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“There is no end to education. 
It is not that you read a book, pass an examination, and finish with education. 

The whole of life, from the moment you are born to the moment you die, is a process of learning.” 

Jiddu Krishnamarti 
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1.1 Background to The Study 

Mathematics and natural sciences are intimately related (Atiyah, 1993; Dierdorp, Bakker, van 
Maanen, & Eijkelhof, 2014). Especially, the relation between mathematics and physics is the 
most intimate and oldest (Atiyah, Dijkgraaf, & Hitchin, 2010). Galileo paid attention to this 
relationship and said that the book of nature is written in the language of mathematics: 
“…without which it is humanly impossible to understand a single word of it; without these one is wandering 
in a dark labyrinth” (Drake, 1957, p. 237). Indeed, in the following centuries, scientists such as 
Newton with the universal law of gravitation, Maxwell explaining the behavior of electro-
magnetism, Einstein with his theory of special and general relativity, others such as Bohr, 
Heisenberg and Schrödinger in the development of modern quantum mechanics, and quite 
recently the search for a ‘theory of everything’ demonstrated the importance of mathematics 
to explain and understand physical phenomena.  

Accordingly, the close relationship between mathematics and science subjects is also pi-
votal in both secondary and higher education. While mathematics offers students the tools 
by which quantitative relationships in science subjects can be represented, modelled, calcu-
lated and predicted, science subjects provide meaning to mathematics through rich and rel-
evant contexts in which mathematics can be applied (Dierdorp, Bakker, van Maanen, & 
Eijkelhof, 2014). Despite this intimate relationship, however, students encounter difficulties 
with applying mathematics into science, in particular in physics, indicating a lack of transfer 
between these subjects (e.g., Redish & Kuo, 2014; Wong, 2018).  

Even if students have a solid grasp of mathematics, their application in science subjects 
still can be poor. Remarkably, except for a couple of studies (e.g., Cui, 2006; Rebello et al., 
2007) and projects such as SONaTe (Zegers et al., 2003) and SaLVO (2019), this phenome-
non has hardly been studied, implying a knowledge gap in this area of research. In their pio-
neering work with pre-course tests of algebraic and trigonometric knowledge and skills taken 
by 200 students initiating a physics course, Hudson and McIntire (1977) have shown that 
students who were successful on mathematics tests, were poor on physics tests. Their solid 
grasp of mathematics was insufficient for transfer.  
 The lack of transfer above has consequences for science teachers, especially for physics 
teachers, leaving less time for their core business of teaching physics. This may be frustrating 
and time-consuming, overshadowing the science content that needs to be taught (SLO, 2019; 
Roorda, 2012). In addition, in a large number of countries, science curricula are overloaded, 
compelling science teachers to fit their program into a seriously reduced instruction time 
(e.g., Lyons, 2006). This can make inefficient transfer of mathematics in physics even more 
harmful. In the Netherlands, where this study is conducted, in the last few years physics 
problems requiring mathematics such as the application of mathematics, especially algebraic 
skills, has become much more important in senior pre-university physics education, especially 
in national final physics examinations (SLO, 2019). Thus, examining this transfer phenome-
non is relevant from both an educational and a scientific point of view.  

1.1 Background to the study
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1.1.1 Early Perspectives of Transfer 

Transfer of knowledge has been discussed in the area of learning and instruction for over 
100 years (e.g., Larsen-Freeman, 2013; Leberman, et al., 2016; Lobato, 2003). Within this rich 
body of research, there are many approaches to investigate transfer. Below we will discuss 
some of these approaches for the early, the cognitive and the situated views of transfer. 

Early perspectives on transfer were based on the mental abilities of a person whose in-
tellectual performance was believed to rely on the basic mental functions ‘attention, judge-
ment and memory’. Training these functions was thought to enhance the ability to transfer 
knowledge to new situations (Karakok, 2009). This belief is based on the general effects view 
where students were required to take, for example, Latin and geometry courses. It was be-
lieved that these courses would make the students’ minds think more logically, in a sense 
disciplining their minds and enhancing their abilities in other subjects. In 1903, Thorndike 
challenged the general effects view and proposed the theory of identical elements. He demon-
strated that learners who performed well on the test of a specific content, did not enhance 
their learning in the new situation. Thorndike concluded that transfer could only happen if 
both the initial and targeted task shared identical elements. This transfer approach influenced 
many researchers (e.g., Bassok, 1990; Gick & Holyoak, 1983) in the 20th century presenting 
an initial learning task followed by a target task where, according to the researchers, both 
tasks shared similar features. However, researchers stated that beyond tasks with identical 
elements, Thorndike’s theory had limited applications (Mestre, 2005). Indeed, Judd (1939) in 
his theory of deep structure claimed that learners might have different ideas on the sameness 
of the initial and the target task, rather than sameness according to the researchers (for a 
more comprehensive explanation see for example Tuomi-Gröhn & Engeström (2003)). Ac-
cording to Judd (1939), transfer was not the consequence of effortlessly and mindlessly rote 
memorization, but determined by the degree to which the learner was aware of underlying 
shared causal principles between two situations.   

1.1.2 Traditional Transfer 

While Judd (1939) represents the cognitive view (also referred to as traditional transfer) in 
which there is more emphasis on transfer from one situation to another situation, the situ-
ated view (also referred to as contemporary transfer) gives much attention to construction 
of sameness between situations as seen by the learner. In the last decades there has been a  
shift from traditional towards contemporary perspectives of transfer (e.g., Lobato, 2006).  

Traditionally, transfer has been defined as “the ability to apply knowledge learned in one context 
to new contexts” or “the ability to extend what has been learned in one context to new contexts” (Mestre, 
2005, p. 156). A feature of these definitions is the role of ‘what has been learned/knowledge’ 
that is applied to another situation (Roorda et al., 2014). In this view, the researcher examines 
whether a learner transfers knowledge from initial learning to the target (transfer) task. Such 
studies are conducted from the researchers’ perspective who looks for improved perfor-
mance from the initial learning to the transfer task. The research questions examine issues 
such as “Can students successfully apply knowledge previously acquired in the learning task to the transfer 
task?” and “What conditions facilitate transfer” (Karakok, 2009, p.27). To answer these questions, 
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the researcher pre-defines the structural similarities (sameness) between both tasks. In addi-
tion, transfer is a static construct where students can either apply their knowledge from an 
initial task to a transfer task or cannot.  

1.1.3 Contemporary Views of Transfer 

Most of the studies carried out under the cognitive view reported failure of transfer from 
the initial task to the target task (e.g., Mestre, 2005; Lobato, 2006; Roorda, 2012). Many re-
searchers claimed that this failure was due to the definition of transfer in which knowledge 
could be separated from the situations where it was learned instead of being an overall con-
nected experience (e.g., Lobato & Siebert, 2002). Also, methodologically there were some 
major concerns about this perspective. The transfer tasks focused on the researchers’ view 
who designed the initial and the transfer task in such a way that both tasks shared similar 
features (sameness). In addition, transfer was unidirectional: learners apply their knowledge 
in the target situation after they were exposed to the initial situation. However, several studies 
showed that transfer was not a static unidirectional but a dynamic bidirectional process (e.g., 
Marongelle, 2004; Zandieh, 2004). This implies that knowledge in an initial and transfer task 
mutually interact and that learners may also continue to develop knowledge even in the trans-
fer tasks. Contemporary views of transfer involve aspects such as socio-cultural issues and 
available resources during initial learning that cognitive models neglect (e.g., Lobato, 2003; 
Ozimek, 2004). Transfer is viewed from the learners’ point of view, and the researchers’ job 
is to figure out what learners exactly transfer.  

Some examples of these contemporary models are the Actor-oriented Transfer approach 
(Lobato, 2006; Karakok, 2009; Roorda, 2012) that will be explained in the next section, the 
Affordances and Constraints Approach (Greeno et al. 1993. & 1996), the Boundary-crossing Ap-
proach (Akkerman & Bakker, 2011; Tuomi-Gröhn & Engeström, 2003) and Recontextual-
ization (e.g. Moore, 2012; Nowacek, 2011). The Affordances and Constraints approach in-
vestigates the degree to which participating in an activity influences the learners’ ability 
(while the learner is aware of the affordances and constraints of the activity) to participate 
in a different activity in a new situation. The Boundary-crossing Approach is an alternative 
metaphor for transfer “to capture the often more complex efforts by people who move not only forth but 
also back; boundary crossing is therefore bidirectional and dynamic. Moreover, it is oriented towards both 
the personal and the collective. The concept of boundary crossing thus draws attention to a wider range of rel-
evant processes involved in integrating different types of knowledge to be learned and used in different con-
texts” (Bakker & Akker, 2014, p. 224). Furthermore, Nowacek (2011) builds on genre the-
ory and situates students as agents of integration within a theory of transfer as Recontextu-
alization. She unpacks transfer as recontextualization with five principles such as “multiple 
avenues of connection [exist] among contexts, including knowledge, ways of knowing, identities, and 
goals”(p. 21), “transfer can be both positive and negative and ... there is a powerful affective dimension of 
transfer” (p. 25) and that “meta-awareness is an important, but not a necessary, element of transfer” (p. 
30). 
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1.1.4 The Actor Oriented Transfer Approach 

According to Lobato (2006), the actor-oriented transfer approach views transfer as the “per-
sonal construction of similarities between activities where the ‘actors,’ i.e. learners, see situations as being 
similar” (Lobato, 1996 & 2003). This implies that the main focus is the actor (learner) who 
sees the target situation (for example, a given task or problem or the experiences during 
teaching) similar to the initial learning situation (for example, an initial task or problem or 
the experiences during interviews). Within this view, the evidence for transfer is gathered 
by “scrutinizing a given activity by any indication of influence from previous activities and by examining 
how people construe situations as similar” (Lobato & Siebert, 2002, p.89). So, any indication of 
influence from the previous tasks on the target task is regarded to be evidence for actor-
oriented transfer (Karakok, 2009). Indeed, the researcher does not decide or prioritize what 
learners should transfer. Instead, the researcher adopts a learner-centered view to figure out 
what learners transfer and examine how these are supported by the environment (Roorda 
et al., 2014).  

Some studies conducted under the cognitive view concluded that students do not trans-
fer knowledge from, for example, mathematics lessons to physics problems (Cui, 2006; Ka-
rakok, 2009; Roorda, 2012; Roorda et al., 2014). However, when data were analyzed from 
the actor-oriented transfer perspective, students did transfer. They constructed similarities 
between situations in mathematics lessons and physics problems. The findings of these 
studies inform the researcher about the students’ learning process, rather than, based on 
the end results of learning, the observation that transfer happened or not. Within these 
studies the focus is on how students connect their previous experiences during teaching to 
new experiences during the interviews, where explicit or implicit similarities between both 
experiences were considered as evidence for transfer.  

1.1.5 Views of Transfer in This Study 

Later in this study students during interviews are asked to solve algebraic physics problems 
(target tasks) in regular physics textbooks for which solution algebraic skills are needed. We 
expect that these algebraic skills are learned in mathematics class from regular mathematics 
textbooks (previous learning situation). To determine whether transfer occurred or not (we 
quantized transfer), we adopted the traditional transfer approach by comparing students’ so-
lution sets to the physics tasks with our solution sets. This means that the degree to which 
transfer occurred, was determined by the researchers’ perspective. To some extent, we also 
payed attention to the actor-oriented transfer approach. Other contemporary views were not 
adopted, because they were not concerned with algebraic problem-solving in upper second-
ary education. Indeed, the actor-oriented approach, and especially the study of Roorda (2014) 
fitted our research. Therefore, we followed the line of Roorda (2014) who operationalized 
the actor-oriented transfer “as a search for students’ personal constructions of relations between (1) 
learning from mathematics and physics classes and (2) interview tasks” (p. 863). For instance, when 
students explicated that they learned a specific problem-solving approach from their mathe-
matics textbook. In short, beyond the traditional approach to measure the degree of transfer, 
to some extent we adopted the actor-oriented transfer approach by paying attention to pre-
vious learning derived from what they said during the interviews. While earlier studies on 
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actor-oriented transfer studied field notes taken in class to gain deeper insight into students’ 
previous learning situation, we only payed attention to what they said about previous learning 
in mathematics and physics class, and, to some extent, how algebraic skills were presented in 
their mathematics textbooks.  

1.1.1 Why Students Lack Transfer of Mathematics in Science Subjects 

There are at least four possible causes for the lack of transfer. In this study we focused on 
compartmentalized thinking (Osborne, 2013), teachers’ beliefs (Schoenfeld, 2014) about 
transfer, especially mismatches between naïve beliefs and those required for classroom prac-
tice, discrepancies between pedagogical approaches to how mathematics is learned in mathe-
matics class and applied in science class (Alink et al., 2012), especially mathematics and sci-
ence textbooks and mathematical proficiency (Kilpatrick, Swafford, & Findell, 2001), espe-
cially symbol sense behavior (Drijvers et al., 2011). Below we will elaborate upon these issues. 

Compartmentalized Thinking 
As to compartmentalized thinking, students may see mathematics and science subjects as 
unrelated subjects (Nashon & Nielsen, 2007). Compartmentalized thinking can be very per-
sistent: students who think they just started a completely new subject after they left the math-
ematics classroom and entered the physics classroom. This phenomenon is consolidated and 
intensified since in many countries those subjects are taught separately (SLO, 2019; Honey, 
Pearson & Schweingruber, 2014; ‘TIMMS & PIRLS’, 2019).  
 On the other hand, mathematics and science subjects are two different subjects. What 
we mean with ‘unrelated subjects’ is that students face difficulties because they do not un-
derstand the mathematics context in which the problems are embedded (Frykholm & 
Glasson, 2005). In this regard, Furner & Kumar (2007, p.186) state that “The separate  
subject curriculum can be viewed as a jigsaw puzzle without any picture. If done properly, integration of 
math and science could bring together overlapping concepts and principles in a meaningful way and enrich 
the learning context. Learning situated in such enriched (macro) contexts often lead to meaningful learning 
experiences”. How this can be done properly, is explained in the sections below.  

Teachers’ Beliefs about Transfer 
Transfer from mathematics to physics is indeed problematic, but very little is known about 
transfer of algebraic skills from mathematics to physics in senior pre-university education. 
Thus, we first need to examine this problem. Indeed, do teachers really acknowledge such a 
transfer problem involving algebraic skills, and what are their beliefs about aspects influencing 
transfer? These are relevant questions that can provide insight into this specific transfer prob-
lem involving algebraic skills. Therefore, a problem analysis involving interviews with math-
ematics and physics teachers in senior pre-university education is needed. The idea to ask 
teachers about their beliefs about transfer is no coincidence. Indeed, it is well-known that 
teachers’ beliefs strongly influence their behavior (Borg, 2015; Mansour, 2009; Schoenfeld, 
2014). Consequently, teachers’ beliefs about transfer influence their behavior on how they 
deal with transfer issues in teaching practice. For instance, a physics teacher who naïvely be-
lieves that a lot of practice in mathematics class with algebraic skills will automatically im-
prove transfer of these skills to physics class. They neglect insight (conceptual understanding) 
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Teachers’ Beliefs about Transfer 
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Thus, we first need to examine this problem. Indeed, do teachers really acknowledge such a 
transfer problem involving algebraic skills, and what are their beliefs about aspects influencing 
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lem involving algebraic skills. Therefore, a problem analysis involving interviews with math-
ematics and physics teachers in senior pre-university education is needed. The idea to ask 
teachers about their beliefs about transfer is no coincidence. Indeed, it is well-known that 
teachers’ beliefs strongly influence their behavior (Borg, 2015; Mansour, 2009; Schoenfeld, 
2014). Consequently, teachers’ beliefs about transfer influence their behavior on how they 
deal with transfer issues in teaching practice. For instance, a physics teacher who naïvely be-
lieves that a lot of practice in mathematics class with algebraic skills will automatically im-
prove transfer of these skills to physics class. They neglect insight (conceptual understanding) 
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in the underlying mathematics in physics problems and may soon find themselves re-teaching 
basic mathematics and become frustrated. Thus, naïve beliefs can impede transfer of learn-
ing. In addition, in many countries, science curricula are overloaded, compelling science 
teachers to fit their program into a seriously reduced instruction time (e.g., Lyons, 2006), 
making inefficient transfer of mathematics in physics even more harmful.  
 According to researchers, beliefs can be organized into a belief system containing a set 
of mutually supporting beliefs (e.g., Lumpe et al., 2012; Pajares, 1992). This is illustrated in 
figure 1, where the upper rectangle describing ‘View nature of mathematics’ represents a 
belief system (Ernest, 1991) containing a basis for the teachers’ espoused (mental) models of 
learning and teaching mathematics. These models are influenced by the constraints and op-
portunities of the powerful social context of teaching (the dashed rectangle in the middle) 
that is“a result of a number of factors including the expectations of others, such as students, their parents, 
fellow teachers and superiors” (Ernest, 1991, p. 290). Then, these espoused models are trans-
formed into classroom practice (enacted models). In figure 1, the enacted models are de-
picted by the three subsequent rectangles about ‘learning mathematics’, ‘teaching mathemat-
ics’ and ‘using mathematics texts’. In short, the upper two rows of rectangles are concerned 
with a teachers’ belief system, and the other rectangles with teaching practice. The distinction 
between espoused and enacted is essential, since earlier studies have shown that there can be 
a great disparity between both models (Brown & McNamara, 2011; Lloyd, Veal, & Howell, 
2016).  

Figure 1. Scheme describing how a teachers’ belief system is influenced by the social context of teaching.  
Adopted from Ernest (1991). 
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awareness of their belief systems, reflect on them and change naïve beliefs into desirable 
beliefs about transfer. For instance, a teacher who pays attention to basic algebraic skills and 
becomes aware of the importance of insightful learning for practicing algebraic skills in phys-
ics class.  
 We note that the model in figure 1 is greatly simplified. The relationships between the 
espoused and enacted models in relation with the social context are far more complex and 
far less mechanistic than in that model. The enacted models for example, are not separated 
from the social context of teaching, but embedded in it. And all espoused and enacted models 
are part of an interactive system. Moreover, “pressures at any point, such as in classroom practices, 
will feed-back and may influence all the other components” (Ernest, 1991, p. 291). 
 Unfortunately, transformations from naïve into desirable beliefs can be very tough to 
realize, since according to cognitive psychology changes in behavior are attributed to the struc-
ture of a belief system, and not to individual beliefs (Leatham, 2006; Misfeldt & Aguilar, 2016). 
The structure of a belief system is composed of several collections of beliefs with both var-
ying centrality and psychological strength. The strongest beliefs are the hardest to change. 
They are localized in the center and strongly connected to many other central beliefs. The 
more peripheral weak beliefs are founded and derived upon the central beliefs. According to 
Singletary (2012), the central and peripheral beliefs can be considered as a group of concen-
tric circles. The innermost circles with small radii contain the central beliefs and are gradually 
transforming into the outer circles with increasing radii containing weak peripheral beliefs. 

Mismatches in Pedagogical Approaches 
The discrepancies between pedagogical approaches between mathematics and science sub-
jects may be related to the content of textbooks, since in many countries including the Neth-
erlands, textbooks mediate between curricula (intended curriculum) and the actual teaching 
in classrooms (the implemented curriculum) (SLO, 2019; van Zanten & van den Heuvel-
Panhuizen, 2014). Most Dutch teachers follow them closely and teach them accordingly to 
their students. Thus, to a very large extent textbooks shape teaching practice (e.g., TIMMS 
& PIRLS, 2019). With respect to distinct pedagogical approaches in mathematics and science 
curricula, this may influence teachers and students. It might be the case that, for example, 
while a mathematics teacher applies the equation triangle (mnemonic) without insight to 
solve for 𝐶𝐶𝐶𝐶 in 𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵, a physics teacher solves for 𝑢𝑢𝑢𝑢 in the analogous expression 
𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶  in physics class using algebraic skills with insight. Such mismatches can be 
quite confusing for students, thereby impeding transfer (Alink et al., 2012; Quinn, 2013; 
Roorda, 2012).  

Lack of Symbol Sense Behavior 
Successful learning of mathematics and hence the application of mathematics in physics, 
depends on mathematical proficiency (Kilpatrick, Swafford, & Findell, 2001). Mathematical 
proficiency contains five intertwined strands. These are adaptive reasoning (capacity for lo- 
gical thought, reflection, explanation, and justification), strategic competence (ability to for-
mulate, represent, and solve mathematical problems), conceptual understanding (compre-
hension of mathematical concepts, operations, and relations), productive disposition (habi-
tual inclination to see mathematics as sensible, useful, and worthwhile, one’s own efficacy) 
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and procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently, and 
appropriately). These strands are illustrated in figure 2.  
 In algebraic problem-solving such as the two examples above, especially the third and 

last strands are of major importance (Bokhove, 2011; Drijvers, 2011, 2015). Together, they 
shape algebraic expertise that refers to algebraic skills with particular attention to procedural 
fluency in relation to conceptual understanding. In figure 3 (Drijvers et al., 2011, p. 22), it 
can be seen that algebraic expertise extends from basic algebraic skills to symbol sense. While 
basic algebraic skills involves basic procedures, symbol sense refers to algebraic skills with 
emphasis on conceptual understanding and involves the ability to consider an algebraic ex-
pression carefully, to identify its relevant aspects and to choose a wise systematic problem-
solving strategy based on these aspects. Symbol sense consists of “an intuitive feel for when to 
call on symbols in the process of solving a problem, and conversely, when to abandon a symbolic treatment for 
better tools” (Arcavi 1994, p. 25). On the concept level, basic algebraic skills involve procedural 
work with a local focus and algebraic reasoning. Symbol sense deals with strategic work with 
a global focus and attention to algebraic reasoning. Strategic work refers to a student who is 
in control of the work and tries to find a different systematic strategy when an approach 
appears to be inappropriate. Having a global focus is related to recognition of patterns in 
mathematical expressions or physics formulas. Algebraic reasoning is concerned with issues 
such as symmetry considerations. In this study we focus on the relationship between local 
and global, and procedural and strategic work during algebraic problem-solving in physics 
class.  

 
Figure 2. The five interwoven strands of mathematical proficiency. Adopted from Kilpatrick et al. (2001). 
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Figure 3. Algebraic expertise as a spectrum ranging from basic skills to symbol sense. From Drijvers et al. (2011, p. 22). 

Through examples, Arcavi (1994) described eight symbol sense behaviors, showing the 
close relationship between basic algebraic skills and insight. With respect to algebraic prob-
lem-solving, behavior number six, i.e. flexible manipulation skills is of major importance and 
deals with being in control of the work and have the ability to flexibly manipulate expressions 
(both technical and with insight). Flexible manipulation skills contains the two intercon-
nected components having a gestalt view on algebraic expressions and dealing in an appro-
priate way with their visual salience (Kirshner & Awtry, 2004; Wenger, 1987). While the for-
mer component includes “the ability to consider an algebraic expression as a whole, to recognize its 
global characteristics, to ‘read through’ algebraic expressions and equations, and to foresee the effects of a 
manipulation strategy” (Bokhove & Drijvers, 2010, p. 43), visual salience deals with visual cues 
of algebraic expressions. Moreover, visual salience consists of pattern salience that is related 
to sensitivity towards patterns in algebraic expressions, for example, cancelling out common 
factors and local salience relating to sensitivity towards local algebraic symbols, i.e. visual 
attractors such as fractions, square root signs, and exponents, for example, expanding brack-
ets. In short, flexible manipulation skills plays a key role in algebraic problem-solving in 
mathematics and science class where mathematics is applied. Improving flexible manipula-
tion skills and thus symbol sense behavior involves sufficient sensitivity towards local sali-
ence and pattern salience of algebraic expressions during algebraic problem-solving.  

Furthermore, in this study we distinguish between ‘systematic algebraic strategies’ (or 
‘systematic algebraic approaches’) and the application of ‘ad hoc strategies’ (‘ad hoc ap-
proaches’). With ‘systematic algebraic approaches’ we refer to using a systematic, rule-based 
problem-solving approach where algebraic skills are used with insight, where ‘rule’ refers to 
the standard rules for multiplication and division of powers, such as 𝑦𝑦𝑦𝑦a ∙ 𝑦𝑦𝑦𝑦b = 𝑦𝑦𝑦𝑦a+b, that 
play the role of algebraic axioms in high school algebra. In short, in this study using system-
atic algebraic strategies are associated with applying algebraic skills systematically and cor-
rectly.  

As a working definition of ‘ad hoc approaches’ we use mathematical strategies that are 
not based on standard algebraic rules with insight. They only work for a specific case, and 
may lead to fragmented knowledge, impeding generalization of algebra. In more sophisti-
cated problems where insight is needed rather than ad hoc strategies, students may get stuck. 
Also, using them depends on the approval of an authority such as a teacher or a textbook. 
On the other hand, they can be useful as initial attempts to solve a problem (Roorda, 2012). 

Algebraic expertise 
 

Basic algebraic skills Symbol sense 
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In this study, applying ‘systematic algebraic strategies’ becomes visible through the appli-
cation of algebraic skills during procedures involving basic algebraic skills and having a gestalt 
view on algebraic expressions and dealing with their visual salience. Accordingly, the word 
successful in the title of this thesis refers to the application of systematic algebraic strategies 
during algebraic problem-solving in physics. Furthermore, the term successful (see title of this 
thesis) was operationalized by measuring both the extent to which students demonstrated 
symbol sense behavior and the degree to which they used basic algebraic skills correctly.  

1.1.2 Coherent Mathematics and Science Education 

A remedy for overcoming the aforementioned aspects underlying the lack of transfer inclu- 
ding compartmentalized thinking, teachers’ naïve beliefs, discrepancies between pedagogical 
approaches in mathematics and physics textbooks, and lack of symbol sense behavior may 
be coherent mathematics and science education (CMSE) (e.g., Berlin & White, 2012, 2014; 
Mooldijk & Sonneveld, 2010; National Academies Press, 2019; Ríordáin et al., 2016). Indeed, 
like in the interdisciplinary Science Technology Engineering and Mathematics education, or 
STEM in short (van Breukelen, 2017; National Science and Technology Council, 2013; SLO, 
2019; ‘TIMMS & PIRLS’, 2019), mathematics lies at the heart of the CMSE approach. This 
approach aims at connection between mathematics and science education through alignment 
of various aspects such as notations, concept descriptions, pedagogical approaches and the 
organization of the learning process in order to establish a logical learning line across both 
subjects.  
 There is a close relationship between CMSE and transfer (e.g., Alink et al., 2012; Roorda, 
2012), for CMSE is based on the traditional transfer paradigm in which mathematics (initial 
learning situation) is applied in other subjects (new learning situation) (Alink et al., 2012; 
Larsen-Freeman, 2013; Leberman et al., 2016).  
 The terms ‘coherent’ and ‘alignment’ above can have different meanings in different stud-
ies (Roorda, 2012). First of all, ‘coherent’ may be an essential part of the following constructs 
(1) ‘coherent profiles’, (2) ‘coherent education’ and (3) ‘coherent knowledge’ that share the
term ‘coherent’. According to van den Akker (2004), however, they may refer to different
levels of the curriculum. The first refers to the curriculum (We note that there are 4 profiles
in the Netherlands. Concerning this study, only two of the 4 profiles are relevant and contain
a certain combination of mathematics and science subjects that will be explained in the fol-
lowing sections), the second to what has been implemented, and the third to what has been
achieved. In this study we follow the line of Roorda (2012). When we refer to ‘coherence
between mathematics and science subjects’, we refer to number (2). In other words, teachers
or textbook publishers connecting both subjects in terms of aforementioned alignment
through various aspects. When we use ‘coherence’ in relation with students, we refer to the
achieved level, i.e. the extent to which students experience coherence across both subjects
(e.g., Frykholm & Glasson, 2005; Furner & Kumar, 2007; Mooldijk & Sonneveld, 2010). This
may become visible when students are aware of the intimate relationship between both sub-
jects. In this regard, the tools provided in mathematics class may become a versatile, widely
applicable machinery to tackle problems in science class. Conversely, their awareness of sci-
ence as a meaningful context in which mathematics can be applied, can contribute to the
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transfer of mathematics in science subjects, especially in physics. Therefore, students who 
experience coherence across both subjects is of major importance for transfer. Furthermore, 
we assume a reciprocal relation between CMSE and transfer. When students experience co-
herence across mathematics and science subjects, transfer from mathematics to science sub-
jects can be improved, and vice versa, improving transfer helps can help them to experience 
coherence between these subjects. 
 Beyond ‘coherent’ and ‘alignment’, another term that may need further explanation is 
‘integration’. With the latter we refer to any attempt to connect both subjects by means of 
the three levels above. Furthermore, the integration of both subjects might encompass teach-
ing in which, for instance, mathematics is entirely used as a language and tool for science 
subjects, or science subjects that are entirely part of mathematics (Furner & Kumar, 2007). 
Teachers may have different beliefs on how they think about integration of both subjects. In 
short, ‘integration’ is used as a construct to denote the entire set of attempts to connect both 
subjects across the three levels identified by Van den Akker (2004).  

1.2 Aim and Relevance of The Study 

In this study we aim to improve upper secondary education students’ transfer of algebraic 
skills from mathematics into physics. This goal is guided by the central research question 
“How can the transfer of algebraic skills from mathematics into physics be improved for solving algebraic 
physics problems that occur in upper secondary education?”. To answer this question, we conducted 
five studies. The first three were follow-up studies researching (1) teachers’ beliefs, (2) teach-
ers’ core beliefs and (3) teachers’ belief systems. Among other things, these three studies 
involved aforementioned compartmentalized thinking, naïve beliefs and mismatches in ped-
agogical approaches in mathematics and physics class. Also, actors such as teachers and text-
books that may play a role in CMSE were involved. During study (4), we examined students’ 
symbol sense behavior during algebraic problem-solving in physics, and in study (5) the ef-
fectiveness of activation of prior mathematical knowledge during algebraic problem-solving 
in physics. In study (5) we also studied symbol sense behavior.  

Even though there is research on transfer focusing on the application of mathematics to 
science (e.g., Karam, 2014; Potgieter, Harding, & Engelbrecht, 2008; Roorda, Goedhart, & 
Vos, 2014), our extensive literature research with web-search engines such as Google Scholar 
and ProQuest on scholarly articles revealed that the relationship between transfer of algebraic 
skills and the other issues above have not been studied before. We already explained why 
studying transfer in relation with teachers’ beliefs was essential in this study. This also applies 
for the role of symbol sense behavior. Below, we will briefly discuss each of these studies.  

The first study (1) may offer a continuum of beliefs about aspects influencing transfer. 
Sufficient insight into such beliefs may help reduce physics teachers focus on science content 
rather than spending extra time on re-teaching mathematics and become frustrated. They 
may also enhance students’ transfer and help them to experience coherence between these 
subjects. 

Study (2) is a follow-up study that aims at reducing large amounts of data into a small set 
of core beliefs that contain constraints including naïve beliefs that are harmful for transfer and 
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affordances that improve transfer. In other words, such a set aimed to provide the essence of 
the large amounts of data about teachers’ beliefs. Instead of focusing on large amounts of 
data, one may also focus on the set of major aspects that influence transfer. Conversely, the 
large amount of data from study (1) is the result of aforementioned problem analysis to ex-
amine whether teachers indeed acknowledged specific transfer problems involving algebraic 
skills to physics, and to gain insight into the various aspects that influence transfer.  
 To reduce data from study (1), we used pattern coding that in many textbooks is de-
scribed in a general way (e.g., Saldaña, 2013). Contrary to such a general approach, we in-
tended to use this second cycle coding technique in a more systematic and refined manner. 
We especially aimed to develop a specific approach to further reduce code trees including 
large amounts of data. This study also functions as ‘a bridge’ between the first and the third 
study. In short, beyond a study on teachers’ core beliefs, our purpose was to develop a sys-
tematic and refined method to reduce the code tree containing large amounts of coded data, 
since this was not present in earlier studies. In addition, if we would have aimed at combining 
study (2) and study (1) into a single study, it was considered as too large by peer-reviewed 
international Journals on science education.    

Study (3) investigated whether and to which extent there is the possibility to extract belief 
systems that might contain naïve and desirable beliefs from the set of core beliefs above. We 
have already seen how naïve beliefs (espoused models) are transformed in teaching practice 
(enacted models) that may be harmful for how students deal with the application of algebraic 
skills in physics problems. Therefore, it is important that such belief systems containing naïve 
beliefs are known. Then, for instance, well-informed mathematics and science teacher edu-
cators can use professional teaching programs (Guskey, 2002) to make mathematics and sci-
ence teachers aware of their belief systems (espoused models), reflect on them and change 
naïve beliefs into desirable beliefs that enhance transfer after they are transformed into be-
havior, for instance, teaching practice involving pedagogical strategies that improve transfer 
(enacted models). Otherwise, because of the powerful socialization effect in school (see fig-
ure 1), teachers are often observed to stick to the same ineffective classroom practice (Brown 
& McNamara, 2011). In addition, contrary to Ernest (1991) who theoretically clustered (cate-
gorized) teachers into social groups based on their belief systems, we empirically examine the 
possibility to cluster teachers based on their belief systems about CMSE and transfer. With 
a cluster, we mean a group of teachers that have similar belief systems. We also research 
whether the belief system model from cognitive psychology including the strong central and 
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been considered too large for publication in peer-reviewed international science Journals. 
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of transfer from mathematics in science subjects are under researched. Students having a 
solid grasp of mathematics, but facing difficulties in applying this subject in physics, is even 
highly under researched. This study may provide insight into the underlying mechanisms of 
such students’ problem-solving in physics in which symbol sense is involved.  

Study (5) was based on insights from the previous four studies in which compartmental-
ized thinking, teachers’ beliefs about transfer, mismatches between pedagogical approaches 
in mathematics and physics textbooks, and symbol sense behavior are viewed together. Those 
areas of research were not studied together before. We used the CMSE approach (e.g., 
Frykholm & Glasson, 2005; Furner & Kumar, 2007; Berlin and White, 2012, 2014) to bring 
together these areas and combat the lack of transfer. Besides providing new insights about 
transfer, especially the traditional transfer perspective in those areas of research, it can also 
contribute to the evaluation of both transfer framework. To some extent, this also applies 
for the actor-oriented transfer approach, since this view was only used to gain insight into 
what students said about previous learning during the interview. Furthermore, this is the first 
time that shift-problems (Palha, Dekker, Gravemeijer, & van Hout-Wolters, 2013) are exam-
ined outside mathematics education to gain deeper understanding of students’ mathematical 
problem-solving abilities, especially algebraic problem-solving in physics. Beyond providing 
information about the usability of shift-problems in physics education, the transformation 
of insights from the previous four studies into small interventions (among other insights we 
used activation of prior mathematical knowledge) on tasks in textbooks can provide practical 
and scientific knowledge about using algebraic skills with insight.  

Furthermore, the studies above can offer insights that are of importance for the interna-
tional mathematics and science audience. These involve curricula, textbooks, individual 
mathematics and physics teachers, collaboration between them, and mathematics and science 
teacher educators aiming at students’ transfer of mathematics in physics and help them to 
experience coherence between these subjects.  

1.3 Context of The Study 

The researchers in this study were all affiliated with the mathematics and science teacher 
education program of Delft University of Technology that is located in the Netherlands. 
Thus, we approached Dutch secondary schools rather than those from another country. We 
discuss the Dutch context in relation to education, especially that of secondary education 
that consists of three lower years and three upper years. In the Netherlands upper secondary 
education is used for both senior general secondary education and senior pre-university ed-
ucation. In this study upper secondary education refers to senior pre-university education 
that starts in grade 10. For this and stylistic reasons we used the terms senior pre-university 
education and upper secondary education interchangeably to denote the same.  

According to the OECD (2018), the Netherlands is considered as an advanced industrial 
nation where both mathematics and science education are high on the governmental agenda 
(Ministry of Education, Culture and Science, 2018). Internationally, Dutch students in upper 
secondary education score accordingly on mathematics and science assessments, including 
assessments on physics (‘TIMMS & PIRLS’, 2019).  

1.3 Context of  The Study
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Pre-university education in the Netherlands consists of three lower years (junior pre-
university education) and three senior years. Senior pre-university education, also referred to 
as ‘Tweede Fase’, starts in grade 10 (when they are 15 or 16 years old) where students have 
to choose between the four profiles ‘Culture and Society’, ‘Economics and Society”, ‘Nature 
and Health’ and ‘Nature and Technic’ (SLO, 2019). In this study we focus on the latter two 
profiles in which both science subjects are involved. As for physics students, the main dif-
ference between both ‘Nature’ profiles is that ‘Nature and Health’ students follow mathe-
matics A, and the other students mathematics B. While mathematics A includes algebraic 
skills, there is a major focus on applied calculus, stochastics and statistics. Mathematics B 
focusses on analysis, geometry, algebra and algebraic skills, formulas and equations and math-
ematical thinking activities. We conclude that mathematics B puts much more emphasis on 
algebraic skills than mathematics A. Moreover, the latter subject is mainly appropriate for 
students who aim to follow economical or biomedical sciences after they finished secondary 
education, and mathematics B for students who aim to study STEM subjects. 

The idea behind these profiles is threefold and includes providing students a broad ge- 
neral development, creating coherence between the school subjects in a profile, and offering 
students a more independent way of learning that fits better with the working method in 
higher education. This second purpose is also related to enhancement of students’ transfer 
(Alink et al., 2012). However, until now several studies of the SLO (2019) have shown that 
the connection between subjects of the ‘Nature’ profiles has been realized to a very limited 
extent, i.e. mathematics has remained an unrelated subject.  

1.3.1 Mathematics in Dutch Pre-university Education  

Even though there is difference in emphasis on algebra in mathematics A and mathematics 
B, the algebra in these curricula is considered to be sufficient to tackle algebraic problems in 
physics class (SLO, 2019). Yet, some teachers think that mathematics B should be compul-
sory for physics students. Quantitative research is needed to generalize this belief for the 
Dutch context. Moreover, the content of these subjects is determined by aforementioned 
curricula that describe the general educational core goals and the more specific standards. 
These core goals and standards are tested in national final examinations.  

The algebraic skills in both curricula mainly focus on algebraic activity involving, for ex-
ample patterns of relationships between numbers, implicit or explicit generalizations, and 
mathematical operations with variables, formulas and expressions (Drijvers, 2011). While a 
formula refers to algebraic expressions with real measurable quantities such as pressure, an 
expression can be a formula or an abstract algebraic expression with abstract mathematical 
variables (placeholders). 

The algebraic skills described in mathematics curricula refer to the entire set of mathe-
matical activities above. Moreover, algebraic skills are divided into specific skills that is close 
to basic algebraic skills and general skills that are close to symbol sense behavior.  

An essential part of algebraic skills that are described in the mathematics curricula and 
widely used in mathematics class are algebraic techniques (Drijvers, 2011). They are used to 
manipulate expressions. Some examples of algebraic techniques are ‘substitution of variables’ 
and ‘division of both sides’. Therefore, algebraic techniques play a key role in this study.  
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Concerning connection between these curricula with the science curriculum, especially 
with physics, there is no explicit reference to alignment through, for example pedagogy of 
mathematical approaches. This also applies for the organization of the learning process in 
order to achieve a logical learning line across both subjects. In practice, however, certain 
mathematical concepts are used in physics class before they were introduced in mathematics 
class (Alink et al., 2012). As a consequence, the lack of alignment across these subjects may 
be confusing for students and impede both transfer and help them experiencing coherence 
between these subjects (e.g., Berlin & White, 2012, 2014; Mooldijk & Sonneveld, 2010; Rí-
ordáin et al., 2016).  

1.3.2 Physics in Dutch Pre-university Education 

Students in the Netherlands start with physics in grade 8. In this year, there is a strong con-
text-concept approach in physics textbooks (e.g., van Bemmel et al. 2013), the number of 
formulas describing physical quantities is negligible, and algebraic skills to manipulate for-
mulas are rarely used. In grade 9, there is again a context-concept approach in textbooks 
where formulas are used more frequently (e.g., Alkemade et al., 2014), but still, the level of 
algebraic skills required is still low. In grade 10, immediately after the transition from LSE to 
upper secondary education the intended level of algebraic skills increases substantially (e.g., 
Ottink et al., 2014). Furthermore, contrary to upper secondary education, the curricula for 
grade 8 and 9 of LSE are not described in curricula and tested in national final central exam-
inations, leaving textbook publishers much room for shaping their content. As a conse-
quence, the discrepancies between content of different textbooks written for the same grade 
can be large. This does not apply to the curricula in upper secondary education which are 
tested in national final examinations.  

The physics formulas used in upper secondary education are symbolic representations of 
usually proportionalities that consist of real, measurable quantities. For instance, whereas the 
kinetic energy 𝐸𝐸𝐸𝐸kin = 1

2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2 is proportional to the quantities 𝑚𝑚𝑚𝑚 and (𝑣𝑣𝑣𝑣final)2, the

centripetal force 𝐹𝐹𝐹𝐹C = 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
 is inversely proportional to 𝑟𝑟𝑟𝑟. These formulas in algebraic

physics problems and the algebraic skills needed to solve them are described in the physics 
curriculum (SLO, 2019). In addition, these formulas can also be found in BINAS, a natural 
sciences information booklet that students use during regular physics tests and the final ex-
amination. Over the last few years, physics problems for which solution algebraic skills are 
needed have become more important in senior pre-university education. They contain alge-
braic curve straightening, dimensional analysis and derivation of formulas. Moreover, solving 
algebraic physics problems correctly requires mathematically correct procedures with suffi-
cient algebraic expertise including basic algebraic skills and symbol sense behavior.  

1.4 Research Questions and Methodologies 

In figure 4 we illustrated the dissertation flow chart including the five explorative studies that 
we have conducted. The dashed arrows between the studies (1), (2) and (3) indicate that these 1.4 Research Questions and Methodologies
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are follow-up studies investigating teachers’ beliefs. The bold arrow from the three follow-
up studies and the bold arrow from study (4) pointing to study (5) indicate that insights from 
these four studies are used to design and conduct study (5). In the previous sections, we have 
explained the logic behind the arrows. Below, we will elaborate upon these studies by de-
scribing their research questions and their corresponding methodologies.       

Figure 4. Dissertation flow chart of our five studies. 

In the qualitative study (1) we examined the two sub questions (1a) “How do mathematics 
and physics teachers characterize the transfer problem in the case?”, and (1b) “What sort of beliefs do 
mathematics and physics teachers’ beliefs have about improving students’ transfer of algebraic skills from 
mathematics into physics for solving algebraic problems that occur in senior pre-university education?”. While 
question (1a) was asked to check whether teachers acknowledged this type of transfer prob-
lem, question (1b) aimed to gain insight into the various aspects that influence transfer. To 
answer these questions, we selected 10 mathematics and 10 physics teachers using conven-
ience sampling (Bryman, 2015), i.e. they should be available and willing to participate in this 
study. These teachers were interviewed by means of a semi-structured questionnaire includ-
ing a concrete case about a student transfer problem. The interviews were transcribed ver-
batim and analysed using open and axial coding to obtain a hierarchical code tree.  
 Study (2) examined the research questions (2a) “How can a systematic, refined method be devel-
oped to reduce code trees of coded data into a single dataset?” and (2b) “What are the core beliefs of mathe-
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In the quantitative study (3) we studied the research question (3) “What are the belief systems 
of mathematics and physics teachers about improving students’ transfer of algebraic skills from mathematics 
into physics for solving algebraic problems that occur in senior pre-university education?”. For this purpose, 
we designed a webpage to conduct an online survey among 503 mathematics and physics 
teachers in the Netherlands. Next, we carefully converted the dataset including 16 core be-
liefs of study (2) into 16 claims. During this process we used the six functions of language of 
Jakobson to make sure that all claims were phrased clearly (Hébert, 2011). These claims were 
incorporated in an online multi-criteria assessment tool that we have developed, since no 
such tool was available. We asked the teachers to select their top five claims, and distribute 
50 points over these claims, thereby identifying their belief system. The teachers were se-
lected by means of self-selection sampling (Bryman, 2015). After they selected their top 5, 
we used the clustering technique agglomerative hierarchical clustering (AHC) (Everitt & 
Dunn, 2001) to categorize teachers based on their belief systems.  

Study (4) concerned a qualitative study with a quantitative component in which we in-
vestigated the research question (4) “To what extent do students in upper secondary education demon-
strate symbol sense behavior when solving algebraic physics problems?”. To gain insight into their symbol 
sense behavior during algebraic problem-solving in physics, we used convenience sampling 
to select 6 students who were available and willing to participate in this study; three of them 
from a regular school A, and three of them from a regular school B. Based on the Dutch 
ten-point grading system, these students had a sufficient mathematics grade and an insuffi-
cient physics grade (< 5.5). This grade criterion was to ensure that students’ difficulties with 
algebraic physics problems were mainly because of insufficient application of basic algebraic 
skills in physics, and not related to a lack of basic mathematics.  

Following Bokhove & Drijvers (2011), we designed tasks that should trigger students to 
solve algebraic physics problems and provide insight into their algebraic expertise including 
basic algebraic skills and symbol sense behavior. Next, we conducted task-based interviews 
among these students who were videotaped while problem-solving and thinking aloud. Both 
videotaped data and students’ work were analysed using the seven consecutive phases pro-
posed by Powell et al. (2003). For the operationalization of our research question we used a 
coding scheme. The coding process was based on analyzing videotaped episodes, the tran-
scripts of the audio part of videotaped data, and the students’ written solution set (students’ 
work) to the tasks. Their solution set was compared to our systematic solution set, coded 
using our coding scheme and assigned to a score. This score was a measure for the extent to 
which students demonstrated symbol sense behavior and the degree to which they used basic 
algebraic skills correctly during algebraic problem-solving in physics class. Therefore, this 
score was also a measure for the degree to which students successfully transferred algebraic 
skills from mathematics to physics. We adopted the traditional view on transfer (Leberman 
et al., 2016), since we were interested in to the degree to which students used a systematic, 
rule-based problem-solving approach in which algebraic skills were used with insight. Hence, 
we compared the students’ solution sets to our systematic solution set that contained the 
operationalized systematic algebraic strategies in terms symbol sense behaviour and basic 
algebraic skills above. Beyond the traditional approach to measure the degree of transfer, to 
some extent we adopted the actor-oriented transfer approach by paying attention to previous 
learning derived from what they said during the interviews. For instance, whether they 
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explicated that they learned a specific problem-solving approach from their mathematics 
textbook (previous learning situation). So, the actor-oriented transfer approach was only used 
to gain insight into their previous learning situation, and not to measure the degree of trans-
fer.  

Furthermore, the design of our solution set was based on previous studies stating that 
algebraic skills should not prioritise basic skills or insight, but incorporate both basic alge-
braic skills and insight (e.g., Bokhove, 2011; Drijvers et al, 2011). Therefore, both basic alge-
braic skills and symbol sense behavior were explicitly worked out in the systematic solution 
set. We note that we obtained this insight also independently from the studies on teachers’ 
beliefs.  

For the qualitative study (5) containing a quantitative component we examined the re-
search question (5) “How can activation of prior mathematical knowledge be used effectively 
to improve students’ symbol sense behavior in upper secondary education when solving al-
gebraic physics problems?”. We divided this question in two sub questions: (5a) “To what 
extent do students in upper secondary education demonstrate symbol sense behavior when solving algebraic 
physics problems that occur in their physics textbooks?” and (5b) “To what extent do students in upper 
secondary education demonstrate symbol sense behavior when solving the same algebraic physics problems that 
occur in their physics textbooks after activation of prior mathematical knowledge?”. To gain insight into 
their symbol sense behavior during algebraic problem-solving in physics, we again used con-
venience sampling to select 3 students who were available and willing to participate in this 
study. We selected students having a sufficient mathematics grade and an insufficient physics 
grade (< 5.5). Based on the iterative 3D-principle (Palha, Dekker, Gravemeijer, & van Hout-
Wolters, 2013) that will be explained in chapter six, we designed new tasks that contained 
different physics contexts than those in study (4). Again, these tasks should trigger students’ 
algebraic problem-solving in physics and provide insight into their algebraic expertise. Next, 
in light of sub question (5a), students solved these tasks while being videotaped and thinking 
aloud (round 1). Two weeks later, we carried out small interventions by presenting the same 
problems as shift problems to them. Again, we asked students to solve these problems while 
being videotaped and thinking aloud (round 2).  

For the design of shift-problems we used insights from the studies on teachers’ beliefs 
about transfer and insights from study (4). From the studies on teachers’ beliefs we especially 
used the importance of activation of prior mathematical knowledge. The latter provided al-
gebraic hints at the start of these tasks to improve students’ systematic problem-solving abil-
ities, in particular symbol sense behavior. The other important insight that we used from the 
studies on teachers’ beliefs was combined with insights from the study on symbol sense be-
havior. We addressed that algebraic skills, especially algebraic techniques should be applied 
in a similar way to how these were learned in their mathematics textbooks (Reichard et al., 
2014). Other relevant insights from the studies (1) through (4) are explained in detail in later 
chapters.  

Concerning data analysis, except for using different tasks and thus a different systematic 
solution set to assess students’ solutions, our analysis was similar to that of study (4). After 
students’ work of both rounds were analysed and assigned to a score, we examined the ef-
fectiveness of our intervention by checking to which extent their basic algebraic skills and 
symbol sense behavior were improved. Similar to study (4), this score was also a measure for 
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the extent to which students successfully transferred algebraic skills from mathematics to phys-
ics. Since we compared students’ work to our systematic solution set, transfer was viewed 
through the lens of the traditional perspective (Leberman et al., 2016). Again, the degree to 
which transfer occurred, was measured by determining the extent to which students demon-
strated symbol sense behavior and the degree to which they used basic algebraic skills cor-
rectly during algebraic problem-solving in regular physics textbooks. As in the previous study 
(4), our second lens, i.e. the actor-oriented transfer approach did not influence this score, for 
it was only used to gain insight into what students said about previous learning. 

Furthermore, to check reliability of our results, the analysis of each study was carried out 
independently by several researchers including the first and second authors, and cross-
checked afterwards. Discrepancies between results were always discussed and if required, 
adjustments in those areas were made. This led to 100% agreement on the results among the 
researchers. 

1.5 Dissertation Outline 

This dissertation contains seven chapters. Except for study (5) in Chapter 6, Chapter 2 
through 5 are adapted from international journals. For this reason, there can be some overlap 
in texts between chapters. These chapters with studies are depicted in table 1 above. As can 
be seen, in Chapter 2 we present study (1). Chapter 3 is concerned with study (2) and Chapter 
4 deals with study (3). In Chapter 5 we present study (4). Finally, in Chapter 7 we present the 
general conclusion and discussion of this study.  

Table 1. Dissertation outline including chapters and corresponding studies. 

C ST Rationale RQ Participants  Data collection 
S T I L OS Q TBI 

1 General introduction 

2 (1) Teachers’ beliefs about improving transfer 1a, 1b • • • • 
3 (2) Teachers’ core beliefs about improving transfer 2 •
4 (3) Teachers’ belief systems about improving transfer 3 • • • • • 
5 (4) Students’ symbol sense behavior during problem-

solving in physics
4 • • • • • • 

6 (5) Activation of prior-knowledge during problem-
solving in physics

5a, 5b • • • • • • 

7 General conclusion and discussion 

C = chapter; I = interview; L = literature; OS = online survey; Q = questionnaire; RQ = research question;  
S = student; ST = study; T = teacher; TBI = task-based interview. 
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2.1 Introduction 

Internationally, educational experts, teachers and policy makers have stressed the need to 
integrate - or at least to make connections - between mathematics education and science 
education (Berlin & White, 2012, 2014; Frykholm & Glasson, 2005; Furner & Kumar, 2007). 
As part of coherent mathematics and science education (CMSE), the United States’ NCTM 
(2000) states that students should be able to transfer their knowledge of mathematics in dif-
ferent contexts outside mathematics. However, research has shown that students encounter 
mathematical difficulties in science subjects, implying a lack of transfer between these sub-
jects (Cui, 2006; Karakok, 2009; Roorda, 2014).  
 Although researchers use different notions of transfer (e.g. Akkerman & Bakker, 2011;, 
2006; Karakok, 2009; Roorda et al., 2014; Tuomi-Gröhn & Engeström, 2003), as described 
in the previous chapter, one can safely say assert that transfer from mathematics to physics 
is indeed problematic. However, very little is known about transfer of algebraic skills from 
mathematics to physics in senior pre-university education. Therefore, we first need to exam-
ine whether teachers really acknowledge such a transfer problem, and what their beliefs are 
about aspects that influence transfer in this area of research. These are major questions about 
this specific transfer problem. This legitimizes conducting a problem analysis involving in-
terviews with mathematics and physics teachers in senior pre-university education. Asking 
teachers about their beliefs about transfer of algebraic skills from mathematics to physics in 
senior pre-university education is important, since it is well-known that teachers’ beliefs 
strongly impact their behavior (e.g., Borg, 2015; Schoenfeld, 2014). Consequently, teachers’ 
beliefs about transfer impact their behavior on how they deal with transfer issues in teaching 
practice. For instance, a physics teacher who naïvely thinks that a lot of practice in mathemat-
ics lessons with algebraic skills will automatically improve transfer of these skills to physics 
lessons. Since they neglect insight into the underlying mathematics in physics problems, they 
soon find themselves re-teaching basic mathematics, leaving less time for their core business 
of teaching physics. In short, naïve beliefs can impede transfer in physics class. In addition, 
in many countries, science curricula are overloaded, compelling science teachers to fit their 
program into a seriously reduced instruction time (e.g., Lyons, 2006), making inefficient 
transfer of mathematics in physics even more harmful. Furthermore, in recent years, physics 
problems for which solution mathematics such as the application of algebraic skills is needed, 
have become more important in upper secondary physics education (grade 10, 11 and 12 of 
pre-university education). Therefore, examining this transfer phenomenon is relevant from 
both educational and scientific point of view.  

2.1.1 Research Aim and Research Questions 

This paper aims to report the findings of a qualitative study on mathematics and physics 
teachers’ beliefs about improving transfer of algebraic skills from mathematics into physics. 
Two research questions will be answered: (1a) How do mathematics and physics teachers characterize 
the transfer problem in the case?, and (1b) What sort of beliefs do mathematics and physics teachers’ beliefs 
have about improving students’ transfer of algebraic skills from mathematics into physics for solving algebraic 
problems that occur in senior pre-university education?  

2.1 Introduction
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These teachers’ beliefs can be organized into a belief system (Ernest, 1991), which con-
tains a set of mutually supporting beliefs. In this study we investigate the individual beliefs, 
rather than belief systems. As a working definition of ‘belief’ we used quotes such as “In my 
opinion..”, “I believe..’”, “I think..” (Pajares, 1992). 

2.2 Background 

2.2.1 Coherent Mathematics and Science Education (CMSE) 

Mathematics and science are closely connected (Atiyah, 1993). Mathematics provides the 
tools by which quantitative relationships in science subjects can be represented, modeled, 
calculated and predicted. Science offers meaning to mathematics by means of rich and rele-
vant contexts in which mathematics can be applied (Dierdorp, Bakker, van Maanen, & 
Eijkelhof, 2014). Education that has the aim to foster this connection forms the basis of 
CMSE and is of vital importance for students (Berlin & White, 2012, 2014). Connecting 
these subjects is possible through alignment, such as using compatible notations, concept 
descriptions and pedagogy of mathematical methods. Sufficient attention for the connection 
between mathematics and physics may improve students’ transfer of algebraic skills to phys-
ics and strengthen the extent to which students experience coherence across both subjects 
(e.g., Frykholm & Glasson, 2005; Furner & Kumar, 2007). 

Another way to connect both subjects is through organization of the learning process in 
order to achieve a logical learning line across both subjects. In practice, unfortunately, it still 
happens that certain mathematical concepts are used in physics class before they were intro-
duced in mathematics class (Alink, Asselt, & Braber, 2012).  

The CMSE approach is based on traditional transfer of learning (Singley & Anderson, 
1989): application of knowledge learned in a one situation (initial learning) to a new situation. 
Haskell (2001) states that this is universally accepted as the ultimate aim of teaching. Within 
this model the expert (teacher) determines whether transfer occurs or not. However, ‘there 
is little agreement in the scholarly community about the nature of transfer, the extent to 
which it occurs, and the nature of its underlying mechanisms.’ (Barnett & Ceci, 2002, p. 612). 
Hence, there has been a shift from traditional to alternative models, such as actor-oriented 
transfer. Within this framework the expert tries to understand the process in which the actor 
(student) constructs similarities between the initial learning situation and the new situation 
(Lobato, 2003). The extent to which transfer occurs moves from the experts’ to the actors’ 
point of view.     

2.2.2 Belief Systems and Classroom Practice 

Beliefs play a critical role in organizing knowledge and information and have a major impact 
on behavior (Ernest, 1991; Pajares, 1992). As stated earlier, beliefs can be organized into a 
belief system containing a set of mutually supporting beliefs (e.g., Lumpe et al., 2012; Pajares, 
1992). Ernest’s (1991) model describing the relation between a belief system and classroom 
practice is illustrated in figure 1 in Chapter 1. The upper rectangle describing ‘View nature 
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of mathematics’ represents a belief system (Ernest, 1991) containing a basis for the teachers’ 
espoused (mental) models of learning and teaching mathematics. These espoused and en-
acted models are influenced by the dashed rectangle in the middle including constraints and 
opportunities of the powerful social context of teaching that is “a result of a number of factors 
including the expectations of others, such as students, their parents, fellow teachers and superiors” (Ernest, 
1991, p. 290). These espoused models are transformed into classroom practice (enacted mod-
els). In figure 1, the enacted models are displayed by the three rectangles ‘learning mathe-
matics’, ‘teaching mathematics’ and ‘using mathematics texts’. So, while the upper two rows 
of rectangles represent a teachers’ belief system, the lowest two rectangles are concerned 
with classroom practice. The distinction between espoused and enacted is essential, since 
case studies have shown that there can be a great disparity between both models (Brown & 
McNamara, 2011; Lloyd, Veal, & Howell, 2016). In this study the espoused models in figure 
1 may refer to, for instance teachers’ naïve beliefs (Schoenfeld, 1985) about transfer which is 
harmful for transfer in teaching practice (enacted models). To change such naïve beliefs into 
desirable beliefs about transfer, teachers have to be aware of the relation between their beliefs 
in relation with classroom practice (Ernest, 1991), reflect on them and reconcile their es-
poused and enacted beliefs. 

2.2.3 The Unifying Role of Mathematics 

Naïve beliefs about transfer may be related to beliefs about the unifying role of mathematics, 
i.e. the fact that similar expressions and formulas used in different contexts outside mathe-
matics can be reduced to the same abstract mathematics (Atiyah et al., 2010), beliefs about
drilling of basic algebraic skills (Wu, 1999), such as adding fractions, substitution and com-
pleting the square (Drijvers, 2011), and beliefs about automatic transfer. The latter refers to.
teachers who think that transfer of mathematics to science happens automatically as long as
students practice a lot in mathematics class. However, such beliefs do not consider concep-
tual understanding (Kilpatrick et al., 2001) and could lead to routine based on ‘tricks’. On
the other hand, too much focus on conceptual understanding can impede basic skills. We
conclude that both basic skills and conceptual understanding should be taught in an inte-
grated approach (Drijvers, 2011). This may improve transfer.

Whereas some scientists view mathematics as the ‘servant of the sciences’, some mathe-
maticians may consider mathematics to be ‘the queen of the sciences’ (Atiyah, 1993). They 
often perceive applied mathematics as inferior to pure mathematics. Some even refuse to 
discuss applications. Such beliefs may conceivably influence transfer. It goes without saying 
that these views are not typical of the whole mathematical community. In fact, one finds 
various ideas about the role of mathematics in science, the difficulties and the importance of 
teaching and learning transfer among mathematicians, even among those whose taste and 
interest are skewed toward the theoretical end of the mathematical spectrum. 
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2.2.4 Coherent Mathematics and Science Education and Transfer in The Classroom 

CMSE depends on actors such as teachers, school organization, curriculum and policy mak-
ers (Schmidt, Wang, & McKnight, 2005). Since these actors interact with one another, their 
involvement makes CMSE and transfer a rather complex process. As Schmidt, McKnight, 
and Raizen (1997, p. 92) explain: “each ‘actor’ pursues his or her own ‘life’ –his or her goals, visions, 
plans, processes, and efforts to satisfy those to whom he or she is accountable”.  

In this study we restrict ourselves to teachers’ beliefs about curricula, textbooks and 
teachers. Teachers follow the textbooks very closely and these textbooks are shaped by the 
curricula (SLO, 2019). 
 Furthermore, we assume a reciprocal relation between CMSE and transfer. When stu-
dents experience coherence across mathematics and science subjects by means of meaningful 
contexts, transfer from mathematics to science subjects can be improved, and improving 
transfer can help them to experience coherence between mathematics and subjects. 

2.2.5 Curricula and Textbooks in Dutch Secondary Education 

Pre-university education in the Netherlands consists of three junior years and three senior 
years. In senior pre-university education students in physics class should choose between 
mathematics A and B. The latter puts much more emphasis on algebra than the former. The 
content of mathematics and physics subjects are mainly determined by the national final 
examinations at the end of secondary school, and specified in curricula (SLO, 2019). 

Textbooks mediate between the core goals of education (the intended curriculum) and 
the actual teaching in classrooms (the implemented curriculum). Hence, textbooks are re-
ferred to as the potentially implemented curriculum (Valverde, Bianchi, Wolfe, Schmidt, & 
Houang, 2002). The limited description of the core goals in the curricula leave publishers 
room for different interpretations. Their textbooks are followed very closely by both teachers 
and students (SLO, 2019).  

2.3 Methodology 

In this section we will first explain how we collected our data. Second, the semi-structured 
questionnaire used in this study is presented. Finally, we will discuss the methods used to 
analyze our data.  

2.3.1 Data Collection  

Convenience sampling (Bryman, 2015) was used to gather data from ten Dutch mathematics 
and ten Dutch physics teachers. Each group of respondents consisted of eight male and two 
female teachers; they were qualified to teach in senior pre-university education and had at 
least five years of teaching experience. These numbers are in good agreement with the gender 
ratio in senior pre-university education in the Netherlands: about 15 percent of mathematics 
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teachers, and 5 percent of physics teachers is female (Mullis, Martin, Kennedy, Trong, & 
Sainsbury, 2009). The respondents were interviewed by means of a questionnaire and gave 
consent to reporting. Each interview was conducted privately in an appropriate, silent place 
chosen by the teacher and took 30 – 45 minutes. Afterwards, it was transcribed verbatim for 
analysis. For the teachers’ names we used pseudonyms.  

