the coupler. The
corresponding counter-propagating WGMs are shown by green (R) and blue (T) colored arrows inside
the sphere.

magnons can be pumped or cooled. I discuss interactions between spins of a ferro-
magnet in Sec. 1.1, and magnons in Sec. 1.2. The leading interaction Hamiltonian
between magnons and photons is discussed in Sec. 1.3. The electromagnetic fields
of WGMs is explained in Sec. 1.4. The theories in these sections are consolidated
in Sec. 1.5, where the model used in the thesis is discussed. A brief description of
each chapter in the thesis is contained in Sec. 1.6.

1.1. Magnetism
In this section, I introduce the microscopic interactions between the spins in a
magnet, with a focus on Yttrium Iron Garnet (YIG), 𝑌ኽ𝐹𝑒኿𝑂ኻኼ. This material has a
complex unit (cubic) cell containing twenty Fe atoms with half-filled 3d shell (spin
5/2). Eight of these are bonded with oxygen atoms in an octahedral geometry and
twelve in tetrahedal. The nearest neighbour Fe atoms, in two different surround-
ings, are anti-ferromagnetically coupled, making YIG a ferrimagnet. For energies
≪ 3meV ≡ 40K ≡ 1THz, the spins are so strongly locked that we can treat the unit
cell as a single spin S። (spin 𝑆 = 10) at sites r።. The neighbouring unit cells have
an effective ferromagnetic interaction,

ℋex = −𝐽ex∑
⟨።፣⟩

S። ⋅ S፣ , (1.1)

where 𝐽ex > 0 is the strength of the ferromagnetic interaction and the summation
is restricted to neighbouring unit cells. This exchange interaction is isotropic in YIG
because the crystal is rotationally symmetric.

Non-neighbouring unit cells are coupled electromagnetically. For frequencies
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∼ 1 − 10 GHz and distances smaller than ∼ mm, we can ignore the travel time of
the photons, giving an instantaneous dipolar interaction

ℋdip =∑
።፣

−𝜇ኺ𝛾ኼℏኼ
4𝜋𝑟኿።፣

[3 (S። ⋅ r።፣) (S፣ ⋅ r።፣) − S። ⋅ S፣𝑟ኼ።፣] , (1.2)

where 𝜇ኺ is the permeability of free space, r።፣ = r። − r፣, and 𝛾 > 0 is the absolute
value of the gyromagnetic ratio. 𝛾ℏS። is the magnetic moment.

For magnons with wavelengths comparable to or larger than infrared photons,
∼ 𝜇m, the neighbouring spins separated by a lattice constant, 𝑎 = 1.2nm in YIG,
are nearly parallel. Thus, we can define a continuous magnetization field M(r)
such that M(r።) = −𝛾ℏ𝑁፬S።. The saturation magnetization 𝑀፬ = 𝛾ℏ𝑆𝑁፬ is the
magnetic moment per unit volume when all the spins are aligned. In YIG, 𝑀፬ =
1.4 × 10኿ kA/m.

The Hamiltonian for the magnetization, including the dipolar and exchange in-
teraction,

ℋm = −𝜇ኺ∫𝑑𝑉 [
M ⋅Hdip

2 − 1
2𝑘ኼex

∇M ⋅ ∇M+M ⋅Hext] . (1.3)

The dipolar field generated by the magnetization can be found by solving magne-
tostatic equations,

∇ ×Hdip = 0, ∇ ⋅Hdip = −∇ ⋅M, (1.4)

The exchange interaction is quantified by the inverse length scale

𝑘ex = √
𝜇ኺ𝑎𝑀ኼ፬
2𝑆ኼ𝐽ex

. (1.5)

For YIG, 𝜆ex = 2𝜋/𝑘ex = 109nm. If the spatial variation of the magnetization is
on length scales much larger (smaller) than 𝜆ex, dipolar (exchange) interaction is
dominant. Hext is an external field typically uniform and large enough to ensure
that the ground state of the magnetization is uniform.

1.2. Magnetostatic modes
We derive the spatial distribution of the elementary excitations of a ferromagnet,
called magnons. For a sufficiently large external field Hext = 𝐻appz the magnetiza-
tion has small fluctuations around its ground state, 𝑀፬z: M = 𝑀፬z + 𝑀፱x + 𝑀፲y
with |𝑀፱| , |𝑀፲| ≪ 𝑀፬. To leading order, M.M = 𝑀ኼ፬ because of a strong exchange
locking. For magnons with wavelengths ≫ 𝜆ex, the exchange term in Eq. (1.3) can
be ignored. We expand the magnetization in the eigenstates of the Hamiltonian

𝑀፱(r, 𝑡) =∑
ፀ
[𝑀፱,ፀ(r)𝑚ፀ(𝑡) + 𝑀∗፱,ፀ(r)𝑚∗ፀ(𝑡)] , (1.6)

where 𝐴 is a mode index, and 𝑚ፀ is the amplitude of 𝐴-magnon mode. Similar
expansion with 𝑥 → 𝑦 holds. The mode index 𝐴 ≡ {𝑙,𝑚, 𝜈} consists of three integers
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Kittel mode

𝐻app

Damon Eshbach modes

Figure 1.2: Schematic of the Kittel mode and the Damon Eshbach modes. The Kittel mode is a uniform
precession of the magnetzation around the applied magnetic field. The Damon-Eshbach modes are
localized near the equator with linearly increasing phase along the azimuthal.

with the following interpretation (discussed in more detail in App. 1.7). The 𝑧-
component of angular momentum of one magnon in 𝐴-mode is 𝑚ℏ. Both 𝑀፱ and
𝑀፲ have 𝑙 − 𝑚 > 0 elliptical nodal planes. 0 ≤ 𝜈 ≤ 𝑙 − 𝑚 is the number of prolate
nodal planes. The total angular momentum is not defined for a mode because of
rotational symmetry breaking by the applied magnetic field.

The magnetic fields are normalized as [see Eq. (1.69)],

∫𝑑𝑉 Im [𝑀∗፱,ፀ𝑀፲,ፀ] = ∫𝑑𝑉 Im [𝑀∗᎞,ፀ𝑀Ꭻ,ፀ] =
ℏ𝛾𝑀፬
2 , (1.7)

where𝑀᎞ = 𝑀፱ cos𝜙+𝑀፲ sin𝜙 and𝑀Ꭻ = 𝑀፲ sin𝜙−𝑀፱ cos𝜙 are the components
in cylindrical coordinates, and Im [∗] is the imaginary part. This normalization is
chosen to ensure that the Hamiltonian becomes

ℋm =∑ℏ𝜔ፀ |𝑚ፀ|
ኼ , (1.8)

where 𝜔ፀ is the resonance frequency of 𝐴-mode.
While the full expressions forMፀ are complicated [22, 23], discussed in App. 1.7,

we discuss some special cases. 𝐾 ≡ {1, 1, 0} corresponds to the Kittel mode, given
by a uniform circular precession of the magnetization [see Fig. 1.2]

𝑀Ꭻ,ፊ = 𝑖𝑀᎞,ፊ = √
ℏ𝛾𝑀፬
2𝑉sph

, (1.9)

where 𝑉sph is the volume of the sphere. Its resonant frequency is 𝜔ፊ = 𝛾𝜇ኺ𝐻app.
𝐷 ≡ {𝑙, 𝑙, 0} (𝜈 is always zero for 𝑙 = 𝑚), with 𝑙 ≫ 1, corresponds to circularly
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polarized surface modes, called Damon Eshbach (DE) modes [see Fig. 1.2],

𝑀Ꭻ,ፃ = 𝑖𝑀᎞,ፃ = (
𝑙
𝜋)

ኽ/ኾ
√ℏ𝛾𝑀፬

𝑅ኽ ( 𝜌𝑅)
፥ዅኻ
, (1.10)

where 𝑅 is the radius of the sphere. This mode is highly localized at the surface
and has a small azimuthal wavelength ≈ 𝑅/𝑙. Its resonance frequency

𝜔ፃ = 𝛾𝜇ኺ [𝐻app −
𝑀፬
3 + 𝑙𝑀፬

2𝑙 + 1] . (1.11)

For large 𝑙, the DE modes are nearly degenerate and can hybridise even with small
perturbations like surface pinning. At smaller wavelengths near 𝜆ex, exchange in-
teraction becomes important as discussed in Ch. 5, which breaks this degeneracy.

A similar analysis for 𝑚 = −𝑙 gives a negative resonance frequency for all 𝑙,
implying that DE modes move only in one direction [see Fig. 1.2].

1.3. Magneto-optical interaction
Optical light couples to the magnetic order, leading to static and dynamic effects
discussed here. In a dielectric, photons are retarded by electrons due to (typically
virtual) absorption and subsequent re-emission, which can be modelled as a renor-
malization of permittivity D = 𝜖E where D is the displacement vector, E the electric
field, and 𝜖 is a material parameter. This holds for an isotropic and linear dielec-
tric with a weak dispersion. In the presence of spin-orbit coupling, the scattering
processes are influenced by spins, giving D(r) = 𝜖 [M(r)]E(r) where 𝜖 is a 3 × 3
tensor because the magnetization breaks the rotational symmetry. This holds for
slow dynamics of the spins, in our case ∼ GHz, compared to the optical frequencies,
∼ 100THz.

Below, in Sec. 1.8, we derive

D = 𝜖፬E+ 𝑖𝑓M × E+ 𝑔M M ⋅ E, (1.12)

where {𝜖፬ , 𝑓, 𝑔} are material parameters.
Consider a sample with a static magnetization M = 𝑀፬z and light propagating

along z. Eq. (1.12) can be simplified to

𝐷± = (𝜖፬ ∓ 𝑓𝑀፬) 𝐸±, (1.13)

where 𝐹± = 𝐹፱ ± 𝑖𝐹፲ are the circular components. The refractive indices for the
two circularly polarized components are different, 𝑛± = √(𝜖፬ ∓ 𝑓𝑀፬)/𝜖ኺ, an effect
known as ‘magnetic circular birefrigence’. If a linearly polarized light travels a dis-
tance 𝑙 within the sample, the two circularly polarized components will acquire a
phase shift of (𝑛ዄ − 𝑛ዅ)𝑘ኺ𝑙 where 𝑘ኺ is the free-space wave-vector. Thus, the
polarization rotates by an angle Θፅ𝑙 where

Θፅ =
(𝑛ዄ − 𝑛ዅ)𝑘ኺ

2 ≈ − 𝜋𝑓𝑀፬
𝜆ኺ𝜖ኺ𝑛፬

, (1.14)
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Figure 1.3: A typical BLS experiment to find the dispersion relations of magnons. The input photons are
inelastically reflected by magnons, gaining or losing energy in the process. The reflected spectrum is
shown on the right, where the origin is the incident frequency. It shows peaks at higher (lower) energy
than the central peak corresponding to absorption (emission) of magnons. The experimental picture is
taken from Ref. [14]

assuming small magneto-optical effects 𝑓𝑀፬ ≪ 𝜖፬ and 𝑛፬ = √𝜖፬/𝜖ኺ is the aver-
age refractive index. This effect, known as Faraday rotation, occurs in the same
sense regardless of the photons’ direction. This time-reversal symmetry breaking
is employed in commercial YIG based optical isolators. This effect can be used to
measure 𝑓 but is insensitive to 𝑔.

For light propagating in x direction and magnetization M = 𝑀፬z, the two po-
larizations satisfy 𝐷፲ = 𝜖፬𝐸፲ and 𝐷፳ = (𝜖፬ + 𝑔𝑀ኼ፬ )𝐸፳, implying a ‘magnetic linear
birefringence’. Consider a light polarized linearly along y+z traveling for a distance
𝑙 sufficiently small such that (𝑛፳ − 𝑛፲)𝑘ኺ𝑙 ≪ 1 where 𝑛፳ = √(𝜖፬ + 𝑔𝑀ኼ፬ )/𝜖ኺ and
𝑛፲ = √𝜖፬/𝜖ኺ. In this small distance the polarization will become elliptic with Θፂፌ𝑙
being the ratio of minor and major axis, where

Θፂፌ =
2𝜋(𝑛፳ − 𝑛፲)

𝜆ኺ
≈ 𝜋𝑔𝑀ኼ፬
𝜆ኺ𝜖ኺ𝑛፬

. (1.15)

This effect is called the ‘Cotton-Mouton effect’, and can be used to find 𝑔. In YIG,
Θፂፌ ∼ Θፅ.

Next, consider Larmor precessionM = 𝑀፬z+𝑚 [cos(𝜔፦𝑡)x+ sin(𝜔፦𝑡)y]where
𝑚 is proportional to the number of magnons in Kittel mode. For a monochromatic
incident light, E ∼ 𝑒ዅ።Ꭶ፩፭, sidebands at 𝜔፩ ± 𝜔፦ arise in D. They correspond to
photons which have absorbed energy from or emitted to the magnons, as shown
in Fig. 1.3 (the figure shows non-uniform magnons and not the Kittel mode). The
reflected spectrum, shown on the right, shows that a large number of photons are
reflected elastically, but a small number absorbed or created magnons (the side-
bands marked by M in Fig. 1.3). We discuss this in more detail in the rest of the
thesis in the context of whispering gallery cavities.
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Figure 1.4: The photons traveling via the fiber can leak into the sphere and be quasi-trapped via repeated
total internal reflection. The quasi-trapped photons have a small probability to leak out into the fiber
and interfere with the tranmitted photons. The electromagnetic fields form a wave inside the sphere
which is highly localized near the equator. The explicit expressions are discussed in the text.

1.4. Whispering gallery modes
In conventional BLS experiments, the magnon-photon coupling is strong enough to
study magnons but too weak to influence their state. However, we can increase the
interaction time by confining light inside the magnet. In Fig. 1.4 [cross-section of
Fig. 1.1], a proximity coupler, typically a fiber or a prism, is kept in contact with a
ferromagnetic sphere. The photons traveling in the coupler can leak into the sphere
because of their evanescent electric fields and be confined because of repeated total
internal reflection. The right hand side of Fig. 1.4 shows a schematic of the optical
modes excited inside the sphere, which are confined near the equator and traveling
in azimuthal direction. In this section, we describe the electric field distributions of
these optical modes, known as whispering gallery modes (WGMs).

The effect of the magnetization on optical properties is weak and can be treated
perturbatively [25], and thus 𝜖።፣ = 𝜖፬𝛿።፣. At optical frequencies, the susceptibility
of the magnetization is negligible [5], so 𝜇ኺH = B. The Hamiltonian for the elec-
tromagnetic fields (equivalent to the Maxwell’s equations) is

ℋem = ∫𝑑𝑉 [
𝜖(r)Eኼ(r)

2 + 𝜇ኺH
ኼ(r)
2 ] . (1.16)

The permittivity, 𝜖(r) is constant is each region: 𝜖፬ in the sphere, 𝜖፟ in the coupler
and 𝜖ኺ in free space.

The electromagnetic fields inside the sphere can be expanded in a complete set
of solutions of the Maxwell’s equations,

E(r, 𝑡) =∑
ፏ
[𝛼ፏ(𝑡)Eፏ(r) + 𝛼∗ፏ(𝑡)E∗ፏ(r)] , (1.17)

H(r, 𝑡) =∑
ፏ
[𝛼ፏ(𝑡)Hፏ(r) + 𝛼∗ፏ(𝑡)H∗ፏ(r)] , (1.18)



1.4. Whispering gallery modes

1

9

where the label 𝑃 ≡ {𝑙,𝑚, 𝜈, 𝜎} (to be discussed), 𝛼ፏ(𝑡) is the amplitude of the 𝑃-th
mode and 𝜔ፏ > 0 is the resonance frequence of 𝑃-th mode.

With no input or dissipation, 𝛼ፏ(𝑡) ∼ 𝑒ዅ።Ꭶፏ፭. For correspondence with quantum
treatment, we would like |𝛼ፏ|ኼ to equal the number of photons [see Sec. 1.5.1].
This is achieved by normalization,

∫𝑑𝑉 [𝜖(r)|Eፏ|
ኼ

2 + 𝜇ኺ|Hፏ|
ኼ

2 ] = ℏ𝜔ፏ
2 , (1.19)

ensuring that the Hamiltonian, Eq. (1.16),

ℋem =∑
ፏ
ℏ𝜔ፏ|𝛼ኼፏ(𝑡)|. (1.20)

We now discuss the electromagnetic fields for a subset of the indices 𝑃 = {𝑙,𝑚, 𝜈, 𝜎}
corresponding to WGMs.

The WGMs have a wave dependence in azimuthal 𝜙-direction, E ∼ 𝑒።፦Ꭻ, where
2𝜋𝑅/𝑚 can be interpreted as their wavelength. Typically, the radius of the sphere
is much larger than the wavelength, thus𝑚 ∼ 1000−5000. ℏ𝑚 is the 𝑧-component
of the angular momentum of one photon in this mode.

The electric field is confined in polar 𝜃-direction (Gaussian dependence)

E ∼ exp [−𝑚Θ
ኼ

2 ]𝐻፥ዅ፦ (√𝑚Θ) , (1.21)

where Θ = 𝜋/2 − 𝜃, 𝐻፥ዅ፦ is the Hermite polynomial,

𝐻፧(𝑥) = (−1)፧𝑒፱
ኼ 𝑑፧𝑒ዅ፱ኼ

𝑑𝑥፧ . (1.22)

The first few Hermite polynomials are

𝐻ኺ(𝑥) = 1, 𝐻ኻ(𝑥) = 2𝑥, 𝐻ኼ(𝑥) = 4𝑥ኼ − 2, 𝐻ኽ(𝑥) = 8𝑥ኽ − 12𝑥. (1.23)

The electric field has no polar nodes for 𝑙 = 𝑚 and decays away from the equator
with an angular scale ∼ 1/√𝑚. The Hermite polynomial introduces 𝑙−𝑚 nodes and
also expands the field in 𝜃-direction. Thus, modes excited with the fiber typically
have a small 𝑙−𝑚 ∼ 1. ℏ𝑙 is the total angular momentum of a photon in this mode.

The radial distribution is given by

E ∼ Ai (𝑟̃ − 𝛽᎚) , (1.24)

where Ai is the Airy function (defined as an improper integral)

Ai (𝑥) = 1
𝜋 ∫

ጼ

ኺ
cos(𝑡

ኽ

3 + 𝑥𝑡)𝑑𝑡, (1.25)

the expanded ‘radial’ coordinate

𝑟̃ = 2ኻ/ኽ𝑚ኼ/ኽ (1 − 𝑟
𝑅) , (1.26)
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Figure 1.5: The radial distribution of the electric fields for ፦ ዆ ኽኺኺኺ. ᎚ gives the number of nodes and
larger ᎚ corresponds to lesser confinement.

and 𝜈-th zero of Ai (−𝑥) is 𝛽᎚. The Airy function decays in the positive real axis and
thus, the electric field strongly decays away from the surface, because 𝑚ኼ/ኽ ≫ 1,
and typically the field is zero for 𝑟/𝑅 < 0.95 [see Fig. 1.5]. The electric field is
nearly zero at the surface and achieves a peak close to 𝑟/𝑅 = 1−1/𝑚ኼ/ኽ for 𝜈 = 1.

As the WGMs travel in the azimuthal direction, they have two polarizations pri-
marily parallel to r and 𝜃𝜃𝜃. In the former (latter) case the magnetic (electric) field
has no component along the azimuthal and are thus called transverse magnetic
(electric), labelled by 𝜎 ∈ {TE,TM}.

The frequency of the photons can be written in terms of the wave-vector 𝜔 =
𝑘𝑐/𝑛፬. As discussed above, 𝑘𝑅 ≈ 𝑚 because of the azimuthal depenence 𝑒።፦Ꭻ
but there are significant corrections because the electric fields have a finite depth
Δ ∝ 𝑚ዅኼ/ኽ, into the sphere, giving 𝑘(𝑅−Δ) ≈ 𝑚. More precisely, for 𝑙, 𝑚 ≫ 1, |𝑙−𝑚|

𝑘𝑅 ≈ 𝑙 + 𝛽᎚ (
𝑙
2)

ኻ/ኽ
− 𝑃᎟ , (1.27)

where 𝑃TE = 𝑛፬/√𝑛ኼ፬ − 1 and 𝑃ዅኻTM = 𝑛፬√𝑛ኼ፬ − 1. The polar contribution is small,
𝑙 − 𝑚, and typically difficult to observe. The radial contribution, ∝ 𝛽᎚, is compara-
tively larger and represents the fact that modes with larger 𝜈 are further inside the
sphere. The last contribution, 𝑃᎟, is because of different boundary conditions for
the electric and magnetic fields, leading to a small difference in the depths of the
two polarizations.
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1.5. Model
We consolidate the discussion of magnons, WGMs and magnon-photon coupling in
this section, introducing the model used in the thesis. The total Hamiltonian

ℋ = ∫𝑑𝑉 [E.D2 + 𝜇ኺH.H2 −
𝜇ኺM ⋅Hdip

2 − 𝜇ኺ𝑀፳𝐻app +
𝜇ኺ
2𝑘ኼex

∇M.∇M] , (1.28)

where E and H are fields at optical frequencies (removing the dipolar contribution
Hdip). The last three terms are the magnetic Hamiltonian, Eq. (1.3). The first
two terms are the electromagnetic Hamiltonian, Eq. (1.16), which also contain the
magneto-optical interaction via D = 𝜖 [M]E, Eq. (1.12).

These are equivalent to the coupled set of equations,

∇∇∇ × E = −𝜕B
𝜕𝑡 , ∇∇∇ ×H = 𝜕D

𝜕𝑡 ,
∇∇∇ ⋅ B = 0, ∇∇∇ ⋅D = 0,

𝜕M
𝜕𝑡 = −𝛾𝜇ኺM × (H+ 𝐻appz+

1
𝑘ኼex
∇ኼM+ 12∑

።፣
∇M𝜖።፣ 𝐸∗። 𝐸፣) .

(1.29)

The operator ∇M is the functional derivative with respect to the magnetization.
The boundary conditions for electromagnetic fields are the continuity of {E∥, 𝐵ዊ, 𝐷ዊ,H∥},

where ∗∥ and ∗ዊ are respectively the components of ∗ parallel and perpendicular to
the surface. For the magnetization, the boundary condition is modelled as [26–28]

n.∇∇∇𝑚፱,፲ − 𝑑𝑚፱,፲ = 0, (1.30)

where 𝑑 is the ratio of surface anisotropy and exchange with shape-dependent
corrections from long range dipolar interaction. The exact form of 𝑑 is not important
for our purposes.

1.5.1. Quantization
The above classical theory can be canonically quantized by expanding the fields in
terms of normal modes [Eqs. (1.17), (1.18), and (1.6)] and promoting the expan-
sion coefficients to quantum operators,

𝑋̂(r) =∑
ፏ
[𝑎̂ፏ𝑋ፏ(r) + 𝑎̂ጷፏ𝑋∗ፏ(r)] , (1.31)

𝑌̂(r) =∑
ፑ
[𝑚̂ፑ𝑌ፑ(r) + 𝑚̂ጷፑ𝑌∗ፑ(r)] , (1.32)

for 𝑋 ∈ {𝐸፱ , 𝐸፲ , 𝐸፳ , 𝐵፱ , 𝐵፲ , 𝐵፳} and 𝑌 ∈ {𝑀᎞ , 𝑀Ꭻ}, where {𝑎̂ፏ} and {𝑚̂ፑ} are the set of
WGM and magnon annihilation operators satisfying [𝑎̂ፏ , 𝑎̂ጷፐ] = 𝛿ፏፐ, [𝑚̂ፑ , 𝑚̂ጷፒ] = 𝛿፫፬
and all other commutators being zero.
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We promote the classical Hamiltonian to a quantum Hamiltonian

𝐻̂ =∑
ፏ
ℏ𝜔ፏ𝑎̂ጷፏ𝑎̂ፏ +∑

ፑ
ℏ𝜔ፑ𝑚̂ጷፑ𝑚̂ፑ + ∑

ፏፐፑ
ℏ𝑎̂ፏ𝑎̂ጷፐ [𝐺ዄፏፐፑ𝑚̂ፑ + 𝐺ዅፏፐፑ𝑚̂ጷፑ] , (1.33)

where 𝜔ፏ and 𝜔ፑ are respectively the frequencies of the 𝑃 labelled WGMs and 𝑅
labelled magnons. We define the coupling constants,

𝐺ዄፏፐፑ =
𝑛፬𝜖ኺ𝜆ኺ
𝜋𝑀፬

∫𝑑𝑉 [𝑖ΘፅMፑ . (Eፏ × E∗ፐ) + ΘፂፌMፑ . (𝐸ፏ፳E∗ፐ + 𝐸∗ፐ፳Eፏ)] , (1.34)

and 𝐺ዅፏፐፑ = (𝐺ዄፐፏፑ)∗. They will be discussed in more detail in later chapters.

1.5.2. Input and dissipation
The Hamiltonian Eq. (1.33) is energy conserving and therefore, does not contain
information about input light propagating in the fiber and dissipation of magnons
and photons inside the ferromagnetic sphere. We add these phenomenologically in
the Heisenberg equation of motion as discussed in this section.

The magnons in YIG are dissipated because of phonons and other magnons. A
simple model which generates a canonical Gibbs distribution in steady state, in the
absence of an input, [29]

𝑑𝑚̂ፑ
𝑑𝑡 = 𝑖

ℏ [𝐻̂, 𝑚̂ፑ] −
𝜅ፑ
2 𝑚̂ፑ − √𝜅ፑ𝑏̂ፑ , (1.35)

where 𝜅ፑ is the linewidth and 𝑏̂ፑ is a noise source that obeys the fluctuation-
dissipation theorem [30, 31]. When 𝜅ፑ ≪ 𝑘ፁ𝑇/ℏ, which is satisfied for 𝜅ፑ ∼ 2𝜋×1
MHz [16–18] and 𝑇 ≫ 50𝜇K, the (narrow band filtered) noise is effectively white.
Their statistics are ⟨𝑏̂ፑ(𝑡)⟩ = 0, ⟨𝑏̂ጷፑ(𝑡ᖣ)𝑏̂ፑ(𝑡)⟩ = 𝑛ፑ𝛿(𝑡 − 𝑡ᖣ) and ⟨𝑏̂ፑ(𝑡ᖣ)𝑏̂ጷፑ(𝑡)⟩ =
(𝑛ፑ + 1)𝛿(𝑡 − 𝑡ᖣ), where the Bose distribution

𝑛ፑ = [exp(
ℏ𝜔ፑ
𝑘ፁ𝑇

) − 1]
ዅኻ
. (1.36)

This model does not distinguish between decoherence and energy dissipation, both
of them happening at the same rate 𝜅ፑ.

The WGMs are modelled as [see App. 1.9],

𝑑𝑎̂ፏ
𝑑𝑡 = 𝑖

ℏ [𝐻̂, 𝑎̂ፏ] −
𝜅ፏ + 𝐾ፏ
2 𝑎̂ፏ − √𝜅ፏ𝑏̂ፏ −√𝐾ፏ𝐴̂ፏ , (1.37)

where 𝑏̂ፏ is a noise operator while 𝐴̂ፏ in the input from the fiber. 𝜅ፏ is the intrinsic
linewidth and 𝐾ፏ is the rate of leakage of 𝑃-WGM into the fiber. The noise source
is again taken to be white for sufficiently small 𝜅ፏ: ⟨𝑏̂ፏ(𝑡)⟩ = 0, ⟨𝑏̂ጷፏ(𝑡ᖣ)𝑏̂ፏ(𝑡)⟩ = 0

and ⟨𝑏̂ፏ(𝑡ᖣ)𝑏̂ጷፏ(𝑡)⟩ = 𝛿(𝑡−𝑡ᖣ) because the thermal occupation of photons at infrared

and visible frequencies is negligibly small at room temperature 𝑒ዅℏᎦፏ/(፤ፁፓ) ≈ 0.
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The input from fiber can be just thermal noise for modes off-resonant with the
input, in which case it has the same correlator as 𝑏̂ፏ. For a coherent input at
frequency 𝜔in and power 𝑃in,

⟨𝐴̂ጷፏ(𝑡)𝐴̂ፏ(𝑡ᖣ)⟩ =
𝑃in
ℏ𝜔in

𝑒ዅ።Ꭶin(፭ᖣዅ፭). (1.38)

The above equations are solved and discussed in more detail in the chapters of
the thesis.

1.6. Structure of the thesis
Using the basics of optical and magnonic fields introduced in this chapter, we pro-
ceed to discuss their outcomes in the rest of the thesis. We derive the transmission
and reflection spectrum in the fiber, affected by the inelastic scattering of photons
by magnons in Ch. 2. This gives us the selection rules for magnon-WGM coupling
by simplifying the coupling constants, Eq. (1.34). We consider only magnetostatic
modes here. The selection rules are expanded upon in Ch. 3 by focusing only
on the long wavelength magnons. Experiments to verify these selection rules are
discussed. An application, namely active cooling of magnons via optical light, is
introduced in Ch. 4, where we derive the steady state distribution of magnons for a
coherent light input. The analysis in Ch. 2 is generalized to include exchange inter-
action in Ch. 5 important for magnons with small wavelength. We derive the spatial
distribution of magnons which have the maximum overlap with the electromagnetic
fields and find their coupling strengths.

1.7. Appendix: Magnons in a sphere
The eigenmodes of the magnetization are found using Eq. (1.29) at microwave
frequencies. If the radius of the sphere 𝑅 ≪ 𝑐/𝜔, where 𝜔 is a typical frequency
of magnons, the photons propagate almost instantaneously across the magnet and
magnetostatic approximation holds: E = 0. This condition is satisfied for 𝑅 <
0.5mm for frequencies 𝜔 < 2𝜋 × 10GHz. The effect of light on magnons is ignored
here and will be treated perturbatively in Chapter 2.

The effective model at microwave frequencies is,

∇∇∇ ×Hdip = 0, ∇∇∇ ⋅Hdip = −∇∇∇ ⋅M
𝜕M
𝜕𝑡 = −𝛾𝜇ኺM × (𝐻appz+Hdip +

1
𝑘ኼex
∇ኼM) .

(1.39)

By linearity of Maxwell’s equations, the dipolar field Hdip = −𝑀፬/3z + h where
h is due to m. The equations can be simplified by introducing a scalar magnetic
potential h = −∇∇∇𝜓 and Fourier transforming in time,

𝑋(𝜔) = ∫
ጼ

ዅጼ

𝑑𝑡
√2𝜋

𝑒።Ꭶ፭𝑋(𝑡). (1.40)
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By linearization, we get

𝑚± =
−𝜔፬

±𝜔 + 𝜔ፚ
[𝜕±𝜓 −

∇ኼ𝑚±
𝑘ኼex

] , (1.41)

where 𝜔፬ = 𝛾𝜇ኺ𝑀፬, 𝜔ፚ = 𝛾𝜇ኺ (𝐻app −𝑀፬/3), the circular coordinates 𝑚± = 𝑚፱ ±
𝑖𝑚፲, and 𝜕± = 𝜕፱ ± 𝑖𝜕፲

For 𝜆 ≫ 𝜆ex, we can ignore the exchange term. We will reintroduce it in Chap-
ter 5 when we discuss smaller wavelength magnons. Then, the equation of motion
for 𝜓 inside the sphere,

[𝜕ኼ፱ + 𝜕ኼ፲ −
𝜕ኼ፳
ℰኼ ] 𝜓 = 0, (1.42)

where
ℰኼ = 𝜔፬𝜔ፚ

𝜔ኼ − 𝜔ኼፚ
− 1. (1.43)

For bulk magnons 𝜔 < √𝜔ኼፚ + 𝜔፬𝜔ፚ (found a posteriori [22]), and thus ℰ is real. ℰ
is imaginary for surface modes but the final solution is still valid (discussed in more
detail below).

Outside the sphere, m = 0 and

∇ኼ𝜓፨ = 0. (1.44)

1.7.1. Solution
Eq. (1.42) is similar to a Laplacian but with a negative pre-factor for 𝜕ኼ፳ . If we
let 𝑧 → 𝑧ℰ, the sphere becomes a spheroid, where a Laplacian can be solved by
spheroidal coordinates. To account for the negative sign in front of 𝜕ኼ፳ , we use a
variation: {𝜂, 𝜁, 𝜙} defined by

𝜌 = 𝑅√1 + ℰኼ sin 𝜂 sin 𝜁, (1.45)

ℰ𝑧 = 𝑅√1 + ℰኼ cos 𝜂 cos 𝜁, (1.46)

and 𝜙 being the azimuthal angle. Here 𝜌 = √𝑥ኼ + 𝑦ኼ. We allow 𝜂 ∈ [0, Θ), and
𝜁 ∈ [Θ, 𝜋 − Θ], where

Θ = sinዅኻ
1

√1 + ℰኼ
. (1.47)

The above restriction ensures 𝜌ኼ + 𝑧ኼ ≤ 𝑅ኼ and uniqueness of coordinate transfor-
mation. At 𝜂 → Θ, we get 𝜁 → 𝜃 where 𝜃 is the polar coordinate. If ℰኼ < 0, we
can use spheroidal coordinates by sin 𝜁 → sinh 𝜁 and cos 𝜁 → cosh 𝜁, while the
calculations below follow analogously.

In these coordinates, Eq. (1.42) becomes,

[𝜕ኼ᎓ − 𝜕ኼ᎔ − tan 𝜁𝜕᎓ + tan 𝜂𝜕᎔ + (
1

cosኼ 𝜁 −
1

cosኼ 𝜂) 𝜕
ኼ
Ꭻ] 𝜓 = 0. (1.48)
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By Fourier transforming in 𝜙-direction and separation of variables, we get

𝜓 = ∑
፥፦᎚

𝛼̃፥፦᎚𝑃፦፥ (cos 𝜁)𝑃፦፥ (cos 𝜂)𝑒።፦Ꭻ , (1.49)

where 𝑙 > 0, 𝜈 > 0, and 𝑚 are integers satisfying 𝑙 ≥ |𝑚|. 𝜈 is defined below. This
gives the magnetization

𝑚± =∑
−𝛼̃ፏ𝜔፬ 𝑒።(፦±ኻ)Ꭻ
±𝜔ፏ + 𝜔ፚ

(𝜕᎞ ∓
𝑚
𝜌 )𝑃

፦
፥ (cos 𝜁)𝑃፦፥ (cos 𝜂). (1.50)

Explicit differentiation gives long expressions tabulated in [23].
Outside the sphere, we find

𝜓፨ = (
𝑅
𝑟 )

፥ዄኻ
𝑃፦፥ (cosΘ)𝑃፦፥ (cos𝜃)𝑒።፦Ꭻ , (1.51)

in polar coordinates. The pre-factor is chosen to ensure continuity of 𝜓 required
for finiteness of h.

We implement the boundary condition of continuity of h፫ + m፫. By simple
algebra,

cosΘ(log𝑃፦፥ )ᖣ(cosΘ) −
𝑚𝜔𝜔፬
𝜔ኼ − 𝜔ኼፚ

+ 𝑙 + 1 = 0. (1.52)

For each 𝑙, 𝑚, there are [(𝑛 − |𝑚|)/2] solutions for 𝑚 < 0 and [(𝑛 − |𝑚|)/2] + 1
for 𝑚 > 0 which are labelled as 𝜈.

For 𝑙 = 𝑚, 𝑃፥፥ (cos𝜃) ∝ sin፥ 𝜃 and

𝜓 ∝ 𝜌፥𝑒።፥Ꭻ . (1.53)

This gives the magnetization,

𝑚Ꭻ = 𝑚ኺ𝜌፥ዅኻ𝑒።፥Ꭻ , 𝑚᎞ = −𝑖𝑚Ꭻ , (1.54)

where 𝑚ኺ is a normalization constant (to be discussed below). The frequency of
the mode using Eq. (1.52),

𝜔፦ = 𝜔ፚ +
𝑙𝜔፬
2𝑙 + 1 . (1.55)

The mode with 𝑙 = 𝑚 = 1 is called the Kittel mode in which the magnetization
is uniform with frequency 𝜔፦ = 𝛾𝜇ኺ𝐻app. The modes with 𝑙 = 𝑚 ≫ 1 are Damon
Eshbach (DE) surface modes where the magnetization decays rapidly away from
the surface. They are degenerate at 𝜔፦ = 𝜔ፚ + 𝜔፬/2. This degeneracy is broken
by exchange [27].

With 𝑙 = −𝑚, using 𝑃ዅ፥፥ (cos𝜃) ∝ sin፥ 𝜃, we get 𝑚᎞,Ꭻ → 𝑚∗᎞,Ꭻ and 𝜔፦ → −𝜔፦.
Therefore, it is simply a complex conjugate of the other mode. This shows that
DE modes are chiral, i.e. there are magnons which have an angular momentum
parallel to the equilibrium magnetization but not anti-parallel. This fact is important
when it comes to magnon-photon scattering discussed in Ch. 2.
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1.7.2. Normalization
The Hamiltonian (1.28) in the absence of electromagnetic fields and linearized in
small magnetization reads [5]

𝐻 = −𝜇ኺ∫[(𝐻app −
𝑀፬
3 )𝑀፳ +

m ⋅ heff
2 ] 𝑑𝑉, (1.56)

where
heff =

2𝐴፞፱
𝜇ኺ𝑀ኼ፬

∇ኼm+ hdip. (1.57)

The expansion in Eq. (1.6),

𝐴(r) = ∑
ፏ,Ꭶፏጻኺ

[𝐴ፏ(r)𝛼ፏ + 𝐴∗ፏ(r)𝛼∗ፏ] , (1.58)

where 𝐴ፏ is the amplitude of any of {𝑚፱ , 𝑚፲ , ℎ፱ , ℎ፲} of the 𝑃-th mode. Here and
below the sum is restricted to positive frequencies. We have𝜔ፚ = 𝛾𝜇ኺ(𝐻app−𝑀፬/3),
𝜔፬ = 𝛾𝜇ኺ𝑀፬, and

𝑀፳ ≈ 𝑀፬ −
𝑚ኼ፱ +𝑚ኼ፲
2𝑀፬

. (1.59)

Eq. (1.41) relates mፏ and hፏ,

𝜔፬ℎ፱,ፏ = 𝜔ፚ𝑚፱,ፏ + 𝑖𝜔ፏ𝑚፲,ፏ (1.60)
𝜔፬ℎ፲,ፏ = 𝜔ፚ𝑚፲,ፏ − 𝑖𝜔ፏ𝑚፱,ፏ . (1.61)

Inserting these into the Hamiltonian ,

𝐻 = 𝜇ኺ
2 ∑

ፏፐ
[𝑋ፏፐ𝛼ፏ𝛼ፐ + 𝑋∗ፏፐ𝛼∗ፏ𝛼∗ፐ + 𝑌ፏፐ𝛼ፏ𝛼∗ፐ + 𝑌∗ፏፐ𝛼∗ፏ𝛼ፐ] , (1.62)

where

𝑋ፏፐ =
𝑖𝜔ፐ
𝜔፬

∫(𝑚፲,፩𝑚፱,፪ −𝑚፱,፩𝑚፲,፪) 𝑑𝑉 (1.63)

𝑌ፏፐ =
𝑖𝜔ፐ
𝜔፬

∫(𝑚፱,፩𝑚∗፲,፪ −𝑚፲,፩𝑚∗፱,፪) 𝑑𝑉. (1.64)

Following Ref. [22], we find orthogonality relations between magnons. For
bፏ = hፏ +mፏ , ∇ ⋅ bፏ = 0 from Maxwell’s equations and

∫𝜓∗ፐ∇ ⋅ bፏ𝑑𝑉 = 0, (1.65)

where the scalar potential 𝜓ፐ obeys ∇ኼ𝜓ፐ = ∇ ⋅mፐ. Integrating by parts and using
h∗ፐ = −∇𝜓∗ፐ,

∫(hፏ +mፏ) ⋅ h∗ፐ𝑑𝑉 = 0. (1.66)
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Using the same relation with 𝑝 ↔ 𝑞 and subtracting,

∫(mፏ ⋅ h∗ፐ −m∗
ፐ ⋅ hፏ) 𝑑𝑉 = 0. (1.67)

Substituting the mode-dependent fields hፏ(ፐ) from Eqs. (1.60)-(1.61), we find that
(𝜔ፏ − 𝜔ፐ)𝑌ፏፐ = 0. A similar calculation starting with 𝜓∗ፐ → 𝜓ፐ in Eq. (1.65)
gives (𝜔ፏ + 𝜔ፐ)𝑋ፏፐ = 0. Assuming no degeneracy, we conclude that 𝑋ፏፐ = 0
and 𝑌ፏፐ ∝ 𝛿ፏፐ. In case of degeneracy, a Gram-Schmidt procedure enforces these
orthogonality relations. The Hamiltonian is then reduced to that of a collection of
harmonic oscillators:

𝐻 = 𝜇ኺ∑
ፏ
𝑌ፏፏ |𝛼ፏ|

ኼ , (1.68)

where we used 𝑌ፏፏ = 𝑌∗ፏፏ.
𝛼ፏ is proportional to the amplitude of a magnon mode 𝑃. Correspondence with

the quantum Hamiltonian for harmonic oscillators is achieved with a normalization
that associates |𝛼ፏ|

ኼ to the number of magnons by demanding 𝜇ኺ𝑌ፏፏ = ℏ𝜔ፏ or

∫(|𝑚ዅ,ፏ|ኼ − |𝑚ዄ,ፏ|ኼ) 𝑑𝑉 = 2ℏ𝛾𝑀፬ . (1.69)

For pure (circular) Larmor precession, i.e. 𝑚ዄ = 0, this condition can also be
derived by assuming that the magnon has a spin of ℏ since

𝑆፳ = ∫𝑑𝑉
𝑀፬ −𝑀፳

𝛾 = ℏ∑
ፏ
|𝛼ፏ|ኼ. (1.70)

In contrast, when the precession is elliptic, the spin of a magnon is not ℏ (𝑚ዄ ≠ 0)
[32].

1.8. Appendix: Magneto-optical coupling
Here, we derive Eq. 1.12 in terms of phenomenological parameters {𝜖፬ , 𝑓, 𝑔}. Lin-
earized magnetization M(r, 𝑡) = 𝑀፬z +m(r, 𝑡) with |m(r, 𝑡)| ≪ 𝑀፬ and m.z = 0.
We expand in Taylor series 𝜖 = 𝜖፬ + 𝜖፝, where

𝜖፬ = 𝜖 [𝑀፬z] , 𝜖፝ =
𝜕𝜖

𝜕𝑀፱(r, 𝑡)
|
ፌ፬z

𝑚፱(r, 𝑡) +
𝜕𝜖

𝜕𝑀፲(r, 𝑡)
|
ፌ፬z

𝑚፲(r, 𝑡). (1.71)

Below, we suppress the position and time dependence for brevity. As the Hamil-
tonian Eq. (1.28) is positive for arbitrary electric field distribution, 𝜖።፣(M) = 𝜖∗፣።(M).
Further, the form of 𝜖 is constrained by the symmetries:

• (Rot-𝜃) rotation by angle 𝜃 around z-axis

• (Mir) reflection in a mirror perpendicular to z-axis
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For M = 𝑀፬z, (Mir) implies that the equation D = 𝜖፬E is invariant under 𝐹፱,፲ →
−𝐹፱,፲ and 𝐹፳ → 𝐹፳ with 𝐹 ∈ {𝐸, 𝐷}. Thus, 𝜖፬፱፳ = 𝜖፬፲፳ = 0. (Rot-𝜋/2) and (Rot-𝜋/4)
implies 𝜖፬፱፱ = 𝜖፬፲፲ and 𝜖፬፱፲ = −𝜖፬፲፱ respectively. Thus, we can write

𝜖፬ = (
𝜖፬ −𝑖𝑓𝑀፬ 0
𝑖𝑓𝑀፬ 𝜖፬ 0
0 0 𝜖፬ + 𝑔𝑀ኼ፬

) , (1.72)

where 𝑓 and 𝑔 are real.
Invariance of D = 𝜖(M)E under (Mir) implies 𝜖።፣(𝑀፬z+𝑀፱x) = 𝜖።፣(𝑀፬z−𝑀፱x)

for 𝑖, 𝑗 ∈ {𝑥, 𝑦} implying its derivative w.r.t 𝑀፱ is zero. (Rot-𝜋/2) implies 𝜖፱፳(𝑀፬z +
𝑚x) = 𝜖፲፳(𝑀፬z+𝑚y) and 𝜖፲፳(𝑀፬z+𝑚x) = 𝜖፱፳(𝑀፬z−𝑚y). These give

𝜕𝜖
𝜕𝑀፱

|
ፌ፬z

= (
0 0 𝐴
0 0 𝐵
𝐴∗ 𝐵∗ 0

) , 𝜕𝜖
𝜕𝑀፲

|
ፌ፬z

= (
0 0 −𝐵
0 0 𝐴
−𝐵∗ 𝐴∗ 0

) , (1.73)

where 𝐴 and 𝐵 are complex. Experiments suggest a link between the static and
the dynamic components for YIG in infrared wavelength: 𝐴 = 𝑔𝑀፬ and 𝐵 = −𝑖𝑓
[24]. Although a microscopic derivation thereof is lacking, this is useful to compare
theory with experiments.

Using the above forms, Eq. (1.71) can be succintly written as Eq. (1.12) up to
linear order in |m| ≪ 𝑀፬.

1.9. Appendix: Interaction with fiber
The interaction of fiber and the sphere is formulated by the input/output (IO) theory
[29, 33]. We use the coordinate system defined in Fig. 1.1. We assume that light
is entering via a proximity-coupled single mode optical fiber with two degenerate
polarizations E ∥ z and E ∥ y that match the TE and TM cavity modes in the sphere,
respectively. The coupling via an optical prism facilitates mode matching and thus,
the selection of the incoming and outgoing light modes [18], but the formalism is
essentially the same. In the absence of disorder the theory is equivalent for the
two polarizations, so we may omit its index here. Our discussion follows the IO
theory as formulated for a Febry-Perot cavity [33].

The optical Hamiltonian (including the fiber),

ℋo = ∫𝑑r(
𝜖(r)
2 Ê(r) ⋅ Ê(r) + 1

2𝜇ኺ
B̂(r) ⋅ B̂(r)) (1.74)

In a perturbative treatment of the coupling, we can separate the total electric
field as Ê = Ê፟ + Ê፬ into that in the fiber (Ê፟) and sphere (Ê፬) and analogously
B̂ = B̂፟ + B̂፬. The fields inside the sphere can be expanded using Eq. (1.31 and
the fiber fields [33],

Ê፟(r) = ∫
ጼ

ዅጼ

𝑑𝑘
√2𝜋

(E፤(𝑦, 𝑧)𝑒።፤፱𝐴̂(𝑘) + E∗፤(𝑦, 𝑧)𝑒ዅ።፤፱𝐴̂ጷ(𝑘)) , (1.75)
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where E፤(𝑦, 𝑧) is the transverse spatial distribution and 𝐴̂(𝑘) is the annihilation
operator of a photon with wave-vector 𝑘 and commutation rule [𝐴̂(𝑘), 𝐴̂ጷ(𝑘ᖣ)] =
𝛿(𝑘 − 𝑘ᖣ) [33]. A similar relation holds for E → B. Here the fields propagate as
plane waves in the 𝑥 direction, assuming that the fiber has constant (or adiabatically
tapered) cross-section near the sphere.

The fields are flux-normalised such that,

∫𝑑𝑦𝑑𝑧 [
E፤ ⋅D∗፤
2 +

B፤ ⋅H∗፤
2 ] =

ℏ𝑘𝑣፟
2 , (1.76)

where 𝑣፟ is the speed of light in the fiber. The displacement field D፤ = 𝜖፟E፤ in
the fiber and D፤ = 𝜖ኺE፤ outside. The magnetizing field in a non-magnetic medium
H፤ = B፤/𝜇ኺ. In the rotating wave approximation, the Hamiltonian becomes

ℋo = ℏ𝑣፟∫𝑑𝑘𝑘 𝐴̂ጷ(𝑘)𝐴̂(𝑘)+∑
ፏ
ℏ𝜔ፏ𝑎̂ጷፏ𝑎̂ፏ+∑

ፏ
∫ 𝑑𝑘
√2𝜋

ℏ (𝑔∗ፏ(𝑘)𝑎̂ጷፏ𝐴̂(𝑘) + 𝑔ፏ(𝑘)𝐴̂ጷ(𝑘)𝑎̂ፏ) ,

(1.77)
where the coupling is given by the overlap integral

ℏ𝑔ፏ(𝑘) = ∫𝑑r 𝑒ዅ።፤፱ [
𝜖(r)
2 E∗፤(𝑦, 𝑧) ⋅ Eፏ(r) +

1
2𝜇ኺ

B∗፤(𝑦, 𝑧) ⋅ Bፏ(r)] . (1.78)

𝑔 depends on the details of the fiber (for instance, tapering angle). In what follows,
we look at the dynamics of a single mode 𝑃 which is resonant with the input because
other modes do not participate.

For a propagating mode with speed of light 𝑣፟ Heiseberg’s equation of motion

𝑑𝐴̂(𝑘, 𝑡)
𝑑𝑡 = −𝑖𝑘𝑣፟𝐴̂(𝑘, 𝑡) −

𝑖
√2𝜋

𝑔ፏ(𝑘)𝑎̂ፏ(𝑡). (1.79)

In position space,

𝐴̂(𝑥, 𝑡) = ∫ 𝑑𝑘
√2𝜋

𝑒።፤፱𝐴̂(𝑘, 𝑡). (1.80)

Eq. (1.79) is a simple wave equation which gives

𝐴̂(𝑥, 𝑡) = 𝐴̂(𝑥 − 𝑣፟𝑡) − 𝑖 ∫
፭

ኺ

𝑑𝑢
√2𝜋

𝑔ፏ(𝑥 − 𝑣፟𝑢)𝑎̂ፏ(𝑡 − 𝑢). (1.81)

where 𝐴̂(𝑥) ≡ 𝐴̂(𝑥, 0) and

𝑔ፏ(𝑥)
△= ∫𝑒።፤፱𝑔ፏ(𝑘)

𝑑𝑘
√2𝜋

. (1.82)

The first term in Eq. (1.81) is the unperturbed EM wave. The second term is a
memory kernel in which the WGM fields at time 𝑡 − 𝑢 instantaneously excite the
fiber with spatial dependence 𝑔(𝑥). These excited fields then travel at the speed
𝑣፟ such that the effect at time 𝑡 is captured by 𝑔(𝑥 − 𝑣፟𝑢).
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For a sphere of radius 𝑅, 𝑎̂ፏ(𝑡) cannot act on the EM fields at the same time
and at a distance larger than 𝑅 (in reality, the contact region is much smaller than
𝑅). Therefore, 𝑔(𝑥) must be localized within |𝑥| < 𝑅.

The dynamics of the slow envelope 𝑊̂ፏ(𝑡) = 𝑎̂ፏ(𝑡)𝑒።Ꭶፏ፭

𝑑𝑊̂ፏ
𝑑𝑡 = −𝑖𝑒።Ꭶፏ፭∫ 𝑑𝑥

√2𝜋
𝑔∗ፏ(𝑥)𝐴̂(𝑥, 𝑡), (1.83)

where we used Parseval’s identity for Fourier transforms. Using the solution for 𝐴̂

𝑑𝑊̂ፏ(𝑡)
𝑑𝑡 = −√𝐾ፏ𝐴̂in(𝑡) − 𝑖 ∫

፭

ኺ

𝑑𝑢
√2𝜋

Σፏ(𝑢)𝑊̂ፏ(𝑡 − 𝑢) (1.84)

where 𝐾ፏ is defined below, the input field

𝐴̂in(𝑡)
△= 𝑖∫ 𝑑𝑥

√2𝜋
𝑔∗ፏ(𝑥)
√𝐾ፏ

𝐴̂(𝑥 − 𝑣፟𝑡)𝑒።Ꭶፏ፭ (1.85)

is an averaged photon operator, and self-energy

Σፏ(𝑢) = −𝑖 ∫
𝑑𝑥
√2𝜋

𝑔∗ፏ(𝑥)𝑔ፏ(𝑥 − 𝑣፟𝑢)𝑒።Ꭶፏ፮ . (1.86)

As discussed before, 𝑔ፏ(𝑥) is zero for |𝑥| > 𝑅. Therefore, the product 𝑔∗ፏ(𝑥)𝑔ፏ(𝑥−
𝑣፟𝑢) ≈ 0 for all 𝑥 if |𝑢| > 2𝑅/𝑣፟, implying that Σፏ(𝑢) is localised within |𝑢| <
2𝑅/𝑣፟ ∼ 10 ps for 𝑅 < 1 mm. This time is very short compared to the lifetime in
high-quality resonators of 𝜏ፏ = 2𝜋/𝜅ፏ ∼ 1ns. In the short interval |𝑢| < 2𝑅/𝑣፟,
𝑊̂ፏ(𝑡 − 𝑢) ≈ 𝑊̂ፏ(𝑡). In other words, we disregard the retardation, i.e. the finite
time in which a photon propagates over a distance 2𝑅, leading to Σ።(𝑢) ∝ 𝛿(𝑢).

The real part of Σፏ(𝑢) leads to frequency corrections which are usually negligible
compared to optical frequencies and thus, can be ignored or incorporated in the
rotating wave. The imaginary part,

𝐾ፏ
2

△= Real [∫
፭

ኺ

𝑑𝑢
√2𝜋

𝑖Σፏ] ≈
|𝑔።(𝑘።)|ኼ
𝑣፟

, (1.87)

where 𝑘ፏ
△= 𝜔ፏ/𝑣፟ and we used 𝑡 ≫ 2𝑅/𝑣፟. Finally, we get

𝑑𝑊̂ፏ(𝑡)
𝑑𝑡 = −√𝐾ፏ𝐴̂in(𝑡) −

𝐾ፏ
2 𝑊̂ፏ(𝑡). (1.88)

Eq. (1.88) has been derived in Ref. [29] by assuming 𝑔(𝑘) to be approximately
constant, 𝑔(𝑘) ≈ 𝑔(𝑘ፏ). This is equivalent to (1) a 𝑔(𝑥) localised within a small
distance |𝑥| < 𝑅, so 𝑔(𝑘) does not change significantly over 2𝜋/𝑅 in 𝑘-space; and
(2) a 𝑔(𝑘) centered at the wave-vector matching condition, i.e. 𝑘 = 𝑘ፏ.

The input 𝐴̂in(𝑡) depends on the EM fields between 𝑥 ≈ −𝑅−𝑣፟𝑡 and 𝑥 ≈ 𝑅−𝑣፟𝑡.
For large −𝑡, it encodes the EM fields at 𝑥 → −∞ which can be interpreted as the
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incoming waves. For a monochromatic input resonant with the WGM, 𝐴̂(𝑥) = 𝐴̂𝑒።፤ፏ፱
and the correlation function

⟨𝐴̂ጷin(𝑡)𝐴̂in(𝑡ᖣ)⟩ = ∫
𝑑𝑥𝑑𝑥ᖣ
2𝜋

𝑔ፏ(𝑥)𝑔∗ፏ(𝑥ᖣ) 𝑒።፤ፏ(፱
ᖣዅ፱)

𝐾ኼፏ
⟨𝐴̂ጷ𝐴̂⟩ = 𝑣፟ ⟨𝐴̂ጷ𝐴̂⟩ , (1.89)

independent of 𝑡, 𝑡ᖣ. ⟨𝐴̂ጷ𝐴̂⟩ is the light flux in units of number of photons per unit
length related to the input power by

𝑃።፧ = ℏ𝜔ፏ𝑣፟ ⟨𝐴̂ጷ𝐴̂⟩ = ℏ𝜔ፏ ⟨𝐴̂ጷin(𝑡)𝐴̂in(𝑡ᖣ)⟩ . (1.90)
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Figure 2.1: A magnetic sphere is coupled to an evanescent coupler which can excite optical modes inside
the sphere. Incident photons (I) in the coupler scatter inelastically by the magnetic order in the sphere,
which can be observed in the reflected (R) and transmitted (T) light that leads back into the coupler. The
corresponding counter-propagating WGMs are shown by green (R) and blue (T) colored arrows inside
the sphere.

In this chapter, we study light scattering by magnons in magnetic spheres in
which the whispering gallery modes (WGMs) are excited by evanescent coupling to a
light source, such as an illuminated waveguide, a tapered fiber or a prism. We gen-
eralize previous works by including all the magnons which contribute significantly
to BLS. In particular, we differentiate between the transmission and reflection in
the coupler attributed to different magnons. We consider magnetic spheres with
sub-mm radii as shown in Fig. 2.1. The magnetization is assumed to be saturated
by an external magnetic field.

Brillouin light scattering (BLS) in a WGM cavity made from a magnetic material
displays a pronounced asymmetry in the Stokes and anti-Stokes light scattering in-
tensities [2–4]. Such an S-aS asymmetry has been observed in other magnetic sys-
tems too, e.g. due to an interference of photons affected by different microscopic
scattering mechanisms [5, 6]. Another source for S-aS imbalance is an ellipticity of
the spin waves that is caused by magnetic anisotropies [7]. This asymmetry is ob-
served in thick films too [8, 9] due to the asymmetric localization of Damon-Eshbach
(DE) modes on one of the surfaces [10–13].

We consider the power spectrum of inelastically transmitted and reflected spec-
tra for a given input light source, for both Stokes and anti-Stokes photons, empha-
sizing the S-aS asymmetry. We present analytic results for specific magnons and
provide estimates for the other magnons. We find a pronounced S-aS asymmetry
in the transmission, as observed in recent experiments for the Kittel mode [2–4].
Our theory agrees with and generalizes the analysis of [4]. The transmission due
to other (“Walker”) magnons have been observed as well [14, 15]. We predict that
photons are inelastically reflected by DE magnons with complete suppression of
either Stokes or anti-Stokes lines. The latter results can be interesting for thermo-
dynamic applications.

This chapter is organized as follows. We start with introducing the observables
and qualitative considerations in Sec. 2.1. We calculate the transmitted and the
reflected power for a general cavity coupled to an evanescent coupler (a proximity
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optical fiber) in Sec. 2.2. We calculate the scattering amplitude of WGMs in Sec.
2.3. We discuss the physical consequences of the theory by considering an example
of a YIG sphere with a particular input in Sec. 2.4. We generalize the treatment
of Sec. 2.4 to other input modes in Sec. 2.5. We summarize results and give an
outlook in Sec. 2.6.