2.3.2 Semi-structured Questionnaire 

In order to investigate research questions (1a) and (1b), we used a semi-structured question-
naire (Bryman, 2015) that was based on one specific case about a transfer problem. The ques-
tions were based on this case. For the case and the questionnaire, see table 1.  

Table 1. Semi-structured questionnaire, which was based on the transfer problem in the case. 

Question number Rationale  
Case: during a physics lesson a student does not recognize that the physics formula 
(formula in short) for displacement, 𝑠𝑠𝑠𝑠 = 1

2
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2, has a similar algebraic structure as the 

mathematical equation (equation in short), 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2. This student is also unable to express 
t in terms of s. However, earlier that day during mathematics, the student managed to 
express x in terms of y, implying that besides a lack of recognition, the student is not able 
to apply algebraic skills from mathematics to physics successfully.  

Now we want the same student to recognize that in both situations a similar algebraic 
structure is used.  

1 Is this a familiar problem? 
2 Do you consider it an important problem? 
3 What may be the reason? 
4 As a physics (mathematics) teacher, what would you do a about it? 
5 What may the mathematics (physics) teacher do about it? 
6 What does it mean for the formal physics (mathematics) curriculum? 
7 What does it mean for the math- and physics textbooks? 

We also want this student to be competent in the application of algebraic skills from 

mathematics into physics. In this case, to express t in terms of s: 𝑡𝑡𝑡𝑡 = �2𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎

. 

8 Do you consider it an important problem? 
9 What may be the reason? 
10 As a physics (mathematics) teacher, what would you do a about it? 
11 What may the mathematics (physics)teacher do about it? 
12 What does it mean for the formal physics(mathematics) curriculum? 
13 What does it mean for the math- and physics textbooks? 
14 To what extent do you follow textbooks during teaching? 

In the above-mentioned case, it can be seen that mathematics and physics are closely 
related to one another. Teachers appear to have different ideas about their relation.  

15 How do you see the relation between math- and physics? 
16 Do you have any cooperation with your mathematics colleagues? 
17 How do you see the optimal cooperation with your mathematics colleagues? 

Our pre-university physics education is permeated with algebraic problems from 
mathematics, such as the case above. 

18 How can the application of algebraic skills from mathematics to physics be improved for solving algebraic 
problems that occur in our pre-university physics education? 



Chapter 2 

38 

teachers, and 5 percent of physics teachers is female (Mullis, Martin, Kennedy, Trong, & 
Sainsbury, 2009). The respondents were interviewed by means of a questionnaire and gave 
consent to reporting. Each interview was conducted privately in an appropriate, silent place 
chosen by the teacher and took 30 – 45 minutes. Afterwards, it was transcribed verbatim for 
analysis. For the teachers’ names we used pseudonyms.  

2.3.2 Semi-structured Questionnaire 

In order to investigate research questions (1a) and (1b), we used a semi-structured question-
naire (Bryman, 2015) that was based on one specific case about a transfer problem. The ques-
tions were based on this case. For the case and the questionnaire, see table 1.  

Table 1. Semi-structured questionnaire, which was based on the transfer problem in the case. 

Question number Rationale  
Case: during a physics lesson a student does not recognize that the physics formula 
(formula in short) for displacement, 𝑠𝑠𝑠𝑠 = 1

2
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2, has a similar algebraic structure as the 

mathematical equation (equation in short), 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2. This student is also unable to express 
t in terms of s. However, earlier that day during mathematics, the student managed to 
express x in terms of y, implying that besides a lack of recognition, the student is not able 
to apply algebraic skills from mathematics to physics successfully.  

Now we want the same student to recognize that in both situations a similar algebraic 
structure is used.  

1 Is this a familiar problem? 
2 Do you consider it an important problem? 
3 What may be the reason? 
4 As a physics (mathematics) teacher, what would you do a about it? 
5 What may the mathematics (physics) teacher do about it? 
6 What does it mean for the formal physics (mathematics) curriculum? 
7 What does it mean for the math- and physics textbooks? 

We also want this student to be competent in the application of algebraic skills from 

mathematics into physics. In this case, to express t in terms of s: 𝑡𝑡𝑡𝑡 = �2𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎

. 

8 Do you consider it an important problem? 
9 What may be the reason? 
10 As a physics (mathematics) teacher, what would you do a about it? 
11 What may the mathematics (physics)teacher do about it? 
12 What does it mean for the formal physics(mathematics) curriculum? 
13 What does it mean for the math- and physics textbooks? 
14 To what extent do you follow textbooks during teaching? 

In the above-mentioned case, it can be seen that mathematics and physics are closely 
related to one another. Teachers appear to have different ideas about their relation.  

15 How do you see the relation between math- and physics? 
16 Do you have any cooperation with your mathematics colleagues? 
17 How do you see the optimal cooperation with your mathematics colleagues? 

Our pre-university physics education is permeated with algebraic problems from 
mathematics, such as the case above. 

18 How can the application of algebraic skills from mathematics to physics be improved for solving algebraic 
problems that occur in our pre-university physics education? 

Teachers’ Beliefs about Improving Transfer 

39 

2.3.3 Data Analysis  

We used open coding (Bryman, 2012; Saldaña, 2013) to label each fragment of the transcripts, 
giving us a short description of teachers’ beliefs about both research questions. This process 
resulted for each of the twenty interviews in a set of labels identifying teachers’ beliefs.  

Next, we used axial coding, consisting of two steps. In the first step labels with roughly 
the same content were grouped together, leading to a grouping of the labels. Each group of 
labels was summarized as a subtheme. A subtheme had to contain at least three different 
beliefs of at least three different teachers. Otherwise it was marked as an outlier. In the sec-
ond step we grouped the 28 subthemes into 9 core themes (see Table 2). Thus, we obtained 
one common code tree for all twenty teachers. This tree is a hierarchical structure consisting 
of core themes as main branches. These cores themes then branch out into smaller branches, 
called subthemes. The next and finest level of the hierarchy, the leaves of the tree, are the 
underlying teachers’ beliefs about CMSE and aspects influencing students’ transfer of algebra 
to physics.  

To enhance reliability of our results, the whole process of open and axial coding was 
independently carried out by an independent researcher. The two common code trees over-
lapped for approximately 80% on each of the three levels (labels, subthemes and core 
themes). The two researchers then discussed the remaining 20%. After some adjustments in 
these parts of the tree, this led to consensus among the two researchers about the common 
code tree. Finally, the whole process was (sample-wise) double checked by the second and 
third author. 

2.4 Results 

First, we present our results for research question (1a), then for research question (1b). 

2.4.1 Research Question (1a): Characterizing The Case 

Research question (1a) is related to the case and to questions 1, 2 and 8 of the questionnaire 
in Table 1. As to question 1, nine out of ten mathematics teachers, and eight out of ten 
physics teachers acknowledged the case. As to question 2, nine mathematics and nine physics 
teachers considered it an important problem. For question 8 we found that nine mathematics 
and nine physics teachers considered it important that students are competent at the transfer 
of algebraic skills from mathematics into physics.  

Table 2. Teachers’ beliefs about aspects influencing students’ transfer and aspects about CMSE. 

Core theme/ subtheme Mathematics teachers Physics teachers 
1. Coherence 126 135 

1.1 Alignment 2/1a 10/6 
1.2 Collaboration and cooperation 85/10 75/10 
1.3 Ideal collaboration and cooperation 39/10 50/10 

2. Curriculum 65 86 

2.4 Results



Chapter 2 

40 

2.1 Curriculum (general) 25/9 10/7 
2.2 Mathematics curriculum 23/10 31/10 
2.3 Physics curriculum 17/10 45/10 

3. Education 7 26 
3.1 Junior pre-university education 07/5 26/7 

4. Pedagogy of algebra 82 72 
4.1 Algebraic skills 40/10 26/7 
4.2 Algebraic techniques 7/4 8/5 
4.3 Practice (general) 21/9 30/9 
4.4 Practice within mathematics 9/5 3/3 
4.5 Practice within physics 5/3 5/3 

5. Relation between scientific subjects 87 52 
5.1 Mathematics and physics 27/10 15/10 
5.2 Mathematics within physics 35/10 23/10 
5.3 Physics within mathematics 25/10 14/10 

6. School subjects 30 20 
5.1 Mathematics 19/7 13/6 
5.2 Physics 11/6 7/4 

7. Teacher 193 112 
6.1 Mathematics teacher 97/10 48/10 
6.2 Physics teacher 96/10 64/10 

8. The use of textbooks 143 139 
8.1 Following textbooks 31/10 43/10 
8.2 Mathematics textbook 66/10 31/10 
8.3 Physics textbook 37/10 45/10 
8.4 Textbook general 9/5 20/7 

9. Transfer 144 89 
9.1 Activating prior knowledge 8/5 10/4 
9.2 Affordances (specific) 34/10 8/5 
9.3 Constructing relations (general constraints) 27/10 23/9 
9.4 Constructing relations (specific constraints) 75/10 48/10 
9.5 Focus on students 1/1b 1/1c 

Note. a This subtheme is considered as an outlier 
b This subtheme is considered as an outlier  
c This subtheme is considered as an outlier 

2.4.2 Research Question (1b): Common Code Tree 

We found a continuum of teachers’ beliefs (approximately thirteen hundred beliefs) which 
can be organized in nine core themes and their twenty-eight subthemes. See Table 2. For 
example, the core theme ‘School subjects’ contains the subthemes ‘Mathematics’ and ‘Phys-
ics’. The number ‘30’ next to ‘School subjects’ is the total number of beliefs about this core 
theme uttered by the mathematics teachers. The numbers ‘11/6’ next to the subtheme ‘6.2 
Physics’ in the same column mean that among these 30 beliefs 11 belonged to this subtheme 
and they were uttered by 6 teachers. We found three outliers: the subtheme ‘Alignment’ for 
mathematics teachers and the subtheme ‘Focus on students’ for both teacher groups. 
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2.5 Results Interpretation 

In this section we will first interpret the results regarding research questions (1a) and (1b). 
Next, we will discuss three teacher groups’ beliefs about improving transfer of algebraic skills 
to physics. Finally, we will discuss limitations and recommendations.  

The quotations below are taken from the interviews. For stylistic reasons, we use the 
words ‘believe’ and ‘think’ interchangeably to describe teachers’ beliefs. The word ‘collabo-
ration’ refers to activities in which teachers work together, such as designing teaching mate-
rials. The word ‘cooperation’ refers to conversations without such activities.  

Our analysis below shows some inconsistencies within the set of beliefs of many inter-
viewees. Indeed, during the second half of the interview many teachers expressed opinions 
contradicting their own opinions during the first half of the interview. For example, most 
mathematics and physics teachers first expressed the opinion that extensive algebraic practice 
in math class alone should solve the transfer problem, but later the same teachers said that 
algebraic practice is also needed in physics class. 

2.5.1 Research Question (1a): Insight into The Case 

Most of the interviewed teachers acknowledged the case of Table 1. This justifies our inter-
views with both mathematics and physics teachers. It is remarkable that the mathematics 
teachers acknowledged the case, even though they did not encounter this problem in their 
own classroom. This may imply that mathematics teachers discuss this problem with physics 
teachers. Mathematics teachers think that the transfer problem occurs especially in the first 
year of senior pre-university education, rarely in the next years. This seems reasonable, since 
the level of algebraic skills needed in physics increases substantially in the transition from 
junior pre-university education to senior pre-university education.  

Most of the physics teachers believed that the well-performing students in mathematics 
B do not encounter any transfer problems at all. This belief is supported by the fact that 
mathematics B puts a much stronger emphasis on algebra than mathematics A.  

Regarding questions 2 and 8, most physics teachers believed that in recent years the trans-
fer of mathematics to physics has become more important, because of the role of mathemat-
ics in the final central physics examinations. They think that the relation (they often used the 
word ‘link’) between mathematics and physics has to be emphasized more strongly. Most of 
the mathematics teachers, however used the word ‘application’; they mention the importance 
of applying mathematics to another subject such as physics.  

2.5.2 Research Question (1b): Core Themes 

Below we discuss the subthemes for each core theme (see Table 2).  

Core theme 1: coherence 
The subtheme ‘Alignment’ was considered an outlier for mathematics teachers. Most of the 
physics and mathematics teachers mention the need to align the learning lines in mathematics 
and physics using the textbooks. This connection is of key importance: it may improve 
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students’ transfer of mathematics into physics and also strengthen the extent to which they 
experience coherence between these subjects (e.g., Roorda, 2012; Quinn, 2013). 

As for the subtheme ‘Collaboration and cooperation’ most of the physics teachers said 
they were willing to collaborate, but they strongly believed that mathematic teachers do not 
feel the need for collaboration. As one of them said: “It is difficult to communicate with mathematics 
teachers”. Consequently, there is little interaction between mathematics and physics teachers. 
If there is any interaction at all, this consists of individual efforts on a small scale during 
informal meetings. Indeed, our data indicates the existence of two types of mathematics teach-
ers. The first type, which represents the majority, does not feel the need to collaborate with 
physics teachers, supporting physics teachers’ beliefs. They think that “They [physics teachers] 
have a problem, and they have to find us”. The second type does collaborate with physics teachers. 
These mathematics teachers also feel the need to align the content of mathematics and phys-
ics subjects across time.  

The next subtheme ‘Ideal collaboration and cooperation’ assumes the absence of con-
straints (see figure 1 of Chapter 1). Most of the mathematics teachers believe that more col-
laboration with their colleagues from physics would be desirable in this ideal situation. The 
difference between this ideal (espoused) beliefs of mathematics teachers and their lack of 
collaboration with physics teachers (enacted beliefs) can be caused by constraints (see figure 
1 of Chapter 1). Indeed, they often mentioned huge workload as an impeding factor. The 
physics teachers believe that an ideal collaboration would result in alignment of notations, 
equations, formulas and algebraic techniques in both subjects.  

Core theme 2: curriculum 
Both mathematics and physics teachers use the words ‘connection’ and ‘integration’ inter-
changeably to indicate CMSE. Concerning the subtheme ‘Curriculum (general)’ most of the 
physics teachers believed that there is the need to integrate or at least make connections 
between the mathematics and physics curriculum. Although they did not explicate what this 
integration or connection should look like, they believed that these should be visible through 
the content standards, probably because they observe which algebraic skills their students 
lack in physics class. In contrast, most of the mathematics teachers believed that such inte-
gration or connection is not needed. Presumably, they were unaware of the type of mathe-
matical skills that students lack during physics lessons. 

Regarding the subtheme ‘Mathematics curriculum’ most of the mathematics and physics 
teachers believed that the content standards should include physics contexts in which alge-
braic skills are involved. For instance, manipulating formulas and solving for a variable. A 
small number of these teachers (including some math teachers!) state that they are unaware 
of the content of the mathematics curriculum. Indeed, most teachers rely on textbooks as a 
substitute for the curriculum. They trusted that these textbooks represent this curriculum 
accurately and follow these books very faithfully (SLO, 2019; Zanten & van den Heuvel – 
Panhuizen, 2014). Most of the mathematics teachers desired the incorporation – in the cur-
riculum or in the texbooks; for many teachers that’s the same thing – of a content standard 
about recognizing the algebraic structure of formulas and equations in physics.  

For the subtheme ‘Physics curriculum’, most of the mathematics and physics teachers 
would like to see an emphasis on algebraic skills, for example manipulating formulas and 
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solving for variables in the physics curriculum. Some mathematics teachers provided quite 
explicit suggestions about what is needed in the physics curriculum. This result is quite re-
markable, since most mathematics teachers mentioned that they did not feel the need to 
integrate both curricula. Physics teachers also wish for a content standard about recognition 
of the algebraic structure of formulas and equations in physics. However, a small number of 
physics teachers seems to be satisfied with the actual physics curriculum: “There is no need to 
add anything”.  

Core theme 3: education  
Most mathematics and physics teachers believed that in the last year of junior pre-university 
education there is a lack of emphasis on algebraic skills in mathematics lessons. Physics 
teachers mention that they observed this lack mainly in the first year of senior pre-university 
education. As mentioned above, this belief is shared by most mathematics teachers.  

Core theme 4: pedagogy of algebra 
Concerning the subtheme ‘Algebraic skills’ most of the physics teachers again mentioned 
that the lack of sufficient algebraic skills to tackle transfer problems mainly occured in the 
first year of senior pre-university education. This result is in agreement with the subsections 
‘Discussion on characterizing the case’ and the core theme ‘Education’. Mathematics teach-
ers believed that more practice with algebraic skills will improve transfer.   

The subtheme ‘Algebraic techniques’ concerns mathematical tools used to solve algebraic 
problems such as cross multiplication and cover-up method (Drijvers, 2011). Both mathe-
matics and physics teachers think there is a mismatch between algebraic techniques learned 
in mathematics and physics. They think that more alignment between these algebraic tech-
niques is needed.  

As to the subtheme ‘Practice (general)’, both groups believed that the lack of practice 
with transfer problems analogous to the case impedes the transfer of algebraic skills to phys-
ics. They believed that more practice in both physics and mathematics is required to improve  
transfer. This is illustrated by a quote from a physics teacher, referring to both subjects: “In 
physics class students should practice with formulas analogous to 𝑠𝑠𝑠𝑠 = 1

2
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 and in math  class with equa-

tions analogous to 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2. This will help students to solve this transfer problem”. Similar statements 
were made by many other mathematics and physics teachers. 

Regarding the subtheme ‘Practice within mathematics’ most of the mathematics and 
physics teachers believed that extensive practice in math class with algebraic skills is both 
necessary and sufficient. This is illustrated by the quote “They need lots of practice during mathe-
matics classrooms. Then, application into physics will happen automatically”. A small number of math-
ematics and physics teachers believed that in math classes more practice with transfer prob-
lems analogous to the case is needed.   

As for ‘Practice within physics’, most mathematics and physics teachers said that in phys-
ics classes more practice with physics problems involving algebraic skills is needed. This 
contradicts their previous statement about the alleged sufficiency of practice in math class 
and automatic transfer. A small number of mathematics and physics teachers suggested ac-
tivation of prior mathematical knowledge by starting with the mathematics problem in the 
case (see Table 1), followed by algebra problems in physics.  
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Summarizing, both teacher groups put a strong emphasis on practice with transfer prob-
lems similar to the case and stated that this would improve students’ transfer. This belief may 
be regarded as naïve and can be associated with the idea of basic skills first (Wu, 1999). 
However, there is no single teacher who mentioned and related this matter to conceptual 
understanding in both activities. This result is important, because it might indicate that these 
teachers overlooked a serious risk: putting too much emphasis on basic skills could push 
conceptual understanding of the underlying mathematics to the background (Drijvers, 2011; 
Kilpatrick et al., 2001) and could impede transfer of algebra to science. Hence, teachers who 
develop common learning strategies aiming at transfer should take into account both basic 
skills and conceptual understanding. Note that this result may also partly explain the lack of 
transfer in earlier studies (Cui, 2006; Karakok, 2009; Karam, 2014; Roorda, 2012). 

Core theme 5: relation between scientific subjects 
Concerning the subtheme ‘Mathematics and physics’ most of the mathematics and physics 
teachers said that mathematics and physics are two inextricably intertwined subjects. Only a 
small number of mathematics and physics teachers mentioned that both subjects should be 
regarded as separate disciplines. Some mathematics teachers viewed mathematics as the 
‘Queen of all sciences’ (Atiyah, 1993): mathematics should remain pure, because application 
of mathematics would degrade it.  

As to the subtheme ‘Physics within mathematics’ most of the physics teachers viewed 
mathematics as the ‘Servant of science’. 

As to the role of ‘Mathematics within physics’, most teachers in both groups mentioned 
‘aid’ and ‘tool’. Some of the math teachers even mentioned ‘mathematics serves physics’ (cf. 
Atiyah, 1993).  

Before we conducted the interviews with teachers, we hypothesized that teachers who 
view mathematics as the ‘Queen of all Sciences’ might not feel the need to bother about 
transfer. However, analysis of the data shows the opposite: these teachers did make sugges-
tions about tackling transfer. This result seems to indicate that they were aware of the im-
portance of applying mathematics in physics, even though they had purist views about math-
ematics. 

Core theme 6: school subjects 
Concerning the subtheme ‘Mathematics’ most of the physics teachers believed that physics 
should provide good contexts for math class. Examples from physics in math class makes 
mathematics more understandable and offer new insights to the students. This result matches 
with the view expressed in Alink, Asselt and Braber (2012) and Berlin and White (2012, 
2014), who stated that science contexts offer meaning to mathematics in which it can be 
applied, and they contribute to help students experiencing coherence between these subjects. 
Unfortunately, the beliefs of the interviewed mathematics teachers were too diverse to draw 
general conclusion.  
This diversity of mathematics teachers’ beliefs also holds for the subtheme ‘Physics’. Still, a 
small number of them argued that the mathematics used in physics class should be restricted 
to mathematics A, since some students in physics class do not study mathematics B (see the 
first paragraph of subsection ‘Classroom Actors’ for information about mathematics A and 
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B). Physics teachers share this belief. They added that mathematics A students encounter 
more difficulties with algebraic problems in physics class than mathematics B students. This 
belief may indicate that physics teachers were aware of the fact that some of their students 
have less training in algebraic skills because they do not study mathematics B, although none 
of the physics teachers explicated this. The lack of perceived urgency to cooperate with phys-
ics teachers is not typical for the community of mathematics teachers as a whole. Indeed, 
many teachers may appreciate the need to promote transfer.  

Core theme 7: teacher 
Concerning the subtheme ‘Mathematics teachers’, most of the mathematics and physics 
teachers agreed that math teachers should incorporate more physics context in their lessons. 
Furthermore, they should emphasize the close relationship between mathematics and phys-
ics. Most of the physics teachers mentioned that mathematics teachers should include exer-
cises similar to the case. A small number of physics teachers mentioned that mathematics 
teachers should be competent in the mathematics content. They should use other variables 
than x and y. Another small number of physics teachers stated that mathematics teachers 
should be acquainted with the physics curriculum, but they did not specify to what extent. A 
small number of mathematics and physics teachers believed that mathematics teachers 
should stick to pure mathematics: “Mathematics should avoid all forms of physics”. Unlike the phys-
ics teachers, the math teachers in this group viewed mathematics as the ‘Queen of all sciences’ 
(Atiyah, 1993). However, these math teachers made suggestions on how to improve transfer. 
Another small number of mathematics teachers mentioned practicing exercises similar to the 
case, and use other variables than just x and y.  

Regarding the subtheme ‘Physics teacher’ most of the physics teachers referred to the 
desirability of teacher-centered practice of physics problems which involve algebra in physics 
class. They also believed that showing similarities between different equations and formulas 
is beneficial. They emphasized that students should practice with exercises similar or analo-
gous to the case. Prior mathematical knowledge that is related to the mathematics involved 
in physics problems should be activated. Physics teachers should use x and y as well as the 
conventional quantities in physics. This can be regarded as an extension of activation of prior 
mathematical knowledge. A small number of physics teachers used their privately developed 
teaching materials to train students’ mathematical skills: “Students’ performance on algebraic skills 
were bad. I became frustrated and developed my own teaching material”. This may be due to the absence 
of sufficient attention on algebraic skills in the current physics methods. Another small num-
ber of physics teachers mentioned the lack of time to focus on algebraic skills in physics 
problems. This shortage of time is often observed in schools in the Netherlands, and most 
probably related to physics teachers’ busy daily routine (Alink, Asselt, & Braber, 2012). As 
opposed to physics teachers, most of the mathematics teachers put a stronger emphasis on 
activating prior mathematical knowledge. They believed that they should relate physical 
quantities to the variables x and y used in mathematics, write down a formula from physics 
next to the corresponding mathematical equation on the blackboard. They also mentioned 
practice with exercises similar to the case, and explanation of the close relationship between 
mathematics and physics. A small number of mathematics teachers stated that physics 
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teachers explicating transfer problems in physics lessons to mathematics teachers may also 
help to reduce these transfer problems.  

We conclude there are many beliefs about what mathematics and physics teachers should 
do to deal with the problem of transfer. According to Davison et al. (1995) these beliefs help 
students to, “…explore the connections between mathematics and science and begin to see the relevancy of 
mathematics in the reality of science and vice versa” (p. 228). Sufficient attention for these connec-
tions may help to improve transfer and enhance students experiencing coherence across both 
subjects (Frykholm & Glasson, 2005; Furner & Kumar, 2007; Berlin & White, 2012, 2014).  

Core theme 8: the use of textbooks 
As to the subtheme ‘Following textbooks’, all interviewees mentioned that they are highly 
textbook-driven. This is in line with earlier research (Stein & Smith, 2010; Van den Heuvel-
Panhuizen & Wijers, 2005). In some countries countries this matter is not that extreme as in 
the Netherlands (e.g., TIMMS & PIRLS’, 2019). 

The beliefs belonging to the subtheme ‘Mathematics textbook’ indicate the existence of 
two main types of mathematics teachers. The first type claimed to be satisfied with the use 
of contexts in mathematics textbooks, for example “There is enough context [in the mathematics 
method]”. The second type would like to see more context in mathematics textbooks. They 
also frequently stated the lack of sufficiently many formulas and physics exercises. Most of 
the physics teachers advocated the inclusion of more physics context in mathematics text-
books, such as formulas, exercises and algebraic skills needed to solve physics problems. A 
small number of physics teachers, however, disagreed on this point. 

Concerning the subtheme ‘Physics textbook’ the majority of the interviewed physics 
teachers believed that physics textbooks need introduction paragraphs containing prior 
mathematical knowledge about the physics content that will be treated. They argued that 
some physics textbooks do this adequately, whereas others do not. Only two physics teachers 
were satisfied with the actual content of physics textbooks. Most of the mathematics teachers 
strongly believed that activating prior mathematical knowledge is of key importance in the 
approach of tackling transfer problems.  

Regarding the subtheme ‘Textbook (general)’ the teachers use the words ‘connection’ 
and ‘integration’ interchangeably to indicate connection in terms of alignment between math-
ematics and physics textbooks. Most of the physics teachers would like to see this connection 
in textbook series. This should be made possible through exercises analogous to the case, 
equations and corresponding formulas that are treated together, or alignment of algebraic 
techniques in both textbooks. They also mentioned alignment of textbooks on a general 
level, without making any concrete suggestions. Mathematics teachers’ beliefs are split: while 
one part claimed there is the need to connect both textbooks, the other part showed very 
little enthusiasm. Supporters of connection would like to see two separate textbooks, with 
the physics textbooks referring to mathematics textbooks, and vice versa. Data shows that 
teachers who advocated such connection do not speak about one single integrated textbook, 
but two separate textbooks making connections to one another through content.  

Still, aiming at CMSE through connections between the content of mathematics and 
physics textbooks is a rather complex process, which depends on good collaboration 
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between other actors than just textbook publishers, such as policy makers (Schmidt, Wang, 
& McKnight, 2005).  

Core theme 9: transfer 
Although mathematics and physics teachers’ beliefs about the subtheme ‘Activating prior 
knowledge’ are very fragmented, they all mentioned the importance of activation of prior 
mathematical knowledge in physics class.  
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x and y from mathematics. This can be interpreted as activation of prior mathematical 
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matics and science, in particular physics are seen as two unrelated subjects (Cui, 2006; Kara-
kok, 2009; Roorda, 2012).  
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ics and physics teachers stated that the variable names x and y are often used in mathematics, 
but impede transfer. A small number of mathematics and physics teachers also claimed that 
this transfer is impeded when students rely too much on mathematical ‘tricks’, such as the 
equation triangle. These teachers seemed to be aware of the necessity of conceptual under-
standing (Kilpatrick et al., 2001). Furthermore, a small number of mathematics teachers be-
lieved that the absence of automation in solving transfer problems impedes transfer too. 
However, from data it is not clear what they exactly meant with automation.  

2.5.3 Three Approaches to Transfer  

Most of the interviewees belong to one of the following three groups. The first and largest 
group believed that the transfer problem should by intensive algebraic practice in math class. 
Then, they claimed, transfer of algebraic skills into physics happens automatically. The sec-
ond and smallest group stated that the transfer problem should be solved by practicing alge-
braic physics problems in physics class. The third group lies between these opposite views. 
These teachers believed that the transfer problem can only be solved by comprehensive al-
gebraic practice in both mathematics and physics class. For example, algebra problems in 
math class should use contexts and notations from physics, and physics teachers should ac-
tivate prior mathematical knowledge. Both physics and mathematics teachers should empha-
size the connections between their subjects.  

The beliefs in the first group are linked to the unifying role of mathematics (Atiyah, 1993) 
and can be interpreted as prioritizing basic skills (Wu, 1999). The second groups’ beliefs can 
be described as reinventing the same mathematical wheel in different physics contexts. 
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Presumably, the same wheels also have to be reinvented in other subjects using algebra such 
as chemistry and economics. Although this approach does not concern mathematics lessons, 
it still can be viewed as prioritizing basic skills, but in science contexts.  

We concluded that the first and second groups ignored the development of conceptual 
understanding in their teaching (Kilpatrick et al., 2001), meaning that the understanding of 
the underlying mathematics could be pushed into the background (Drijvers, 2011). However, 
for optimal transfer conditions there must be a focus on both basic skills and conceptual 
understanding (Bransford et al., 2000; Kilpatrick et al., 2001; Roorda, 2014). Thus, teachers’ 
beliefs prioritizing basic skills can be seen as naïve (Schoenfeld, 1985). Teachers who trans-
form such beliefs (espoused model) into teaching practice (enacted model) may be con-
fronted with a great disparity between beliefs and what they observe in the classroom (see 
figure 1 of Chapter 1), i.e. a lack of transfer. Teachers should be aware of the existence of 
such beliefs, reflect on these and reconcile with their classroom practice. Without reflectivity 
teachers are often observed to adopt similar practices in the classroom (Ernest, 1991; Pajares, 
1992). As a consequence, this may impede students’ transfer in physics class.  

The third group’s beliefs about transfer are most comprehensive, since they consider an 
integrated approach. This may contribute to students experiencing coherence across both 
subjects.  

2.5.4 Limitations of This Study and Recommendations 

For this study we interviewed 10 qualified mathematics and 10 qualified physics teachers 
from senior pre-university education from different schools in the Netherlands within a ra-
dius of approximately 50 kilometers. Each teaching group contained eight male and two 
female teachers, being in good agreement with the gender ratio in senior pre-university edu-
cation in the Netherlands (Mullis et al., 2009). These teachers were selected using conven-
ience sampling and had varying years of teaching experience, i.e. ranging from 5 to 40 years. 
Based on these characteristics, we conclude that our sample may be representative for Dutch 
teachers who teach at senior pre-university education 

The content of mathematics and physics subjects in the Netherlands is determined by 
mainly the national final examination at the end of the secondary school (e.g., SLO, 2019; 
‘TIMMS & PIRLS’, 2019), and described in curricula through both the general educational 
core goals and the more specific standards, shaping to a very large extent the content of 
textbooks and teachers who quite strictly follow these textbooks (SLO, 2019; Van den Heu-
vel-Panhuizen & Wijers, 2005). Thus, to a great extent, Dutch teachers’ beliefs about transfer 
are influenced by textbooks. We do not expect much difference in the content of textbook 
series, implying that teachers’ beliefs above would not differ significantly from each other.  

Based on the results above we expect this study to be generalizable for mathematics and 
physics teachers teaching in senior pre-university education in the Netherlands, and also for 
those who teach in senior general secondary education. However, we do not expect that this 
holds for preparatory vocational secondary education, because the mathematical skills 
needed in physics are fundamentally different from those in senior general secondary educa-
tion and senior pre-university education. This can lead to different teachers’ beliefs about 
transfer. In many countries, however, the combination of such final examination shaping 
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textbooks with textbook-driven teachers does not exist (Valverde, Bianchi, Wolfe, Schmidt, 
& Houang, 2002), implying that our results are not generalizable to these countries.  
 In terms of diversity in teachers’ beliefs we did not observe much change after a total of 
eight interviews including four mathematics and four physics teachers, indicating saturation 
for both teacher groups. 

Three of our subthemes were removed, because these did not consist of at least three 
different beliefs mentioned by at least three different teachers. This criterion is slightly arbi-
trary. Data reduction is associated with grasping the essence and leaving out less important 
details. Outliers may contain important information about missing teachers’ beliefs as the 
subtheme ‘Focus on students’ showed. This subtheme contained two teachers who men-
tioned that transfer should be examined through the eyes of the student. Teachers should 
pay attention to questions like “How did the student construct transfer?”. They focused on stu-
dents, rather than the traditional approach focusing on transfer from the experts’ view 
(teacher). In short, they adopted a contemporary view such as the actor-oriented approach 
(Lobato, 2003). Therefore, in terms of improving students’ transfer of algebraic skills into 
physics, we recommend to further investigate the focus on this matter.  

Referring to figure 1 of Chapter 1, we recommend examining mathematics teachers who 
had purist beliefs (espoused beliefs), but nevertheless made suggestions about improving 
transfer. How do they deal with transfer problems in the classroom (enacted beliefs) if they 
have such purist beliefs?  

2.6 Conclusion 

Regarding research question (1a) “How do mathematics and physics teachers characterize the transfer 
problem in the case?” we found that nearly all mathematics and physics teachers acknowledged 
the case presented to them and considered it important that students are competent at the 
transfer of algebraic skills from mathematics into physics. They think that transfer problems 
occur especially in the first year of senior pre-university education.  

To answer research question (1b) “What sort of beliefs do mathematics and physics teachers’ have 
about improving students’ transfer of algebraic skills from mathematics into physics for solving algebraic 
problems that occur in senior pre-university education?” we used open and axial coding to analyze the 
interviews and found one common code tree for both teacher groups, including nine core 
themes: Coherence, Curriculum, Education, Pedagogy of algebra, Relation between scientific 
subjects, School subjects, Teacher, The use of textbooks and Transfer (see table 2). These 
core themes contained a continuum of teachers’ beliefs about aspects influencing students’ 
transfer above, including beliefs on how to improve this transfer, and aspects about CMSE, 
including aspects that may enhance students experiencing coherence between these subjects. 
When solved, these aspects may help reduce science teachers’ frustrations, who spend extra 
time on repeating mathematics in science classes. 

We have seen that most of the teachers believed that transfer does not happen because 
students see both subjects as separate disciplines. This is close to the idea that both subjects 
are viewed as unrelated to each other (Cui, 2006; Karakok, 2009; Roorda, 2012). 

2.6 Conclusion
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Contrary to physics teachers, most of the mathematics teachers mentioned that they do not 
feel the need to collaborate and cooperate with physics teachers. This may impede the de-
velopment of common teaching strategies to tackle transfer problems. We noted that lack of 
perceived urgency to cooperate with physics teachers is not typical for the community of 
mathematics teachers as a whole. Indeed, many teachers may appreciate the need to promote 
transfer.  

With regard to their views about improving transfer, most interviewees fit into one of 
the following groups. The first and largest group think that the transfer problem is solved by 
intensive practice in math class. The second and smallest group believes the opposite: the 
transfer problem should be tackled by algebraic problems in physics class. Finally, the inter-
mediate group believes in comprehensive algebraic practice in both mathematics and physics 
class. Conceptual understanding is ignored by all teachers from the first two, extreme groups 
and by some teachers of the intermediate group. Furthermore, since we conducted qualitative 
research involving a small number of teachers, these results are not generalizable to the whole 
Dutch mathematics of physics community teaching in senior pre-university education, let 
alone to other countries.   

Some of the teachers’ beliefs can be organized into a belief system (Ernest, 1991), i.e. 
into a set of mutually supporting beliefs about transfer. Further research should investigate 
to which extent this is the case and which beliefs they contain. This is explained in study (2) 
and (3) of the next two Chapters. 
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2 This chapter has been published in adapted form as: Turşucu, S., Spandaw, J., Flipse, S., & de Vries, M. J. (2018). 
Teachers’ core beliefs about improving transfer of algebraic skills from mathematics into physics in senior pre-
university education. Eurasia Journal of Mathematics Science and Technology Education, 14(10), em1596. 
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3.1 Introduction 

Teachers have the experience that students encounter difficulties when applying mathematics 
in physics class (Ivanjek, Susac, Planinic, Andrasevic, & Milin-Sipus, 2016; Karam, 2014; 
Quinn, 2013). Such transfer problems can be intractable and concern students of all ages, 
including those in pre-university education (Awodun, Omotade & Adeniyi, 2013; Basson, 
2002; Molefe, 2006; Roorda, 2012). 

Hiele (1974) was among the first authors to explain scientifically why pre-university stu-
dents faced problems with applying mathematics, especially algebraic skills to physics. He 
points out two main causes: mathematics and physics which are taught as two separate school 
disciplines, and the difference in pedagogical approaches between mathematics and physics 
teachers. For instance, for the lens formula in geometrical optics a typical physics teacher 
writes 𝑏𝑏𝑏𝑏−1 + 𝑣𝑣𝑣𝑣−1 = 𝑓𝑓𝑓𝑓−1 (𝑏𝑏𝑏𝑏 𝑏 0, 𝑣𝑣𝑣𝑣 𝑣 0), while a typical mathematics teacher writes 
(𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏)(𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣𝑣 ) = 𝑓𝑓𝑓𝑓2.  

The lack of transfer may also be related to the mismatch between teachers’ beliefs and 
teaching practice3. Indeed, beliefs have a major impact on teacher behavior (Ernest, 1991; 
Pajares, 1993). For instance, when physics teachers naïvely (Schoenfeld, 2014) think that ex-
tensive practice in mathematics lessons automatically lead to transfer in physics. Since they 
ignore mathematics in physics class, they may find themselves re-teaching basic mathematics. 
This may be both frustrating and time-consuming, overshadowing the physics content that 
needs to be taught (Roorda, Goedhart, & Vos, 2014; Turşucu, Spandaw, Flipse, & de Vries, 
2017).  

Although teachers’ beliefs are relevant for transfer in relation with classroom practice and 
coherence across both subjects (Furner & Kumar, 2007; Berlin & White, 2012, 2014), they 
are not studied extensively. Therefore, this study is relevant from both educational and sci-
entific point of view.  

3.1.1 Article Aim and Research Question (2) 

This study, i.e. study (2), is a follow-up study that aims at reducing large amounts of 
coded data (Table 1 in Chapter 1) into a small dataset of core beliefs that contain constraints 
including naïve beliefs that can be harmful for transfer, and affordances that can improve trans-
fer. The word ‘core’ in core belief should not be confused with the stable and unchangeable 
beliefs (Haney & McArthur, 2002). In contrast to such stable and unchangeable beliefs, these 
core beliefs are the final product of data reduction of the common code tree including the 
continuum of teachers’ beliefs about transfer of algebraic skills into physics, and coherence 
across both subjects from the previous qualitative exploratory study (Turşucu, Spandaw, 
Flipse, & de Vries, 2017). Indeed, rather than focusing on large amounts of data, one may 
also focus on a single dataset containing major aspects that influence transfer. Conversely, 
the large amounts of data from study (1) offers insight into the continuum of aspects influ-
encing transfer.  

3 A detailed explanation of teachers’ beliefs about transfer in relation with classroom practice can be found in 
chapter 1. 
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 To reduce data from study (1), we used pattern coding that in many textbooks is de-
scribed in a general way (e.g., Saldaña, 2013). Contrary to such a general approach, we in-
tended to use this second cycle coding technique in a more systematic and refined manner. 
For this purpose, we needed to develop a specific approach to further reduce code trees 
containing large amounts of data. In other words, to further reduce our code tree and study 
teachers’ core beliefs, we needed to develop a systematic and refined method to reduce code 
trees containing large amounts of coded data, since such an approach was not present in 
earlier studies. In addition, even if we would have aimed at combining study (2) and study 
(1) into a single study, it was considered as too large by peer-reviewed international Journals 
on science education. Furthermore, this study also functions as ‘a bridge’ between the first 
and the third study where we aim to extract belief systems about transfer. Indeed, contrary 
to the common code tree, these core beliefs provide data small enough to extract belief sys-
tems including an organized set of mutually supporting core beliefs about CMSE and transfer 
in one single data reduction step.  
 In this study we examine the following research questions: (2a) “How can a systematic, refined 
method be developed to reduce code trees containing large amounts of data into a single dataset?”, and (2b) 
“What are the core beliefs of mathematics and physics teachers about improving students’ transfer of algebraic 
skills from mathematics into physics for solving algebraic problems that occur in senior pre-university educa-
tion?”. 

3.2 Background  

3.2.1 Coherent Mathematics and Science Education and Transfer 

Mathematics and science are intertwined disciplines (Atiyah, Dijkgraaf, & Hitchin, 2010). 
Mathematics offers science a formal language in which quantitative relationships can be de-
scribed, evaluated and predicted. On the other hand, science offers meaning to mathematics 
through contexts. Education aiming at enhancement of connection between both subjects 
lies at the heart of coherent mathematics and science education4 (CMSE), and is of major 
importance to students (Alink, Asselt, & Braber, 2012; Berlin & White, 2012, 2014).  

Connecting mathematics and science, especially physics is possible through alignment 
such as using compatible notations, concept descriptions, pedagogy of equivalent mathema- 
tical methods, and organization of the learning process across time (Alink, Asselt, & Braber, 
2012). The latter implies that the required mathematics has already been explained before it is 
used in physics lessons (Roorda, 2012).  

Traditionally, the application of mathematics (initial learning) (Bransford, Brown, & 
Cocking, 2000; Larsen-Freeman, 2013; Singley & Anderson, 1989) into physics (new learning 
situation) forms the foundation of CMSE. Educational researchers view this approach to 
transfer as one of the main goals of education (Haskell, 2001). In this framework, the exis- 
tence of transfer is determined by the expert (teacher) in advance and measured by compar-
ing the learners (student) test answers with that of the experts’ correction scheme (Cui, 2006; 

 
4 A detailed explanation of CMSE can be found in chapter 1.  
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Lobato, 2003; Rebello et al., 2007). However, “little agreement in the scholarly community about the 
nature of transfer, the extent to which it occurs, and the nature of its underlying mechanisms” (Barnett & 
Ceci, 2002, p. 612) led to a shift from traditional to alternative models, such as actor-oriented 
transfer. As to actor-oriented transfer, transfer is defined as the students’ construction of 
similarities between the initial and new learning situation (Lobato, 2003). The expert tries to 
understand how they are constructed. So, even though the transfer task is designed by the  
expert (for instance, a teacher), the goal of actor-oriented transfer is “to elicit activities by a 
learner, and to investigate if and how students construct similarities between this task [transfer task] and 
earlier activities” (Roorda et al., 2014, p. 4). Therefore, transfer is observed from the students’ 
point of view.  
 Furthermore, in this study, we assume a reciprocal relation between CMSE and transfer. 
When students experience coherence across mathematics and science subjects by means of 
meaningful contexts, transfer from mathematics to science subjects can be improved, and im-
proving transfer can help them to experience coherence between mathematics and subjects. 

3.2.2 The Three Classroom Actors 

Dutch students start with senior pre-university education in grade 10 (when students are 1 
15 or 16 years old) after they finished three years of junior pre-university education. In that 
year, they should choose between mathematics A and mathematics B. The former puts less 
attention on algebra than the latter. The content of these subjects is determined by curricula 
(SLO, 2019) and tested in national final examinations. These curricula shape the textbooks 
which are closely followed by the teachers and their students (SLO, 2019; van Zanten & van 
den Heuvel – Panhuizen, 2014). Hence, curricula, teachers and textbooks are the three main 
actors in Dutch pre-university education.  

According to Turşucu et al. (2017), some of the Dutch teachers they interviewed, were 
not sufficiently aware of the content of curricula. For them textbooks were the curricula. 
Thus, their beliefs about CMSE and transfer were influenced by the content of textbooks. 
For instance, a physics teacher who discovers that the method of how the algebraic technique 
substitution (Drijvers, 2011) is explained in the physics textbook is different from that in the 
mathematics textbook. It might be the case that for some Dutch teachers textbooks are a 
substitute for curricula. The overloaded science curricula (SLO, 2019) may compel them to 
use their time very efficiently. As a result, they may only follow their books, rather than 
examine their curricula, influencing their beliefs about CMSE and transfer. 
 In this study, the actors students, teachers and textbooks are referred to as the three 
classroom actors, since they play a major role in classroom practice. 

3.2.3 Teachers’ Individual Beliefs about CMSE and Transfer 

In the previous study we examined mathematics and physics teachers’ beliefs about CMSE 
and transfer (Turşucu, Spandaw, Flipse, & de Vries, 2017), and not the organized teachers’ 
belief systems (Ernest, 1991) containing a set of mutually supporting beliefs. We answered 
the two sub questions: (1a) “How do mathematics and physics teachers characterize the transfer problem 
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in the case?” (see Table 1 in the previous Chapter), and (1b) “What sort of beliefs do mathematics 
and physics teachers’ beliefs have about improving students’ transfer of algebraic skills from mathematics into 
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physics teachers who were qualified to teach in senior pre-university education and had at 
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structured questionnaire that was based on one specific case containing a transfer problem 
from mathematics to physics (table 1 in the previous chapter). Afterwards, each interview 
was transcribed verbatim for analysis.  
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together, resulting in a grouping of the labels. Each group of labels was summarized as a 
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ers. If not, it was considered as an outlier. In the subsequent step, we organized 28 subthemes 
into 9 core themes (coherence, curriculum, education, pedagogy of algebra, relation between 
scientific subjects, school subjects, teacher, the use of textbooks and transfer), see table 2 in 
the previous chapter. Hence, we obtained one hierarchical structured common code tree for 
all 20 teachers, with the core themes as main branches. The latter branches out into sub-
themes, the smaller branches. The leaves of the tree are the last and finest level of the hier-
archy and represent the underlying continuum of approximately 1.300 individual teachers’ 
beliefs about aspects influencing students experiencing coherence across these subjects and 
aspects influencing transfer.  

3.2.4 Findings in a Nutshell 

In the previous study, almost all teachers acknowledged the case and considered it important 
that students are competent at applying algebraic skills in physics (Turşucu et al., 2017).  

In line with literature (Karakok, 2009; Dierdorp, Bakker, van Maanen, & Eijkelhof, 2014; 
Nashon & Nielsen, 2007; Roorda, Goedhart, & Vos, 2014) most teachers believe that trans-
fer did not occur, because of compartmentalized thinking in which students see math and 
science as unrelated disciplines.  

Some mathematics teachers mentioned that they did not feel the need to collaborate with 
physics teachers. On the other hand, all physics teachers in our sample mentioned that they 
were willing to work together with mathematics teachers. Even though this can be harmful 
for transfer in teaching practice, we emphasized that such views on mathematics do not 
represent the mathematics community, for there can be various ideas about the role of math-
ematics in science, even mathematicians promoting transfer 

Data indicated the existence of two extreme, opposite beliefs about how transfer may be 
realized. The first one is related to prioritizing basic skills (Wu, 1999) in mathematics class, 
and the second to reinventing the same mathematical wheel in different physics contexts. An 
intermediate group thinks that only an integrated approach can solve the transfer problem.  
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Furthermore, using Ernest’s (1991) belief system model5 (figure 1 in Chapter 1), we ex-
plained how teachers’ naïve beliefs about transfer (espoused models) influenced by the social 
context of teaching were transformed into classroom practice that can be harmful for trans-
fer (enacted models). In this respect, the upper rectangle describing ‘View nature of mathe-
matics’ in figure 1 containing the rectangles about learning and teaching mathematics (es-
poused models) was considered a belief system with naïve beliefs about transfer and CMSE. 
The other two (lowest) rows were concerned with teaching practice. We emphasized that the 
distinction between the espoused and enacted models was necessary, since case studies have 
shown a great disparity between both models (Cooney, 1985). Through professional devel-
opment programs (Guskey, 2002) teachers can be made aware of such beliefs, reflect on the 
mismatches between both models and reconcile them to enhance transfer. 

3.2.6 From Individual Beliefs to Core Beliefs 

The common code tree (table 2 in the previous chapter) contains about 1300 teachers’ be-
liefs. When a teacher is asked to select, for instance, a top 5 from these beliefs to identify 
his/her belief system, this would be a very difficult task. In addition, our common code tree 
is the result of first order coding that according to literature can be further reduced into a 
much smaller dataset using pattern coding (e.g. Saldaña, 2013), i.e. a second cycle coding 
technique. For instance, we might go from 1300 beliefs to 20 core beliefs that grasp the 
essence of the code tree. Selecting a top 5 from such a small dataset is much easier for teach-
ers than from a code tree containing large amounts of data. Therefore, we carried out data 
reduction on this code tree by using pattern coding. In fact, we further developed pattern 
coding. This process is described in the section below.  

3.3 Methodology  

Pattern coding grasps the essence of the common code tree and leaves out less important 
details. In this section we explain how we used this method in three consecutive data reduc-
tion steps D1, D2 and D3 (D = data reduction step).  

Different from, for example Gibson & Brown (2009) and Saldaña (2013) who offer gen-
eral directions and explanations on how to further reduce coded data, we worked out their 
method in detail to reduce the common code tree including the continuum of about 1300 
beliefs. We think that our approach to pattern coding is elegant since we used refined and 
systematic data reduction steps (see figure 2, 3 and 4), and offers a generally applicable second 
cycle coding tool to further reduce data of (common) code trees containing large amounts 
of data.  

 
5 A detailed explanation of Figure 1 can be found in Chapter 1. 
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3.3.1 D1: Data Reduction Step 1  

After the common code tree (table 2 in the previous chapter) was split into the code tree for 
mathematics and physics teachers, we followed D1 including two sub steps. Firstly, we re-
duced the collected individual beliefs of each subtheme to zero up to seven summarizing 
beliefs for each teaching group. These summarizing beliefs contain the essence of the indi-
vidual beliefs for each subtheme. Secondly, we grouped the summarizing beliefs of different 
sub themes belonging to the same core theme. This led to summarizing beliefs for each 
teacher group and is shown in Figure 2. Herein, the collected beliefs refer to the collected 
individual teachers’ beliefs of table 2. 
 

 
Figure 2. Data reduction step 1: the forming of summarizing beliefs. 

3.3.2 D2: Data Reduction Step 2  

As shown in figure 3, in the second data reduction step we combined both previous datasets 
including summarizing beliefs into one single dataset. Each core theme of the mathematics 
group was compared to the same core theme of the physics group. Summarizing beliefs that 
had the same content were grouped to form main beliefs.  
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Figure 3. Data reduction step 2: the forming of main beliefs. 

3.3.3 D3: Data Reduction Step 3 

The last step of pattern coding is shown in figure 4 and concerned the reduction of core 
themes together with main beliefs into core beliefs. This process consisted of two smaller 
steps. Firstly, we replaced the nine core themes including main beliefs by three categories. 
The new categorization differed from the structure of corethemes, and described (1) the 
causes for the lack of transfer, (2) the effects of the lack of transfer, and (3) the potential 
solutions from different perspectives. In this regard, the main beliefs of each core theme 
were attached to one of these categories. Secondly, the set of differently categorized main 
beliefs were reduced into one single set of core beliefs. To this extent, main beliefs with the 
same content were removed. This led to the remaining beliefs, which are the core beliefs. 

Figure 4. Data reduction step 3: the forming of core beliefs. 

During the triangulation process, the steps D1, D2 and D3 were independently carried out 
by an independent researcher. After each round the first author and the independent 
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researcher crosschecked the results. Each dataset was thoroughly discussed and led to 100% 
agreement among both researchers. 

3.4 Results  

The results of this study are described in the subsequent sub sections ‘D1: Forming of Sum-
marizing Beliefs’, ‘D2: Forming of Main Beliefs’ and ‘D3: Forming of Core Beliefs’. Note 
that the terms ‘summarizing’ in summarizing beliefs and ‘main’ in main beliefs to distinguish 
between the different phases of the data reduction steps during pattern coding, especially to 
emphasize that these are necessary steps to find one dataset containing core beliefs. In addi-
tion, the terms ‘summarizing’, ‘main’ and ‘core’ were not present in the method of Gibson 
& Brown (2009) and Saldaña (2013). As stated earlier, in the next study we aim to extract 
belief systems from this dataset. Contrary to the code tree of the previous study containing 
large amounts of data, one dataset of core beliefs makes it possible to distill belief systems in 
a single data reduction step. 

3.4.1 D1: Forming of Summarizing Beliefs  

The results of the first step of pattern coding (D1) are presented in table 3. The first column 
‘Core theme’ represents the nine core themes that we found in the previous study (table 2 in 
the previous chapter). The second column ‘Summarizing beliefs’ including the bold numbers 
‘76/64’ refers to the total number of summarizing beliefs. The first number deals with math-
ematics teachers and the second with physics teachers. This also holds for the other numbers. 
For instance, the second core theme ‘Curriculum’ consists of five summarizing beliefs for 
mathematics and seven summarizing beliefs for physics teachers.  

Table 3. Core themes including summarizing beliefs. 

Core theme Summarizing beliefs 
 
1. Coherence 
2. Curriculum 
3. Education 
4. Pedagogy of algebra 
5. Scientific subjects 
6. School subjects 
7. Teacher 
8. The use of textbooks 
9. Transfer 

76/64 
11/12 
5/7 
2/3 
11/10 
9/6 
6/5 
11/11 
12/8 
14/10 

3.4.2 D2: Forming of Main Beliefs  

The results of the second step of pattern coding (D2) are presented in table 4.  
The second column ‘Main beliefs’ with bold number ‘31’ combines mathematics and 

physics teachers’ summarizing beliefs and refers to the total number of main beliefs. 

3.4 Results
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Similarly, for example number ‘5’ corresponds to the core theme ‘Coherence’ and includes 
five main beliefs.  

Table 4. Core themes including main beliefs. 

Core theme Main beliefs 
 
1. Coherence 
2. Curriculum 
3. Education 
4. Pedagogy of algebra 
5. Scientific subjects 
6. School subjects 
7. Teacher 
8. The use of textbooks 
9. Transfer 

31 
5 
2 
1 
3 
4 
2 
3 
4 
7 

3.4.3 D3: Forming of Core Beliefs  

The result of the third step of pattern coding (D3) is presented in table 5 and contains the 
set of sixteen core beliefs. This list consists of beliefs about CMSE and beliefs influencing 
students’ transfer of algebraic skills from mathematics into physics. This dataset was further 
organized into the five main categories ‘Collaboration’, ‘Curricula’, ‘Students’, ‘Teachers’ and 
‘Textbooks’. Each of these contains core beliefs which are related to each other. The first 
two core beliefs are part of ‘Collaboration’, core beliefs number ‘3’ up to ‘6’ of ‘Curricula’, 
number ‘7’ up to ‘9’ of ‘Students’, number ‘10’ up to ‘14’ of ‘Teachers’ and the last two core 
beliefs belong to the main category ‘Textbooks’.  

Table 5. Sixteen core beliefs. 

Core belief number List of core beliefs 
1 Mathematics teachers often lack time for cooperation 
2 There is a lack of collaboration between mathematics and physics teachers 
3 Algebraic skills taught in mathematics A do not match sufficiently with physics 
4 Mathematics contains less algebra 
5 Mathematics should incorporate more physics contexts 
6 The physics curriculum should contain manipulation of formulas 
7 Transfer can be stimulated if students practice in different physics contexts 
8 Transfer is being hindered because students regard mathematics and physics as separate 

subjects 
9 Transfer often will occur spontaneously if students recognize the contexts 
10 Both mathematics and physics teachers can stimulate transfer 
11 There is no consensus whether mathematics and physics teachers should be able to teach 

basic mathematics that is needed for transfer 
12 Transfer can be stimulated if mathematics and physics teachers agree on the used notations 

for formulas 
13 Transfer can be stimulated if prior knowledge is activated in physics class 
14 Transfer can be stimulated if students are taught to see connections between contexts 
15 Mathematics and physics teachers stick to the lesson book 
16 There is no consensus whether mathematics and physics textbooks should be adapted  
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3.5 Results Interpretation  

In this section we will first interpret the core beliefs. Subsequently, the five main categories 
are discussed. We finalize with the limitations of this study and make some recommendations 
for further research. 

3.5.1 Core Themes Versus Main Categories  

In short, through pattern coding (Saldaña, 2013) the nine core themes in table 2 in the pre-
vious chapter were further reduced into the five main categories in table 5. This means that 
the main categories somehow are related to the nine core themes. Indeed, this was the case. 
The main category ‘Collaboration’ corresponds to the core theme ‘Coherence (core theme 1, 
or 1 in short)’ in table 2 in Chapter 2. In an analogous manner, ‘Curricula’ corresponds to 
‘Curriculum (2)’, ‘Education (3)’ and ‘School subjects (6)’; ‘Students’ to ‘Pedagogy of algebra 
(4)’ and ‘Transfer (9)’; ‘Teachers’ to ‘Relation between scientific subjects (5)’ and ‘Teacher (7)’; 
‘Textbooks’ to ‘The use of textbooks (8)’ (Turşucu et al., 2017). These correspondences may 
seem a bit rough, since some of the main categories slightly overlap with the same core 
theme. Nevertheless, we conclude that these matches are reasonable. For instance, core belief 
number seven of the main category ‘Students’ corresponds to individual teachers’ beliefs such 
as more practice with different physics problems improves transfer (subtheme ‘Practice 
within physics’ of the core theme ‘Pedagogy of algebra’ (4)). Core belief number ‘8’ matches 
with, for example the individual teachers’ belief that mathematics class ends when the student 
enters the physics class (subtheme ‘Constructing relations (general constraints)’ of ‘Transfer’ 
(9)).  

3.5.2 Loss of Information 

The main difference between table 2 in the previous chapter and table 5 concerns the 
information density: the continuum of circa 1300 individual teachers’ beliefs were condensed 
into sixteen core beliefs. Therefore, some of the detailed information in table 2 in chapter 2 
about CMSE and transfer of algebraic skills in physics were lost. For instance, core belief 
number 6 ‘The physics curriculum should contain manipulation of formulas’ does not offer 
any information about the sort manipulation of formulas. In contrast, table 2 in chapter 2 
includes detailed information such as practice with transfer problems analogous to the case. 
Another example is core belief number 10 ‘Both mathematics and physics teachers can sti- 
mulate transfer’. While the latter does not explicitly describe how to stimulate transfer, table 
2 includes detailed information, for example physics teachers who should write down the 
mathematics equation 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 next to the corresponding physics formula 𝑠𝑠𝑠𝑠 = 1

2
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 in 

physics class.  

3.5 Results Interpretation
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3.5.3 Main Category ‘1’: Collaboration 

The first two core beliefs refer to a lack of collaboration between mathematics and physics 
teachers. The majority of mathematics teachers (as opposed to physics teachers) said that 
they did not feel the need to collaborate with physics teachers (Turşucu, Spandaw, Flipse, & 
de Vries, 2017). They believe that physics teachers encounter problems and should contact 
them [mathematics teachers] for solutions to transfer problems (espoused models). Accor- 
dingly, there are no meetings between both departments (enacted models). See figure 1 of 
chapter 1 for both models. The only interactions between them concern individual efforts 
on a small scale during informal meetings. The lack of time and a huge workload among 
mathematics teachers were regarded as impeding factors, which supports the first core belief. 
The lack of perceived urgency to cooperate with physics teachers is not typical for the com-
munity of mathematics teachers as a whole. Indeed, many teachers may appreciate the need 
to promote transfer.  

On the other hand, a small number of mathematics teachers already was working together 
with physics teachers. They emphasized the importance of aligning both subjects across time. 
In this way, certain mathematical concepts were not introduced in mathematics class before 
they were used in physics class (Alink et al., 2012; Roorda, 2012).  

We concluded that for teaching practice aiming at CMSE (Berlin & White, 2012, 2014; 
Davison, Miller, & Metheny, 1995), and improving students’ transfer of algebraic skills from 
mathematics in physics, a shift in mathematics teachers’ espoused beliefs in figure 1 of Chap-
ter 1 (Ernest, 1991) towards more openness to collaboration was needed (enacted beliefs). 
This involves the development of common pedagogical strategies such as alignment of no-
tations, formulas and the application of algebraic skills in both subjects. 

3.5.4 Main Category ‘2’: Curricula 

Core beliefs number ‘3’ up to ‘6’ refer to beliefs about the content of mathematics and phys-
ics subjects and thus belong to the main category ‘Curricula’. Number ‘3’ follows from the 
belief that the algebra involved in mathematics A is insufficient for that needed in physics 
class. Indeed, we had already seen this in the previous study (Turşucu, Spandaw, Flipse, & 
de Vries, 2017). Extensive quantitative research is required to determine whether this belief 
is widely shared among Dutch mathematics and physics teachers. Even if the latter would be 
the case, it does not imply that mathematics A is insufficient for physics. Moreover, both 
mathematics A and mathematics B curricula are designed in such a way that the algebra in-
volved in these subjects should be sufficient for physics (SLO, 2019).  

As to number ‘4’, both teacher groups claimed that mathematics contains less algebra. 
So, besides mathematics A, mathematics B also seems to lack sufficient algebra for physics 
students. This result seemed to contradict the belief above that only mathematics A does not 
contain algebra. Nevertheless, from the previous study we know that most of the mathemat-
ics and physics teachers wish to see that the content standards of both subjects should in-
clude the application of algebraic skills (e.g., manipulating formulas and solving for a variable) 
in physics contexts. This desire is close to core belief number ‘5’. Furthermore, the mismatch 
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contain algebra. Nevertheless, from the previous study we know that most of the mathemat-
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clude the application of algebraic skills (e.g., manipulating formulas and solving for a variable) 
in physics contexts. This desire is close to core belief number ‘5’. Furthermore, the mismatch 
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between number ‘3’ and ‘4’ may be related to teachers’ contradicting opinions between the 
first and the second half of the interviews.  
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rectly involved in physics class, some of them shared this belief. For Dutch teachers, who 
usually quite strictly follow their textbooks (SLO, 2019) and faithfully think that textbooks 
reflect the intended curriculum (Valverde, Bianchi, Wolfe, Schmidt & Houang, 2002), text-
books were the curriculum. Therefore, we regard core belief number ‘6’ as naïve (Schoenfeld, 
2014).  

We think that transfer can be improved when designers of mathematics curricula and 
those engaged in physics curricula put effort into collaboration aiming at pedagogy of equi- 
valent mathematical methods regarding the application of algebraic skills. For instance, using 
algebraic techniques (Drijvers, 2012) in the same way. Design principles should also focus 
on organization of the learning process across time (Alink et al., 2012).  