2.1. Initial considerations
We first discuss our setup shown in Fig. 2.1 and a few qualitative aspects to set the
stage. An optical coupler guides the incoming and outgoing (near-infrared) light ra-
diation along the ±𝑦-axis. We assume that the waveguide is a thin optical fiber that
supports only one transverse optical mode (single mode fiber) with two polarization
components corresponding to E ∥ ẑ or E ∥ x̂, which we label as transverse electric
(𝜍 = TE) and transverse magnetic (𝜍 = TM), respectively. The power spectrum
of each polarization component is denoted by 𝑃Ꭰin(𝜔). The waveguide is optically
coupled to the magnetic sphere due to the overlap of the transverse evanescent
light amplitudes. We focus on the optical coupling to a single-mode fiber, but ap-
plication to other geometries such as an attached prism or multi-mode wave guide
is straightforward. The output power spectrum addressed here has three compo-
nents: (1) the transmission without coupling with the magnons, 𝑃Ꭰel(𝜔); (2) the light
scattered by magnons in the forward direction that can be observed in transmission,
𝑃ᎠT (𝜔); (3) the light reflected by magnons, 𝑃ᎠR(𝜔).

The incident photons predominantly excite the WGMs of the sphere, which are
optical modes confined to the equatorial surface and thus have the largest overlap
with the optical waveguide modes. The WGMs of large spheres are to a good ap-
proximation linearly TM or TE polarized plane EM waves that propagate adiabatically
along the equator. The coupling to the optical waveguide is assumed to conserve
the polarization, which is a good approximation for clean contacts.

The excited WGMs may be scattered by magnons into a multitude of other op-
tical modes mediated by the optomagnonic interaction, to be discussed in detail
below. We only consider scattering among the WGMs, because only those couple
to the optical waveguide and lead to observable effects. We take the magnetization
to be along +𝑧-axis (and later also consider the case of −𝑧 ). In this configuration,
elastic scattering effects mediated by the magnetization are symmetry-forbidden
[5, 6], which simplifies the analysis. We treat the optomagnonic interaction by per-
turbation theory, which is valid if the magnons are not significantly affected by light.
The frequency of optical photons is several orders of magnitude larger than that of
magnons, so the incident and the scattered light has almost the same frequency.
This implies that the scattering between the WGMs to a good approximation pre-
serves the modulus of the (azimuthal) momentum, while a reversal of the direction
(reflection or backscattering) is allowed [16]. The forward and backward scattered
light are indicated by the blue and green arrows in Fig. 2.1, respectively. The
scattered WGMs leak back into the optical waveguide, propagating towards +𝑦 or
−𝑦 depending on the circulation sense of WGMs [as shown by the color-matched
arrows in Fig. 2.1].

Since forward scattering nearly conserves photon momentum, the involved magnons
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must have small angular momentum, denoted here as small-L (SL) magnons. The
most important SL magnon is the uniformly precessing magnetization (macrospin
or Kittel) mode with zero orbital angular momentum. In contrast, the reflection of
photons is caused by magnons whose angular momentum is approximately twice
of that of the incident WGM. High angular momentum transfer can be provided
by the Damon-Eshbach (DE) surface modes localized to the equator of the sphere
[10]. These magnons are chiral, viz. they always circulate in an anti-clockwise
fashion with respect to the magnetization (parallel to the blue arrow in Fig. 2.1).
We denote the set of DE magnons as large-L (LL) magnons.

Before going into the details of the scattering mechanism inside the sphere, we
discuss the photon transport in the single-mode optical fiber evanescently coupled
to the sphere. The equations can be easily carried over to discuss coupling via a
prism attached to the sphere [4].

2.2. Output spectrum
Here we derive the power spectrum of transmitted and reflected photons for a
given source by the input-output (IO) formalism [17, 18] . Consider an incident
light beam with polarization dependent amplitude 𝐴̂Ꭰin(𝑡), where 𝜍 ∈ {TE,TM}. 𝐴̂

Ꭰ
in

is the annihilation operator of the incoming traveling photons that satisfy the com-
mutation rules [𝐴̂Ꭰin(𝑡ᖣ), 𝐴̂

Ꭰᖣጷ
in (𝑡)] = 𝛿Ꭰ,Ꭰᖣ𝛿(𝑡 − 𝑡ᖣ). The overlap of the fiber and WGM

modes generates photons in the sphere. The latter are expressed by the annihila-
tion operators {𝑎̂ፏ} for a mode 𝑃 (discussed for WGMs in Sec 1.4). The Hamiltonian
𝐻̂ for the sphere as derived in Section 1.5.1 leads to the equation of motion

𝑑𝑎̂ፏ
𝑑𝑡 = 𝑖

ℏ [𝐻̂, 𝑎̂ፏ] −
𝜅̄ፏ
2 𝑎̂ፏ −∑

Ꭰ
(𝜅

Ꭰ
ፏ
2 𝑎̂ፏ +

√𝜅Ꭰፏ𝐴̂Ꭰin) , (2.1)

where 𝜅̄ፏ is the intrinsic dissipation rate of mode 𝑃 in the sphere. 𝜅Ꭰፏ parameterizes

the coupling between the fiber and the WGMs [17, 18] via the term √2𝜅Ꭰፏ𝐴̂Ꭰin as

well as the dissipation by the escape of 𝜍-polarized WGM photons into the fiber.
The IO formalism relates the input and output amplitudes as

𝐴̂Ꭰout = 𝐴̂Ꭰin +∑
ፏ
√𝜅Ꭰፏ𝑎̂ፏ , (2.2)

where 𝐴̂Ꭰout includes both transmitted and reflected photons. As discussed above,
we can separate the transmitted and reflected components based on the circulation
sense of WGMs which is coded in the mode index 𝑃 [see Fig. 2.1]. 𝐴̂Ꭰout governs
the light observables in the fiber after interaction with the sphere. Eqs. (2.1) and
(2.2) leads to 𝐴̂Ꭰout in terms of 𝐴̂Ꭰin.

We now relate the amplitudes 𝐴̂Ꭰin and 𝐴̂Ꭰ
ᖣ
out to the corresponding power spectra

𝑃Ꭰin(𝜔) and 𝑃
Ꭰᖣ
out(𝜔) respectively. The power spectrum 𝑃 corresponding to a field
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operator 𝐴̂ can be expressed as [18]

ℏ𝜔 ⟨𝐴̂ጷ(𝜔ኻ)𝐴̂(𝜔)⟩ = 2𝜋𝑃(𝜔)𝛿(𝜔 + 𝜔ኻ), (2.3)

where the Fourier transform is defined as

̂𝑓(𝜔) △= ∫𝑑𝑡 𝑒።Ꭶ፭ ̂𝑓(𝑡). (2.4)

By replacing 𝐴̂ → 𝐴̂Ꭰin, 𝐴̂
Ꭰ
out and 𝑃 → 𝑃Ꭰin, 𝑃

Ꭰ
out respectively, we can define the input

and output power spectra. We find 𝑃out in terms of 𝑃in via the amplitude 𝐴̂Ꭰout in
terms of 𝐴̂Ꭰin.

2.2.1. Output amplitude
We first discuss the frequency dependence of the operators from which the power
spectra can be obtained using Eq. (2.3). We treat the magnetism in terms of non-
interacting spin waves or magnons, which is valid in the limit of small density and/or
long wavelength of magnons. The Hamiltonian for the sphere (derived in Section
1.5.1) can be written as,

𝐻̂ =∑
ፏ
ℏ𝜔ፏ𝑎̂ጷፏ𝑎̂ፏ +∑

ፀ
ℏ𝜔ፀ𝑐̂ጷፀ 𝑐̂ፀ + 𝐻̂OM, (2.5)

where the 𝑐̂ፀ are annihilation operators of magnon in the sphere with mode index
𝐴, 𝜔ፏ(𝜔ፀ) are the photon (magnon) frequencies, and 𝐻̂OM represents the opto-
magnonic interaction.

Since the optomagnonic interaction is weak, we can expand 𝐻̂OM to leading
order in the possible scattering processes. The photonic and magnonic modes have
typical frequencies 𝜔ፏ ∼ 100−1000 THz and 𝜔ፀ ∼ 1−10 GHz, respectively. Optical
absorption ∼ 𝑎̂ጷፏ𝑐̂ፀ and two-photon generation ∼ 𝑎̂ጷፏ𝑎̂ጷፐ 𝑐̂ፀ can be safely disregarded
since 𝜔ፀ ≪ 𝜔ፏ. The leading interaction terms are of the light-scattering form

𝐻̂OM = ℏ∑
ፏፐፀ

𝑎̂ፏ𝑎̂ጷፐ (𝐺ዄፏፐፀ𝑐̂ፀ + 𝐺ዅፏፐፀ𝑐̂ጷፀ) . (2.6)

𝐺ዄፏፐፀ parameterizes, e.g., the amplitude for the scattering of a WGM from mode
𝑃 into 𝑄 by annihilating an 𝐴-magnon. We derive expressions for these matrix
elements in the sections below for spherical samples.

Inserting Eq. (2.6) into Eq. (2.1) leads to the coupled operator equation,

𝑎̂ፐ (𝜔) = −𝜒ፐ(𝜔) {∑
Ꭰ
√𝜅Ꭰፐ𝐴̂Ꭰin (𝜔) +∑

ፏፀ
[𝑎̂ፏ ∗ (𝐺ዄፏፐፀ𝑐̂ፀ + 𝐺ዅፏፐፀ𝑐̂ጷፀ)] (𝜔)} , (2.7)

where
𝜒ፐ(𝜔) =

1
−𝑖(𝜔 − 𝜔ፐ) + (𝜅̄ፐ + 𝜅TEፐ + 𝜅TMፐ )/2 , (2.8)
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is the susceptibility of the 𝑄-WGM, and ∗ denotes convolution in the frequency
domain,

[ ̂𝑓 ∗ 𝑔̂] (𝜔) △= ∫ 𝑑𝜔
ᖣ

2𝜋
̂𝑓 (𝜔ᖣ) 𝑔̂ (𝜔 − 𝜔ᖣ) . (2.9)

To leading order in 𝐺±, we may linearise the equation 𝑎̂ፏ → −∑Ꭰ 𝜒ፏ√𝜅
Ꭰ
ፏ𝐴̂Ꭰin on the

right-hand-side of Eq. (2.7). Its solution for 𝑎̂ፐ can be inserted into Eq. (2.2)
leading to the output amplitude

𝐴̂Ꭰ
ᖣ
out(𝜔) = 𝐴̂Ꭰ

ᖣ
el(𝜔) + 𝐴̂

Ꭰᖣ
T (𝜔) + 𝐴̂

Ꭰᖣ
R (𝜔). (2.10)

The contribution, 𝐴̂Ꭰ
ᖣ
el describes the purely dielectric and elastic response, i.e. the

transmission without optomagnonic coupling, 𝐺± = 0

𝐴̂Ꭰ
ᖣ
el(𝜔) = 𝐴̂

Ꭰᖣ
in(𝜔) −∑

ፐ,Ꭰ
𝜒ፐ(𝜔)√𝜅Ꭰ

ᖣ
ፐ 𝜅Ꭰፐ 𝐴̂Ꭰin(𝜔). (2.11)

The photons forward or backward scattered by the magnons are given by 𝐴̂T and
𝐴̂R respectively, where

𝐴̂Ꭰ
ᖣ
T (𝜔ᖣ) = ∑

ፏፐ,Ꭰ
ፀ∈SL

∫ 𝑑𝜔𝜋
√𝜅Ꭰᖣፐ 𝜅Ꭰፏ𝜒ፐ(𝜔ᖣ)𝜒ፏ(𝜔)𝐴̂Ꭰin(𝜔)

[𝐺ዄፏፐፀ𝑐̂ፀ (𝜔ᖣ − 𝜔) + 𝐺ዅፏፐፀ𝑐̂ጷፀ(𝜔ᖣ − 𝜔)] , (2.12)

and a similar equation is given by the replacements 𝐴̂T → 𝐴̂R and SL → LL, where
SL and LL are the set of small-L and large-L magnons, as explained above.

We can interpret Eq. (2.12) in terms of the following scattering processes

𝐴̂Ꭰin(𝜔) → 𝑎̂ፏ
̂፜ፀ∈SL−−−−→ 𝑎̂ፐ → 𝐴̂Ꭰ

ᖣ
T (𝜔ᖣ). (2.13)

The incoming photons with polarization 𝜍 at frequency 𝜔 couple to the 𝑃-WGMs

with rate ∝ √𝜅Ꭰፏ𝜒ፏ(𝜔). Each of the 𝑃 -modes is scattered by a small-L 𝐴 -magnon

to a 𝑄-WGM with rate ∝ 𝐺±ፏፐፀ. The scattered 𝑄-WGMs are transferred back into

the fiber with polarization 𝜍ᖣ and frequency 𝜔ᖣ at rates ∝ √𝜅Ꭰᖣፐ 𝜒ፐ(𝜔ᖣ). Summing

over all 𝑃𝑄𝐴 gives the output as a function of input frequency and polarization. A
similar equation involving large-𝐿 magnons gives the reflected amplitude.

2.2.2. Output power
Eq. (2.10) can be used to derive the output power spectrum 𝑃out in terms of the
expectation value in Eq. (2.3) involving squared 𝐴̂out. We assume that the TE and
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TM polarized components of input light are uncorrelated,

⟨(𝐴̂Ꭰ
ᖣ
in)

ጷ
(𝜔ኻ)𝐴̂Ꭰin(𝜔)⟩ = 0, 𝜍 ≠ 𝜍ᖣ. (2.14)

This is valid if the input is TE or TM polarized. The auto-correlation function of 𝐴̂Ꭰin
defines the input power according to Eq. (2.3). Since magnons are only weakly
perturbed by the light, so we have ⟨𝑐̂ጷፀ 𝐴̂in⟩ = ⟨𝑐̂ፀ𝐴̂in⟩ = 0. Therefore the elastically

scattered light 𝐴̂el does not interfere with 𝐴̂T and 𝐴̂R, i.e.

⟨𝐴̂el𝐴̂T⟩ = ⟨𝐴̂el𝐴̂R⟩ = 0. (2.15)

In contrast to the photons, the magnons are at ambient temperatures thermally
occupied even without external stimulation. Thermal equilibrium of magnons can
be modeled by the interactions with a memory-less (Markovian) bath at temperature
𝑇 [18] that consists of a quasi-continuum of bosonic oscillators {𝐵̂጖጖጖}, where Ω is the
frequency of an oscillator in mode ΩΩΩ and annihilation operator 𝐵̂጖጖጖ with [𝐵̂጖጖጖, 𝐵̂ጷ጖጖጖ᖣ] =
𝛿጖጖጖጖጖጖ᖣ . The equation of motion of an 𝐴-magnon can then be written as

𝑑𝑐̂ፀ(𝑡)
𝑑𝑡 = −𝑖𝜔ፀ𝑐̂ፀ(𝑡) −

𝜅̄ፀ
2 𝑐̂ፀ(𝑡) − √𝜅̄ፀ𝑏̂ፀ(𝑡), (2.16)

where 𝜅̄ፀ is the intrinsic linewidth that in the model below reads 𝜅̄ፀ = 𝛼ፆ𝜔ፀ in terms
of the Gilbert damping 𝛼ፆ. 𝑏̂ፀ represents a fluctuating noise source acting on the
𝐴-magnon and generated by the bath. It is given approximately by [18],

𝑏̂ፀ(𝑡) ≈
1

√2𝜋𝜌(𝜔ፀ)
∑
጖጖጖

|጖ዅᎦፀ|ጺ᎗̄፩

𝐵̂጖጖጖(𝑡ኺ)𝑒ዅ።጖(፭ዅ፭ኺ), (2.17)

where 𝑡ኺ → −∞ is some initial time, 𝜌(𝜔ፀ) is the density of states of the bath at
frequency 𝜔ፀ [see [19] for a proper mathematical treatment]. The bath operators
with ⟨𝑏̂ፀ(𝑡)⟩ = 0 are assumed to obey the commutation rules

[𝑏̂ፀ(𝑡ᖣ), 𝑏̂ጷፁ(𝑡)] = 𝛿ፀፁ𝛿(𝑡 − 𝑡ᖣ). (2.18)

At equilibrium

⟨𝑏̂ጷፀ(𝑡ᖣ)𝑏̂ፁ(𝑡)⟩ = 𝛿ፀፁ𝑛ፀ𝛿(𝑡 − 𝑡ᖣ), (2.19)

where 𝑛ፀ = (exp
ℏᎦፀ
፤ፁፓ

− 1)
ዅኻ

is the Bose-Einstein distribution at temperature 𝑇 and

zero chemical potential. These equations lead to the magnon correlation function

⟨𝑐̂ጷፀ(𝜔ኻ)𝑐̂ፁ(𝜔ኼ)⟩ = 4𝜋𝛿(𝜔ኻ + 𝜔ኼ)𝛿ፀፁ𝑛ፀRe [𝜒ፀ(𝜔ኼ)] , (2.20)
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where the susceptibility 𝜒ፀ(𝜔) = [−𝑖(𝜔 − 𝜔ፀ) + 𝜅̄ፀ/2]
ዅኻ is defined analogous to

Eq. (2.8), and Re [∗] denotes the real part of the argument. Similarly,

⟨𝑐̂ፁ(𝜔ኻ)𝑐̂ጷፀ(𝜔ኼ)⟩ =
𝑛ፀ + 1
𝑛ፀ

⟨𝑐̂ጷፀ(𝜔ኼ)𝑐̂ፁ(𝜔ኻ)⟩ . (2.21)

⟨𝑐̂ጷፀ(𝜔ኻ)𝑐̂ፁ(𝜔ኼ) + 𝑐̂ጷፁ(−𝜔ኼ)𝑐̂ፀ(−𝜔ኻ)⟩ is consistent with the fluctuation dissipation the-
orem [20].

Since transmission and reflection involves different magnons, 𝐴̂T and 𝐴̂R are
uncorrelated. The output power [see Eqs. (2.3) and (2.10)] can therefore be
written as the sum 𝑃out = 𝑃el+𝑃T+𝑃R. The purely dielectric/plasmonic contribution

𝑃Ꭰ
ᖣ

el (𝜔) =∑
Ꭰ
|𝛿ᎠᎠᖣ −∑

ፐ
𝜒ፐ(𝜔)√𝜅Ꭰ

ᖣ
ፐ 𝜅Ꭰፐ|

ኼ

𝑃Ꭰin(𝜔), (2.22)

persists when 𝐺± → 0. The magnonic contribution to the transmitted spectrum is

𝑃Ꭰ
ᖣ

T (𝜔ᖣ) = ∑
Ꭰ, ፀ∈SL

∫ 𝑑𝜔2𝜋 𝑃
Ꭰ
in(𝜔) [

𝜅̄ፀ𝑆ዄፀ𝑛ፀ
Δኼዄ + 𝜅̄ኼፀ/4

+ 𝜅̄ፀ𝑆
ዅ
ፀ (𝑛ፀ + 1)

Δኼዅ + 𝜅̄ኼፀ/4
] , (2.23)

where

𝑆±ፀ = |∑
ፏፐ
𝐺±ፏፐፀ√𝜅Ꭰፏ𝜅Ꭰ

ᖣ
ፐ 𝜒ፏ(𝜔)𝜒ፐ(𝜔ᖣ)|

ኼ

, (2.24)

and Δ± = 𝜔ᖣ−𝜔∓𝜔ፀ is the detuning from the resonance condition. Eq. (2.23) holds
also after replacing 𝑃T → 𝑃R and SL → LL. These results are general under weak
coupling of any magnet to an evanescent single-mode coupler and large detuning of
magnon and photon frequencies. In order to arrive at results that can be compared
with experiments, we have to model 𝐺±, which is done in the following.

While we focus here on thermally excited magnons, the formalism so far and
below can be adapted to other magnon distributions. For instance, the coherent
excitation by microwaves with frequency 𝜔MW can be handled by substituting in Eq.
(2.20)

𝑛ፀRe [𝜒ፀ(𝜔ኼ)] → 𝑛ፀRe [𝜒ፀ(𝜔ኼ)] + 𝜋 |𝛽ፀ|
ኼ 𝛿(𝜔ኼ − 𝜔MW), (2.25)

where 𝛽ፀ = ⟨𝑐̂ፀ⟩ depends on the microwave power. The scattering power Eq. (2.23)
is then augmented by

𝑃Ꭰ
ᖣ

MW(𝜔ᖣ) =∑
Ꭰፀ
[|𝛽ፀ|

ኼ (𝑃Ꭰin(𝜔)𝑆ዄፀ )Ꭶ዆ᎦᖣዅᎦMW

+(|𝛽ፀ|
ኼ + 1) (𝑃Ꭰin(𝜔)𝑆ዅፀ )Ꭶ዆ᎦᖣዄᎦMW] . (2.26)
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2.3. BLS Amplitude
Here we calculate the coupling between the WGMs and magnons as expressed by
Eq. (1.33) by perturbation theory. Using Eq. (1.34) 𝐺±᎟዆᎟ᖣ = 0. In other words,
TE → TE and TM → TM scattering probability vanishes, implying that the incident
and the scattered photons have orthogonal polarizations. For 𝑃 ≡ {𝜈, 𝑙, 𝑚,TE},
𝑄 ≡ {𝜈ᖣ, 𝑙ᖣ, 𝑚ᖣ,TM}, and 𝐴 ≡ {𝜈፬ , 𝑙፬ , 𝑚፬}. We have four possible incident WGMs,
with 𝜎 ∈ {TE,TM} and 𝑚 ≈ ±𝑙. In the following we explicitly illustrate the concepts
for the particular case of TE polarized incident WGM with 𝑚 > 0 (rotation sense of
blue arrow in Fig. 2.1). Subsequently, we give the results for 𝑚 < 0, while the case
of TM polarized input follow from Hermiticity, 𝐺±ፐፏፀ = (𝐺∓ፏፐፀ)

∗
.

2.3.1. Small-𝐿
For 𝑚 > 0, the integral, Eq. (1.34), can be simplified for the Kittel mode (see
Appendix 2.7.1),

𝐺±ፏፐፊ = 𝑔±𝛿᎚,᎚ᖣ𝛿፦ᖣ ,፦±ኻ𝛿፥ዅ፦,፥ᖣዅ፦ᖣ , (2.27)

where

𝑔± =
𝑐 (Ψ(ኼ)ፋፁ ±Ψፂፁ)

2𝑛፬√𝑠𝑉
, (2.28)

with 𝑠 = 𝑀፬/(𝛾ℏ) the spin (number) density and 𝑉 the volume of the sphere.
The orthogonality of WGMs and constant amplitude of the Kittel mode leads

to the selection rule 𝜈 = 𝜈ᖣ. The 𝑧-component of the total angular momentum
is conserved when 𝑚ᖣ = 𝑚 ± 1, where the upper(lower) sign corresponds to an-
nihilation(creation) of a magnon. The third selection rule, 𝑙ᖣ − 𝑚ᖣ = 𝑙 − 𝑚 can
be interpreted as the conservation of the non-𝑧 component of angular momentum
since 𝑙−𝑚 ∝ 𝑙ኼ−𝑚ኼ ∝ 𝐿ኼ−𝐿ኼ፳. This condition is not exact when rotational symmetry
is broken by the magnetization, but a good approximation here by the smallness of
the MO coupling.

We can extend the discussion to small but finite-𝐿 magnons. The coupling con-
stant for Stokes scattering is

𝐺ዅፏፐፀ ∝ 𝛿᎚,᎚ᖣ ∫(𝑌፦፬፥፬ )
∗
𝑌፦፥ (𝑌፦

ᖣ
፥ᖣ )

∗
𝑑ΩΩΩ

∝ 𝛿᎚,᎚ᖣ ⟨𝑙ᖣ, 0; 𝑙፬ , 0| 𝑙, 0⟩ ⟨𝑙ᖣ, 𝑚ᖣ; 𝑙፬ , 𝑚፬| 𝑙, 𝑚⟩ , (2.29)

where 𝑑ΩΩΩ = sin𝜃𝑑𝜃𝑑𝜙. The Clebsch-Gordon (CG) coefficient ⟨𝑙ኻ, 𝑚ኻ; 𝑙ኼ, 𝑚ኼ| 𝑙ኽ, 𝑚ኽ⟩
is the amplitude of two angular momentum states {𝑙ኻ, 𝑚ኻ} and {𝑙ኼ, 𝑚ኼ} adding up
to a third {𝑙ኽ, 𝑚ኽ} , with explicit expressions in for instance [21] . If we interpret
𝑙፬ as the angular momentum of a magnon, the first and second CG coefficients
express conservation of 𝐿 and 𝐿፳ respectively. The coupling strengths depend on
the transverse magnetization of the corresponding magnon at the equatorial surface
that is of the same order as the Kittel mode, leading to the estimate,

𝐺ዅፏፐፀ ∼ 𝑔ዅ𝛿᎚,᎚ᖣ ⟨𝑙ᖣ, 0; 𝑙፬ , 0| 𝑙, 0⟩ ⟨𝑙ᖣ, 𝑚ᖣ; 𝑙፬ , 𝑚፬| 𝑙, 𝑚⟩ . (2.30)
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Analogously, the anti-Stokes scattering is governed by

𝐺ዄፏፐፀ ∼ 𝑔ዄ𝛿᎚,᎚ᖣ ⟨𝑙, 0; 𝑙፬ , 0| 𝑙ᖣ, 0⟩ ⟨𝑙, 𝑚; 𝑙፬ , 𝑚፬| 𝑙ᖣ, 𝑚ᖣ⟩ . (2.31)

When 𝑚 < 0 (rotation sense of green arrow in Fig. 2.1), a similar calculation shows
that the above results are valid for negative 𝑚,𝑚ᖣ as well.

2.3.2. Large-𝐿
While small angular momentum-magnons scatter light into the forward direction,
light can be backscattered by magnons with angular momenta twice of that of the
photon. We focus on the chiral DE magnons that encircle the equatorial surface with
mode numbers 𝑙፬ = 𝑚፬ ≫ 1. The conservation of 𝐿፳ gives 𝑚ᖣ = 𝑚 ∓ 𝑙፬ where the
upper(lower) sign refers to creation(annihilation) of a magnon. As discussed in Sec.
2.1, 𝑚 ≈ −𝑚ᖣ by energy conservation, and therefore the only allowed transition is
with 𝑚ᖣ = 𝑚−𝑙፬ with 𝑙፬ ≈ 2𝑚. In other words, in the present configuration a WGM
can be scattered backward only by creating a magnon, but not by annihilating one.
In Appendix (2.7.2 ), we derive for 𝑚 > 0 and 𝑚ᖣ < 0,

𝐺ዅፏፐፃ ≈ Ξዅ𝑔ዅ ⟨𝑙, 0; 𝑙ᖣ, 0| 𝑙፬ , 0⟩ ⟨𝑙, 𝑚; 𝑙ᖣ, |𝑚ᖣ|| 𝑙፬ , 𝑙፬⟩ , (2.32)

and 𝐺ዄፏፐፃ = 0, where 𝑔ዅ is given by Eq. (2.28). The pre-factor

Ξዅ = (−1)᎚ዅ᎚
ᖣዄ፦ᖣ√4

3𝜋𝑃ፓፄ (1 + 𝑃ፓፌ) . (2.33)

is of order |Ξዅ| ∼ 1. There is no selection rule for the radial mode indices. The CG
coefficients imply that the scattering is non-zero only when 𝑚 = 𝑙፬ +𝑚ᖣ as argued
above. The scattering amplitude is maximized when the angular momentum is
conserved 𝑙 + 𝑙ᖣ ≈ 𝑙፬.

A similar calculation for a WGM with opposite circulation 𝑚 < 0 and 𝑚ᖣ > 0,
gives 𝐺ዅፏፐፃ = 0

𝐺ዄፏፐፃ ≈ Ξዄ𝑔ዄ ⟨𝑙, 0; 𝑙ᖣ, 0| 𝑙፬ , 0⟩ ⟨𝑙, |𝑚|; 𝑙ᖣ, 𝑚ᖣ|𝑙፬ , 𝑙፬⟩ , (2.34)

with

Ξዄ = (−1)᎚ዅ᎚
ᖣዄ፦ᖣ√4

3𝜋𝑃ፓፄ (1 − 𝑃ፓፌ) . (2.35)

The above coupling constants are dependent on the overlap of DE magnons and
WGMs as given in Eqs. (2.60) and (2.64). The angular overlap gives the angular
momentum conservation laws selecting the DE magnon based on 𝑃 and 𝑄. For
given WGMs and DE magnons, the radial overlap is small owing to two factors.
First, WGMs have a node close to the surface at which the DE magnon amplitude
is largest. Secondly, the spatial distributions of WGMs are wider (∼ 𝑎/𝑙ኼ/ኽ) than
those of the DE modes (∼ 𝑎/𝑙፬). By engineering the spatial distribution of WGMs,
the overlap can possibly be enhanced, as will be discussed in a forthcoming article.
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2.4. Transmission and reflection spectra
With the expressions for 𝐺± in hand, we can calculate the transmitted and the
reflected spectrum given any input spectrum, 𝑃T and 𝑃R in terms of 𝑃in [see Eq.
(2.23)]. In principle, the output power spectrum can be numerically evaluated
from the expressions derived above. Analytical expressions for the general case
are complicated and difficult to interpret. Leaving this task for future work, we
focus here on a special case to illustrate our results. The notation has been defined
in Sec. 2.2.