Furthermore, for two main reasons it is probably better that the alignment above does 
not lead to attempts to integrate both subjects. Firstly, mathematics has a serving role which 
is not restricted to physics, but also includes subjects such biology and chemistry. Secondly, 
it has an intrinsic unifying role: similar expressions and formulas used in different contexts 
outside mathematics can be reduced to the same abstract mathematics (Atiyah et al., 2010). 

3.5.5 Main Category ‘3’: Students 

Core belief number ‘7’ is related to basic algebraic skills first: thoroughgoing practice in phy- 
sics class should automatically lead to transfer. However, earlier studies have shown that 
successful execution of basic skills in school mathematics also involves conceptual under-
standing (e.g., Kilpatrick, Swafford & Findell, 2001; Wu, 1999). Not considering the latter 
may lead to routine based on ‘tricks’, thereby impeding transfer (Drijvers, 2011; Roorda, 
2012; Turşucu, Spandaw, Flipse, & de Vries, 2017). Thus, this belief is identified as naïve. 
The same argument holds for extensive practice in mathematic class with algebraic skills. To 
improve transfer, both basic skills and conceptual understanding should be taught in an in-
tegrated manner: “Advocates of insightful learning are often accused of being soft on training. Rather than 
against training, my objection to drill is that it endangers retention of insight. There is, however a way of 
training - including memorisation - where every little step adds something to the treasure of insight: training 
integrated with insightful learning.” (Freudenthal, 1991).  
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We think that practicing algebraic skills should happen in both classes with emphasis on 
conceptual understanding of the underlying mathematics behind these skills. Concrete indi-
cations are provided in table 1 in the previous chapter. In physics class students should prac-
tice with formulas analogous to 𝑠𝑠𝑠𝑠 = 1

2
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2, and in mathematics class with equations analo-

gous to 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2. 
Core belief number ‘8’ is in line with earlier literature on compartmentalized thinking in 

which students saw math and physics as unrelated subjects (Dierdorp et al., 2014; Osborne, 
2013). The quote “Math is for math class” (Nashon & Nielsen, 2007, p. 97) summarizes our 
finding. This may be reinforced by the fact that in the Netherlands (and in many other coun-
tries) both subjects are taught as separate disciplines (Roorda, 2012). Reducing this mental 
wall could be possible through coherent mathematics and science education (CMSE) (Berlin 
& White, 2014), which aims at fostering connections between mathematics and science edu-
cation. Indeed, similar to STEM education (e.g., van Breukelen, 2017; National Science and 
Technology Council, 2013; ‘TIMMS & PIRLS’, 2019), mathematics lies at the heart of the 
CMSE approach. Beyond CMSEs unifying role, it may also provide meaningful contexts to 
the other disciplines. 

As to core belief number ‘9’, recognition of the same algebraic structure in a mathematics 
equation and a physics formula does not necessarily lead to transfer, but could be an essential 
precondition for a strategy in which algebraic skills are applied successfully. Therefore, we 
regard core belief number ‘9’ as naïve. As stated earlier, naïve beliefs (espoused models) are 
harmful for transfer, since they do not match with beliefs needed for classroom practice that 
can enhance transfer (enacted models) (Schoenfeld, 2014). Teacher educators who are well-
informed about both models could use figure 1 of Chapter 1 to make teachers aware of their 
naïve beliefs and make them reflect on the mismatches between both models and reconcile 
them to improve transfer. Otherwise, because of the socialization effect of teaching, teachers 
are often observed to stick to the same ineffective teaching practice (Cooney, 1985). 

3.5.6 Main Category ‘4’: Teachers 

Core belief numbers ‘10’, ‘12’, ‘13’ and ‘14’ confirm earlier research on the crucial role of 
teachers regarding transfer (Alink et al., 2012; Quinn, 2013). In addition to the aforemen-
tioned collaboration between both departments (mesoscopic level in school), individual ef-
forts of mathematics and physics teachers (microscopic level in school) in respectively math-
ematics and physics classes could enhance students seeing connections between both sub-
jects (number ‘14’). As to physics teachers, it is probably better that activation of prior math-
ematical knowledge in physics class is concerned with mathematics involved in physics prob-
lems (number ‘13’). For instance, physics teachers could write 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏2 next to 𝑠𝑠𝑠𝑠 = 1

2
∙

𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎2, and solving for 𝑥𝑥𝑥𝑥 in 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏2 next to solving for 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠 = 1
2
∙ 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎2. Physics teachers

could also develop their own teaching materials in which such examples are elucidated in 
detail. Similar arguments hold for mathematics teachers, for example mentioning that the 
equation of a parabola 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏2 has the same mathematical structure as the distance for-
mula 𝑠𝑠𝑠𝑠 = 1

2
∙ 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎2in physics. Such interventions are small enough to be easily adopted by 
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mathematics teachers, and provide context and meaning for the formal language of mathe-
matics (Dierdorp et al., 2014). 

The belief that transfer is stimulated when there is agreement on the used notations for 
formulas (number ‘12’) is in line with earlier literature (e.g., Roorda, 2012; Quinn, 2013). A 
key example concerns that formulas used in physics class should be equivalent to those used 
in mathematics class. 

Remarkably, only half of both math and physics teachers are united behind the statement 
that both teacher groups should be able to teach basic mathematics (number ‘11’). This belief 
seems to indicate that half of the mathematics and physics teachers think that students’ trans-
fer is independent of whether mathematics and physics teachers possess a solid basis of 
mathematics. This belief is quite astonishing. Indeed, if teachers have not mastered basic 
algebraic skills, then probably many of their students also lack these skills. This makes trans-
fer very difficult to occur. It is very likely that teachers lacking basic mathematics, also lack 
sufficient basic algebraic skills. Therefore, core belief number ‘11’ simply overlooks the fact 
that both mathematics and physics teachers should be sufficiently knowledgeable in explain-
ing basic mathematics. Therefore, we regard core belief number ‘11’ as naïve. We also think 
that this belief can be more harmful to transfer than the former naïve beliefs. 

Furthermore, the belief above follows from core theme ‘5’ (table 2 in the previous chap-
ter). The relationship between mathematics and physics is extremely strong and goes back 
thousands of years (Atiyah, Dijkgraaf, & Hitchin, 2010); for example, Galileo mentioned that 
the book of nature is written in the language of mathematics. We think that even such his-
torical facts brings responsibilities for physics teachers: they should be able to teach basic 
mathematics.  

We conclude that there are many concrete things that individual mathematics and physics 
teachers could do to connect both subjects. In most cases these concern small interventions, 
feasible for teachers. Even mentioning that math and physics are not unrelated subjects, but 
closely related to each other may contribute to students’ transfer and also enhance students 
experiencing coherence between these subjects. 

3.5.7 Main Category ‘5’: Textbooks 

In line with earlier research (SLO, 2019; van den Heuvel – Panhuizen & Wijers, 2005; van 
Zanten & van den Heuvel – Panhuizen, 2014) core belief number ‘15’ confirms that Dutch 
teachers are highly textbook-driven and teach these to their students. In short, to a large 
extent the content of mathematics and physics textbooks shape what students learn. But 
what if these textbooks contain mismatches on how algebraic skills are learned?  

Algebraic techniques are part of the machinery of algebraic skills and pivotal in algebraic 
manipulation of formulas. Hence, the question “To what extent do differences in pedagogical methods 
to how algebraic techniques are treated in mathematics and physics textbook series affect students solving 
algebraic physics problems where these techniques are needed?” is worthwhile to investigate in a new 
study. It could give insight into the underlying mechanisms that affect students’ application 
of these techniques in such physics problems and provide design principles about how ped-
agogical methods could be used in curricula and textbooks to improve transfer. 
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Although there is hardly any scientific research examining alignment in textbooks be-
tween these subjects, there have been talks between mathematics and physics textbook pub-
lishers on this matter (Alink et al., 2012). Textbook publishers mentioned that Dutch teachers 
follow textbooks faithfully and teach them to their students (confirming earlier studies 
above). They think that textbooks focusing on alignment could strengthen students experi-
encing coherence across these subjects. We believe that it is probably better that curriculum 
designers take this matter into account, since curricula determine the content of textbooks. 

In practice, however, even if alignment should have been explicitly described in these 
curricula (ideal scenario), the idea to develop textbook series for this purpose remains diffi-
cult. Probably, the main reasons are twofold: mathematics and physics textbook publishers 
working separately, and the absence of learning lines aiming at coherence across both sub-
jects (Alink et al, 2012). 

Furthermore, among the respondents there was no consensus whether the content of 
mathematics and physics textbooks should be adapted (number ‘16’). This may imply that 
some mathematics and physics teachers believed that there is no need to adapt the content 
of math and physics textbooks. However, Alink et al. (2012) mention that during various 
consultations with teachers, the teachers frequently asked themselves why actual textbooks 
did not pay attention to alignment. Therefore, we regard core belief number ‘16’ as naïve. 
This result also may implies that our ‘what if’ question above about potential pedagogical 
mismatches in these textbooks was legitimate.  

We conclude that alignment of both subjects is crucial for CMSE and transfer (e.g., 
Konijnenberg, Paus, Pieters, Rijke & Sonneveld, 2015; Mooldijk & Sonneveld, 2010). This 
includes using compatible pedagogical strategies to teach algebraic methods, using compati-
ble notations, compatible concept descriptions, and especially the organization of the learn-
ing process across time in which mathematics had already been explained before it was used 
in physics class. We think that textbook publishers should take these issues into account. 

3.5.8 Limitations of This Study and Recommendations 

The core beliefs obtained in this study were extracted from the common code tree (table 2 
in the previous chapter). The latter resulted from open and axial coding (Bryman, 2012) of 
transcripts of twenty interviews with ten mathematics and ten physics teachers who were 
qualified to teach in senior pre-university education (Turşucu, Spandaw, Flipse, & de Vries, 
2017). They were selected from different regular Dutch schools in urban, rural and sub-urban 
areas within a radius of ±50 kilometres. Each teaching group consisted of eight male and 
two female teachers, being in good agreement with the gender ratio in Dutch senior pre-
university education (Mullis et al., 2009). They had varying teaching experience ranging from 
five to forty years. Therefore, we think that our sample may be representative for Dutch 
teachers in senior pre-university education. 

The common code tree in table 2 in the previous chapter contained teachers' beliefs that 
were saturated, because we did not see much change in the diversity of teachers’ individual 
beliefs after a total of eight interviews in both teach groups. Since core beliefs follow from 
this common code tree, they can also be regarded as saturated.  
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Based on the sample properties together with saturation of core beliefs, the results of this 
study may be generalizable for the major part of mathematics and physics teachers teaching 
in senior pre-university education in the Netherlands. This also holds for teachers in general 
secondary education, but not for prepatory vocational secondary education. In PVSE, the 
mathematics needed in physics are different from those than in senior pre-university educa-
tion and general pre-university education (SLO, 2019). This may lead to different beliefs. 

In the Netherlands the content of subjects is mainly determined by the national final 
examination (e.g., SLO, 2019; ‘TIMMS & PIRLS’, 2019), shaping to a very large extent the 
content of textbooks and teachers who quite strictly follow these and teach to their students 
(SLO, 2019; van Zanten & van den Heuvel – Panhuizen, 2014). Consequently, textbooks 
influence teachers’ beliefs about CMSE and transfer. In many countries however, such com-
bination of final examinations and textbook-driven teachers does not exist (Valverde, Bian-
chi, Wolfe, Schmidt, & Houang, 2002). Therefore, we do not expect that our results are 
generalizable to other countries outside the Netherlands. Although (to our knowledge) there 
are no other studies teachers’ beliefs about transfer of mathematics in physics, the latter (non-
generalizable) result does not trivialize the fact that teachers do observe students experienc-
ing difficulties in physics class (e.g., Basson, 2002; Ivanjek et al., 2016; Karam, 2014; Quinn, 
2013; Roorda, 2012). In this sense, our study shares the finding that teachers acknowledged 
students encountering algebraic difficulties in physics, and even mention the importance of 
being competent at it. Other studies in which algebraic skills play a more profound role con-
firm these findings (e.g., Awodun et al., 2013; Bolton & Ross, 1997; Hameed, Metwally, Al 
Shaya, & Abdo, 2015; Hudson & McIntire, 1977). For instance, in a study examining the 
mathematics performance among 120 senior pre-university physics students in physics class 
(four different schools in the North-West Province of South Africa), the results have shown 
a very poor level of application of algebraic skills (Molefe, 2006). These students tend to treat 
mathematics and physics as two unrelated subjects. Moreover, the individual studies above 
are in line with large scale international studies in which there is a clear decline in students’ 
achievements in physics related to insufficient mathematical competence in a number of dif-
ferent countries (e.g., Mullis et al., 2016; Nilsen et al., 2013). 

Within the triangulation process, some of the core beliefs have been removed because 
these were regarded as outliers. This was the case when less than three different teachers 
uttered a summarizing belief less than three times. To some degree this measure is arbitrary. 
But what if outliers contain important information about missing core beliefs such as the 
integration of the mathematics and physics curriculum or the textbooks. We recommend to 
further investigate this matter.  

Furthermore, we recommend identifying teachers who stated that both mathematics and 
physics teachers are not required to be sufficiently knowledgeable to teach basic mathematics 
(number ‘11’). Among all naïve beliefs, this can be the most harmful for transfer. Conducting 
in depth-interviews (Bryman, 2015) with those teachers may provide insight into why they 
have such harmful beliefs for transfer. Similar to aforementioned cases, we recommend these 
teachers to take part in professional teaching programs, since basic mathematics lies at the 
heart of transfer. Teacher educators could pay attention on their espoused and enacted mod-
els (see figure 1 of Chapter 1) to change mathematics and physics teachers’ naïve belief in 
one that may improve transfer in classroom practice.  
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3.6 Conclusion 

To answer research question (2a) “How can a systematic, refined method be developed to reduce code 
trees containing large amounts of data into a single dataset?”, we further developed the second cycle 
coding technique ‘pattern coding’ that is described by Gibson and Brown (2009) and Saldaña 
(2013). Whereas they briefly described general methods to further reduce coded data, we 
indeed developed a systematic and refined method. This process is described in the figures 
2, 3 and 4 in the Methodology section. We think that our approach to pattern coding is 
generally applicable to further reduce large amounts of coded data.  
 Regarding research question (2b) “What are the core beliefs of mathematics and physics teachers 
about students’ transfer of algebraic skills from mathematics into physics for solving algebraic problems that 
occur in senior pre-university education?”, we found one dataset containing sixteen core beliefs 
containing constraints and affordances influencing both transfer and students experiencing 
coherence across these subjects. In short, the common code tree in table 2 in the previous 
chapter including the continuum of teachers’ beliefs was further reduced into sixteen core 
beliefs. These core beliefs provided new insight into the individual teachers’ beliefs, not 
found in the previous study. They were grouped into five main categories, i.e. ‘Collaboration’ 
(number ‘1’ and ‘2’), ‘Curricula’ (number ‘3’ up to ‘6’), ‘Students’ (number ‘7’, ‘8’ and ‘9’), 
‘Teachers’ (number ‘10’, ‘11’ and ‘12’) and ‘Textbooks’ (number ‘15’ and ‘16’). So, to enhance 
students experiencing coherence across these subjects, and solve the transfer problem in the 
case, one needs to focus on these categories.  

Core belief numbers ‘6’, ‘7’, ‘9’, and ‘16’ concerned naïve beliefs (espoused model) which 
may stand in the way of both transfer and students experiencing coherence across these 
subjects (enacted model). Through professional development programs teachers with such 
beliefs could be made aware of their transfer impeding naïve beliefs, reflect on them and 
reconcile their espoused and enacted models (see figure 1 of Chapter 1). This may enhance 
students experiencing coherence across these subjects and transfer.  

We have seen that ‘Collaboration’ between both departments was of major importance 
to tackle transfer problems, thereby confirming earlier studies.  

As to ‘Curricula’, teachers believed that both mathematics A and B lack sufficient algebra 
for physics. This result seems to contradict the belief that only mathematics A is insufficient 
for physics.  

With respect to ‘Students’, teachers claimed that the lack of transfer is due to compart-
mentalized thinking in which students see mathematics and physics as unrelated subjects. 
Again, this finding confirms earlier research. To improve transfer, it is probably better that 
both basic skills and insightful learning are be taught in an integrated manner.  

‘Textbooks’ should be designed in such a way that last-mentioned integration is taken 
into consideration. This may enhance both transfer and students experiencing coherence 
across these subjects. 

Contrary to the common code tree, these core beliefs provided data small enough to 
extract belief systems including an organized set of mutually supporting core beliefs about 
CMSE and transfer in one single data reduction step. Quantitative research could investigate 
to which extent this is the case and which core beliefs these belief systems contain. This is 
explained in study (3) of the next Chapter. 

3.6 Conclusion
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coding technique ‘pattern coding’ that is described by Gibson and Brown (2009) and Saldaña 
(2013). Whereas they briefly described general methods to further reduce coded data, we 
indeed developed a systematic and refined method. This process is described in the figures 
2, 3 and 4 in the Methodology section. We think that our approach to pattern coding is 
generally applicable to further reduce large amounts of coded data.  
 Regarding research question (2b) “What are the core beliefs of mathematics and physics teachers 
about students’ transfer of algebraic skills from mathematics into physics for solving algebraic problems that 
occur in senior pre-university education?”, we found one dataset containing sixteen core beliefs 
containing constraints and affordances influencing both transfer and students experiencing 
coherence across these subjects. In short, the common code tree in table 2 in the previous 
chapter including the continuum of teachers’ beliefs was further reduced into sixteen core 
beliefs. These core beliefs provided new insight into the individual teachers’ beliefs, not 
found in the previous study. They were grouped into five main categories, i.e. ‘Collaboration’ 
(number ‘1’ and ‘2’), ‘Curricula’ (number ‘3’ up to ‘6’), ‘Students’ (number ‘7’, ‘8’ and ‘9’), 
‘Teachers’ (number ‘10’, ‘11’ and ‘12’) and ‘Textbooks’ (number ‘15’ and ‘16’). So, to enhance 
students experiencing coherence across these subjects, and solve the transfer problem in the 
case, one needs to focus on these categories.  

Core belief numbers ‘6’, ‘7’, ‘9’, and ‘16’ concerned naïve beliefs (espoused model) which 
may stand in the way of both transfer and students experiencing coherence across these 
subjects (enacted model). Through professional development programs teachers with such 
beliefs could be made aware of their transfer impeding naïve beliefs, reflect on them and 
reconcile their espoused and enacted models (see figure 1 of Chapter 1). This may enhance 
students experiencing coherence across these subjects and transfer.  

We have seen that ‘Collaboration’ between both departments was of major importance 
to tackle transfer problems, thereby confirming earlier studies.  

As to ‘Curricula’, teachers believed that both mathematics A and B lack sufficient algebra 
for physics. This result seems to contradict the belief that only mathematics A is insufficient 
for physics.  

With respect to ‘Students’, teachers claimed that the lack of transfer is due to compart-
mentalized thinking in which students see mathematics and physics as unrelated subjects. 
Again, this finding confirms earlier research. To improve transfer, it is probably better that 
both basic skills and insightful learning are be taught in an integrated manner.  

‘Textbooks’ should be designed in such a way that last-mentioned integration is taken 
into consideration. This may enhance both transfer and students experiencing coherence 
across these subjects. 
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to which extent this is the case and which core beliefs these belief systems contain. This is 
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 Furthermore, based on the results above and the ease with which we further reduced 
coded data, we concluded that our approach to pattern coding was very useful.  
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4.1 Introduction 

4.1.1 Complex Transfer Phenomenon 

The application of mathematics in science is of major importance for students (Dierdorp, 
Bakker, van Maanen, & Eijkelhof, 2014; Quinn, 2013). However, research has shown that 
students encounter difficulties in science problems where mathematics is needed (Bagno, 
Berger & Eylon, 2008; Cui, 2006; NCTM, 2000; Karakok, 2009; Rebello et al., 2007; Roorda, 
2014). For instance, Roorda (2012) mentions that his pre-university students who were 
taught differentiation in mathematics class, did not recognize in physics that the speed for-
mula 𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡 = 𝑣𝑣𝑣𝑣0 + 𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡 is the derivative of the displacement formula 𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥0 + 𝑣𝑣𝑣𝑣0𝑡𝑡𝑡𝑡 +  1

2
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔2. 

Even if students are successful in mathematics class, transfer to science class is not guar-
anteed (Karam, 2014). The study of Rebello et al. (2007) with students enrolled in an algebra-
based physics course after they had taken a trigonometry course, shows that even though 
their mathematics knowledge was sufficient, they encountered difficulties with mathematics 
in physics which was related to their inappropriate application of mathematics to physics 
problems. This makes transfer a complex phenomenon which needs to be further researched. 

4.1.2 Why Students are not Capable of Transferring Mathematics to Science Class 

An important reason for the lack of transfer is related to compartmentalized thinking (Gellish 
et al., 2007) in which students view mathematics and science as two unrelated subjects. This 
phenomenon is reinforced since mathematics and science in secondary education and at col-
lege level are taught as separate school disciplines. Overcoming this mental wall may be pos-
sible by means of coherent mathematics and science education (CMSE) (Berlin & White, 
2012, 2014). CMSE7 aims at education that fosters connections between mathematics and 
science subjects.  

The absence of transfer may also be related to the mismatch between teachers’ beliefs8. 
Indeed, beliefs strongly affect teacher behavior (Borg, 2015). For instance, mathematics and 
physics teachers who may naïvely think that transfer occurs automatically when students are 
extensively trained in mathematics class in the application of basic algebraic skills. In practice, 
however, they spend time on re-teaching mathematics in physics class, precious time they 
would rather spend on teaching physics, leaving less time for their core business of teaching 
physics (Turşucu et al., 2017; Roorda, 2012). Thus, naïve beliefs are harmful for transfer. In 
addition, in many countries’ science curricula are overloaded, compelling teachers to fit their 
curriculum into a seriously reduced instruction time (e.g., Lyons, 2006). This lack of time 
makes inefficient transfer of algebra even more harmful.  

7 A detailed explanation of CMSE can be found in chapter 1. 
8 A detailed explanation of teachers’ beliefs about transfer in relation with classroom practice can be found in 
chapter 1. 

4.1 Introduction
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4.1.3 Article Aim and Research Question (3) 

There is a large body of research on transfer focusing on the effect of initial learning on new 
learning (Karam, 2014; Potgieter, Harding & Engelbrecht, 2008; Rebello et al., 2007; Roorda, 
Goedhart, & Vos, 2014). This study extends the latter, but is different in the sense that it 
examines belief systems containing an organized set of mutually supportive beliefs (Borg, 2015; 
Mansour, 2009) about improving transfer of algebraic skills from mathematics into physics. 
Thus, we do not investigate individual beliefs. We especially examine belief systems consisting 
of desirable (Leathem, 2006) and naïve beliefs (Schoenfeld, 2014) about CMSE and transfer. 
Our extended definition of desirable (originally, beliefs that science teacher educators want 
teachers to hold) refers to beliefs required for transfer enhancing teaching practice. This can 
be collaboration between the mathematics and physics department on using the same peda-
gogy in teaching mathematics (e.g., Alink, Asselt & Braber, 2012; Roorda, 2012; Quinn, 
2013), for example the application of the algebraic methods. 

The relationship between belief systems containing naïve beliefs and transfer is highly 
under researched. In fact, our extensive literature research yielded only our previous studies 
on both individual beliefs and core beliefs about transfer of algebraic skills from mathematics 
in physics (Turşucu, Spandaw, Flipse, & de Vries, 2017; Turşucu, Spandaw, Flipse, & de 
Vries, 2018a). 

Better understanding of this relationship is relevant from both an educational and a sci-
entific point of view. As to science education, it may provide relevant information for the 
mathematics and physics curricula, teachers, textbooks and science teacher educators aiming 
at improvement of transfer and students experiencing coherence across these subjects. Re-
garding the first, there is the possibility to connect the physics curriculum through content 
standards to the mathematics curriculum, for example, by means of compatible notations. 
Consequently, these standards can be used as design principles for physics textbooks. For 
instance, mathematics textbooks providing physics context, or introduction paragraphs in 
physics textbooks in which equations and corresponding physics formulas are treated to-
gether (activation of prior mathematical knowledge). With regard to teachers, we refer to 
what both mathematics and physics teachers can do in their classrooms individually, and also 
to collaboration between both departments. Science teacher educators can use professional 
teaching programs (Guskey, 2002) to make science teachers aware of their belief systems, 
reflect on them and change naïve beliefs such as automatic transfer above into desirable 
beliefs about transfer. Otherwise, because of the powerful socialization effect in school, 
teachers are often observed to stick to the same ineffective teaching (Brown & McNamara, 
2011).  

Concerning scientific relevance, this study could contribute to the evaluation of a micro-
scopic (Misfeldt, Jankvist & Aguilar, 2016) and a macroscopic (Ernest, 1991) belief system model. 
The former model has its roots in cognitive psychology and deals with individual beliefs, and 
how they are related to each other in the structure of a belief system. The latter is concerned 
with how the social context of teaching (e.g., students, teachers and textbooks) influences a 
teachers’ belief system. In the next section we will explain these models and their relation in 
detail. This explains why we examined belief systems, rather than individual beliefs.  
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This paper reports the findings of a quantitative exploratory study on teachers’ belief 
systems containing possibly naïve beliefs about improving transfer of algebraic skills to phys-
ics. The research question (3) is “What are the belief systems of mathematics and physics teachers about 
improving students’ transfer of algebraic skills from mathematics into physics for solving algebraic problems 
that occur in senior pre-university education?”.  

4.2 Background 

4.2.1 Transfer as The Backbone of Coherent Mathematics and Science Education 

Whereas mathematics can be viewed as the formal language of physics (Kjeldsen & Lützen, 
2015), physics provides context and meaning for mathematics (Dierdorp, Bakker, van 
Maanen, & Eijkelhof, 2014). Connection of both disciplines is possible through alignment, 
for example, similar concept descriptions, pedagogy of algebraic techniques and organization 
of the learning process. The latter concerns organization of the learning process to achieve 
a logical learning line across both subjects. In practice, however, certain mathematical con-
cepts are taught in physics class before these were explained in math (Alink, Asselt & Braber, 
2012). Fostering alignment between both subjects may foster both transfer of mathematics 
into physics and students’ experiencing coherence across these subjects. 

Transfer forms the backbone of the CMSE-approach and refers traditionally to the ap-
plication of initial learning in a new learning situation (Lobato, Rhodehamel & Hohensee, 
2012), and is regarded as one of the main goals of education (Mestre, 2006). The expert 
(teacher) determines whether transfer happens or not by checking the learners’ (student) test 
answers to the expert’s correction scheme, implying a binary outcome: transfer exists or not. 
A key example concerns assessment of students’ solving for a variable in a formula, for ex-
ample solving for the mass 𝑚𝑚𝑚𝑚 in the formula for kinetic energy 𝐸𝐸𝐸𝐸𝑘𝑘𝑘𝑘 = 1

2
∙ 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚2. Each solu-

tion that does not match with 𝑚𝑚𝑚𝑚 = �2∙𝐸𝐸𝐸𝐸𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚

 of the correction scheme is regarded incorrect, 

and therefore associated with the absence of transfer. 
 Furthermore, in this study, we assume a reciprocal relation between CMSE and transfer. 
When students experience coherence across mathematics and science subjects by means of 
meaningful contexts, transfer from mathematics to science subjects can be improved, and im-
proving transfer can help them to experience coherence between mathematics and subjects. 

4.2.2 Microscopic Belief System Model 

Beliefs are instrumental in the definition of tasks and selection of cognitive tools, which are 
used to interpret, plan and make decisions concerning tasks (Borg, 2015). They play an es-
sential role in organizing knowledge and information, i.e. they help individuals to define the 
world and themselves. Therefore, beliefs have a major impact on teacher behavior.  

And what about changes in teacher behavior? They are attributed to the structure of a 
belief system, rather than to individual beliefs (Leatham, 2006; Misfeldt, Jankvist & Aguilar, 

4.2 Background
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2016). Such structures contain certain collections of mutually supportive beliefs with both 
varying centrality and psychological strength. Beliefs in the center of the system are psychologically 
strong, and strongly connected to many other central beliefs, making them hard to change. 
Other beliefs, i.e. the more peripheral weak beliefs are founded and derived upon these cen-
tral beliefs. The terms ‘central’ and ‘peripheral’ can be visualised as a group of concentric 
circles with varying radii (Singletary, 2012). While the inner-most circles represent the strong 
central beliefs, the outer circles concern the weak peripheral beliefs.  

Both ‘central’ and ‘peripheral’ beliefs can be desirable or naïve. While the former im-
proves transfer in physics lessons, the latter is harmful. It can occur that the central area of 
a teachers’ belief system contains (1) a set of only desirable beliefs, (2) a set of only naïve 
beliefs, or a (3) ’mixed state’ with a combination of desirable and naïve beliefs about transfer 
in the central area. Another picture is that of a ‘mixed state’ (4) distributed over the central-
peripheral area. The first scenario is ideal, since all beliefs form a strong, coherent set of 
mutually supporting beliefs. Teachers with such beliefs are likely to improve students’ trans-
fer in the classroom. The second scenario contains only harmful beliefs. Changing such 
strong beliefs would be very difficult. This makes it a least ideal scenario. We expect that our 
extracted belief systems belong to scenario (4). 

This picture with strong and weak beliefs resembles that of an atom having a structure 
with a nucleus holding together various particles into a stable system. Particles in the nucleus 
can be regarded as the connected central and psychologically strong beliefs. The other parti-
cles which are further from the nucleus and less tightly bound to the system, correspond to 
the peripheral weak beliefs. Hence, the belief system model above with varying centrality and 
psychological strength of beliefs can be regarded as a microscopic system.  

4.2.3 Macroscopic Belief System Model  

The upper rectangle in figure 19 of Chapter 1 represents a teachers’ belief system (view) about 
the nature of mathematics (Ernest, 1991) containing the teachers’ espoused (mental) models 
of teaching and learning mathematics. Influenced through constraints and affordances of the 
social context of teaching, these mental models are transformed (see downward arrows) into 
teaching practice (enacted models). In short, the upper two rows of rectangles are concerned 
with a teachers’ belief system, and the other rectangles with teaching practice. The distinction 
between espoused and enacted is essential, since case studies have shown that there can be a 
great disparity between teacher's espoused and enacted models (e.g., Brown & McNamara, 
2011; Lloyd, Veal, & Howell, 2016).  

In this study, we investigate belief systems including desirable and naïve beliefs. Hence, 
the upper rectangle in figure 1 of Chapter 1 with underlying espoused models represents a 
teachers’ belief system with desirable and naïve beliefs about improving transfer. Contrary 
to the microscopic model above, figure 1 of Chapter 1 can be regarded as macroscopic. We 
think that a macroscopic view is needed to understand and explain how, for example teachers 
and textbooks in the social context of teaching interact and influence transfer via espoused 
and enacted models. A microscopic view puts a lens on these espoused models, providing 

 
9 A detailed explanation of Figure 1 can be found in Chapter 1. 
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detailed understanding of how various central and peripheral beliefs of a belief system are 
related with each other.  

What do both cognitive microscopic and macroscopic models concretely mean for class-
room practice, for instance considering scenario 4? In case of the physics teacher strongly 
convinced about automatic transfer, he also might have weak a belief since, for example he 
is not that sure whether mathematics teachers providing physics context in mathematics class 
improves transfer (espoused models). In practice, however, he observes the opposite: stu-
dents facing difficulties with mathematics in physics class, and the physics context contrib-
uting to enhancement of transfer (enacted models). Although there is a discrepancy between 
both models, this does not necessarily imply that the physics teacher will reflect on his es-
poused and enacted models and reconcile them to improve transfer. For that to happen, he 
needs to change his strong and weak beliefs rooted in respectively the central and peripheral area 
of his belief system. In contrast to his weak belief, his strong belief will resist heavily to 
change since it is connected to other neighbouring strong beliefs about transfer. 

4.2.4 Curricula, Teachers and Textbooks in Secondary Education 

Dutch students start with pre-university education consisting of two phases at the age of 12 
(grade 7). The first phase involves three years of junior pre-university education junior pre-
university education, and the second phase three years of senior pre-university education. 
Junior pre-university education offers a variety of subjects accessible for all students. Based 
on their interests and talents, students in senior pre-university education should choose be-
tween one of the four profiles ‘culture and society’, ‘economics and society’, ‘science and 
health’ or ‘science and technology’ preparing them for university education. Physics students 
of the last cluster should choose mathematics B, and those of ‘science and health’ mathe-
matics A or mathematics B. Mathematics B puts more emphasis on algebra than mathematics 
A (Dutch Institute for Curriculum Development, 2019). The content of these subjects is 
determined by curricula (the intended curriculum) through core goals. 

Textbooks (potential curriculum) mediate between these curricula and the actual teaching 
in classrooms (Valverde, Bianchi, Wolfe, Schmidt & Houang, 2002). The limited description 
of the core goals leaves publishers room for different interpretations in textbooks. Teachers 
strictly follow these textbooks and teach these to their students (SLO, 2019; van Zanten, M. 
& van den Heuvel - Panhuizen, 2014). Many teachers are unaware of curricula (e.g., Turşucu, 
Spandaw, Flipse, & de Vries, 2017): for them textbooks are the curriculum.  

This study examines belief systems with naïve beliefs about transfer by focusing on the 
key players in senior pre-university education, i.e. curricula, teachers and textbooks (Alink, 
Asselt & Braber, 2012). Science teachers, for example, were not considered as key players in 
upper secondary education. Their role can be pivotal during science teacher education pro-
grammes leading to a teaching qualification. This may also be the case for the short profes-
sional educational programmes. But when these teachers finish their education and are ‘in 
service’, then their teaching is directly influenced by curricula, teachers and textbooks.  
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4.2.5 Ernest’s Educational Model 

In his theoretical-educational model Ernest (1991) combines the philosophy of mathematics, 
theories of intellectual and ethical development, and the sociological-historical theory into 
five different belief systems, each representing a social group: ‘Industrial Trainers’ (‘IT’ in 
short), ‘Old Humanists’ (‘OH’), ‘Progressive Educators’ (‘PrE’), ‘Public Educators’ (‘PuE’) 
and ‘Technological Pragmatists’ (‘TP’). These groups have different views (beliefs) about 
twelve different themes such as ‘View of mathematics’, ‘Theory of the child’, ‘Theory of 
society’, ‘Mathematical aims’ and ‘Theory of Teaching Mathematics’. Ernest’s model can be 
regarded as a matrix consisting of five columns (each representing a social group) and 12 
rows (each representing a theme) about the set of moral values, theory of society and philos-
ophy of mathematics. The intersection of a column and a row corresponds to a social groups’ 
belief. Below we will briefly describe these social groups.  

The ‘IT’ perspective is authoritarian and basic skills-centered, and concerns those tea- 
ching the workforce of industry. As to CMSE and transfer, this perspective does not consider 
insightful learning, since for a well-balanced approach aiming at transfer both basic skills 
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knowledge as dualistic (either knowledge may be right or wrong) and mathematics as absolute 
(unquestionable set of facts). The teacher demands rigid discipline of hard working, compe- 
titive students who attempt to acquire basic mathematical skills and numeracy, and social 
training in obedience. The calculator is restricted and there is no room for discussion and 
collaboration. Social issues and the interests of social groups have no place in mathematics 
(are neutral).  

The pure mathematics centered ‘OH’ group refers to the elitist and cultured class. 
Knowledge is relativistic (its truth depends on the context), but math absolute. Because of 
their strong reliance on pure mathematics (especially logic), they are math-centered (not au-
thority as ‘IT’). For them mathematics is the ‘Queen of the Sciences’ (Colyvan, 2012). They 
refuse to discuss applications, let alone issues on transfer of mathematics in science subjects. 
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should gain confidence, creativity and self-expression through mathematics. Their openness 
to collaboration may enable them to develop common teaching strategies between both de-
partments, since this may be a powerful manner to tackle transfer problems (Roorda, 2012). 

The group ‘PuE’ aims at education based on democratic socialist principles and values. 
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is viewed as the fallible product of human invention (uncertain and corrigible). Collaboration 
and discussion are important pedagogical components. Like ‘PrE’, their focus on 
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collaboration may enable both departments working together on transfer problems. Through 
math, students should be empowered and liberated as critical and literate citizens in society.  

As to ‘TP’, knowledge is multiplistic (it may be sometimes right, sometimes wrong) 
whereas mathematics is absolute. Learning involves acquisition of basic skills (Rittle-John-
son, Schneider & Star, 2015) and solving practical problems using mathematics and infor-
mation technology. Even though they are more progressive than ‘IT’ (e.g., not anti-calculator 
and not computer), there is again emphasis on procedural fluency, but no attention for in-
sightful learning. Basic and problem-solving skills prepare them for the demands of industry. 
Indeed, they represent the interest of the industry. 

Following Ernest (1991), we categorized teachers into groups based on their belief sys-
tems. Unlike our clusters, however, Ernest’s (1991) groups are theoretical and not based on 
empirical data. Finally, his social groups are ‘package deals’: the members of his groups are 
supposed to either embrace or reject complete sets of beliefs. His theoretical model does not 
admit belief systems mixing aspects of different groups. Neither does he allow for different 
degrees of belief. In practice, certain social groups may have ideas that overlap with other 
groups. We expect that this also holds for the participants in our study.  

4.2.6 Study (2) 

The dataset of table 5 in chapter 3 including sixteen core beliefs in study (2) is sufficiently 
reduced to extract belief systems with desirable and naïve beliefs in a last data reduction step. 
We will explain this in detail below.  

4.3 Methodology 

Firstly, we explain the transformation of sixteen core beliefs into sixteen claims. Secondly, 
the development of an online survey and how we ran it is explained. This survey included 
sixteen claims that were used in the short questionnaire. Thirdly, we will describe the data 
collection method. Fourthly, the extraction of belief systems is described.  

4.3.1 Step 1: Forming of Claims 

The sixteen core beliefs were converted into sixteen claims, which were clearly phrased using 
the six functions of language of Jakobson (Hébert, 2011; Waugh, 1980). Briefly, these six 
functions are (1) the ‘referential function’ that corresponds to the context and describes a 
situation, object or mental state, (2) the ‘emotive function’ that is concerned with the sender 
and his emotions, (3) the ‘conative function’ expressing how he receiver is engaged, (4) the 
‘poetic function’ focusing on the message itself: is the message factual or poetic?, (5) the 
‘phatic function’ referring to the language used for the sake of interaction and is therefore 
associated with the channel of communication, and (6) the ‘metalingual function’ relating to 
the language to discuss or describe itself. Also, the relation between research question (3) 
and the claims was emphasized. We combined both requirements. The claims were (1) 
phrased positively, (2) understandable without any explanation, (3) verbalized as factual as 

4.3 Methodology
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possible, and (4) used well-known language for both mathematics and physics teachers. This 
should lead to sixteen claims about students experiencing coherence across these subjects 
and transfer of algebraic skills from math in physics.  

To warrant intersubjectivity, the whole procedure above was discussed by the first and 
third author and two independent researchers until 100 % consensus was reached on the 
formulation of claims among all researchers. Next, these claims were transformed into a 
short questionnaire. This process including the content of this questionnaire is explained in 
the following sub sections. 

4.3.2 Step 2: Development of Online Survey and Running it 

The online survey we developed for mathematics and physics teachers consisted of four 
parts, each corresponding to a separate webpage (Sue & Ritter, 2012). On the first webpage 
teachers were introduced to background information about the first author, together with 
the aims and purpose of the survey. On the second webpage respondents were asked to answer 
questions about their gender, profession and number of years of teaching experience. The 
sixteen claims were incorporated in the short questionnaire and used on the third webpage. 
Here, mathematics and physics teachers were asked to select their top 5. Because of two 
reasons the questionnaire was introduced through the transfer problem in the case (Turşucu, 
Spandaw, Flipse, & de Vries, 2017): to give the respondents an idea about what is meant with 
algebraic skills and since the claims were based on these skills. Webpage four deals with the 
multi-criteria assessment tool (Belton & Stewart, 2002) that we have developed, because 
there was no such digital tool available. This is illustrated in figure 2 below. To gain more 
insight into the relative weights between these five claims (top 5), teachers were asked to 
distribute 50 points over these claims.  

The number ‘50’ in the center of this tool has a dynamic display that changes with each 
distribution operation and returns the remaining points. In the pilot-study social science ex-
perts and teachers mentioned that this display helped them to concentrate on the distribution 
of their points over the claims, and gain more insight into the remaining points after each 
operation. This helped them achieving a well-balanced point distribution.  
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Figure 2. Multi criteria assessment tool in which teachers distribute 50 points over their selected 5 claims. 

4.3.3 Step 3: Data Collection Method 

We used self-selection sampling (Bryman, 2015) to gather data. About 300 schools in urban 
areas including most capitals of provinces and the bigger cities in the Netherlands were in-
vited to participate in this study. We also invited about 100 sub-urban and 30 rural schools. 
The respondents consisted of mathematics and physics teachers from all levels of secondary 
education. To achieve a high response rate among these respondents we offered a € 100,00 
reward.  

4.3.4 Step 4: Extraction of Teachers’ Belief Systems 

The notion of ‘belief system’ was modelled as follows. For each of the 16 claims we have an 
empirical distribution of scores. We clustered the teachers such that all teachers in a certain 
cluster have similar scores on the 16 claims. A belief system is then the system of 16 empirical 
distributions for the corresponding cluster of teachers. So, to find belief systems we had to 
cluster the teachers. To this extent we used the clustering technique agglomerative hierarchical 
clustering (AHC) (Everitt & Dunn, 2001). After the belief systems were extracted, the first and 
second author triangulated on which of these were considered as useful for this study and 
which were not. They reached 100% consensus on the final set of belief systems.  
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4.4 Results  

Firstly, we will present the sixteen claims translated from Dutch to English. Secondly, the teach-
ers who participated in this study are shown. Thirdly, the total scores of experienced teachers 
are presented. Fourthly and fifthly, the belief systems of respectively the very and most experi-
enced teachers are shown.  

4.4.1 Sixteen Claims 

The set of sixteen claims is depicted below in table 1. Each core belief in the previous study 
(Turşucu, Spandaw, Flipse, & de Vries, 2018a) was converted into the corresponding claim 
using the criteria above. The naïve claim numbers are 2, 3, 7, 9 and 16, and were already 
identified in the previous study on teachers’ core beliefs (Turşucu et al., 2017).  

Table 1. Set of sixteen claims about CMSE and improving transfer. 

Claim number List of claims  
To improve the application of algebraic skills from mathematics into physics… 

1 … the collaboration between mathematics and physics teachers should have more priority. 
2 … mathematics A should contain more algebraic skills than is the case now. 
3 … mathematics should contain more algebra. 
4 … mathematics teachers need more time to cooperate with physics teachers. 
5 … the content of mathematics and physics textbooks should be adjusted. 
6 … mathematics and physics teachers should be able to explain relevant basic knowledge about 

mathematics. 
7 … mathematics and physics teachers should follow the content of their textbooks. 
8 … students should recognize physics contexts. 
9 … students should practice more algebraic skills during physics lessons. 
10 … mathematics and physics teachers should use the same notations in formulas. 
11 … prior mathematical knowledge should be activated during physics lessons. 
12 … students should see relations between contexts of both mathematics and physics. 
13 … mathematics and physics teachers should work together to improve the application of these 

algebraic skills. 
14 … mathematics should incorporate more physics contexts. 
15 … to a lesser extent students should see mathematics and physics as separate subjects. 
16 … the physics curriculum should contain more manipulation of formulas than is the case now. 

4.4.2 Participating Teachers in This Study 

Our sample included 503 teachers from all levels of secondary education. After some pre-
liminary analyses, we decided to focus on qualified senior pre-university teachers, since the 
transfer problems under consideration take mainly place in their grade 10 classes (Turşucu, 
Spandaw, Flipse, & de Vries, 2018a; Roorda, 2012). We restricted our attention to teachers 
with more than 5 years of teaching experience. This left us with 274 senior pre-university 
teachers, including 188 male and 86 female teachers. The results are listed below in table 2. 

4.4 Results
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During the analysis in the next section we will refer to these 274 teachers as ‘experienced 
teachers’. The 97 teachers (61 male and 36 female) with more than 10 years of teaching 
experience will be called ‘very experienced teachers’, and the 118 teachers (89 male and 29 
female) with more than 20 years of teaching experience ‘most experienced teachers’.  

Table 2. Distribution of years of teaching experience over number of participating mathematics and physics teachers. 

Teaching experience (years) 6 – 10 11 – 20 20 – Total 
Mathematics 31 59 77 167 
Physics 28 38 41 107 
Total  59 97 118 274 

4.4.3 Total Scores of Experienced Teachers 

A first impression of the opinions of these 274 experienced teachers can be obtained from 
the relative scores on the 16 claims. These are given in figure 3 (normalized to a total of 1) 
for the three subgroups of 59 experienced teachers (white bar), the 97 very experienced (grey 
bar), and the 118 most experienced teachers (black bar). For the sake of clarity, next to figure 
(3), we displayed table 1. Remarkably, not a single teacher had chosen claim number 7 in his 
or her top 5! Claim number 11 has the highest total score. 

To gain more insight into the differences of the three experience levels with respect to 
the distribution of the scores, we plotted a boxplot for each of the 16 claims (figure 4), again 
for the whole group of 274 qualified teachers with more than 5 years of teaching experience. 

We see that most claims have zero median and most scores have quite a few outliers, i.e. 
scores larger than the third quartile plus 1.5 times the interquartile range (Cohen, Cohen, 
West, & Aiken, 2013). Correlations between the 16 claims were low. Even when we restrict 
to the subsample of 97 very experienced teachers or 118 most experienced teachers, all cor-
relations were small. Their squares (explained variance) were smaller than 0.10. Small corre-
lations make principal component analysis (PCA) and factor analysis ‘pointless’ (Everitt & 
Hothorn, 2011, p. 157). This finding was confirmed by the PCA scree-plots. These lacked a 
clear ‘elbow’, which implies that there is no natural choice for choosing the number of di-
mensions.  
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    Table 1. Set of sixteen claims about CMSE and improving   
   transfer. 

Figure 3. Relative total scores of the 274 experienced  
teachers over the sixteen claims. 

AHC produces a tree, also called dendrogram. The method starts with the leaves of the tree, 
i.e. the teachers in the case at hand. It joins the individuals whose scores are closest with
respect to a specified measure. Next, the distances between the clusters thus obtained are
compared and the closest clusters are joined to agglomerated clusters. In the next step, one
gets next level agglomerated clusters. And so on, until all teachers are teachers are joined in
one supercluster at the root (see e.g., Figure 5). The distance between clusters which are
merged in clusters of the next level is called the ‘height’ (Figure 5). Two choices should be
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Figure 4. Boxplot of the total scores of 274 teachers showing medians, outliers and quartile scores. 

made to produce a tree: a distance function on the set of 16-dimensional scores and a ‘linkage 
method’ used to define the distance between clusters. We took complete linkage as recom-
mended by Everitt & Hothorn (2011). This means that the distance between two clusters X 
and Y is defined as the maximal distance between points x in X and y in Y.  

We used the statistical programming language R to produce the trees using the command 
‘hclust’. Dichotomized scores (taking 1 for positive scores and 0 for zero scores) in combi-
nation with Manhattan distance and complete linkage produced the trees with the clearest 
clustering. For example, in Figure 5 we see that the 97 very experienced teachers with 11 – 
20 years of teaching experience form six clusters. Note that the first splitting near the root 
occurs at the same height (h = 8) in the tree. If we use non-dichotomized scores, we get trees 
whose splitting heights are not so nicely and evenly distributed as in Figure 5 below. Different 
choices of the height, which are quite arbitrary, would lead to different number of clusters. 

Figure 5. Dendogram for the 97 very experienced teachers using dichotomized scores. 
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4.4.4 Belief Systems of Very Experienced Teachers 

The tree for the 97 qualified senior pre-university education mathematics and physics  
teachers with more than 10 years of teaching experience is shown in Figure 6. At the most 
fundamental level, this tree clusters these teachers into 6 clusters, which we will call BS1(VE) 
to BS6(VE) (‘BS’ for ‘belief system’ and ‘VE’ for ‘very experienced’). The ‘height’ is the 
Manhattan distance between the clusters. The 6 clusters BS1(VE) to BS6(VE) merge at 
height 10, which means that the distance between these clusters equals 10. Their sizes are 6, 
12, 8, 24, 20 and 27. They contain 3, 9, 5, 18, 9 and 15 mathematics teachers and 3, 3, 3, 6, 
11 and 12 physics teachers, respectively. We focused on the three largest clusters BS4(VE), 
BS5(VE) and BS6(VE), covering 74% of the 97 teachers, since the other three clusters are 
rather small.  

A first impression of these belief systems can be obtained from figure 6, which shows 
the mean (non-dichotomized) scores of these three clusters on the 16 claims. The total of 
the 16 means equals 50 for each cluster. The error bars correspond to one standard deviation. 
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  Table 1. Set of sixteen claims about CMSE and improving transfer. 

Figure 6. Mean scores and errors for the three  
largest clusters BS4(VE), BS5(VE) and BS6(VE)  
very experienced teachers. 

4.4.5 Belief Systems of Most Experienced Teachers 

We performed the same analysis for the group of 118 most experienced qualified pre-
senior university teachers, i.e. teachers with more than 20 years of teaching experience. They 
are different individuals than those in the clusters in the analysis of the 97 very experienced 
teachers. The tree is given in Figure 7 below. We again found 6 belief systems, which we 
denoted as BS1(ME) (‘ME’ for ‘most experienced’) up to BS6(ME). The belief systems con-
tain 9, 26, 9, 15, 27 and 32 teachers, respectively. We ignored the small belief systems 
BS1(ME), BS3(ME) and BS4(ME). Belief system 2 contains 20 math teachers and 6 physics 
teachers. For BS5(ME) these numbers are 17 and 10, and for BS6(ME) these numbers are  

Claim number and corresponding claim 
To improve the application of algebraic skills from mathematics into physics… 
1. … the collaboration between mathematics and physics teachers 
should have more priority.
2. … mathematics A should contain more algebraic skills than is the case
now.
3. … mathematics should contain more algebra.
4. … mathematics teachers need more time to cooperate with physics 
teachers.
5. … the content of mathematics and physics textbooks should be adjusted. 
6. … mathematics and physics teachers should be able to explain relevant
basic knowledge about mathematics.
7. … mathematics and physics teachers should follow the content of their
textbooks.
8. … students should recognize physics contexts. 
9. … students should practice more algebraic skills during physics lessons.
10. … mathematics and physics teachers should use the same notations in
formulas.
11. … prior mathematical knowledge should be activated during physics 
lessons.
12. … students should see relations between contexts of both mathematics 
and physics.
13. … mathematics and physics teachers should work together to improve
the application of these algebraic skills.
14. … mathematics should incorporate more physics contexts. 
15. … to a lesser extent student should see mathematics and physics as 
separate subjects.
16. … the physics curriculum should contain more manipulation of formulas 
than is the case now.
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Figure 7. Dendogram for the 118 most experienced teachers using dichotomized scores. 

Table 1. Set of sixteen claims about CMSE and improving transfer. 

Figure 8. Mean scores and errors for the three 
largest clusters BS2, BS5 and BS6 of most 
experienced teachers. 
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14. … mathematics should incorporate more physics contexts. 

15. … to a lesser extent students should see mathematics and physics as 
separate subjects.
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23 and 9, respectively. The three belief systems BS2(ME), BS5(ME) and BS6(ME) cover 72% 
of the 118 most experienced teachers. 

Figure 8 shows the mean scores on the 16 claims for the three largest belief systems 
BS2(ME), BS5(ME) and BS6(ME). Again, the total of the 16 means equals 50 for each belief 
system. As in figure 7, the error bars again correspond to 1 standard deviation. We immedi-
ately see some remarkable features, for example BS2(ME) gives a high score to claim 15, 
BS5(ME) puts much weight on claims 2 (naïve belief) and 13, whereas BS6(ME) is distin-
guished by its high score on claim 6. 

4.5 Results Interpretation 

In this and later sections the words claim and belief are used interchangeably to denote one of 
the sixteen claims in table 1. We focused on belief systems including beliefs with the highest 
scores and neglected those with the lowest scores.  

4.5.1 Very Experienced Teachers: BS4(VE), BS5(VE) and BS6(VE) 

The highest scores in BS4(VE) belong to claims 12, 11, 13, 1 and 16 (naïve belief). The focus 
is on collaboration between mathematics and physics teachers and making links between 
math and physics class. Prior mathematical knowledge should be activated in physics class 
and students should see (or rather: be helped to see) the relations between contexts used in 
math and physics class. Mathematics and physics should work together to improve transfer 
of algebraic skills to physics. More generally, collaboration between these teachers should 
have more priority. The lowest scores in BS4(VE) belong to claims 7, 5 and 9, which center 
around the textbooks. Teachers with this belief system believed that following or adjusting 
textbooks is not important to improve transfer, nor do they believed that algebraic skills 
should be practiced more in physics class. 

The highest scores in BS5(VE) belong to claims 11, 16 (naïve belief), 2 (naïve belief) and 
6. The focus is on the teacher and on the curriculum. The physics teachers should activate
prior mathematical knowledge in their classes and they should be able to explain basic math-
ematics. The physics curriculum should pay more attention to manipulation of formulas and
the curriculum for mathematics A should give more weight to algebraic skills than now is the
case. The lowest scores in BS5(VE) correspond to claims 7, 4, 8 and 12 which centre around
students. Teachers believed that students seeing relations between contexts used in both
math and physics class is not important to improve transfer. Nor they believed that more
collaboration of mathematics and physics teachers is the key to improvement of transfer.

Finally, the highest scores in BS6(VE) were given to claims 11, 9 (naïve belief) and 15. 
These centre around the student and the teacher. Their mathematical pre-knowledge should 
be activated, they should practice algebraic skills in physics class more than they do now, and 
they should learn to see the connections between mathematics and physics. The lowest 
scores in BS6(VE) belong to claims 7, 4, 16, 5 and 3. There is a focus on the textbook and 
the curriculum. These teachers believed that the content of textbooks should not be fol-
lowed, nor do they believe that its content should be changed.  

4.5 Results Interpretation
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4.5.2 Comparing BS4(VE), BS5(VE) and BS6(VE)  

The most remarkable differences among the strong claims between BS4(VE) and BS5(VE) 
are the scores on claims 12, 13 and 6. BS4(VE) rates claim 12 nine times more important and 
claim 13 three times more important than does BS5(VE). We conclude that collaboration 
between mathematics and physics teachers and connecting contexts used in physics and math 
class are far more important to BS4(VE) than to BS5(VE). Conversely, claim 6 is rated twice 
as high by BS5(VE) compared to BS4(VE). Hence, physics teachers explaining basic mathe-
matics is deemed more important in BS5(VE) than in BS4(VE). 

The strong claim of BS4(VE) with the highest ratio BS4(VE) : BS6(VE) is number 16 
(naïve belief) (BS4(VE) = 22 × BS6(VE)). The strong claim of BS6(VE) with the highest 
ratio BS6(VE) : BS4(VE) is number 9 (naïve belief) (BS6(VE) = 20 × BS4(VE)). We conclude 
that BS4(VE) teachers believed much stronger than their BS5(VE) colleagues that more al-
gebra in the physics curriculum is beneficial for the transfer of algebra to physics. BS6(VE) 
teachers, on the other hand, believe stronger in algebraic practice in physics class.   

Finally, we compare BS5(VE) to BS6(VE). The most distinguishing strong claims are 
number 16 (naïve belief) (BS5(VE) = 32 × BS6(VE)), number 15 (BS6(VE) = 4 × BS5(VE)), 
and 9 (naïve belief) (BS6(VE) = 3 × BS5(VE)). Teachers belonging to BS5(VE) believed 
more strongly than BS5(VE) teachers that adjustments of the physics curriculum are im-
portant to improve transfer. Conversely, BS6(VE) teachers have a stronger focus on student 
related claims: these students should learn to see the connections between mathematics and 
physics and they should practice algebra in physics class. 

Table 3 below summarizes this analysis. The items “11, 9 (naïve belief), 15” in the last 
column of the first row are the numbers of the strongest beliefs in BS6(VE). Similarly, “7, 5, 
9 (naïve belief)” in the third row of the first column are the numbers of the weakest beliefs 
in BS4(VE). Finally, “6 (2)” in the BS4(VE)-row of the BS5(VE)-column means that among 
the strong beliefs of BS5(VE), claim 6 had the highest ratio BS5(VE) : BS4(VE), namely 
BS5(VE) = 2 × BS4(VE). The entries “12 (9), 13 (3)” in the BS5(VE)-row of BS4(VE)-
column means that among the strong claims of BS4(VE), number 12 and 13 had the highest 
ratio BS4(VE) : BS5(VE), namely 9 and 3, respectively. 

Table 3. Comparison of strong beliefs in BS4(VE), BS5(VE) and BS6(VE). 

 strong 12, 11, 13, 1, 16 11, 16, 2, 6 11, 9, 15 
weak row < column BS4(VE) BS5(VE) BS6(VE) 
7 
5 
9 

BS4(VE)  6 (2) 9 (naïve belief) (20) 
 

7 
4 
8 
12 

BS5(VE) 12 (9) 
13 (3) 

 15 (4) 
9 (naïve belief) (3) 
 

7 
4 
16 
5 
3 

BS6(VE) 16 (naïve belief) (22) 
 

16 (naïve belief) (32) 
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4.5.3 Most Experienced Teachers: BS2(ME), BS5(ME) and BS6(ME) 

The claims with the highest scores in BS2(ME) are claim number 15, 12, and 1. The focus is 
on students and on collaboration. Teachers believed that to improve transfer, students 
should learn to see the relations between physics and mathematics, and teachers should work 
together. The claims with the lowest scores in BS2(ME) are claim number 7, 2, 14 and 3. 
These centre around curricula. Teachers in this belief system believed that changing curricula 
are not the most important steps to improve transfer.  

The claims with the highest scores in BS5(ME) are claim number 11, 1, 13, and 2 (naïve 
belief). The focus is on collaboration. Teachers in this believe system stated that mathematics 
and physics teachers should collaborate to improve the algebraic skills of their students, 
physics teachers should activate mathematical pre-knowledge in their classes, whereas math-
ematics A classes should pay more attention to algebra. The claims with the lowest scores in 
BS5(ME) are claim number 7, 8, 15 and 5. These centre around students and on the text-
books. Teachers in this belief system do not attach much importance to their students seeing 
connections between mathematics and physics. Neither they believed that teachers should 
follow the content of textbooks or make adjustments in textbooks. 

The claims with the highest scores in BS6(ME) are claim number 6, 10, 11 and 9 (naïve 
belief). The focus is on teachers. To improve transfer, they should both be able to explain 
basic mathematics and use the same notations. Physics teachers should activate mathematical 
pre-knowledge and students practice more algebraic skills in physics class. The claims with 
the lowest scores in BS6(ME) are claim number 7, 14 and 5. Teachers in this belief system 
believed that following and changing textbooks will not help greatly to improve transfer. 

4.5.4 Comparing BS2(ME), BS5(ME) and BS6(ME) 

The strong claims distinguishing most between BS2(ME) and BS5(ME), i.e. the strong claims 
for BS2(ME) with the highest ratio BS2(ME): BS5(ME) and the strong claims for BS5(ME) 
with the highest ration BS5(ME): BS2(ME), are number 15 (BS2(ME) = 24 × BS5(ME)) and 
number 2 (naïve belief) (BS5(ME) = 34 × BS2(ME)). Connecting mathematics and physics 
is far more important for BS2(ME) than for BS5(ME), whereas more algebra in the mathe-
matics A curriculum is far more important to BS5(ME). 

The strong claims distinguishing best between BS2(ME) and BS6(ME) are number 15 
(BS2(ME) = 5 × BS6(ME)), number 1 (BS2(ME) = 3 × BS6(ME)), and number 10 (BS6(ME) 
= 6 × BS2(ME)). BS2(ME) focuses more on students, who should learn to see the connec-
tions between mathematics and physics. BS6(ME) focuses on the teachers, who should use 
compatible notations.  

Finally, we compare BS5(ME) to BS6(ME). The most distinguishing strong claims are 
number 2 (naïve belief) (BS5(ME) = 5 × BS6(ME)), number 1 (BS5(ME) = 3 × BS6(ME)), 
number 13 (BS5(ME) = 3 × BS6(ME)), number 6 (BS6(ME) = 5 × BS5(ME)), and numbers 
16 (naïve belief) (BS6(ME) = 2 × BS5(ME)). Teachers in BS5(ME) stated that collaboration 
between mathematics and physics teachers and adapting the mathematics A curriculum are 
more important for improving transfer than their colleagues in BS6(ME) believed. Teachers 
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adhering to BS6(ME), on the other hand, attached more weight than BS5(ME) teachers do 
to adapting the physics curriculum and to physics teachers explaining basic mathematics. In 
short, BS5(ME) teachers focused on math class and math teachers, whereas BS6(ME) teach-
ers focused on physics class and physics teachers. Table 4 above summarizes this analysis. 

Table 4. Comparison of strong beliefs in BS2(ME), BS5(ME) and BS6(ME). 

 strong 15, 12, 1 11, 1, 13, 2 6, 10, 11, 9 
weak row < column BS2(ME) BS5(ME) BS6(ME) 
7 
2 
1 
4 
3 

BS2(ME)  2 (naïve belief) (34) 10 (6) 
 

7 
8 
1 
5 
5 

BS5(ME) 15 (24) 
 

 6 (5) 
16 (2) 
 

7 
1 
4 
5 

BS6(ME) 15 (5) 
1 (3) 

2 (5) 
1 (3) 
13 (3) 

 

 

4.5.5 Naïve Beliefs: Very and Most Experienced Teachers  

Based on the analysis above, we present 5 belief systems, each consisting of desirable and 
naïve beliefs which are depicted and explicated in table 5 below. BS2(ME) is not included, 
since it has no naïve beliefs. The strength of beliefs in increasing order is also illustrated. This 
information is obtained from the figures 6 and 8, and will be used in the last section. It can 
be seen that the number of naïve beliefs in a belief system may differ. Except for BS5(VE), 
the other clusters contain one naïve belief. Remarkably, claim numbers 6 and 16 are absent 
for the most experienced teachers. On the other hand, the very and most experienced tea- 
chers share claim numbers 2 and 9.  

Table 5. The 5 belief systems we have found include desirable and naïve (in bold) beliefs. The last column concerns 
the increasing strength of beliefs in a belief system. 

Belief System Naive beliefs Desirable beliefs Increasing strength of beliefs 
BS4(VE) 16 1, 11, 12, 13 16, 1, 13, 11, 12 
BS5(VE) 2, 16 6, 11 6, 2, 16, 11 
BS6(VE) 9 11, 15 15, 9, 11 
BS5(ME) 2 1, 11, 13 2, 13, 1, 13 
BS6(ME) 9 6, 10, 11 9, 11, 10, 6 
Also remarkable is that claim number 16’ of BS4(VE), number ‘2’ of BS5(ME) and number 
‘9’ of BS6(ME) are both naïve and the weakest beliefs. The naïve beliefs number ‘2’ and ‘16’ 
of BS5(VE), and number ‘9’ of BS6(VE) are also weak. Overall, we can say that the naïve 
beliefs in the last column are the weakest beliefs, i.e. have least strength. 
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4.5.6 Comparing Very and Most Experienced Teachers 

BS4(VE) seems to correspond to BS5(ME), both attaching much weight to claims 1, 11 and 
13. To improve transfer, they focused on collaboration. Hence, we refer to both clusters as
the ‘Collaboration-oriented group’ (‘COG’). BS5(VE) matches with BS6(ME), both believed
strongly in claims 6 and 11. Since they focused on teachers, we called them the ‘Teacher-
oriented group’ (‘TOG’). BS6(VE) and BS2(ME) we called the ‘Student-oriented group’
(‘SOG’) because they share a strong belief in claim 15 with a clear focus on students.

4.6 Discussion and Conclusion 

With regard to research question (3) “What are the belief systems of mathematics and physics teachers 
about improving students’ transfer of algebraic skills from mathematics into physics for solving algebraic 
problems that occur in senior pre-university education?” we conducted an online survey among 503 
mathematics and physics secondary school teachers. The survey included the sixteen claims 
in table 1 about improving transfer. Teachers were asked to select their top 5. Data were 
analysed by means of agglomerative hierarchical clustering (AHC). We focused on teachers 
with more than 10 years of teaching experience in senior pre-university education. This led 
to the large clusters BS2(ME), BS5(ME) and BS6(ME) for the 118 most experienced teachers 
(ME), and the large clusters BS4(VE), BS5(VE) and BS6(VE) for the 97 very experienced 
teachers (VE). Except for BS2(ME), the other clusters consisted of both desirable and naïve 
beliefs. Despite these naïve beliefs, overall each of these clusters contain an organized set of 
mutually supporting beliefs about transfer. Since such clusters with coherent beliefs are in-
terpreted as belief systems (Misfeldt, Jankvist & Aguilar, 2016; Singletary, 2012), we have 
empirical evidence for the existence of belief systems. To a certain extent, this also justifies 
Ernest’s (1991) theoretical idea to cluster teachers based on their belief systems. 

4.6.1 BS2(ME), Claim Numbers 7 and 11 

Following the line of Leathem (2006) and Singletary (2012), the peripheral area of BS2(ME) 
enabling weak beliefs may be empty, i.e. may not contain naïve beliefs about transfer. In ad-
dition, the central part includes desirable beliefs that can be transfer enhancing. Conse-
quently, teachers transforming such belief systems (espoused models) into teaching practice 
(enacted models) (Ernest, 1991) are more likely to foster transfer than teachers having belief 
systems with naïve beliefs. Indeed, with regard to improvement of transfer, there is a match 
between the espoused and enacted models. Remarkably, this was also the only belief system 
lacking the desirable claim (number 11) with the highest total score among all other clusters. 
On the other hand, claim number 7 was absent in BS2(ME). Like all other clusters they seem 
to be aware of this naïve belief, but naively seem to be unaware of the importance of claim 
number 11. We recommend to further examine this apparent contradiction, for example, by 
investigating why teachers in this cluster neglected this claim by means of a qualitative in 
depth-interview. Furthermore, the top scores of claim number 11 in the remaining clusters 
is not that surprising. Indeed, the importance of activation of prior knowledge is a well-

4.6 Discussion and Conclusion
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known issue in the context of learning and instruction in relation to better students’ achieve-
ments (e.g., Hailikari, Katajavuori, & Lindblom-Ylanne, 2008).  

Claim number 11 has implications for science education. Regarding curriculum materials, 
policy makers should take this matter into account as a key design principle in which both 
subjects are connected to each other. These curricula are transformed into textbooks which 
are closely followed by Dutch teachers who teach them to their students (SLO, 2019; van 
Zanten, M. & van den Heuvel - Panhuizen, M., 2014). This strongly suggests that physics 
textbooks need introduction paragraphs containing prior mathematical knowledge about the 
physics subject that will be treated. For instance, when the task is to solve for 𝑚𝑚𝑚𝑚 in the 
aforementioned kinetic energy formula 𝐸𝐸𝐸𝐸𝑘𝑘𝑘𝑘 = 1

2
∙ 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚2, the textbook may first refer to the 

mathematics equation 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏2 that students have already seen in mathematics class, also 
explicating that both expressions are analogous with respect to their algebraic structure. After 

solving for the mathematics equation 𝑥𝑥𝑥𝑥 = �2∙𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏

, the textbook solves for the physics formula 

𝑚𝑚𝑚𝑚 = �2∙𝐸𝐸𝐸𝐸𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚

. Beyond textbooks, also physics teachers play a role in connecting mathematics 

to physics. Even mentioning that formulas in physics are rooted in mathematics class or 
writing mathematics and physics expressions next to each other may contribute to transfer 
(Alink, Asselt & Braber, 2012; Turşucu, Spandaw, Flipse, & de Vries, 2017). Furthermore, 
the mathematics teacher can reinforce this transfer process by referring to the physics class.  

In case of science teacher educators, the implication is twofold. Through both ‘profes-
sional teaching programs’ (Guskey, 2002) and ‘science teacher education programmes lead-
ing to a teaching qualification’, they should make ‘in service’ and ‘pre-service’ science teachers 
aware of their belief systems, reflect on them and change naïve beliefs into desirable beliefs 
about transfer. Otherwise, their naïve beliefs will probably lead to teaching practice which 
can be harmful for CMSE and transfer. 

Although activation of prior knowledge is considered important, it requires sufficient 
organization of the learning process. Mathematical concepts should be taught before they are 
explained in physics class. In case of physics teachers above, they may examine students’ 
mathematics textbooks or have conversation with mathematics teachers to align both sub-
jects. Regarding textbooks, these should be connected through content developed by the 
same publisher. Otherwise, i.e. when two different publishers are involved, alignment is made 
very difficult since each of them pursue different aims (Alink, Asselt & Braber, 2012).  

The connections above are pivotal in overcoming compartmentalized thinking (Gellish 
et al., 2007) and could strengthen coherence between mathematics and science education 
(Berlin & White, 2012, 2014).  

The finding that not a single teacher had chosen claim number 7 above, shows that they 
feel that following the content of textbooks does not contribute sufficiently to improving 
transfer. Further research, for example, textbook analysis could provide insight into the ex-
tent to which mathematics and physics textbooks take this matter into account. We also 
recommend conducting qualitative interviews with teachers, since both studies complement 
each other.  
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4.6.2 Other Relevant Desirable Beliefs 

Beyond claim number 11, other desirable beliefs with high scores are 1, 6, 10 and 13 (see 
table 5). Remarkably, claim numbers 1, 10 and 13 all concern collaboration between mathe-
matics and physics teachers. Contrary to the previous qualitative study in which the major 
part of mathematics teachers mentioned that they did not feel the need to work together 
with physics teachers (We emphasize that one cannot generalize from our small sample to 
the complete population of Dutch mathematics teachers) (Turşucu et al., 2017), this quanti-
tative study revealed that many mathematics teachers think that collaboration between both 
departments should be given more priority (number 1). This is good news, since sufficient 
collaboration is essential to enhance students perceiving coherence across mathematics and 
physics subjects and transfer (Berlin & White, 2012, 2014; Quinn, 2013).  

On the individual level, we even think that explaining relevant basic mathematical 
knowledge (number 6) should be a pre-requisite in science teacher education programmes 
leading to a teaching qualification. Furthermore, both on the collaboration and the individual 
level the mathematics and physics subjects should be connected through alignment of equa-
tions, formulas, notations (number 10), better application of algebraic skills (number 13) and 
the same pedagogy of teaching algebraic skills such as the application of algebraic techniques 
to manipulate expressions in both subjects. Such alignment aspects also apply to curricula 
and textbooks used in senior pre-university education (Alink, Asselt & Braber, 2012). In 
addition, science teacher educators should use these aspects in teaching materials for science 
teacher education programmes. Here, we did not mention mathematics teacher educators, 
because basic mathematical knowledge is already incorporated in the senior pre-university 
education mathematics curriculum (SLO, 2019), and thus part of the senior pre-university 
education teacher education programme. Furthermore, without a solid basis in school math-
ematics, especially school algebra, working on students’ transfer of algebraic skills to physics 
is hardly possible. Probably, this makes individual mathematics and physics teachers pivotal 
in the classroom. Still, there should be collaboration above between both teacher groups. We 
conclude that both individual and collaborative efforts are like two sides of the same coin.  

4.6.3 Belief Systems with Naïve Beliefs 

Based on earlier studies (Leathem, 2006; Misfeldt, Jankvist & Aguilar, 2016; Singletary, 2012), 
the weakest beliefs in a belief system are located in the peripheral area. Since we had theo-
retically grounded naïve beliefs (e.g., Alink, Asselt & Braber, 2012; Turşucu, Spandaw, Flipse, 
& de Vries, 2018a; Roorda, 2012; Quinn, 2013) (second column of table 5), one would expect 
that the empirically determined weakest beliefs (last column of table 5) are these already 
identified naïve beliefs. Indeed, there is a match between them, implying that we verified a 
theoretical construct with empirical data. We conclude that the naïve beliefs in table 5 corre-
spond to the weak beliefs rooted in the peripheral area of the belief systems we have found. 
On the other hand, the desirable beliefs in the last column have the strongest psychological 
strength and are strongly connected to other central beliefs.  

To change the empirically naïve beliefs into desirable beliefs, clusters in the peripheral 
area in which they are stored, should be disturbed. This is possible, since naïve beliefs are the 
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weakest beliefs. The good news is that most of the teachers’ strong beliefs in these clusters 
are already desirable; they can be transfer enhancing. Otherwise, i.e. when the naïve beliefs 
would have been very strong (aforementioned second scenario), it would be very difficult to 
change them.  

To make such changes one can use the microscopic belief system model above and the 
macroscopic model of Ernest (1991) together. Through professional development programs 
(Guskey, 2002), science teacher educators who are well-informed about these models could 
make teachers having naïve beliefs explicitly aware of their belief systems. They can use figure 
1 of Chapter 1 with espoused and enacted models to explain how for example, teachers, 
students and textbooks influence a teachers’ belief system. Thereafter, teachers may reflect 
on them to improve transfer. Thus, teachers belonging to BS5(VE) need extra attention, 
since they have not one, but two naïve beliefs in their belief system.  

The remarkable difference in the number of belief systems with naïve beliefs, and the 
number of naïve beliefs between the most experienced and very experienced teachers in table 
5, may be explained by the extent of their awareness of the harmful nature of naïve beliefs 
(espoused models) for teaching practice (enacted models). This implies that the more expe-
rienced teachers are, the less their number of clusters containing naïve beliefs, and the less 
their number of naïve beliefs become.  

Furthermore, we have seen that the distinction between the macroscopic and micro-
scopic model of belief systems turned out to be useful. The first model containing espoused 
and enacted models (Ernest, 1991) was used to explain and understand how the social con-
text of teaching influences a teachers’ belief system, and the second one which is a detailed 
cognitive description of the espoused models to understand how the weak naïve beliefs and 
the strong desirable beliefs in a belief system are related to each other. We recommend future 
studies on this matter to use both models together. 

4.6.4 Ernest’s Social Groups and Our Groups 

As expected, the construction of an educational matrix model analogous to that of Ernest 
(1991) was not possible, because our obtained belief systems were not pairwise disjoint, i.e. 
some beliefs occur in several belief systems. For example, claim number 11 appeared in sev-
eral belief systems, whereas Ernest’s five social groups (belief systems) are pairwise disjoint. 
Our model of the notion of ‘belief system’, being a system of 16 score distributions, is more 
detailed than Ernest’s black-or-white approach in which a belief system either contains or 
excludes a given claim. Furthermore, Ernest’s model is theoretical, whereas our model was 
based on empirical data. Indeed, we can ask to what extent Ernest’s ‘technological pragma-
tist’ really exists.  

Ernest’s model and this study concern different issues, but have mathematics education 
in common. As to ‘Industrial Trainers’ (‘IT’) and the ‘Teacher-oriented group’ (‘TOG’), both 
of them share the emphasis on teachers to respectively teach mathematics (authoritarian) and 
improve transfer. Whereas for ‘IT’ math teachers should drill their students basic mathemat-
ics according to ‘back to the basics’ (Ernest, 1991, p. 129), for ‘TOG’ they should be able to 
explain basic mathematics and students should activate prior mathematical knowledge (es-
poused models). Contrary to ‘IT’, the ‘TOG’ perspective is more likely to enhance transfer 
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(enacted models), since there is a match between their espoused and enacted models. To 
improve transfer, ‘IT’ should reconcile both models by considering insightful learning (Kil-
patrick, Swafford, & Findell, 2001) with their naïve belief on basic skills. The latter also holds 
for the industry-centred ‘Technological Pragmatists’ (‘TP’).  

The ‘Old Humanists’ (‘OH’) have no direct commonalities with the clusters that we have 
obtained. Nevertheless, there is one issue that needs to be mentioned. In the previous quali-
tative study (Turşucu, Spandaw, Flipse, & de Vries, 2017) we have seen that like ‘OH’ some 
math teachers (small number N) view math as the ‘Queen of the Sciences’ (Colyvan, 2012) 
and refuse to discuss applications in mathematics class. This quantitative study should also 
contain teachers belonging to ‘OH’, since our sample is much larger than that of the previous 
study. They might have participated in this study because of external motivations, for exam-
ple, winning the € 100,00 reward. Such teachers cannot have coherent clusters, since they are 
not interested in applications. Accordingly, their data might have been ‘lost’ as noise.  

The social group ‘Progressive Educators’ (‘PrE’) and ‘Student-oriented group’ (‘SOG’) 
are both student-centred. The latter group thinks that this will improve transfer, whereas 
‘PrE’ that this will enhance students’ confidence, creativity and self-expression. Like ‘PrE’, 
the decisions of ‘SOG’ might be based upon universal principles such as empathy and caring 
for children. In addition, ‘SOG’ might also be as progressive as ‘PrE’ towards collaboration. 
Unfortunately, our data do not show these claims.  

Furthermore, like ‘OH’ the group, Public Educators’ (‘PuE’) do not have direct com-
monalities with ‘COG’, ‘SOG’ or ‘TOG’.  

Finally, it is worthwhile to mention that neither the belief systems identified in this study, 
nor those described by Ernest (1991) focused on teaching practice in which both basic alge-
braic skills and conceptual understanding are taught in an integrated manner (Drijvers, 2011; 
Rittle-Johnson, Schneider & Star, 2015). For students perceiving coherence across both sub-
jects and transfer to occur, both concepts should be treated together. 

4.6.5 Limitations of This Study 

Our findings are based on 118 qualified VE teachers, and 97 ME teachers in senior pre-
university education. This group of 215 teachers consists of 136 mathematics and 79 physics 
teachers. The Netherlands has 2903 qualified mathematics and 1330 qualified physics teach-
ers in senior pre-university education (‘Dutch Ministry of Education’, 2017), also giving a 
ratio of roughly 2: 1. Furthermore, the 118 VE teachers had a gender-ratio (male-female) of 
1:1 for mathematics, and 5:1 for physics teachers. For the 97 ME teachers this was 2:1 for 
mathematics and 13:1 for physics teachers. Unfortunately, there were no data available on 
the gender-ratio of qualified ME and VE mathematics and physics teachers in Dutch senior 
pre-university education, so we cannot judge how well our sample represents the national 
situation. The vast majority in our sample is familiar with both senior pre-university educa-
tion and senior general secondary education (SGSE). Furthermore, the algebraic skills needed 
in physics class in both types of education are quite similar. Therefore, in case of represent-
ability of our sample above, we expect our results to be generalizable for both senior pre-
university education and senior general pre-university education in the Netherlands. How-
ever, this does not hold for preparatory vocational secondary education, since the algebraic 
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skills needed in senior pre-university education and senior general pre-university education 
are fundamentally different from those in preparatory vocational secondary education (SLO, 
2019). This would lead to different belief systems (claims) about CMSE and transfer. At this 
point we recommend conducting a separate study to investigate the national gender-ratios of 
both mathematics and physics teachers in senior pre-university education in relation with the 
number of years of teaching experience. This could provide information about the national 
representativeness and generalizability of this study. 

The content of subjects in senior pre-university education in the Netherlands is deter-
mined through curricula that contain both the general educational core goals and the more 
specific standards, which are tested in national final examinations. To a very large extent, 
these curricula shape the content of textbooks and also teachers who faithfully follow and 
teach these to their students (SLO, 2019; van Zanten, M. & van den Heuvel - Panhuizen, M., 
2014). Consequently, they affect teachers’ beliefs (claims) about CMSE and transfer. Such 
curricula do not exist in many other countries (Valverde, Bianchi, Wolfe, Schmidt & Houang, 
2002). Thus, we do not expect that our results are generalizable to other countries outside 
the Netherlands – even if this study was generalizable for Dutch senior pre-university edu-
cation. 

Among three classes of clustering techniques, i.e. AHC, optimization methods and mix-
ture models, we used the first option and discarded the third option, because it pre-supposes 
knowledge of latent variables. A standard optimization method is the k-means method. It 
has several disadvantages. First, it imposes a spherical structure on the data, i.e. it assumes 
that the data points are grouped in more or less spherical clusters in 16-dimensional space. 
We have no a priori reason to expect this to be true. Second, one has to choose the number 
k of clusters in advance. Third, the algorithm starts with random cluster centers, which re-
sulted in rather different clusters in each run of the k-means algorithm. Therefore, we used 
agglomerative hierarchical clustering, since it does not have these disadvantages. Further-
more, this method also turned out to be objective, leading to nicely distributed clustering of 
belief systems including very clear splitting heights. 

During the analysis of the belief systems, we focused on the three largest clusters for 
both teacher groups, and neglected 28% of the most experienced teachers and 26% of the 
very experienced teachers. Thus, we based our results on respectively the 72% and 74% of 
the extracted clusters. But what if these small clusters contained important information 
about, for example, naïve beliefs (claims)? Such beliefs may impede transfer. Therefore, we 
recommend to further investigate this matter.  

Reliability of the statistical analysis.  
Figures 6 and 8 show the mean scores and standard deviations of the large clusters for the 
very experienced and most experienced teachers, respectively. Some error bars are quite large 
compared to the means. This large dispersion within a belief system is usually due to a few 
outliers in the cluster. Our description of the main characteristics of the two triples of belief 
systems and the differences between these belief systems remains valid even taking this dis-
persion into account.  
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Search for Symbol Sense Behavior10 

10 This chapter has been published in adapted form as: Turşucu, S., Spandaw, & de Vries, M. J. (2018). Search for 
Symbol Sense Behaviour: Students in Secondary Education Solving Algebraic Physics Problems. Research in Science 
Education, 48(5), 1-27. 
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5.1 Introduction 

Mathematics plays a major role in science education (Karam, 2014; Roorda, Goedhart & Vos, 
2014). However, research has shown that students face difficulties when applying mathemat-
ics in science subjects (e.g., Redish & Kuo, 2014; Quinn, 2013). Such transfer11 problems can 
be persistent and concern students of all ages.  

Even if students’ knowledge of mathematics is sufficient, its application in science subjects 
is not guaranteed. Except for a couple of studies (e.g., Cui, 2006; Rebello et al., 2007), this 
phenomenon has hardly been researched. The pioneering study of Hudson & McIntire 
(1977) with pre-course tests of algebraic- and trigonometric knowledge and skills taken by 
200 students initiating a physics course, has shown that a solid grasp of mathematics is not 
sufficient to guarantee the application of these in physics: although the student has a solid 
grasp of mathematics, the performance in physics can be poor.  

Several researchers have stated that a major reason for the lack of transfer above is related 
to compartmentalized thinking (e.g., Turşucu et al., 2018c; Nashon & Nielsen, 2007; Quinn, 
2013) in which students see mathematics and science as two unrelated subjects. In many 
countries, teaching these subjects separately consolidates and intensifies this phenomenon 
(e.g., SLO, 2019; ‘The National Academies Press’, 2018; ‘TIMMS & PIRLS’, 2019).  

Berlin & White (2010, 2012, 2014) suggest that a remedy for compartmentalized thinking 
may be coherent mathematics and science education (CMSE) that is of major importance for 
students. The idea behind CMSE12 is fostering connection between mathematics and science 
education through, for example, alignment of notations. In addition, improvement of mathe-
matical proficiency (Kilpatrick, Swafford, & Findell, 2001) including the five interwoven strands 
adaptive reasoning, conceptual understanding, procedural fluency, productive disposition 
and strategic competence may also help improve the application of mathematics in science 
subjects. In algebra education, especially crucial are the second and third strands. Together, 
these strands form algebraic expertise, referring to algebraic skills with particular emphasis 
on procedural fluency in relation to conceptual understanding (Andrá et al., 2015; Drijvers, 
2011; Arcavi, 1994). The algebraic skills involving conceptual understanding are called sym-
bol sense, relating to the ability to first consider an algebraic expression carefully, to find its 
relevant aspects, and to choose a wise systematic problem-solving strategy based on these 
aspects. Symbol sense contains “an intuitive feel for when to call on symbols in the process of solving a 
problem, and conversely, when to abandon a symbolic treatment for better tools” (Arcavi, 1994, p. 25). By 
means of examples, Arcavi described eight behaviors. These examples demonstrated the in-
timate relationship between procedural skills and conceptual understanding as if they were 
two sides of the same coin of algebraic expertise.  

Flexible manipulation skills are regarded as a key behavior of symbol sense and deal with 
the ability to flexibly manipulate expressions (both technical and with insight) and being in 
control of the work. Flexible manipulation skills consist of two important, intertwined char-
acteristics, which are having a gestalt view on algebraic expressions, and handling in a suitable 
way with their visual salience (Kirshner & Awtry, 2004). The former concept includes “the 

11 A detailed explanation of the controversial transfer phenomenon can be found in chapter 1. 
12 A detailed explanation of CMSE can be found in chapter 1. 
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ability to consider an algebraic expression as a whole, to recognize its global characteristics, to‘read through’ 
algebraic expressions and equations, and to foresee the effects of a manipulation strategy” (Bokhove & 
Drijvers, 2010; p. 43). The latter deals with visual cues of algebraic expressions. As part of 
visual salience, Wenger (1987) distinguished between pattern salience that is related to sensi-
tivity towards patterns in algebraic expressions, and local salience relating to sensitivity to-
wards local algebraic symbols, i.e. visual attractors such as fractions, square root signs and 
exponents. Hence, flexible manipulation skills play and therefore algebraic expertise includ-
ing basic algebraic skills and symbol sense play a major role in the transfer of mathematics 
to science subjects, in particular to physics.  
 Furthermore, in this study, we assume a reciprocal relation between CMSE and transfer. 
When students experience coherence across mathematics and science subjects by means of 
meaningful contexts, transfer from mathematics to science subjects can be improved, and im-
proving transfer can help them to experience coherence between mathematics and subjects. 

5.1.1 Research Aim and Research Question (4) 

This study aims to report the findings of a qualitative study with a quantitative component 
on symbol sense behavior of students in upper secondary education. The research question 
(4) is “To what extent do students in upper secondary education demonstrate symbol sense behavior when 
solving algebraic physics problems?”.  

According to teachers in upper secondary education, among students encountering dif-
ficulties with applying mathematics in algebraic physics problems, grade 10 students face the 
biggest problems (Turşucu et al., 2017). Therefore, we selected grade 10 students to gain 
deeper insight into their algebraic problem-solving abilities, especially their basic algebraic 
skills and their symbol sense behavior.  

For the operationalization of symbol sense behavior, we followed the line of Bokhove & 
Drijvers (2010) in the sense that we examined students’ basic algebraic skills and sensitivity 
towards local salience and pattern salience. Different from them, we investigated algebraic 
physics problems. We did not focus on the meaning or nature of physical concepts, because 
the emphasis is on algebraic skills learned in mathematics class and applied to physics prob-
lems.  
 In this study, our working definition of successful (see title of this thesis) refers to using 
systematic algebraic strategies during algebraic problem-solving in physics. For the opera-
tionalization of symbol sense behavior, we followed the line of Bokhove & Drijvers (2010) 
in the sense that we examined students’ basic algebraic skills and having a gestalt view on 
algebraic expressions and dealing with their visual salience. We operationalized systematic 
algebraic strategies by measuring the extent to which students demonstrated symbol sense 
behavior and the degree to which they applied basic algebraic skills correctly during algebraic 
problem-solving in physics.  

For stylistic reasons we will use the concepts procedural skills and procedural fluency 
(Kilpatrick, Swafford, & Findell, 2001) interchangeably to refer to the same basic algebraic 
skills. This also applies to conceptual understanding and insightful learning. Furthermore, 
our sample contained one male and five female students. Therefore, we used ‘she’ to refer to 
students participating in this study.  
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Furthermore, we expected that the algebraic skills that students applied during problem-
solving (target tasks) in physics class were learned in mathematics class from regular mathe-
matics textbooks (previous learning situation). We determined the extent to which transfer 
occurred by adopting the traditional transfer approach (e.g. Mestre, 2015). Indeed, we were 
interested into the extent to which students used a systematic, rule-based problem-solving 
approach in which algebraic skills were used with insight. Therefore, we compared the stu-
dents’ solution sets to our systematic solution set that contained the operationalized system-
atic algebraic strategies above. Hence, the degree to which transfer occurred, is determined 
by the researchers’ perspective. Beyond the traditional view, to some extent, we adopted the 
actor-oriented transfer approach. Other contemporary views were not adopted, because they 
were not concerned with algebraic problem-solving in upper secondary education. Indeed, 
the actor-oriented approach, and especially the study of Roorda (2014) fitted our research. 
Therefore, we followed the line of Roorda (2014) who operationalized the actor-oriented 
transfer “as a search for students’ personal constructions of relations between (1) learning from mathematics 
and physics classes and (2) interview tasks” (p. 863). For instance, when students explicated that 
they learned a specific problem-solving approach from their mathematics textbook. In short, 
beyond the traditional approach to measure the degree of transfer, to some extent we 
adopted the actor-oriented transfer approach by paying attention to previous learning de-
rived from what they said during the interviews. While earlier studies on actor-oriented trans-
fer studied field notes taken in class to gain deeper insight into students’ previous learning 
situation, we only payed attention to what they said about previous learning in mathematics 
and physics class, and, to some extent, how algebraic skills were presented in their mathe-
matics textbooks. 

5.1.2 Relevance of This Study 

Our extensive literature research with various web-search engines such as Google Scholar 
and ProQuest on scholarly articles reveals the absence of studies investigating symbol sense 
behavior in algebraic physics problems. Since we examine physics rather than mathematics, 
investigation of symbol sense behavior may add to the evaluation of this concept. Our liter-
ature study also reveals that the mechanisms behind the lack of successful application of 
mathematics in science subjects are under researched. In addition, students having a solid 
grasp of mathematics, but facing difficulties in applying this subject in physics, is highly under 
researched. This study may offer insights in how students apply algebraic skills from mathe-
matics in physics and provide insight into these underlying mechanisms that can be used by 
curriculum developers, mathematics and physics teachers, mathematics and science teacher 
educators and textbook publishers aiming to improve the application of mathematics in 
physics, and strengthen students experiencing coherence across these subjects (e.g., Alink, 
van Asselt, & den Braber, 2012; Berlin & White, 2012, 2014).  

As to curriculum developers aiming at CMSE, our study may provide design principles 
that connects the physics curriculum to that of mathematics. This may be a content standard 
dealing with the same pedagogical approach to using algebraic skills (Turşucu et al., 2018b). 
Whether students are in the mathematics or in the physics classroom, they may not be con-
fused about different ways of how algebraic skills are applied and impede compartmentalized 
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thinking (Nashon & Nielsen, 2007; Quinn, 2013). Physics textbooks may contain, for exam-
ple, introduction paragraphs where physics formulas (ℎ = 1

2
∙ 𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔2) are treated together with 

corresponding mathematical expressions (𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏2) that students learned in mathematics 
class. On the individual level, mathematics teachers may provide context to algebra by ex-
amining analogous physics problems. On the collaboration level it may be possible to de-
velop common problem-solving strategies where algebraic skills are used with insight into 
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2016) of the underlying mechanisms above and discuss remedies.  
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5.2 Background 

5.2.1 Mathematics in Dutch Upper Secondary Education  

The researchers in this study were all affiliated with the academic science teacher education 
program in Delft in the Netherlands. Hence, we approached Dutch secondary schools rather 
than those from another country. In this regard, it may worthwhile to discuss shortly the 
Dutch context in relation to education, especially that of secondary education (SE) that con-
tains three lower years, i.e. lower secondary education and three upper years, i.e. upper sec-
ondary education.  

According to the ‘OECD’ (2018), the Netherlands is regarded as an advanced industrial 
nation where both mathematics and science education are high on the governmental agenda 
(‘Ministry of Education, Culture and Science’, 2018). Internationally, Dutch students in up-
per secondary education score accordingly on mathematics and science assessments, includ-
ing assessments on physics (‘TIMMS & PIRLS’, 2019).  

In the first year of upper secondary education, grade 10 students who follow physics have 
to choose between mathematics A and mathematics B. The latter puts more emphasis on 
algebra than the former. The content of these subjects is described in curricula (SLO, 2019). 
These curricula contain both the general educational core goals and the more specific stand-
ards, which are tested in national final examinations.  

Because of the difference in emphasis on algebra in both mathematics subjects, some 
teachers stated (Turşucu et al., 2017) that mathematics B should be compulsory for physics 
students. For this belief to be generalizable for the Dutch context, quantitative research is 
needed.  

The algebraic skills in both curricula are mainly associated with algebraic activity (SLO, 
2019). Although it is hard to characterize the latter, it involves activities such as implicit or 
explicit generalizations, patterns of relationships between numbers, and mathematical oper-
ations with variables, formulas and expressions (Drijvers, 2011). As a working definition of 
the concept of formula we used algebraic expressions with real measurable quantities (e.g., 
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speed). An expression can be a formula involving physical quantities or an abstract algebraic 
expression with abstract mathematical variables (placeholders). 

Mathematics curricula refer to algebraic skills to cover the entire set of mathematical activ-
ities above. These skills are divided into specific skills and general skills. The first concept deals 
with knowledge about algebra and manipulation skills, and hence is close to basic algebraic 
skills (Kieran, 2013; Wu, 1993). General skills contain developing systematic problem–sol- 
ving strategies and showing insight into the structure of expressions. We conclude that alge-
braic expertise is not mentioned in these curricula, but the description of using algebraic skills 
with insight is identical to that of symbol sense in earlier studies (e.g., Andrá et al., 2015; 
Arcavi, 2005).  

Algebraic techniques are part of algebraic skills and used to manipulate expressions 
(Drijvers, 2011). Hence, they play a key role in this study. Some well–known techniques are 
‘substitution’ used to replace single variables in expressions, and ‘multiplication of both sides’ 
where the left and right side of the equals sign is multiplied by the same variable. In the next 
section we will discuss these techniques.  

The application of algebra in mathematics A is mainly related to contexts from everyday 
life. To some extent, this also holds for mathematics B that contains many more abstract 
problems requiring algebraic proof than mathematics A does.  

Regarding the connection between these curricula with the physics curriculum, there is 
no explicit reference to alignment through compatible notations, concept descriptions and 
pedagogy of mathematical approaches. Even though it is of major importance for students, 
also reference to the organization of the learning process in order to achieve a logical learning 
line across both subjects is absent. As a result, certain mathematical concepts are used in 
physics class before they were introduced in mathematics class (Turşucu et al., 2018c). Fur-
thermore, the algebra used in mathematics curricula is considered to be sufficient to tackle 
algebraic problems in physics class (SLO, 2019).  

The connection above is of major importance in a very large number of countries, espe-
cially in secondary education (e.g., Alink, van Asselt, & den Braber, 2012; Berlin & White, 
2012, 2014). A lack of alignment across these subjects, may be confusing for students and 
impede both their application of algebraic skills in physics and CMSE. For instance, for the 
lens formula in geometrical optics a mathematics teacher may write (𝒪𝒪𝒪𝒪 𝒪 𝒪𝒪𝒪𝒪)(𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 ) = 𝑓𝑓𝑓𝑓2, 
while a physics teacher writes 𝒪𝒪𝒪𝒪−1 + 𝑖𝑖𝑖𝑖−1 = 𝑓𝑓𝑓𝑓−1 (𝒪𝒪𝒪𝒪 𝒪 0, 𝑖𝑖𝑖𝑖 𝑖 0) (Turşucu et al., 2018b). 
Such mismatches may also hold for concept descriptions and the pedagogy of mathematical 
approaches above. Therefore, curriculum developers should explicate the importance of con-
nection across both subjects. 

5.2.2 Algebra in Physics 

Dutch students in secondary school start with physics in their second year of LSE (grade 8). 
Quantities are introduced through a strong context-concept approach (e.g., Bemmel et al., 
2013). The number of formulas describing physical quantities in this year is negligible, let 
alone using algebraic skills to manipulate formulas. In the next year, formulas are used more 
frequently (e.g., Alkemade et al., 2014), but the algebraic skills level needed to manipulate 
them is low. This changes in grade 10, immediately after the transition from lower secondary 
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education to upper secondary education where the intended level of algebraic skills increases 
substantially (e.g., Ottink et al., 2014). Indeed, as mentioned above, among students in upper 
secondary education, grade 10 students face the biggest difficulties with applying mathema- 
tics in algebraic physics problems (Turşucu et al., 2017).  

Most of the physics formulas are symbolic representations of proportionalities containing 
real, measurable quantities expressed in various symbols. For instance, whereas the potential 

energy 𝐸𝐸𝐸𝐸pot. = 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚 and the period of a spring-mass system 𝑇𝑇𝑇𝑇 = 2 ∙ 𝜋𝜋𝜋𝜋 𝜋 �𝒎𝒎𝒎𝒎
𝑪𝑪𝑪𝑪

 are propor-

tional to ℎ and √𝑚𝑚𝑚𝑚 respectively, the attractive gravitational force 𝐹𝐹𝐹𝐹G = 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠2

 is inversely 

proportional to 𝑟𝑟𝑟𝑟2. The formulas in algebraic physics problems and the algebraic skills 
needed to solve them are described in the Dutch physics curriculum (SLO, 2019). These 
formulas can also be found in BINAS, a natural sciences information booklet that students 
use during regular physics tests and the final examination.  

In recent years, algebraic physics problems including algebraic curve straightening, for 
example, the curve related to Boyle’s law 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 = 𝑐𝑐𝑐𝑐, derivation of formulas such as deriving 

the escape velocity 𝑣𝑣𝑣𝑣escape = �2∙𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺sun
𝑠𝑠𝑠𝑠

 from our solar system, and dimensional analysis, for 

instance showing that the quantity acceleration due to gravity 𝑔𝑔𝑔𝑔 in the free fall formula ℎ =
1
2
∙𝑔𝑔𝑔𝑔𝑔   𝑔𝑔𝑔𝑔2 has the unit 𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
, have become more important in upper secondary education. Solving 

them correctly, i.e. using mathematically correct procedures requires sufficient algebraic ex-
pertise with basic algebraic skills and demonstration of symbol sense behavior.  

5.2.3 Mathematics and Physics Teaching 

In many countries (Stein & Smith, 2010) including the Netherlands (SLO, 2019; Turşucu et 
al., 2017), textbooks mediate between both the core goals and standards of education (the 
intended curriculum) and the actual teaching in classrooms (the implemented curriculum). 
They are very closely followed by teachers, who teach their students from these books. 
Therefore, to a very large extent, textbooks shape classroom practice. As to algebra educa-
tion, physics students apply mathematics and especially algebraic skills that they have learned 
in mathematics textbooks to solve algebraic physics problems in physics lessons.  

Since explicit reference to connection in Dutch mathematics and physics curricula is ab-
sent, there is also no alignment between mathematics and physics textbooks. This can impede 
students’ successful application of mathematics in physics (e.g., Alink, van Asselt, & den 
Braber, 2012; Berlin & White, 2012, 2014). Hence, the connection between these subjects 
mainly depends on individual efforts. For instance, physics teachers designing teaching ma-
terials that aim to align both subjects through content. Such individual attempts are also of 
major importance for countries without curricula containing both the general educational 
core goals and the more specific standards, which are tested in national final examinations. 
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5.2.4 Algebraic Expertise in Detail 

Similar to Arcavi (1994), Drijvers (2011) views algebraic expertise as a spectrum extending 
from basic algebraic skills (Kieran, 2013; Wu, 1993) to symbol sense involving conceptual 
understanding. This is illustrated in figure 3 of Chapter 1. Whereas basic algebraic skills deal 
with procedural work with a local focus and algebraic reasoning, symbol sense concerns stra-
tegic work with a global focus and emphasis on algebraic reasoning. In our case, strategic 
work refers to a physics student who is in control of the work and seeks for a different 
systematic approach when a strategy appears to be insufficient. Having a global focus is re-
lated to recognition of patterns in physics formulas and equations where these formulas are 
involved. Algebraic reasoning deals, for example, with extreme cases and symmetry consid-
erations. Analogous to Bokhove & Drijvers (2010), we focus on the relationship between 
local and global, and procedural and strategic work.  

Concerning the relationship between basic skills (Kieran, 2013; Wu, 1999) and conceptual 
understanding (Schoenfeld, 2016), the last decades have been an arena for a long-standing 
debate called ‘Math Wars’ related to how students best acquire algebraic expertise: by first 
practicing standard procedures or focusing on insightful learning? This pedagogical war led 
to conflicting ideas about designing curricula, content of textbooks and effective teaching 
practice. In recent years, this discussion shifted towards the belief that both procedural skills 
and conceptual learning should be taught in an integrated manner (Rittle-Johnson, Schneider 
& Star, 2015). To improve algebraic expertise, one needs to view their relationship as bidi-
rectional and continuous: “understanding of concepts makes basic skills understandable, and basic skills 
can reinforce conceptual understanding” (Bokhove & Drijvers, 2010, p. 43). This view on algebraic 
expertise will also be our point of departure.  

As for teaching practice, such an integrated approach may involve ideas for teaching 
algebraic skills in both mathematics and physics class. For instance, to show that 𝑔𝑔𝑔𝑔 in the 
formula ℎ = 1

2
∙ 𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔2 has the unit 𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
 , one may first isolate 𝑔𝑔𝑔𝑔. Solving for 𝑔𝑔𝑔𝑔 requires insight 

into algebraic techniques. Physics textbooks may need introductory paragraphs summarizing 
prior mathematical knowledge that students learned in their mathematics textbooks. This 
idea is based on the importance of activation of pre-knowledge in the context of learning 
and instruction in relation to better students’ achievements (e.g., Hailikari, Katajavuori, & 
Lindblom-Ylanne, 2008; Turşucu et al., 2018c). For instance, solving the analogous mathe-

matical expression 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏2 for 𝑥𝑥𝑥𝑥 gives 𝑥𝑥𝑥𝑥 = �𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏
. Next, 𝑔𝑔𝑔𝑔 in ℎ = 1

2
∙ 𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔2 is solved. Sub-

stitution of units in 𝑔𝑔𝑔𝑔 = 2∙ℎ
𝑡𝑡𝑡𝑡2

 is regarded as basic algebraic skills. This integrated approach can 
be extended to mathematics, where physics formulas may be written next to mathematical 
expressions. 

5.2.5 Systematic Algebraic Strategies Versus Ad Hoc Strategies 

In this study we distinguish between ‘systematic algebraic strategies’, i.e. using algebraic 
skills with insight as described in the curriculum (SLO, 2019), and the application of ad hoc 
strategies. For stylistic reasons we use ‘ad hoc strategies’ and ‘ad hoc approach’ 
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interchangeably to denote the same. This also holds for ‘systematic algebraic strategies’ and 
‘systematic algebraic approaches’. As a working definition of ‘systematic algebraic strategies’ 
we use a systematic, rule-based problem-solving approach in which algebraic skills are used 
with insight, where ‘rule’ refers to the standard rules for multiplication and division of pow-
ers, such as 𝑥𝑥𝑥𝑥a ∙ 𝑥𝑥𝑥𝑥b = 𝑥𝑥𝑥𝑥a+b, which play the role of algebraic axioms in high school algebra. 
Therefore, using systematic algebraic approaches are associated with applying algebraic skills 
systematically and correctly. With ‘ad hoc strategies’ we refer to mathematical strategies that 
are not based on standard algebraic rules with insight, and only work for a specific case that 
may lead to fragmented knowledge, impeding generalization of algebra. Especially, in more 
sophisticated problems for which insight is needed rather than ad hoc strategies, students 
may get stuck. In addition, applying them depends on the approval of an authority. For in-
stance, a student may be skilful in using the formula triangle of the form 𝑎𝑎𝑎𝑎 = 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏, but gets 
stuck when solving for 𝑏𝑏𝑏𝑏 in 𝑎𝑎𝑎𝑎 = 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏. She only succeeds after a teacher, i.e. authority 
introduces a new ad hoc approach. While such strategies may not always yield correct solu-
tions, they can be useful as initial attempts to solve a problem (Roorda, 2012). Thus, ad hoc 
strategies may be harmful for students’ application of algebraic skills in physics, mainly be-
cause of the lack of insight into algebraic skills.  

Concrete examples of ad hoc strategies are the application of mnemonics such as the 
formula triangles above, substitution of numbers for variables to verify whether an operation 
will result in a valid outcome or guessing a solution for a problem and then working back-
wards.  

In this study, using algebraic skills with insight becomes visible through the application 
of algebraic techniques during procedures involving both basic algebraic skills and symbol 
sense behaviour, i.e. having a gestalt view on algebraic expressions and dealing with their 
visual salient aspects local salience and pattern salience. Our working definition of successful 
in the title of this dissertation refers to the application of systematic algebraic strategies dur-
ing algebraic problem-solving in physics class, which is operationalized by measuring the 
extent to which students demonstrate symbol sense behavior and the degree to which stu-
dents apply basic algebraic skills properly. We assume that students learned these algebraic 
skills in mathematics class from their teachers who strictly follow their mathematics text-
books (SLO, 2019). Our operationalization of both basic algebraic skills and demonstration 
of symbol sense behaviour is explained in the next section below.  

5.3 Methodology 

5.3.1 Selection Criteria for Participants 

To gain insight into students’ symbol sense behavior during algebraic problem-solving in 
physics, we needed two different groups, each containing three anonymized grade 10 physics 
students from a regular school. To this extent, we used convenience sampling (Bryman, 2015) 
to find two physics teachers who together with their students were available and willing to 
participate in this study. Next, we used the ‘Interview Protocol Physics Teachers’ in the third 
subsection of the appendix to conduct an interview with them and select appropriate 
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students. To ensure appropriate length and clearness, this protocol was redesigned several 
times and tested on different teachers and social scientists during the pilot-phase prior to this 
study. The physics teachers used ‘Magister’, a student monitoring system for secondary edu-
cation (‘accounts.magister.net’, 2019) to select appropriate students based on their mathe-
matics and physics grades. Based on the Dutch ten-point grading system, these students had 
a sufficient mathematics grade and an insufficient physics grade, i.e. < 5.5. This grade crite-
rion indicates that students’ difficulties with algebraic physics problems were mainly because 
of insufficient application of algebraic skills in physics, and not related to a lack of basic 
mathematics. To ensure that it was legitimate to compare the students’ individual results and 
that of both groups, the students should use the same mathematics and physics textbook and 
have a similar knowledge domain at the start of these interviews. These selection criteria were 
so strong, that we only found two schools satisfying these criteria. For Group (I) of school 
(I) this yielded Aron (the only male student in this study), Beth and Chloe with mathematics
A, and for Group (II) of school (II) Diana, Eve and Fiona with mathematics B of Group (II).
They all used the physics textbook SysNat (Ottink et al., 2014a) and the same mathematics
textbook series Getal & Ruimte: Reichard et al. (2014a) for Group (I) and Reichard et al.
(2014b) for Group (II). The details are presented in table 1. The physics grades range from
5.0 up to 5.4 and for mathematics from 6.4 up to 7.9.

Table 1. Mathematics and physics grades of the respondents. 

Aron Beth Chloe Diana Eve Fiona 
Grade mathematics A  7.0 7.0 6.4 – – – 
Grade mathematics B  – – – 6.6 7.1 7.9 
Grade physics  5.0 5.4 5.3 5.2 5.4 5.3 

5.3.2 Design of The Tasks 

The tasks were designed so that they should trigger students solving algebraic physics problems 
and provide insight into their algebraic expertise with basic algebraic skills and symbol sense be-
havior. Based on these design principles, we first selected four exercises from the physics textbook 
SysNat (Ottink et al., 2014a; 2014b) that we called ‘Ideal gas’ (Task 1), ‘Falling stone’ (Task 2), 
‘Uniform circular motion’ (Task 3) and ‘Spring-mass system’ (Task 4). Only ‘Task 3’ was identical 
to that of the physics textbook. The other exercises were adjusted into algebraic physics problems 
described in symbolic representations (Goldin, 2000). Next, these tasks were solved by grade 10 
students who did not participate in this study. This pilot-phase provided us information about the 
appropriateness of these problems, such as clearness, length and that these problems were doable by 
students. After analyzing their work, some of the tasks were slightly adjusted to meet our design 
principles. This resulted in ‘The Tasks’ described in the appendix. The ‘Systematic Solution Set to 
The Tasks’ (solution set in short) are also presented in the appendix. For stylistic reasons we ab-
breviated procedures involving basic algebraic skills as ‘BAS’, local salience as ‘LS’ and pattern 
salience as ‘PS’. Furthermore, we focused on rewriting formulas and solving kinematic energy 
relations.  
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5.3.3 Design of Task-based Interviews (TBIs)  

The TBIs have their origin in clinical interviews that were used by Piaget (1954) to gain 
deeper understanding of students’ cognitive development. Such clinical studies are regarded 
as qualitative research. Conducting TBIs to gain insight into students’ problem-solving beha- 
viors follow from gaining deeper understanding of students’ cognitive development. There-
fore, TBIs are part of qualitative research (e.g., Bokhove & Drijvers, 2010; Maher & Sigley, 
2014). This implies that our study can also be considered as a qualitative study. The quanti-
tative component of this study is related to the operationalization of successful in the title of 
this dissertation, which was operationalized by measuring both the extent to which students 
demonstrated symbol sense behavior and the degree to which students apply basic algebraic 
skills properly. Our interviews were carefully designed so that students had only interaction 
with the tasks and the interviewer. Therefore, the TBIs were conducted by two independent 
researchers (one per group) in an appropriate, quiet place. The TBIs took approximately 40 
minutes and were based on a structured protocol consisting of two parts that was designed in 
such a way that the instructions were clear and students could easily work with it. Based on 
the feedback of the non-participating students above, some parts of this protocol were reor-
ganized and rewritten. These adjustments led to ‘Interview Protocol for Students’ in the 
fourth subsection of the appendix. In the first part students were asked questions about their 
background, the textbooks they used and their mathematics and physics grades were double 
checked. In the second part they solved ‘The Tasks’ while thinking aloud (Charters, 2003). The 
interviews were videotaped. Next, the audio part was transcribed verbatim, for which the stu-
dents gave consent. The interviewer only interrupted when a procedure or reasoning was not 
clear enough or she remained silent for one minute. We used stimulated recall techniques 
(Geiger, Muir & Lamb, 2016) to get as much information as possible on the students’ solu-
tions. If necessary, we provided small hints.  

5.3.4 Data Analysis: Phase 1 – Phase 4  

Data analysis of videotaped data comprises seven consecutive phases (Powell, Francisco & 
Maher, 2003), not requiring a rigid order. Regarding this study, in ‘phase 1’ (viewing atten-
tively the video data) we acquired a first and general understanding of how the respondents 
solved the algebraic physics problems. Since their behavior was video recorded, we could 
easily identify the first interesting and relevant observations such as the application of ad hoc 
strategies. ‘Phase 2’ (describing the video data) was less important, because the relevant in-
formation in videotaped data was captured in detail by the interview transcripts. This process 
is described in ‘phase 4’. In ‘Phase 3’ (identifying critical events) we identified critical events, 
i.e. students’ application of algebraic techniques, ad hoc approaches and other relevant steps 
during problem solving in which a mathematical explanation or argument was involved. 
These events are further described in ‘phase 5’. In ‘phase 4’ (transcribing) the audio part of 
videotaped data were transcribed verbatim.  
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5.3.5 Data Analysis: Phase 5 

In ‘phase 5’ (coding) we operationalized research question (4) through the coding scheme 
(spread sheet) in table 2. The coding process was based on analyzing videotaped episodes (to 
some extent), the transcripts of the audio part of videotaped data, and the students’ written 
solution set to the tasks. Their solution set was compared to our systematic solution set in 
Appendix A and coded afterwards using table 2. The dots in the cells indicate that they are 
empty and should be filled in. This process is explained in the next subsection. Thus, table 2 
is complete.  

Prior to the TBIs, we identified both the required algebraic technique (Drijvers, 2011) 
and the needed basic algebraic skills or symbol sense type in the systematic set. Later, this 
was compared to students’ written solution set and assigned to scores to gain insight into 
their symbol sense behavior (Bokhove, 2011). For instance, to solve sub task a) of ‘Task 1 
Ideal gas’ in Appendix A systematically, procedure 1 requires the application of ‘multiplica-
tion of both sides’ of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇
=  𝐶𝐶𝐶𝐶 by 𝑇𝑇𝑇𝑇 which yields 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 = 𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶 , since 𝑇𝑇𝑇𝑇 𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇
= 𝑇𝑇𝑇𝑇1−1 ∙ 𝑃𝑃𝑃𝑃 𝑃

𝑉𝑉𝑉𝑉 = 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃. This implies that this procedure requires students’ sensitivity towards the expo-
nent −1 in 𝑇𝑇𝑇𝑇−1, and is associated with the symbol sense type local salience.  

Table 2. Coding scheme to analyze students’ symbol sense behavior. 

Students may use seemingly different approaches than manipulating exponents above. For 
instance, cancelling out variables 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚 = 1

2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓)2 that is mathematically equiva-

lent to working with exponents. Such procedures are also correct and do not affect students’ 
symbol sense behavior. This also holds for interchanging procedures.  

How was the coding scheme used?  
The first column ‘Time’ in Table 2 refers to the interview timeline in which a critical event 
was observed.  

The column ‘Subtask’ refers to the subtasks in Appendix A. Except for the columns 
‘Time’, ‘Subtask’ and ‘Ad hoc strategies’, the columns ‘Algebraic Technique’ and ‘Trigger’ 
contained drop-down boxes with each having different options. Based on the used algebraic 
technique during a procedure, one of the options ‘multiplication of both sides’, ‘division of 
both sides’, ‘substitution’, ‘taking the square root of both sides’, ‘squaring both sides’ and 
‘subtraction from both sides’ of the third column ‘Algebraic Technique’ was selected (coded) 

Time Subtask Algebraic Techniques Ad hoc strategies Trigger 
… 1a … … … 
… 1b … … … 
… 2a … … … 
… 2b … … … 
… 3a … … … 
… 3b … … … 
… 4 … … … 
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in the spreadsheet. If instead of the latter, she applied ad hoc strategies, the details were 
thoroughly described in the column ‘Ad hoc strategies’. 

The last column ‘Trigger’ contains the options ‘positive’, ‘negative’ or ‘missed oppor-
tunity’. A procedure was coded ‘positive’ or ‘negative’ when she chose the right procedure, 
thereby respectively executing correctly with score ‘1’, and incorrectly with score ‘0,5’. 
‘Missed opportunity’ refers to the third scenario when she overlooked a required procedure 
(for instance, when the student made no attempt to solve the task), or used ad hoc ap-
proaches. This led to SSB (%), the symbol sense behavior percentage per subtask. Other 
scores are OSSB (%), the overall symbol sense behavior percentage for the whole set of 
subtasks, and OBAS (%), the overall basic algebraic skills percentage for the whole set of 

subtasks. These two scores are calculated by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
25

∙ 100 % and 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

5 
∙ 100 % respectively. As can be seen in the solu-

tion set of appendix A, the number ‘25’ in OSSB (%) is the sum of twenty procedures in-
volving local salience and pattern salience, and five involving basic algebraic skills. Perfor- 
ming each procedure flawlessly yields the maximum score of 25.  

Furthermore, a student was regarded procedurally fluent if OBAS (%) ≥ 90.0 % (4,5 out 
of 5 points). We regarded OSSB (%) to be sufficient when OSSB (%) ≥ 80.0 % (20 out of 
25 points). Based on these criteria, successful in the title of this dissertation refers to the appli-
cation of systematic algebraic strategies with OBAS (%) ≥ 90.0 % (the criterion for applying 
basic algebraic skills successfully) and OSSB (%) ≥ 80.0 % (the criterion for successful demon-
stration of symbol sense behaviour).  

5.3.6 Data Analysis: Phase 6 and 7 

In ‘phase 6’ (constructing storyline) we identified the ad hoc strategies that were used, and 
then determined the students’ SSB (%) per subtask followed by OBAS (%) and OSSB (%). 
This can be seen the first three subsections of the next section.  

As to ‘phase 7’ (composing narrative), the transcripts, students’ written solution set, and 
the findings from ‘phase 6’ were further integrated, leading to a narrative containing common 
findings. These are presented in the last two subsections of the next section.  

To enhance reliability of our results (Bryman, 2015), the two independent researchers 
crosschecked their results. Next, this was double checked by the first author, who found an 
overlap of approximately 95%. After discussing the remaining 5%, some adjustments were 
made which led to 100% agreement among them. 
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5.4 Results 

To show variability and chose maximal variation in the selection of cases, we only present 
the results of Diana, Eve and Chloe (Although each students’ work was analyzed in detail).  

5.4.1 Diana 

Diana has a 6.6 for mathematics B and a 5.2 for physics. She used the permutation strategy 
to solve task 1a and b, 3a and task 4. With the tasks 3a and 4 she faced serious difficulties, 
and for task 2a and 3a she needed hints, but she did not use ad hoc approaches. Conse-
quently, her interview lasted long, i.e. circa 60 minutes. 
 Her symbol sense behavior characteristics per subtask can be found in table 3. The sec-
ond (1a) up to the eighth column (4) of the first row, each represent a subtask. The second 
row ‘Missed opportunity’ shows the sum of how many procedures per subtask she made no 
attempt to solve a task or used ad hoc strategies. For subtask 2b, this number is one. Fur-
thermore, three procedures were correct (positive score: 3) and one was not (negative score: 
0.5). 

Table 3. Symbol sense behavior characteristics of Diana per subtask.  

1a 1b 2a 2b 3a 3b 4 
Missed opportunity 2 2 1 1 1 3 1 
Negative score - - 0.5 0.5 1 0.5 0 
Positive score - - 2 3 0 1 3 
Subtask max. score 2 2 4 5 3 5 4 
SSB (%) 0 0 62.5 70.0 33.3 30.0 75.0 

We calculated her SSB (%) per subtask. For subtask 2b this becomes 0,5+3
5

∙ 100% =
70.0 %. Her total number of ‘Missed opportunity’ corresponds to 11 (six ad hoc strategies 
and five overlooked procedures) including one basic algebraic skills procedure, eight local 
salience and two pattern salience procedures. This corresponds to a large 44.0 % of the per-
fect score. Her lowest SSB (%) concerns the subtasks 1a and 1b (0 % each) and her highest 
subtask 4 (75.0 %). The latter corresponds to the well-performed first three procedures. For 
the last procedure, she substituted numbers for variables and got stuck. Diana’s OBAS (%) 
is 3.5

5
∙ 100 % = 70.0 %. Hence, she lacks a solid domain of basic algebraic skills. Her OSSB

(%) is 11.5
25

∙ 100 % = 46.0 %. This score was mainly due to the application of ad hoc ap-
proaches, implying the absence of sensitivity towards systematic procedures with local sali-
ence and pattern salience. Instead of showing insight into the application of algebraic tech-
niques, there was a focus on the permutation strategy. This is illustrated in table 4. So, based 
on our working definition of successful in the title of this thesis, Diana was unsuccessful in 
both applying basic algebraic skills (OBAS (%) = 70.0 % ≤ 90.0 %) and demonstration sym-
bol sense behavior (OSSB (%) = 46.0 % ≤ 80.0 %).    

5.4 Results
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proaches, implying the absence of sensitivity towards systematic procedures with local sali-
ence and pattern salience. Instead of showing insight into the application of algebraic tech-
niques, there was a focus on the permutation strategy. This is illustrated in table 4. So, based 
on our working definition of successful in the title of this thesis, Diana was unsuccessful in 
both applying basic algebraic skills (OBAS (%) = 70.0 % ≤ 90.0 %) and demonstration sym-
bol sense behavior (OSSB (%) = 46.0 % ≤ 80.0 %).    
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Based on trial–and–error, she permutated numbers to discover the arrangement of valid 
outcomes for subtask 1a. Although this strategy provided right outcomes for subtask 1a, 1b, 
3a and 4, she made mistakes when the substituted number of variables became larger. Espe-
cially, when numbers are identical, but represent different variables. For instance, for subtask 

3a she substituted numbers for 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠2

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
, but lost her overview and failed in making 

the next step and needed a hint. This process of using an ad hoc approach followed by failure 
and a hint also applies for subtask 4.  

During the evaluation of her work, Diana indicated that the permutation strategy was 
“actually a residual technique acquired in mathematics class in Grade 8”. This may imply that they 
learned ad hoc strategies, rather than the mathematics teacher putting emphasis on insight 
into why and how algebraic skills are used systematically. 

Table 4. Diana’s permutation strategy to solve subtask 1a.  

 
 
Step 1. The variables in are substituted into 
 
 
 
 
 
Step 2. As a strategy to solve for variable 𝑽𝑽𝑽𝑽, Diana iteratively permutes (trial and 
error) the numbers while checking that the result of the division remains valid. 
 
 
 
 
Step 3: Finally, she substitutes the corresponding variables back, which remarkably 
leads to the correct solution: 
 
The corresponding fragment to subtask 1a:  
 “What I can do is... 𝐶𝐶𝐶𝐶 = 8, and then 𝑃𝑃𝑃𝑃 is 8, 𝑉𝑉𝑉𝑉 = 2 and 𝑇𝑇𝑇𝑇 = 16. So, if 𝑃𝑃𝑃𝑃 should be 8 then I should interchange 𝐶𝐶𝐶𝐶 and 𝑃𝑃𝑃𝑃. So, 
the formula would be... oh no! I must find 𝑉𝑉𝑉𝑉. I should interchange 2 and 8. So, wait. If I write 8 = 8∙2

16
 and if I want 𝑉𝑉𝑉𝑉, then 𝑉𝑉𝑉𝑉 in 

this case is 2. No, that’s not going to work. If I interchange 𝐶𝐶𝐶𝐶 and 𝑃𝑃𝑃𝑃, then I get 64 divided by 16 and that is 2. Uhmm, I’m going 
to take other numbers. 𝐶𝐶𝐶𝐶 = 4, 𝑃𝑃𝑃𝑃 becomes... uhmm... together they should be 8, so I get 4 again. Uhmm, 20... 𝐶𝐶𝐶𝐶 = 20, 𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇
 

=... divided by... what to do next? 2 or no, 4∙10
2

, then 𝑉𝑉𝑉𝑉 = 10. If I’ll get 10, then the formula must look like.. hmm... 2∙20
4

... yes. 

So, then I get 2∙20
4

 and that is right. So 10 = 𝑉𝑉𝑉𝑉, 2= 𝑇𝑇𝑇𝑇, times... 20 = 𝐶𝐶𝐶𝐶divided by 4 is 𝑃𝑃𝑃𝑃. Let me check... uhmm... is this okay? 
Oh no! Yes... yes!” 

5.4.2 Eve 

Eve is a female student with a 7.1 for mathematics B and a 5.4 for physics. As to her TBI, 
she often used a combination of algebraic techniques with insight and the permutation stra- 
tegy for task 1a and 1b and the numbering strategy for task 2a, 3a and 4. The numbering 
strategy is different than the former strategy and aims at simplification of formulas or vali-
dation of solutions with insight. She frequently switched from systematic algebraic strategies 
to ad hoc strategies, and only used a hint for 2b. Her interview took 67 minutes.  
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Eve’s symbol sense behavior characteristics are shown in table 5. Her ‘Missed oppor-
tunity’ corresponds to seven including one basic algebraic skills procedure, five local salience 
and one pattern salience procedure (six ad hoc approach and one overlooked procedure).  

Table 5. Symbol sense behavior characteristics of Eve per sub task.  

1a 1b 2a 2b 3a 3b 4 
Missed opportunity 1 2 1 - 1 1 1 
Negative score - - - 1 0.5 - 0.5 
Positive score 1 - 3 3 1 4 2 
Sub task max. score 2 2 4 5 3 5 4 
SSB (%) 50.0 0 75.0 80.0 50.0 80.0 62.5 

This corresponds to 28.0 % of the maximum OSSB (%), which is low compared to Diana. 
Her highest SSB (%) is both for subtask 2b (80.0 %) and subtask 3b (80.0 %), and her lowest 
subtask 1b (0%) where she used the numbering strategy to validate her answer. As Diana, 
this lower score was mainly related to using ad hoc strategies. Contrary to other subtasks, the 
algebraic techniques involved in 2b and 3b were used in a right manner and with insight.  