2.4.1. Setup
Coupling: The evanescent coupling of a magnetic sphere can be achieved by prox-
imity to an optical fiber or prism that is illuminated by photons with tunable fre-
quency 𝜔, wave-vector 𝑘, and polarization 𝜍. We assume dominantly adiabatic
coupling in which only WGMs with matching polarizations (𝜎 = 𝜍) and wave vectors
(𝑚 ≈ 𝑘𝑎) are populated. Under these conditions, the leakage from and to the fiber
into a mode 𝑊 ≡ {𝜈, 𝑙,𝑚, 𝜎} is 𝜅Ꭰፖ = 𝛿Ꭰ,᎟𝜅ፖ, where 𝜅ፖ is a constant depending on
the precise system parameters.

The resonance condition holds for large 𝑙 ⪅ 𝜔𝑛፬𝑎/𝑐, with precise value of 𝑙
discussed below. For a single mode fiber with a contact point to the sphere much
smaller than the wavelength, the wave-vector matching holds only approximately
and WGMs with many 𝑚-values can be excited. However, the coupling can be
engineered by tapering the fiber to a width below the wavelength as discussed in
[22]. This additional degree of freedom allows to match modes and selectively
enhance the coupling to WGMs with small 𝑙 − |𝑚| and 𝜈. Here we consider the
case where 𝜅ፖ is significant only for 𝜈 ∈ {1, 2} and is maximal at 𝑚 = 𝑙 (for a
given {𝜈, 𝑙, 𝜎}). These assumptions can be verified in a particular experiment by
monitoring the elastic transmission power 𝑃el in Eq. (2.22) [23].

Sphere: Consider a YIG sphere of radius 𝑎 = 200𝜇m. At room temperature
𝑀፬ = 1.4 × 10኿ A/m and 𝑛፬ = 2.2 . The incident light has wavelength 𝜆ኺ ≈ 1𝜇m
and is tunable. Near this wavelength, the MO constants are Ψፂፁ ∼ 500 rad/m and
Ψ(ኻ)ፋፁ = Ψ(ኼ)ፋፁ ∼ 200 rad/m [24], which leads to 𝑔ዄ = 2𝜋 × 6 Hz and 𝑔ዅ = −2𝜋 × 2.6
Hz [see Eq. (2.28)]. The latter numbers agree with the estimate 𝑔 = 2𝜋 × 5 Hz
from [3], where it is not clearly specified whether 𝑔 is 𝑔ዄ or 𝑔ዅ.

A magnetic field 𝐵ኺ shifts the magnon frequencies rigidly by the Zeeman energy.
In thermal equilibrium at room temperature with 𝜔ፀ ∼ 1−10 GHz, we have ℏ𝜔ፀ𝑛ፀ ≈
𝑘ፁ𝑇 and 𝑛ፀ ≫ 1. When the sample is excited by resonant microwaves, the Kittel
mode is selectively populated and 𝑛ፊ can become much larger than the thermal
population. 𝜅̄ፀ ∼ 𝛼ፆ𝜔ፀ, where 𝛼ፆ = 10ዅኾ is typical for Gilbert damping in YIG [25].

WGM spectrum: The frequencies from Eq. (1.27) are sketched in Fig. 2.2. They
depend on 𝑙, 𝜈, and 𝜎 (but not on 𝑚). For fixed 𝑙 and 𝜈, the frequencies for two
polarizations differ by Δ𝜔BF,

Δ𝜔BF =
𝑐
𝑛s𝑎

(√𝑛
ኼ
s − 1
𝑛s

+ 𝑎Ψ(ኻ)ፋፁ (𝜆ኺ)) . (2.36)
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Figure 2.2: Spectrum of WGMs: The resonant frequency of a WGM depends on the angular momentum
(፥ፑ), the number of radial nodes (᎚ዅኻ), and the polarization. This sketch includes the levels for the first
two radial modes ᎚ ዆ ኻ and ᎚ ዆ ኼ denoted by red and blue respectively. The labels for the splittings
(FSR, BF, and RG) are defined in the text.

The gap between 𝑙 and 𝑙 + 1 is called “free spectral range (FSR)”. For a fixed 𝜎 and
𝜈, Δ𝜔FSR ≈ 𝑐/ (𝑛፬𝑎) [see Eq. (1.27)]. Two ladders of WGMs with 𝜈 = 1 and 𝜈 = 2
are shown by red and blue in Fig. 2.2, respectively (we consider only two 𝜈 values
as discussed before). The splitting between levels with different 𝜈 but same 𝑙 is
large ∼ 4THz, but levels can be close for different angular momenta. For a given 𝑙,
we define ̄𝑙 as the WGM in the 𝜈 = 2 branch with frequency just above the {𝜈 = 1, 𝑙}
WGM. So ̄𝑙 is the lowest integer such that 𝜔ፖኼ > 𝜔ፖኻ where 𝑊። are defined in Fig.
2.2. For large 𝑙, ̄𝑙

𝜔ፖኼ > 𝜔ፖኻ ⇒ ̄𝑙 > 𝑙 − 𝛽ኼ − 𝛽ኻ2ኻ/ኽ 𝑙ኻ/ኽ, (2.37)

where (𝛽ኼ−𝛽ኻ)/2ኻ/ኽ ≈ 1.4. This gives ̄𝑙 = ⌈𝑙 − 1.4𝑙ኻ/ኽ⌉ where the ceiling function ⌈𝑥⌉
is the smallest integer greater than 𝑥. We define the “radial gap” Δ𝜔RG = 𝜔ፖኼ−𝜔ፖኻ
that depends on the fractional part of 𝑙 − 1.4𝑙ኻ/ኽ. The scattering between modes
with different 𝜈 can be relevant in reflection, as discussed below.

We can estimate the characteristic frequency splittings in Fig. 2.2 for our model
system as follows. We tune the input laser frequency 𝜔in to the mode {𝜈 = 1, 𝑙፩ =
1257, 𝑙፩,TE} (at a wavelength around 1 𝜇m). We find ̄𝑙፩ = 1242 and Δ𝜔RG = 2𝜋×16
GHz. This is much smaller than the free spectral range Δ𝜔FSR = 2𝜋 ×108 GHz and
birefringence Δ𝜔BF = 2𝜋 × 101 GHz.

Source: Let us assume TE polarized input light (TM is discussed below) at fre-
quency 𝜔in (defined above). Its power spectrum is

𝑃Ꭰin(𝜔) = 2𝜋𝛿TE,Ꭰ𝑃̄in𝛿(𝜔 − 𝜔in), (2.38)

where 𝑃̄in is the total integrated power in the input

𝑃̄in = ∫
𝑑𝜔
2𝜋 𝑃

TE
in (𝜔). (2.39)

In the following we focus on WGMs with index 𝑃 ≡ {1, 𝑙፩, 𝑚,TE} that are resonant
with 𝜔in. This is allowed when the broadening of other WGMs is much smaller
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than their detuning from the input, i.e. |𝜔ፖ − 𝜔in| ≫ 𝜅̄ፖ for 𝜔ፖ ≠ 𝜔in. While all
WGMs with 𝑚 ≤ 𝑙፩ can be excited, WGMs with |𝑚| ≈ 𝑙፩ strongly dominate when
the coupling is nearly adiabatic.

Keeping the notation 𝑄 ≡ {𝜈ᖣ, 𝑙ᖣ, 𝑚ᖣ,TM}, and 𝐴 ≡ {𝜈፬ , 𝑙፬ , 𝑚፬} we now turn to the
transmission power spectrum.

2.4.2. Transmission
Because of their relatively low frequencies, magnons typically have much smaller
linewidths than the photons [2], i.e. 𝜅̄ፀ ≪ 𝜅ፐ+𝜅̄ፐ. In this limit 𝜒ፐ(𝜔ᖣ) ≈ 𝜒ፐ(𝜔±𝜔ፀ)
in 𝑆±ፀ in Eq. (2.23) such that

𝑃TMT (𝜔out)
𝑃̄in

= ∑
ፀ∈SL

[ 𝜅̄ፀ𝑆ዄፀ𝑛ፀ
Δኼዄ + 𝜅̄ኼፀ/4

+ 𝜅̄ፀ𝑆
ዅ
ፀ (𝑛ፀ + 1)

Δኼዅ + 𝜅̄ኼፀ/4
] , (2.40)

where 𝜔out is the center frequency of the detector (assumed to contain a filter of
a narrow bandwidth) and,

𝑆±ፀ = |∑
ፏ,ፐ

√𝜅ፏ𝜅ፐ
𝜅̄ፏ + 𝜅ፏ

𝐺±ፏፐፀ
𝛿±ፐፀ − 𝑖 (𝜅̄ፐ + 𝜅ፐ) /2

|

ኼ

. (2.41)

Here the sum over 𝑃 refers to the sum over 𝑚 in the family of WGMs with frequency
𝜔ፏ = 𝜔in, where the latter has been defined in Eq. (2.38), while 𝛿±ፐፀ = 𝜔ፐ−(𝜔in±
𝜔ፀ) and Δ± = 𝜔out−(𝜔in±𝜔ፀ) are the frequency detunings of the output WGM and
the output photon in the detector from the resonance, respectively. The scattering
is efficient if both are less than the typical linewidths of WGMs. 𝑃TET = 0 since
TE → TE scattering is forbidden.

𝑆±ፀ does not depend on 𝜔out anymore, so each term in the sum of Eq. (2.40) is a
Lorentzian centered at𝜔out = 𝜔in±𝜔ፀ with width 𝜅̄ፀ [14]. Each peak is well resolved
if 𝜅̄ፀ < |𝜔ፀ − 𝜔ፀᖣጽፀ| [see Fig. 2.4]. For small-𝐿 magnons with |𝜔ፀ − 𝜔ፀᖣ | ∼ 𝛾𝜇ኺ𝑀፬
[26] this is the case when 𝛼ፆ ≪ 𝜇ኺ𝑀፬/𝐵ኺ ∼ 0.1 − 1, which is easily fulfilled for YIG.
We note that in previous experiments [2–4] the Kittel mode is selectively populated
via microwave excitations (𝑛ፊ ≫ 𝑛ፀጽፊ) which overwhelms any other magnons, and
thus only one peak was observed.

The peak height at Δ± = 0 and integrated power 𝑃̄T are governed by the magnon
linewidth (𝜅̄ፀ), magnon occupation (𝑛ፀ), and 𝑆±ፀ (interpreted below). We may write

𝑃̄T = ∫
𝑑𝜔ᖣ
2𝜋 𝑃

TM
T (𝜔ᖣ) = ∑

ፀ∈SL
[𝑃̄ዄፀ + 𝑃̄ዅፀ ] , (2.42)

where 𝑃̄ዅፀ = 𝑆ዅፀ (𝑛ፀ + 1)𝑃̄in and 𝑃̄ዄፀ = 𝑆ዄፀ𝑛ፀ𝑃̄in is carried by photons that underwent
Stokes and anti-Stokes scattering respectively by 𝐴-magnons, corresponding to the
integral of 𝑃T across individual peaks in Eq. (2.40). We can therefore interpret 𝑆±ፀ
as the photon scattering probability from the contribution of many processes 𝑃 → 𝑄
by the magnon mode 𝐴. In the following, we discuss 𝑆 first for the Kittel mode and
then for other small-𝐿 magnons.
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Figure 2.3: Scattering by the Kittel magnon: Angular momentum conservation fixes the final states [see
Eq. (2.27)]. The wavy lines denotes the transitions associated with creation or annihilation of the Kittel
mode. Referring to Fig.2.2, ጂᎦፚፒ ዆ ጂᎦFSR ዄ ጂᎦBF and ጂᎦፒ ዆ ጂᎦFSR ዅ ጂᎦBF. Typical numbers are
ጂᎦፒ ∼ ኻ ዅ ኼኺ GHz and ጂᎦፚፒ ∼ ኻኺኺ ዅ ኿ኺኺ GHz for a YIG radius of ፚ ∼ ኻኺኺ ዅ ኿ኺኺ�m.

Kittel mode: The Kittel mode 𝐾 = {0, 1, 1} can scatter a WGM 𝑃 = {1, 𝑙፩, 𝑚,TE}
into either 𝑆 = {1, 𝑙፩−1,𝑚−1,TM} or 𝑎𝑆 = {1, 𝑙፩+1,𝑚+1,TM} [see the selection
rules in Eq. (2.27)]. The optical transitions, valid for all 𝑚, are shown in Fig. 2.3.
In our example, Δ𝜔ፒ = Δ𝜔FSR−Δ𝜔BF = 2𝜋×7.5 GHz and Δ𝜔ፚፒ = Δ𝜔FSR+Δ𝜔BF =
2𝜋 × 209 GHz. For magnon frequencies ∼ 1−10 GHz, the anti-Stokes scattering is
highly non-resonant.

By the magnetic field we can tune to the resonance condition 𝜔ፊ = 𝜔ፏ − 𝜔ፒ =
Δ𝜔FSR − Δ𝜔BF, where 𝜔ፊ = 𝛾(𝐵ኺ − 𝜇ኺ𝑀፬). Then, the Stokes scattering probability
is maximized

𝑆ዅፊ = |𝑔ዅ|ኼ |∑
፦

√2𝜅ፏ
𝜅ፏ + 𝜅̄ፏ

√2𝜅ፒ
𝜅ፒ + 𝜅̄ፒ

|

ኼ

. (2.43)

The pre-factor |𝑔ዅ|ኼ is governed by the optomagnonic coupling in the sphere, while
the second factor is a sum over the optical impedance matching parameters [27, 28]
that determine the efficiency of the optical coupling. We find a lower bound for 𝑆ዅፊ
by assuming that only the 𝑚 = 𝑙 mode contributes. For 𝜅̄ፏ = 𝜅̄ፒ = 𝜅ፏ = 𝜅ፒ with
𝑚 = 𝑙 and an optical quality factor of 𝜔ፏ/𝜅̄ፏ = 10ዀ comparable to experiments
[2, 4], 𝑆ዅፊ = 2 × 10ዅኻ዁. At 𝑇 = 300K, the number of magnons at 𝜔ፊ = 2𝜋 × 7
GHz is 𝑛ፊ = 835, which leads to the scattered power of 𝑃̄ዅፊ /𝑃̄in = 1.5 × 10ዅኻኾ. We
note that the actual output power might be larger when more WGMs contribute to
the above sum. We did not attempt to compute the power by including all such
scattering events.

For the same magnetic field, the anti-Stokes scattering is detuned from a res-
onance by 𝜔ፚፒ − 𝜔ፏ − 𝜔ፊ = 2Δ𝜔BF. For 2Δ𝜔BF ≫ 𝜅̄ፚፒ , 𝜅ፚፒ, we obtain the S-aS
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Figure 2.4: Schematic inelastic scattering lineshape with two contributing magnon ፀኻ and ፀኼ with
constant coupling ፆ±. The spectra can be written as the convolution of magnetic and optical Lorentzian
functions (solid line). The sharp peaks located symmetrically around the origin are centered at the
magnon mode frequencies with broadening governed by the magnetization damping. The lines, ፖፒ
andፖፚፒ are envelope functions defined in the text. They are separated by ኼጂᎦ FSR and broadened by
optical decay rates. The widths of all Lorentzians have been exaggerated for clarity. The actual numbers
are ᎗ፒ,ፚፒ ∼ ኼ᎝ × ኻGHz and ᎗ፀ ∼ ኼ᎝ × ኻMHz [2] implying very small magnon lines inside a wide WGM
Lorentzian.

intensity ratio
𝑃̄ዅፊ
𝑃̄ዄፊ

≈ 𝑛ፊ + 1
𝑛ፊ

|𝑔ዅ𝑔ዄ
2Δ𝜔BF
𝜅̄ፒ + 𝜅ፒ

|
ኼ
. (2.44)

Three mechanisms contribute to this ratio. The fraction (𝑛ፊ + 1)/𝑛ፊ can be an
important factor when 𝑛ፊ ≲ 1 at low temperatures, but not at room temperature.
The ratio of the microscopic scattering amplitudes

𝑔ዅ
𝑔ዄ

= Ψ(ኼ)ፋፁ −Ψፂፁ
Ψ(ኼ)ፋፁ +Ψፂፁ

. (2.45)

can for instance be determined by BLS spectroscopy. Values in the range 0.1 <
|𝑔ዅ/𝑔ዄ|

ኼ < 10 have been reported for YIG, depending on the magnetization di-
rection and frequency [5, 29]. For the parameters and configuration here, we find
𝑔ዅ/𝑔ዄ = −0.4. The main reason for the observed large asymmetry [2–4] is there-
fore the non-resonant nature of the anti-Stokes scattering caused by the geometric
and magnetic birefringence [see Eq. (2.36)]. Inserting the parameters introduced
above, we find for the S-aS ratio 𝑃̄ዅፊ /𝑃̄ዄፊ ≈ 𝑆ዅፊ/𝑆ዄፊ = 2 × 10ኾ.

Small-L magnons: We now discuss 𝑆±ፀ , with 𝐴 = {𝜈፬ , 𝑙፬ , 𝑚፬}, for general small-𝐿
magnons that gives the total power in each peak [see below Eq. (2.42 )]. Here we
refrain from accurately computing the contributions from different magnon modes
to the spectrum that have recently been observed [14, 15]. Instead, we resort to
making some qualitative observations. From Eq. (2.41), we see that 𝑆ፀ involves a
sum over all (symmetry-allowed) transition amplitudes, 𝑃 → 𝑄, that in principle can
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cause interference effects. However, by choosing an appropriate magnetic field,
the Stokes scattering is dominated strongly by the transition 𝑙፩ to 𝑙፩−1 while other
transitions are non-resonant. This can be done if the magnon band, = 𝛾𝜇ኺ𝑀፬/2
[26, 30] (∼ 2𝜋 × 1GHz for YIG), is not too large compared to the WGM linewidths
(discussed in detail below). If this holds, we can ignore the non-resonant terms
in the summation of Eq. (2.41) for 𝑆ዅፀ . Further, 𝐺ዅፏፐፀ is non-zero only if the 𝑧-
component of angular momentum is conserved, i.e. 𝑚ᖣ = 𝑚 − 𝑚፬. Thus, for a
given 𝐴 and 𝑃 = {1, 𝑙፩, 𝑚,TE} the WGM 𝑆 = {1, 𝑙፩ − 1,𝑚 − 𝑚፬ ,TM} dominates.
If 𝜅ፒ ≠ 0, we can observe this scattering. The anti-Stokes lines are caused by
(non-resonant) scattering into different 𝑎𝑆 = {1, 𝑙ፚፒ , 𝑚 +𝑚፬ ,TM} with 𝑙ፚፒ ≥ 𝑙፩ and
|𝑚 +𝑚፬| ≤ 𝑙ፚፒ that can be calculated by Eq. (2.41).

𝑆±ፀ depends on the angular momenta and the energy of 𝐴 via the optomagnonic
coupling 𝐺 and the detuning 𝛿 respectively [see Eq. (2.41)]. BLS experiments are
the method of choice to measure quasiparticle spectra, and this holds also for the
present configuration. The WGMs transmission spectra sample the amplitude of the
magnetization dynamics at the surfaces and are restricted by angular momentum
conservation rules via the CG coefficients [see Eqs. ( 2.30) and (2.31)]. This
implies that the total angular momentum should be approximately conserved, i.e.
𝐺ዅፏፒፀ ≈ 0 for 𝑙፬ ≫ 1, restricting the number of optically active magnons; for 𝑙፬ ≥ 10
peak heights are estimated from the CG coefficients to be less than 2% of the Kittel
mode. The lowest lying peaks are expected for 𝐴 = {0, 2, 2} , {0, 2, 1} , {1, 1, 1}, with
frequencies discussed briefly in Sec. 1.2. Similar restrictions hold for anti-Stokes
scattering.

In 𝑆ዅፀ the frequency |𝛿ዅፐፀ| = |𝜔in − 𝜔ፀ − 𝜔ፒ| is the degree of non-resonance.
When all symmetry-allowed 𝐺ዅ are the same, each magnon peak in the Stokes
spectrum are proportional to the density of state of the 𝑆-WGM at the peak center

𝑊ፒ (𝜔out) ∝
𝜅ፒ + 𝜅̄ፒ

4 (𝜔in − Δ𝜔ፒ − 𝜔out)
ኼ + (𝜅ፒ + 𝜅̄ፒ)ኼ

, (2.46)

as shown in Fig. 2.4 (red dashed lines), where 𝜔out = 𝜔in−𝜔ፀ. Here, Δ𝜔ፒ is defined
in Fig. 2.3. Only magnons with frequencies in a window of the order ±(𝜅ፒ + 𝜅̄ፒ)
around Δ𝜔ፒ are observable. This shows that we can optimize the scattering by
shifting the magnon frequency, via an applied field.

The anti-Stokes scattering for 𝑙ፚፒ = 𝑙፩ + 1 is plotted schematically in Fig. 2.4.
Here the peak heights are proportional to

𝑊ፚፒ (𝜔out) ∝
𝜅ፚፒ + 𝜅̄ፚፒ

4 (𝜔in + Δ𝜔ፚፒ − 𝜔out)
ኼ + (𝜅ፚፒ + 𝜅̄ፚፒ)ኼ

, (2.47)

is shown in Fig. 2.4 (green dotted lines) with 𝜔out = 𝜔in+𝜔ፀ. Here Δ𝜔ፚፒ is defined
in Fig. 2.3. Similar formulas hold for other 𝑙ፚፒ adding up to the total anti-Stokes
peaks. The total number of observable peaks depends on 𝐺ዄ that will distort the
Lorentzian envelope for large detunings.
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Figure 2.5: Reflection by a Damon-Eshbach mode for (a) M ዆ ፌ፬ẑ and (b) M ዆ ዅፌ፬ẑ. Due to the
chirality of DE magnons, one of the Stokes or anti-Stokes transitions is forbidden, depending on the
direction of the magnetization.

2.4.3. Reflection
We now turn to the inelastically reflected power. In a sphere, the DE magnons are
degenerate at 𝜔DE = 𝛾 (𝐵ኺ − 5𝜇ኺ𝑀፬/6) [10, 30]. Therefore, only one Stokes peak
is expected, to which the scattering amplitudes of all DE magnons contribute. Eq.
(2.23) can then be simplified to

𝑃TMR (𝜔out)
𝑃̄in

= 𝜅̄DE(𝑛DE + 1)
(𝜔out − 𝜔in + 𝜔DE)

ኼ + 𝜅̄ኼDE/4
∑
ፀ∈LL

𝑆ዅፀ . (2.48)

where 𝐴 = {𝜈፬ , 𝑙፬ ≫ 1, 𝑙፬ ≥ 𝑚፬ ≫ 1} , 𝜔ፀ = 𝜔DE, 𝜅ፀ = 𝜅DE = 𝛼ፆ𝜔DE and, at elevated
temperatures, 𝑛ፀ = 𝑛DE = 𝑘ፁ𝑇/(ℏ𝜔ፀ). 𝑃TER = 0 since TE → TE scattering is
forbidden. 𝑃R is a Lorentzian centered at 𝜔ፏ − 𝜔DE with a width 𝜅DE. The total
integrated power over the peak

𝑃̄R
△= ∫ 𝑑𝜔out2𝜋 𝑃TMR (𝜔ᖣ), (2.49)

is then

𝑃̄R
𝑃̄in

= ∑
ፀ∈LL

|∑
ፏ,ፐ

2√𝜅ፏ𝜅ፐ
𝜅̄ፏ + 𝜅ፏ

𝐺ዅፏፐፀ√𝑛DE + 1
𝑖𝛿ዅፐፀ + (𝜅̄ፐ + 𝜅ፐ)/2

|

ኼ

. (2.50)

The summation over 𝑃 includes all allowed 𝑚 > 0, while the 𝑄 modes circle in the
opposite direction 𝑚ᖣ < 0.

Using Fig. 2.2, we see that 𝑄 = {1, 𝑙፩ − 1,𝑚ᖣ,TM} for 𝑚ᖣ = 𝑚 −𝑚፬ < 0 are the
only resonant final states for magnon frequencies < 2𝜋×20GHz [illustrated in Fig.
2.5(a)]. A magnetic field (∼ 1T ) can tune the system into the resonant condition
𝜔DE = Δ𝜔FSR − Δ𝜔BF. We can estimate a lower bound of the output power by
assuming that only 𝑚 = 𝑙፩ and 𝑚ᖣ = −(𝑙፩ − 1) modes couple to the fiber and the
magnons with 𝑚፬ = 𝑙፬ = 2𝑙፩ − 1 dominate. There is only one state 𝐴 with 𝑚፬ = 𝑙፬
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labeled as 𝜈፬ = 0 [see Sec. 1.2], hence

𝑃̄R
𝑃̄in

= 2𝜅ፏ
(𝜅ፏ + 𝜅̄ፏ)

ኼ
2𝜅ፐ

(𝜅ፐ + 𝜅̄ፐ)
ኼ |𝑔ዅΞዅ|

ኼ (𝑛DE + 1) , (2.51)

where Ξዅ has been defined in Eq. (2.33). Using the parameters for YIG given
above, we arrive at the estimate 𝑃̄R/𝑃̄in = 4×10ዅኻኽ at 𝑇 = 300K. The actual output
power will be larger, depending on the optical coupling and multiple contributing
DE magnons.

Since the WGMs are spatially extended compared to the DE modes, the radial
overlap interface for 𝜈፬ ≠ 0 is suppressed. While for small-𝐿 magnons with approx-
imately constant amplitude, the orthogonality of the WGMs efficiently suppresses
inter-branch scattering with 𝜈 ≠ 𝜈ᖣ, the DE modes are localized to the surface,
which allows scattering between WGMs 𝜈ᖣ ≠ 𝜈. In the present configuration with
M ≈ 𝑀፬ẑ the 𝜈 = 1 intra-branch scattering dominates, because 𝜈ᖣ ≠ 𝜈 transition
are non-resonant (see Fig. 2.5). The situation is different for M ≈ −𝑀፬ẑ (see next
section).

The angular momentum of the WGMs for infrared light is typically of the order of
𝑙፩ ∼ 10ኽ. The DE magnons that reflect these photons have angular moments of the
same order. In YIG spheres with 𝑎 ∼ 100 𝜇m exchange effects become significant
only for 𝑙፬ > 10ኾ, implying that we can neglect exchange. For exchange energy
smaller than the magnetostatic energy, ∼ 𝛾𝜇ኺ𝑀፬, we expect the magnons to be
chiral still, but with a different magnon spatial distribution affecting the overlap.

2.5. Other configurations
The above analysis focuses on a TE polarized incident photons in Fig. 2.1 that
couple to the 𝜈 = 1 WGM. We now briefly discuss other configurations involving
a different WGM, magnetization direction, and polarization. The conclusions are
summarized in Fig. 2.6 (not to scale).

Other WGMs: Magnons close to the Kittel mode with small angular momentum
and nearly constant amplitude over the sphere can scatter WGMs with the same
number of nodes 𝜈 = 𝜈ᖣ only. The 𝜈 = 1 mode is expected to dominate because
of the larger evanescent coupling. DE magnons may form an exception, since
on magnetization reversal inter-branch scattering should become observable (next
paragraph).

Magnetization: The results for M ≈ 𝑀፬ẑ can be used to understand the scat-
tering after magnetization reversal M ≈ −𝑀፬ẑ . This inverts the magnon angular
momenta 𝑚፬ in the selection rules, which might lead to a naïve expectation that
we simply have to exchange Stokes and anti-Stokes scattering. This is not the
case, however, as we discuss now for the Kittel mode. For simplicity, let’s consider
only the dominant optical mode with 𝑚 = 𝑙፩ which has simple selection rules, viz.
𝑙፩ → 𝑙፩ ± 1. The Stokes scattering, in this case, occurs from 𝑙፩ to 𝑙፩ + 1 because
of angular momentum conservation. This has a large detuning of Δ𝜔ፚፒ +𝜔ፀ [Δ𝜔ፚፒ
defined in Fig. 2.3]. The anti-Stokes transition 𝑙፩ → 𝑙፩ −1 (consistent with angular
momentum conservation) is also non-resonant with a detuning of Δ𝜔ፒ+𝜔ፀ. There-
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𝜔in𝜔in − 𝜔DE 𝜔in + 𝜔DE𝜔in𝜔in − 𝜔ፀ 𝜔in + 𝜔ፀ

𝜔in𝜔in − 𝜔DE 𝜔in + 𝜔DE𝜔in𝜔in − 𝜔ፀ 𝜔in + 𝜔ፀ

𝜔in𝜔in − 𝜔DE 𝜔in + 𝜔DE𝜔in𝜔in − 𝜔ፀ 𝜔in + 𝜔ፀ

𝜔in𝜔in − 𝜔DE 𝜔in + 𝜔DE𝜔in𝜔in − 𝜔ፀ 𝜔in + 𝜔ፀ

Figure 2.6: Schematic light scattering spectra by a magnetic sphere in proximity to a single mode optical
fiber, emphasizing the S-aS asymmetry. The blue arrow marks the frequency Ꭶin of light input and the
panel T(R) denotes the transmission(reflection) spectra with Stokes and anti-Stokes lines. Ꭶፀ and ᎦDE
are the resonance frequencies of magnons involved in the transmission and reflection, respectively. Each
column corresponds to one of the four cases, ᎟ ∈ {TE,TM} orM ∥ ±ẑ. A cross denotes complete absence
of a peak by chirality selection. The peak heights are not on scale, but peaks with the same height have
power in the same order-of-magnitude. We assume that the input frequency and the magnetic field
have been tuned to the resonant scattering condition in each case as discussed in the main text.
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fore, the reduction of angular momentum of WGM is accompanied by an increase in
energy and vice versa, which is not favorable for scattering [see Fig 2.2], decreas-
ing both the peaks. For the parameters of the YIG sphere used before, we find in
this case 𝑃̄ዄፊ /𝑃̄in ∼ 10ዅኻዀ and a weaker (inverted) S-aS asymmetry 𝑃̄ዄፊ /𝑃̄ዅፊ ∼ 100.