Both her OBAS (%) of 70.0 % (3.5 points) and her OSSB (%) with 64.0 % (16 points) 
are insufficient, but her OSSB (%) is higher than that of Diana. Without the application of 
ad hoc strategies, especially in task 1 and 2a, both her OBAS (%) and OSSB (%) would have 
been sufficient. Eve’s numbering strategy for subtask 2a is depicted in table 6. Even if this 
approach led to the correct solution, she did not understand why it was legitimate to cancel 
out the masses m in the square root sign. This is related to a lack of insight into algebraic 
skills. So, like Diana, Eve was unsuccessful in both applying basic algebraic skills (OBAS (%) 
= 70.0 % ≤ 90.0 %) and demonstration of symbol sense behavior (OSSB (%) = 64.0 % ≤ 
80.0 %). 

After her TBI, Eve mentioned that both the numbering and the permutation strategy 
were learned in mathematics class in grade 8. This confirms Diana’s statement on the per-
mutation strategy, since they are classmates since grade 8. Nevertheless, Diana did not use 
the numbering strategy. 

Table 6. Eve’s numbering strategy to solve subtask 2a. 

Step 1: the variables in are 
substituted in 

Step 2: verification that 3
3
 is equal to 1 
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Step 3: the corresponding variables are substituted back,  
with the two variables 𝑚𝑚𝑚𝑚 being cancelled out: 
 
 
 
The corresponding fragment to the steps 1, 2 and 3:  
“I think that one of both m’s should be cancelled out. Yes, 𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚
 is 1. So, maybe I should take away the upper m and then... no. I must 

put the number 1 in front of 𝑚𝑚𝑚𝑚, but then I’ll get the same number. So, let me see... let us say that we will get 2∙3∙1∙4
3

 if you take away 

the 3. And then this is [ 3
3
 ] equal to 1. And, normally, this should... should... 24 divided by 3. This should give 8. If I take away 

3
3
... and then there, then... maybe I should put there a 1? Okay. So, both m’s cancel out. So, this gives 2 ∙ 𝑔𝑔𝑔𝑔 2∙𝑠𝑠𝑠𝑠∙ℎ

1
. And that [ 1 ] 

you could also leave out. So, finally I get 𝑣𝑣𝑣𝑣final is 2 ∙ 𝑔𝑔𝑔𝑔 ∙ ℎ.”  

5.4.3 Chloe 

Chloe is a female student with a 6.4 for mathematics A and a 5.3 for physics. She worked 
much faster than Diana and Eve, and only used the cross-multiplication strategy to solve task 
1a, 1b and 3a. Chloe seems to have automated this approach that she performed smoothly 
for task 1. Hence, her TBI lasted 37 minutes.  
 Chloe’s symbol sense behavior characteristics are displayed in table 7. Her ‘Missed op-
portunity’ is thirteen and contains one basic algebraic skills procedure, eight local salience 
and nine pattern salience procedures (five ad hoc approaches and eight overlooked proce-
dures). This equivalent to 52.0 % of the maximum OSSB (%), implying a lack of symbol 
sense behavior. Her highest SSB (%) is for subtask 2a (75.0 %) where she lost points for the 
last two procedures. During the third procedure she did not multiply the value 0.5 with 2. 
Her lowest SSB (%) is for task 1 (0 %). Chloe’s insufficient OBAS (%) of 70.0 % (3.5 points) 
is identical to that of Diana and Eve. Her OSSB (%) of 38.0 % (9.5 points) is lower than 
them. In summary, like the other students, Chloe was unsuccessful in both applying basic 
algebraic skills (OBAS (%) = 70.0 % ≤ 90.0 %) and demonstration of symbol sense behavior 
(OSSB (%) = 38.0 % ≤ 80 %). 

 

Table 7. Symbol sense behavior characteristics of Chloe per subtask.  

 1a 1b 2a 2b 3a 3b 4 
Missed opportunity 2 2 - 3 1 4 1 
Negative score - - 1 1 - - 0.5 
Positive score - - 2 - 2 1 2 
Subtask max. score 2 2 4 5 3 5 4 
SSB (%) 0 0 75.0 20.0 66.7 20.0 62.5 
 
 In table 8 we show Chloe’s cross-multiplication strategy in subtask 3a. Although Chloe 
intended, she forgot to cross multiply and at the same time cancelled out the masses m. Pro- 
bably, she lost her overview.  
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For subtask 2b, she cancelled out the masses in 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚 = 1
2
∙ 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓�

2 + 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ℎ .
This procedure is forbidden and implies that the previous cancellation in subtask 3a was not 
based on understanding, but on routine based on ad hoc approaches. Indeed, during the 
evaluation Chloe mentioned that she used ad hoc strategies, but did not understand why 
these were mathematically incorrect. For instance, for subtask 1 she writes 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇
= 𝐶𝐶𝐶𝐶

1
 and then

cross-multiplied, yielding 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 = 𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶𝐶𝐶. It turned out that she learned this approach from 
the mathematics A textbook. Furthermore, as for task 3b, Chloe mentioned that she lost her 
overview and got stuck because of the large number of variables.  

Table 8. Chloe’s cross-multiplication strategy and cancellation of m’s to solve subtask 3a. 

Step 1: she first uses the cross-multiplication strategy and then 
immediately cancels out the masses during the same procedure.  

Step 2: although she forgets to perform cross-multiplication, she writes the 
correct result of the previous procedure. In the same procedure, she cancels out 
the radiuses. 

The corresponding fragment to the steps 1 and 2:  
“I think I’ll first use the cross-multiplication strategy. So, this multiplied by that, and this multiplied by that. This is much easier to 
do, since there are no fractions involved. Now I should cancel out the masses. Then we get 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀

𝑠𝑠𝑠𝑠2
= 𝑣𝑣𝑣𝑣2

𝑠𝑠𝑠𝑠
. And now I can cancel out the 

radiuses.”  

5.4.4 OBAS (%) and OSSB (%) 

In the previous section OBAS (%) was incorporated into OSSB (%). To gain more insight 
into the relation between them, we placed OBAS (%) next to OSSB (%), see figure 2. Both 
Beth (A) with mathematics A and Fiona (B) with mathematics B had insufficient OSSB (%) 
and OBAS (%). Aron (A)’s OSSB (%) was sufficient (80.0 %), but his OBAS (%) was not. 
Except for Aron, all students lacked both sufficient basic algebraic skills and insight. So, he 
was the only student who demonstrated symbol sense behavior successfully. This also implies 
that in terms of tasks requiring symbol sense behavior, he was the only student who success-
fully transferred algebraic skills from mathematics into physics.   

We also calculated the ratio of OBAS (%) 
OSSB (%) 

 per student. Except for Diana and Chloe, this 

number for the other students is roughly 1. For them, their OBAS (%) might be used as a 
reasonable predictor for their OSSB (%).  
 On the individual level, Aron has both the highest OSSB (%) (80,0 %) and OBAS (%) 
(76.0 %). The lowest OSSB (%) and OBAS (%) are respectively for Chloe (38.0 %) and Fiona 
(50.0 %). Furthermore, Chloe, Diana and Eve have the same OBAS (%) (70.0 %), but a 
different OSSB (%). 



Chapter 5 

118 

For subtask 2b, she cancelled out the masses in 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚 = 1
2
∙ 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓�

2 + 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ℎ .
This procedure is forbidden and implies that the previous cancellation in subtask 3a was not 
based on understanding, but on routine based on ad hoc approaches. Indeed, during the 
evaluation Chloe mentioned that she used ad hoc strategies, but did not understand why 
these were mathematically incorrect. For instance, for subtask 1 she writes 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇
= 𝐶𝐶𝐶𝐶

1
 and then

cross-multiplied, yielding 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 = 𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶𝐶𝐶. It turned out that she learned this approach from 
the mathematics A textbook. Furthermore, as for task 3b, Chloe mentioned that she lost her 
overview and got stuck because of the large number of variables.  

Table 8. Chloe’s cross-multiplication strategy and cancellation of m’s to solve subtask 3a. 

Step 1: she first uses the cross-multiplication strategy and then 
immediately cancels out the masses during the same procedure.  

Step 2: although she forgets to perform cross-multiplication, she writes the 
correct result of the previous procedure. In the same procedure, she cancels out 
the radiuses. 

The corresponding fragment to the steps 1 and 2:  
“I think I’ll first use the cross-multiplication strategy. So, this multiplied by that, and this multiplied by that. This is much easier to 
do, since there are no fractions involved. Now I should cancel out the masses. Then we get 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀

𝑠𝑠𝑠𝑠2
= 𝑣𝑣𝑣𝑣2

𝑠𝑠𝑠𝑠
. And now I can cancel out the 

radiuses.”  

5.4.4 OBAS (%) and OSSB (%) 

In the previous section OBAS (%) was incorporated into OSSB (%). To gain more insight 
into the relation between them, we placed OBAS (%) next to OSSB (%), see figure 2. Both 
Beth (A) with mathematics A and Fiona (B) with mathematics B had insufficient OSSB (%) 
and OBAS (%). Aron (A)’s OSSB (%) was sufficient (80.0 %), but his OBAS (%) was not. 
Except for Aron, all students lacked both sufficient basic algebraic skills and insight. So, he 
was the only student who demonstrated symbol sense behavior successfully. This also implies 
that in terms of tasks requiring symbol sense behavior, he was the only student who success-
fully transferred algebraic skills from mathematics into physics.   

We also calculated the ratio of OBAS (%) 
OSSB (%) 

 per student. Except for Diana and Chloe, this 

number for the other students is roughly 1. For them, their OBAS (%) might be used as a 
reasonable predictor for their OSSB (%).  
 On the individual level, Aron has both the highest OSSB (%) (80,0 %) and OBAS (%) 
(76.0 %). The lowest OSSB (%) and OBAS (%) are respectively for Chloe (38.0 %) and Fiona 
(50.0 %). Furthermore, Chloe, Diana and Eve have the same OBAS (%) (70.0 %), but a 
different OSSB (%). 

Search for Symbol Sense Behavior 

119 

 
Figure 2. OBAS (%) and OSSB (%) per student 

 
 We also calculated ⟨OBAS (%)⟩, i.e. the average of OBAS (%) for each mathematics 
group. This also applies for ⟨OSSB (%)⟩, i.e. the average of OSSB (%). For group (I) we 
found ⟨OBAS (%)⟩ = 70.0 % and ⟨OSSB (%)⟩ ≈ 56.7 %, and for group (II) ⟨OBAS (%)⟩ = 
63.3 % and ⟨OSSB (%)⟩ = 50.7 %. Concerning ⟨OSSB (%)⟩, there is a difference of 6.7 % 
between these groups. For ⟨OBAS (%)⟩ this is 6.0 %. Although group I performed slightly 
better than II, these differences are reasonably small, and can be neglected. Furthermore, we 
found ⟨OBAS (%)⟩ = 70.0 % and ⟨SSB (%)⟩ ≈ 55.3 % for the average OSSB (%) of all 
students. These values converge to the findings above: none of the students have both suf-
ficient procedural skills and symbol sense behavior.  

5.4.5 ⟨SSB (%)⟩ per Subtask 

Below in figure 3 we displayed ⟨SSB (%)⟩, i.e. the average SSB (%) per subtask among all 
students. 

Because of the criterion OSSB (%) ≥ 80.0 %, ⟨SSB (%)⟩ ≥ 80.0 % was regarded suffi-
cient. None of the tasks met this criterion, which confirms students’ insufficient OSSB (%). 
Students’ average OBAS (%) was not incorporated in figure 3, since subtask 1a, 1b and 4 did 
not contain basic algebraic skills procedures. 
 We may say that there are two regimes of scores. Sub task 1a, 1b and 3b belong to the 
very low (ranging from 33.3% up to 41.7%), and subtasks 2a, 2b, 3a and 4 to the less high 
scores (ranging from 52.8 % up to 68.8 %). For subtask 1a (41.7 %) and 1b (33.3 %), Chloe, 
Diana, Eve and Fiona used ad hoc approaches, which strongly impeded ⟨OSSB (%)⟩ of both 
subtasks.  

Regarding subtask 2a, most students faced difficulties with procedure 2. They were re-
quired to think globally and demonstrate sensitivity towards pattern salience by dividing both 
sides by m. They performed well on the other procedures. Especially, the last procedure for 
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which they achieved the maximum score. This contributed to a higher ⟨SSB (%)⟩, i.e. 68.8 
%.  

Figure 3. ⟨SSB (%)⟩ per subtask 

With respect to subtask 2b, most students lost points in the first and fourth procedure. 
Only one student performed flawlessly on the first procedure involving basic algebraic skills. 
For the fourth procedure students encountered problems to cancel out the 1

2
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. 
As to 3b, most of the students faced problems with procedures 3, 4 and 5. Chloe, Aron, 

Beth and Fiona explicitly mentioned that they lost their overview and were discouraged be-

cause of the large number of variables (the largest among all subtasks) in 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
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𝑇𝑇𝑇𝑇
�
2
.

The same applies, to some extent, for 3a. Here, most students used ad hoc strategies to solve 
it, explaining the insufficient ⟨SSB (%)⟩ = 52.8 % above. 

Concerning task 4, students built upon insights acquired in the preceding subtasks, par-
tially driven by hints. With ⟨OSSB⟩ = 64.6 %, these insights resulted in a similar high score 
as 2a.  
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They often only multiplied 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚 by 2, thereby ignoring −𝐹𝐹𝐹𝐹res.∙ℎ
𝑚𝑚𝑚𝑚

. 
As to 3b, most of the students faced problems with procedures 3, 4 and 5. Chloe, Aron, 

Beth and Fiona explicitly mentioned that they lost their overview and were discouraged be-

cause of the large number of variables (the largest among all subtasks) in 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠

= �2∙𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇
�
2
.

The same applies, to some extent, for 3a. Here, most students used ad hoc strategies to solve 
it, explaining the insufficient ⟨SSB (%)⟩ = 52.8 % above. 

Concerning task 4, students built upon insights acquired in the preceding subtasks, par-
tially driven by hints. With ⟨OSSB⟩ = 64.6 %, these insights resulted in a similar high score 
as 2a.  
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5.5 Discussion and Conclusion 

The purpose of this study was to measure the extent to which upper secondary students 
demonstrate symbol sense behavior when solving algebraic physics problems. The main dif-
ference with previous studies (e.g., Bokhove, 2011; Drijvers, 2015) is that these tasks contain 
expressions with variables relating to real, measurable physical quantities, and other studies 
to abstract mathematical variables without meaning in real life. 

With regard to operationalization of symbol sense behavior, we followed the line of 
Bokhove & Drijvers (2010) in the sense that we focused on students’ sensitivity towards 
gestalt view and visual salient aspects of algebraic expressions. While they used a digital en-
vironment to assess students’ work, we deployed traditional pen-and-paper settings involved 
in other studies (Arcavi, 1994, 2005; Wenger, 1987). Moreover, aforementioned studies have 
a predominantly qualitative character, whereas our coding scheme in combination with the 
systematic solution set including clearly worked out systematic procedures, provided us the 
opportunity to investigate symbol sense behavior qualitatively with a quantitative compo-
nent. This component should not be confused with quantitative research to generalize results 
from a larger sample population (Bryman, 2015). Instead, beyond qualitative explanations, it 
provided us quantitative insight into whether students successfully applied systematic alge-
braic approaches that became visible through the application of basic algebraic skills and 
symbol sense behaviour.  

We expect that our systematic algebraic approaches can also be used in other science 
subjects., for example, in algebraic manipulations involving the Hardy-Weinberg equation in 
biology 𝑝𝑝𝑝𝑝2 + 2 ∙ 𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 + 𝑞𝑞𝑞𝑞2 = 1 or the Nernst equation in chemistry 𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸0 +
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑠𝑠𝑠𝑠∙𝐹𝐹𝐹𝐹

ln � [Ox]
[Red]

�. Furthermore, this study was based on a theoretical model (Powell, Francisco 

& Maher, 2003) with detailed consecutive steps to analyze videotaped data, not present in 
earlier studies.  

We adopted a similar strategy as Bokhove (2011) by selecting tasks should trigger stu-
dents solving algebraic physics problems and provide insight into their procedural skills and 
symbol sense behavior. Indeed, this was the case, contributing to the internal validity of this 
study. In addition, the way we investigated basic algebraic skills (Kieran, 2013; Wu, 1999) 
and symbol sense behavior were very helpful in analyzing both aspects. 

Regarding the research question (4) “To what extent do students in upper secondary education 
demonstrate symbol sense behavior when solving algebraic physics problems?” we observed that students 
lacked both sufficient symbol sense behavior and a solid grasp of basic algebraic skills,  
mainly due to the time-consuming ad hoc strategies and overlooked procedures. Ad hoc 
approaches only worked for basic expressions containing fewer variables. In problems with 
more variables, students got stuck and were unable to explain why operations with ad hoc 
strategies led to problems. On the subtask level some students showed symbol sense behav-
ior. Overall, students were unsuccessful in the transfer of algebraic skills that students learned 
in mathematics class to solve algebraic physics problems in physics class.  

To measure transfer, we adopted the traditional transfer view (e.g. Mestre, 2015) and 
compared students’ solution sets to our systematic solution set. This perspective of transfer 
offered us sufficient insight into the degree to which students both applied basic algebraic 

5.5 Discussion and Conclusion
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skills correctly and demonstrated symbol sense behaviour. This perspective was very useful 
in this area of research. Beyond this approach, to some extent we adopted the actor-oriented 
transfer perspective by examining what students said during the interviews. This provided us 
information about their previous learning situation. For example, students mentioned that 
they learned some ad hoc strategies from their teachers. Since Dutch teachers are highly 
textbook-driven, this may provide information about the textbooks they use. Since such 
strategies are harmful for transfer, this is important information for teachers and textbook 
publishers. We conclude that the traditional approach was very useful to measure the degree 
of transfer, and the other approach was useful to gain insight into previous learning.  
 Our findings are in line with earlier studies, stating that using ad hoc strategies leads to 
fragmented knowledge, impedes generalization of algebra and can be harmful for conceptual 
understanding. Instead of such strategies, students should learn systematic algebraic prob-
lem-solving strategies as in the solution set (see Appendix). This involves a rule-based prob-
lem-solving approach in which algebraic skills are used with insight, where the term ‘rule’ 
plays the role of algebraic axioms in high school algebra. It is probably better that students 
have a gestalt view on algebraic expressions and deal with their visual salience. This solution 
set should be considered and implemented by curriculum developers, textbooks and text-
book publishers, teachers and mathematics and science teacher educators aiming at success-
ful application of mathematics in physics and strengthening students experiencing coherence 
across mathematics and science subjects, especially physics. Regarding the first, we recom-
mend physics curricula adopting content standards that refer to the importance of using 
algebraic skills to solve problems with insight as described in the mathematics curriculum 
(SLO, 2019).  

Concerning activation of prior mathematical knowledge, our research has shown that it 
is probably better to use the same pedagogy of algebraic skills, especially algebraic techniques 
as in mathematics curricula. The latter should emphasize the importance of science context, 
especially algebraic physics problems analogous to mathematics problems. For the science 
audience, regardless of whether these are curricula containing both the general educational 
core goals and the more specific standards, which are tested in national final examinations, 
and shaping the content of textbooks, we recommend physics textbooks to avoid the time-
consuming ad hoc strategies such as the permutation strategy. With respect to algebraic prob-
lem-solving, mathematics textbooks should include systematic procedures with insight simi-
lar to that in the solution set in the Appendix, thereby paying attention to differentiation of 
algebraic techniques during procedures, for example, ‘substitution’ and ‘multiplication of 
both sides’ of the equals sign. This may contribute to conceptual understanding of algebraic 
skills. Physics problems should be included to provide context for corresponding mathemat-
ics problems. We recommend physics textbooks adopting paragraphs where physics prob-
lems are introduced through corresponding mathematics problems that students have 
learned in mathematics class. Again, we emphasize the importance of activation of pre-
knowledge (e.g., Hailikari, Katajavuori, & Lindblom-Ylanne, 2008) and using identical prob-
lem-solving pedagogies to that in mathematics textbooks. We note that such emphasis re-
quires sufficient organization of the learning process. Otherwise, certain mathematical con-
cepts may be taught in physics class before they are explained in mathematics class (Alink et 
al., 2012; Turşucu et al., 2018c). These design principles may have major implications for 
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textbook publishers. In many countries they are bound to one discipline, since each of them 
pursues different aims. Our study indicates that it is probably better that mathematics and 
physics publishers work together to develop textbook series in which these principles are 
incorporated.  

With regard to mathematics and physics teachers, it is pivotal that they are able to explain 
basic mathematics. This should be a pre-requisite for pre-service teachers following science 
teacher education programs leading to a teaching qualification. Probably, this is the most 
important matter in improving the application of mathematics in physics. Furthermore, the 
issues such as activation of prior-knowledge and using identical pedagogies in systematic 
problem-solving with insight, also apply for individual mathematics and physics teachers. In 
addition, even mentioning that physics formulas are rooted in mathematics class, writing ma- 
thematics and physics expressions next to each other, or relating physical quantities to the 
variables x and y used in mathematics can impede compartmentalized thinking (Turşucu et 
al., 2018b). Similar issues hold for mathematics teachers, for example, mentioning that alge-
braic skills are used in science classes, especially in physics.  

In many countries including the Netherlands (Turşucu et al., 2018b), physics teachers’ 
curricula are overloaded (e.g., Lyons, 2006). As a consequence, teachers can lack time for 
sufficient collaboration with other departments. We recommend mathematics and physics 
teachers to systematically reserve some fixed amount of time in their school timetables. This 
may compel teachers to stick to their schedules. In addition, informal meetings may also 
offer a solution. Overall, we think that such collaborative efforts should focus on alignment 
of both subjects that is feasible to adopt in teaching practice.  

Through professional teaching programmes, science teacher educators can make teachers 
aware (Girvan, Conneely, & Tangney, 2016) of the mechanisms underlying students’ diffi-
culties when applying mathematics in science subjects, especially in physics. This also applies 
for providing solutions to combat these difficulties. Similarly, we recommend mathematics 
teacher educators to address these issues to their audience consisting of teachers and future 
teachers. Overall, both teacher educators should emphasize the importance of using system-
atic algebraic strategies, rather than ad hoc strategies lacking insight.  

Our research has shown that the application of ad hoc strategies may help students to 
solve basic algebraic problems. However, there are risks for the longer term. Students can 
become dependent on an authority, i.e. a teacher or a textbook that tells them what is math-
ematically correct and what is not. In addition, mathematics can become a collection of in-
coherent and misunderstood strategies for them. Students often do not know the boundaries 
of such strategies, i.e. where they apply and where not. Especially, in new and more sophis-
ticated situations students encounter difficulties. We conclude that ad hoc approaches can 
be harmful for the application of algebraic skills with insight. Furthermore, with a rule-based 
problem-solving approach that becomes visible through the application of algebraic skills 
during procedures involving basic algebraic skills and symbol sense behavior, students are 
flexible and able to handle such new and more sophisticated problems. These issues above 
can be of major importance for many countries aiming at enhancement of the application of 
algebraic skills from mathematics in physics class, especially improving symbol sense behav-
ior in algebraic physics problems. 
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Observing symbol sense behavior is not a straightforward affair (Bokhove & Drijvers, 
2010), for it is not easy to recognize whether students rely on procedural skills or demonstrate 
insight into expressions. Indeed, both concepts are intertwined, which is illustrated in figure 
3 of Chapter 1 (Drijvers, 2011). Nevertheless, we succeeded quite easily using the numerical 
criteria OSSB (%) ≥ 80.0 % and SSB (%) ≥ 80.0 %. Similarly, we used the criterion OBAS 
(%) ≥ 90.0 % for the observation of procedural fluency (basic algebraic skills). Even though 
this might look as if we decoupled basic algebraic skills and the symbol sense items local 
salience and pattern salience of OSSB (%), this is not the case. Investigation of OBAS (%) 
was helpful in gaining insight into the extent to which students used basic algebraic skills 
correctly. In addition, OBAS (%) was already incorporated in OSSB (%), indicating the in-
tertwinement above.  

The comparable performance of both mathematics groups confirms that the algebra in-
volved in both subjects is sufficient to tackle algebraic physics problems (SLO, 2019).  

Our findings support earlier studies in which students encounter difficulties applying 
mathematics in physics (e.g., Turşucu al., 2017; Roorda, Vos & Goedhart, 2014). This con-
tributes to the relevance of this study.  

5.5.1 Limitations of This Study and Further Recommendations 

Even though we aimed at a 50 % –50 % gender-ratio (Bryman, 2015), our sample consisted 
of 1 male and 5 female students. This was due to strong selection principles needed to safe-
guard the quality of this study. Firstly, the respondents should be selected from two regular 
schools having a sufficient mathematics and an insufficient physics grade (< 5.5). They were 
required to follow the same mathematics and physics textbook series (Reichard, 2014a; Ot-
tink et al., 2014) and have a similar knowledge domain in these subjects at the moment of 
interviews. Finally, they should be willing to participate in this study.  

On the other hand, based on our aforementioned extended literature study, there are no 
indications that a sample with an equal number of male and female students would have 
generated fundamentally different results. Instead, they may be similar. Indeed, students’ per-
formance in terms of OBAS (%) and OSSB (%) is mainly related to a combination of grades 
for both subjects and a similar knowledge domain, rather than on gender. Thus, it is very 
likely that male and female students with similar grades will show similar performance. As a 
result, the composition of our sample should not be seen as a limiting factor. Despite this, it 
is worthwhile to elaborate on this matter, since this may add to the internal validity (Bryman, 
2015) of this study.  

As stated earlier, the grade-criterion above was to ensure that students’ difficulties with 
algebraic physics problems were mainly because of insufficient application of algebraic skills 
in physics, and not related to a lack of basic mathematics (Kieran, 2013; Wu, 1999). In addi-
tion, the other criteria were essential to make sure that it was legitimate to compare the results 
of Group-I and Group-II. This also applies for comparing individual students in both 
groups. We note that students’ poor physics grades can also be the result of the absence of 
a variety of aspects, for example, having a positive attitude towards physics or understanding 
physical concepts.  
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Since this study was based on a very small sample, the findings cannot be extended to 
the whole Dutch population. Neither is it representative for the Dutch context. The indivi- 
dual differences among mathematic A and mathematics B students’ grades, how they apply 
algebraic skills and their symbol sense behavior characteristics are too fundamental.  

When stuck, students got hints to help them proceed. For instance, Aron got stuck in 
procedure 3 of subtask 2a and asked: “Is this okay?”. He was given the hint “Look carefully at 
𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚 = 1

2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2 and the next step”. He continued his work with correct proce-

dures. Thus, we think that these hints did not influence their scores.  
As to design principles, we recommend incorporation of two aspects in the interview 

protocol. It should explicate that students should reserve time reading the questions carefully, 
since they immediately started solving the tasks. Another problem was that half of the stu-
dents worked fast and did not check their solutions after they finished their problems. These 
contained sloppy mistakes which may have been overcome if they had carefully re-examined 
their work. They would have benefited from a guideline emphasizing re-examination of their 
‘finished’ work, which is supported by earlier studies (Hattie & Timperley, 2007; Shute, 2008), 
and may add to their meta-cognitive skills.  

The criteria OBAS (%) ≥ 90.0 % and OSSB (%) ≥ 80.0 % were not chosen arbitrarily, 
but the result of consensus among all authors after a series of discussions. Firstly, physics 
students should have a solid foundation of basic algebraic skills, irrespective of having math-
ematics A or mathematics B. This sheds light on the relatively high number of OBAS (%). 
However, meeting this criterion does not imply a similar high OSSB (%). Indeed, beyond 
basic skills, symbol sense behavior depends on conceptual understanding (Drijvers, 2011). 
Hence, we have chosen OSSB (%) ≥ 80.0 % instead of, for example, 90.0 %.  

Our findings have consequences for teaching practice. Should there be focus on proce-
dural skills, or emphasis on insightful learning? We have seen that students experienced dif-
ficulties because their basic procedures were not automated, the problem required unusual 
reasoning, or the automated procedures were insufficient to tackle unusual problems. Thus, 
both procedural skills and insight should be taught in an integrated manner, which is in line 
previous studies (Arcavi, 2005; Bokhove, 2011; Drijvers, 2015).  

Two mathematics A students learned the cross-multiplication strategy from their text-
book Getal en Ruimte (Reich et al, 2014a). This textbook series has the largest market share in 
the Netherlands, influencing large number of highly textbook-driven teachers who teach 
them to their students (SLO, 2019; van Zanten & van den Heuvel-Panhuizen, 2014). In 
short, textbooks determine how and what students learn. As to the harmful ad hoc strategies, 
we strongly recommend conducting a textbook analysis of Getal en Ruimte in which different 
types of such strategies are mapped and analyzed. We also recommend communicating the 
findings to the publisher.  

Furthermore, all respondents were involved in grade 10. Their lack of basic algebraic 
skills and symbol sense behavior might indicate insufficient attention to algebraic skills in 
grade 9. This may also be examined through textbook analysis.  

In the next study (5) in Chapter 6, we used insights from this study and the other three 
studies to carry out interventions in physics textbooks to improve transfer.  
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5.6 Appendix  

5.6.1 The Tasks 

Task 1 ideal gas 
The formula for an enclosed ideal gas is given by 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇
= 𝐶𝐶𝐶𝐶. Here, 𝑃𝑃𝑃𝑃 is the pressure of the gas 

in 𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎, 𝑉𝑉𝑉𝑉 its the volume in 𝑚𝑚𝑚𝑚3 and T its temperature in 𝐾𝐾𝐾𝐾. 
a) Solve for 𝑉𝑉𝑉𝑉 in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇
= 𝐶𝐶𝐶𝐶. 

b) Solve for 𝑇𝑇𝑇𝑇 in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇

= 𝐶𝐶𝐶𝐶. 

Task 2 falling stone 
The potential energy of a stone is given by the formula 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. = 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚. Here, 𝐸𝐸𝐸𝐸pot. is the 
potential energy of the stone in 𝐽𝐽𝐽𝐽, 𝑚𝑚𝑚𝑚 its mass in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑔𝑔𝑔𝑔 its acceleration due to gravity in 𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
 

and ℎ its height in 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟. When the stone is dropped from a height ℎ through a medium 
without air resistance the potential energy is only converted into kinetic energy. At the mo-
ment the stone hits the ground this energy is 𝐸𝐸𝐸𝐸kin. = 1

2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2. Here, 𝐸𝐸𝐸𝐸kin. is the ki-

netic energy of the stone in 𝐽𝐽𝐽𝐽, m its mass in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔 and 𝑣𝑣𝑣𝑣final its final speed in 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚−1. 

a) Solve for 𝑣𝑣𝑣𝑣final in 𝐸𝐸𝐸𝐸pot. = 𝐸𝐸𝐸𝐸kin.

Now we add air resistance to the medium. As a consequence, when the falling stone hits the 
ground its potential energy is converted into kinetic energy and heat. For the heat we can 
write 𝑄𝑄𝑄𝑄 = 𝐹𝐹𝐹𝐹res. ∙𝑠𝑠𝑠𝑠 . Here, 𝑄𝑄𝑄𝑄 is the falling stone’s produced heat in 𝐽𝐽𝐽𝐽, 𝐹𝐹𝐹𝐹res. the average air 
resistance in 𝑁𝑁𝑁𝑁, and ℎ the height in 𝑚𝑚𝑚𝑚. At the moment the stone hits the ground we can write 
𝐸𝐸𝐸𝐸pot. = 𝐸𝐸𝐸𝐸kin. + 𝑄𝑄𝑄𝑄. 

b) Solve for 𝐹𝐹𝐹𝐹wr in 𝐸𝐸𝐸𝐸pot. = 𝐸𝐸𝐸𝐸kin. + 𝑄𝑄𝑄𝑄.

Task 3 uniform circular motion 
Imagine that the earth is orbiting around the Sun in uniform circular motion. In order to the 
earth remain in orbit the attractive gravitational force 𝐹𝐹𝐹𝐹G between the earth and the Sun must 

equal the centripetal force 𝐹𝐹𝐹𝐹C between these objects. Hence, we can write 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠2

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
. 

Here, 𝐺𝐺𝐺𝐺 is the universal constant of gravitation in 𝑁𝑁𝑁𝑁 𝑁 m2 ∙ kg−2, m the earth’s mass in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 
𝑀𝑀𝑀𝑀 the Sun’s mass in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑣𝑣𝑣𝑣 the earth’s constant speed around the Sun in 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚−1 and r is the 
distance between the centers of the masses in 𝑚𝑚𝑚𝑚.  

a) Solve for 𝑣𝑣𝑣𝑣2 in 𝐹𝐹𝐹𝐹G = 𝐹𝐹𝐹𝐹C.

The earth’s speed around the Sun is given by 𝑣𝑣𝑣𝑣 = 2∙𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇

. Here, 𝑟𝑟𝑟𝑟 is the distance between the 

mass centres in 𝑚𝑚𝑚𝑚, 𝑇𝑇𝑇𝑇 the time it takes to complete one orbit around the Sun in 𝑠𝑠𝑠𝑠. 

b) Derive the formula 𝑠𝑠𝑠𝑠3
𝑇𝑇𝑇𝑇2

= 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
4𝜋𝜋𝜋𝜋2

 by using 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠2

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
 and 𝑇𝑇𝑇𝑇 = 2∙𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠

𝑣𝑣𝑣𝑣
.  

5.6 Appendix
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5.6 Appendix  

5.6.1 The Tasks 

Task 1 ideal gas 
The formula for an enclosed ideal gas is given by 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇
= 𝐶𝐶𝐶𝐶. Here, 𝑃𝑃𝑃𝑃 is the pressure of the gas 

in 𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎, 𝑉𝑉𝑉𝑉 its the volume in 𝑚𝑚𝑚𝑚3 and T its temperature in 𝐾𝐾𝐾𝐾. 
a) Solve for 𝑉𝑉𝑉𝑉 in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇
= 𝐶𝐶𝐶𝐶. 

b) Solve for 𝑇𝑇𝑇𝑇 in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇

= 𝐶𝐶𝐶𝐶. 

Task 2 falling stone 
The potential energy of a stone is given by the formula 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. = 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚. Here, 𝐸𝐸𝐸𝐸pot. is the 
potential energy of the stone in 𝐽𝐽𝐽𝐽, 𝑚𝑚𝑚𝑚 its mass in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑔𝑔𝑔𝑔 its acceleration due to gravity in 𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
 

and ℎ its height in 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟. When the stone is dropped from a height ℎ through a medium 
without air resistance the potential energy is only converted into kinetic energy. At the mo-
ment the stone hits the ground this energy is 𝐸𝐸𝐸𝐸kin. = 1

2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2. Here, 𝐸𝐸𝐸𝐸kin. is the ki-

netic energy of the stone in 𝐽𝐽𝐽𝐽, m its mass in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔 and 𝑣𝑣𝑣𝑣final its final speed in 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚−1. 

a) Solve for 𝑣𝑣𝑣𝑣final in 𝐸𝐸𝐸𝐸pot. = 𝐸𝐸𝐸𝐸kin.

Now we add air resistance to the medium. As a consequence, when the falling stone hits the 
ground its potential energy is converted into kinetic energy and heat. For the heat we can 
write 𝑄𝑄𝑄𝑄 = 𝐹𝐹𝐹𝐹res. ∙𝑠𝑠𝑠𝑠 . Here, 𝑄𝑄𝑄𝑄 is the falling stone’s produced heat in 𝐽𝐽𝐽𝐽, 𝐹𝐹𝐹𝐹res. the average air 
resistance in 𝑁𝑁𝑁𝑁, and ℎ the height in 𝑚𝑚𝑚𝑚. At the moment the stone hits the ground we can write 
𝐸𝐸𝐸𝐸pot. = 𝐸𝐸𝐸𝐸kin. + 𝑄𝑄𝑄𝑄. 

b) Solve for 𝐹𝐹𝐹𝐹wr in 𝐸𝐸𝐸𝐸pot. = 𝐸𝐸𝐸𝐸kin. + 𝑄𝑄𝑄𝑄.

Task 3 uniform circular motion 
Imagine that the earth is orbiting around the Sun in uniform circular motion. In order to the 
earth remain in orbit the attractive gravitational force 𝐹𝐹𝐹𝐹G between the earth and the Sun must 

equal the centripetal force 𝐹𝐹𝐹𝐹C between these objects. Hence, we can write 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠2

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
. 

Here, 𝐺𝐺𝐺𝐺 is the universal constant of gravitation in 𝑁𝑁𝑁𝑁 𝑁 m2 ∙ kg−2, m the earth’s mass in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 
𝑀𝑀𝑀𝑀 the Sun’s mass in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑣𝑣𝑣𝑣 the earth’s constant speed around the Sun in 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚−1 and r is the 
distance between the centers of the masses in 𝑚𝑚𝑚𝑚.  

a) Solve for 𝑣𝑣𝑣𝑣2 in 𝐹𝐹𝐹𝐹G = 𝐹𝐹𝐹𝐹C.

The earth’s speed around the Sun is given by 𝑣𝑣𝑣𝑣 = 2∙𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇

. Here, 𝑟𝑟𝑟𝑟 is the distance between the 

mass centres in 𝑚𝑚𝑚𝑚, 𝑇𝑇𝑇𝑇 the time it takes to complete one orbit around the Sun in 𝑠𝑠𝑠𝑠. 

b) Derive the formula 𝑠𝑠𝑠𝑠3
𝑇𝑇𝑇𝑇2

= 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
4𝜋𝜋𝜋𝜋2

 by using 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠2

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
 and 𝑇𝑇𝑇𝑇 = 2∙𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠

𝑣𝑣𝑣𝑣
.  

Search for Symbol Sense Behavior 

127 

Task 4 spring-mass system 

The period of a spring-mass system is given by 𝑇𝑇𝑇𝑇 = 2 ∙ 𝜋𝜋𝜋𝜋 𝜋 �𝒎𝒎𝒎𝒎
𝑪𝑪𝑪𝑪

. Here, 𝑇𝑇𝑇𝑇 is the period in 

seconds 𝑚𝑚𝑚𝑚 the mass of the attached object in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔 and 𝐶𝐶𝐶𝐶 the spring constant in 𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁 −1.  

Solve for 𝑚𝑚𝑚𝑚 in 𝑇𝑇𝑇𝑇 = 2 ∙ 𝜋𝜋𝜋𝜋 𝜋 �𝒎𝒎𝒎𝒎
𝑪𝑪𝑪𝑪

. 

5.6.2 Systematic Solution Set to The Tasks  

For stylistic reasons we abbreviated procedures involving basic algebraic skills as ‘BAS’, local 
salience as ‘LS’ and pattern salience as ‘PS’. 

Task 1 ideal gas 

a) Procedure 1 (LS): multiplication of both sides of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇

= 𝐶𝐶𝐶𝐶 with 𝑇𝑇𝑇𝑇. Result: 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 = 𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶 ; 

procedure 2 (LS): dividing both sides of 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 = 𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶  through 𝑃𝑃𝑃𝑃. Result: = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑃𝑃𝑃𝑃

 .  

b) Procedure 1 (LS): multiplication of both sides of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇

= 𝐶𝐶𝐶𝐶 with 𝑇𝑇𝑇𝑇. Result: 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 = 𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶 ; 

procedure 2 (LS): dividing both sides of 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 = 𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶  through 𝐶𝐶𝐶𝐶. Result: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶𝐶𝐶

= 𝑇𝑇𝑇𝑇.  

Task 2 falling stone  

a) Procedure 1 (BAS): substitution of 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. = 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚   𝑚 and 𝐸𝐸𝐸𝐸𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. = 1
2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2 in 

𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. = 𝐸𝐸𝐸𝐸𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.. Result: 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚   𝑚 = 1
2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2; procedure 2 (PS): division of both sides 

of 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. = 𝐸𝐸𝐸𝐸𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. through 𝑚𝑚𝑚𝑚. Result: 𝑔𝑔𝑔𝑔 𝑔𝑔  = 1
2
∙ (𝑣𝑣𝑣𝑣final)2; procedure 3 (LS): multiplication of 

both sides of 𝑔𝑔𝑔𝑔 𝑔𝑔  = 1
2
∙ (𝑣𝑣𝑣𝑣final)2 with 2). Result: 2 ∙ 𝑔𝑔𝑔𝑔 𝑔𝑔  = (𝑣𝑣𝑣𝑣final)2; procedure 4 (LS): 

taking the square root of 2 ∙ 𝑔𝑔𝑔𝑔 𝑔𝑔  = (𝑣𝑣𝑣𝑣final)2on both sides. Result: �2 ∙ 𝑔𝑔𝑔𝑔 𝑔𝑔  = 𝑣𝑣𝑣𝑣final.  

b) Procedure 1 (BAS): substitution of 𝐸𝐸𝐸𝐸pot. = 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚   𝑚, 𝐸𝐸𝐸𝐸kin. = 1
2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2 and 

𝑄𝑄𝑄𝑄 = 𝐹𝐹𝐹𝐹res. ∙ ℎ in 𝐸𝐸𝐸𝐸pot. = 𝐸𝐸𝐸𝐸kin. + 𝑄𝑄𝑄𝑄. Result: 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚   𝑚 = 1
2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2 + 𝐹𝐹𝐹𝐹res. ∙ ℎ; procedure 

2 (PS): substraction of 𝐹𝐹𝐹𝐹res. ∙ ℎ from both sides of 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚   𝑚 = 1
2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2 + 𝐹𝐹𝐹𝐹res. ∙ ℎ. 

Result: 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚   𝑚 𝑚 𝑚𝑚𝑚𝑚res. ∙ ℎ = 1
2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2; procedure 3 (LS): division of both sides of 

𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚   𝑚 𝑚 𝑚𝑚𝑚𝑚res. ∙ ℎ = 1
2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2 through 𝑚𝑚𝑚𝑚. Result: 𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠∙ℎ−𝐹𝐹𝐹𝐹res.∙ℎ

𝑚𝑚𝑚𝑚
= 1

2
∙ (𝑣𝑣𝑣𝑣final)2; pro-

cedure 4 (LS): multiplication of both sides of 𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠∙ℎ−𝐹𝐹𝐹𝐹res.∙ℎ
𝑚𝑚𝑚𝑚

= 1
2
∙ (𝑣𝑣𝑣𝑣final)2with 2. Result: 2 ∙

𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠∙ℎ−𝐹𝐹𝐹𝐹res.∙ℎ
𝑚𝑚𝑚𝑚

= (𝑣𝑣𝑣𝑣final)2; procedure 5 (LS): taking the square root of 2 ∙ 𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠∙ℎ−𝐹𝐹𝐹𝐹res.∙ℎ
𝑚𝑚𝑚𝑚

=

(𝑣𝑣𝑣𝑣final)2on both sides. Result: �2 ∙ 𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠∙ℎ−𝐹𝐹𝐹𝐹res.∙ℎ
𝑚𝑚𝑚𝑚

= 𝑣𝑣𝑣𝑣final.  



Chapter 5 

128 

Taks 3 uniform circular motion 

a) Procedure 1 (BAS): substitution of 𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠2

and 𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
 in 𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶 . Result: 𝐺𝐺𝐺𝐺 𝐺

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠2

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
; procedure 2 (PS): dividing both sides of 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
 through 𝑚𝑚𝑚𝑚. Result: 𝐺𝐺𝐺𝐺 𝐺

𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠2

= 𝑣𝑣𝑣𝑣2

𝑠𝑠𝑠𝑠
; procedure 3 (PS): multiplication of both sides of 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
 with 𝑟𝑟𝑟𝑟. Result: 𝐺𝐺𝐺𝐺 𝐺

𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠

= 𝑣𝑣𝑣𝑣2. 

b) Procedure 1 (BAS): substitution of 𝑣𝑣𝑣𝑣 = 2∙𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇

 in 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠

= 𝑣𝑣𝑣𝑣2. Result: 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠

= �2∙𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇
�
2
; pro-

cedure 2 (BAS): execution of previous procedure. Result: 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠

= 4∙𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
; procedure 3 (LS): 

division of both sides of 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠

= 4∙𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
 through 4. Result: 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀

4∙𝑠𝑠𝑠𝑠
= 𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
; procedure 4 (LS): 

division of both sides of 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
4∙𝑠𝑠𝑠𝑠

= 𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
 through 𝜋𝜋𝜋𝜋2. Result: 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀

4∙𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠
= 𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
; procedure 5 (PS): 

multiplication of both sides of 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
4∙𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠

= 𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
 with 𝑟𝑟𝑟𝑟. Result: 𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟   𝑀𝑀𝑀𝑀

4∙𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠
= 𝑟𝑟𝑟𝑟 𝑟 𝑠𝑠𝑠𝑠

2

𝑇𝑇𝑇𝑇2
→ 𝐺𝐺𝐺𝐺 𝐺

𝑀𝑀𝑀𝑀
4∙𝜋𝜋𝜋𝜋2

= 𝑠𝑠𝑠𝑠3

𝑇𝑇𝑇𝑇2
. 
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Procedure 1 (LS): division of both sides of 𝑇𝑇𝑇𝑇 = 2 ∙ 𝜋𝜋𝜋𝜋 𝜋 �𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

 through 2. Result: 𝑇𝑇𝑇𝑇
2

=

2∙𝜋𝜋𝜋𝜋𝜋𝜋𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶
2

→ 𝑇𝑇𝑇𝑇
2

= 𝜋𝜋𝜋𝜋 𝜋 �𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

 ; procedure 2 (LS): division of both sides of 𝑇𝑇𝑇𝑇
2

=∙ 𝜋𝜋𝜋𝜋 𝜋 �𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

through 𝜋𝜋𝜋𝜋. Result: 𝑇𝑇𝑇𝑇
2∙𝜋𝜋𝜋𝜋

= �𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

. procedure 3 (LS): squaring both sides of 𝑇𝑇𝑇𝑇
2∙𝜋𝜋𝜋𝜋

= �𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

. Result: 

𝑇𝑇𝑇𝑇2

4∙𝜋𝜋𝜋𝜋2
= 𝑚𝑚𝑚𝑚

𝐶𝐶𝐶𝐶
; procedure 4 (LS): multiplication of both sides of 𝑇𝑇𝑇𝑇

2

4∙𝜋𝜋𝜋𝜋2
= 𝑚𝑚𝑚𝑚

𝐶𝐶𝐶𝐶
 with 𝐶𝐶𝐶𝐶. Result: 𝐶𝐶𝐶𝐶 𝐶 𝑇𝑇𝑇𝑇2

4∙𝜋𝜋𝜋𝜋2
=

𝐶𝐶𝐶𝐶 𝐶 𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶
→ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2

4∙𝜋𝜋𝜋𝜋2
= 𝑚𝑚𝑚𝑚. 

5.6.3 Interview Protocol Physics Teachers 

Introduction 
This interview will take approximately 15 minutes and is part of the PhD-study of the inter-
viewer, Süleyman Turşucu. By means of a questionnaire, we will ask you to respond to ques-
tions about the background of some of your grade 10 physics students, and the mathematics 
and physics textbooks they use.  

Purpose of this interview 
We aim to select three grade 10 physics students having a sufficient mathematics grade and 
an insufficient physics grade (< 5.5). Later, during an interview these students will be asked 
to solve algebraic physics problems while being videotaped and thinking aloud (Charters, 
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Taks 3 uniform circular motion 

a) Procedure 1 (BAS): substitution of 𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠2

and 𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
 in 𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶 . Result: 𝐺𝐺𝐺𝐺 𝐺

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠2

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
; procedure 2 (PS): dividing both sides of 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
 through 𝑚𝑚𝑚𝑚. Result: 𝐺𝐺𝐺𝐺 𝐺

𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠2

= 𝑣𝑣𝑣𝑣2

𝑠𝑠𝑠𝑠
; procedure 3 (PS): multiplication of both sides of 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
 with 𝑟𝑟𝑟𝑟. Result: 𝐺𝐺𝐺𝐺 𝐺

𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠

= 𝑣𝑣𝑣𝑣2. 

b) Procedure 1 (BAS): substitution of 𝑣𝑣𝑣𝑣 = 2∙𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇

 in 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠

= 𝑣𝑣𝑣𝑣2. Result: 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠

= �2∙𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇
�
2
; pro-

cedure 2 (BAS): execution of previous procedure. Result: 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠

= 4∙𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
; procedure 3 (LS): 

division of both sides of 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠

= 4∙𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
 through 4. Result: 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀

4∙𝑠𝑠𝑠𝑠
= 𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
; procedure 4 (LS): 

division of both sides of 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
4∙𝑠𝑠𝑠𝑠

= 𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
 through 𝜋𝜋𝜋𝜋2. Result: 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀

4∙𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠
= 𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
; procedure 5 (PS): 

multiplication of both sides of 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
4∙𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠

= 𝑠𝑠𝑠𝑠2

𝑇𝑇𝑇𝑇2
 with 𝑟𝑟𝑟𝑟. Result: 𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟   𝑀𝑀𝑀𝑀

4∙𝜋𝜋𝜋𝜋2∙𝑠𝑠𝑠𝑠
= 𝑟𝑟𝑟𝑟 𝑟 𝑠𝑠𝑠𝑠

2

𝑇𝑇𝑇𝑇2
→ 𝐺𝐺𝐺𝐺 𝐺

𝑀𝑀𝑀𝑀
4∙𝜋𝜋𝜋𝜋2

= 𝑠𝑠𝑠𝑠3

𝑇𝑇𝑇𝑇2
. 
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Procedure 1 (LS): division of both sides of 𝑇𝑇𝑇𝑇 = 2 ∙ 𝜋𝜋𝜋𝜋 𝜋 �𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

 through 2. Result: 𝑇𝑇𝑇𝑇
2

=

2∙𝜋𝜋𝜋𝜋𝜋𝜋𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶
2

→ 𝑇𝑇𝑇𝑇
2

= 𝜋𝜋𝜋𝜋 𝜋 �𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

 ; procedure 2 (LS): division of both sides of 𝑇𝑇𝑇𝑇
2

=∙ 𝜋𝜋𝜋𝜋 𝜋 �𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

through 𝜋𝜋𝜋𝜋. Result: 𝑇𝑇𝑇𝑇
2∙𝜋𝜋𝜋𝜋

= �𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

. procedure 3 (LS): squaring both sides of 𝑇𝑇𝑇𝑇
2∙𝜋𝜋𝜋𝜋

= �𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

. Result: 

𝑇𝑇𝑇𝑇2

4∙𝜋𝜋𝜋𝜋2
= 𝑚𝑚𝑚𝑚

𝐶𝐶𝐶𝐶
; procedure 4 (LS): multiplication of both sides of 𝑇𝑇𝑇𝑇

2

4∙𝜋𝜋𝜋𝜋2
= 𝑚𝑚𝑚𝑚

𝐶𝐶𝐶𝐶
 with 𝐶𝐶𝐶𝐶. Result: 𝐶𝐶𝐶𝐶 𝐶 𝑇𝑇𝑇𝑇2

4∙𝜋𝜋𝜋𝜋2
=

𝐶𝐶𝐶𝐶 𝐶 𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶
→ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2

4∙𝜋𝜋𝜋𝜋2
= 𝑚𝑚𝑚𝑚. 

5.6.3 Interview Protocol Physics Teachers 

Introduction 
This interview will take approximately 15 minutes and is part of the PhD-study of the inter-
viewer, Süleyman Turşucu. By means of a questionnaire, we will ask you to respond to ques-
tions about the background of some of your grade 10 physics students, and the mathematics 
and physics textbooks they use.  

Purpose of this interview 
We aim to select three grade 10 physics students having a sufficient mathematics grade and 
an insufficient physics grade (< 5.5). Later, during an interview these students will be asked 
to solve algebraic physics problems while being videotaped and thinking aloud (Charters, 

Search for Symbol Sense Behavior 

129 

2003). We hope that these interviews will provide insight into how the application of alge-
braic skills from mathematics in physics may be improved. 

Interview approach 
Would you please read aloud the questions of the questionnaire below one by one, and provide 
answers? This conversation can be audiotaped so that it can be listened back. Furthermore, 
the students’ names will be anonymized. Would you consent to your students participating 
in this study? 

Questionnaire 
1. Would you please provide us the names of your grade 10 physics students who have a 
sufficient mathematics grade and an insufficient physics grade (< 5,5)? 
2. Would you please provide us insight into the attitude of these students towards learning? 
3. Would you please tell us which physics textbook these students use, and why this textbook 
was chosen? 
4. Would you please tell us which mathematics textbook these students use? 

5.6.4 Interview Protocol Physics Students 

Introduction 
This interview contains two parts. In the first part we ask you general questions about your 
background, and in the second part we ask you to solve four tasks including algebraic physics 
problems while thinking aloud and being videotaped. 

First part: general questions 
1. Would you please tell me why you chose mathematics and science subjects? 
2. Would you please tell me your opinion about mathematics and physics? 
3. Would you please provide me the grades for mathematics and physics? 

Second part: solving algebraic physics problems 
Would you please solve these four tasks ‘Task 1: ideal gas’, ‘Task 2: falling stone’, ‘Task 3: 
uniform circular motion’ and ‘Task 4: spring-mass system’ below while thinking aloud. Please 
write down as many intermediate steps as possible. I will only interrupt you when a procedure 
or reasoning is not clear enough, or it remains silent for about one minute. The information 
that you provided in the first and second part of this interview will only be used for my PhD-
research. Your name will be anonymized. 
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Effectiveness of Using Shift-problems13 

13 This chapter is submitted for publication in Eurasia Journal of Mathematics Science and Technology Education. 
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6.1 Introduction 

Mathematics has a pivotal role in science education, for it offers the tools by which quanti-
tative relationships can be calculated, modelled, represented and predicted (Dierdorp, Bak-
ker, van Maanen & Eijkelhof, 2014). On the other hand, science provides rich, relevant and 
meaningful context for mathematics. Despite this close relationship, students in a large num-
ber of countries struggle with applying mathematics in science subjects, implying insufficient 
transfer14 between these subjects (Jonas et al., 2017; NCTM, 2013; ‘TIMMS & PIRLS’, 2019; 
Wong, 2018).  

Transfer of mathematics to science subjects, especially physics is not even guaranteed 
when students have a solid grasp of mathematics. One of the very rare studies conducted by 
Rebello et al. (2007) shows that students solid grasp of mathematics enrolled in an algebra-
based physics course faced problems with mathematics in physics. They concluded that the 
lack of transfer was not due to students’ mathematics knowledge, but inappropriate applica-
tion of algebra to physics problems.  

According to Nashon and Nielsen (2007), a major reason for the lack of transfer is related 
to compartmentalized thinking in which students see mathematics and science as two unrelated 
subjects. This phenomenon is reinforced since in many countries both subjects are taught 
separately (SLO, 2019; Honey, Pearson & Schweingruber, 2014; ‘TIMMS & PIRLS’, 2019).  
In this respect, Furner & Kumar (2007, p.186) pointed out that “The separate subject curriculum 
can be viewed as a jigsaw puzzle without any picture. If done properly, integration of math and science could 
bring together overlapping concepts and principles in a meaningful way and enrich the learning context. Learn-
ing situated in such enriched (macro) contexts often lead to meaningful learning experiences”. In addition, 
there can be a mismatch in pedagogical approaches between mathematics and science teach-
ers (Turşucu et al., 2018c), especially in teaching mathematical methods such as algebraic 
techniques (Drijvers et al., 2011).  

A remedy for both compartmentalized thinking and the mismatch above may be coher-
ent mathematics and science education (CMSE) that is of major importance for students 
(Berlin & White, 2010, 2012, 2014). The idea behind CMSE is fostering connection between 
mathematics and science education through, for example, alignment of notations. As part of 
CMSE, the discrepancy in pedagogical approaches may require alignment of teaching ap-
proaches, and also improvement of mathematical proficiency (Kilpatrick, Swafford, & Findell, 
2001) that contains the five interwoven strands adaptive reasoning, conceptual understand-
ing, procedural fluency, productive disposition and strategic competence. Concerning alge-
bra education, especially important are the second and third strands. Together, these strands 
form algebraic expertise (Arcavi, 1994; Andrá et al., 2015) that includes algebraic skills with 
emphasis on procedural fluency in relation to conceptual understanding. Symbol sense is the 
part of algebraic skills involving conceptual understanding, relating to “an intuitive feel for 
when to call on symbols in the process of solving a problem, and conversely, when to aban-
don a symbolic treatment for better tools” (Arcavi, 1994, p. 25). Moreover, symbol sense 
contains the ability to choose a wise systematic problem-solving strategy based on relevant 
aspects of an algebraic expression.  

14 A detailed explanation of the controversial transfer phenomenon can be found in the previous chapter. 

6.1 Introduction



Chapter 6 

132 

6.1 Introduction 

Mathematics has a pivotal role in science education, for it offers the tools by which quanti-
tative relationships can be calculated, modelled, represented and predicted (Dierdorp, Bak-
ker, van Maanen & Eijkelhof, 2014). On the other hand, science provides rich, relevant and 
meaningful context for mathematics. Despite this close relationship, students in a large num-
ber of countries struggle with applying mathematics in science subjects, implying insufficient 
transfer14 between these subjects (Jonas et al., 2017; NCTM, 2013; ‘TIMMS & PIRLS’, 2019; 
Wong, 2018).  

Transfer of mathematics to science subjects, especially physics is not even guaranteed 
when students have a solid grasp of mathematics. One of the very rare studies conducted by 
Rebello et al. (2007) shows that students solid grasp of mathematics enrolled in an algebra-
based physics course faced problems with mathematics in physics. They concluded that the 
lack of transfer was not due to students’ mathematics knowledge, but inappropriate applica-
tion of algebra to physics problems.  

According to Nashon and Nielsen (2007), a major reason for the lack of transfer is related 
to compartmentalized thinking in which students see mathematics and science as two unrelated 
subjects. This phenomenon is reinforced since in many countries both subjects are taught 
separately (SLO, 2019; Honey, Pearson & Schweingruber, 2014; ‘TIMMS & PIRLS’, 2019).  
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14 A detailed explanation of the controversial transfer phenomenon can be found in the previous chapter. 
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Through examples, Arcavi identified eight behaviors of symbol sense that show the in-
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classroom practices is too large. Only very few teachers can incorporate such large changes 
in their teaching (Wiliam, Leahy, 2012). As a consequence, such studies often have very lim-
ited impact on teaching practice. Shift problems, on the other hand, are small interventions 
that can be easily implemented by students and teachers. In this study, the instructional 
model activates prior mathematical knowledge by providing hints at the start of these tasks 
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similar to how these were learned in their mathematics textbooks (Reichard et al., 2014).  

These problem-solving activities during interviews were guided by the research question 
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behavior in senior pre-university education when solving algebraic physics problems?”. This question was 
divided in two sub questions: (5a) “To what extent do students in upper secondary education demon-
strate symbol sense behavior when solving algebraic physics problems that occur in their physics textbooks?”, 
and (5b) “To what extent do students in senior pre-university education demonstrate symbol sense behavior 
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when solving the same algebraic physics problems that occur in their physics textbooks after activation of prior 
mathematical knowledge?”. 

Earlier studies on algebraic problem-solving in physics have shown (Turşucu et al., 2017; 
2018b; 2018c) that among students in senior pre-university education grade 10 students en-
counter the biggest transfer problems. Hence, we selected grade 10 physics students to gain 
deeper understanding in their algebraic problem-solving skills, especially their basic algebraic 
skills and symbol sense behavior, and whether and to which extent we could improve their 
problem-solving skills. 
 Similar to the previous study, our working definition of successful in the title of this thesis 
refers to the application of systematic algebraic strategies during algebraic problem-solving 
in physics. Similar to the previous study, we operationalized such strategies by measuring 
both the extent to which students demonstrated symbol sense behavior and the degree to 
which they applied basic algebraic skills properly during interviews. Symbol sense behaviour 
became visible through the application of algebraic techniques during procedures involving 
basic algebraic skills and having a gestalt view on algebraic expressions and dealing with their 
visual salience. 

For stylistic reasons we used the concepts conceptual understanding and insightful learn-
ing (Kilpatrick, Swafford, & Findell, 2001) interchangeably to refer to conceptual under-
standing. This also holds for procedural fluency, procedural skills and basic algebraic skills, 
and ‘her’ and ‘the student’, since we had more female than male participants.  

In this study we do not focus on the meaning or nature of physical concepts. The em-
phasis is on algebraic skills learned in mathematics class and applied to physics problems.  

Furthermore, as in the previous study we expected that the algebraic skills that students 
used during problem-solving (target tasks) in regular physics textbooks were learned in math-
ematics class from regular mathematics textbooks (previous learning situation). To determine 
the degree to which transfer occurred, we adopted the traditional transfer approach (e.g. 
Mestre, 2015) by comparing students’ solution sets to our systematic solution set. This is 
done by the operationalization of systematic algebraic strategies above. Therefore, the extent 
to which transfer occurred, was determined by the researchers’ perspective. To some extent, 
we also adopted the actor-oriented transfer approach. In this regard, we followed the same 
approach as in the previous study (4) and operationalized the actor-oriented transfer ap-
proach “as a search for students’ personal constructions of relations between (1) learning from mathematics 
and physics classes and (2) interview tasks” (Roorda et al., 2014; p. 863).  

6.1.2 Educational and Scientific Relevance 

Our literature study also reveals that this is the first time that shift-problems are used outside 
mathematics education. Therefore, this study may contribute to the evaluation of shift-prob-
lems. In addition, the case of students having a solid grasp of mathematics, but struggle with 
the application of mathematics in physics is highly under examined. This study may provide 
deeper understanding in why such students struggle with physics problems, thereby provid-
ing insight into the underlying mechanisms of how they apply mathematics in physics, and 
also offer insight into how activation of prior mathematical knowledge may be used for the 
benefit of the international mathematics and science audience, especially curriculum 
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developers, mathematics and physics teachers, mathematics and science teacher educators 
and textbook publishers who aim to enhance transfer between both subjects and strengthen 
students experiencing coherence across these subjects. Concerning the first group, it may 
provide design principles to connect the mathematics curricula to that of physics through 
core goals and content standards dealing with, for example, the same pedagogy of using 
algebraic skills. Mathematics and physics textbooks may follow identical problem-solving 
approaches which are followed by individual teachers in mathematics and physics class. For 
students, this is an appropriate transfer scenario (e.g., Alink, van Asselt, & den Braber, 2012; 
Berlin & White, 2012, 2014). Regarding collaboration, both departments may develop strat-
egies in which algebraic skills are used with emphasis on conceptual understanding. In case 
of mathematics and science teacher educators, they may use the findings of this study in 
professional teaching programmes to make teachers aware (Turşucu et al., 2018c; Girvan, 
Conneely, & Tangney, 2016) of aspects that influence transfer, i.e. aspects that impede and 
enhance transfer. Together, the issues above are likely to improve transfer of algebraic skills 
in physics, especially basic algebraic skills and symbol sense behavior in algebraic physics 
problems. 

6.2 Background 

6.2.1 Coherent Mathematics and Science Education and Transfer  

As mentioned above, a remedy for the transfer problem is coherent mathematics and science 
education (CMSE in short). Similar to Science Technology Engineering and Mathematics 
education, or STEM education in short (van Breukelen, 2017; National Science and Tech-
nology Council, 2013; SLO, 2019; ‘TIMMS & PIRLS’, 2019), mathematics lies at the heart 
of the CMSE approach. The CMSE approach aims to connect subjects (in this regard math-
ematics and science subjects) through the alignment of various aspects such as notations, 
concept descriptions, pedagogical approaches and the organization of the learning process 
in order to establish a logical learning line across both subjects. The latter requires that certain 
mathematical concepts are already taught in mathematics class before these were used in 
science class.  
 The CMSE approach is based on the traditional transfer perspective in which mathemat-
ics (initial learning situation) is applied in other subjects (new learning situation) (Alink et al., 
2012; Larsen-Freeman, 2013; Leberman et al., 2016). Therefore, there is a very close rela-
tionship between CMSE and transfer.  
 The terms ‘alignment’ and ‘coherent’ can have different meanings in different studies 
(Roorda, 2012). First of all, ‘coherent’ may be used in (1) ‘coherent profiles’, (2) ‘coherent 
education’ and (3) ‘coherent knowledge’. Even though all of them share the word ‘coherent’,  
they may refer to different levels of the curriculum (Van den Akker, 2004). The first is con-
cerned with the curriculum that is tested in Dutch national final examinations. ‘Coherent 
education’ refers to what has been implemented, and ‘coherent knowledge’ to what has been 
achieved. In this study we follow the line of Roorda (2012). When we refer to ‘coherence 
between mathematics and science subjects’, we refer to teachers or textbook publishers 
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connecting both subjects in terms of aforementioned alignment through various aspects 
(number (2)). ‘Coherence’ in relation with students denotes the achieved level in number (3). 
In other words, the extent to which students experience coherence across both subjects (e.g., 
Frykholm & Glasson, 2005; Furner & Kumar, 2007; Mooldijk & Sonneveld, 2010). For this 
to happen, students should be aware of the intimate relationship between both subjects. In 
that case, the tools offered in mathematics class may become a versatile, widely applicable 
machinery to solve problems in science class. Conversely, their awareness of science as a 
meaningful context in which mathematics can be used, may improve the transfer of mathe-
matics in science subjects, especially in physics. Thus, students experiencing coherence across 
both subjects is of major importance for transfer.  
 In this study, we assume a reciprocal relation between CMSE and transfer. When students 
experience coherence across mathematics and science subjects by means of meaningful con-
texts, transfer from mathematics to science subjects can be improved, and improving transfer 
can help them to experience coherence between mathematics and subjects. 

In many countries, CMSE in teaching practice depends on various players such as the 
curriculum and science teacher educators (Schmidt, Wang, & McKnight, 2005; Turşucu et 
al., 2018c). Concerning curricula (intended curriculum), they describe the general core goals 
of education and the specific standards which are tested in national final examinations. Text-
books mediate between these curricula and the actual teaching in classrooms (implemented 
curriculum) which are closely followed by teachers and their students (SLO, 2019). Thus, for 
classroom practice aiming at CMSE, the key players in the Netherlands are curricula, text-
books and teachers (van Zanten, M. & van den Heuvel - Panhuizen, M., 2014). For research-
ers, the textbooks’ central role in teaching practice makes it worthwhile to design shift-prob-
lems in which instructional models replace a small part of regular textbooks (Palha, Dekker, 
Gravemeijer, & van Hout-Wolters, 2013). In this study we used this pragmatic approach to 
design instructional models by means of hints about using algebraic techniques in a similar 
way to that in mathematics textbooks. By providing hints we aim to activate prior mathe-
matical knowledge and improve both students’ procedural fluency and symbol sense behav-
ior during algebraic problem solving in physics and strengthen. 
 Furthermore, in this study, we assume a reciprocal relation between CMSE and transfer. 
When students experience coherence across mathematics and science subjects by means of 
meaningful contexts, transfer from mathematics to science subjects can be improved, and im-
proving transfer can help them to experience coherence between mathematics and subjects. 

6.2.2 Context of The Study 

All authors in this study were affiliated with the mathematics and science teacher education 
program of Delft University of Technology in the Netherlands. Therefore, rather than stu-
dents from countries abroad, they were selected from Dutch secondary schools. For this 
reason, we shortly draw the Dutch context in relation to education, especially that of pre-
university education. The latter lasts six years and consists of three lower years, i.e. lower pre-
university education and three upper years, i.e. senior pre-university education (from 12 to 
18 years of age).  
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The Netherlands is regarded as an advanced industrial country (OECD, 2018) where 
both mathematics and science education at secondary and college level play an important 
role in the Dutch political agenda (Ministry of Education, Culture and Science, 2018), imply-
ing that government officials and policy makers are paying serious attention to both subjects 
and their relation. Internationally, Dutch lower and senior pre-university education students 
score accordingly in assessments of these disciplines, including that of physics (‘TIMMS & 
PIRLS’, 2019). 

6.2.3 Algebra in Senior Pre-university Mathematics Education  

The algebraic skills in Dutch mathematics curricula mainly deal with algebraic activity, for 
example, algebraic manipulation of formulas and expressions, and patterns of relationships 
between variables. While a formula refers to an expression containing real measurable quan-
tities such as temperature, an expression can be an abstract algebraic expression with abstract 
mathematical variables (placeholders), or a formula with physical quantities (Drijvers et al., 
2011).  
 According to mathematics curricula, the whole set of mathematical activities above are 
part of algebraic skills. The latter is divided into general skills including developing systematic 
problem–solving strategies with insight, and specific skills dealing with algebraic knowledge 
and manipulation skills. Thus, specific skills in these curricula are identical to basic algebraic 
skills. Symbol sense is not explicitly mentioned, but is very close to general skills. The de-
scription of general and specific skills together is identical to that of algebraic expertise.  
In this study we focus on the application of algebraic techniques which are a key element of 
algebraic skills, especially in algebraic manipulation of expressions. To solve basic algebraic 
problems correctly, these techniques should be automated. In this sense, they can be seen as 
part of the basic algebraic skills machinery. Some well-known algebraic techniques are ‘mul-
tiplication of both sides’ and ‘substitution’. The former multiplies both sides of the equation 
by the same variable, and the latter replaces single variables in expressions. The spectrum of 
these techniques is presented and thoroughly described in the next section. 
 Furthermore, since explicit reference to connection in Dutch mathematics and physics 
curricula is absent, the alignment through issues such as equations, formulas and pedagogy 
of using algebraic techniques are absent in mathematics and physics class. Unfortunately, this 
also applies for the organization of the learning process in order to reach an appropriate 
learning line of concepts between mathematics and physics (Alink, Asselt, & Braber, 2012).  

6.2.4 Algebra in Senior Pre-university Physics Education  

Physics education in the Netherlands starts in grade 8 (age 13 or 14 years) and corresponds 
to the second year of lower pre-university education. Since in the next year students decide 
whether to choose physics or not, grade 8 is regarded as crucial for potential physics students. 
Physics is introduced through a strong context-concept approach (Turşucu et al., 2018c) 
where students start with basic quantities such as force and length. The number of formulas 
is negligible, so students hardly apply algebraic skills to manipulate formulas. This changes 
slightly in the next year, but the number of formulas is still very limited, and the required 
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level of algebraic skills is low. After the transition to senior pre-university education in grade 
10, the level of algebraic skills changes significantly (Turşucu et al., 2017).  

Physics formulas are algebraic representations of proportionalities, consisting of two or 
more variables representing real, measurable quantities. Most formulas express proportion-
ality. They involve only products, quotients and powers, but no sums or differences (Drijvers 
et al., 2011). For instance, the formula for kinetic energy 𝐸𝐸𝐸𝐸kin. = 1

2
∙ 𝑚𝑚𝑚𝑚 𝑚 (𝑣𝑣𝑣𝑣final)2 is propor-

tional to (𝑣𝑣𝑣𝑣final)2 and that of an enclosed ideal gas 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇

= 𝐶𝐶𝐶𝐶 is inversely proportional to 𝑇𝑇𝑇𝑇. 
Although proportionalities are of major importance in physics, these are insufficiently ad-
dressed in mathematics. This may have consequences for students perceiving coherence 
across mathematics and physics subjects and transfer.  

The formulas are described in the physics curriculum (“Netherlands institute for curri- 
culum development”, 2019). This also holds for the algebraic skills needed to solve these 
formulas. The latter can also be found in BINAS, the natural sciences information booklet. 
Students use it in tests and the national final physics examination.  

According to the physics curriculum, students should be able to derive formulas, for 

example, the derivation of Keplers’ law 𝐺𝐺𝐺𝐺 𝐺 𝑀𝑀𝑀𝑀
4∙𝜋𝜋𝜋𝜋2

= 𝑠𝑠𝑠𝑠3

𝑇𝑇𝑇𝑇2
, straighten algebraic curves such as the 

period of a pendulum 𝑇𝑇𝑇𝑇 = 𝐶𝐶𝐶𝐶 𝐶 √𝑙𝑙𝑙𝑙 and conduct dimensional analysis, for example, proving 
that [𝑟𝑟𝑟𝑟] in the attractive gravitational force 𝐹𝐹𝐹𝐹𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
 has the unit 𝑚𝑚𝑚𝑚. Over the

last few years, such algebraic physics problems have become more important in the upper 
secondary education physics program. Moreover, these problems require mathematically cor-
rect solutions where algebraic expertise include procedural fluency and having a gestalt view 
on algebraic expressions and dealing with their visual salience by means of local salience and 
pattern salience of algebraic expressions.  

6.2.5 Closer Look at Algebraic Expertise 

The spectrum of algebraic expertise extends from basic algebraic skills to symbol sense and 
is shown in figure 3 in chapter 1 (Arcavi, 1994; Turşucu et al., 2018c; Drijvers et al., 2011). 
While symbol sense deals with strategic work with a global focus and emphasis on algebraic 
reasoning, basic algebraic skills are concerned with procedural work with a local focus and 
algebraic calculation. Algebraic reasoning deals, among other techniques, with extreme cases 
and symmetry considerations.  

Demonstration of a global focus deals with recognizing patterns in formulas. In this 
study, strategic work refers to a physics student being in control of her work during algebraic 
problem solving. The student seeks for a different systematic approach when a strategy is 
insufficient. Our focus is on the intertwinement between local and global, and procedural and 
strategic work.  

A key issue in algebraic problem-solving is how dealing with basic algebraic skills and 
insight into teaching practice should look like. Should teachers put emphasis on basic skills 
or insight, or think about some kind of hybrid state? Indeed, these questions are very relevant 
(Schoenfeld, 2016) and lie at the heart of ‘Math Wars’, i.e. a long-standing debate about the 
best way to acquire algebraic expertise. This discussion resulted in clashing ideas about 
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insufficient. Our focus is on the intertwinement between local and global, and procedural and 
strategic work.  
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insight into teaching practice should look like. Should teachers put emphasis on basic skills 
or insight, or think about some kind of hybrid state? Indeed, these questions are very relevant 
(Schoenfeld, 2016) and lie at the heart of ‘Math Wars’, i.e. a long-standing debate about the 
best way to acquire algebraic expertise. This discussion resulted in clashing ideas about 
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curricula, textbooks and classroom practice. During the past few years there has been a shift 
towards teaching basic skills and insightful learning through an integrated approach (Turşucu 
et al., 2018c; Rittle-Johnson, Schneider & Star, 2015): “Without insight, there is no skill, and 
without skill, there is no insight” (Drijvers, 2011, p.141), indicating that their relationship is bidi-
rectional and continuous. We adopt this view on algebraic expertise. For classroom practice, 
such view on algebraic expertise may have consequences for teaching algebraic skills in both 
subjects. Mathematics teachers introducing the equation 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏2 may provide context and 
meaning by referring to the analogous formula for kinetic energy in physics 𝐸𝐸𝐸𝐸kin. = 1

2
∙ 𝑚𝑚𝑚𝑚 𝑚

(𝑣𝑣𝑣𝑣)2. Physics teachers may do the opposite which can be considered as activation of prior 
mathematical knowledge. Earlier studies on learning and instruction have shown that activa-
tion of pre-knowledge may contribute to better students’ achievements (e.g., Hailikari, 
Katajavuori, & Lindblom-Ylanne, 2008; Roorda, 2012). When solving for 𝑣𝑣𝑣𝑣 in 𝐸𝐸𝐸𝐸kin. = 1

2
∙

𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚 2, physics teachers should use the same pedagogical approach learned in mathematics 
class, i.e. when solving for 𝑥𝑥𝑥𝑥 in 𝑦𝑦𝑦𝑦 = 𝑏𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏2. While students should be skillful in basic opera-
tions such as isolation of 𝑥𝑥𝑥𝑥2and 𝑣𝑣𝑣𝑣2, they should also understand and be able to explain the 
mathematics behind these operations.  

6.2.6 Systematic Algebraic Approach vs. Ad Hoc Approach 

This study distinguishes between using ‘ad hoc strategies’ and applying ‘systematic algebraic 
strategies’ that includes applying algebraic skills with insight as described in the mathematics 
curriculum (SLO, 2019).  

For stylistic reasons we use systematic algebraic strategies and systematic algebraic ap-
proach interchangeably to denote the same. This also holds for ‘ad hoc strategies’ and ‘ad 
hoc approach’. With systematic algebraic approach we refer to a “rule-based problem-solving ap-
proach in which algebraic skills are used with insight, where ‘rule’ refers to the standard rules for multiplication 
and division of powers, such as 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎 ∙𝑥𝑥𝑥𝑥 𝑏𝑏𝑏𝑏 = 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, which play the role of algebraic axioms in high school 
algebra” (Turşucu et al., 2018c, p. 5). With ad hoc strategies we refer to “mathematical strategies 
that are not based on standard algebraic rules with insight, and only work for a specific case that may lead to 
fragmented knowledge, impeding generalization of algebra”. Even though such strategies may be use-
ful as initial steps or even lead to correct solutions (Roorda, 2012), in general students may 
get stuck in more sophisticated problems requiring insight. Moreover, students may become 
dependent on an authority such as a teacher telling them whether an approach is algebraically 
correct or not. So, ad hoc approaches may be harmful for students’ transfer of mathematics 
in physics, mainly because students lack insight into algebraic skills. Other examples of ad 
hoc strategies are guessing a solution for a problem and then working backwards or the 
application of mnemonics such as the formula triangles.  

In this study, applying algebraic skills with insight systematically becomes visible using 
algebraic techniques during procedures involving basic algebraic skills and those involving 
symbol sense behaviour. The latter implies having a gestalt view on algebraic expressions and 
handling in a suitable way with their local and pattern salience. In short, using systematic 
algebraic strategies are associated with applying algebraic skills systematically and correctly. 
In addition, as in the previous section, our working definition of the word successful in the title 
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of this dissertation refers to using systematic algebraic strategies during algebraic problem-
solving in physics textbooks. Such strategies are operationalized by measuring the extent to 
which students demonstrate symbol sense behavior and the degree to which they use basic 
algebraic skills correctly. We assume that students learned these algebraic skills in mathemat-
ics class from their teachers who strictly follow their mathematics textbooks (SLO, 2019).  

6.3 Methodology 

6.3.1 Selection Criteria for Students 

In this explorative qualitative study with a quantitative component we aimed to gain deeper 
understanding in students’ symbol sense behavior, and to investigate whether shift-problems 
designed to activate prior mathematical knowledge can improve students’ problem-solving 
in physics for which solution algebraic skills are needed.  

We used convenience sampling (Bryman, 2015) to find one physics teacher together with 
three students who were available and willing to participate in this study. Next, we used the 
‘Physics Teachers’ Interview Protocol’ that is presented in the first section of the appendix 
to interview the teacher and select appropriate physics students. During the pilot-phase prior 
to this study, this protocol was tested on different teachers and social scientists and rede-
signed several times until the authors agreed on appropriate length and clearness. Selection 
of students were based on a sufficient mathematics grade and an insufficient physics grade 
for which the physics teacher used ‘Magister’, a secondary education student monitoring sys-
tem (‘accounts.magister.net’, 2018). According to the Dutch ten-point grading system, a stu-
dent’ grade is insufficient if her grade is less than 5.5. This grade criterion indicates that 
students’ difficulties with algebraic physics problems were mainly because of insufficient ap-
plication of algebraic skills in physics, and not related to a lack of basic mathematical skills.  
 We also took into account that the students should have a similar knowledge domain at 
the start of these interviews. Otherwise, it would not have been legitimate to compare their 
individual performances. Because of these strong selection criteria, we only found one school 
satisfying them that yielded the anonymized grade 10 physics students Clare, Mary and Sam 
(the only male student in this study). These students all followed mathematics and used the 
mathematics textbook Getal en Ruimte (Reichard et al., 2014) and the physics textbook Natu-
urkunde Overal (Sonneveld et al., 2014). Furthermore, as can be seen in table 1, their mathe-
matics grade is ranging from 6.8 up to 7.9 and their physics grade from 4.8 up to 5.9. Alt-
hough Sam’s 5.9 did not perfectly meet our requirement, we selected this student. In the last 
section we elaborate on this matter and legitimize our choice. 

Table 1. Students’ mathematics and physics grades 

Clare Mary Sam  
Grade physics  5.0 4.8 5.9 
Grade mathematics  6.9 6.8 7.9 

6.3 Methodology
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6.3.2 Design of Shift-problems  

As mentioned above, the students were asked to solve the tasks about algebraic physics prob-
lems in two rounds: first, as they appeared in the physics textbook (Ottink et al., 2014), and 
after two weeks in the second round as shift problems (Palha, Dekker, Gravemeijer, & van 
Hout-Wolters, 2013). The design of shift problems was based on the iterative 3D-principle 
in which the interaction between, in subsequent order, the teacher (D1), the resources (text-
books) (D2) and the students (D3) is described. D1 starts with a learning objective of the 
teacher, i.e. in this study the improvement of symbol sense behavior, especially the transfer 
of algebraic skills including algebraic techniques from mathematics to physics for solving 
algebraic physics problems. Therefore, the tasks should trigger students problem-solving and 
provide insight into their algebraic expertise with basic algebraic skills and symbol sense be-
havior. Based on these criteria, in D2 we selected the algebraic physics problems ‘Task 1: 
Specific heat capacity’, ‘Task 2: Thermal resistance’ and ‘Task 3: Charged particles’ from the physics 
textbook SysNat (Ottink et al., 2014). These tasks are described in symbolic representations 
(Goldin, 2000) and focus on algebraic manipulations. During a pilot-phase these problems 
were solved by other grade 10 students who did not participate in this study. This offered us 
information about clearness, length and usability, i.e. that these tasks were doable by students. 
Afterwards, some of the tasks were adjusted considering these issues. This resulted in ‘The 
Tasks’ containing the three algebraic physics problems above which are presented in the 
second subsection of the appendix. Next, we imagined a hypothetical learning trajectory (Ar-
thur Bakker, 2004) by predicting how students will react when solving these problems. For 
instance, we expected students to apply the ad hoc strategies. In D3, they were videotaped 
while solving these tasks thinking aloud (Charters, 2003).  

As to D1’ where the apostrophe refers to the second cycle of the 3D-principle, students’ 
work of D3 was analyzed to add refinements to the tasks. We also used insights from the 
study in which we examined symbol sense behavior (Turşucu et al., 2018c). Pivotal was that 
students should avoid the application of transfer impeding ad hoc approaches. Instead, these 
refinements should focus and trigger the application of systematic algebraic strategies with 
insight. Next, we examined how algebraic techniques are used in the mathematics textbook 
Getal en Ruimte (Reichard et al., 2014) to provide similar pedagogical approaches to students 
that they learned in their mathematics textbook. In D2’ these principles were used to design 
algebraic hints for the tasks aiming at activation of prior mathematical knowledge that we 
refer to as ‘Activation Hint’. We also designed a ‘Strategic hint’ providing information about 
how to start a task. The ‘Activation hint’ together with the ‘Strategic hint’ we called systematic 
hints. The tasks as they appeared in the physics textbook including these systematic hints 
form shift-problems.  

Immediately before starting with shift-problems, students were introduced by an exem-
plary task explaining how systematic hints are used. Both the introductory task and shift 
problems are presented in the fourth subsection ‘Shift-problems’ of the appendix. The sys-
tematic hints are summarized below.  

Concerning ‘Strategic hints’ we demonstrated through a systematic algebraic approach 

how to go from 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 to 𝑎𝑎𝑎𝑎 = 𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏
 in task 1, and from 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎

𝒄𝒄𝒄𝒄
𝒅𝒅𝒅𝒅

 to 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝒄𝒄𝒄𝒄

 in task 2a; that if 
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𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 and 𝑧𝑧𝑧𝑧 = 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏, then 𝑦𝑦𝑦𝑦 = 𝑧𝑧𝑧𝑧 for task 2b, and how to go from 𝑦𝑦𝑦𝑦 = 𝒂𝒂𝒂𝒂
𝑏𝑏𝑏𝑏
 to 𝑎𝑎𝑎𝑎 = 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 for task 

3. Regarding ‘Activation hints’ we asked first to solve for 𝑐𝑐𝑐𝑐, then to apply the [ ]-operator
that is used to determine the units of quantities. So, the [ ]-operator is applied to 𝑐𝑐𝑐𝑐, i.e. re-
placing 𝑐𝑐𝑐𝑐 by [𝑐𝑐𝑐𝑐] and the other quantities by their units for task 1; analogously application of
the [ ]-operator to 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in task 2a; to rewrite 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to 1/𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 for task 2b, and to first
to solve for 𝑓𝑓𝑓𝑓 and then to apply the [ ]-operator to 𝑓𝑓𝑓𝑓. We note that the [ ]-operator refers to
the unit-operator that is used for dimensional analysis. Moreover, Dutch physics textbooks
use this type of notation.

In D3’, two weeks after D3, again while being videotaped students solved these shift-
problems after being introduced to these tasks by an example explaining how systematic 
hints are applied. Their work in both D3 and D3’ was analyzed with regard to the extent to 
which they demonstrated symbol sense behavior and the degree to which they used basic 
algebraic skills correctly. To distinguish between D3 and D3’ we refer to D3 as the ‘first 
round’ and to D3’ as the ‘second round’. In short, during the first round the tasks were 
presented as they appeared in their physics textbook without guidance. Next, in the second 
round we offered a ‘Strategic hint’ for how to start with the task, and an ‘Activation hint’ to 
activate prior mathematical knowledge in the sense that algebraic techniques were applied in 
a similar way as in their mathematics textbook.  

Furthermore, the students were only interrupted if they remained silent for a while or 
when a procedure or a reasoning was not clear enough. Stimulated recall techniques were 
used (Geiger, Muir & Lamb, 2016) to get as much information as possible on students’ work. 
If needed, students were given small hints.  

Design of students’ task-based interviews (TBIs) 
The algebraic problem-solving activities in this study took place during interviews conducted 
by an independent researcher. Such interviews guided by a protocol are called task-based 
interviews (TBIs) (Maher & Sigley, 2014). In this study, the TBIs were designed in such a 
way that the students only had interaction with the tasks and the interviewer. Therefore, they 
were conducted by the independent researcher in an appropriate, quiet place. Each of these 
TBIs lasted approximately half an hour. The interview protocol consisted of two parts. Dur-
ing the design process in the pilot phase, we took into account that the instructions were 
clear and that the non-participating students above could easily work with it. Based on their 
feedback, some parts of this protocol were adjusted, resulting in the ‘Interview Protocol 
Physics Students’ that is displayed in the fifth subsection of the appendix. In the first part of 
our protocol students were asked questions about their background, the textbooks they used, 
and their mathematics and physics grades were double checked. In the second part they were 
guided by the protocol to solve ‘The Tasks’. We note that the same protocol was also used 
to solve shift-problems. The interviewer only interrupted when the student remained silent 
for one minute or a procedure or reasoning was not clear enough. Stimulated recall tech-
niques (Geiger, Muir & Lamb, 2016) were used to get as much information as possible on 
the students’ work. For those who got stuck and could not continue or asked for help, we 
provided small hints.  
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Historically, TBIs have their origin in clinical interviews that were used to gain deeper 
insight into students’ cognitive development (Piaget, 1954). Such clinical interviews are re-
garded as qualitative studies (Powell, Francisco & Maher, 2003; Turşucu et al., 2018c). Hence, 
conducting TBIs to gain deeper understanding of students’ symbol sense behavior during 
algebraic problem-solving can also be considered as qualitative research. Furthermore, the 
quantitative component of our qualitative study follows from the quantization of basic alge-
braic skills and symbol sense behavior which is used to compare students’ individual perfor-
mance and will be discussed in the following subsections. 

6.3.3 Data Analysis 

Analysis of videotaped data 
We used the seven phases of Powell, Francisco & Maher (2003) to analyze videotaped data 
that do not require a rigid order. In ‘phase 1’ we obtained a first and general understanding 
of how students solved the tasks. Next, interesting and relevant findings were identified. The 
description of the videotaped data in ‘Phase 2’ was less important, since detailed information 
about the audio part of videotaped data was already transcribed verbatim in ‘Phase 4’, for 
which the students gave consent. In ‘Phase 3’ we identified critical events such as ad hoc 
strategies, the application of algebraic techniques and other relevant information during 
problem-solving requiring mathematical motivation. These are described in ‘phase 5’ where 
we operationalized our research question using the coding scheme (spread sheet) in table 2.  

The coding process was based on the students’ written solution set to both ‘The Tasks’ 
and ‘Shift-problems’, the transcripts of the audio part of videotaped data and to some extent 
on the analysis of videotaped episodes. Students’ written work of round one and two were 
compared to the ‘Systematic Solution Set’ (solution set in short) in the third subsection of 
the Appendix and coded using table 2. This means that students’ work was assigned to scores 
to gain insight into their algebraic problem-solving skills for each round and to determine to 
which extent shift-problems improved the extent to which they demonstrated symbol sense 
behavior and the degree to which they used basic algebraic skills correctly. For instance, to 
solve ‘Task 1: specific heat capacity’ in the appendix systematically and with insight, the first 
procedure requires division of both sides of 𝑄𝑄𝑄𝑄 = 𝑚𝑚𝑚𝑚 𝑚 [𝑐𝑐𝑐𝑐] ∙ ∆𝑇𝑇𝑇𝑇 by 𝑚𝑚𝑚𝑚, yielding 𝑄𝑄𝑄𝑄

𝑚𝑚𝑚𝑚
= [𝑐𝑐𝑐𝑐] ∙ ∆𝑇𝑇𝑇𝑇. 

Since 𝑚𝑚𝑚𝑚𝑚[𝑠𝑠𝑠𝑠]∙∆𝑇𝑇𝑇𝑇
𝑚𝑚𝑚𝑚

 is equivalent to [𝑐𝑐𝑐𝑐] ∙ ∆𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇   −1, this procedure may require sensitivity to-
wards the exponent −1 in 𝑚𝑚𝑚𝑚−1 and is associated with the symbol sense type local salience. 

Students may use other strategies, for example, cancellation of the masses in 𝑚𝑚𝑚𝑚𝑚[𝑠𝑠𝑠𝑠]∙∆𝑇𝑇𝑇𝑇
𝑚𝑚𝑚𝑚

. Such 
correct mathematical procedures do not affect scores, neither does interchanging procedures.  

Table 2. Coding scheme to analyze students’ symbol sense behavior   

Time Task Algebraic techniques Ad hoc strategies Trigger 
… 1 … … … 
… 2 … … … 
… 3 … … … 
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The coding process 
The observation of critical events during coding was reported in the first column ‘Time’ of 
table 2. The entries of ‘Task’ represent the tasks in both the first and the second round. 
Contrary to the columns ‘Time’, ‘Task’ and ‘Ad hoc strategies’, the remaining columns con-
sist of drop-down boxes, each having different options. Concerning ‘Algebraic Techniques’, 
students’ algebraic technique during a procedure anchored the selection (coding) of one of 
the options ‘multiplication of both sides’, ‘division of both sides’, ‘substitution’ and ‘inverting 
both sides’ in the spreadsheet. If the student used ad hoc approaches instead of systematic 
algebraic strategies, the details were described in ‘Ad hoc strategies’. The column ‘Trigger’ 
involved the options ‘positive’, ‘negative’ or ‘missed opportunity’. For appropriate proce-
dures, this was coded either ‘positive’ with score ‘1’ indicating a flawless procedure, or an 
incorrect ‘negative’ procedure with score ‘0.5’. The student who used ad hoc strategies or 
overlooked a required procedure, corresponds to the third scenario ‘Missed opportunity’ 
with score ‘0’. As a result, these scores led to SSB (%) per task. In addition, the overall symbol 

sense behavior percentage for all tasks, i.e. OSSB (%) = sum of all sub task scores
11

∙ 100 %,

and OBAS (%) =  sum of all sub task scores requiring BAS only
4 

∙ 100 % the overall basic alge-
braic skills percentage for all tasks were calculated. Each of the numbers ‘11’ in OSSB (%) 
and ‘4’ in OBAS (%) are the sum of respectively eleven procedures involving local salience, 
pattern salience, and basic algebraic skills, and ‘five’ basic algebraic skills procedures. This 
implies that a flawless performance in both cases yields the maximum score of 11 for OSSB 
(%) and the maximum score of 5 for OBAS (%).  

Furthermore, a student was considered procedurally fluent when OBAS (%) ≥ 75 % (3 
out of 4 points). OSSB (%) was sufficient if OSSB (%) ≥ 72.7 % (8 out of 11 points).  

Based on these criteria, successful application of systematic algebraic strategies and thus of 
algebraic skills corresponds to OBAS (%) ≥ 75 % (the criterion for applying basic algebraic 
skills successfully) and OSSB (%) ≥ 72.7 % (the criterion for successful demonstration of 
symbol sense behaviour).  

6.3.4 Towards Common Findings 

Regarding ‘phase 6’ (constructing storyline), in subsequent order we identified the ad hoc 
strategies in both rounds, students’ SSB (%) per task, OBAS (%) and finally OSSB (%). Next, 
during ‘phase 7’ (composing narrative), the findings from ‘phase 6’, students’ written solution 
set and the transcripts were merged into common findings.  

With respect to reliability (Bryman, 2015), the first and second author independently 
crosschecked their results. They found an overlap of approximately 90 %. After discussing 
the remaining 10 %, some adjustments were made which led to 100% agreement among 
them. 
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The coding process 
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(%) and the maximum score of 5 for OBAS (%).  

Furthermore, a student was considered procedurally fluent when OBAS (%) ≥ 75 % (3 
out of 4 points). OSSB (%) was sufficient if OSSB (%) ≥ 72.7 % (8 out of 11 points).  

Based on these criteria, successful application of systematic algebraic strategies and thus of 
algebraic skills corresponds to OBAS (%) ≥ 75 % (the criterion for applying basic algebraic 
skills successfully) and OSSB (%) ≥ 72.7 % (the criterion for successful demonstration of 
symbol sense behaviour).  

6.3.4 Towards Common Findings 

Regarding ‘phase 6’ (constructing storyline), in subsequent order we identified the ad hoc 
strategies in both rounds, students’ SSB (%) per task, OBAS (%) and finally OSSB (%). Next, 
during ‘phase 7’ (composing narrative), the findings from ‘phase 6’, students’ written solution 
set and the transcripts were merged into common findings.  

With respect to reliability (Bryman, 2015), the first and second author independently 
crosschecked their results. They found an overlap of approximately 90 %. After discussing 
the remaining 10 %, some adjustments were made which led to 100% agreement among 
them. 
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6.4 Results 

In this section we used the term ‘hint’ to denote hints provided in the first and second round 
by the independent researcher to help students proceed when they got stuck. So, these hints 
were not part of the systematic hints. Furthermore, we especially examined tasks for which 
students maximized their score to 100 % in the second round using systematic hints. In case 
of two or more of such maximum scores, we only discussed the task that provided the most 
relevant information. 

6.4.1 Clare  

Clare is a female student with a 5.0 for mathematics and a 6.9 for physics. In round one, she 
faced serious difficulties with task 2b and 3 where she used the ad hoc approach swapping 
strategy. She only used one hint for task 1. In round two, Clare did not use any hints. 

Below in table 3 we show her symbol sense behavior characteristics for both rounds. The 
second (1) up to the fifth column (3) of the first row each represent a task in round one; the 
sixth (1’) up to the ninth column (3’) of the first row each represent a task in round two. To 
distinguish between both rounds, in round two we used apostrophes next to the 
tasknumbers. ‘Missed opportunity’, the first column of the second row demonstrates the 
sum of how many procedures per task she used ad hoc strategies (and) or made no attempt 
to solve the task.  

Table 3. Symbol sense behavior characteristics of Clare per task in both rounds 

 1 2a 2b 3 1’ 2a’ 2b’ 3’ 
Missed opportunity 2 - 2 3 2 - 1 - 
Negative score - 0.5 - - - - - - 
Positive score 1 1 - 1 1 2 1 4 
Task max. score 3 2 2 4 3 2 2 4 
SSB (%) 33.3 75.0 0 25.0 33.3 100.0 50.0 100.0 
 

The entry ‘Task max. score’, i.e. the fifth row of the first column gives the maximum 
score of a task. For instance, regarding task 2a in round one, Clare’s ‘Missed opportunity’ 
equals 0; she has one correct procedure with positive score ‘1’ and one that is incorrect with 
negative score ‘0.5’. Overall, her total number of ‘Missed opportunity’ for round one is seven 
and consists of five overlooked procedures (four local salience and one pattern salience pro-
cedure). In the second round this number is reduced to three including two local salience 
and one pattern salience procedure. For many overlooked procedures she performed alge-
braic manipulation ‘by head’ without writing them on paper. This makes it very difficult to 
decipher the underlying mechanisms of such procedures. Despite this, we calculated the per-
centage of her total number of ‘Missed opportunity’ in round one corresponding to 63.6 % 
of the perfect score. For round two, this number was 27.3%, implying that Clare significantly 
reduced the number of overlooked procedures in round two without using ad hoc ap-
proaches. Her lowest SSB (%) is 0 % for task 2b and 25.0% for taks 3 in round one, and 
33.3% for taks 1’ in round two. Her highest SSB (%) corresponds to 75.0% for task 2a in 

6.4 Results
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round one, and to 100% for both tasks 2a’ and 3’ in round two. For the latter two tasks, 
Clare used flawless procedures involving basic algebraic skills and local salience procedures. 
Her OBAS (%) improved from 3.5

4
∙ 100 % = 87.5 % in the first round to 100.0 % in the

second round. Thus, her OBAS (%) is sufficient. Conerning her OSSB (%) over both rounds, 
this improved from 3.5

11
∙ 100 % = 31.8 % to 72.7 %. The latter implies that Clare’s symbol 

sense behavior is sufficient. Indeed, she nicely adopted the provided systematic hints for 
both tasks 2a’ and 3’, and demonstrated sensitivity towards local salience and pattern salience 
of expressions. Even though she struggled with task 2b that only contains pattern salience 
procedures, her score slightly increased from 0 % to 50 %.  

In the first round Clare was successful in applying basic algebraic skills (OBAS (%) = 
87.5 % ≥ 75.0 %) but unsuccessful in demonstration of symbol sense behaviour (OSSB (%) 
= 31.8 % ≤ 72.7 %). In the second round, she was successful in both aspects of algebraic 
skills (OBAS (%) = 100.0 % and OSSB (%) = 72.7 % ≥ 72.7 %). Therefore, she successfully 
transferred algebraic skills that she has learned in mathematics class to physics class.   

For task 3, Clare maximized her SSB (%) and went from 25% to 100% in the second 
round. This is depicted in table 4 that gives insight into how she applied the swapping strategy 
in the first round. In line 2 Clare swapped the whole term 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟

𝑠𝑠𝑠𝑠2
 in the denominator of 𝑓𝑓𝑓𝑓 = 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄
𝑟𝑟𝑟𝑟2

into 𝑓𝑓𝑓𝑓 = 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠2

𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟
, but did not understand why this step was mathematically legitimate. Even 

though her solution for this problem yields the correct answer, Clare’s procedure lacked a 
rule-based problem-solving approach in which algebraic skills were used with insight. Re-
markably, she used the same approach for task 2b where she mentioned: “Bottom one goes to 
top, middle one remains”. It turned out that her mathematics teacher taught her how to swap 

such terms. In the second round, again after swapping 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠2

 in 𝑓𝑓𝑓𝑓 = 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄
𝑟𝑟𝑟𝑟2

she writes 𝑓𝑓𝑓𝑓 = 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠2

𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟
. 

Next, Clare paused for longer than one minute after which the interviewer interrupted. Then, 
as can be seen in line 4’, she decided to multiply both sides with 𝑟𝑟𝑟𝑟2. She explained that both 

sides of the equals sign should be divided by 𝑄𝑄𝑄𝑄 𝑄 𝑄𝑄𝑄𝑄 yielding 𝑓𝑓𝑓𝑓 = 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠2

𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟
. Clare noticed that she 

got the same answer as in the begin of round 2, but that the swapping approach was much 
easier to use: “I also divided here by swapping this term and that was much easier for me. I did not really 
used these [systematic] hints. With these hints, it takes much more time to solve this question”. Neverthe-
less, she correctly adopted the systematic hints of task 3.  
 Overall, by adopting the systematic hints in the second round in an appropriate way, 
Clare converted her lower scores for the high number of ‘Missed opportunity’ into positive 
scores. The [ ]-operator was applied flawlessly in all questions. She mentioned that the ‘Ac-
tivation hints’ of task 2a and 3 were very useful. To a less extent this also holds for task 1. 
Despite this, she mentioned that ‘her way’ of problem-solving including the swapping strat-
egy and algebraic manipulation by memory was easier and quicker to perform. However, 
Clare did not understand that the systematic hints she applied in the second round helped 
her to prevent making errors and finishing the problems successfully. This may change when 
Clare becomes aware of the benefits of such hints, for example, when algebraic manipula-
tions in the next years of senior pre-university education become more difficult. Thus, it is 
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round one, and to 100% for both tasks 2a’ and 3’ in round two. For the latter two tasks, 
Clare used flawless procedures involving basic algebraic skills and local salience procedures. 
Her OBAS (%) improved from 3.5

4
∙ 100 % = 87.5 % in the first round to 100.0 % in the

second round. Thus, her OBAS (%) is sufficient. Conerning her OSSB (%) over both rounds, 
this improved from 3.5

11
∙ 100 % = 31.8 % to 72.7 %. The latter implies that Clare’s symbol 

sense behavior is sufficient. Indeed, she nicely adopted the provided systematic hints for 
both tasks 2a’ and 3’, and demonstrated sensitivity towards local salience and pattern salience 
of expressions. Even though she struggled with task 2b that only contains pattern salience 
procedures, her score slightly increased from 0 % to 50 %.  

In the first round Clare was successful in applying basic algebraic skills (OBAS (%) = 
87.5 % ≥ 75.0 %) but unsuccessful in demonstration of symbol sense behaviour (OSSB (%) 
= 31.8 % ≤ 72.7 %). In the second round, she was successful in both aspects of algebraic 
skills (OBAS (%) = 100.0 % and OSSB (%) = 72.7 % ≥ 72.7 %). Therefore, she successfully 
transferred algebraic skills that she has learned in mathematics class to physics class.   

For task 3, Clare maximized her SSB (%) and went from 25% to 100% in the second 
round. This is depicted in table 4 that gives insight into how she applied the swapping strategy 
in the first round. In line 2 Clare swapped the whole term 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟
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, but did not understand why this step was mathematically legitimate. Even 

though her solution for this problem yields the correct answer, Clare’s procedure lacked a 
rule-based problem-solving approach in which algebraic skills were used with insight. Re-
markably, she used the same approach for task 2b where she mentioned: “Bottom one goes to 
top, middle one remains”. It turned out that her mathematics teacher taught her how to swap 

such terms. In the second round, again after swapping 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠2
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𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄
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𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟
. 

Next, Clare paused for longer than one minute after which the interviewer interrupted. Then, 
as can be seen in line 4’, she decided to multiply both sides with 𝑟𝑟𝑟𝑟2. She explained that both 

sides of the equals sign should be divided by 𝑄𝑄𝑄𝑄 𝑄 𝑄𝑄𝑄𝑄 yielding 𝑓𝑓𝑓𝑓 = 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠2

𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟
. Clare noticed that she 

got the same answer as in the begin of round 2, but that the swapping approach was much 
easier to use: “I also divided here by swapping this term and that was much easier for me. I did not really 
used these [systematic] hints. With these hints, it takes much more time to solve this question”. Neverthe-
less, she correctly adopted the systematic hints of task 3.  
 Overall, by adopting the systematic hints in the second round in an appropriate way, 
Clare converted her lower scores for the high number of ‘Missed opportunity’ into positive 
scores. The [ ]-operator was applied flawlessly in all questions. She mentioned that the ‘Ac-
tivation hints’ of task 2a and 3 were very useful. To a less extent this also holds for task 1. 
Despite this, she mentioned that ‘her way’ of problem-solving including the swapping strat-
egy and algebraic manipulation by memory was easier and quicker to perform. However, 
Clare did not understand that the systematic hints she applied in the second round helped 
her to prevent making errors and finishing the problems successfully. This may change when 
Clare becomes aware of the benefits of such hints, for example, when algebraic manipula-
tions in the next years of senior pre-university education become more difficult. Thus, it is 
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worthwhile to show and make her aware of the importance and effectiveness of using sys-
tematic hints.  

Table 4. Clare’s solutions for task 3 in both rounds 

Round 1: SSB (%) = 25.0 % Round 2: SSB (%) = 100.0 % 

 

 

 

6.4.2 Mary  

Mary is a female student with a 4.8 for mathematics and a 6.8 for physics. In round one, she 
struggled with task 1 and 3 for which she used the numbering strategy. She only used a hint 
for task 2a. In round two, Mary did not ask for hints. 

Her symbol sense behavior characteristics for both rounds are displayed in table 5. Mary’s 
total number of ‘Missed opportunity’ in the first round was seven including two overlooked 
pattern salience procedures and five local salience procedures for which she used the num-
bering strategy. In round two, she reduced this total number to three, by applying the num-
bering strategy for local salience procedures three times. Because she reduced the number of 
ad hoc approaches and even did not overlook procedures in round two, the percentage of 
her total number of ‘Missed opportunity’ dropped from 63.6 % for the first round to 27.3 % 
for the second. These scores are quite similar to that of Clare. Mary’s lowest SSB (%) is 0 % 
for task 2b and 3 in round one (identical to Clare), and highest for task 2a. While her score 
for task 3 remained the same in round 2, task 2b and 3 increased to the maximum score 
where she adopted the systematic hints appropriately. For task 3 and 3’ she used the num-
bering strategy for identical procedures, remarkably avoiding all systematic hints. Mary’s 
OBAS (%) was already 100.0 % in the first round, and did not change in the second. There-
fore, she has a perfect grasp of basic algebraic skills. Her OSSB (%) improved from 36.4 % 
to 72.7 % in the second round. Mary’s similar scores for the tasks in round two yielded the 

Line 4’ 

Line 2 
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same OSSB (%) as Clare. Based on this result, Mary has sufficient symbol sense behavior. 
Her OSSB (%) would have even been higher if she avoided the application of ad hoc strate-
gies in task 3’. In summary, in the first round Mary was successful in applying basic algebraic 
skills (OBAS (%) = 100.0 %) but unsuccessful in demonstration of symbol sense behaviour 
(OSSB (%) = 36.4 % ≤ 72.7 %). In the second round, she was successful in both aspects of 
algebraic skills (OBAS (%) = 100.0 % ≥ 75.0 % and OSSB (%) = 72.7 % ≥ 72.7 %). There-
fore, she successfully transferred algebraic skills that she has learned in mathematics class to 
physics class.   

Table 5. Symbol sense behavior characteristics of Mary per task in both rounds 

1 2a 2b 3 1’ 2a’ 2b’ 3’ 
Missed opportunity 2 - 2 3 - - - 3 
Negative score - - - - - - - - 
Positive score 1 2 - 1 3 2 2 1 
Task max. Score 3 2 2 4 3 2 2 4 
SSB (%) 33.3 100.0 0 25.0 100.0 100.0 100.0 25.0 

 In table 6 below, we depicted Mary’s solutions for task 1 where she increased her SSB 
(%) from 33.3 % to the perfect score. In round one she wrote the correct solution that was 
based on the numbering strategy. As can be seen in line 2, Mary first substituted the units of 
the expression 𝐽𝐽𝐽𝐽 = 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔 ∙?∙ °𝐶𝐶𝐶𝐶 into numbers resulting in 8 = 2 ∙ 2 ∙ 2. Since the task is to solve 
for 𝑐𝑐𝑐𝑐 and 𝑐𝑐𝑐𝑐 = 2, she solved for 2 in the numerical expression yielding 2 = 8

2∙2
. Then, she re-

substituted units for numbers giving her the correct expression 𝑐𝑐𝑐𝑐 = 𝐽𝐽𝐽𝐽
𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠∙°𝐶𝐶𝐶𝐶

: “Yes, if you for ex-

ample take 8, that is 2 times 2 times 2 and 2 = 8 divided by 2 times 2, because that is 8 divided by 4, 
and 8 divided by 4 is 2. So, yes, I think this is the solution ”. 

In the second round, she started with the problem after carefully reading the systematic 
hints and divides both sides of 𝑄𝑄𝑄𝑄 = 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚   𝑚𝑚𝑚𝑚𝑚 by 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚 (line 2’), and correctly wrote the 
solution: “First, I’m going solve for 𝑐𝑐𝑐𝑐. Then, I’m going to divide through 𝑚𝑚𝑚𝑚 and ∆𝑇𝑇𝑇𝑇. This gives 𝑐𝑐𝑐𝑐 is 𝑄𝑄𝑄𝑄 
divided by 𝑚𝑚𝑚𝑚 multiplied by ∆𝑇𝑇𝑇𝑇, and then I’m going to put 𝑐𝑐𝑐𝑐 in brackets. And then writing all units. I really 
liked these [systematic] hints”. It can be seen that she applied these hints in a well-structured 
manner. We conclude that although the solution in round one was correct, a rule-based prob-
lem-solving approach in which algebraic skills are used with insight as in the second round 
was absent.  
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same OSSB (%) as Clare. Based on this result, Mary has sufficient symbol sense behavior. 
Her OSSB (%) would have even been higher if she avoided the application of ad hoc strate-
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divided by 𝑚𝑚𝑚𝑚 multiplied by ∆𝑇𝑇𝑇𝑇, and then I’m going to put 𝑐𝑐𝑐𝑐 in brackets. And then writing all units. I really 
liked these [systematic] hints”. It can be seen that she applied these hints in a well-structured 
manner. We conclude that although the solution in round one was correct, a rule-based prob-
lem-solving approach in which algebraic skills are used with insight as in the second round 
was absent.  
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Table 6. Mary’s solutions for task 1 in both rounds  
Round 1: SSB (%) = 33.3 % Round 2: SSB (%) = 100.0 % 

 

 

 
In general, like Clare, Mary’s application of systematic hints transformed her lower scores 
for the high number of ‘Missed opportunity’ of round one into positive scores in round two. 
The [ ]-operator was used correctly in all problems. Because of these hints, Mary almost did 
not use the numbering strategy that was frequently used in the first round. She was quite 
diligent in reading the systematic hints carefully and applying them in a much more structured 
manner. Contrary to Clare, she regularly went back to systematic hints of previous problems 
to use these for other problems. Thus, she seemed to be aware of the benefits of the system-
atic hints. Consequently, the ‘Activation hint’ of task 2a was applied on task 2b and 3. She 
found the ‘Activation hints’ of task 1 and 2a very useful. This also applies for the ‘Strategic 
hint’ of task 3. When triggered just a few more times by such hints, Mary may soon make the 
wholehearted transition from ad hoc strategies to systematic algebraic problem-solving with 
insight.  

6.4.3 Sam  

Sam is the only male student in this study. His grade for mathematics is a 7.9 and for physics 
a 5.9. In round one, he faced some difficulties with questions 1 and 3, and only used a hint 
for task 3. Sam did not use hints in round two. Furthermore, for both rounds he did not use 
ad hoc approaches. 

His symbol sense behavior characteristics for both rounds are illustrated in table 7 below. 
Concerning both rounds, Sam has only one ‘Missed opportunity’ in the first where he over-
looked a local salience procedure. Consequently, the percentage of his total number of 
‘Missed opportunity’ is low, i.e. 9.1 % of the perfect score and even 0 % in round two.  

 

Table 7. Symbol sense behavior characteristics of Sam per task in both rounds 

 1 2a 2b 3 1’ 2a’ 2b’ 3’ 
Missed opportunity 1 - - - - - - 3 
Negative score - - - 1.5 - - - - 
Positive score 2 2 2 1 3 2 2 4 
Task max. Score 3 2 2 4 3 2 2 4 
SSB (%) 66.7 100.0 100.0 62.5 100.0 100.0 100.0 100.0 

Line 2 Line 2’ 
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These percentages are in contrast to those of the other students. Indeed, they used ad 
hoc strategies and overlooked procedures for many times. Sam did not use ad doc strategies. 
Together with one overlooked procedure above, this explains the discrepancy between them. 
Besides his lowest SSB (%) of 62.5 % in round one for task 3, he had the maximum score 
for taks 2a and 2b. These numbers are also in contrast with Clare and Mary who both had 
zero scores in round one. In round two, Sam even maximized task 1 and 3 by gaining the 
perfect score. Like Mary, his OBAS (%) was already 100.0 % in the first round, and did not 
change in the second. Since his symbol sense behavior characteristics were much better than 
the other students, he had also the highest OSSB (%) that improved from 77.3 % in the first 
to the perfect score in the second round. So, Sam is the only student whose basic algebraic 
skills and symbol sense behavior were already sufficient in the first round. He is also the only 
student with a perfect score for all tasks in the second round, implying the he increased his 
scores maximally. So, based on our working definition of successful in the title of this thesis, 
Sam successfully applied algebraic skills (OBAS (%) = 100.0 %) and demonstrated symbol 
sense behaviour (OSSB (%) = 77.3 % ≥ 72.7 %) in the first round. In the second round, 
beyond his perfect score for OBAS (%), he even gained the perfect score for OSSB (%). 
Therefore, he successfully transferred algebraic skills that he has learned in mathematics class 
to physics class. 
 In table 8 below, we displayed Sam’s work for task 3 where he improved his SSB (%) 
from 62.5 % to a flawless score. In the first round he correctly divided both sides of 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶 =
𝑓𝑓𝑓𝑓 𝑓 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟

𝑠𝑠𝑠𝑠2
 through 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟

𝑠𝑠𝑠𝑠2
 yielding a term with double divisions 𝑓𝑓𝑓𝑓 = 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄
𝑟𝑟𝑟𝑟2

 in line 3. Therafter, he 

intended to stop working on this task, but then proceeded when the interviewer asks him 
how to get rid of the double divisions (hint). After substituting the quantities in this formula, 
he tried to simplify this expression. Still, he was not able to get rid of those divisions. Sam 
suspects that he might cross out 𝑚𝑚𝑚𝑚2 in line 5. On the left side in line 6 he multiplies both the 

numerator and the denominator of this expression with 𝑚𝑚𝑚𝑚
2

𝑚𝑚𝑚𝑚2 . On the the right side of the 

same line, Sam divided away 𝑚𝑚𝑚𝑚2, but mentioned not being sure whether this procedure was 
correct: “I don’t know whether this is allowed. If I did it right. May be I can cross-out some terms. I don’t 
know whether it is allowed”. In fact, crossing-outs these terms was a guess, without any mathe-
matical understanding of this procedure. In the next round, he correctly divided away both 
sides of the initial formula through 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟

𝑠𝑠𝑠𝑠2
. Subsequently, he multiplied the new expression by 

𝑠𝑠𝑠𝑠2

𝑠𝑠𝑠𝑠2
and finds 𝑓𝑓𝑓𝑓 = 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠2

𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟
. After applying the [ ]-operator and substituting units in the formula 

he found the correct solution. Interestingly, Sam applied the ‘Activation hint’ of problem 2a: 
“I didn’t really use this [systematic] hint. I used that of a previous one [problem 2a]. Although I understand 
the [systematic] hint, I didn’t use it for this task ”.  
 Overall, except for the divisions above, Sam did not encounter serious transfer problems. 
Contrary to Clare and Mary, he did not use ad hoc strategies a single time. Remarkably, he 
already used both the []-operator and systematic algebraic strategies in the first round. He 
found the ‘Activation hint’ of task 2a very useful and made repeated statements that the 
algebraic skills underlying the ‘Activation hints’ were already taught in mathematics class not 
too long ago. Indeed, in the second round he used those strategies effectively and maximized 
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his performance with a perfect OSSB (%). Sam is on the right track; he just needs to practice 
and develop his already existing tendency to use ad hoc approaches.  

Table 8. Sam’s solutions for task 3 in both rounds  

Round 1: SSB (%) = 62.5 % Round 2: SSB (%) = 100.0 % 

 

 

 

6.4.4 OSSB (%) in Both Rounds  

To gain more insight into the effectiveness of our intervention, in figure 2 we displayed 
OSSB (%) of the first round next to that of the second. To distinguish between both rounds, 
like in table 3, 5 and 7 where we used apostrophes for the tasks in the second round, here 
we used OSSB (%)’. This is illustrated in figure 2. Since OBAS (%) and OBAS (%)’ were 
already incorporated in OSSB (%) and OSSB (%)’ respectively in the previous subsection, 
we did not depict them.  

For all students there is a major increase in OSSB (%) from the first to the second round. 
While Sam was the only student having both sufficient procedural fluency (OBAS (%) ≥ 75 
%) and symbol sense behavior (OSSB (%) ≥ 72.7 %) already in round one, the other students 

demonstrated that in the second. We also calculated the ratio OSSB (%)′ 
OSSB (%)

 that gives the relative 

increase of students’ OSSB (%) over both rounds and therefore may be seen as the effec-

tiveness of our intervention by means of shift-problems. For Clare we have OSSB (%)′ 
OSSB (%)

= 72.7 
31.8

 

= 2.3 for Mary 72.7 
36.4

 = 2.0 and for Sam 100.0 
77.3

 = 1.3. These numbers confirm our earlier find-
ings: the systematic hints provided in the second round led to a major increase in students’ 
symbol sense behavior.  
 

Line 2 

Line 5 
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Figure 2. OSSB (%) of the first round next to OSSB (%)’ of the second 

We also calculated ⟨OSSB (%)⟩ and ⟨OSSB (%)⟩’ where the symbols ⟨ ⟩ refer to the average. 
Therefore, ⟨OSSB (%)⟩ is the average of OSSB (%) among all students, and ⟨OSSB (%)⟩’ the 
average OSSB (%)’ among all students. This number increased from 48.5 % in the first to 
81.8 % in the second round. So, while the average OSSB (%) of all students was insufficient 
in round one, this changed to sufficient in the second, again indicating the effectiveness of 
how we implemented shift-problems.  

6.4.5 Average SSB (%) per Task in Both Rounds 

In figure 3 we displayed ⟨SSB (%)⟩, i.e. the average SSB (%) per task among all students in 
round one, and analogously ⟨SSB (%)⟩’ for round two. Round one may be characterized by 
two regimes: the very low scores for task 1 (44 %), task 2b (33.3 %) and task 3 (37.5 %), and 
the very high score for task 2a (91.7 %). Furthermore, because of the criterion OSSB (%) ≥ 
72.7 %, ⟨SSB (%)⟩ ≥ 72.7 % was considered sufficient. Only task 2a met this criterion. In-
deed, contrary to task 2a, the other tasks contained a combination of many ad hoc ap-
proaches and overlooked procedures, strongly impeding students’ OSSB (%). The next 
round may be characterized by the high regime including task 1 (77.8 %), task 2b (83.3 %) 
and task 3 (75.0 %), and the highest regime including task 2a (100.0 %). In the next round, 
all these tasks met the criterion above, with task 2a even reaching the perfect score. This 
finding confirms what we have seen before: in round two students adopted systematic hints 
and applied them quite successfully.  
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Figure 3. ⟨SSB (%)⟩ per task among all students next to ⟨SSB (%)⟩’ of the second 

 
On the individual task level, for task 1 in the first round students mainly missed points be-
cause they did not divide both sides of 𝑄𝑄𝑄𝑄 = 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚 through 𝑚𝑚𝑚𝑚 and ∆𝑇𝑇𝑇𝑇. In addition, Mary 
used the numbering strategy a few times. The sufficient ⟨SSB (%)⟩ in the next round was 
mainly due Mary and Sam who flawlessly applied the systematic hints.  

As to task 2a, students’ solid domain of basic algebraic skills resulted in excellent perfor-
mances for both basic algebraic skills procedures. The already sufficient ⟨SSB (%)⟩ in round 
one reached the perfect score in the second. The perfect scores in both rounds make it very 
difficult to argue to which extent the systematic hints were useful.  

Task 2b consisted of two pattern salience procedures. Prior to the interviews, we ex-
pected this task to be the most difficult problem. Indeed, this was the case for round one 

where except for Sam the other students struggled seriously. Starting with 𝑅𝑅𝑅𝑅thermal = 𝑎𝑎𝑎𝑎
𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵

, 

they did not see the inverse relationship 1
𝑅𝑅𝑅𝑅thermal

= 𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎

. They also did not see that 𝑃𝑃𝑃𝑃 = 𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵∙∆𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎

 

in the second procedure can be written as P = 𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎
∙∆𝑇𝑇𝑇𝑇 . So, although the first procedure 

would be correct, they would perform incorrectly on the second. Thereafter, ⟨SSB (%)⟩ im-
proved, where Mary and Sam used systematic hints that were mainly adopted from other 
questions such as 2a. Unfortunately, Clare did not understand the purpose of them. In short, 
we may say that the systematic hints provided for task 2b were not helpful for students. It 
might be the case that these systematic hints should be adjusted into more appropriate ones.  

Task 3 is the question containing the largest number of variables. Hence, compared to 
other questions, it is also the task requiring the largest number of procedures. We observed 
that students struggled with dividing away the fraction 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟

𝑠𝑠𝑠𝑠2
 in 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶 = 𝑓𝑓𝑓𝑓 𝑓 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟

𝑠𝑠𝑠𝑠2
. Their work in-

volving ad hoc strategies and overlooked procedures, strongly impeded ⟨SSB (%)⟩ for this 
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task. It may be the case that especially Mary and Sam loosed their overview, got stuck because 
of the large number of variables and failed in making the final step; Mary, since she substi-
tuted numbers for 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶 = 𝑓𝑓𝑓𝑓 𝑓 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟

𝑠𝑠𝑠𝑠2
 to understand the arrangement of the valid outcome for 𝑓𝑓𝑓𝑓, 

and Sam since he could not get rid of the doubled division term. Clare overlooked procedures 
because she immediately swapped the fraction 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟

𝑠𝑠𝑠𝑠2
 into the denominator without understand-

ing the mathematical legitimacy of this step, i.e. 𝑓𝑓𝑓𝑓 = 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶
(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄
𝑟𝑟𝑟𝑟2

)
. During the second round, all stu-

dents used systematic hints to solve this task. Remarkably, instead of the ‘Activation hint’ of 

this question, students used that of task 2a and multiplied both sides of 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶 = 𝑓𝑓𝑓𝑓 𝑓 𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠2

 with 𝑠𝑠𝑠𝑠
2

𝑠𝑠𝑠𝑠2
.

Mary, however, lost points since she also used the numbering strategy. 

6.5 Discussion and Conclusion 

The aim of this study was to examine the possibility to improve students’ symbol sense be-
havior through activation of prior mathematical knowledge during algebraic problem-solving 
in physics. To this extent we developed shift-problems. The main difference with earlier 
studies investigating shift-problems (Palha, Dekker, & Gravemeijer, 2015; Palha, Dekker, 
Gravemeijer, van Hout-Wolters, 2013) is that they were for the first time designed outside 
mathematics education, i.e. in physics education. In addition, except for the study examining 
symbol sense behavior in physics problems (Turşucu et al., 2018c), this is the second time 
that this concept was studied outside mathematics education. Also, our tasks consisted of 
expressions with variables representing real, measurable quantities in physics. Other studies 
used abstract variables in mathematics without meaning in real life.  

Regarding operationalization of symbol sense behavior, we followed the method that we 
have developed to research students’ basic algebraic skills and sensitivity towards gestalt view 
and visual salience by means of local salience and pattern salience of algebraic expressions 
(Turşucu et al., 2018c). To assess students’ work, we used traditional pen-and-paper settings 
present in previous studies (Arcavi 1994, 2005; Wenger 1987) and not a digital environment 
such as Bokhove & Drijvers (2010). Unlike aforementioned studies that mainly have a qual-
itative character, we assessed students’ work both qualitative and quantitatively, i.e. students’ 
performance on procedures concerned with basic algebraic skills and symbol sense behavior 
were both quantized. To this extent, we used the coding scheme of table 2 together with the 
systematic solution set including clearly worked out procedures in the appendix. Further-
more, we analysed videotaped data in detail following the seven consecutive steps in the 
theoretical model of Powell et al. (2003). Except for the study of (Turşucu et al., 2018c), such 
detailed analysis is not present in earlier studies. 

As to the applicability of our systematic algebraic problem-solving approach with insight 
involving activation of mathematical knowledge, we expect this approach to be applicable to 
other other science subjects. (and even other disciplines). For instance, solving for a variable 

in both Poiseuille’s law 𝑄𝑄𝑄𝑄 = 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠4

8∙𝛾𝛾𝛾𝛾𝛾𝑓𝑓𝑓𝑓
in biology and the equilibrium equation 𝐾𝐾𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [𝐶𝐶𝐶𝐶]𝑐𝑐𝑐𝑐∙[𝐷𝐷𝐷𝐷]𝑑𝑑𝑑𝑑

[𝐵𝐵𝐵𝐵]𝑎𝑎𝑎𝑎∙[𝐷𝐷𝐷𝐷]𝑑𝑑𝑑𝑑
 in 

chemistry.  