The chirality of DE magnons is reversed with magnetization, and anti-Stokes
scattering becomes allowed while the Stokes scattering is forbidden. Using Fig.
2.5, we see that the scattering cannot be resonant now for intra-branch scattering.
However, the WGM of the 𝜈 = 2 branch is close in frequency and we can choose
𝜔DE = Δ𝜔BF − Δ𝜔FSR + Δ𝜔RG = 2𝜋 × 8.8 GHz in our case. Therefore, we can still
have resonant reflection under certain conditions, i.e. the evanescent coupling of
𝜈 = 2 branch is significant and the above detuning is not too large.

TM input: All the arguments, so far, can be repeated for the case of TM polarized
light input. We can understand the schematic results in Fig. 2.6 by time-reversal
symmetry arguments. The time-reversal operator, 𝒯, inverts the magnetization and
the WGM circulation direction, so the direction of a WGM w.r.t the magnetization is
conserved. 𝒯 exchanges magnon annihilation and creation as well as input WGM
and scattered WGM. The last condition implies that both the polarization and the di-
rection of motion of WGMs must be interchanged. Thus, the transmission spectrum
for TM input whenM = ±𝑀፬ẑ is recovered by interchanging Stokes and anti-Stokes
scattering in the transmission of TE input when M = ±𝑀፬ẑ. On the other hand,
the reflection spectrum for {TE, M = ±𝑀፬ẑ} is mirror symmetric (across the input
frequency) with {TM, M = ∓𝑀፬ẑ}.

2.6. Discussion and outlook
Our theory demonstrates that the transmission (reflection) spectra of inelastically
scattered photon involves magnons with small (large) angular momentum. Both
show a pronounced asymmetry in the probability of Stokes and the anti-Stokes scat-
tering, albeit for very different reasons (discussed below). The conclusions hold for
(approximately) spherical cavities with magnetizations perpendicular to the WGM
orbits. Here we briefly discuss non-spherical samples and general magnetization
directions. In the following Lፖ and L፦ denote the angular momenta of WGMs and
magnons, respectively.

Our finding that the pronounced S-aS asymmetry observed in forward scattering
[2–4] is caused by linear birefringence agrees with that of [4]. The present results
can be carried to dielectric shapes with closed extreme orbits with sufficiently weak
curvature, such as bottlenecks, rings, etc. This implies that the forward scattering
power is increased for oblate ellipsoid with smaller volume and equal curvature at
the equator, increasing the relative overlap volume [see Eq. (2.27)].

To the best of our knowledge, back scattering of light by magnons in spherical
cavities has not yet been discussed in the literature. We find a perfect selection rule
for S-aS back-scattering by DE magnetostatic spin waves. The physical reason is
their chirality that locks the sign of the orbital angular momenta to the magnetization
direction. The interactions between DE magnons and WGMs is enhanced because
(i) they are confined to the same equatorial region of the sphere and (ii) the dwell
time in which the interaction can take place is long when dissipation is weak. While
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the reflection power estimated here is not yet very high, engineering the spatial
distribution of WGMs might lead to the coveted strong interaction between light
and magnetism. We will discuss such optimizations in a future article.

The analysis for arbitrary magnetization directions is more complex because the
rotational symmetry about 𝑧-axis is broken. In the case of transmission |L፦| ≪
|Lፖ|, so the WGMs are only slightly changed after scattering. Thus we expect the
spatial overlap to be the same as our work. The CG coefficients have to be gener-
alized for non-collinear magnetization changing the selection rules but will perhaps
not change the order of magnitude of the coupling constants 𝐺. The change in
selection rules will significantly affect the detunings, thus the peak heights and the
S-aS asymmetry, which we believe to be the major change. As we discussed before,
inverting the magnetization inverts the S-aS asymmetry. For the particular case of
in-plane magnetization, say M = 𝑀፬x̂, we expect the S-aS asymmetry in transmis-
sion to be suppressed. This can be understood by analogy with a spin-1/2 system
where the angular momentum 𝐿፦x̂ is formed as a coherent linear superposition of
𝐿፦ẑ and −𝐿፦ẑ and adding or subtracting 𝐿፦x̂ can generate scattering from 𝑙 to
𝑙 − 1 with equal probability. However, in this case too, the Stokes scattering is res-
onant while the anti-Stokes is detuned. In the in-plane magnetization configuration
the photons also experience inhomogeneous Faraday rotation and Cotton-Mouton
ellipticity [23, 31, 32]. This causes a small ellipticity in the WGMs that contributes
to the light scattering only to higher order. The treatment of light reflection for
a general magnetization direction is fairly complicated as Lፖ changes significantly
after scattering and therefore beyond the scope of this work.

While (undoped) YIG has excellent magnetic quality, its magneto-optical effects
are weak [24]. The best material for cavity optomagnonics would maximize 𝑆±
[see Eq. (2.41)]. It should have a window of high transparency, i.e. small optical
losses (eventually by polishing the surface [2]), and large MO effects that bolster
the 𝑔± [Eq. (2.28)]. Provided that it is much smaller than the optical broadening,
the magnon linewidth governed by the Gilbert damping does not play a role in the
integrated scattered power. Doping YIG or substituting yttrium by magnetic rare
earth atoms increases MO effects but may also lead to a deterioration of the optical
and magnetic quality [33].

While we considered BLS by magnons, light can be scattered by other excita-
tions, such as phonons. The latter generate inelastic scattering at 𝜔in ±𝜔፩፡ where
𝜔፩፡ are optically active phonon frequencies. Unless a phonon is resonant with any
of the relevant magnons, the two scattering are independent and can be easily
separated from the magnetic signals by e.g. changing the magnetic field.

In summary, we studied BLS by magnons in spherical cavities, restricting to
WGMs, with the magnetization perpendicular to WGM orbit. We expect our dis-
cussion of BLS by magnons in WGM cavities to hold for more general geometries,
but not for a general magnetization direction. The expressions derived here can be
used for improving the coupling between magnons and phonons. The dependence
of the scattered power on the input mode as illustrated by Fig. 2.6, allows con-
trollable energy transfer between magnet and light. DE magnons can be pumped
or annihilated selectively by reflection of light. Similarly, the low-𝐿 magnons can
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be pumped or cooled by light depending on the polarization of the input. A forth-
coming article is devoted to the thermodynamics of light scattering by magnetic
spheres.

We acknowledge helpful discussions with Koji Usami and Koji Satoh. This work is
supported by the DFG Priority Programme 1538 “Spin-Caloric Transport”, the NWO,
and JSPS Grants-in-Aid for Scientific Research (Grant Nos. 25247056, 25220910,
and 26103006).

2.7. Appendix: Scattering amplitudes
In this Appendix, we calculate the scattering amplitudes of a TE WGM into a TM
WGM for both forward and back scattering. To this end we use the expressions for
the optical and magnonic fields in Secs. 1.2 and 1.4 to calculate the integrals in
Eqs. (1.34).

2.7.1. Kittel mode
Consider a WGM with index 𝑃 ≡ {𝜈, 𝑙, 𝑚, 𝑇𝐸} that scatters into 𝑄 ≡ {𝑟ᖣ, 𝑙ᖣ, 𝑚ᖣ, 𝑇𝑀}
by the Kittel mode, 𝐴 ≡ {0, 1, 1}. Throughout this section 𝑙, 𝑚 ≫ 1, |𝑙 − 𝑚| and
𝑙ᖣ, 𝑚ᖣ ≫ 1, |𝑙ᖣ −𝑚ᖣ|. The coupling integrals, Eq. (1.34), can be written as

𝐺±ፏፐፀ =
𝒢±𝑀፮
4ℏ 𝐼±, (2.52)

where
𝐼± = ∫

|፫|ጺፚ
𝐸ፏ,፳𝐸∗ፐ,±𝑑r. (2.53)

Putting the distribution of electric fields [see Sec. 1.4] we get

𝐼± ≈ 𝑖ℰፏℰፐ∫(𝑗፥(𝑘ፏ𝑟)𝑌፦፥ ) (𝑗፥ᖣ(𝑘ፐ𝑟) sin𝜃𝑒±።Ꭻ(𝑌፦
ᖣ

፥ᖣ )∗) 𝑑r. (2.54)

For large 𝑙, we have a recursive relation, sin𝜃𝑒±።Ꭻ𝑌፦ᖣ፥ᖣ = 𝑌፦ᖣ±ኻ፥ᖣ±ኻ , giving

𝐼± ≈ 𝑖ℰፏℰፐ∫𝑗፥(𝑘ፏ𝑟)𝑗፥ᖣ(𝑘ፐ𝑟)𝑌፦፥ (𝑌፦
ᖣ∓ኻ

፥ᖣ∓ኻ )
∗
𝑑r

= 𝑖ℰፏℰፐ𝛿፥,፥ᖣ∓ኻ𝛿፦,፦ᖣ∓ኻ∫𝑟ኼ𝑑𝑟𝑗፥(𝑘ፏ𝑟)𝑗፥ᖣ(𝑘ፐ𝑟). (2.55)

where we used the orthonormality of the SHs. Since the integral is dominated by
𝑟 ≈ 𝑎, we can use the asymptotic form of the Bessel function, Eq. (1.24) and the
orthogonality relation

∫
ጼ

ኺ
𝑑𝑡 Ai(𝑡 − 𝛽᎚)Ai(𝑡 − 𝛽᎚ᖣ) = 𝛿᎚,᎚ᖣ (Aiᖣ(−𝛽᎚))

ኼ , (2.56)

to arrive at

𝐼± ≈ 𝑖
ℏ𝜔ፏ
2𝜖፬

𝛿᎚,᎚ᖣ𝛿፥,፥ᖣ∓ኻ𝛿፦,፦ᖣ∓ኻ, (2.57)
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for 𝜖፬ ≫ {𝑓𝑀፬ , 𝑔𝑀ኼ፬ , 𝑔ᖣ𝑀ኼ፬ }. Finally,

𝐺±ፏፐፀ =
𝑔𝑀፬ ± 𝑓
2𝜖፬

𝑀፬
√𝑠𝑉

𝑖𝜔፩𝛿᎚,᎚ᖣ𝛿፥,፥ᖣ∓ኻ𝛿፦,፦ᖣ∓ኻ, (2.58)

which can be written in terms of the MO constants defined in Eqs. (1.14) - (1.15)
and lead to Eq. (2.27). The orthonormality of the SHs reflects the conservation of
angular momentum and the orthonormality of WGMs in the radial direction leads
to the radial selection rule.

2.7.2. DE modes
We calculate scattering of a WGM with 𝑃 ≡ {𝜈, 𝑙, 𝑚, 𝑇𝐸} into one with index 𝑄 ≡
{𝜈ᖣ, 𝑙ᖣ, 𝑚ᖣ, 𝑇𝑀} by a particular DE magnon given by 𝐴 ≡ {0, 𝑙፬ , 𝑙፬} . We take the case
of 𝑚 > 0 which implies 𝑚ᖣ < 0 as discussed in the main text, Sec. 2.3.2. Here, we
assume 𝑙, 𝑚 ≫ 1, |𝑙 − 𝑚|, and similarly 𝑙ᖣ, |𝑚ᖣ| ≫ 1, |𝑙ᖣ+𝑚ᖣ|. The coupling constants

ℏ𝐺±ፏፐፀ =
𝑖𝒢±ℰፏℰፐ𝑀፥፬𝑎ኽ

4 ℛΘ±, (2.59)

where we divided the integrals into the angular (Θ) and the radial (ℛ) parts. The
angular integral is

Θ± = ∫𝑑Ω𝑌፦፥ [sin𝜃𝑒±።Ꭻ (𝑌፦
ᖣ

፥ᖣ )
∗
] (sin𝜃𝑒±።Ꭻ)፥፬ዅኻ , (2.60)

where 𝑑Ω = sin𝜃𝑑𝜃𝑑𝜙 is the angular differential. As 𝑌፦፥ ∼ 𝑒።፦Ꭻ, we get that Θ±
is non-zero only if 𝑚−𝑚ᖣ ± 𝑙፬ = 0. As discussed in the text, 𝑚ᖣ ≈ −𝑚 , so Θዄ = 0.
Θዅ can be evaluated by using (𝑌ፌፋ )∗ = (−1)ፌ𝑌ዅፌፋ ,

𝑌ፋፋ ≈
𝐿ኻ/ኾ

√2 𝜋ኽ/ኾ
sinፋ 𝜃𝑒።ፋᎫ , (2.61)

and the identity,

∫𝑑Ω 𝑌ፌኻፋኻ 𝑌
ፌኼ
ፋኼ (𝑌

ፌኽ
ፋኽ )

∗
≈ √ 𝐿ኻ𝐿ኼ2𝜋𝐿ኽ

⟨𝐿ኻ, 𝑀ኻ; 𝐿ኼ, 𝑀ኼ|𝐿ኽ, 𝑀ኽ⟩ ⟨𝐿ኻ, 0; 𝐿ኼ, 0|𝐿ኽ, 0⟩ , (2.62)

where the approximations holds for 𝐿። ≫ 1 for 𝑖 ∈ {1, 2, 3}. We get

Θዅ =
𝜋ኽ/ኾ

𝑙ኽ/ኾ፬
√𝑙𝑙

ᖣ

𝜋 ⟨𝑙,𝑚; 𝑙
ᖣ, |𝑚ᖣ|| 𝑙፬ , 𝑚፬⟩ ⟨𝑙, 0; 𝑙ᖣ, 0| 𝑙፬ , 0⟩ . (2.63)

The radial integral is

ℛ = ∫
ኻ

ኺ
𝑗፥(𝑘ፏ𝑎𝜌) [𝑗፥ᖣ(𝑘ፐ𝑎𝜌) − 𝑗ᖣ፥ᖣ(𝑘ፐ𝑎𝜌)] 𝜌፥፬ዄኻ𝑑𝜌, (2.64)
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where 𝜌 = 𝑟/𝑎. It quantifies the overlap between the DE modes and WGMs in
the radial direction. It can be estimated by realizing that 𝜌፥፬ ≈ exp(−𝑙፬(1 − 𝜌)) for
𝑙፬ ≫ 1. Therefore, the magnetization of the DE magnon decays rapidly in a reduced
length scale of 1/𝑙፬ (or in a length scale of 𝑎/𝑙፬). In such a small length, we can
approximate WGMs by their value at the surface (𝜌 = 1) giving

ℛ ≈ 𝑗፥(𝑘ፏ𝑎)
𝑙፬

[𝑗፥ᖣ(𝑘ፐ𝑎) − 𝑗ᖣ፥ᖣ(𝑘ፐ𝑎)] . (2.65)

We use the asymptotic form of the Bessel’s function, Eq. (1.24), along with

𝑘ፏ𝑎 = 𝑙 + (𝛽᎚ −
2ኻ/ኽ𝑃᎟
𝑙ኻ/ኽ )(2𝑙 )

ኻ/ኽ
, (2.66)

and the Taylor expansion of the Airy’s function around its zeroes for large 𝑙,

Ai(−𝛽᎚ +
2ኻ/ኽ𝑃᎟
𝑙ኻ/ኽ ) ≈ Aiᖣ(−𝛽᎚)

2ኻ/ኽ𝑃᎟
𝑙ኻ/ኽ .

We can find a similar function for 𝑗፥ᖣ(𝑘ፐ𝑎). We simplify

ℛ ≈ 𝜋
4 (

4
𝑙𝑙ᖣ)

዁/ዀ
Aiᖣ(−𝛽᎚)Aiᖣ(−𝛽᎚ᖣ)𝑃ፓፄ(1 + 𝑃ፓፌ). (2.67)

Putting all the constants in Eq. (2.59), we arrive at the result mentioned in Eq.
(2.32).
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Initial experiments on cavity optomagnonics focused on the Kittel mode, in which
the magnetization precesses uniformly across the entire sphere. However, theo-
retical analysis [2] shows that the enhanced BLS should be large for some spatially
varying magnetic modes as well. Due to better spatial overlap with WGMs, these
could be expected to have stronger optomagnonic coupling. Here, we discuss the
selection rules governing BLS active magnetostatic modes in YIG sphere and discuss
experiments to observe it.

Fig. 3.1(b) shows the node-less Kittel mode. The other modes have additional
nodal planes in the form of ellipsoids whose number and ellipticity is governed by
𝑙፦ and 𝑞፦, respectively and are shown in Fig. 3.1(c-i). In microwave experiments,
strong coupling of several higher order modes to microwave resonators has been
achieved [3–5], despite the fact that only the Kittel mode has any net dynamic
magnetization. This is possible due to inhomogeneity in either the microwave or
the applied static magnetic field. In our experiments, we exploit both to allow us
to drive various non-uniform magneto-static modes.

3.1. Experimental setup
A schematic of the experimental setup is shown in Fig. 3.2. A rutile prism coupler
is used to optically excite the whispering gallery modes, while the magnetostatic
modes are driven by a small loop antenna. The 1mm diameter YIG sphere is
mounted on a ceramic rod.

The WGMs are probed with a tunable external-cavity diode laser with linewidth
≈1MHz. Due to the birefringence of the coupling prism, the reflected linearly polar-
ized input beam and the polarization-rotated scattered beam are spatially separated
and can be measured independently. The reflected beam is measured on a photo-
diode and is used to identify the WGMs. The polarization scattered light is passed
through a scanning Fabry-Pérot etalon to spectrally resolve the BLS. Whilst in previ-
ous experiments [6, 7] both input polarizations were studied, here we focus solely
on measurements for ℎ-input (TM) polarization, where better out-coupling of the
BLS light from the birefringent coupling prism is achieved.

For microwave characterization of the magnetostatic modes, we measure ab-
sorption dips in the reflection coefficient |𝑆ኻኻ| of the loop antenna with a vector
network analyzer. The static magnetic field is applied using a permanent NdFeB
magnet. The magnitude of the magnetic field can be controlled by shifting the
position of the magnet relative to the YIG sphere.

3.2. Expected modes active for BLS
We briefly review the modes expected to be active for BLS in our experimental setup
using recent theoretical calculations of the optomagnonic coupling constants [2].

A photon in a 𝜎። = ℎ polarized input WGM {𝑙። , 𝑚። , 𝑞።} can undergo anti-Stokes
scattering by a magnon {𝑙፦ , 𝑚፦ , 𝑞፦} into a 𝜎፨ = 𝑣 polarized output WGM {𝑙፨ , 𝑚፨ , 𝑞፨},
while Stokes scattering is strongly suppressed [2, 7]. The constraints on the cou-
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Figure 3.1: Spatial variation of (a) an optical WGM and (b-i) dynamic magnetization modes of a yig
sphere. The labels above the spheres are the angular momentum and radial mode numbers {፥,፦, ፪}
(with subscript ፦ for magnetic modes, see text). (a) The in-phase intensity of the electric field for an
optical WGM with ፥ ዆ ፦ ዆ ኼኺኺ (in the actual experiment, ፥,፦ ∼ ኻኺኺኺ). (b-i) The color indicates the
intensity of the dynamic magnetization, while arrows indicate the in-phase direction. Negative mode
indices are indicated by an over-bar. The static magnetization ፌኺ is indicated in (b).
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Figure 3.2: Experimental setup. Linearly polarized input light is evanescently coupled into the YIG
sphere via a rutile prism. Photodiode I measures the transmitted input beam, in order to identify the
WGM resonances. Photodiode II measures the polarization rotated output from the YIG sphere, with a
scanning Fabry-Pérot etalon in the beam path providing spectral resolution. A permanent NdFeB magnet
saturates the magnetization perpendicular to the WGM orbit. The microwave measurements are made
with the loop antenna using a vector network analyzer (VNA).
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Figure 3.3: Identification of magnetostatic modes from magnetic field dispersion. (a) Microwave reflec-
tion coefficient |ፒኻኻ| as a function of magnetic field and reduced frequency (ᎦዅᎦፇ)/Ꭶፌዄኻ/ኽmeasured
in uniform applied magnetic field generated by an electromagnet. (b) Calculated eigenfrequencies of
magnetostatic modes with indices {፥፦ ,፦፦ , ፪፦}, overlaid with dips from (a). This is used to identify the
magnons excited by the microwave antenna. (c) Same as (a) but in non-uniform magnetic field of a
permanent magnet showing normal mode splittings and additional magnons. (d) Same as (c), but with
rutile coupling prism in place indicating the microwave modes of the prism alongside that of the YIG
sphere.
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pling constant 𝐺 can be summarized as [2],

𝐺 ∝ 𝛿፪። ,፪፨ ⟨𝑙። , 𝑚።; 𝑙፦ , 𝑚፦|𝑙፨ , 𝑚፨⟩ . (3.1)

This expression effectively captures the mode matching between the three modes.
The first factor gives a radial selection rule, 𝑞። = 𝑞፨. The second factor is the
Clebsch-Gordan coefficient governing the angular momentum conservation.

For WGMs, 𝑚። ≈ 𝑙። and 𝑚፨ ≈ 𝑙፨, while for the magnons excited by microwaves,
𝑙፦ , 𝑚፦ ∼ 1 ≪ 𝑙። , 𝑙፨ ∼ 10ኽ. Under such conditions, the optical interaction with the
magnon occurs only in the thin band occupied by the WGMs near the equator. The
long-wavelength nature of magnons therefore preserves the transverse field distri-
bution of WGMs. This gives the radial selection rule above, and considering polar
direction, that 𝑙፨ − 𝑚፨ = 𝑙። − 𝑚።. The wave-matching conditions in the azimuthal
direction dictates 𝑚፨ = 𝑚፦ +𝑚።. This implies that 𝐺 is approximately zero unless
𝑙፨−𝑙። = 𝑚፦, which is confirmed by explicit calculation of the Clebsch-Gordan coef-
ficient. BLS scatters photons into the mode given by {𝑙። +𝑚፦ , 𝑚። +𝑚፦ , 𝑞።} which
is fixed by the incident WGM and the magnon.

For significant coupling we require a non-zero magnon density at the equator,
where WGMs reside. From explicit solutions [8], the magnetostatic mode ampli-
tudes vanish at equator for odd 𝑙፦ −𝑚፦ (see Fig. 3.1(b-i)).

Finally, we consider the energy conservation. The 𝑙፨ = 𝑙።+1, 𝑙፨ = 𝑙። and 𝑙፨ = 𝑙።−
1 transitions have frequencies of 7GHz, 40GHz, and 50GHz, respectively, fixed by
the optical cavity free spectral range and geometrical birefringence. The linewidth
of the WGM of ≈ 1GHz is much smaller than the frequency spacing between these
transitions, ensuring the selectivity of the resonance condition. In our setup the
maximum field is ≈ 300mT, corresponding to a ferromagnetic resonance frequency
≈ 8.5GHz. Hence, only the 𝑙፨ = 𝑙። + 1 transitions are observed [7]. Comparing
this resonance condition to 𝑙፨ − 𝑙። = 𝑚፦ derived previously, we therefore have
𝑚፦ = 1. The fact that 𝑙፦ − 𝑚፦ must be even then restricts 𝑙፦ to be an odd
integer. While it is more difficult to couple microwaves to high 𝑙፦ modes, increasing
𝑙፦ typically increases the equatorial magnon density and hence, is likely to have
higher optomagnonic coupling. We note that the equatorial magnon density also
depends on 𝑞፦, but its discussion is beyond the scope of this work.

In summary, the magnons expected to be active for BLS should have 𝑙፦ =
1, 3, 5, … and 𝑚፦ = 1. Note that the sign of 𝑚፦ in the allowed transitions is for
the magnetic field direction shown in Fig. 3.2, such that the angular momentum of
the WGMs is parallel to the static magnetization. Similar arguments show that for
the opposite magnetic field (or WGM circulation direction), the expected magnons
should have 𝑙፦ = 1, 3, 5, … and 𝑚፦ = −1. For opposite input polarization, energy
conservation leads to preferential Stokes scattering, but the same selection rules
apply.

3.3. Identification of magnetostatic modes
The microwave reflection coefficient |𝑆ኻኻ| of the loop antenna [9] is measured in
the experimental setup shown in Fig. 3.2. Two complications hinder the labeling
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of the magnetostatic mode spectra: (1) the inhomegeniety of the static magnetic
field of the permanent magnet. (2) The rutile coupling prism is a good microwave
dielectric resonator that interferes with the magnetic resonance. Therefore, we first
carry out a simpler experiment by transferring the loop antenna with YIG sphere
(without the prism) into a separate electromagnet with uniform static magnetic
field. The results are summarized in Fig. 3.3(a). We follow Ref. [8] and plot the
reduced frequency (𝜔 − 𝜔ፇ) /𝜔ፌ+1/3, where the Larmor frequency 𝜔ፇ = 𝛾𝜇ኺ𝐻ኺ is
subtracted so that the dispersion can be seen more clearly. Here, the gyromagnetic
ratio 𝛾 = 28GHz/T and 𝜔ፌ = 𝛾𝜇ኺ𝑀yig, with 𝜇ኺ𝑀yig = 180mT. We use the {110}
(Kittel) and {220} modes as magnetic field sensors, aligning them to their expected
position in reduced frequency. These can be identified by their frequency separation
𝜔ፌ/15, which is independent of magnetic field and depends only on the saturation
magnetization. The rescaled map of the observed microwave reflection coefficient
|𝑆ኻኻ| is shown in Fig. 3.3(a).

The positions of the resonances in Fig. 3.3(a) are plotted in Fig. 3.3(b), along
with expected mode frequencies [8]. There is clear agreement with several sets
of points indicating that several non-Kittel modes are driven by the loop antenna
(highlighted by colored lines). If the drive field distribution of this antenna were
uniform, only the Kittel mode would couple to the microwave line. However, non-
uniformity in the drive field allows other magnetostatic modes to be driven as well.

To help identify the observed magnetostatic modes, we numerically calculated
the magnon mode overlap with the drive field distribution of the loop antenna
treated as a current loop. All the modes labeled in Fig. 3.3(a) have microwave
coupling strength greater than 0.1% of the Kittel mode, apart from the {521} and
{210} modes which are much weaker in the model. For example, the relative mi-
crowave coupling strength for the {200} mode is estimated to be ≈4%.

Next, we transfer the YIG sphere and microwave antenna to the optical setup
(with rutile prism removed) in which the static magnetic field is generated by a small
permanent magnet since there is no room for an electromagnet. The differences
between the measured |𝑆ኻኻ| in Fig. 3.3(c) and (a) are caused by the inhomogeneous
dc magnetic field. We again use the {110} and {220} modes as sensors for the
magnetic field distribution, which can be estimated by analytical expressions for a
cuboid magnet [10].

The non-uniformity of the static magnetic field leads to microwave absorption
of additional modes and normal mode splitting at degeneracies, in particular be-
tween {110} and {200}. Nevertheless, the modes identified in Fig. 3.3(b) are easily
recognized and labeled by the colored arrows. At higher magnetic fields, corre-
sponding to the YIG sphere being closer to the permanent magnet, the increasing
non-uniformity of the magnetic field further distorts the spectra.

Finally, we put the rutile coupling prism in place next to the YIG sphere. The
prism is a good microwave dielectric resonator, so that the spectra in Fig. 3.3(c)
are affected by a large number of additional spurious resonances. These do not
depend on the magnetic field and have a negative slope since the Larmor frequency
has been subtracted. Despite this, the magnetostatic modes can still be clearly
identified.
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Figure 3.4: Optical measurements of BLS efficiency. (a) The reflected input optical power at photodiode
I as a function of input laser wavelength detects the WGM resonances. The laser detuning (፱-axis)
is measured relative to one of the WGMs. Resonances corresponding to mode families ፪ ዆ ኻ, ኼ are
observed. The free spectral range for modes with ፪ ዆ ኻ is indicated. (b) BLS signal as a function
of input laser wavelength for several magnons marked by arrows in (c) with matching color. (c) BLS
intensity maxima of the ፪ ዆ ኻ WGM resonance (coded by color intensity) for each measured point of
microwave frequency (፲-axis, reduced frequency) and magnetic field (፱-axis). (d) Same as (c), but with
static magnetic field inverted.
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Figure 3.5: Indentification of BLS active magnetostatic modes. (a) Data points corresponding to those in
Fig. 3.4(c) which are above a threshold set by the noise floor. The dot colors correspond to the assigned
magnetostatic mode. Positive and negative magnetic fields are indicated by filled and open points,
respectively. Points where mode identification is unclear are marked in gray. (b) Theoretical dispersion
of the modes observed in (a).

3.4. Brillouin light scattering
Having identified the magnons that couple to the microwave antenna, we now
discuss the optical measurements. We identify WGM resonances by varying the
wavelength of the input light and measuring the reflected output in photodiode I,
as shown in Fig. 3.4(a). Dips are seen for the 𝑞 = 1mode family as well as a smaller
peak for the 𝑞 = 2 mode family [7], where 𝑞 is the radial index of WGM defined
above.

We apply a microwave drive at several of the magnetostatic mode frequencies
identified in Fig. 3.3(c) and look for BLS. The polarization scattered light is spectrally
resolved using a Fabry-Pérot etalon to identify the anti-Stokes BLS and measured on
photodiode II. For each microwave resonance we sweep the input laser wavelength,
some of the spectra are plotted in Fig. 3.4(b). The peaks indicate enhanced BLS
when the drive laser is resonant with a WGM.

A fit to the BLS peaks corresponding to the 𝑞 = 1 mode is used to extract
the maximum BLS for each FMR frequency. The results are plotted as a func-
tion of reduced frequency and positive and negative magnetic field in Fig. 3.4(c)
and Fig. 3.4(d), respectively. In addition to the Kittel mode, several magnetostatic
modes also generate BLS above the noise level.

We take the data from Fig. 3.4(c,d) and set a suitable noise-level threshold deter-
mined from a histogram of the measurement points. The measurement points with
BLS above this threshold are plotted in Fig. 3.5(a). Closed (open) circles indicate
measurements at positive (negative) magnetic field. Using their dispersion from
Fig. 3.3, we identify the magnetostatic mode associated with each of the points.
The relevant calculated magnetostatic mode frequency dispersion are plotted for
comparison in Fig. 3.5(b). For some points with negative field, mode identification
has not been possible (gray points) due to the proximity of the overwhelming signal
of the Kittel mode.
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3.5. Comparison with theory
We are now in a position to compare the observed mode frequencies with the model
calculations. In Sec. 3.2, we concluded that BLS should be observed for magneto-
static modes with odd 𝑙፦ and 𝑚፦ = +1(−1) for positive (negative) magnetic field,
respectively. In addition to the Kittel mode {110}, we observe the {311} mode
and, in the opposite field direction, the {31̄1} mode, as expected. Additionally,
we observe a signal for the {712} mode. We do not observe BLS for the {220},
{330}, {320} and several other magnetostatic modes identified in the microwave
measurements, all conforming to the selection rules derived above.

On the other hand, the BLS by the {200}mode contradicts the model predictions.
This is likely caused by the non-uniformity of the applied magnetic field discussed
in Sec. 3.3. The 𝑚 = 0 modes are particularly sensitive to inhomogeneities that
break axial symmetry, as they are identical with spin-waves in the bulk material
[11]. In theory, all that is required to allow BLS would be a small lateral shift in
the {200} mode function with respect to the center of the sphere. This is plausible
given the magnetic field inhomogeneity. The axial symmetry breaking also allows
resonant coupling to the 110 mode [11], which is evidenced in our microwave
experiments as a normal mode splitting between the {200} and {110} modes (cf.
Fig. 3.3(c) and Fig. 3.3(a)). Note that the BLS scattering from the 200 mode is
still observed far from the anticrossing, indicating that this effect is not simply due
to resonant admixing of the two mode functions (see Fig. 4(c)). While the non-
uniformity of the magnetic field complicates the interpretation, it does indicate that
BLS by magnetostatic modes can be tailored by the application of controlled non-
uniform magnetic fields.

For the {712}mode, wemeasure similar BLS strength to the {110} (see Fig. 3.4(b)).
However, the microwave coupling to the {712} is much weaker than that to the
{110}. This can be seen from the fact that the ratio of the observed depth of the
microwave resonances ≈ 1/8 (see Fig. 3.3(c)), while the internal 𝑄-factors are ap-
proximately equal 1. Thus, the optomagnonic coupling must be stronger, in order
that the BLS is comparable. This is consistent with calculations that show that the
optomagnonic coupling for the {712} mode is 3–4 times larger than for the {110}
mode.

3.6. Conclusions
In conclusion, we have measured cavity enhanced BLS from magnetostatic modes
other than the uniform Kittel mode. We find reasonable agreement with the recently
determined selection rules based on the axial rotational symmetry of the system
[2]. If microwave coupling to higher order modes can be optimized, the stronger
optomagnonic coupling strength could be exploited. This offers a possible route to
achieving larger microwave-to-optical conversion efficiency.

1Note that the loaded ፐ-factor of the {ኻኻኺ} mode is significantly lower due to strong radiative damping
via the antenna.
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A great achievement of modern physics is the Doppler cooling of trapped atoms
by optical lasers [2, 3] down to temperatures of micro-Kelvin [4]. Subsequently,
even macroscopic mechanical objects, such as membranes and cantilevers, have
been cooled to their quantum mechanical ground state [5–9] by blue shifting the
stimulated emission using an optical cavity [5, 6]. ‘Cavity optomechanics’ is a vi-
brant field that achieved successful Heisenberg uncertainty-limited mechanical mea-
surements, the generation of entangled light-mechanical states, and ultra-sensitive
gravitational wave detection [9]. An optical cryocooler based on solid state sam-
ples [10] can be superior due to its compactness and lack of moving components
[11]. Optical cooling has been demonstrated for glass [10, 12] and envisioned for
semiconductors [11, 13, 14].

Motivated by the potential of a ferromagnet as a versatile quantum interface
at low temperatures, we discuss here the potential of optical cooling of magnons.
As discussed in Chs. 2 and 3, the red and blue sidebands in BLS via magnons are
not of the same height. When more photons are scattered into the blue sideband,
light effectively extracts energy from the magnons and in principle cools them.
Here, we predict that modern technology and materials can significantly reduce the
temperature of the magnetic order, showing the potential to manipulate magnons
using light.

We derive below rate equations for photons and magnons to estimate the steady-
state magnon number that can be reached as a function of material and device pa-
rameters. We consider a spherical magnetic insulator with high index of refraction
that is transparent at the input light frequency (Fig. 4.1) and magnetization per-
pendicular to the WGM orbits that are excited by proximity coupling to an external
laser. We single out two groups of magnon modes that couple preferentially to the
WGMs [15]. The small angular momentum (including the Kittel) magnons, 𝑀ፒ in
Fig. 4.1, and large angular momentum magnons, the chiral Damon-Eshbach (DE)
modes 𝑀ፋ. The theory presented below is valid for both types of magnons.

4.1. Steady state number of magnons
We can understand the basic physics by the minimal model sketched in Fig. 4.2. We
focus on a single incident WGM 𝑊፩ with index 𝑝 (stands for pump) and frequency
𝜔፩. It is occupied by [9]

𝑛፩ =
4𝐾፩

(𝜅፩ + 𝐾፩)ኼ
𝑃in
ℏ𝜔፩

(4.1)

photons, with 𝜅፩ being the intrinsic linewidth, 𝐾፩ the leakage rate into the proximity
coupler, and 𝑃in the input light power. An optically active magnon 𝑀 [with either
small or large angular momentum] is annihilated 𝑊፩ + 𝑀 → 𝑊፜ or created 𝑊፩ →
𝑊፡ + 𝑀 by BLS, where 𝑊፜ (cold) and 𝑊፡ (hot) are blue and red-shifted sideband
WGMs, respectively.

We first derive a simple semi-classical rate equation for the non-equilibrium
steady-state magnon number, 𝑛(፬፜)፦ [the superscript distinguishes the estimate from
𝑛፦ as more rigorously derived below]. The thermal bath absorbs and injects
magnons at rates 𝜅፦𝑛(፬፜)፦ (𝑛th + 1) and 𝜅፦𝑛th (𝑛(፬፜)፦ + 1) respectively, where 𝜅፦
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Figure 4.1: Optomagnonic cooling setup: A ferromagnetic sphere in contact with an optical waveguide.
A magnetic field ፇapp (into the paper) is applied to saturate the magnetization. Input light with ampli-
tude ፀin is evanescently coupled to a WGM ፖin. We focus on anti-Stokes scattering by two types of
magnons that are characterized by their angular momentum [15]. A small angular momentum magnon
ፌፒ maintains the direction of WGMs, converting ፖin to ፖፓ. ፖin can be reflected into ፖፑ by absorb-
ing a large angular momentum magnon ፌፋ. Theoretically, both the cases can be treated in the same
formalism. The input WGM is labelled by (pump) ፩ and ፓ or ፑ by (cool) ፜.

is the inverse magnon lifetime and 𝑛th is the occupation of the bath at magnon
frequency 𝜔፦. At an ambient temperature 𝑇,

𝑛th = [exp(
ℏ𝜔፦
𝑘ፁ𝑇

) − 1]
ዅኻ
. (4.2)

The optical cooling rate is 𝑅ኺ፜𝑛፩𝑛(፬፜)፦ , where 𝑅ኺ፜ is the anti-Stokes scattering rate
of one 𝑊፩-photon by one 𝑀-magnon and we assumed that there are no photons
in 𝑊፜. The latter is justified because of small optomagnonic couplings compared
to WGM dissipation rates, ∼ 2𝜋 × 0.1 − 1GHz [16–18] while 𝑅ኺ፜𝑛፩𝑛(፬፜)፦ is at most
∼ 𝜅፦ ∼ 2𝜋 × 1 MHz. In the absence of dissipation, Fermi’s golden rule gives 𝑅ኺ፜ =
2𝜋|𝑔፜|ኼ𝛿(𝜔፩+𝜔፦−𝜔፜), where ℏ𝑔፜ is the optomagnonic coupling and {𝜔፩, 𝜔፜ , 𝜔፦}
are the frequencies of {𝑊፩,𝑊፜ , 𝑀}, respectively. When 𝑊፜ has a finite lifetime, the
𝛿-function is broadened into a Lorentzian, giving

𝑅ኺ፜ =
|𝑔፜|ኼ(𝜅፜ + 𝐾፜)

(𝜔፩ + 𝜔፦ − 𝜔፜)
ኼ + (𝜅፜ + 𝐾፜)ኼ/4

, (4.3)

where 𝜅፜ is its intrinsic linewidth, and 𝐾፜ is its leakage rate into the proximity coupler.
Similarly, the optical heating rate is 𝑅ኺ፡𝑛፩ (𝑛

(፬፜)
፦ + 1) , where 𝑅ኺ፡ is given by Eq. (4.3)

with 𝑔፜ , 𝜔፜ , 𝜅፜ → 𝑔፡ , 𝜔፡ , 𝜅፡ and 𝜔፦ → −𝜔፦. In deriving 𝑅ኺ፜,፡, we ignore the magnon
linewidth since 𝜅፦ ≪ 𝜅፜ , 𝜅፡ [15, 16]. In the steady state the cooling and heating
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Figure 4.2: Light-induced cooling of a magnon, ፌ. A proximity fiber or prism is coupled to the WGMs
ፖ፱ with a coupling constant ፊ፱, excitingፖ፩ while collecting the scatteredፖ፜ andፖ፡. The photons are
inelastically scattered by the magnon ፖ፩ ዄፌ → ፖ፜ and ፖ፩ → ፖ፡ ዄፌ at single particle rates ፑኺ፜ and
ፑኺ፡ respectively, derived in the text. All modes are coupled to their respective thermal baths by leakage
rates ᎗፱. When ᎗፜ is much larger than the corresponding scattering rate, the bath associated with ፖ፜
can become an efficient channel for dissipation of the magnons in ፌ.

rates are equal, leading to the estimate

𝑛(፬፜)፦ =
𝜅፦𝑛th + 𝑅ኺ፡𝑛፩

𝜅፦ + (𝑅ኺ፜ − 𝑅ኺ፡) 𝑛፩
. (4.4)

This agrees with the result from the more precise theory discussed below, thus cap-
turing the essential processes correctly (a posteriori). However, the rate equation
cannot access noise properties beyond the magnon number that are important for
thermodynamic applications. Further, it does not differentiate between a coher-
ent precession of the magnetization and the thermal magnon cloud with the same
number of magnons.

4.2. Equation of motion
In order to model the cooling process more rigorously, we proceed from a model
Hamiltonian for a system with three photon and one magnon modes. In the Hamil-
tonian 𝐻̂ፒ = 𝐻̂ኺ + 𝐻̂om [15]

𝐻̂ኺ = ℏ𝜔፩𝑎̂ጷ፩𝑎̂፩ + ℏ𝜔፜𝑎̂ጷ፜ 𝑎̂፜ + ℏ𝜔፡𝑎̂ጷ፡𝑎̂፡ + ℏ𝜔፦𝑚̂ጷ𝑚̂, (4.5)

and 𝑎̂፱ and 𝑚̂ are the annihilation operators for photon 𝑊፱ with 𝑥 ∈ {𝑝, 𝑐, ℎ} and
magnon 𝑀. The optomagnonic coupling in the rotating wave approximation reads
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[15]
𝐻̂om = ℏ𝑔፜𝑎̂፩𝑎̂ጷ፜ 𝑚̂ + ℏ𝑔፡𝑎̂፩𝑎̂ጷ፡𝑚̂ጷ + h.c., (4.6)

where 𝑔፜ and 𝑔፡ are the scattering amplitudes and h.c. is the Hermitian conjugate.

In the rotating frame of the “envelope” operators 𝑊̂፱(𝑡)
△= 𝑎̂፱(𝑡)𝑒።Ꭶ፱፭ and 𝑀̂(𝑡)

△=
𝑚̂(𝑡)𝑒።Ꭶ፦፭ the (Heisenberg) equation of motion for 𝑀̂ becomes [5, 19]

𝑑𝑀̂
𝑑𝑡 = −𝑖𝑔፡𝑊̂፩𝑊̂

ጷ
፡ 𝑒።᎑፡፭ − 𝑖𝑔∗፜𝑊̂ጷ

፩ 𝑊̂፜𝑒ዅ።᎑፜፭ −
𝜅፦
2 𝑀̂ − √𝜅፦𝑏̂፦ , (4.7)

where 𝛿፡ = 𝜔፡ + 𝜔፦ − 𝜔፩ and 𝛿፜ = 𝜔፜ − 𝜔፦ − 𝜔፩ are the detunings from the
scattering resonances. 𝑏̂፦(𝑡) is the stochastic magnetic field generated by the
interaction of 𝑀 with phonons [20] and/or other magnons [21], whose precise
form depends on the microscopic details of the interaction [22].

We assume that the correlators of 𝑏̂፦ obey the fluctuation-dissipation theo-
rem for thermal equilibrium [23, 24]. When 𝜅፦ ≪ 𝑘ፁ𝑇/ℏ, which is satisfied for
𝜅፦ ∼ 2𝜋 × 1 MHz [16–18] and 𝑇 ≫ 50𝜇K, the (narrow band filtered) noise is
effectively white and generates a canonical Gibbs distribution of the magnons in
steady state [19]. Their statistics are ⟨𝑏̂፦(𝑡)⟩ = 0, ⟨𝑏̂ጷ፦(𝑡ᖣ)𝑏̂፦(𝑡)⟩ = 𝑛th𝛿(𝑡−𝑡ᖣ) and

⟨𝑏̂፦(𝑡ᖣ)𝑏̂ጷ፦(𝑡)⟩ = (𝑛th + 1)𝛿(𝑡 − 𝑡ᖣ), where 𝑛th is defined in Eq. (4.2).

For weak scattering relative to the input power, we can ignore any back-action
on𝑊፩ such that its dynamics is governed only by the proximity coupling. When𝑊፩
is in a coherent state, ⟨𝑊̂፩(𝑡)⟩ = √𝑛፩ and ⟨𝑊̂ጷ

፩ (𝑡ᖣ)𝑊̂፩(𝑡)⟩ = 𝑛፩, where 𝑛፩ is given
by Eq. (4.1).

The photons in𝑊፜ are generated by 𝐻̂om and dissipated into their thermal bath,
with Heisenberg equation of motion [5, 19]

𝑑𝑊̂፜
𝑑𝑡 = −𝑖𝑔፜𝑊̂፩𝑀̂𝑒።᎑፜፭ −

𝜅፜ + 𝐾፜
2 𝑊̂፜ − √𝜅፜𝑏̂፜ −√𝐾፜𝐴̂፜ , (4.8)

where 𝑏̂፜ and 𝐴̂፜ are noise operators. The physical origins of 𝑏̂፜ and finite lifetime
𝜅ዅኻ፜ are scattering by impurities, surface roughness, and lattice vibrations. 𝐾፜ is the
leakage rate of 𝑊፜ into the proximity coupler and 𝐴̂፜ is the vacuum noise from the
latter into 𝑊፜. The noise sources are white for sufficiently small 𝜅፜. ⟨𝑋̂፜(𝑡)⟩ = 0,
⟨𝑋̂ጷ፜ (𝑡ᖣ)𝑋̂፜(𝑡)⟩ = 0 and ⟨𝑋̂፜(𝑡ᖣ)𝑋̂ጷ፜ (𝑡)⟩ = 𝛿(𝑡 − 𝑡ᖣ) where 𝑋 ∈ {𝑏̂፜ , 𝐴̂፜}, because the
thermal occupation of photons at infrared and visible frequencies is negligibly small
at room temperature 𝑒ዅℏᎦ፜/(፤ፁፓ) ≈ 0.

The solution to Eq. (4.8) is 𝑊̂፜(𝑡) = 𝑊̂፜,th(𝑡)+𝑊̂፜,om(𝑡). The thermal contribution
is,

𝑊̂፜,th = ∫
፭

ኺ
𝑒ዅ(᎗፜ዄፊ፜)(፭ዅᎡ)/ኼ [−√𝜅፜𝑏̂፜(𝜏) − √𝐾፜𝐴̂፜(𝜏)] 𝑑𝜏 (4.9)

where the origin of time is arbitrary. For 𝑡, 𝑡ᖣ → ∞, we get the equilibrium statistics
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⟨𝑊̂ጷ
፜,th(𝑡ᖣ)𝑊̂፜,th(𝑡)⟩ = 0 and

⟨𝑊̂፜,th(𝑡ᖣ)𝑊̂ጷ
፜,th(𝑡)⟩ = exp [−(𝜅፜ + 𝐾፜)|𝑡 − 𝑡

ᖣ|
2 ] , (4.10)

independent of the optomagnonic coupling. 𝑊̂፜,om can be simplified by the adi-
abaticity of the magnetization dynamics that follows from 𝜅፦ ≪ 𝜅፜. When 𝑀̂ is
treated as a slowly varying constant

𝑊̂፜,om(𝑡) ≈ −𝑖𝑔፜𝑀̂(𝑡)∫
፭

ኺ
𝑒ዅ(᎗፜ዄፊ፜)(፭ዅᎡ)/ኼ𝑊̂፩(𝜏)𝑒።᎑፜Ꭱ𝑑𝜏. (4.11)

𝑊̂፡(𝑡) is obtained by the substitution 𝑐 → ℎ and 𝑀̂ → 𝑀̂ጷ in Eqs. (4.9-4.11).
We can now rewrite Eq. (4.7) as

𝑑𝑀̂
𝑑𝑡 = −(

𝜅፦
2 𝑀̂ + √𝜅፦𝑏̂፦) + 𝑂̂፜ + 𝑂̂፡ . (4.12)

with cooling and heating operators that reflect the light scattering processes in
Fig. 4.2:

𝑂̂፜ = 𝒩̂፜ + 𝑖Σ̂፜𝑀̂, (4.13)

𝑂̂፡ = −𝒩̂ጷ
፡ + 𝑖Σ̂ጷ፡𝑀̂. (4.14)

Focusing on the cooling process, we distinguish the self-energy,

Σ̂፜ = 𝑖|𝑔፜|ኼ∫
፭

ኺ
𝑒(።᎑፜ዄ(᎗፜ዄፊ፜)/ኼ)(Ꭱዅ፭)𝑊̂ጷ

፩ (𝑡)𝑊̂፩(𝜏)𝑑𝜏, (4.15)

from the noise operator,

𝒩̂፜(𝑡) = −𝑖𝑔∗፜𝑊̂ጷ
፩ (𝑡)𝑊̂፜,th(𝑡)𝑒ዅ።᎑፜፭ . (4.16)

In the weak-coupling regime we may adopt a mean-field approximation by replacing
Σ̂፜ by its average,

⟨Σ̂፜⟩ = −𝜔̄፜ + 𝑖
𝜅̄፜
2

△=
|𝑔፜|ኼ𝑛፩

𝛿፜ − 𝑖(𝜅፜ + 𝐾፜)/2
, (4.17)

where 𝜔̄፜ is the (reactive) shift of the magnon resonance and 𝜅̄፜ the optical contri-
bution to the magnon linewidth.

The noise 𝒩̂፜ can be interpreted as the vacuum fluctuations of 𝑊፜ entering the
magnon subsystem via the optomagnonic interaction. 𝒩̂፜ has a very short correla-
tion time ∼ (𝜅፜+𝐾፜)ዅኻ [see Eq. (4.10)] compared to magnon dynamics ∼ 𝜅ዅኻ፦ , and

thus can be treated as a white noise source with ⟨𝒩̂፜(𝑡)⟩ = 0, ⟨𝒩̂ጷ
፜ (𝑡)𝒩̂፜(𝑡ᖣ)⟩ = 0 ,
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and ⟨𝒩̂፜(𝑡ᖣ)𝒩̂ጷ
፜ (𝑡)⟩ ≈ 𝑉፜𝛿(𝑡 − 𝑡ᖣ). By integrating over time and using the correlation

functions of 𝑊̂፩ and 𝑊̂፜,th

𝑉፜ =
4|𝑔፜|ኼ𝑛፩(𝜅፜ + 𝐾፜)
4𝛿ኼ፜ + (𝜅፜ + 𝐾፜)ኼ

= 𝜅̄፜ , (4.18)

defined in Eq. (4.17). 𝜅̄፜/𝜅፦ at resonance 𝛿፜ = 0 is the cooperativity between the
magnons and 𝑊፜-photons due to the coupling mediated by 𝑊፩-photons.

Analogous results hold for 𝑂̂፡, with substitutions 𝑐 → ℎ in Eqs. (4.15)-(4.18). We
arrive at

𝑑𝑀̂
𝑑𝑡 ≈ −𝑖(𝜔̄፜ + 𝜔̄፡)𝑀̂ −

𝜅tot
2 𝑀̂ − √𝜅tot𝑏̂tot, (4.19)

where 𝜅tot = 𝜅፦ + 𝜅̄፜ − 𝜅̄፡ and √𝜅tot𝑏̂tot = √𝜅፦𝑏̂፦ − 𝒩̂፜ + 𝒩̂ጷ
፡ . The fluctuations of

the total noise follow from Eq. (4.18)

⟨𝑏̂ጷtot (𝑡ᖣ) 𝑏̂tot (𝑡)⟩ ≈ 𝑛፦ 𝛿 (𝑡 − 𝑡ᖣ) , (4.20)

⟨𝑏̂tot (𝑡ᖣ) 𝑏̂ጷtot (𝑡)⟩ ≈ (𝑛፦ + 1) 𝛿 (𝑡 − 𝑡ᖣ) , (4.21)

where
𝑛፦ =

𝜅፦𝑛th + 𝜅̄፡
𝜅፦ + 𝜅̄፜ − 𝜅̄፡

. (4.22)

4.3. Results
Eq. (4.19) is equivalent to the equation of motion for magnons in equilibrium after
the substitutions 𝜔፦ → 𝜔፦ + 𝜔̄፜ + 𝜔̄፡, 𝜅፦ → 𝜅tot, and 𝑛th → 𝑛፦. It implies that the
magnons in the non-equilibrium steady state are still canonically distributed with
density matrix

𝜌̂፧፞ = exp(−ℏ𝜔፦𝑛̂፦𝑘ፁ𝑇፧፞
)(Tr [exp(−ℏ𝜔፦𝑛̂፦𝑘ፁ𝑇፧፞

)])
ዅኻ

(4.23)

where the number operator 𝑛̂፦ = 𝑚̂ጷ𝑚̂ and the non-equilibrium magnon tempera-
ture 𝑇፧፞ is implicitly defined by Eq. (4.22) and

𝑛፦ = [exp(
ℏ𝜔፦
𝑘ፁ𝑇፧፞

) − 1]
ዅኻ
. (4.24)

We get ⟨𝑀̂፱⟩ = ⟨𝑀̂፲⟩ = 0, which implies that light scattering does not induce
a coherent magnon precession, in contrast to a resonant ac magnetic field. 𝑛፦ is
the average number of magnons that can be larger or smaller than the equilibrium
value 𝑛th. The result is consistent with 𝑛(፬፜)፦ [see Eq. (4.4)] because 𝜅̄፜,፡ = 𝑅ኺ፜,፡𝑛፩
as expected from Fermi’s golden rule. The canonical distribution implies that the
steady-state magnon entropy is maximized for the given number of magnons, 𝑛፦.
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When 𝜅̄፡ − 𝜅̄፜ > 𝜅፦ , i.e. when heating by the laser overcomes the intrin-
sic magnon damping, the system becomes unstable, leading to runaway magnon
generation and self-oscillations [25–27]. The instability is regularized by magnon-
magnon scattering, not included in our theory.

Here we focus on the cooling scenario in which 𝜅̄፡ ≪ 𝜅̄፜ [15]. Magnon cooling
can be monitored by the intensity of the blue-shifted sideband. Using the input-
output formalism [19, 28] the scattered light amplitude in the rotating frame is

𝐴̂out(𝑡) = −√𝐾፜𝑊̂፜(𝑡). (4.25)

It can be converted into the output power by 𝑃out = ℏ𝜔፜ ⟨𝐴̂ጷout(𝑡)𝐴̂out(𝑡)⟩, which is
independent of time in steady state. With impedance matching, 𝜅፩,፜ = 𝐾፩,፜, and at
the triple resonance, 𝛿፜ = 0,

𝑃out
𝑃in

=
|𝑔፜|

ኼ

𝜅፜𝜅፩
𝜅፦𝑛th

𝜅፦ + 2|𝑔፜|ኼ𝑛፩/𝜅፜
∝ 1
1 + 𝑃in/𝑃፬

, (4.26)

defining the saturation power

𝑃፬
△=
ℏ𝜔፩𝜅፩𝜅፜𝜅፦
2|𝑔፜|ኼ

. (4.27)

To leading order 𝑃out ∝ 𝑃in [15, 18], but saturates when the magnon number be-
comes small, which is an experimental evidence for magnon cooling. 𝑃፬ is the input
power that halves the number of magnons.

Eq. (4.23) is the reduced density matrix of a single magnon mode, 𝑀. At long
wavelengths and small magnon numbers, the magnon-magnon interactions may
be disregarded, so each magnon mode can be treated independently. The total 𝜌̂
is a direct product of the reduced density matrices of the form (4.23), where 𝜔፦
and 𝑇፧፞ depend on the mode index.

For a YIG sphere with parameters 𝜔፜ ≈ 𝜔፩ = 2𝜋 × 300THz (free space wave-
length 1𝜇m), an optical Q-factor 𝜔፩/(2𝜅፩) = 𝜔፜/(2𝜅፜) = 10ዀ, [18], magnon
linewidth 𝜅፦ = 2𝜋 × 1MHz, and optomagnonic coupling 𝑔፜ = 2𝜋 × 10Hz [15], we
get 𝑃፬ = 140W. Trying to match this with 𝑃in is not useful since laser-induced lattice
heating [11] will overwhelm the cooling effect. However, 𝑃፬ can be significantly re-
duced by large magnon-photon coupling. Doping YIG with bismuth can increase 𝑔፜
tenfold [29], bringing 𝑃፬ down to ∼ 1W. The spatial overlap between the magnons
and photons [15] can be engineered in ellipsoidal or nanostructured magnets [30]
which can increase 𝑔፜ further by an order of magnitude, giving 𝑃፬ ∼ 10mW. For an
ambient temperature 𝑇 = 1K and magnon frequency 𝜔፦ = 2𝜋 × 10GHz, the ther-
mal magnon number 𝑛th = 1.62. For 𝑃in = {𝑃፬/20, 𝑃፬ , 5𝑃፬} the steady-state magnon
numbers are 𝑛፦ = {1.55, 0.81, 0.27} and temperatures 𝑇፧፞ = {0.96, 0.60, 0.31}K
respectively. At an optimistic 𝑃፬ = 10mW, the above input power corresponds to
𝑛፩ = {3 × 10ዀ, 5 × 10዁, 3 × 10ዂ} intra-cavity photons respectively. Cooling is ex-
perimentally observable for relatively small powers 𝑃in < 𝑃፬/20, which should be
achievable by optimizing the magnon-photon coupling.
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4.4. Summary
In summary, we estimate the cooling power due to BLS of light by magnons in an op-
tomagnonic cavity. Due to the large mismatch of optical and magnonic time scales,
the photon degree of freedom can be eliminated by renormalizing the magnon fre-
quency and damping, cf. Eq. (4.19), and a light-controlled effective temperature
Eq. (4.22). Current technology and materials are close to achieving significant cool-
ing of magnons, envisioning the possibility of light-controlled magnon manipulation.
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Optimal mode matching

(Einstein’s) head was in the clouds, but his feet were on the ground. Those
of us who are not so tall have to choose.

Richard P. Feynman

This chapter has been uploaded as S. Sharma, B.Z. Rameshti, Y.M. Blanter, and G.E.W. Bauer
arXiv:1903.01718 [1]
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Figure 5.1: A sphere made of a ferromagnetic dielectric in proximity to an optical fiber or prism. A
magnetic field saturates the magnetization. The input photons in the fiber, ፀin, leak into the whispering
gallery modes (WGMs) {ፖፏ}. The latter can be reflected by magnons {ፌፀ} of twice the angular mo-
mentum into the blue, via ፖፏ ዄ ፌፀ → ፖፐ, or red, ፖፏ → ፖፐ ዄ ፌፀ, sideband. The photons {ፖፐ} can
leak back into the fiber and be observed in the reflection spectrum.