6.5 Discussion and Conclusion
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present in previous studies (Arcavi 1994, 2005; Wenger 1987) and not a digital environment 
such as Bokhove & Drijvers (2010). Unlike aforementioned studies that mainly have a qual-
itative character, we assessed students’ work both qualitative and quantitatively, i.e. students’ 
performance on procedures concerned with basic algebraic skills and symbol sense behavior 
were both quantized. To this extent, we used the coding scheme of table 2 together with the 
systematic solution set including clearly worked out procedures in the appendix. Further-
more, we analysed videotaped data in detail following the seven consecutive steps in the 
theoretical model of Powell et al. (2003). Except for the study of (Turşucu et al., 2018c), such 
detailed analysis is not present in earlier studies. 

As to the applicability of our systematic algebraic problem-solving approach with insight 
involving activation of mathematical knowledge, we expect this approach to be applicable to 
other other science subjects. (and even other disciplines). For instance, solving for a variable 
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8∙𝛾𝛾𝛾𝛾𝛾𝑓𝑓𝑓𝑓
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[𝐵𝐵𝐵𝐵]𝑎𝑎𝑎𝑎∙[𝐷𝐷𝐷𝐷]𝑑𝑑𝑑𝑑
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Similar to Bokhove & Drijvers (2010), the tasks were carefully selected to trigger students’ 
problem-solving and to offer deeper understanding of students’ performance including basic 
algebraic skills and symbol sense behavior. Indeed, this was the case in both rounds contrib-
uting to the internal validity of this study.  

Concerning the sub question (5a) “To what extent do students in upper secondary education demon-
strate symbol sense behavior when solving algebraic physics problems that occur in their physics textbooks?”, 
two of the three students’ symbol sense behavior was insufficient in the first round. This was 
mainly due to overlooked procedures and the application of ad hoc strategies lacking a rule-
based problem-solving approach in which algebraic skills are used with insight. Regarding 
sub question (5b) “To what extent do students in senior pre-university education demonstrate symbol sense 
behavior when solving the same algebraic physics problems that occur in their physics textbooks after activation 
of prior mathematical knowledge?”, students demonstrated sufficient symbol sense behavior. This 
implies that students adopted the systematic hints that we provided appropriately and in-
creased their symbol sense behavior in the second round. Beyond symbol sense behaviour, 
they also improved their application of basic algebraic skills. They strongly benefited from 
our intervention including activation of mathematical knowledge where we offered rule-
based hints with insight, especially algebraic skills that were treated in a similar way to how 
they were learned in their mathematics textbooks (Reichard et al., 2014). Therefore, our re-
search question “How can activation of prior mathematical knowledge be used effectively to improve stu-
dents’ symbol sense behavior in senior pre-university education when solving algebraic physics problems?” can 
be answered that using algebraic skills in the same way as in mathematics textbooks to acti-
vate prior mathematical knowledge was quite effective. In short, we have shown that successful 
transfer of algebraic skills from mathematics to physics (see title of this thesis) is possible 
when both subjects use the same pedagogy in teaching algebraic skills.  

To determine to which degree transfer occurred, we adopted the traditional transfer ap-
proach (e.g. Mestre, 2015) by comparing students’ solution sets to our systematic solution 
set. This view of transfer provided us sufficient insight into the extent to which students used 
basic algebraic skills correctly and to which extent they demonstrated symbol sense behav-
iour. Therefore, this perspective was very useful in this area of research. In addition, to some 
extent, we also adopted the actor-oriented transfer approach by paying attention to previous 
learning derived from what students said during the interviews. For instance, students men-
tioned that they learned some ad hoc strategies from their teachers. Since Dutch teachers are 
highly textbook-driven, this may provide information about the textbooks they use in rela-
tion with transfer. In short, the traditional approach was very useful to measure the degree 
of transfer, and the actor-oriented transfer approach to gain insight into their previous learn-
ing.  

We have seen that using ad hoc strategies may help students to solve basic algebraic 
problems, but there are risks for the longer term, especially in more sophisticated problems 
requiring insight. Applying them depends on the approval of an authority such as a teacher 
or a textbook explaining them what is mathematically correct and what is not. As a conse-
quence, mathematics can become a set of incoherent strategies lacking conceptual under-
standing. Since students generally do not know the boundaries of ad hoc approaches, they 
also do not know where they apply and where not. Therefore, ad hoc strategies are harmful 
for the application of algebraic skills with insight, confirming earlier studies (e.g., Turşucu et 
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al., 2018c; Drijvers et al., 2011; Roorda, 2012). Instead of such strategies, students should use 
systematic algebraic strategies involving a rule-based problem-solving approach in which algebraic 
skills, especially algebraic techniques are used with insight as in the systematic solution set in 
the appendix. We recommend that these findings should be considered and implemented by 
the mathematics and science audience, especially curriculum developers, mathematics and 
physics teachers, mathematics and science teacher educators and textbook publishers aiming 
to foster transfer between both subjects and strengthen students experiencing coherence 
across these subjects.  

As to the first group, we suggest using content standards that emphasize the importance 
of using algebraic skills with insight as described in the mathematics curriculum (SLO, 2019). 
Prior mathematical knowledge should be activated through the same pedagogy of applying 
algebraic skills, especially algebraic techniques that occur in mathematics curricula. Content 
standards of the latter should pay attention to the importance of algebraic physics problems 
analogous to mathematics problems.  

Moreover, independent of whether those curricula determine the textbook content, it is 
probably better that mathematics and physics textbook publishers avoid ad hoc strategies 
such as the numbering strategy. Instead, mathematics textbooks should pay attention to sys-
tematic algebraic strategies where algebraic skills, especially different forms of algebraic tech-
niques are emphasized, for example, ‘inverting both sides of the equation. In addition, we 
suggest adopting science context such as physics problems. In terms of CMSE, it is probably 
better that physics problems in physics textbooks are introduced through paragraphs con-
taining analogous mathematics problems that students have learned in mathematics class. 
Systematic hints can be taught together with systematic procedures as in the solution set. 
Even though CMSE is important, it requires sufficient organization of the learning process 
in order to achieve a logical learning line across both subjects. In practice, unfortunately, it 
still happens that certain mathematical concepts are used in physics class before they were 
introduced in mathematics class (Alink et al., 2012; Turşucu et al., 2017, 2018c; Roorda, 
2012).  

On the individual level, physics teachers explaining relevant basic mathematics should be 
a pre-requisite for pre-service teachers involved in science teacher education programmes 
leading to a teaching qualification –this does not apply for mathematics teachers, because 
basic mathematical knowledge is considered to be part of mathematics teacher education 
programmes. Besides the application of systematic algebraic strategies, we recommend math-
ematics teachers to refer to the importance of mathematics in physics. For instance, men-
tioning that mathematics is applied in science subjects such as physics, writing mathematics 
expressions next to physics formulas can improve transfer and strengthen students experi-
encing coherence across these subjects (Turşucu et al., 2018a). Physics teachers can, for ex-
ample, emphasize that algebraic skills learned in mathematics class are applied in physics class 
and also use the same pedagogy of systematic algebraic approaches as mathematics teachers. 
Such issues require teachers from both departments to communicate with each other. How-
ever, internationally teachers’ curricula are overloaded (e.g., Lyons, 2006). Thus, such collab-
orative efforts between teachers should be feasible to adopt in teaching practice. In this re-
spect, we suggest individual efforts on a small scale during informal meetings.  
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Regarding mathematics and science teacher educators, we recommend that both of them 
make ‘in service’ and ‘preservice’ teachers aware of the harmful ad hoc strategies and their 
underlying mechanisms. Moreover, there is the possibility to develop partly integrated teach-
ing materials emphasizing the danger of such strategies for students and propose common 
identical pedagogical approaches to combat ad hoc strategies through systematic algebraic 
approaches. Furthermore, the application of algebraic skills with insight that becomes visible 
during basic algebraic skills and symbol sense behavior procedures is discussed in mathemat-
ics education. We suggest science teacher educators to explain the importance of this concept 
for problem-solving in physics in relation to activation of prior mathematical knowledge to 
teachers and future teachers.  

The concepts of basic algebraic skills and symbol sense behavior are intertwined (see 
figure 1). Hence, it is not easy to recognize on which concept students rely (Bokhove & 
Drijvers, 2010). Despite this, we succeeded in recognizing them in both rounds quite easily 
using the numerical criteria OSSB (%) ≥ 72.7 % and SSB (%) ≥ 72.7 %. In the same way 
with the OBAS (%) ≥ 75 % criterion we were able to observe and measure basic algebraic 
skills procedures. Moreover, investigation of OBAS (%) and OSSB (%) separately might 
indicate that we decoupled both concepts. In fact, we studied OBAS (%) to gain deeper 
understanding into the degree to which students had a solid grasp of basic algebraic skills. 
On the other hand, OBAS (%) was already part of OSSB (%), keeping their intertwinement 
intact.  

As for students who faced problems applying mathematics in physics, the findings above, 
especially in the first round resonate with earlier studies (e.g., Turşucu, 2018c; Dierdorp et 
al., 2014; Rebello et al., 2007; Roorda et al., 2014; Wong, 2018. This also applies for previous 
studies on learning and instruction emphasizing the importance of activation of pre-
knowledge for better students’ achievements (e.g., Hailikari, Katajavuori, & Lindblom-
Ylanne, 2008; Roorda, 2012). Indeed, our intervention with shift-problems activating prior-
mathematical knowledge improved students’ performance.  

6.5.1 Limitations and Further Recommendations 

For this study, we aimed at interviewing three students. Over two rounds of problem-solving, 
we expected that this would provide us sufficient data, which was indeed the case. Therefore, 
we ignored a gender ratio of 50%–50%. Our extended literature research reveals that there 
are no indications that a sample with an uneven gender ratio would yield different results. It 
is very likely that students’ OBAS (%) and OSSB (%) in both rounds are related to a similar 
knowledge domain at the start of these interviews and their mathematics and physics grades. 
Regardless of sexes, such sample may have generated comparable results. Therefore, we do 
not view the composition of our sample as a limiting factor.  

The selection criteria in this study were so strict that we only found one school meeting 
these requirements. Still, we exactly found three students, i.e. the number of students we 
aimed for. Among them, only one student whose physics grade was 5.9 (instead of < 5.5) 
did not perfectly meet these criteria. We selected this student because his (Sam) physics grade 
was in the ‘danger zone’. Contrary to the other female students whose OSSB (%) scores were 
insufficient in the first round, Sam’s OSSB (%) performance was sufficient in both rounds. 
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This may lead to the following question: “Would these scores have been insufficient if his physics grade 
was insufficient?”. This may or may not be the case, but this question is too difficult to answer. 
For instance, he might have repeated his class and improved his problem-solving skills. On 
the other hand, his mathematics grade of 7.9 that is approximately 1.0 higher than the other 
students, may also not explain Sam’s performance. Indeed, in the study of Turşucu et al. 
(2018c) that only assessed symbol sense behavior in algebraic physics problems, students 
with similar mathematics grades performed quite poorly on the transfer tasks leading to both 
insufficient OBAS (%) and OSSB (%) scores.  

Except for additional information about the introductory task and the systematic hints 
provided in the second round, students were asked to solve the same questions in both 
rounds. Could this have caused undue bias? We do not think that the student’s memory of 
the first round caused undue bias leading to a ‘distorted picture’ of students’ OBAS (%) and 
OSSB (%) performance in the second round. First of all, round two took place two weeks 
after the first. Secondly, the combination of introductory task and the systematics hints 
shaped a different context than the same problems in the first round. Finally, there are no 
indications that point in this direction. The students seem not to be aware that shift-problems 
involved the same questions as the first round.  

With regard to representativity of our sample, these students are not representative for 
the Dutch context. For instance, their problem-solving skills and symbol sense behavior 
characteristics are too different. In addition, the findings following from this study cannot 
be extended for the Dutch population, neither to other countries outside the Netherlands. 
Indeed, our sample size is simply too small. Yet, concerning pedagogical approaches to alge-
braic problem-solving in grade 10 mathematics and physics textbooks, there may be similar-
ities between the Netherlands and other countries with national final examinations which are 
described in curricula through the general educational core goals and the more specific stand-
ards, shaping textbook driven mathematics and physics teachers who teach those textbooks 
to their students.  

In this study, the students were provided systematic hints in the second round to improve 
their symbol sense behavior. Other hints were offered when students got stuck to help them 
proceed. We expect that these hints did not influence our results. For instance, during task 
3 of the first round (see line 5 of table 8), Sam got stuck and mentioned “I do not know whether 
I can further simplify this term, but at least until I can”. The interviewer responded: “Can you simplify 
it one step further? To avoid having two divisions in that term?”. Thereafter, even he performed in-
correctly, Sam continued his work.  

Some of the tasks were not read carefully by students, especially the systematic hints. In 
addition, for most of the tasks the students worked too fast resulting in sloppy mistakes that 
may have been overcome if they had carefully re-examined their work. Hence, we suggest 
adjusting the interview protocol and incorporate two design principles: it should explicate 
that students should read the questions very carefully and re-examine their work after they 
finished their tasks. Earlier studies state that such adjustments may add to students’ meta-
cognitive skills (Hattie & Timperley, 2007; Shute, 2008). This in turn can improve students’ 
transfer. 

In this research, a student was considered procedurally fluent when her OBAS (%) ≥ 75 
%. For symbol sense behavior we used OSSB (%) ≥ 72.7 %. These criteria were not chosen 
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arbitrarily, but the result of consensus among all authors after a series of discussions. The 
norm for a solid grasp of basic algebraic skills was agreed on 3 out of 4 points. Symbol sense 
behavior extends basic algebraic skills, since it also requires insight into algebraic skills. Thus, 
we took 8 out of 11 points, i.e. a minimum OSSB (%) score of 72.7 %.  

The findings above offer insight into the relation between procedural fluency and symbol 
sense behavior, and how these concepts should be treated in teaching practice. Our findings 
show the effectiveness of using systematic algebraic strategies involving a rule-based ap-
proach where basic skills are used with insight to combat problems that require unusual rea-
soning. The discussion is not about focussing on basic skills or insight. Instead, both basic 
skills and symbol sense behavior should be taught in an integrated manner. This confirms 
aforementioned statement “Without insight, there is no skill, and without skill, there is no insight” 
(Drijvers 2011, p. 141).  

Two of the three students used the harmful ad hoc strategies. One of them mentioned 
that she learned the swapping approach from her mathematics teacher which might indicate 
that her teacher learned this strategy from her mathematics textbook (Reichard et al. 2014a). 
This method has the largest market share in the Netherlands, influencing a large number of 
highly textbook-driven teachers teaching them to their students (SLO, 2019; van Zanten and 
van den Heuvel- Panhuizen 2014). Therefore, we suggest further research investigating to 
which extent such strategies are involved in this type of textbook series. We strongly recom-
mend researchers sharing their findings with the textbook publisher. If needed, we suggest 
making publishers aware by pointing out the risks for teachers and students such strategies 
entail. This may also be a point of attention for grade 9. Grade 10 students’ lack of insight 
into the application of algebraic skills in round one may be due to insufficient emphasis on 
a rule-based problem-solving approach on conceptual understanding in grade 9. Therefore, 
we recommend examining grade 9 textbooks to elaborate on this matter.  

6.6 Appendix  

6.6.1 Physics Teachers’ Interview Protocol 

Introduction 
We are grateful that you participated in this interview that will take about 20 minutes and is 
part of the PhD-study of the interviewer, Süleyman Turşucu. We have some questions about 
the background of your grade 10 physics students, and their mathematics and physics text-
books.  

Interview aim 
The purpose of this interview is to select three grade 10 physics students who have a suffi-
cient mathematics grade (≥ 5,5) and an insufficient physics grade. Later, during interviews 
they will solve algebraic physics problems while being videotaped and thinking aloud (Char-
ters, 2003). These interviews may offer deeper understanding about how students’ applica-
tion of algebraic skills from mathematics in physics can be improved. 

6.6 Appendix
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Interview strategy 
Could you please answer the questions of the part ‘Questions about background of students’ below? 
We note that the students’ names will be anonymized. Would you consent to your students 
who are engaged in this study? 

Questions about background of students 
1. Could you please offer us the grade 10 students’ names having a sufficient mathematics

grade (≥ 5,5) and an insufficient physics grade?
2. Could you please offer us insight into their attitude towards learning?
3. Could you please tell us which physics textbook they use, and why this textbook was

chosen?
4. Could you please tell us which mathematics textbook they use?

6.6.2 The Tasks 

Task 1 specific heat capacity 
When an object is heated, its temperature increases. The formula for this phenomenon is 
given by: 𝑄𝑄𝑄𝑄 = 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚. Here, 𝑄𝑄𝑄𝑄 is the thermal energy in 𝐽𝐽𝐽𝐽, 𝑚𝑚𝑚𝑚 is the mass in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐 is the 
specific heat capacity and ∆𝑇𝑇𝑇𝑇 is the temperature change in 𝐾𝐾𝐾𝐾. 

Derive the unit of the specific heat capacity. First, solve for 𝑐𝑐𝑐𝑐. 

Task 2 thermal resistance 
The thermal resistance 𝑅𝑅𝑅𝑅thermal = 𝑎𝑎𝑎𝑎

𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵
 is a measure of the thermal conductivity of an object. 

Here, 𝑑𝑑𝑑𝑑 is the thickness of the material in 𝑚𝑚𝑚𝑚, 𝐴𝐴𝐴𝐴 is the area of the material in 𝑚𝑚𝑚𝑚2 and 𝜆𝜆𝜆𝜆 is the 
thermal conductivity in 𝑊𝑊𝑊𝑊 𝑊𝑊𝑊𝑊𝑊 −1 ∙ 𝐾𝐾𝐾𝐾−1. 

a) Derive the unit of 𝑅𝑅𝑅𝑅thermal.

The heat flow is given by 𝑃𝑃𝑃𝑃 = 𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵∙∆𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎

. It can be shown that the relation between 𝑃𝑃𝑃𝑃 and 

𝑅𝑅𝑅𝑅thermal is 𝑃𝑃𝑃𝑃 = ∆𝑇𝑇𝑇𝑇
𝑅𝑅𝑅𝑅thermal

. 

b) Show that this is the case.

Task 3 charged particles 
The attractive force between two charged particles is given by 𝐹𝐹𝐹𝐹 = 𝑓𝑓𝑓𝑓 𝑓 𝑟𝑟𝑟𝑟1∙𝑟𝑟𝑟𝑟2

𝑠𝑠𝑠𝑠2
. Here, f is a con-

stant, 𝑞𝑞𝑞𝑞1 and 𝑞𝑞𝑞𝑞2 are the magnitudes of both charged particles in 𝐶𝐶𝐶𝐶 and 𝑟𝑟𝑟𝑟 the distance between 
the centers of the particles in 𝑚𝑚𝑚𝑚.  

Derive the unit of the constant 𝑓𝑓𝑓𝑓. First, solve for 𝑓𝑓𝑓𝑓. 
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Interview strategy 
Could you please answer the questions of the part ‘Questions about background of students’ below? 
We note that the students’ names will be anonymized. Would you consent to your students 
who are engaged in this study? 

Questions about background of students 
1. Could you please offer us the grade 10 students’ names having a sufficient mathematics

grade (≥ 5,5) and an insufficient physics grade?
2. Could you please offer us insight into their attitude towards learning?
3. Could you please tell us which physics textbook they use, and why this textbook was

chosen?
4. Could you please tell us which mathematics textbook they use?

6.6.2 The Tasks 

Task 1 specific heat capacity 
When an object is heated, its temperature increases. The formula for this phenomenon is 
given by: 𝑄𝑄𝑄𝑄 = 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚. Here, 𝑄𝑄𝑄𝑄 is the thermal energy in 𝐽𝐽𝐽𝐽, 𝑚𝑚𝑚𝑚 is the mass in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔, 𝑐𝑐𝑐𝑐 is the 
specific heat capacity and ∆𝑇𝑇𝑇𝑇 is the temperature change in 𝐾𝐾𝐾𝐾. 

Derive the unit of the specific heat capacity. First, solve for 𝑐𝑐𝑐𝑐. 

Task 2 thermal resistance 
The thermal resistance 𝑅𝑅𝑅𝑅thermal = 𝑎𝑎𝑎𝑎

𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵
 is a measure of the thermal conductivity of an object. 

Here, 𝑑𝑑𝑑𝑑 is the thickness of the material in 𝑚𝑚𝑚𝑚, 𝐴𝐴𝐴𝐴 is the area of the material in 𝑚𝑚𝑚𝑚2 and 𝜆𝜆𝜆𝜆 is the 
thermal conductivity in 𝑊𝑊𝑊𝑊 𝑊𝑊𝑊𝑊𝑊 −1 ∙ 𝐾𝐾𝐾𝐾−1. 

a) Derive the unit of 𝑅𝑅𝑅𝑅thermal.

The heat flow is given by 𝑃𝑃𝑃𝑃 = 𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵∙∆𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎

. It can be shown that the relation between 𝑃𝑃𝑃𝑃 and 

𝑅𝑅𝑅𝑅thermal is 𝑃𝑃𝑃𝑃 = ∆𝑇𝑇𝑇𝑇
𝑅𝑅𝑅𝑅thermal

. 

b) Show that this is the case.

Task 3 charged particles 
The attractive force between two charged particles is given by 𝐹𝐹𝐹𝐹 = 𝑓𝑓𝑓𝑓 𝑓 𝑟𝑟𝑟𝑟1∙𝑟𝑟𝑟𝑟2

𝑠𝑠𝑠𝑠2
. Here, f is a con-

stant, 𝑞𝑞𝑞𝑞1 and 𝑞𝑞𝑞𝑞2 are the magnitudes of both charged particles in 𝐶𝐶𝐶𝐶 and 𝑟𝑟𝑟𝑟 the distance between 
the centers of the particles in 𝑚𝑚𝑚𝑚.  

Derive the unit of the constant 𝑓𝑓𝑓𝑓. First, solve for 𝑓𝑓𝑓𝑓. 
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6.6.3 Systematic Solution Set  

Task 1 specific heat capacity 
Procedure 1 (LS): division of both sides of 𝑄𝑄𝑄𝑄 = 𝑚𝑚𝑚𝑚 𝑚 [𝑐𝑐𝑐𝑐] ∙ ∆𝑇𝑇𝑇𝑇 with 𝑚𝑚𝑚𝑚; result: 𝑄𝑄𝑄𝑄

𝑚𝑚𝑚𝑚
= [𝑐𝑐𝑐𝑐] ∙ ∆𝑇𝑇𝑇𝑇. 

Procedure 2 (LS): division of both sides of 𝑄𝑄𝑄𝑄
𝑚𝑚𝑚𝑚

= [𝑐𝑐𝑐𝑐] ∙ ∆𝑇𝑇𝑇𝑇 with ∆𝑇𝑇𝑇𝑇; result: [𝑐𝑐𝑐𝑐] = 𝑄𝑄𝑄𝑄
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

. Proce-
dure 3 (BAS): substitution. Each quantity in the formula is replaced with its corresponding 
unit, except for [𝑐𝑐𝑐𝑐]; result: [𝑐𝑐𝑐𝑐] = 𝐽𝐽𝐽𝐽

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠∙𝐾𝐾𝐾𝐾
 . The solution [𝑐𝑐𝑐𝑐] = 𝐽𝐽𝐽𝐽 𝐽 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔−1 ∙ 𝐾𝐾𝐾𝐾−1 was also regarded 

as correct.  

Task 2 thermal resistance 
a) Procedure 1 (BAS): substitution. Each quantity in the formula is replaced with its corre-
sponding unit, except for [𝑅𝑅𝑅𝑅thermal]; result: [𝑅𝑅𝑅𝑅thermal] = 𝑚𝑚𝑚𝑚

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊−1∙𝐾𝐾𝐾𝐾−1∙𝑚𝑚𝑚𝑚2 . Procedure 2 (BAS): 

[𝑅𝑅𝑅𝑅thermal] = 𝑚𝑚𝑚𝑚+2−2 ∙ 𝑊𝑊𝑊𝑊−1 ∙ 𝐾𝐾𝐾𝐾 ; result: [𝑅𝑅𝑅𝑅thermal] = 𝑊𝑊𝑊𝑊−1 ∙ 𝐾𝐾𝐾𝐾. 

b) Procedure 1 (PS): inverting both sides of 𝑅𝑅𝑅𝑅thermal = 𝑎𝑎𝑎𝑎
𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵

 ; result: 1
𝑅𝑅𝑅𝑅thermal

= 𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎

 .  

Procedure 2 (PS): substitution. Replace 𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎

 in 𝑃𝑃𝑃𝑃 = 𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵∙∆𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎

 by 1
𝑅𝑅𝑅𝑅thermal

 ; result: 𝑃𝑃𝑃𝑃 = ∆𝑇𝑇𝑇𝑇
𝑅𝑅𝑅𝑅thermal

 . 

Task 3 charged particles 
Procedure 1 (LS): multiplication of both sides of 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟

𝑠𝑠𝑠𝑠2
 with 𝑟𝑟𝑟𝑟2; result: 𝑟𝑟𝑟𝑟2 ∙ 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶 = 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 

𝑞𝑞𝑞𝑞. Procedure 2 (LS): division of both sides with 𝑞𝑞𝑞𝑞; result: 𝑠𝑠𝑠𝑠
2∙𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶
𝑟𝑟𝑟𝑟

= 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓 . Procedure 3 (LS): 

division of both sides with 𝑄𝑄𝑄𝑄; result: 𝑠𝑠𝑠𝑠
2∙𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶
𝑄𝑄𝑄𝑄𝑄𝑟𝑟𝑟𝑟

= 𝑓𝑓𝑓𝑓. Procedure 4 (BAS): substitution. Each quan-

tity in the formula is replaced with its corresponding unit, except for [𝑓𝑓𝑓𝑓]; result: [𝑓𝑓𝑓𝑓] = 𝑚𝑚𝑚𝑚2∙𝑁𝑁𝑁𝑁
𝐶𝐶𝐶𝐶2

. 

The solution [𝑐𝑐𝑐𝑐] = 𝑚𝑚𝑚𝑚2 ∙ 𝑁𝑁𝑁𝑁 𝑁 𝑁𝑁𝑁𝑁−2 was also regarded as correct. 

6.6.4 Shift Problems 

Exemplary task 
The force of gravity at the earth’s surface on an object is given by 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚. Here, 𝑚𝑚𝑚𝑚 is 
the mass in 𝑘𝑘𝑘𝑘𝑔𝑔𝑔𝑔 and 𝑔𝑔𝑔𝑔 its acceleration due to gravity in 𝑚𝑚𝑚𝑚

𝑠𝑠𝑠𝑠2
.  

a) Solve for 𝑚𝑚𝑚𝑚 

‘Activation hint’. In mathematics class you have learned that 

when 𝑦𝑦𝑦𝑦 = 𝒂𝒂𝒂𝒂 𝒂 𝒂𝒂𝒂𝒂 and you want to solve for 𝒂𝒂𝒂𝒂 = ⋯, then the 𝑏𝑏𝑏𝑏 on the right side should 
be ‘taken away’. This can be done by dividing both sides of the equals sign through 

𝑏𝑏𝑏𝑏. So, 𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏

= 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂
 𝑏𝑏𝑏𝑏

 and because 𝑏𝑏𝑏𝑏
 𝑏𝑏𝑏𝑏

= 1, this gives 𝒂𝒂𝒂𝒂 = 𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏
. 

Application of the ‘Activation hint’ yields 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 , 
𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔
𝑠𝑠𝑠𝑠

= 𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠

 , 𝑚𝑚𝑚𝑚 = 𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔
𝑠𝑠𝑠𝑠

.  
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b) Find the unit of 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠  
‘Strategic hint’. First use the unit-operator [  ] and replace 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 by [𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠], and the other quantities
by their units.
Application of the ‘Strategic hint’ yields [𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠] = kg ∙ m

s2
.

Now you have seen how the ‘Activation hint’ and the ‘Strategic hint’ are applied, I ask you 
to apply them in the tasks below. Please follow the hints in subsequent order.  

Task 1 specific heat capacity (see subsection ‘The Tasks’) 
Derive the unit of the specific heat capacity. First, solve for 𝑐𝑐𝑐𝑐. 
(1). ‘Strategic hint 1’: first solve for 𝑐𝑐𝑐𝑐. 
(2). ‘Activation hint’: in mathematics class you have learned that… 

…when 𝑦𝑦𝑦𝑦 = 𝒂𝒂𝒂𝒂 𝒂 𝒂𝒂𝒂𝒂 and you want to solve for 𝒂𝒂𝒂𝒂 = ⋯, then the 𝑏𝑏𝑏𝑏 on the right side 
should be ‘taken away’. This can be done by dividing both sides of the equals sign 

through 𝑏𝑏𝑏𝑏. So, 𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏

= 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂
 𝑏𝑏𝑏𝑏

 and because 𝑏𝑏𝑏𝑏
 𝑏𝑏𝑏𝑏

= 1, this gives 𝒂𝒂𝒂𝒂 = 𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏
. 

(3). ‘Strategic hint 2’: use the unit-operator [  ]. 

Task 2 thermal resistance (see subsection ‘The Tasks’) 

a) Derive the unit of 𝑅𝑅𝑅𝑅thermal.
(1). ‘Strategic hint’. First use the unit-operator [  ].
(2). ‘Activation hint’. In mathematics class you have learned that…

…when 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎
𝒄𝒄𝒄𝒄
𝒅𝒅𝒅𝒅

, this can be simplified into a simpler expression by multiplying both 

sides of the equals sign by 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎

= 1 giving 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎
𝒄𝒄𝒄𝒄
𝒅𝒅𝒅𝒅
∙ 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎
 . Now, the denominator becomes 

𝒄𝒄𝒄𝒄
𝒅𝒅𝒅𝒅
∙ 𝑑𝑑𝑑𝑑. Since, 𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎
= 1, the denominator equals 𝒄𝒄𝒄𝒄. Finally, we write 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝒄𝒄𝒄𝒄
. 

The heat flow is given by 𝑃𝑃𝑃𝑃 = 𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵∙∆𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎

. It can be shown that the relation between 𝑃𝑃𝑃𝑃 and 

𝑅𝑅𝑅𝑅thermal is 𝑃𝑃𝑃𝑃 = ∆𝑇𝑇𝑇𝑇
𝑅𝑅𝑅𝑅thermal

. 

b) Show that this is the case.
(1). ‘Strategic hint’. Rewrite 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 into 1/𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.
(2). ‘Activation hint’. In mathematics class you have learned that…

…when 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 and 𝑧𝑧𝑧𝑧 = 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 then the following relation apply: 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 = 𝑧𝑧𝑧𝑧. This 
means that 𝑦𝑦𝑦𝑦 = 𝑧𝑧𝑧𝑧. 

Task 3 charged particles  
Derive the unit of the constant 𝑓𝑓𝑓𝑓. First, solve for 𝑓𝑓𝑓𝑓. 
(1). ‘Strategic hint’. First solve for 𝑓𝑓𝑓𝑓. 
(2). ‘Activation hint’. In mathematics class you have learned that… 
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b) Find the unit of 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠  
‘Strategic hint’. First use the unit-operator [  ] and replace 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 by [𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠], and the other quantities
by their units.
Application of the ‘Strategic hint’ yields [𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠] = kg ∙ m

s2
.

Now you have seen how the ‘Activation hint’ and the ‘Strategic hint’ are applied, I ask you 
to apply them in the tasks below. Please follow the hints in subsequent order.  

Task 1 specific heat capacity (see subsection ‘The Tasks’) 
Derive the unit of the specific heat capacity. First, solve for 𝑐𝑐𝑐𝑐. 
(1). ‘Strategic hint 1’: first solve for 𝑐𝑐𝑐𝑐. 
(2). ‘Activation hint’: in mathematics class you have learned that… 

…when 𝑦𝑦𝑦𝑦 = 𝒂𝒂𝒂𝒂 𝒂 𝒂𝒂𝒂𝒂 and you want to solve for 𝒂𝒂𝒂𝒂 = ⋯, then the 𝑏𝑏𝑏𝑏 on the right side 
should be ‘taken away’. This can be done by dividing both sides of the equals sign 

through 𝑏𝑏𝑏𝑏. So, 𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏

= 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂
 𝑏𝑏𝑏𝑏

 and because 𝑏𝑏𝑏𝑏
 𝑏𝑏𝑏𝑏

= 1, this gives 𝒂𝒂𝒂𝒂 = 𝑦𝑦𝑦𝑦
𝑏𝑏𝑏𝑏
. 

(3). ‘Strategic hint 2’: use the unit-operator [  ]. 

Task 2 thermal resistance (see subsection ‘The Tasks’) 

a) Derive the unit of 𝑅𝑅𝑅𝑅thermal.
(1). ‘Strategic hint’. First use the unit-operator [  ].
(2). ‘Activation hint’. In mathematics class you have learned that…

…when 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎
𝒄𝒄𝒄𝒄
𝒅𝒅𝒅𝒅

, this can be simplified into a simpler expression by multiplying both 

sides of the equals sign by 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎

= 1 giving 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎
𝒄𝒄𝒄𝒄
𝒅𝒅𝒅𝒅
∙ 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎
 . Now, the denominator becomes 

𝒄𝒄𝒄𝒄
𝒅𝒅𝒅𝒅
∙ 𝑑𝑑𝑑𝑑. Since, 𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎
= 1, the denominator equals 𝒄𝒄𝒄𝒄. Finally, we write 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝒄𝒄𝒄𝒄
. 

The heat flow is given by 𝑃𝑃𝑃𝑃 = 𝜆𝜆𝜆𝜆𝜆𝐵𝐵𝐵𝐵∙∆𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎

. It can be shown that the relation between 𝑃𝑃𝑃𝑃 and 

𝑅𝑅𝑅𝑅thermal is 𝑃𝑃𝑃𝑃 = ∆𝑇𝑇𝑇𝑇
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b) Show that this is the case.
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…when 𝑦𝑦𝑦𝑦 = 𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏
 and you want to solve for 𝑎𝑎𝑎𝑎 = ⋯, then the 1

𝑏𝑏𝑏𝑏
 on the right side should 

be ‘taken away’. This can be done by multiplying both sides of the equals sign by 𝑏𝑏𝑏𝑏. 

So, 𝑦𝑦𝑦𝑦. 𝑏𝑏𝑏𝑏 = 𝑎𝑎𝑎𝑎
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(3). ‘Strategic hint’. Use the unit-operator [ ].  

6.6.5 Physics Students’ Interview Protocol 

Introduction 
We are grateful that you participated in this interview that consists of two parts. In the first 
section we ask you some questions about your background. The second section is concerned 
with algebraic problem-solving in physics where we ask you to solve four tasks while thinking 
aloud and being videotaped. 

First section: questions about your background 
1. Could you please tell me why you chose mathematics and science subjects? 
2. Could you please tell me your ideas about mathematics and physics? 
3. Could you please offer me your grades for mathematics and physics? 

Second section: algebraic problem-solving in physics 
Could you please solve the three tasks ‘Task 1: specific heat capacity’, ‘Task 2: thermal resistance’ 
and ‘Task 3: charged particles’ below while thinking aloud. Could you please write down as 
many intermediate steps as possible. You will only be interrupted if it remains silent for ap-
proximately one minute, or a procedure or reasoning is not clear enough. Your name will be 
anonymized, and all information that you offered during this interview will only be used for 
a PhD-research.  
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7.1 Introduction 

In this dissertation we investigated the central research question “How can the transfer of algebraic 
skills from mathematics into physics be improved for solving algebraic physics problems that occur in upper 
secondary education?”. To answer this question, we conducted five studies. The research ques-
tions of these studies are presented below.  

In the first study we carried out a problem analysis, since transfer from mathematics to 
physics was problematic, but very little was known about transfer of transfer of algebraic 
skills from mathematics to physics in senior pre-university education. Therefore, we exam-
ined the two research questions (1a) “How do mathematics and physics teachers characterise the transfer 
problem in the case?”, and (1b) “What sort of beliefs do mathematics and physics teachers’ beliefs have about 
improving students’ transfer of algebraic skills from mathematics into physics for solving algebraic problems 
that occur in senior pre-university education (SPE)?”. Question (1a) was asked to check whether 
teachers acknowledged this type of transfer problem, and question (1b) aimed to gain insight 
into the various aspects that influence transfer. We interviewed teachers by means of a semi-
structured questionnaire including a concrete case about a student transfer problem. The 
interviews were transcribed verbatim and analyzed using open and axial coding to obtain a 
hierarchical code tree containing large amounts of data, i.e. teachers’ beliefs. 

 The second study was a follow-up study that aimed to reduce data from study (1) into a 
small set of core beliefs that contains constraints including naïve beliefs that can be harmful 
for transfer and affordances that can improve transfer, and other aspects that can influence 
CMSE. In this respect, we examined the research questions (2a) “How can a systematic, refined 
method be developed to reduce code trees containing large amounts of data into a single dataset?” and (2b) 
“What are the core beliefs of mathematics and physics teachers about improving students’ transfer of algebraic 
skills from mathematics into physics for solving algebraic problems that occur in senior pre-university educa-
tion?”. We used pattern coding that in many textbooks is described in a general way (e.g., 
Saldaña, 2013). Contrary to such a general approach, we intended to use this second cycle 
coding technique in a more systematic and refined manner. We especially aimed to develop 
a specific approach to further reduce code trees including large amounts of data. This study 
also functioned as ‘a bridge’ between the first and the third study. In short, beyond a study 
on teachers’ core beliefs, we aimed to develop a systematic and refined method to reduce the 
code tree containing large amounts of coded data, since this was not present in earlier studies. 
In addition, even if we would have aimed at combining study (2) and study (1) into a single 
study, it was considered as too large by peer-reviewed international Journals on science edu-
cation, and therefore considered as unpublishable.  

For study (3) we investigated the research question (3) “What are the belief systems of mathe-
matics and physics teachers about improving students’ transfer of algebraic skills from mathematics into physics 
for solving algebraic problems that occur in senior pre-university education?”. Such belief systems can be 
organized into a set of mutually supporting of beliefs. These belief systems were extracted 
from the small set of core beliefs. Some of these core beliefs may contain the harmful naïve 
beliefs for teaching practice. This makes examining belief systems in this area of research 
relevant for classroom practice.  

Study (4) examined the research question “To what extent do students in upper secondary educa-
tion demonstrate symbol sense behavior when solving algebraic physics problems?”. In this respect, we 
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aimed to gain insight into the underlying mechanisms of students’ problem-solving in physics 
class in which symbol sense behaviour was involved. Improving symbol sense behavior of 
students, can enhance transfer of algebraic skills from mathematics to physics class. To de-
termine to which degree transfer occurred, we adopted the traditional perspective of transfer. 
To some extent, the actor-oriented transfer approach was used to gain insight into what 
students said about their previous learning during the interviews. 

In the fifth and last study we used insights from the previous four studies in which com-
partmentalized thinking, teachers’ beliefs about transfer, mismatches between pedagogical 
approaches in mathematics and physics textbooks, and symbol sense behavior are viewed 
together to combate the lack of transfer. We examined the research question (5) “How can 
activation of prior mathematical knowledge be used effectively to improve students’ symbol sense behavior in 
upper secondary education when solving algebraic physics problems?”. This question was divided in two 
sub questions: (5a) “To what extent do students in upper secondary education demonstrate symbol sense 
behavior when solving algebraic physics problems that occur in their physics textbooks?”, and (5b) “To what 
extent do students in upper secondary education demonstrate symbol sense behavior when solving the same 
algebraic physics problems that occur in their physics textbooks after activation of prior mathematical 
knowledge?”. Similar to study (4), we adopted the traditional perspective of transfer to deter-
mine the extent to which transfer occurred. To some extent, we also adopted the actor-
oriented transfer approach, again to gain insight into what students said about previous learn-
ing during the interviews. 

The main results and conclusions of these studies are presented below. In the sub section 
‘General Conclusion’ we bring these results and conclusions together to answer the central 
research question. Thereafter, in the sub section ‘General Discussion’ we will first evaluate 
the models involved in this study and discuss the theoretical contributions to educational 
research. Next, we will present the limitations of this study followed by recommendations 
for future research. Finally, we will discuss the implications for educational practice, espe-
cially for the mathematics and science audience. 

7.2 Main Results and Conclusions of Study (1) 

To answer the two research questions of the first qualitative study, we interviewed 10 math-
ematics and 10 physics teachers from regular Dutch schools who were qualified to teach in 
senior pre-university education and had at least five years of teaching experience. They were 
selected using convenience sampling, i.e. they were both available and willing to participate 
in this study. The interviews were conducted by means of a semi-structured questionnaire 
including a concrete case about a students’ transfer problem from mathematics to physics for 
which solution algebraic skills were needed. We conducted a literature study to design this 
questionnaire. The questions dealt with actors such as mathematics and physics teachers, 
collaboration between them, mathematics and physics curricula, and mathematics and phys-
ics textbooks. The interviews were transcribed verbatim for analysis, for which the teachers 
gave consent.  

We used open coding (Bryman, 2015) to label each fragment of the transcripts, which 
provided a short description of teachers’ individual beliefs. For each of the twenty transcripts 
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this led to a set of labels identifying teachers’ beliefs. Next, we used axial coding to organize 
these beliefs. This resulted in two identical code trees for both teacher groups. Thus, we 
obtained one common code tree that is depicted in table 1 below. This hierarchical structure 

Table 1. Teachers’ beliefs about aspects influencing students’ transfer and aspects about CMSE. 

Core theme/ subtheme Mathematics teachers Physics teachers 
1. Coherence 126 135 

1.1 Alignment 2/1a 10/6 
1.2 Collaboration and cooperation 85/10 75/10 
1.3 Ideal collaboration and cooperation 39/10 50/10 

2. Curriculum 65 86 
2.1 Curriculum (general) 25/9 10/7 
2.2 Mathematics curriculum 23/10 31/10 
2.3 Physics curriculum 17/10 45/10 

3. Education 7 26 
3.1 Junior pre-university education 7/5 26/7 

4. Pedagogy of algebra 82 72 
4.1 Algebraic skills 40/10 26/7 
4.2 Algebraic techniques 7/4 8/5 
4.3 Practice (general) 21/9 30/9 
4.4 Practice within mathematics 9/5 3/3 
4.5 Practice within physics 5/3 5/3 

5. Relation between scientific subjects 87 52 
5.1 Mathematics and physics 27/10 15/10 
5.2 Mathematics within physics 35/10 23/10 
5.3 Physics within mathematics 25/10 14/10 

6. School subjects 30 20 
5.1 Mathematics 19/7 13/6 
5.2 Physics 11/6 7/4 

7. Teacher 193 112 
6.1 Mathematics teacher 97/10 48/10 
6.2 Physics teacher 96/10 64/10 

8. The use of textbooks 143 139 
8.1 Following textbooks 31/10 43/10 
8.2 Mathematics textbook 66/10 31/10 
8.3 Physics textbook 37/10 45/10 
8.4 Textbook general 9/5 20/7 

9. Transfer 144 89 
9.1 Activating prior knowledge 8/5 10/4 
9.2 Affordances (specific) 34/10 8/5 
9.3 Constructing relations (general constraints) 27/10 23/9 
9.4 Constructing relations (specific constraints) 75/10 48/10 
9.5 Focus on students 1/1b 1/1c 

Note. a This subtheme is considered as an outlier 
b This subtheme is considered as an outlier  
c This subtheme is considered as an outlier 
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contained 9 core themes (main branches of the tree) and 28 subthemes (smaller branches). 
These core themes are ‘coherence’ (core theme 1), ‘curriculum’, ‘education’, ‘pedagogy of 
algebra’, ‘relation between scientific subjects’, ‘school subjects’, ‘teacher’, ‘the use of text-
books’ and ‘transfer’. The leaves of the tree are the last and finest level of the hierarchy and 
represent the underlying continuum of approximately 1.300 individual teachers’ beliefs that 
we have found. 

Regarding research question (1a) we found that nearly all mathematics and physics teach-
ers acknowledged the case presented to them and considered it important that students are 
competent at the transfer of algebraic skills from mathematics into physics. They believed 
that such problems mainly occur in grade 10.  

Concerning research question (1b), the continuum of beliefs contained aspects influenc-
ing transfer of algebraic skills from mathematics into physics, including beliefs that impede 
and improve transfer, and aspects that may impede and enhance students experiencing co-
herence across these subjects. These aspects also contained naïve beliefs (espoused models) 
that stand in the way of transfer after they are transformed into classroom practice (enacted 
models) (see figure 1 in chapter 1). To change naïve beliefs about transfer, teachers have to 
be aware of the relation between these beliefs and their classroom practice, reflect about 
them and reconcile their espoused and enacted beliefs. Furthermore, when implemented ap-
propriately, these aspects may help reduce science teachers’ frustrations who spend extra 
time on repeating mathematics and improve students’ transfer.  
 The majority of teachers believed that the lack of transfer is due to students who see both 
mathematics and physics as two unrelated subjects. This is emphasized by quotes such as 
“two entirely separated subjects” and “two separate worlds”.  
Contrary to physics teachers, most of the mathematics teachers mentioned that they do not 
feel the need to collaborate and cooperate with physics teachers. This may impede the de-
velopment of collaboration between both departments, especially common pedagogical 
strategies to tackle transfer problems. It goes without saying that these views are not typical 
of the whole mathematical community. In fact, one finds various ideas about the role of 
mathematics in science, the difficulties and the importance of teaching and learning transfer 
among mathematicians, even among those whose taste and interest are skewed toward the 
theoretical end of the mathematical spectrum. 

With regard to the teachers’ views about improving transfer, we identified three groups. 
The first group stated that the transfer problem in the case should be solved by intensive 
algebraic practice in mathematics class. Then, transfer of algebraic skills into physics happens 
automatically. The second group believed that the transfer problem should be solved by 
practising algebraic physics problems in physics class. Both opposite groups focus on basic 
skills, but did not pay attention to conceptual understanding. Thus, their beliefs are consid-
ered naïve in relation with transfer. The third group lies between these opposite views. They 
believed that transfer can only be solved by comprehensive algebraic practice in both math-
ematics and physics class, for example, algebra problems in mathematics class could use con-
texts and notations from physics, and physics teachers could activate prior mathematical 
knowledge. Both teacher groups should emphasize the connections between both subjects. 
Still, not all teachers in this group payed sufficient attention to insightful learning.  

Some of the teachers’ beliefs could be organized into a belief system (Ernest, 1991), i.e. 
into a set of mutually supporting beliefs about transfer and CMSE. Further research 
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investigated to which extent this is the case and which beliefs they contain. This is presented 
in study (2) and study (3) below. 

7.3 Main Results and Conclusions of Study (2) 

This qualitative follow-up study aimed at reducing the code tree including approximately 
1300 beliefs into a set of core beliefs. This was a crucial step, since the large amounts of data 
that hampered us to extract belief systems in one data reduction step. Thus, study (2) also 
functioned as ‘a bridge’ between studies (1) and (3). We used the second cycle coding tech-
nique pattern coding that grasps the essence of coded data and leaves out less important 
details. Different from, for example, Gibson and Brown (2009) and Saldaña (2013) offering 
general knowledge on how to reduce coded data, we worked out pattern coding in detail to 
further reduce the common code tree (see table 1 in the previous sub section). The latter 
included the subsequent steps ‘D1: forming of summarizing beliefs’, ‘D2: forming of main 
beliefs’ and ‘D3: forming of core beliefs’ (see figure 2 through four in chapter 3). Our sys-
tematic approach provided a generally applicable second cycle coding tool to further reduce 
data of code trees containing large amounts of data.  

As can be seen in table 2 below, we found 16 core beliefs about constraints and af-
fordances influencing both students experiencing coherence across these subjects and stu-
dents’ transfer of algebraic skills into physics. These core beliefs were organized into the five 
main categories Collaboration (number 1 and 2), Curricula (number 3 through 6), Students 
(number 7, 8 and 9), Teachers (number 10 through 14) and Textbooks (number 15 and 16). 
Thus, the nine core themes in table 1 in the previous sub section were condensed into the 
five categories of table 2. We found which of the five main categories corresponded to the 
nine core themes. 

Table 2. The set of 16 core beliefs. 

Core belief number List of core beliefs 
1 Mathematics teachers often lack time for cooperation 
2 There is a lack of collaboration between mathematics and physics teachers 
3 Algebraic skills taught in mathematics A do not match sufficiently with physics 
4 Mathematics contains less algebra 
5 Mathematics should incorporate more physics contexts 
6 The physics curriculum should contain manipulation of formulas 
7 Transfer can be stimulated if students practice in different physics contexts 
8 Transfer is being hindered because students regard mathematics and physics as separate 

subjects 
9 Transfer often will occur spontaneously if students recognize the contexts 
10 Both mathematics and physics teachers can stimulate transfer 
11 There is no consensus whether mathematics and physics teachers should be able to teach 

basic mathematics that is needed for transfer 
12 Transfer can be stimulated if mathematics and physics teachers agree on the used notations 

for formulas 
13 Transfer can be stimulated if prior knowledge is activated in physics class 

7.3 Main Result and Conclusions of  Study (2)
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14 Transfer can be stimulated if students are taught to see connections between contexts 
15 Mathematics and physics teachers stick to the lesson book 
16 There is no consensus whether mathematics and physics textbooks should be adapted  
 
Based on our literature study, some of the core beliefs were identified as the harmful naïve 
beliefs (number 6, 7, 9, 11 and 16), and the remaining ones as the transfer enhancing desirable 
beliefs. Indeed, naïve beliefs (espoused models) may stand in the way of transfer, i.e. after 
they are transformed into teaching practice (enacted models). Number 6 was considered na-
ïve since the current physics curriculum already includes explicit descriptions about manipu-
lation of formulas; concerning number 7, thoroughgoing practice in physics class may not 
necessarily improve transfer. Indeed, earlier studies have shown that besides basic skills in 
school mathematics one needs to focus on conceptual understanding; regarding number 9, 
recognition of the same algebraic structure in a mathematics equation and a physics formula 
does not necessarily lead to transfer; as to number 11, if teachers have not mastered basic 
algebraic skills, then probably many of their students also lack these skills, making transfer 
hardly possible; with respect to number 16, there is a lack of alignment between actual math-
ematics and physics textbooks. This may impede transfer. We concluded that through pro-
fessional development programs aiming at transfer and coherence across both subjects, 
teachers should be made aware of their naïve beliefs, reflect on them and reconcile their 
espoused and enacted models (see figure 1 in chapter 1).  

Furthermore, the dataset of 16 core beliefs was sufficiently reduced to extract belief sys-
tems in a last data reduction step. The latter is explained in study (3) below. 

7.4 Main Results and Conclusions of Study (3) 

To answer research question (3), we designed a digital environment to conduct an online 
survey among 503 Dutch mathematics and physics teachers from all levels of secondary ed-
ucation who were selected by means of self-selection sampling. The 16 core beliefs were 
converted into 16 claims (see table 3) and incorporated in an online multi-criteria assessment 
tool. Teachers were asked to select a top 5, and distribute 50 points over these claims, thereby 
identifying their belief system. We analysed the correlations between those 16 claims and 
found small correlations between them. Their squares (explained variance) were smaller than 
0.10, making principal component analysis and factor analysis ‘pointless’. Therefore, we used 
the clustering technique agglomerative hierarchical clustering to cluster, i.e. categorize teach-
ers based on their belief systems that may contain the harmful naïve and the transfer enhanc-
ing desirable beliefs. After focusing on teachers with more than 10 years of teaching experi-
ence, we found three large clusters for those with more than 10 years of teaching experience 
who were called ‘very experienced teachers’. We also found three large clusters for teachers 
with more than 20 years of teaching experience who were called ‘most experienced teachers’. 
Except for one belief system belonging to the most experienced teachers, the other 5 clusters 
contained both desirable and naïve beliefs including claim number 2, 6, 9 and 16. These 
clusters turned out to be rather coherent (organized) sets of beliefs, and thus were interpreted 
as belief systems.  

7.4 Main Result and Conclusions of  Study (3)
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While Ernest (1991) theoretically categorized social groups (‘Industrial Trainers’, ‘Old Hu-
manists’, ‘Progressive Educators’, ‘Public Educators’ and ‘Technological Pragmatists’) based 
on their belief systems about a variety of subjects, we empirically clustered teachers based on 
their belief systems about CMSE and transfer. This justified our idea to cluster certain groups 
based on their belief systems.  

Contrary to Ernest’s five social groups (belief systems) which are pairwise disjoint, our 
obtained belief systems were not. Indeed, some beliefs such as number 11 occur in several 
belief systems. Thus, the construction of an educational matrix model analogous to that of 
Ernest was not possible. 

Table 3. Set of sixteen claims about CMSE and improving transfer. 

Claim number Claim 
To improve the application of algebraic skills from mathematics into physics… 

1 … the collaboration between mathematics and physics teachers should have more priority. 
2 … mathematics A should contain more algebraic skills than is the case now. 
3 … mathematics should contain more algebra. 
4 … mathematics teachers need more time to cooperate with physics teachers. 
5 … the content of mathematics and physics textbooks should be adjusted. 
6 … mathematics and physics teachers should be able to explain relevant basic knowledge about 

mathematics. 
7 … mathematics and physics teachers should follow the content of their textbooks. 
8 … students should recognize physics contexts. 
9 … students should practice more algebraic skills during physics lessons. 
10 … mathematics and physics teachers should use the same notations in formulas. 
11 … prior mathematical knowledge should be activated during physics lessons. 
12 … students should see relations between contexts of both mathematics and physics. 
13 … mathematics and physics teachers should work together to improve the application of these 

algebraic skills. 
14 … mathematics should incorporate more physics contexts. 
15 … to a lesser extent students should see mathematics and physics as separate subjects. 
16 … the physics curriculum should contain more manipulation of formulas than is the case now. 

 We found that the naïve beliefs in each of our clusters concerned the weak peripheral beliefs 
in the structure of a belief system. So, contrary to the strong central beliefs containing the desir-
able transfer enhancing beliefs, they are easy to change. We concluded that this could be done 
through professional development programmes in which well-informed science teacher educa-
tors make ‘in service’ and ‘pre service’ teachers having naïve beliefs (espoused beliefs) aware of 
their belief systems, reflect on them, and change these into desirable transfer enhancing beliefs 
for teaching practice (enacted models). Otherwise, because of the powerful socialization effect 
in school, teachers are often observed to stick to the same ineffective classroom practice.  

We found similarities between the clusters of the ‘most experienced teachers’ and the 
clusters of the ‘very experienced teachers’. This yielded three clusters that we called the ‘col-
laboration-oriented group’ attaching much weight to claims 1, 11 and 3; the ‘teacher-oriented 
group’ who strongly believe in the claims 6 and 11, and the ‘Student oriented group’ attaching 
much weight to claim 15.  

Our idea to call Ernest’s belief system model ‘macroscopic model’, and the belief system 
from cognitive psychology containing a structure with varying centrality and psychological 
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strength of beliefs ‘microscopic system’, turned out to be useful. While the first model with 
espoused and enacted models was used to explain and understand how the social context of 
teaching influences a teachers’ belief system, the second model provides a detailed cognitive 
description of the espoused models to understand how the weak naïve beliefs and the strong 
desirable beliefs in a belief system are related to each other.  

From the set of 16 claims number 11 had the highest total score, and remarkably not a 
single teacher chose claim number 7. We concluded that according to the vast majority of 
teachers, activation of prior mathematical knowledge during physics is most likely to enhance 
transfer; the opposite applies for following textbooks.  

Since our belief systems and the social groups of Ernest have mathematics education in 
common, we found commonalities between them. Both ‘Industrial Trainers’ and ‘Techno-
logical Pragmatists’ share with the ‘Teacher-oriented group’ the emphasis on teachers to re-
spectively teach mathematics and improve transfer. ‘Progressive Educators’ and the ‘Student-
oriented group’ are both student-centred. To improve transfer, one should pay attention to 
students. The social groups ‘Old Humanists’ and ‘Public Educators’ have no commonalities 
with our clusters. Furthermore, neither the belief systems identified in our study, nor Ernest’s 
social groups focus on teaching practice in which both basic algebraic skills and conceptual 
understanding are taught in an integrated manner. For teaching practice aiming at CMSE and 
transfer, probably it is better to treat both concepts together. The next two studies, i.e. study 
(4) and (5) are concerned with students’ symbol sense behavior in relation with improving 
the application of algebraic skills during algebraic problem-solving in physics class. 

7.5 Main Results and Conclusions of Study (4) 

For study (4) we used convenience sampling to select 3 mathematics A students from a reg-
ular school (I), and 3 mathematics B students from a regular school (II). These students had 
a sufficient mathematics grade and an insufficient physics grade, i.e. less than 5.5. This grade 
criterion was to ensure that students’ difficulties with algebraic physics problems were mainly 
because of insufficient application of algebraic skills in physics, and not related to a lack of 
basic mathematics. We used algebraic physics problems (tasks) from the physics textbook 
SysNat. Following Bokhove & Drijvers (2011), these tasks were described in symbolic rep-
resentations, should trigger students’ algebraic problem-solving and offer insight into their 
algebraic expertise including basic algebraic skills and symbol sense behavior.  

Students’ algebraic expertise became visible through the application of algebraic tech-
niques during procedures involving basic algebraic skills and having a gestalt view on algebraic 
expressions and dealing with their visual salient aspects local salience and pattern salience in 
expressions. We conducted task-based interviews with these students who were videotaped 
while problem-solving and thinking aloud. Both videotaped data and students’ work were 
analyzed using the seven consecutive phases of Powell et al. (2003). This offered us deeper 
understanding of their algebraic problem-solving abilities in physics, especially in the underly-
ing mechanisms of transfer.  

An essential process during data analysis was the operationalization of research question 
(4). For this purpose, we developed a coding scheme. The coding process was based on 
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analyzing videotaped episodes (to some extent), the transcripts of the audio part of vide-
otaped data, and the students’ work (written solution set to the tasks). Their solution set was 
compared to our systematic solution set, coded and assigned to a score using our coding 
scheme. Moreover, the design of the solution set was based on insights from earlier studies 
stating that algebraic skills should be used in an integrated manner by focusing on both basic 
algebraic skills and insight (e.g., Bokhove, 2011; Bokhove & Drijvers, 2010; Drijvers et al., 
2011). 

These scores included ‘the symbol sense behavior percentage for each sub task’ (SSB (%) 
per subtask) that gives insight into students’ performance involving symbol sense procedures 
(algebraic procedures requiring insight) per sub task. So, SSB (%) does not refer to proce-
dures requiring basic algebraic skills. We also measured ‘the overall symbol sense behavior 
percentage for all sub tasks together’ (OSSB (%) for the whole set of subtasks). This provided 
insight into students’ performance involving all symbol sense procedures together. In addi-
tion, we measured the overall basic algebraic skills percentage for all sub tasks together 
(OBAS (%) for the whole set of subtasks). The latter was defined as algebraic procedures 
requiring only basic skills, not insight. Furthermore, a student was regarded procedurally flu-
ent if OBAS (%) ≥ 90.0% (the extent to which a student applied basic algebraic skills cor-
rectly). OSSB (%) was considered sufficient when OSSB (%) ≥ 80.0% (the degree to which 
a student demonstrated symbol sense behavior). Based on these criteria, a student was con-
sidered successful in the transfer of algebraic skills from mathematics (see title of this thesis) 
into physics class when both criteria were met. Furthermore, to determine the degree to 
which transfer occurred, we adopted a traditional perspective of transfer. Beyond this ap-
proach, to some extent, we also adopted the actor-oriented transfer view to gain insight into 
what students said about previous learning during the interviews. We concluded both per-
spectives were very useful in this area of research.  

Concerning research question (4), we found that students lacked both sufficient symbol 
sense behavior and a solid grasp of basic algebraic skills. We therefore concluded that stu-
dents overall were unsuccessful in the transfer of algebraic skills that students learned in math-
ematics class to solve algebraic physics problems in physics class. This was mainly due to 
overlooked procedures and the application of ad hoc strategies including the cross-multipli-
cation, the numbering, and the permutation strategy. The latter two strategies substitute num-
bers for variables. While the permutation strategy randomly checks several permutations to 
guess which one is correct, the numbering strategy substitutes numbers to check algebraic 
manipulations. Ad hoc approaches only worked for basic formulas containing few variables. 
In problems with more variables, students lost their overview and got stuck. Thus, we recom-
mended students to avoid the application of ad hoc approaches. Instead, they should learn 
systematic algebraic problem-solving strategies as in the solution set. This involves a rule-
based problem-solving approach in which algebraic skills are used with insight, where the term 
rule plays the role of algebraic axioms in high school algebra. Furthermore, the application of 
ad hoc strategies did not come as a surprise for us, since they were surfaced independently in 
the first three studies where teachers called them ‘tricks’. The latter was viewed as something 
that could impede transfer when students relied too much on them. Furthermore, our results 
indicated that insufficient focus on conceptual understanding of algebra in some mathemat-
ics textbooks, could lead to reliance on poorly understood ad hoc strategies.  
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Regarding effective classroom practice, we concluded that algebraic skills should not fo-
cus on either basic algebraic skills or symbol sense behavior. Instead, both aspects should be 
taught in an integrated manner. As mentioned above, this is in line with the studies on teach-
ers’ beliefs. In the next study (5), we used insights from this study (4) and the previous three 
studies to carry out interventions in physics textbooks to improve transfer and students ex-
periencing coherence across these subjects.  

7.6 Main Results and Conclusions of Study (5) 

Study (5) is a qualitative study with a quantitative component and based on the insights from 
previous studies. From study (3) on teachers’ belief systems we used claim numbers 10 
(mathematics and physics teachers should use the same notations in formulas), 11 (prior 
mathematical knowledge should be activated during physics lessons), 12 (students should see 
relations between contexts of both mathematics and physics), 13 (mathematics and physics 
teachers should work together to improve the application of algebraic skills) and 15 (to some 
extent students should see mathematics and physics as separate subjects). We note that claim 
number 11 was the most popular claim among 503 secondary education teachers, and in line 
with earlier studies emphasizing the importance of activation of prior knowledge in the con-
text of learning and instruction yielding better students’ achievements (e.g., Hailikari, Kataja-
vuori, & Lindblom-Ylanne, 2008). Therefore, we selected claim number 11 as a major design 
principle. The other claims (10, 12, 13 and 15) aim at connection between mathematics and 
physics subjects, and thus also aim at improvement of students experiencing coherence 
across these subjects. Furthermore, we also adopted the insight that not a single teacher 
among 503 respondents had claim number 7 (mathematics and physics teachers should fol-
low the content of their textbooks) in their top 5. We interpreted this as a need for partly 
adjusting algebraic problems in physics textbooks.  