The models, discussed in Chs. 2 and 3, addressed only the magnetostatic
magnon modes, i.e. ignored retardation and the exchange interaction. The ob-
served and predicted coupling rates were too low to be able to optically manipulate
magnons [2, 3] mainly because of poor overlap between optical and magnonic
fields. Higher optomagnonic coupling can be achieved by reducing the size of the
magnets down to optical wavelengths [4], but this requires nanostructuring of the
magnet [5–7]. In this chapter, we suggest and analyze a method to increase cou-
pling by about 2 orders of magnitude in conventional set-ups with a sub-mm YIG
sphere. It can be achieved by coupling to exchange-dipolar modes with wave-
lengths comparable to those of the WGMs.

Our system, the same as in the previous chapters, is sketched in Fig. 5.1.
A ferromagnetic sphere acts as a WGM resonator in which photons interact with
the magnetic order via standard proximity coupling to an optical prism or fiber.
The frequency of photons is 4 to 5 orders of magnitude larger than magnons at
similar wavelengths, thus the incident and scattered photons have nearly the same
frequency and wavelength. Forward scattering of photons occurs via magnons of
large wavelength ∼ 100𝜇m, which is a process that is well described by a purely
dipolar theory [Sec. 2]. Here we discuss back scattering of photons by magnons
with sub-𝜇mwavelengths that are affected significantly by exchange. We show that
the exchange generates magnetic modes that have a near ideal overlap with the
optical WGMs, with an optomagnonic coupling limited only by the bulk magneto-
optical constants.

We first briefly review the basics of cavity optomagnonics and derive an upper
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bound for the optomagnonic coupling constant in resonators in Sec. 5.1. We model
the magnetization dynamics by the Landau-Lifshitz equation introduced in Sec. 5.2.
The spatial amplitude of surface exchange-dipolar magnons is discussed in Sec. 5.3,
with details of the derivation in App. 5.6. The optomagnonic coupling constants
found in Sec. 5.4 are compared with the upper bound found in Sec. 5.1. We
conclude with discussion and outlook in Sec. 5.5.

5.1. Ideal magnetization profile
We, first, summarize the basic theory of magnon-photon coupling in spherical op-
tical resonators [8] (discussed also in Sec. 1.4). The electric and magnetic fields
of the optical modes in a spherical resonator are labeled by orbital indices {𝑙,𝑚, 𝜈}
and a polarization 𝜎 ∈ {TM,TE}. They become optical whispering gallery modes
(WGMs) at extremal cross sections when 𝑙, 𝑚 ≫ {1, |𝑙 − 𝑚|}. WGMs are traveling
waves in the ±𝜙-direction with dimensionless wavelength 2𝜋/𝑚. 𝜈 − 1 and 𝑙 − 𝑚
are the number of nodes in the optical fields in the 𝑟 and 𝜃 direction. The electric
field of these modes is ETM = 𝐸(r)𝜃̂ and ETE = 𝐸(r)r̂ where [9],

𝐸(r) = ℰ𝑌፦፥ (𝜃, 𝜙)𝐽፥(𝑘𝑟). (5.1)

Here 𝐽፥ is the Bessel function of order 𝑙 [Eq. (5.64)] and 𝑌፦፥ is a scalar spherical
harmonic [Eq. (5.57)]. The wave number 𝑘, for 𝑙 ≫ 1 [9]

𝑘𝑅 ≈ 𝑙 + 𝛽᎚ (
𝑙
2)

ኻ/ኽ
− 𝑃᎟ , (5.2)

where 𝑅 is the radius of the sphere, 𝛽᎚ ∈ {2.3, 4.1, 5.5, … } are the negative of the
zeros of Airy’s function Ai (𝑥), 𝑃TM = 𝑛፬/√𝑛ኼ፬ − 1, and 𝑃ዅኻTE = 𝑛፬√𝑛ኼ፬ − 1. ℰ is a
normalization constant chosen such that the integral over the system volume

∫[𝜖፬2 |E|
ኼ + 1

2𝜇ኺ
|B|ኼ] 𝑑𝑉 = ℏ𝜔

2 , (5.3)

where 𝑖𝜔B = ∇ × E, 𝜖፬ = 𝜖ኺ𝑛ኼ፬ , and 𝜔 = 𝑘𝑐/𝑛፬ with 𝑛፬ being the refractive index
of the sphere. Then

ℰ = √ ℏ𝜔
2𝜖፬𝑅ኽ𝒩፥(𝑘𝑅)

, (5.4)

where

𝒩፥(𝑥)
△= ∫

ኻ

ኺ
𝑟̃ኼ𝑑𝑟̃𝐽ኼ፥ (𝑥𝑟̃) ≈

𝐽ኼ፥ (𝑥) − 𝐽፥ዄኻ(𝑥)𝐽፥ዅኻ(𝑥)
2 , (5.5)

and the approximation holds again for 𝑙 ≫ 1. The angular dependence for 𝑙 = 𝑚
with 𝑙 ≫ 1, [9]

𝑌፥፥ (𝜃, 𝜙) ≈ (
𝑙
𝜋)

ኻ/ኾ
exp [− 𝑙2 (

𝜋
2 − 𝜃)

ኼ
] 𝑒

።፥Ꭻ

√2𝜋
, (5.6)
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is a narrow Gaussian around 𝜃 = 𝜋/2 with a width √2/𝑙 and a traveling wave along
the circle with wave number 𝑙/𝑅. The radial dependence for 𝑙 ≫ 1 [10]

𝐽፥(𝑘𝑟) ≈ (
2
𝑙 )

ኻ/ኽ
Ai (𝑥 − 𝛽᎚) , (5.7)

where the radial coordinate is scaled to

𝑥 = 𝑙
(𝑙/2)ኻ/ኽ (1 −

𝑟
𝑅) . (5.8)

The leading interaction between magnons and WGMs is 2-photon 1-magnon
scattering. Consider a TM polarized WGM 𝑃 ≡ {𝑝,−𝑝ᖣ, 𝜇} that scatters into a TE-
polarized WGM 𝑄 ≡ {𝑞, 𝑞ᖣ, 𝜈} by absorbing a magnon 𝐴 (to be generalized below).
We take in the following 𝑝ᖣ > 0 and thus, back(forward) scattering corresponds to
𝑞ᖣ > 0(𝑞ᖣ < 0). The coupling constant depends on the modes as [8, 11, 12],

𝐺ፏፐፀ =
𝑛፬𝜖ኺ𝜆ኺ
𝜋𝑀፬

∫𝐸ፏ𝐸∗ፐ (Θፂ𝑀ፀ,᎞ − 𝑖Θፅ𝑀ፀ,Ꭻ) 𝑑𝑉, (5.9)

where the integral is over the sphere’s volume, 𝜆ኺ is the vacuum wavelength of the
incident light, 𝑀፬ is the saturation magnetization, Θፅ is the Faraday rotation per
unit length, Θፂ is the Cotton-Mouton ellipticity per unit length, and 𝑀ፀ,Ꭻ(𝑀ፀ,᎞) is
the 𝜙(𝜌)-component of 𝐴-magnons.

For the uniform precession of the magnetization, i.e. the Kittel mode 𝐾, [13]

𝑀ፊ,Ꭻ = 𝑖𝑀ፊ,᎞ = √
ℏ𝛾𝑀፬
2𝑉sph

, (5.10)

where 𝑉sph is the volume of the sphere, and 𝛾 is the modulus of the gyromagnetic
ratio. We normalized the magnetization as

∫Re [𝑖𝑀∗Ꭻ𝑀᎞] 𝑑𝑉 =
ℏ𝛾𝑀፬
2 , (5.11)

equivalent to Eq. (1.69). The coupling constant is finite only when 𝑞ᖣ + 𝑝ᖣ = 1,
𝑝−|𝑝ᖣ| = 𝑞−|𝑞ᖣ|, and 𝜇 = 𝜈 [8, 14]. The coupling constant, independent of optical
modes,

|𝐺ፏፐፊ| = 𝐺ፊ =
𝑐 (Θፅ + Θፂ)
𝑛፬√2𝑠𝑉sph

, (5.12)

where 𝑠 = 𝑀፬/𝛾ℏ is the spin density. For the parameters in Table 5.1, 𝐺ፊ = 2𝜋 ×
3.6Hz.

An upper bound on 𝐺ፏፐፀ for a given set of WGMs can be found by maximizing
it over all normalized functions {𝑀ፀ,᎞(r),𝑀ፀ,Ꭻ(r)}. The solution Mopt gives the
magnetization profile with highest optomagnonic coupling. Later, we show that
there exists eigenstates that are close to Mopt. We consider circularly polarized
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Figure 5.2: The ፫-dependence of the product of the electric field of WGMs, in arbitrary units, for ፩ ዆
፩ᖣ ዆ ፪ ዆ ፪ᖣ ዆ ኽኺኺኺ and radial mode numbers ᎙, ᎚ ∈ {ኻ, ኼ}. For the parameters of our system in Table
5.1, this corresponds to photons with free space wavelength ≈ ኻ.ኽ᎙m. The magnons that match these
profiles have the largest optomagnonic coupling, cf. Eq. (5.14).

magnons 𝑀ፀ,Ꭻ = 𝑖𝑀ፀ,᎞ and discuss the effect of finite ellipticity below. By the
method of Lagrange multipliers,

ℒ = ∫𝐸ፏ𝐸∗ፐ𝑀Ꭻ𝑑𝑉 − 𝜆 (∫𝑀∗Ꭻ𝑀Ꭻ𝑑𝑉 −
ℏ𝛾𝑀፬
2 ) (5.13)

is stationary at 𝑀Ꭻ = 𝑀opt
Ꭻ . We find

𝑀opt
Ꭻ =

𝐸∗ፏ𝐸ፐ
𝜆 ∝ 𝐽፩(𝑘ፏ𝑟)𝐽፪(𝑘ፐ𝑟)𝑌፩

ᖣ
፩ 𝑌፪

ᖣ
፪ , (5.14)

with

𝜆 = √ 2
𝛾ℏ𝑀፬

∫|𝐸ፏ𝐸ፐ|
ኼ 𝑑𝑉. (5.15)

Therefore

𝒢ፏፐ
△= |𝐺ፏፐ,opt| =

𝑐 (Θፅ + Θፂ)
𝑛፬√2𝑠𝑉ፏፐ

, (5.16)

defining the effective overlap volume

𝑉ፏፐ =
(∫ |𝐸ፏ|

ኼ 𝑑𝑉) (∫ |𝐸ፐ|
ኼ 𝑑𝑉)

∫ |𝐸ፏ|
ኼ |𝐸ፐ|

ኼ 𝑑𝑉
. (5.17)

The WGMs which are most concentrated to the surface have mode numbers
𝑝 = 𝑝ᖣ and 𝑞 = 𝑞ᖣ. Since the magnon frequency ∼ 10GHz, is much smaller than
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𝜆ex 𝑛፬ 𝑀፬ 𝛾/(2𝜋)
109nm 2.2 140 kA/m 28 GHz/T
Θፅ Θፂ 𝐻app −𝑀፬/3 𝑅
400 rad/m 150 rad/m 200mT/𝜇ኺ 300 𝜇m

Table 5.1: Parameters for a standard YIG sphere: exchange constant ፀex [16, 17], refractive index ፧፬
[16], saturation magnetization ፌ፬ [16], gyromagnetic ratio ᎐ [16], Faraday rotation angle ጆፅ [18, 19],
Cotton-Mouton ellipticity ጆፂ [20–22]. We assume the applied dc field ፇapp and the radius ፑ based on
typical experimental setup [23–25].

that of the photons, ∼ 100THz, the incident and scattered photons have nearly the
same frequency, implying 𝑝 ≈ 𝑞 [see Eq. (5.2)]. The Bessel function 𝐽፩ approaches
the Airy function Ai(𝑥) for 𝑝, 𝑞 ≫ 1 [see Eq. (5.7)],

𝑀opt
Ꭻ ∝ Ai (𝑥 − 𝛽᎙)Ai (𝑥 − 𝛽᎚) 𝑒ዅ፩(

᎝
ኼዅ᎕)

ኼ

𝑒።(፩ዄ፪)Ꭻ , (5.18)

where the coordinate 𝑥 is given by Eq. (5.8) after the substitution 𝑙 → 𝑝. This is a
traveling wave in 𝜙-direction and a Gaussian in 𝜃-direction. The radial dependence
for the lowest {𝜇, 𝜈} is plotted in Fig. 5.2, showing strong surface localization. The
overlap volume (5.17) now reads

𝑉ፏፐ ≈ (
2
𝑝)

዁/ዀ 𝑅ኽ𝜋ኽ/ኼ |Aiᖣ (−𝛽᎙)Aiᖣ (−𝛽᎚)|
∫ጼኺ Aiኼ (𝑥 − 𝛽᎙)Aiኼ (𝑥 − 𝛽᎚) 𝑑𝑥

, (5.19)

For 𝑝 = 3000 and 𝜇 = 𝜈 = 1, 𝑉sph/𝑉ፏፐ ≈ 1600, reflecting the localized nature of
the WGMs.

For light with 𝜆ኺ = 1.3 𝜇m, 𝑝 = 3190 for a YIG sphere with parameters in
Table 5.1. For the first modes {𝜇, 𝜈, 𝒢ፏፐ/(2𝜋)} = {1, 1, 364Hz}, {1, 2, 224Hz}, and
{2, 2, 304Hz}, so 𝒢ፏፐ ≫ 𝐺ፊ. For a fixed 𝜆ኺ, 𝑝 ∝ 𝑅, and 𝒢ፏፐ ∝ 𝑅ዅኻኻ/ኻኼ can be further
enhanced by reducing the diameter.

Magnetic anisotropies and dipolar interaction can deform the circular precession
of the magnons into an ellipse. Solving the above problem for a hypothetical linearly
polarized magnetization precession, e.g. by letting 𝑀Ꭻ → ∞ and 𝑀᎞ → 0 while
maintaining Eq. (5.11), leads to a diverging 𝒢ፏፐ → ∞. But such strong linear
polarization are difficult to achieve in practice and ellipticity is typically limited to
∼ 10%, also valid in the calculations below.

A similar analysis for 𝑃 and 𝑄 being TE and TM polarized, respectively, reveals
the same results with Θፅ+Θፂ → Θፅ−Θፂ and thus reduced couplings by a factor 0.45.
It is therefore advantageous to input TM photons over TE for larger blue sideband
(magnon absorption) [11, 15]. The coupling constant concerning magnon emission
processes follows a very similar discussion since 𝐺blueፏፐፀ = 𝐺∗ፐፏፀ.

5.2. Landau-Lifshitz equation
Here we derive the equations for the magnetic eigenmodes which will later be
shown to approximate the optimal profile derived above. The parameters for a



5.2. Landau-Lifshitz equation

5

79

standard YIG sphere are given in table 5.1. The Gilbert damping does not affect
the magnon mode shapes to leading order and is disregarded. The magnetization
dynamics then obeys the Landau-Lifshitz equation

𝑑M
𝑑𝑡 = −𝛾𝜇ኺM ×Heff, (5.20)

where M is the magnetization, 𝜇ኺ is the free space permeability, and the effective
magnetic field

Heff = 𝐻appẑ+
2𝐴ex
𝜇ኺ𝑀ኼ፬

∇ኼM+Hdip, (5.21)

where 𝐻app is the applied field that saturates the magnetization to 𝑀፬ in the ẑ-
direction, 𝐴፞፱ is the exchange constant, and Hdip is the dipolar field that solves
Maxwell’s equations in the magnetostatic approximation:

∇ ×Hdip = 0; ∇ ⋅Hdip = −∇ ⋅M, (5.22)

which is valid for magnons with wavelengths sufficiently smaller than 𝑐/𝜔 ∼ 1 cm
[26]. The amplitudes m = M − 𝑀፬ẑ are taken to be small. The dipolar field has
a large dc and a small ac component, Hdip = Hdemag + hdip, where the demag-
netization field Hdemag = −𝑀፬ẑ/3 for a sphere. We disregard the small magneto-
crystalline anisotropies in YIG.

The scalar potential hdip = −∇𝜓 satisfies

∇ኼ𝜓 = ∇ ⋅m. (5.23)

After substitution into Eq. (5.20), linearizing in m, and in the frequency domain
𝜕/𝜕𝑡 → −𝑖𝜔,

[±𝜔 + 𝜔ፚ −
𝜔፬
𝑘ኼex

∇ኼ]𝑚± = −𝜔፬𝜕±𝜓, (5.24)

where we used the circular coordinates 𝑚± = 𝑚፱ ± 𝑖𝑚፲ and 𝜕± = 𝜕፱ ± 𝑖𝜕፲. Here
𝜔ፚ = 𝛾𝜇ኺ (𝐻app −𝑀፬/3), 𝜔፬ = 𝛾𝜇ኺ𝑀፬, and the inverse exchange length

2𝜋
𝜆ex

= 𝑘ex = √
𝜇ኺ𝑀ኼ፬
2𝐴ex

. (5.25)

We call 𝑚ዅ(𝑚ዄ) the Larmor(anti-Larmor) component since 𝑚ዄ = 0 for a pure Lar-
mor precession. Outside the magnet

∇ኼ𝜓፨ = 0. (5.26)

The coupled set of differential equations (5.23)-(5.26) are closed by boundary
conditions derived from Maxwell’s equations,

𝜓 (𝑅) = 𝜓፨ (𝑅) ; −𝜕፫𝜓(𝑅) + 𝑚፫(𝑅) = −𝜕፫𝜓፨(𝑅). (5.27)
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The first condition is required for a finite hdip at the surface, while the second
one enforces continuity of the normal component of the magnetic field hdip +m.

The boundary conditions for the magnetization depends on the surface morphol-
ogy and is complicated by the long range nature of the dipolar interaction [27–29].
Here, we present calculations for pinned boundary conditions, 𝑚፱,፲(𝑅) = 0, valid
when the surface anisotropy is high [27, 29, 30] . This is not very realistic for sam-
ples with high surface quality but sufficiently accurate for our purposes, as justified
in Sec. 5.3.

5.3. Exchange-dipolar magnons
Here we discuss the amplitude of the magnons in dielectric magnetic spheres which
resemble the ideal magnetization distribution derived in Sec. 5.1. These are the
surface exchange-dipolar magnons localized at the equator derived in App. 5.6.
Similar problems have been addressed in Refs. [28, 31] for different geometries.

Analogous to the photons discussed above, magnons in spheres are character-
ized by three mode numbers {𝑙,𝑚, 𝜈}. Their amplitudes are a linear combination of
three terms [cf. Eqs. (5.76)-(5.77)],

𝑚± (r) = 𝑚ኺ𝑌፦±ኻ፥±ኻ (𝜃, 𝜙) [𝜁dip,± (
𝑟
𝑅)

፥±ኻ
+ 𝜁ex,±

𝐽፥±ኻ(𝑘𝑟)
𝐽፥ዅኻ(𝑘𝑅)

+ 𝜁s,±
𝐼፥±ኻ(𝜅𝑟)
𝐼፥ዅኻ(𝜅𝑅)

] . (5.28)

with ‘dispersion’ relations [cf. Eq. (5.61)].

𝑘ኼ
𝑘ኼex

=
𝜔sq − 𝜔DE

𝜔፬
, 𝜅ኼ
𝑘ኼex

=
𝜔sq + 𝜔DE

𝜔፬
, 𝜔sq = √𝜔ኼ +

𝜔ኼ፬
4 , 𝜔DE = 𝜔ፚ+

𝜔፬
2 . (5.29)

Here 𝑘ex, 𝜔፬ , 𝜔ፚ are defined below Eq. (5.24), 𝜔DE is the frequency of the surface
magnons in a purely dipolar theory [32, 33], and the normalization constant 𝑚ኺ is
determined below. {‘dip’,‘ex’,‘s’} refers to {dipolar, exchange, surface} respectively.

The ratios of anti-Larmor (𝑚ዄ) and Larmor (𝑚ዅ) components is measure of the
ellipticity [see Eq. (5.78)]:

𝜁dipዄ = 0,
𝜁exዄ
𝜁exዅ

=
𝜔sq − 𝜔
𝜔፬/2

, 𝜁sዄ
𝜁s,ዅ

=
𝜔sq + 𝜔
𝜔፬/2

. (5.30)

The coefficients 𝜁 read for pinned boundary conditionsm(𝑅) = 0 [see Eqs. (5.79)-
(5.80)],

𝜁dip,ዅ =
𝜔sq
𝜔፬/2

, 𝜁ex,ዅ =
−𝜅ኼ
𝑘ኼex

, 𝜁s,ዅ =
−𝑘ኼ
𝑘ኼex

. (5.31)

Close to the boundary, the ‘dip’ and ‘s’ terms dominate, but the ‘ex’ term in 𝑚±
takes over for 𝑟/𝑅 < 1 − 1/𝑙.

The dipolar (subscript ‘dip’) term in Eq. (5.28) decays exponentially with dis-
tance from the surface with a length scale 𝑅/𝑙. This solution is not affected by

exchange [13, 33] because ∇ኼ (𝑌፦፥ (𝜃, 𝜙) (
፫
ፑ)

፥
) = 0. For 𝑙 ≫ 1 the surface term
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(subscript ‘s’) simplifies by the asymptotics of the Bessel function to

𝐼፥ዅኻ(𝜅𝑟)
𝐼፥ዅኻ(𝜅𝑅)

≈ (√𝑙
ኼ + 𝜅ኼ𝑅ኼ − 𝑙

√𝑙ኼ + 𝜅ኼ𝑅ኼ + 𝑙
) 𝐼፥ዄኻ(𝜅𝑟)𝐼፥ዅኻ(𝜅𝑅)

≈ exp [−√𝑙ኼ + 𝜅ኼ𝑅ኼ𝑅 − 𝑟𝑅 ] . (5.32)

This is again an exponential decay, but on an even shorter scale 𝑅/√𝑙ኼ + 𝜅ኼ𝑅ኼ than
the dipolar term. At first glance, it appears to have a large negative exchange
energy, ∝ −𝜅ኼ, but its total contribution to the energy is small due to its very
small mode volume. Both ‘dip’ and ‘s’ terms are important to satisfy the boundary
conditions, but they do not contribute significantly to the optomagnonic coupling
because the optical WGMs penetrate much deeper into the magnet [see Fig. 5.2].
The exchange ‘ex’ function in Eq. (5.28), on the other hand, resembles a photon
WGM when 𝑘𝑅 ≈ 𝑙 [see Sec. 5.1]. We show below that this condition is satisfied
by magnons with 𝜈 > 0.

We now turn to the magnon eigenfrequencies and modes for fixed 𝑙 and 𝑚 with
𝜈 ≥ 0 [using App. 5.6]. For 𝜈 = 0, 𝜔ኼኺ ≈ 𝜔ኼፚ + 𝜔ፚ𝜔፬ and mode amplitudes Eq.
(5.28) approach

𝑚Ꭻ ≈ 𝑙ኽ/ኼ√
𝛾ℏ𝑀፬
2𝑅ኽ 𝑌

፦
፥ (𝜃, 𝜙) (

𝑟
𝑅)

፥ዅኻ
(1 − 𝑟ኼ

𝑅ኼ) (5.33)

and 𝑚᎞ = −𝑖𝑚Ꭻ when 𝑘ex𝑅 ≫ √𝑙, which is the case for typical experimental con-
ditions discussed below. We normalized 𝑚Ꭻ according to Eq. (1.69). Note that
(only) the results for 𝜈 = 0 depend strongly on the surface pinning.

For non-zero 𝜈 ∼ 𝑂(1), analogous to Eq. (5.2) for the photons,

𝑘᎚𝑅 = 𝑙 + 𝛽᎚ (
𝑙
2)

ኻ/ኽ
, (5.34)

where 𝛽᎚ ∈ {2.3, 4.1, 5.5, … } are again the negative of the zeros of Airy’s function.
We compute coefficients {𝜁dip,ዅ, 𝜁ex,ዅ, 𝜁s,ዅ, 𝜁dip,ዄ, 𝜁ex,ዄ} ≈ {3.5, 3.4, 0.1, 0.5, 1.0}. Al-
though 𝜁ex ∼ 𝜁dip, the energy of the ‘dip’ term is much smaller than that of the
‘ex’ term because the former is localized to a small skin depth ∼ 𝑅/𝑙 and therefore
does not contribute much when integrated over the mode volume. We disregard
‘dip’ and ‘s’ terms at the cost of an error scales as ∝ 𝑙ዅኻ/ኽ (shown below). The
magnetization is

𝑚Ꭻ (r) ≈ √
𝛾ℏ𝑀፬

2𝑅ኽ𝒩፥(𝑘𝑅)
𝑌፦፥ (𝜃, 𝜙)𝐽፥(𝑘᎚𝑟) tan𝜃፞ (5.35)

𝑚᎞ ≈ −𝑖𝑚Ꭻ cotኼ 𝜃፞ , (5.36)

for 𝑟/𝑅 < 1 − 1/𝑙. Here 𝒩 is given by Eq. (5.5) and the ellipticity is parametrised
by

tan𝜃፞ = √
𝜁ex,ዅ − 𝜁ex,ዄ
𝜁ex,ዅ + 𝜁ex,ዄ

= √
𝜔፬/2 − 𝜔sq + 𝜔
𝜔፬/2 + 𝜔sq − 𝜔

. (5.37)
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Figure 5.3: Radial dependence of ፦Ꭻ ዆ (፦ዄ፞ዅ።Ꭻ ዅ፦ዅ፞።Ꭻ)/ኼ for ᎚ ጾ ኽ and ፥ ዆ ዀኺኺኺ with parameters
from Table I. ᎚ ዆ ኺ resembles a purely dipolar wave and is localized to ኻ ጻ ፫/ፑ ጻ ኻዅኼ/፥. For ᎚ ጻ ኺ the
magnetization is dominated by the Bessel function except for the region occupied by the ᎚ ዆ ኺ mode.

The amplitudes (5.35) are normalized according to Eq. (1.69).

For 𝑅 = 300𝜇m and 𝑙 = 6000 [see Sec. 5.4], 2𝜋𝑅/𝑙 ≈ 300nm is the magnon
wavelength for a typical experiment. The azimuthal 𝜙-component of the magneti-
zation 𝑚Ꭻ for 𝜈 ≤ 3 is plotted in Fig. 5.3, while 𝑚᎞ looks similar to 𝑚Ꭻ after scaling
(not shown for brevity). 𝜈 > 0 modes contribute significantly to the coupling with
large overlap factors [see Sec. 5.4 for explicit expressions].

For the parameters in Table 5.1, we find 𝜔ፚ = 2𝜋 × 5.6GHz, and 𝜔፬ = 2𝜋 ×
4.9GHz. Putting 𝑘𝑅 = 𝑙 in Eq. (5.29), we get the frequency 𝜔ፍ = 2𝜋 × 8.4GHz.
𝜔ኺ = 2𝜋 × 7.7GHz, while frequencies for 𝜈 = {1, 2, 3} are 𝜔᎚ = 𝜔ፍ + 2𝜋 ×
{7.5, 13.2, 17.9}MHz respectively. We estimate the linewidth of the magnons ∼
𝛼ፆ𝜔᎚, in terms of the (geometry-independent) bulk Gilbert constant 𝛼ፆ = 10ዅኾ.
The frequency splittings are an order of magnitude larger than the typical line
width, so the magnon resonances are well defined. The exchange mode has a
small ellipticity tan𝜃፞ = 0.8.

At these frequencies the ‘surface’ term in Eq. (5.28) has wavelengths 2𝜋/𝜅᎚ ≈
60nm. It decays much faster into the sphere than the wavelength of infrared light,
> 500nm in YIG, which validates our statements above.

We assumed perfect pinning at the boundary, 𝑚± (𝑅) = 0, which is realis-
tic only when surface anisotropies are strong [27–29]. While Eqs. (5.28)-(5.30)
do not depend on the boundary conditions, the relative weights of three waves,
{𝜁dip,ዅ, 𝜁ex,ዅ, 𝜁s,ዅ} do. However, the validity of Eq. (5.35) depends only on the fact
that the energy is dominated by the Bessel function which still holds for imperfect
pinning and 𝜈 > 0. We estimate the contributions of surface exchange waves to



5.4. Optomagnonic coupling

5

83

the magnon mode energy by the parameter

𝜂 =
|𝜁dip,ዅ|

ኼ

|𝜁ex,ዅ|
ኼ
𝐽ኼ፥ (𝑘𝑅) ∫(𝑟/𝑅)ኼ፥𝑑𝑟

∫ 𝐽ኼ፥ (𝑘𝑟)𝑑𝑟
. (5.38)

For a film, the squared ratio of the 𝜁 coefficients is ∼ 1 [28], which should be the
case also for a sphere with curvature 𝑅 much larger than the magnon wavelength
𝑅/𝑙. The second fraction is of 𝑂(𝑙ዅኻ/ኽ). Therefore 𝜂 ≪ 1, implying that the energy
is indeed dominated by the Bessel function as assumed in Eq. (5.35). Reduced
pinning changes the magnetization profile near the surface, 𝑟/𝑅 > 1− 1/𝑙, but not
the coupling of states with 𝜈 > 0 to the WGMs.

5.4. Optomagnonic coupling
We calculate the coupling constant 𝐺ፏፐፀ given by Eq. (5.9). Consider an incident
TM-polarized optical WGM 𝑃 ≡ {𝑝,−𝑝ᖣ, 𝜇} that reflects into a TE-polarized WGM 𝑄 ≡
{𝑞, 𝑞ᖣ, 𝜈} by absorbing a magnon 𝐴 ≡ {𝛼, 𝛼ᖣ, 𝜉}. Their frequencies are, respectively,
𝜔ፏ, 𝜔ፐ, and 𝜔ፀ ≪ 𝜔ፏ,𝜔ፐ. By energy conservation, 𝜔ፏ ≈ 𝜔ፐ and thus, 𝑝 ≈ 𝑞 [see
Eq. (5.2)]. For the modes localized near the equator, 𝜃 = 𝜋/2, the indices 𝑥 ≈ 𝑥ᖣ
where 𝑥 ∈ {𝑝, 𝑞, 𝛼}. The conservation of angular momentum in the 𝑧-direction [8],
cf. Eq. (5.42), implies 𝑝ᖣ + 𝑞ᖣ = 𝛼ᖣ. For 𝜆ኺ ≈ 1.3 𝜇m, Eq. (5.2) and Table 5.1 give
𝑝 ≈ 3000 for 𝜈ፏ ∼ 𝑂(1). Summarizing, 𝑝 ≈ 𝑝ᖣ ≈ 𝑞 ≈ 𝑞ᖣ ≈ 𝛼/2 ≈ 𝛼ᖣ/2 ≈ 3000.

From Figs. 5.2 and 5.3, we observe that the radial magnon amplitude can be
close to the optimal profile. This is also the case in the azimuthal 𝜃-direction close to
the equator (not shown). Here, we confirm this observation by explicitly calculating
the mode overlap integrals.

The coupling constant Eq. (5.9) can be written

𝐺ፏፐፀ =
𝑐(Θፅ + Θፂ)
𝑛፬√2𝑠𝑅ኽ

𝒜ፏፐፀℛፏፐፀ, (5.39)

in terms of the dimensionless angular and radial overlap integrals, 𝒜ፏፐፀ and ℛፏፐፀ.
The angular part,

𝒜ፏፐፀ = ∫𝑌ዅ፩
ᖣ

፩ 𝑌ᎎᖣᎎ (𝑌፪
ᖣ

፪ )
∗
sin𝜃𝑑𝜃𝑑𝜙. (5.40)

is a standard integral that can be written in terms of Clebsch-Gordan coefficients
⟨𝑙ኻ𝑚ኻ, 𝑙ኼ𝑚ኼ|𝑙ኽ𝑚ኽ⟩. For 𝑝, 𝑞, 𝛼 ≫ 1,

𝒜ፏፐፀ ≈ √
𝑝𝑞
2𝜋𝛼 ⟨𝑝𝑝

ᖣ, 𝑞𝑞ᖣ|𝛼𝛼ᖣ⟩ ⟨𝑝0, 𝑞0|𝛼0⟩ . (5.41)

With 𝑥 = 𝑥ᖣ where 𝑥 ∈ {𝑝, 𝑞, 𝛼}, the Gaussian approximation [Eq. (5.6)] leads to

𝒜ፏፐፀ ≈ 𝛿ᎎ,፩ዄ፪
(𝑝𝑞𝛼)ኻ/ኾ

𝜋ኽ/ኾ√𝑝 + 𝑞 + 𝛼
≈ 𝛿ᎎ,፩ዄ፪

𝑝ኻ/ኾ
3.97 , (5.42)
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where in the second step, we used 𝑝 ≈ 𝑞 ≈ 𝛼/2. 𝒜ፏፐፀ vanishes when 𝛼 ≠ 𝑝 + 𝑞,
reflecting the conservation of angular momentum in the 𝑧-direction. The angular
overlap is optimal because 𝑌ᎎᎎ ∝ 𝑌፩፩ 𝑌፪፪ for 𝑝 ≈ 𝑞 ≈ 𝛼/2, which equals the angular
part in Eq. (5.18). For 𝑝 = 3000, 𝒜ፏፐፀ = 1.9.

We discuss the radial overlap first for the magnon 𝜉 = 0 with magnetization
given by Eq. (5.33). Then

ℛ(ኺ)ፏፐፀ = ∫
ፑ

ኺ

𝛼ኽ/ኼ𝐽፩(𝑘ፏ𝑟)𝐽፪(𝑘ፐ𝑟)
√𝒩፩(𝑘ፏ𝑅)𝒩፪(𝑘ፐ𝑅)

𝑟ᎎዄኻ(𝑅ኼ − 𝑟ኼ)
𝑅ᎎዄኾ 𝑑𝑟 (5.43)

where {𝑘ፏ , 𝑘ፐ} are the photon wave numbers, Eq. (5.2). Since the magnetic am-
plitude is significant only near the surface, we may linearize the optical fields (the
Bessel functions) close to 𝑅. Using Eq. (5.2) and the Airy’s function approximation
[10] , cf. Eq. (5.7)

𝐽፩(𝑘ፏ𝑟) ≈
2ኼ/ኽAiᖣ (−𝛽᎙)

𝑝ኼ/ኽ [𝑃TM + 𝑝 (1 −
𝑟
𝑅)] , (5.44)

and

𝒩፩(𝑘ፏ𝑅) ≈ (
2
𝑝)

ኾ/ኽ Aiᖣኼ (−𝛽᎙)
2 . (5.45)

Similar results hold for {𝑝, 𝑃, 𝜇, 𝑃TM} → {𝑞, 𝑄, 𝜈, 𝑃TE}. For 𝑝 ≈ 𝑞 ≈ 𝛼/2,

ℛ(ኺ)ፏፐፀ = √
2
𝑝 [𝑃TM𝑃TE + 𝑃TM + 𝑃TE +

3
2] . (5.46)

For 𝑝 = 3000 and 𝑛፬ = 2.2, ℛ(ኺ)ፏፐፀ = 0.08 and the coupling 𝐺(ኺ)ፏፐፀ = 2𝜋 × 2.8Hz is of
the same order as that to the Kittel mode, 𝐺ፊ = 2𝜋 ×9.1Hz [see Sec. 5.1] [8]. We
emphasize that this result depends strongly on the magnetic boundary condition
(taken to be fully pinned here) and only indicates the smallness of the coupling.

The magnetization Eq. (5.35) for 𝜉 ≥ 1

ℛፏፐፀ
𝑀፞

≈ ∫
ፑ

ኺ

𝑑𝑟
𝑅

𝐽፩(𝑘ፏ𝑟)𝐽፪(𝑘ፐ𝑟)𝐽ᎎ(𝑘ፀ𝑟)
√𝒩፩(𝑘ፏ𝑅)𝒩፪(𝑘ፐ𝑅)𝒩ᎎ(𝑘ፀ𝑅)

, (5.47)

to leading order in 𝛼, where

𝑀፞ =
tan𝜃፞Θፅ + cot𝜃፞Θፂ

Θፅ + Θፂ
. (5.48)

For a YIG sphere with parameters in table 5.1, the ellipticity of the magnons tan𝜃፞ =
0.8 and 𝑀፞ ≈ 0.95.

The Bessel functions asymptotically become Airy’s functions, Eq. (5.7),

|ℛፏፐፀ|
𝑀፞

≈ √2𝑝ኻ/ኽ∫
ጼ

ኺ
A᎙ (𝑥)A᎚ (𝑥)A᎛ (2ኼ/ኽ𝑥) 𝑑𝑥, (5.49)



5.4. Optomagnonic coupling

5

85

𝜇 𝜈 𝜉 𝔾ፏፐ/(2𝜋) 𝑀፫
1 1 1 304Hz 0.88
1 2 1 138Hz 0.65
2 2 3 213Hz 0.74
1 3 2 144Hz 0.82
2 3 4 130Hz 0.66
3 3 5 180Hz 0.70

Table 5.2: The calculated optomagnonic coupling for a given {᎙, ᎚} and ᎛ chosen to maximize ፆፏፐፀ.
ፌ፫ is the radial overlap defined in the text, such that ፌ፫ ዆ ኻ for the ideal magnetization distribution.
ፌ፫ ∼ ኻ indicates high overlap.

where the scaled radial coordinate 𝑥

𝑥 = 𝑙
(𝑙/2)ኻ/ኽ (1 −

𝑟
𝑅) , (5.50)

and the normalized Airy’s function,

A፨ (𝑥) =
Ai (𝑥 − 𝛽፨)
|Aiᖣ (−𝛽፨)|

. (5.51)

ℛፏፐፀ mainly depends on the radial structure of the mode amplitudes with a
weak scaling factor of 𝑝ኻ/ኽ. We summarize results as {𝜇, 𝜈, 𝜉, ℛፏፐፀ}, where 𝜉 is
chosen to maximize ℛፏፐፀ for given {𝜇, 𝜈}. For 𝑝 = 3000, we find {1, 1, 1, 8.02},
{1, 2, 1, 3.64}, and {2, 2, 3, 5.63}, much larger than the dipolar mode ℛ(ኺ)ፏፐፀ = 0.08.

For a given pair (𝑃, 𝑄), we define 𝔾ፏፐ as the maximum over all 𝐺ፏፐፀ. With
𝑥 = 𝑥ᖣ where 𝑥 ∈ {𝑝, 𝑞, 𝛼}, the angular momentum of the magnon is fixed by the
WGMs, see Eq. (5.42). The radial index can be found by maximizing the integral
appearing in Eq. (5.49) by enumerating it for each 𝜉. The maximum appears at
𝜉 ∼ 𝑂(1) for 𝜇, 𝜈 ∼ 𝑂(1), so we do not need to go beyond 𝜉 = 10.

We present the final results in the table 5.2, where 𝔾ፏፐ ∼ 2𝜋 × 100Hz. This
can be compared with the maximum coupling possible for WGMs, 𝒢ፏፐ discussed in
Sec. 5.1. We find 𝔾ፏፐ/𝒢ፏፐ = 𝑀፞𝑀፫ where 𝑀፞ is given in Eq. (5.48) and the radial
‘mismatch’

𝑀፫ =
2ኻ/ኽ ∫ጼኺ A᎙ (𝑥)A᎚ (𝑥)A᎛ (2ኼ/ኽ𝑥) 𝑑𝑥

√∫ጼኺ Aኼ᎙ (𝑥)Aኼ᎚ (𝑥) 𝑑𝑥
. (5.52)

Table 5.2 indeed shows 𝑀፫ ∼ 𝑂 (1) implying a near ideal mode matching. Further-
more, 𝔾ፏፐ ≫ 𝐺ፊ, the coupling to the Kittel mode. By doping with bismuth, the
coupling can be increased tenfold [34] to 𝔾ፏፐ ∼ 2𝜋 × 1 kHz. We see that 𝔾ፏፐ/𝒢ፏፐ
does not depend on 𝑅 and hence both scale 𝔾ፏፐ , 𝒢ፏፐ ∝ 𝑅ዅኺ.ዃ. For a microsphere
with 𝑅 = 10𝜇m (𝑝 ≈ 100), 𝔾ፏፐ ∼ 2𝜋 × 2 kHz should be possible in YIG, but fabri-
cation is challenging. A very similar theory as outlined here can be applied to YIG
disks when their aspect ratio is close to unity and the demagnetization fields are
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approximately uniform. Scaling those down by nanofabrication of thin films may
be the most straightforward option to enhance the coupling in otherwise monolithic
optical wave guide structures.

The above analysis for scattering via TM → TE scattering can be generalized,
similar to the discussion at the end of Sec. 5.1. The coupling constant 𝐺TE→TM is
smaller by a factor (Θፅ − Θፂ)/(Θፅ + Θፂ) = 0.45. Also, by Hermiticity, |𝐺blue᎟→᎟ᖣ | =
|𝐺᎟ᖣ→᎟| if the directions of motion are reversed as well.

𝐴-magnons are efficiently cooled by the process 𝑃 + 𝐴 → 𝑄 when the magnon
annihilation rate exceeds that of the magnon equilibration. For the internal optical
dissipation 𝜅።፧፭ and the leakage rate of photons into the fiber 𝜅፞፱፭, the cooperativity
should satisfy [3]

𝐶 =
4𝐺ኼፏፐፀ𝑛ፏ

(𝜅።፧፭ + 𝜅፞፱፭) 𝜅ፀ
> 1 (5.53)

where 𝑛ፏ is the number of photons in mode 𝑃, 𝜅ፀ ∼ 2𝜋 × 0.5MHz is the magnon’s
linewidth in YIG, and 𝜅።፧፭ ∼ 2𝜋×0.1−0.5GHz [23–25]. We assumed 𝜔ፏ+𝜔ፌ = 𝜔ፐ
for simplicity. In terms of input power 𝑃።፧, [3]

𝑛ፏ =
4𝜅፞፱፭

(𝜅።፧፭ + 𝜅፞፱፭)
ኼ
𝑃።፧
ℏ𝜔ፏ

. (5.54)

The cooperativity 𝐶 is maximized at 𝜅፞፱፭ = 𝜅።፧፭/2 for a given input power.
For 𝐺ፏፐፀ ∼ 2𝜋 × 200Hz, 𝐶ፏፐፀ = 1 for 𝑛ፏ ∼ 10ዃ − 10ኻኺ requiring large powers

𝑃።፧ ∼ 50−1000mW for𝜔ፏ = 2𝜋×200THz. However, required 𝑃።፧ can be significantly
reduced by scaling or doping as discussed above: a tenfold increase in 𝐺 causes a
hundredfold decrease in required input power. Similar arguments hold for magnon
pumping processes 𝑃 → 𝐴 + 𝑄ᖣ. The steady state number of magnons is governed
by a balance of all cooling and pumping processes, whose analysis we defer to a
future work.

The strong coupling regime is reached under the condition 𝐺ፏፐፀ√𝑛ፏ > (𝜅።፧፭ + 𝜅፞፱፭) , 𝜅ፀ
which again requires an unrealistically large 𝑛ፏ > 10ኻኼ for 𝐺ፏፐፀ ∼ 2𝜋 × 200Hz and
powers exceeding kilowatts, because of the large optical linewidths observed in typ-
ical YIG spheres [23–25]. The optical lifetime is limited by material absorption [23]
and thus, can be improved only at the cost of reduced magneto-optical coupling.
2-3 orders of magnitude improvement in coupling constant is required to bridge
this gap.

5.5. Discussion
We modeled the magnetization dynamics in spherical cavities in order to find its op-
timal coupling to WGM photons. We find that selected exchange-dipolar magnons
localized close to the equator (but not the Damon-Eshbach modes) are almost ide-
ally suited to play that role. We predict an up to 40-fold increase in the coupling
constant, implying a 1000-fold larger signal in Brillouin light scattering, as com-
pared to that of the (unexcited) Kittel mode. Further improvement requires smaller
optical volumes or higher magneto-optical constants.
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The option to shrink the cavity and optical volume is limited by the wavelength
𝜆ኺ/𝑛፬. For 𝜆ኺ = 1.3 𝜇m and 𝑛፬ = 2.2, a cavity with an optical volume of 𝜆ኽኺ/𝑛ኽ፬ gives
an upper limit ∼ 2𝜋 × 50 kHz for pure YIG. In a Bi:YIG sphere of radius ∼ 𝜆ኺ/𝑛፬,
the optical first Mie resonance may strongly couple with the Kittel mode [4].

The coupling can be enhanced by the ellipticity angle 𝜃፞ of the magnetization,
which is controlled by crystalline anisotropy, saturation magnetization, and geom-
etry. Linear polarization 𝜃፞ → 0 or 𝜃፞ → 𝜋/2 would lead to a unphysical diverging
coupling, because in practice magnons are close to circularly polarized, 𝜃፞ ≈ 𝜋/4.
For YIG spheres the weak ellipticity even suppresses the coupling, 𝑀፞ < 1 in Eq.
(5.48).

In purely dipolar theory, the surface magnons are chiral, i.e. only modes with
𝑚 > 0 exist, implying a complete suppression of the red sideband that hinders
magnon cooling [3]. This is not necessarily the case when the exchange interaction
kicks in [35]. An analysis similar to the one above indeed indicates that exchange-
dipolar magnons are only partially chiral, since modes with 𝑚 < 0 acquire finite
amplitude 1.

We find that light may efficiently pump or cool certain surface (low wavelength)
magnons that do not couple easily to microwaves. This could be used to ma-
nipulate macroscopically coherent magnons, raising hopes of accessing interesting
non-classical dynamics in the foreseeable future.

5.6. Appendix: Exchange-dipolar magnons
Here, we solve Eqs. (5.23)-(5.26) with Maxwell boundary conditions, Eq. (5.27),
and pinned surface magnetization 𝑚± (𝑅) = 0. The magnetization in the linearized
LL equation, Eq. (5.24), can be eliminated in favor of the scalar potential 𝜓, Eq.
(5.23) [28],

[(𝒪ኼ − 𝜔ኼ) ∇ኼ + 𝜔፬𝒪 (∇ኼ −
𝜕ኼ
𝜕𝑧ኼ)]𝜓 = 0, (5.55)

where 𝒪 = 𝜔ፚ − 𝐷ex∇ኼ with 𝐷ex = 𝜔፬/𝑘ኼex. The general solution for a sphere is
complicated because the magnetization breaks the rotational symmetry, but it can
be simplified for the surface magnons near the equator. The ansatz

𝜓(r) = 𝑌፦፥ (𝜃, 𝜙)Ψ(𝑟), (5.56)

where

𝑌፦፥ (𝜃, 𝜙) = (−1)፦√
2𝑙 + 1
4𝜋

(𝑙 − 𝑚)!
(𝑙 + 𝑚)! 𝑃

፦
፥ (cos𝜃)𝑒።፦Ꭻ (5.57)

are spherical harmonic functions with associated Legendre polynomials

𝑃፦፥ (𝑥) =
(−1)፦
2፥𝑙! (1 − 𝑥ኼ)፦/ኼ 𝑑

፥ዄ፦

𝑑𝑥፥ዄ፦ (𝑥
ኼ − 1)፥ , (5.58)

1Our calculations not discussed here
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leads to ∇ኼ𝜓 = 𝑌፦፥ 𝑂̂፥Ψ where

𝑂̂፥ =
1
𝑟ኼ
𝜕
𝜕𝑟 (𝑟

ኼ 𝜕
𝜕𝑟) −

𝑙(𝑙 + 1)
𝑟ኼ (5.59)

have spherical Bessel functions of order 𝑙 as eigenfunctions. The surface magnons
with large angular momentum 𝑙 are localized near the equator. They have a large
“kinetic energy” along the equator. The confinement along the 𝜃-direction is not
so strong, however, so the magnon amplitude looks like a flat tire. A posteriori, we
find 𝑘᎕ ∝ √𝑙, while 𝑘Ꭻ ∝ 𝑙. For large 𝑙, the terms 𝜕ኼ፳ ≈ 𝑅ዅኼ𝜕ኼ᎕ near the equator,
may therefore be disregarded in Eq. (5.55). This gives a cubic in 𝑂̂፥, similar to a
magnetic cylinder [31],

𝑂̂፥ (𝑂̂፥ + 𝑘ኼ) (𝑂̂፥ − 𝜅ኼ)Ψ = 0, (5.60)

where
𝐷ex𝑘ኼ = 𝜔sq − 𝜔ፚ −

𝜔፬
2 , 𝐷ex𝜅

ኼ = 𝜔sq + 𝜔ፚ +
𝜔፬
2 , (5.61)

where

𝜔sq = √𝜔ኼ +
𝜔ኼ፬
4 . (5.62)

𝜅 is real and 𝑘 is real as well when 𝜔 > √𝜔ኼፚ + 𝜔ፚ𝜔፬, which is the case for 𝑘 ≈ 𝑙/𝑅,
i.e. waves propagating along the equator [see Sec. 5.4].

Consider the eigenvalue equation 𝑂̂፥Ψ᎙ = −𝜇ኼΨ᎙ with reciprocal “length scales”
𝜇 ∈ {0, 𝑘, 𝑖𝜅}. Its two linearly independent solutions are spherical Bessel functions
of first and second kind, which in the limit 𝑙 ≫ 1 are proportional to Bessel functions
of first [𝐽፥(𝜇𝑟)] and second [𝑌፥(𝜇𝑟), not to be confused with the spherical harmonic
𝑌፦፥ ] kind, respectively. 𝑌፥(𝜇𝑟) diverges at 𝑟 = 0, so inside the sphere Ψ᎙ = 𝐽፥(𝜇𝑟).
Thus, Eq. (5.60) has three linearly independent solutions, {Ψኺ, Ψ፤ , Ψ።᎗} and the
general solution is

Ψ =
ኽ

∑
።዆ኻ
𝛼።

𝐽፥(𝜇።𝑟)
𝜇።𝐽፥ዅኻ(𝜇።𝑅)

, (5.63)

where 𝜇ኻ → 0, 𝜇ኼ = 𝑘, 𝜇ኽ = 𝑖𝜅, 𝛼። are integration constants, and the Bessel
functions

𝐽፥(𝑧) =
ጼ

∑
፫዆ኺ

(−1)፫
𝑟!(𝑟 + 𝑙)! (

𝑧
2)

ኼ፫ዄ፥
. (5.64)

The spatial distribution of the three components are discussed in more detail in the
main text [see Sec. 5.3].

The derivative introduced in Sec. 5.2

𝜕±𝜓 = 𝑌፦፥ 𝑒±።Ꭻ
ኽ

∑
።዆ኻ

𝛼።
𝐽፥ዅኻ(𝜇።𝑅)

(𝐽ᖣ፥(𝜇።𝑟) ∓
𝑚𝐽፥(𝜇።𝑟)
𝜇።𝜌

) , (5.65)
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where 𝜕± = 𝜕፱ ± 𝑖𝜕፲. Close to the equator, 𝜌 ≈ 𝑟 and using 𝑙 ≫ |𝑙 − 𝑚|,

𝜕±𝜓 ≈ ∓𝑌፦±ኻ፥±ኻ

ኽ

∑
።዆ኻ

𝐽፥±ኻ(𝜇።𝑟)
𝐽፥ዅኻ(𝜇።𝑅)

, (5.66)

where we used the recursion relations [10]

𝐽ᎎ±ኻ(𝑥) =
𝛼
𝑥 𝐽ᎎ(𝑥) ∓ 𝐽

ᖣ
ᎎ(𝑥) (5.67)

and 𝑌፦±ኻ፥±ኻ ≈ 𝑒±።Ꭻ𝑌፦፥ that holds for 𝑙 ≫ 1, |𝑙 − 𝑚|. Solving Eq. (5.24) for magneti-
zation,

𝑚± (r) = 𝑌፦±ኻ፥±ኻ

ኽ

∑
።዆ኻ
𝜁።,±

𝐽፥±ኻ(𝜇።𝑟)
𝐽፥ዅኻ(𝜇።𝑅)

, (5.68)

with coefficients
𝜁።,± =

𝜔፬𝛼።
𝜔 ± 𝜔̃።

, (5.69)

and 𝜔̃። = 𝜔ፚ + 𝐷ex𝜇ኼ። .
Outside the magnet, 𝜓፨ satisfies a Laplace equation Eq. (5.26). Using the

continuity of magnetic potential and 𝜓፨ → 0 at 𝑟 → ∞,

𝜓፨ = 𝑌፦፥ (𝜃, 𝜙) (
𝑅
𝑟 )

፥ዄኻ ኽ

∑
።዆ኻ
𝛼።

𝐽፥(𝜇።𝑅)
𝜇።𝐽፥ዅኻ(𝜇።𝑅)

. (5.70)

The integration constants 𝛼። are governed by the boundary conditions: Maxwell
boundary conditions, Eq. (5.27), and pinned magnetization boundary condition for
the LL equation 𝑚± = 0, which we justified a posteriori in Sec. 5.3. Demanding
𝑚ዅ(𝑟 = 𝑅) = 0 and 𝜕፫(𝜓 − 𝜓፨)|፫዆ፑ = 0 gives

ኽ

∑
።዆ኻ

𝜔፬𝛼።
𝜔 − 𝜔̃።

= 0 =
ኽ

∑
።዆ኻ
𝛼። , (5.71)

which is solved by

𝛼ኻ = 𝑚ኺ
(𝜔 − 𝜔̃ኻ)(𝜔̃ኼ − 𝜔̃ኽ)

𝜔፬
, (5.72)

𝛼ኼ = 𝑚ኺ
(𝜔 − 𝜔̃ኼ)(𝜔̃ኽ − 𝜔̃ኻ)

𝜔፬
, (5.73)

𝛼ኽ = 𝑚ኺ
(𝜔 − 𝜔̃ኽ)(𝜔̃ኻ − 𝜔̃ኼ)

𝜔፬
, (5.74)

where 𝑚ኺ is a normalization constant.
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We now arrive at the solution discussed in the main text, Sec. 5.3. With
{𝜇ኻ, 𝜇ኼ, 𝜇ኽ} = {0, 𝑘, 𝑖𝜅}

lim
᎙ኻ→ኺ

𝐽፥(𝜇ኻ𝑟) ≈
1
𝑙! (

𝜇ኻ𝑟
2 )

፥
; 𝐽፥(𝑖𝜅𝑟) = 𝑖፥𝐼፥(𝜅𝑟), (5.75)

where 𝐼 is the modified Bessel function. The above holds also for 𝑙 → 𝑙 ±1. Substi-
tuting into Eq. (5.68),

𝑚ዅ = 𝑌፦ዅኻ፥ዅኻ [𝜁ኻ,ዅ (
𝑟
𝑅)

፥ዅኻ
+ 𝜁ኼ,ዅ

𝐽፥ዅኻ(𝑘𝑟)
𝐽፥ዅኻ(𝑘𝑅)

+ 𝜁ኽ,ዅ
𝐼፥ዅኻ(𝜅𝑟)
𝐼፥ዅኻ(𝜅𝑅)

] (5.76)

𝑚ዄ = 𝑌፦ዄኻ፥ዄኻ [0 + 𝜁ኼ,ዄ
𝐽፥ዄኻ(𝑘𝑟)
𝐽፥ዅኻ(𝑘𝑅)

− 𝜁ኽ,ዄ
𝐼፥ዄኻ(𝜅𝑟)
𝐼፥ዅኻ(𝜅𝑅)

]. (5.77)

In spite of 𝐽፥ዅኻ(𝜇ኻ𝑟) → 0, the first term of 𝑚ዅ is finite while that of 𝑚ዄ vanishes.
The Bessel function ratios in the third terms are real even though 𝐽፥(𝑖𝜅𝑟) need not
be.

According to Eq. (5.69) the polarization does not depend on the coefficients 𝛼።.
With {𝜔̃ኻ, 𝜔̃ኼ, 𝜔̃ኽ} = {𝜔ፚ , 𝜔sq − 𝜔፬/2,−𝜔sq − 𝜔፬/2}, 𝜔ኼsq = 𝜔ኼ + 𝜔ኼ፬ /4

𝜁ኼ,ዄ
𝜁ኼ,ዅ

=
𝜔 + 𝜔፬/2 − 𝜔sq
𝜔 − 𝜔፬/2 + 𝜔sq

. (5.78)

A similar result holds by substituting 𝜁ኼ± → 𝜁ኽ± and 𝜔sq → −𝜔sq. Multiplying the
numerator and denominator in the above equation by 𝜔−𝜔፬/2−𝜔sq, we arrive at
the form Eq. (5.30) in the main text.

Substituting 𝛼። for the pinned boundary conditions, Eqs. (5.72-5.74), into Eq.
(5.69)

𝜁ኻ,ዅ = 𝑚ኺ
2𝜔sq
𝜔፬

(5.79)

𝜁ኼ,ዅ = −𝑚ኺ
𝜔ፚ + 𝜔sq + 𝜔፬/2

𝜔፬
, (5.80)

𝜁ኽ,ዅ = 𝑚ኺ
𝜔ፚ − 𝜔sq + 𝜔፬/2

𝜔፬
. (5.81)

The above solutions satisfy Maxwell’s boundary conditions, Eq. (5.27), and
𝑚ዅ(𝑅) = 0 by design [see Eq. (5.71)]. The last condition 𝑚ዄ(𝑅) = 0 gives the
resonance condition ℛኻ(𝜔) = ℛኼ(𝜔), where

ℛኻ(𝜔) = −
𝐽፥ዄኻ(𝑘𝑅)
𝐽፥ዅኻ(𝑘𝑅)

, ℛኼ(𝜔) =
𝑘ኼ
𝜅ኼ
𝜔sq + 𝜔
𝜔sq − 𝜔

𝐼፥ዄኻ(𝜅𝑅)
𝐼፥ዅኻ(𝜅𝑅)

. (5.82)

The roots of the above equation are counted by 𝜈 ≥ 0. For 𝑘 > 0, the lowest root
𝜈 = 0 occurs near 𝑘 ≈ 0 at frequency 𝜔 ≈ √𝜔ኼፚ + 𝜔ፚ𝜔፬. The next and higher
roots occurs only around 𝑘𝑅 ≳ 𝑙 as plotted in Fig. 5.4 [the root 𝜈 = 0 is to the
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Figure 5.4: The resonance condition ℛኻ ዆ ℛኼ gives the allowed magnon frequencies when the magne-
tization is pinned at the surface. Ꭶፍ is the frequency at which ፤ፑ ዆ ፥.

far left of the origin]. ℛኻ is a rapidly varying function, while ℛኼ ≈ 1.2 is nearly
constant. Sufficiently far from the zeroes of 𝐽፥ዅኻ(𝑘𝑅), ℛኻ < 0 and at the crossing
with ℛኼ, ℛኻ ≈ 1.2. This implies that at magnon resonances, 𝐽፥ዅኻ(𝑘𝑅) ≈ 0 or
𝑘𝑅 ≈ 𝑙 + 𝛽᎚(𝑙/2)ኻ/ኽ, while 𝜔(𝑘) is given by Eq. (5.61). Their explicit values are
discussed in Sec. 5.3
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