From the fourth study we used the insight to improve students’ symbol sense behavior, 
in particular a systematic, rule-based problem-solving approach in which algebraic skills are 
used with insight, where rule refers to the standard rules for the division and multiplication 
of powers (𝑧𝑧𝑧𝑧𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧𝑏𝑏𝑏𝑏 = 𝑧𝑧𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), which play the role of algebraic axioms in secondary algebra ed-
ucation. Concretely, this approach has been clearly worked out in the systematic solution sets 
including basic algebraic skills and symbol sense procedures. Hence, we completely avoided 
any form of ad hoc strategies.  

From the first three studies on teachers’ beliefs about transfer and from study (4), we 
used the common insight that a well-balanced approach aiming at transfer of algebraic skills 
from mathematics into physics should focus on both basic algebraic skills (Rittle-Johnson, 
Schneider, & Star, 2015) and conceptual understanding, i.e. symbol sense behavior. 

Finally, those insights from the studies on teachers’ beliefs and the fourth study led to 
the following two major design principles: ‘activation of prior mathematical knowledge’ and 
‘using the same pedagogy of how algebraic skills are learned in mathematics textbooks’. Be-
yond our insight into claim number 7 above, the idea to include textbooks is related to our 
intention to explicitly carry out an intervention in physics textbooks. Indeed, according to 
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the studies on teachers’ beliefs textbooks are closely followed by Dutch teachers who teach 
them to their students (SLO, 2019; van Zanten & van den Heuvel-Panhuizen, 2014).  

Next, these principles were used to design shift-problems by means of the iterative 3D-
principle (Palha, Dekker, Gravemeijer, & van Hout-Wolters, 2013). Shift-problems are con-
cerned with small interventions in textbooks that are easily adopted by students and teachers. 
Based on the 3D-principle, we used convenience sampling to select three grade 10 students 
who had a sufficient mathematics grade and an insufficient physics grade, i.e. less than 5.5 
according to the Dutch ten-point grading system. This grade criterion was to ensure that 
students’ difficulties with algebraic physics problems were mainly because of insufficient ap-
plication of algebraic skills in physics, and not related to a lack of basic mathematics. The 
algebraic physics problems were selected from the physics textbook SysNat (Ottink et al., 
2014) (see chapter six for details) and included ‘Task 1: specific heat capacity’, ‘Task 2: ther-
mal resistance’ and ‘Task 3: charged particles. These tasks were described in symbolic repre-
sentations (Goldin, 2000), focused on algebraic manipulations and should trigger students’ 
problem-solving, thereby providing insight into their algebraic expertise. In students’ work, 
algebraic expertise becomes visible by using algebraic techniques during procedures involv-
ing basic algebraic skills and having a gestalt view on algebraic expressions and handling in a 
suitable way with their visual salient aspects local salience and pattern salience.  

To answer research question (5), we conducted two rounds of task-based interviews. The 
first round was conducted to answer sub question (5a), and the second round to answer sub 
question (5b). During these interviews students were asked to solve the tasks above while 
being videotaped and thinking aloud: in the first round as these tasks appeared in their physics 
textbook without guidance (Ottink et al., 2014), and after two weeks in the second round as 
shift problems (Palha, Dekker, Gravemeijer, & van Hout-Wolters, 2013). Our shift-problems 
contained an instructional model to activate prior mathematical knowledge by providing 
hints at the start of these tasks. We offered a ‘Strategic hint’ for how to start with the task, 
and an ‘Activation hint’ to activate prior mathematical knowledge in the sense that algebraic 
techniques were applied in a similar manner to how these were learned in the students’ math-
ematics textbooks (Reichard et al., 2014). Referring to study (3), the ‘Activation hint’ pro-
vided activation of prior mathematical knowledge (claim number 11). Our goal was to im-
prove students’ systematic problem-solving abilities, especially symbol sense behavior.  

Both videotaped data and students’ work were analysed in the same way as in study (4) 
using the seven consecutive phases of Powell et al. (2003). Again, this provided us deeper 
understanding of students’ algebraic problem-solving abilities in physics, especially in the 
underlying mechanisms.  

In this study (5), a student was regarded procedurally fluent if OBAS (%) ≥ 75.0% (the 
extent to which a student applied basic algebraic skills correctly). OSSB (%) was considered 
sufficient when OSSB (%) ≥ 72.7 % (the degree in which a student demonstrated symbol 
sense behavior). After students’ work of both rounds were assigned to scores, we examined 
the effectiveness of our intervention by checking to which extent students’ basic algebraic 
skills and their symbol sense behavior were improved.  Based on these criteria, a student was 
considered successful in the transfer of algebraic skills from mathematics (see title of this 
thesis) into physics class when both criteria were met. Furthermore, to determine the extent 
to which transfer occurred, we adopted a traditional view on transfer. To some extent, we 
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also adopted the actor-oriented transfer perspective and gained insight into what students 
mentioned about previous learning during the interviews. We concluded both perspectives 
were very useful in this area of research. 

Concerning sub question (5a), we found that contrary to basic algebraic skills, the symbol 
sense behavior of two of the three students were insufficient in the first round. Indeed, while 
the average OBAS (%) of the three students was 95.8 %, the average OSSB (%) was 48.5 %. 
This insufficient number was mainly due to overlooked procedures and the application of ad 
hoc strategies lacking a rule-based problem-solving approach in which algebraic skillss are 
used with insight. The ad hoc strategies involved the numbering strategy and the swapping 
strategy.  

The first strategy substitutes numbers for variables to check algebraic manipulations. The 
swapping strategy not present in study (4), first divides a single variable that is on one side 
of the equals sign by the expression that is on the other side of the equals sign. This expres-
sion is a fraction. Then, the student multiplies the single variable with the inverse of this 
expression. Again, as we have shown in the previous study, ad hoc strategies were already 
mentioned in the first two studies on teachers’ beliefs hampering transfer when students rely 
too much on them.  

Regarding sub question (5b), each student demonstrated sufficient symbol sense behav-
ior. Their average of OSSB (%) was 81.8 % and their average of OBAS (%) even 100 %. The 
students adopted the systematic hints appropriately and increased their symbol sense behav-
ior in the second round. We have seen that some activation hints were valued higher than 
others and accordingly used more often. Overall, the students benefited from shift-problems 
containing activation of mathematical knowledge where we offered rule-based hints with 
insight, especially algebraic techniques. These techniques were treated in a similar way to how 
they were learned in their mathematics textbooks.  

Based on the results above, our answer to research question (5) is using algebraic skills in 
the same way as in mathematics textbooks to activate prior mathematical knowledge was 
quite effective and improved both students’ basic algebraic skills and symbol sense behavior 
in upper secondary education when solving algebraic physics problems. We concluded that  
successful transfer of algebraic skills from mathematics to physics (see title of this thesis) is 
possible when both subjects use the same pedagogy in teaching algebraic skills.  

We profited from the insights from the studies on teachers’ beliefs about improving 
transfer of algebraic skills from mathematics into physics, and insights from study (4). These 
insights were used in an appropriate way to design shift-problems.  

Similar to study (4), we observed that ad hoc approaches only worked for basic formulas 
containing few variables. In problems with more variables, students lost their overview and 
got stuck. Therefore, students should avoid the application of ad hoc approaches and apply 
systematic algebraic strategies as in the solution set. The latter involves a rule-based problem-
solving approach in which algebraic skills are used with insight, where the term rule plays the 
role of algebraic axioms in high school algebra.  

Since there are commonalities between study (4) and this study (5), some of the results 
indicated the same. This especially applies for the lack of emphasis on conceptual under-
standing of algebra that may be the case in some mathematics textbooks. This can lead to 
reliance on poorly understood ad hoc approaches. Instead, those textbooks should pay 
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attention to effective teaching practice of algebraic skills and follow an integrated approach 
where there is attention to both basic algebraic skills and symbol sense. 

7.7 General Conclusion 

Now the main results and conclusions of the five studies above are presented, we can answer 
the central research question “How can the transfer of algebraic skills from mathematics into physics be 
improved for solving algebraic physics problems that occur in upper secondary education?”. This is possible 
through the design of shift-problems containing an instructional model that provides sys-
tematic algebraic hints at the start of algebraic physics problems. These algebraic hints consist 
of a ‘Strategic hint’ for how to start with the task, and an ‘Activation hint’ to activate prior 
mathematical knowledge in a similar way to how algebraic skills are applied in mathematics 
textbooks. With algebraic skills we refer to systematic algebraic strategies involving a rule-
based problem-solving approach in which algebraic techniques are used with insight. The 
term ‘rule’ refers to the standard rules for multiplication and division of powers, such as 
𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 = 𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, that play the role of algebraic axioms in high school algebra. The systematic 
solution sets that we used in study (5) to assess students’ work can be considered as a con-
crete example of such rule-based systematic algebraic approaches with insight. This also ap-
plies for the systematic solution set in study (4). Moreover, for each systematic solution set 
we clearly worked out algebraic expertise. The latter concept became visible through the 
application of algebraic techniques during procedures involving basic algebraic skills and 
symbol sense behavior, i.e. having a gestalt view on algebraic expressions and dealing in a 
suitable way with their visual salience (local salience and pattern salience).  

Applying ad hoc strategies can be a major threat for transfer. Indeed, we have seen that 
ad hoc approaches are not based on standard algebraic rules with insight, but only work for 
a specific case. Especially, in more sophisticated problems with more variables students faced 
serious difficulties. Therefore, students should avoid the application of ad hoc strategies and 
prioritize the application of systematic algebraic strategies. This in turn can improve the 
transfer of algebraic skills from mathematics into physics and coherence across both subjects. 

Furthermore, since we have shown that students improved their algebraic problem-solv-
ing abilities and thus transfer in study (5), we conclude that both the insights from the studies 
on teachers’ beliefs about transfer and insights from study (4) were implemented appropri-
ately in our intervention.  

7.8 General Discussion 

7.8.1 Evaluation of Models and Theoretical Contributions 

In this sub section we will evaluate the various models that are involved in this study and 
discuss the theoretical contributions to educational research. We start with the three follow-
up studies on teachers’ beliefs about transfer. Finally, we discuss the last two studies on sym-
bol sense behavior. 

7.7 General Conclusion

7.8 General Discussion
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First three studies 
Even though there is research on transfer of mathematics into science subjects, very little is 
known about transfer of algebraic skills from mathematics to physics in senior pre-university 
education. We were interested in whether teachers really acknowledged a transfer problem 
involving algebraic skills to physics class, and what were their beliefs about improving transfer 
in this area of research? Such relevant questions legitimized our problem analysis that we 
carried out in study (1).  

We found that teachers acknowledged that students encounter difficulties with applying 
mathematics in science subjects, especially algebraic skills in physics. They believed that stu-
dents should be competent in applying algebraic skills in physics class. This is in line with 
earlier studies on transfer (e.g., Cui, 2006; Jonas et al., 2017; Wong, 2018). Moreover, we 
found that teachers adopted the traditional transfer paradigm, rather than for instance, the 
contemporary actor-oriented transfer approach. They viewed transfer as the application of 
initial learning (mathematics class) in a new learning situation (physics class), again being in 
line with earlier studies on transfer (e.g., Larsen-Freeman, 2013; Leberman, et al., 2016; 
Wong, 2018). In addition, they stated that the main reason for the lack of transfer between 
both subjects is compartmentalised thinking, i.e. they believed that students see mathematics 
and science subjects as two separate subjects. They also stated that there is a lack of coher-
ence between both subjects. These findings are close to earlier studies stating that students 
see mathematics and science subjects as unrelated subjects (e.g., Berlin & White, 2012, 2014; 
Claxton, 1991; Gellish et al., 2007; Quinn, 2013; Roorda, 2012; Osborne, 2013). Especially, 
the first study provided large amounts of data about aspects influencing transfer and CMSE, 
not present in earlier studies.  

For teachers, probably the biggest remedy against the lack of transfer was activation of 
prior mathematical knowledge in physics class. This result is not that surprising, since the 
importance of pre-knowledge is already a well-known issue in the context of learning and 
instruction in relation to better students’ achievements (e.g., Hailikari, Katajavuori, & Lind-
blom-Ylanne, 2008). 

We found relevant insights about the unifying role of mathematics (Atiyah, 1993) in re-
lation with pedagogical strategies to improve transfer. These new insights were not present 
in earlier studies on transfer of mathematics into science subjects. 

The first group believed that the transfer problem should be solved by intensive algebraic 
practice in mathematics class. Then, transfer of algebraic skills into physics happens auto-
matically. The second group stated that the transfer problem should be solved by practice 
with algebraic physics problems in physics class. We concluded that these extreme, opposite 
views both lacked conceptual understanding, resonating with earlier studies that emphasize 
that for transfer both basic algebraic skills and conceptual understanding should be taught in 
an integrated approach (Drijvers, 2011; Rittle-Johnson, Schneider, & Star, 2015). The third 
group lies between these extreme, opposite views. They believed that the remedy for the 
transfer problem is comprehensive algebraic practice in both mathematics and physics class. 
Even though there is no literature about this matter, we expect that this finding also holds 
for STEM-education where the first three letters are abbreviations for ‘Science, Technology 
and Engineering’ and indicate the close relationship between mathematics and these subjects. 
Indeed, mathematics has a unifying role within each of these subjects. 
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In the third study on teachers’ belief systems (clusters), as expected, we have shown that 
teachers cannot be clustered analogous to Ernest’s (1991) matrix model about belief systems 
(social groups) that are pair-wise disjoint. Indeed, first of all, whereas his social groups are 
theoretical, our belief systems were based on empirical data. Moreover, contrary to our clus-
ters, his belief systems are ‘package deals’ where the members of his social groups are sup-
posed to either embrace or reject complete sets of beliefs without admitting belief systems 
mixing individual beliefs of different groups. His social groups do not allow for different 
degrees of belief. For instance, we have seen that claim number ‘11’ occured in five different 
belief systems. Therefore, our belief system model is much more detailed than Ernest’s black-
or-white approach in which a cluster either contains or excludes a given claim. In fact, we 
can ask whether, for instance, ‘Progressive Educators’ (Ernest, 1991) really exist.  

Even though Ernest’s (1991) theoretical social groups (‘Industrial Trainers’, ‘Old Hu-
manists’, ‘Progressive Educators’, ‘Public Educators’ and ‘Technological Pragmatists’) and 
our final belief systems (‘Collaboration-oriented group’, ‘Teacher oriented group’ and the 
‘Student-oriented group’) investigated different issues, both have mathematics education in 
common. In this regard, except for the ‘Old Humanists’ and ‘Public Educators’, we found 
commonalities between Ernest’s (1991) and our groups. The social groups ‘Industrial Train-
ers’, ‘Teacher-oriented group’ and ‘Technological Pragmatists’ share the belief that transfer 
can be improved through education that puts emphasis to the role of the teachers. Likewise, 
together with ‘Progressive Educators’ the ‘Student-oriented group’ shared the belief that 
transfer can be improved by focusing on students, rather than teachers. We concluded that 
both our belief systems and those described by Ernest (1991) did not focus on classroom 
practice involving an integrated approach focusing on both basic algebraic skills and concep-
tual understanding. For CMSE and transfer, both concepts should be learned together 
(Drijvers, 2011; Rittle-Johnson, Schneider, & Star, 2015; Roorda, 2012).  

The terms peripheral weak and central strong beliefs within the structure of a belief sys-
tem are concepts used in cognitive psychology (Green, 1971; Misfeldt, Jankvist, & Aguilar, 
2016). According to our extensive literature study, this was the first time in science education 
that the theoretically constructed weak naïve beliefs were indeed weak, and the strong desir-
able beliefs were indeed strong. We concluded that we verified a qualitative theoretical con-
struct with quantitative empirical data. Moreover, the idea to call our clusters belief systems 
was legitimate. Each cluster turned out to be a rather coherent set of beliefs. Thus, these 
clusters were interpreted as belief systems, to a certain extent justifying Ernest’s (1991) idea 
to cluster teachers based on their belief systems. 

Furthermore, our idea to refer to the belief system from cognitive psychology as ‘micro-
scopic belief system model’ and to that of Ernest (1991) as ‘macroscopic belief system model’ 
was useful. The first model offered a detailed cognitive description (Green, 1971; Misfeldt, 
Jankvist, & Aguilar, 2016) of the espoused models to understand how the weak (in this study 
naïve) beliefs and the strong (in this study desirable) beliefs in a belief system are related to 
each other. The second model with espoused and enacted models can be used to explain and 
understand how the social context of teaching through constraints and affordances influ-
ences a teachers’ belief system. In short, both belief system models complemented each 
other. They were regarded as two sides of the same coin. Therefore, we proposed to use 
both models together and refer to them as the ‘micro-macro belief system model’.  
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Concerning methodology, we used existing tools in an innovative way. For the second 
study on beliefs, we further developed pattern coding (second cycle coding technique) that 
can now be used to reduce code trees containing large amounts of data. Contrary to conven-
tional approaches (e.g., Gibson and Brown, 2009; Saldaña, 2013) offering general knowledge 
on how to further reduce coded data, we worked out pattern coding in detail. This yielded a 
systematic and refined approach, not present in conventional approaches. For the third 
study, the innovation component above was twofold: agglomerative hierarchical clustering 
(AHC) was for the first time used in science education research to extract belief systems 
about transfer. For this purpose, we defined the notion of a belief system to be a system of 
16 score distributions, which was also new in science education research. Furthermore, dif-
ferent from conventional multi-criteria assessment (mca) tools designed and used to assess 
different aspects of the sustainability of multiple options and to establish priorities of com-
peting goals and objectives (e.g., Cinelli et al., 2014; Ding, 2008; Soebarto & Williamson, 
2001), we used it to extract belief systems. In fact, we designed our mca-tool because there 
was no such tool available. Therefore, the way in which we designed and used our mca tool 
was renewing in multiple ways.  

Study four and five 
In both studies we measured the degree to which students showed both basic algebraic skills 
and symbol sense behavior during algebraic problem-solving in physics. While our tasks con-
tained expressions with variables relating to real, measurable physical quantities, other studies 
consisted of abstract mathematical variables without meaning in real life. The latter was the 
main difference between our and previous studies on symbol sense behavior (e.g., Bokhove 
2011; Drijvers 2015).  

Concerning the operationalization of symbol sense behavior, in both studies we followed 
the line of Bokhove & Drijvers (2010) in the sense that we focused on having a gestalt view 
on algebraic expressions and dealing with their visual salience. Moreover, since symbol sense 
behavior was used for the first time outside mathematics education, especially phyiscs edu-
cation and the way we operationalised this concept worked out well to gain insight into stu-
dents’ problem-solving abilities, we concluded that it is well-suited to use symbol sense be-
havior in this area of research. In addition, while Bokhove & Drijvers (2010) used a digital 
mathematical environment (DME) to assess students’ work, our research involved traditional 
pen-and-paper settings (Arcavi, 1994, 2005; Wenger, 1987). Contrary to aforementioned 
studies having a predominantly qualitative character, our coding schemes together with the 
systematic solution sets consisting of clearly worked out systematic procedures, offered us 
the opportunity to examine basic algebraic skills and symbol sense behavior qualitatively with 
a quantitative component. This implies that we were also able to measure students’ basic 
algebraic skills and symbol sense behavior quantitatively. In this regard, we used the term 
successful (see title of this dissertation) referring to the application of systematic algebraic strat-
egies during algebraic problem-solving in physics class, which was operationalized by meas-
uring the extent to which students demonstrated symbol sense behavior (OSSB (%)) and the 
degree to which students applied basic algebraic skills (OBAS (%)) properly.  

Our approach to data analysis was based on a theoretical model of Powell, Francisco and 
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Maher (2003) who provided detailed consecutive steps to analyse videotaped data. We noted 
that such approach to data analysis was not present in earlier studies in this area of research. 

Following Bokhove and Drijvers (2010), in both studies we selected tasks that should 
trigger students solving algebraic physics problems and provide insight into their procedural 
skills and symbol sense behavior.  

According to Bokhove (2011), observing symbol sense behavior was not a straightfor-
ward affair. Indeed, since the concepts of basic algebraic skills and symbol sense behavior 
are intertwined, it could be difficult to recognize whether students rely on basic skills or show 
insight into algebraic expressions. Nevertheless, in both studies we succeeded easily using 
the aforementioned numerical criteria for OSSB (%) and SSB (%). Similarly, the OBAS (%) 
criterion was used to observe basic algebraic skills. This combination of qualitative research 
(analysing videotaped data) with a quantitative component is not present in earlier studies on 
symbol sense behavior.  

Concerning study (4), the comparable performance of both mathematics groups showed 
that the algebra involved in both mathematics subjects was sufficient to tackle algebraic phys-
ics problems (SLO, 2019). This contrasted with teachers stating that physics students should 
choose mathematics B instead of mathematics A (Turşucu et al., 2017). 

Except for our intervention in study (5), in both studies we observed that students lacked 
sufficient basic algebraic skills and symbol sense behavior. This was mainly because they 
often applied ad hoc strategies. These findings corroborated earlier studies, stating that using 
ad hoc strategies leads to fragmented knowledge, impedes generalization of algebra, and can 
be harmful for conceptual understanding (e.g., Drijvers et al., 2011; Roorda, 2012). Above 
all, these findings were in line with earlier studies in which students struggle with applying 
mathematics in physics (e.g., Jonas et al., 2017; Redish & Kuo, 2014; Wong, 2018), indicating 
a lack of transfer between both subjects.  

Since we used both the coding scheme and the systematic solution set in both studies to 
quantify basic algebraic skills and symbol sense behavior, transfer was determined by the 
researchers’ perspective, rather than by the students’ construction of similarities between the 
initial and new learning situation (Lobato, 2003). Beyond this approach, to some extent we 
adopted the actor-oriented transfer view by investigating what students mentioned during 
the interviews. This offered us relevant information about their previous learning situation, 
for example, students mentioned that they learned certain ad hoc strategies from their teach-
ers. We concluded that both transfer approaches were very useful in this area of research, 
contributing constructively to the evaluation of both transfer models. Moreover, we adopted 
the traditional transfer paradigm in a way similar to previous studies (e.g., Cui, 2006; Lobato, 
2002; Rebello et al., 2007; Roorda et al., 2014). Our findings above extended the very few 
studies about students having a solid grasp of mathematics, but faced difficulties in applying 
mathematics in physics, in ways not present in earlier studies (e.g., Hudson & McIntire, 1977; 
Rebello et al., 2007). This also applied for the underlying mechanisms of transfer of learning. 

As to shift-problems (Palha, Dekker, Gravemeijer, & van Hout-Wolters, 2013), like sym-
bol sense behavior, this is the first time that this concept is used outside mathematics educa-
tion, especially in science education. Contrary to conventional educational research, shift-
problems (Palha, 2013) aim to reduce the large gap between advice offered in educational 
research and what is established in classroom practice. Only very few teachers can 
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incorporate such large changes in their teaching (Wiliam & Leahy, 2012). As a consequence, 
such studies often have very limited impact on teaching practice. Shift problems, on the other 
hand, are small interventions that are easily implemented by students and teachers. Indeed, 
in this study we have shown that this was the case. The instructional model of our interven-
tion was based on insights from the studies on teachers’ beliefs and symbol sense behavior.  
In this regard, we combined compartmentalized thinking, symbol sense behavior, teachers’ 
beliefs and mismatches between pedagogy of different algebraic approaches to improve 
transfer of algebraic skills from mathematics to physics class. Beyond the fact that such com-
bination of different areas of research was not present in previous studies on transfer (e.g., 
Jonas et al., 2017; Redish & Kuo, 2014; Wong, 2018), the way we implemented activation of 
prior mathematical knowledge in shift-problems turned in relation with those aspects turned 
out to be very effect transfer.  Furthermore, the finding that students improved their prob-
lem-solving abilities implies that we also profited from the insights from the studies on teach-
ers’ beliefs about improving transfer from mathematics into physics for which solution alge-
braic skills were needed (for instance, activation of prior mathematical knowledge), and in-
sights from study (4) on symbol sense behavior. These insights were used in an appropriate 
way to design shift-problems. In short, this study extended the very few studies on shift-
problem lessons and shows that shift-problems are well-suited to use in science education, 
thereby making educational research feasible in teaching practice. 

7.8.2 Limitations of The Study 

In this sub section we will discuss the limitations of this study. As in the previous sub section, 
we will first present the three follow-up studies about transfer that is followed by the last two 
studies. 

First three studies 
The content of mathematics and science subjects in upper secondary education in the 

Netherlands are described in curricula that describe the general educational core goals and 
the more specific standards. These core goals and standards are tested in national final ex-
aminations. To a very large extent this shapes the content of textbooks and teachers who 
quite strictly follow them (SLO, 2019; van Zanten & van den Heuvel-Panhuizen, 2014). 
Thus, teachers’ beliefs about transfer are greatly influenced by the content of textbooks. 
Since we do not expect much difference in the content of textbook series, teachers’ beliefs 
would not differ significantly from each other. On the other hand, teachers’ beliefs in the 
first study were saturated. Indeed, we did not see much change in the diversity of teachers’ 
individual beliefs after eight interviews in both teacher groups. Since study (2) followed from 
the previous study, the core beliefs were regarded as saturated too. Therefore, the combina-
tion of national final examinations described through the general educational core goals and 
the more specific standards in curricula, and saturated beliefs made the results of both studies 
generalizable for mathematics and physics teachers teaching in Dutch upper secondary edu-
cation. This also applied for senior general secondary education teachers. We did not expect 
that this holds for preparatory vocational secondary education, because the algebraic skills 
needed in physics were simply too different from those in upper and senior general secondary 
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education. This could lead to different teachers’ beliefs about transfer. In many countries, 
however, such combination of national examinations and curricula shaping textbooks above 
with textbook-driven teachers does not exist (e.g., The National Academies Press, 2018; 
‘TIMMS & PIRLS’, 2019). Hence, our results in the first two studies were not generalizable 
to these countries.  

Even though the results above are not generalizable to science teachers, especially physics 
teachers, we did observe students struggling with mathematics in physics class (e.g., Jonas et 
al., 2017; NCTM, 2013; Redish, 2017; Wong, 2018). So, our study corroborated earlier find-
ings that students face problems with mathematics in science class, and that they should be 
competent at it.  

Our sample in the quantitative follow-up study (3) on teachers’ belief systems contained 
118 very experienced and 97 most experienced teachers. They were all qualified to teach in 
upper secondary education. From these 215 teachers, 136 teachers taught mathematics and 
79 physics. These numbers were in good agreement with the 2903 qualified mathematics and 
1330 qualified physics teachers in upper secondary education in the Netherlands (Ministry 
of Education, Culture and Science, 2018), also giving a ratio of roughly 2:1. Moreover, our 
sample with 118 very experienced teachers had a gender-ratio of 1:1 for mathematics, and 
5:1 for physics teachers. For the 97 most experienced teachers these numbers were 2:1 for 
mathematics and 13:1 for physics teachers. Unfortunately, there were no data available on 
the gender-ratio of qualified most experienced and very experienced mathematics and phys-
ics teachers in upper secondary education. This implied that we cannot judge how well our 
sample represented the national Dutch situation.  

Like the results of the first two studies on teachers’ beliefs, the results in study (3) on 
teachers’ belief systems were largely shaped by the combination of national examinations and 
curricula that shape the content of textbooks. We therefore expected our results to be gen-
eralizable for both senior pre-university education and senior general secondary education in 
the Netherlands. This did not apply for preparatory vocational secondary education. This 
would lead to different belief systems (claims) about CMSE and transfer. Because of the 
same arguments as in the first two studies, we did not expect our results to be generalizable 
to other countries outside the Netherlands. 

Among the three methods of clustering techniques optimization methods, mixture mod-
els and agglomerative hierarchical clustering, we used the third option and discarded the 
second option, because it presupposed knowledge of latent variables. A standard optimiza-
tion method is the k-means method. Unfortunately, it had several disadvantages. Firstly, it 
imposed a spherical structure on the data, i.e. it assumed that the data points are clustered in 
more or less spherical clusters in 16-dimensional space. We had no a priori reason to expect 
this to be true. Secondly, one had to choose the number k of clusters in advance, and thirdly, 
the algorithm starts with random cluster centres resulting in rather different clusters in each 
run of the k-means algorithm. We therefore used agglomerative hierarchical clustering that 
had not these disadvantages. Since this method led to nicely distributed clustering of belief 
systems with very clear splitting heights, it was also objective. 

Concerning reliability of the statistical analysis, some error bars were quite large com-
pared to the mean scores and standard deviations of the large clusters for the most and very 
experienced teachers, respectively. This large dispersion in a belief system is usually due to a 
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to these countries.  

Even though the results above are not generalizable to science teachers, especially physics 
teachers, we did observe students struggling with mathematics in physics class (e.g., Jonas et 
al., 2017; NCTM, 2013; Redish, 2017; Wong, 2018). So, our study corroborated earlier find-
ings that students face problems with mathematics in science class, and that they should be 
competent at it.  

Our sample in the quantitative follow-up study (3) on teachers’ belief systems contained 
118 very experienced and 97 most experienced teachers. They were all qualified to teach in 
upper secondary education. From these 215 teachers, 136 teachers taught mathematics and 
79 physics. These numbers were in good agreement with the 2903 qualified mathematics and 
1330 qualified physics teachers in upper secondary education in the Netherlands (Ministry 
of Education, Culture and Science, 2018), also giving a ratio of roughly 2:1. Moreover, our 
sample with 118 very experienced teachers had a gender-ratio of 1:1 for mathematics, and 
5:1 for physics teachers. For the 97 most experienced teachers these numbers were 2:1 for 
mathematics and 13:1 for physics teachers. Unfortunately, there were no data available on 
the gender-ratio of qualified most experienced and very experienced mathematics and phys-
ics teachers in upper secondary education. This implied that we cannot judge how well our 
sample represented the national Dutch situation.  

Like the results of the first two studies on teachers’ beliefs, the results in study (3) on 
teachers’ belief systems were largely shaped by the combination of national examinations and 
curricula that shape the content of textbooks. We therefore expected our results to be gen-
eralizable for both senior pre-university education and senior general secondary education in 
the Netherlands. This did not apply for preparatory vocational secondary education. This 
would lead to different belief systems (claims) about CMSE and transfer. Because of the 
same arguments as in the first two studies, we did not expect our results to be generalizable 
to other countries outside the Netherlands. 

Among the three methods of clustering techniques optimization methods, mixture mod-
els and agglomerative hierarchical clustering, we used the third option and discarded the 
second option, because it presupposed knowledge of latent variables. A standard optimiza-
tion method is the k-means method. Unfortunately, it had several disadvantages. Firstly, it 
imposed a spherical structure on the data, i.e. it assumed that the data points are clustered in 
more or less spherical clusters in 16-dimensional space. We had no a priori reason to expect 
this to be true. Secondly, one had to choose the number k of clusters in advance, and thirdly, 
the algorithm starts with random cluster centres resulting in rather different clusters in each 
run of the k-means algorithm. We therefore used agglomerative hierarchical clustering that 
had not these disadvantages. Since this method led to nicely distributed clustering of belief 
systems with very clear splitting heights, it was also objective. 

Concerning reliability of the statistical analysis, some error bars were quite large com-
pared to the mean scores and standard deviations of the large clusters for the most and very 
experienced teachers, respectively. This large dispersion in a belief system is usually due to a 
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few outliers in the cluster. Even if we considered this dispersion, our description of the main 
characteristics of the two triples of belief systems and the differences between them remained 
valid.  

Furthermore, to enhance reliability of our results, the analysis of each study was carried 
out independently by several researchers including the first and second authors and cross-
checked afterwards. Discrepancies between results were always discussed and if required, 
adjustments in those areas were made. This led to 100% agreement on the results among the 
researchers. 

Study four and five 
The strong selection criteria in study (4) and (5) were required to safeguard the quality of 
these studies. Firstly, the students should be selected from regular schools and have a suffi-
cient mathematics and an insufficient physics grade, i.e. less than 5.5 according to the Dutch 
ten-point grading system. They should follow the same mathematics (Reichard et al., 2014a; 
2014b) and physics textbook series (Ottink et al. 2014; Sonneveld et al., 2014) and have a 
similar knowledge domain in these subjects at the moment of interviews. Finally, because we 
used convenience sampling, they should be available and willing to participate in this study. 
This resulted in a sample containing 1 male and 5 female students for study (4), and a sample 
of 1 male and 2 female students for study (5). The gender ratio might only be an issue for 
study (4). The strong selection criteria above hampered us to meet a 50% : 50% gender ratio. 
Fortunately, our extended literature study revealed that there were no indications that such a 
sample would have generated different results. Instead, they may be similar. Indeed, students’ 
performance in terms of procedural fluency and symbol sense behavior is mainly related to 
a combination of grades for both subjects and a similar knowledge domain, rather than on 
gender. It is very likely that male and female students with similar grades will show similar 
performance. So, the composition of our sample was not be seen as a limiting factor. Still, it 
is worthwhile to elaborate on this matter, since this contributes to the internal validity (Bry-
man, 2015) of both studies. 

The grade criteria for mathematics and physics subjects were imposed to ensure that 
students’ difficulties with algebraic physics problems were mainly due to insufficient appli-
cation of algebraic skills in physics, and not related to a lack of basic mathematics. The other 
criteria were imposed to legitimatize to compare the results of individual students. In addi-
tion, the same argument applied to compare both groups in study (4). A point of attention 
is that students’ poor physics grades could also be the result of the absence of a variety of 
aspects, for example, understanding physical concepts or having a positive attitude towards 
physics.  

In both studies we had very small samples, implying that the findings cannot be extended 
to the whole Dutch population, neither to other countries outside the Netherlands. For study 
(5) one may speculate how the results of a large-scale research may differ from our study. 
For instance, if the designed shift-problems in round two were implemented in 50 regular 
schools in the Netherlands. We stated that some of them may be close to our results, and 
others may differ more than what we have obtained. Still, we expected that students would 
improve the extent to which they applied basic algebraic skills correctly and demonstrated 
symbol sense behaviour in the second round. This implies that our intervention was 
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independent of who conducted the research. Indeed, using insights from the first three stud-
ies on teachers’ beliefs we focused on activation of prior mathematical knowledge in these 
tasks, in the same way to how algebraic skills are applied in mathematics textbooks. We be-
lieved that this would strengthen students experiencing coherence across mathematics and 
physics and improve transfer.  

Regarding pedagogical approaches to algebraic problem-solving in upper secondary ed-
ucation, there can be similarities between our context and countries outside the Netherlands. 
Specifically, in countries with national final examinations in combination with curricula de-
scribing the general educational core goals and the more specific standards, shaping the con-
tent of textbooks and teachers and students who follow them faithfully. Furthermore, the 
students in both studies are not representative for the national Dutch situation. The individ-
ual differences among the students’ grades and their OBAS (%) and OSSB (%) characteristics 
were simply too different.  

For study (4) we had the criteria OBAS (%) ≥ 90.0% and OSSB (%) ≥ 80.0%. These 
numbers were 75 % and 72.7 % respectively in study (5). None of these values were chosen 
arbitrarily. In fact, they were the result of consensus among all authors after a series of dis-
cussions. First of all, the students should have a solid foundation of basic algebraic skills, 
explaining why OBAS (%) was slightly higher than OSSB (%). Indeed, symbol sense behavior 
extends basic algebraic skills and also depends on insight. Thus, OBAS (%) and OSSB (%) 
had not the same values.  

The hints provided in both studies aimed at helping students to proceed when they got 
stuck. These hints did not cause any undue bias, neither did they influence students’ proce-
dural fluency and demonstration of symbol sense behaviour. This is illustrated in examples 
in the transcripts of videotaped data. Therefore, the findings of both studies were considered 
reliable. Furthermore, in study (5), except for the exemplary task and the systematic hints 
offered in the second round, students were asked to solve the same problems in round one. 
The second round was conducted two weeks after round one. Thus, we believed that this 
has not caused any undue bias, neither influenced students’ performance. Also, the combi-
nation of the exemplary task and the systematics hints shaped a different context than the 
same problems in the first round. In addition, based on conversations with students there 
were no indications that pointed in this direction. They seemed not to be aware that shift-
problems of the second round contained the same tasks as in the first round.  

7.8.3 Further Research 

Based on our analysis of the studies (1) through (5), there are four future research related 
topics. These are ‘Further research on teachers’ beliefs’, ‘Quality control’, ‘Research design’ 
and ‘Textbook issues’. Below we elaborate on these topics.  

Further research on teachers’ beliefs 
In study (1), referring to figure 1 (Ernest, 1991) in chapter 1, some mathematics teachers had 
purist beliefs. Even though they perceived applied mathematics inferior to pure mathematics 
and refused to discuss applications (espoused beliefs), they made suggestions about 
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improving transfer. We recommend identifying these mathematics teachers. How do they 
deal with transfer problems in the classroom (enacted beliefs) if they have such purist beliefs?  

Although we expected that there were three groups concerning the unifying role of math-
ematics in relation with transfer to other subjects than physics, for instance STEM-education, 
we suggest future studies to investigate this matter. We also suggest future studies examining 
to which extent our findings apply to other countries. This may lead to a general framework 
explaining how the unifying role of mathematics is related to teachers’ beliefs about enhanc-
ing transfer of mathematics in other subjects.  

For the follow-up study (2), we recommend identifying mathematics teachers who be-
lieved that both mathematics and physics teachers are not required to be sufficiently knowl-
edgeable to teach basic mathematics (espoused beliefs). Why do these teachers have such 
naïve beliefs about something that is of major importance for transfer? To answer this and 
the question above, we suggest conducting in depth-interviews. Concerning mathematics 
teachers with purist beliefs, this may provide deeper understanding about the relation be-
tween such beliefs (espoused models) and teaching practice (enacted models), and for the 
teachers with naïve beliefs, this may offer insight into why these teachers were unaware of 
their naïve beliefs about transfer. For both type of teachers, future research should focus on 
the relationship between espoused and enacted models and make them aware of their harm-
ful beliefs for transfer. 

In study (3) we found six large clusters (belief systems). Only one cluster consisted of the 
desirable transfer enhancing beliefs. The other clusters contained both naïve and desirable 
beliefs. Fortunately, most of the naïve beliefs within our clusters were weak. What if they 
were strong? Since naïve beliefs are harmful for transfer in relation to teaching practice, one 
would like to see them change into desirable beliefs. However, strong beliefs will resist heav-
ily to change because they are connected to other neighboring strong beliefs about transfer. 
In case of carrying out interventions by means of shift-problems as in study (5), one needs 
teachers having belief systems with desirable beliefs. Indeed, contrary to teachers having na-
ïve beliefs, we assume that teachers with desirable beliefs will participate more easily in such 
shift-problem studies. We therefore recommend future studies to investigate the question 
“How can strong naïve beliefs be changed into desirable beliefs within the structure of a belief system?”. This 
may provide solutions making it easier for teachers having belief systems with naïve beliefs 
to participate more easily in research investigating shift-problems. 

The result that not a single teacher among 503 respondents (!) had chosen claim number 
7 in their top 5 implies that they believe that following the content of textbooks does not 
contribute sufficiently to improve transfer. For instance, because they might have believed 
that there are pedagogical mismatches between mathematics and physics textbooks. In fact, 
they can have various reasons underlying their beliefs. We therefore suggest conducting qual-
itative interviews with some of these mathematics and physics teachers to gain insight into 
why they did not choose claim number 7 in their top 5. 

Data reduction is concerned with grasping the essence and leaving out less important 
details. But what if these details may have contained relevant information as for the core 
themes in study (1), core beliefs in study (2) and belief systems in study (3)? In this regard, 
we removed three outliers in the first study. These outliers were the missing subthemes that 
did not contain at least three different beliefs uttered by at least three different teachers. This 
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criterion may be slightly arbitrary, since outliers may contain relevant information about 
missing teachers’ beliefs such as the subtheme ‘Focus on students’. Indeed, only two teachers 
mentioned the focus on students, thereby approaching transfer traditionally (Lobato, 2003). 
These two teachers seemed to adopt an alternative approach in which they tried to under-
stand transfer as constructed by the student, i.e. from the students’ point of view, and not 
from a teachers’ perspective. Therefore, it is worthwhile to identify these teachers and exam-
ine how they exactly viewed transfer.  

In the second study a core belief was considered an outlier when a summarizing belief 
was mentioned less than three times by less than three different teachers. Also, this criterion 
may be slightly arbitrary. Some of these missing core beliefs were related to the integration 
of mathematics and physics subjects through the curriculum or textbooks. We suggest stud-
ying this matter, since integration can be relevant for transfer. In the third study we focused 
on the three largest clusters for both teacher groups and neglected 28% of the most experi-
enced teachers and 26% of the very experienced teachers. This implies that we based our 
findings on respectively the 72% and 74% of the extracted belief systems. It is very likely 
that some of these clusters contained naïve beliefs that can be harmful for students experi-
encing coherence across these subjects and transfer. We therefore recommend to further 
research this matter.  

Quality control 
Regarding study (3), our sample had a gender ratio (male-female) of 1:1 for mathematics, and 
5:1 for qualified most experienced teachers. For the very experienced teachers this was 2:1 
for mathematics and 13:1 for physics teachers. Unfortunately, according to the Dutch Min-
istry of Education, Culture and Science (2019), there were no data available on the gender-
ratio of qualified most experienced and very experienced mathematics and physics teachers 
in Dutch upper secondary education. Therefore, we could not judge how well our sample 
represented the national situation. At this point, we recommend further studies to investigate 
the national gender-ratios of both mathematics and physics teachers in SPE in relation with 
the number of years of teaching experience. This should lead to statements about national 
representability and generalizability of this study. 

Research design 
Four issues related to research design may need further attention. Two of them were con-
cerned with design principles and the other two with participants. For future studies con-
ducting similar research on problem-solving as study (4) and (5), we recommend incorporat-
ing two important aspects in the interview protocol. The latter should explicate that students 
should take their time to read the tasks carefully, because they immediately started solving 
the problems. In addition, almost half of the students worked fast, and after finishing the 
tasks they did not check them. Hence, their work contained sloppy mistakes that may have 
been overcome when they had carefully re-examined their solutions. According to earlier 
research (Hattie & Timperley, 2007; Shute, 2008) the students would have benefited from a 
guideline explicating to reexamine their finished work. This may also enhance their meta-
cognitive skills. Further research could examine to which extent students benefit from such 
a guideline during algebraic problem-solving in physics. The other issue deals with the design 
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of systematic hints in study (5). Even though students adopted systematic hints, some of 
them were higher valued than others. We recommend further research to investigate what 
aspects some hints make more useful than others, yielding a complete set to draw from.  

The students in study (5) worked alone on these problems. These students solved the 
tasks individually. It would be interesting to conduct similar studies with shift-problems during 
collaborative work in regular classrooms (Palha et al., 2013). How could such learning environ-
ments improve students’ learning?  

Furthermore, it is worthwhile to examine the research questions of study (5) in a large-
scale study, for instance when N = 50 (schools) as mentioned in the previous section. Even 
though we expect that students will improve their symbol sense behavior in the second 
round, and thus transfer, there are no data available that confirm this expectation. We rec-
ommend future studies to examine this matter.  

Textbook issues 
A key actor in this study was the textbook, for it is very closely followed by both teachers 
and students (SLO, 2019; van Zanten & van den Heuvel-Panhuizen, 2014). This does also 
apply for many other countries with national final examinations like the Netherlands. In this 
regard, the studies on teachers’ beliefs about improving transfer and the last two studies 
provided relevant information about both junior and senior pre-university education and put 
forward questions to be investigated in future studies.  

Concerning aforementioned absence of claim number 7, we also suggest conducting an 
extensive literature study investigating important questions as “What are the possibilities to con-
nect both textbooks in terms of, for instance equations, formulas, same pedagogical approaches, and organi-
zation of the learning process?” And above all, since mathematics and physics textbook publishers 
pursue different aims, “What are the possibilities that mathematics and physics textbook publishers work 
together?”.  

The lack of connection between both subjects became more evident in the following 
studies (4) and (5). We have seen that instead of emphasis on rule-based systematic algebraic 
strategies, some students learned ad hoc strategies such as the cross-multiplication approach 
from their mathematics textbook Getal en Ruimte (Reichard et al., 2014a). Since this textbook 
method has the largest market share in the Netherlands, it influences large number of teach-
ers and students (SLO, 2019; van Zanten and van den Heuvel-Panhuizen, 2014). We there-
fore recommend further research conducting a textbook analysis of Getal en Ruimte in which 
different types of ad hoc strategies are mapped and analyzed. The findings should be com-
municated to the publisher. In addition, the lack of insight of grade 10 students’ algebraic 
skills in round one was may be due to insufficient emphasis on a rule-based problem-solving 
approach with insight in grade 9. We recommend future studies examining grade 9 textbooks 
to elaborate on this matter. 

Furthermore, based on our findings from the studies (1) through (5), it is very likely that 
there are mismatches between how algebraic skills are learned in mathematics textbooks and 
how these are applied in physics textbooks. This can impede students experiencing coher-
ence across both subjects and transfer. We therefore suggest a comparative textbook analysis 
in the mathematics textbook series Getal en Ruimte and the physics textbook series SysNat that 
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also has the largest market share in the Netherlands. These mismatches should be mapped 
and analyzed. Again, the findings should be communicated to the publisher. 

7.8.4 Implications for Educational Practice 

The implications in this section are in line with the coherent mathematics and science edu-
cation (CMSE) approach that aims at connection between mathematics and science educa-
tion, especially physics education. We have organized this section around the topics ‘Curric-
ula’, ‘Textbook Publishers’, ‘Teachers’, and ‘Teacher Educators’. We also discuss the impli-
cations of this study for ‘STEM-education’. Below we will elaborate on these topics in detail. 

Curricula 
Referring to CMSE, the actual mathematics curricula for upper secondary education only 
mention that they are designed and tested as part of an integrated examination program 
(SLO, 2019) that involves mathematics and science subjects. Moreover, there is no explicit 
reference to alignment through, for example, compatible notations, the same pedagogy of 
using algebraic skills, and the organization of the learning process in order to achieve a logical 
learning line across both subjects. This also holds for the physics curriculum. In short, there 
is a lack of connection between the mathematics and physics curricula in Dutch senior pre-
university education.  

With connection we do not refer to fully integrated mathematics-physics curricula serving 
only both subjects. Indeed, mathematics has also a role in other (science) subjects, and thus 
to some extent has to avoid context. However, the situation is different for physics, since 
mathematics is most frequently used in physics. For instance, algebraic skills, calculus, geom-
etry and trigonometry are widely used in physics. We therefore recommend making explicit 
reference to connect both curricula through the core goals and content standards. A key 
principle is the pedagogy of using identical mathematical approaches, especially the pedagogy 
of applying algebraic skills. In this respect, both curricula should explicate the importance of 
using systematic algebraic strategies as in the solution set of the appendices of study (4) and 
(5). With systematic algebraic approaches, we refer to a rule-based problem-solving approach 
in which algebraic skills are used with insight, where rule refers to the standard rules for 
multiplication and division of powers, such as 𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎 ∙ 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏 = 𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, that play the role of algebraic 
axioms in high school algebra (Drijvers et al., 2011). In addition, also the application of iden-
tical equations and formulas, concept descriptions, compatible notations, and the organiza-
tion of the learning process should be explicated. Furthermore, through core goals we rec-
ommend both curricula explicating that using ad hoc strategies can be harmful for applying 
algebraic skills with insight, and impede students experiencing coherence across these sub-
jects and transfer of algebraic skills from mathematics into physics class. Indeed, in addition 
to the latter two studies, especially in our study on teachers’ beliefs these issues were empha-
sized by both mathematics and physics teachers and considered as of major importance.  

On the individual level, the physics curriculum should emphasize the importance of prior 
mathematical knowledge through the same pedagogy of applying algebraic skills, in particular 
algebraic techniques that occur in mathematics curricula. The content standards of these 
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mathematics curricula should emphasize the importance of algebraic physics problems anal-
ogous to mathematics problems.  

Textbooks 
Internationally, independent of whether mathematics textbooks are determined by national 
final examinations at the end of secondary school, which are described in curricula through 
the general educational core goals and the more specific standards, we recommend paying 
attention to systematic algebraic approaches during problem-solving in mathematics class. 
In addition, to provide context, mathematics problems should adopt corresponding physics 
problems. Concretely, we refer to worked out systematic procedures with insight similar to 
that in the solution set in the last two studies, thereby placing emphasis on the differences 
between algebraic techniques during these procedures. For instance, division and inverting 
of both sides of the equals sign. Our study shows that it is probably better to pay attention 
and distinguish between procedures involving basic algebraic skills and symbol sense behav-
ior during algebraic problem-solving in physics class.  

Concerning physics textbooks, we recommend using paragraphs in which physics prob-
lems are introduced through corresponding mathematics problems that students have 
learned in their mathematics textbooks. We emphasize that activation of pre-knowledge in 
the context of learning and instruction is important in relation to better students’ achieve-
ments (e.g., Hailikari et al. 2008). Moreover, non-routine physics problems or problems re-
quiring unusual thinking should be presented as shift-problems containing systematic hints 
with strategic and algebraic hints that guide students during problem-solving. Again, these 
hints should use identical problem-solving pedagogies to that in mathematics textbooks.  

We strongly recommend both mathematics and physics textbooks to avoid ad hoc strat-
egies, especially mathematics textbooks where the cross-multiplication approach is widely 
used (We have checked this in, for example, Getal en Ruimte (Reich et al, 2014a). Furthermore, 
the application of aforementioned identical equations and formulas, concept descriptions, 
compatible notations should be explicated. This also holds for the organization of the learn-
ing process, since certain mathematical concepts are taught in physics class before they are 
explained in mathematics class (SLO, 2019; Alink et al., 2012).  

The design principles above have important implications for textbook publishers. Indeed, 
in many countries, they are bound to one discipline (‘TIMMS & PIRLS’, 2019), since each 
of them pursues different aims. We therefore recommend mathematics and physics publish-
ers to work together and develop textbook series in which these principles are incorporated.  

Teachers  
Activation of prior-knowledge, using identical pedagogies in systematic problem-solving 
with insight and other implications above, also apply for physics teachers. Even mentioning 
that physics formulas are rooted in mathematics class, writing mathematics and physics ex-
pressions next to each other, or relating physical quantities to the variables x and y used in 
mathematics to some extent can impede compartmentalized thinking, and thus improve 
transfer and students’ demonstration of coherence across mathematics and science subjects, 
in particular physics (Quinn, 2013; Turşucu et al., 2018c). Similar issues hold for mathematics 
teachers, for example, mentioning that algebraic skills are used in physics.  
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These issues may have consequences for effective teaching practice. Should teachers pay 
attention to basic algebraic skills, or focus on conceptual understanding? We have seen that 
students experienced difficulties because, for example, their basic procedures were not auto-
mated or the automated procedures were insufficient to tackle unusual problems. We there-
fore recommend teachers to teach both procedural skills and insightful learning in an inte-
grated manner.  

Such implications may require teachers from both mathematics and physics departments 
to communicate with each other. However, in the Netherlands and also internationally, cur-
ricula are overloaded (e.g., Lyons, 2006). As a result, most teachers lack time to collaborate 
with each other (SLO, 2019). Thus, such collaborative efforts should focus on alignment of 
both subjects that is feasible to adopt in classroom practice. For instance, mathematics and 
physics teachers may systematically reserve some fixed amount of time in their school time-
tables, compelling them to stick to their schedules. In addition, informal meetings may also 
provide a solution.  

Teacher educators 
In the first three studies we have seen that many mathematics and physics teachers have 
naïve beliefs about transfer that can be harmful for teaching practice. A widely shared belief 
is automatic transfer (e.g. Turşucu et al., 2017). We have seen that some teachers claimed 
that extensive practice with algebraic skills in mathematics class automatically leads to the 
transfer of these skills in physics class. Another naïve belief was that mathematics and physics 
teachers are not necessarily required to be sufficiently knowledgeable to explain basic math-
ematics. Such and similar beliefs (espoused models) can be harmful for transfer, i.e. they can 
impede transfer when these are transformed into classroom practice (enacted models). To 
change naïve beliefs into desirable transfer enhancing beliefs, well-informed mathematics and 
science teacher educators in professional development programs (Girvan et al., 2016; Gus-
key, 2002) can make teachers aware of the relationship15 between these beliefs and classroom 
practice (Ernest, 1991), reflect about them and reconcile their espoused and enacted models. 
Furthermore, since probably the most important matter in relation with transfer is that teach-
ers should be sufficiently knowledgeable to explain basic mathematics, we recommend this 
to be a pre-requisite for pre-service teachers following science teacher education programs 
leading to a teaching qualification. This does not hold for mathematics teachers, because 
basic mathematics is considered to be part of mathematics teacher education programmes.  

For the other two studies some mathematics teachers used ad hoc strategies (espoused 
models) that can also be harmful for transfer in classroom practice (enacted models). Again, 
we recommend teacher educators to reconcile teachers’ espoused and enacted models above, 
and to pay attention to systematic algebraic strategies. 

STEM education 
In a large number of countries including the Netherlands, national governments aim for 
interdisciplinary Science, Technology, Engineering, and Mathematics Education (van 
Breukelen, 2017; National Science and Technology Council, 2013; SLO, 2019; ‘TIMMS & 

15 A detailed explanation of teachers’ beliefs about transfer in relation with classroom practice can be found in 
chapter 1. 
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PIRLS’, 2019). At the heart of STEM education lies mathematics. This idea is based on the 
traditional transfer paradigm in which mathematics (initial learning situation) is applied in 
other subjects (new learning situation) (Larsen-Freeman, 2013; Leberman et al., 2016). In-
deed, mathematics has a unifying role (Atiyah, Dijkgraaf, & Hitchin, 2010) for it can be ap-
plied in each of these subjects. Conversely, analogous mathematical forms in each of these 
subjects can be reduced to the same abstract mathematics. Because of this unifying role of 
mathematics, we recommend upper secondary education teachers involved in STEM educa-
tion to connect their subject to mathematics. These teachers should use the same pedagogy 
of applying mathematics as in mathematics textbooks. Again, this includes a rule-based prob-
lem-solving approach in which mathematics is used with insight.  

According to our extensive literature study, connecting mathematics with these STEM 
subjects through standard rules that play the role of algebraic axioms in high school algebra 
(Drijvers et al., 2011) has not studied before. There are no concrete examples of what such 
connections may look like in teaching practice. Therefore, instead of large collaborative ef-
forts, it is probably better that STEM teachers aim at small collaborative efforts that are 
feasible for them. Especially, for mathematics teachers this demands a tremendous effort to 
answer STEM teachers needs.  
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Summary 

Chapter 1: introduction 

Science teachers have the experience that students in both secondary and higher education 
face difficulties with applying mathematics (initial learning situation) into science class (new 
learning situation), indicating a lack of transfer between these subjects (e.g., Redish & Kuo, 
2014; Roorda, 2012; Wong, 2018). As a consequence, science teachers may be forced to re-
teach basic mathematics. This may be frustrating and time-consuming, overshadowing the 
science content that needs to be taught. In addition, in a large number of countries, science 
curricula are overloaded, compelling science teachers to fit their program into a seriously 
reduced instruction time (e.g., Lyons, 2006), making inefficient transfer of mathematics in 
physics even more harmful.  

Although such transfer problems are of major importance for both students and teachers, 
they are not studied extensively, especially the transfer from mathematics into physics. Ex-
cept for a couple of studies (e.g., Hudson & McIntire, 1977; Rebello et al., 2007), the case of 
students having a solid grasp of mathematics but lack sufficient application in science is even 
highly under researched. Furthermore, in recent years, physics problems requiring mathemat-
ics such as the application of algebraic skills, have become more important in upper second-
ary physics education (grades 10, 11 and 12 of pre-university education). Therefore, examin-
ing this transfer phenomenon is relevant from both educational and scientific point of view. 

In this both qualitative and quantitative explorative study, we aimed at improving the 
transfer of mathematics in physics. We especially focused on the application of algebraic 
skills to solve physics problems that occur in senior pre-university education. These prob-
lems contained physics formulas described in symbolic representations. For instance, the 

derivation of Kepler’s third law using 𝐺𝐺𝐺𝐺 𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑠𝑠2

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

𝑠𝑠𝑠𝑠
 and 𝑇𝑇𝑇𝑇 = 2∙𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑠𝑠

𝑣𝑣𝑣𝑣
, or solving for 𝑚𝑚𝑚𝑚 in the 

period of a spring-mass system 𝑇𝑇𝑇𝑇 = 2 ∙ 𝜋𝜋𝜋𝜋 𝜋 �𝒎𝒎𝒎𝒎
𝑪𝑪𝑪𝑪

. This goal was guided by the central research 

question “How can the transfer of algebraic skills from mathematics into physics be improved for solving 
algebraic physics problems that occur in upper secondary education?”. To answer this question, we con-
ducted five subsequent explorative studies using qualitative and quantitative methods. The first 
three were follow-up studies investigating (1) teachers’ beliefs16, (2) teachers’ core beliefs and 
(3) teachers’ belief systems. In study (4), we researched students’ symbol sense behavior
(SSB) during algebraic problem-solving in physics, and in study (5) the effectiveness of acti-
vation of prior mathematical knowledge during algebraic problem-solving in physics.

16 In this study we carried out a problem analysis, since very little was known about transfer of algebraic skills from 
mathematics into physics in upper secondary education. A detailed explanation of this problem analysis can be 
found in chapter 1. 
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Chapter 2: study (1) 

For this qualitative study we examined the two research questions (1a) “How do mathematics 
and physics teachers characterise the transfer problem in the case?”, and (1b) “What sort of beliefs do 
mathematics and physics teachers’ beliefs have about improving students’ transfer of algebraic skills from 
mathematics into physics for solving algebraic problems that occur in senior pre-university education (SPE)?”. 
To answer these research questions, we used convenience sampling to select 10 mathematics 
and 10 physics teachers from regular Dutch schools within a radius of approximately 50 km. 
These teachers were qualified to teach in senior pre-university education and had at least five 
years of teaching experience. They were interviewed by means of a semi-structured question-
naire including a concrete case about a students’ transfer problem from mathematics to phys-
ics for which solution algebraic skills were needed. The questions dealt with aspects such as 
mathematics and physics teachers, collaboration between them, mathematics and physics 
curricula, and mathematics and physics textbooks. The interviews were transcribed verbatim 
for analysis, for which the teachers gave consent.  

We used open coding (Bryman, 2015) to label each fragment of the transcripts, which 
provided a short description of teachers’ individual beliefs regarding research questions (1a) 
and (1b). For each of the twenty transcripts this led to a set of labels identifying teachers’ 
beliefs. Next, we used axial coding including two steps. First, labels with the same content 
were put together, resulting in a grouping of the labels. Each group of labels was summarized 
as a subtheme and included at least three different beliefs uttered by at least three different 
teachers. If not, it was considered as an outlier. In the subsequent step, we organized 28 
subthemes into 9 core themes (coherence, curriculum, education, pedagogy of algebra, rela-
tion between scientific subjects, school subjects, teacher, the use of textbooks and transfer). 
Hence, we obtained one hierarchical structured common code tree for all 20 teachers, with 
the core themes as main branches. The latter branches out into subthemes, the smaller 
branches. The leaves of the tree are the last and finest level of the hierarchy and represent 
the underlying continuum of approximately 1.300 individual teachers’ beliefs that we have 
found.  

Regarding research question (1a) “How do mathematics and physics teachers characterise the trans-
fer problem in the case?”, we found that nearly all mathematics and physics teachers acknowl-
edged the case presented to them and considered it important that students were competent 
at the transfer of algebraic skills from mathematics into physics. They believed that transfer 
problems occur especially in the first year of upper secondary education.  

Concerning research question (1b), the continuum of beliefs underlying the 9 core 
themes above, contained aspects influencing students’ transfer above, including beliefs on 
how to improve this transfer, and aspects about coherent mathematics and science education 
(CMSE; this approach aims at connecting mathematics to science subjects) including aspects 
that may enhance students experiencing coherence across these subjects. When implemented 
appropriately in classroom practice, these aspects may help reduce science teachers’ frustra-
tions, who spend extra time on repeating mathematics in science classes.  
Contrary to physics teachers, most of the mathematics teachers mentioned that they did not 
feel the need to collaborate and cooperate with physics teachers. This can impede the devel-
opment of common teaching strategies to tackle transfer problems. We noted that the lack 
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of perceived urgency to cooperate with physics teachers is not typical for the whole mathe-
matical community. Indeed, many teachers may appreciate the need to promote transfer.  

With regard to their views about improving transfer, most interviewees fit into one of 
the following groups. The first and largest group believed that the transfer problem is solved 
by intensive practice in math class. The second and smallest group stated the opposite: the 
transfer problem should be tackled by solving algebraic problems in physics class. Finally, 
the intermediate group believed in comprehensive algebraic practice in both mathematics 
and physics class. Conceptual understanding was ignored by all teachers from the first two, 
extreme groups and by some teachers of the intermediate group. Some of the teachers’ beliefs 
could be organized into a belief system (Ernest, 1991), i.e. into a set of mutually supporting 
beliefs about transfer. Further research should investigate to which extent this is the case and 
which beliefs they contain. This is explained in study (2) and study (3) below. 

Chapter 3: study (2) 

This qualitative follow-up study aimed17 to extract teachers’ belief systems. However, the 
common code tree including large amounts of data (about 1300 beliefs) hampered us to 
extract belief systems in one data reduction step. Therefore, we first aimed to further develop 
the second cycle coding technique pattern coding (Gibson en Brown, 2009; Saldaña, 2015) 
to reduce and grasp the essence, i.e. the core beliefs of the common code tree. Thus, we 
examined the following research questions (2a) “How can pattern coding be further developed to 
obtain a systematic, refined method that can reduce code trees consisting of large amounts of data into a small 
dataset?” and (2b) “What are the core beliefs of mathematics and physics teachers about improving students’ 
transfer of algebraic skills from mathematics into physics for solving algebraic problems that occur in senior 
pre-university education?”. To answer question (2a), we worked out the methods of Saldaña 
(2015) in detail to reduce the common code tree. We used the subsequent steps ‘D1: forming 
of summarizing beliefs’, ‘D2: forming of main beliefs’ and ‘D3: forming of core beliefs’. 
Contrary to the methods above that offer general knowledge on how to further reduce coded 
data, we think that our approach to pattern coding is elegant since we used refined and sys-
tematic data reduction steps providing a generally applicable second cycle coding tool to 
further reduce data of code trees containing large amounts of data.  

Concerning research question (2b), we found 16 core beliefs about constraints and af-
fordances influencing both students experiencing coherence across these subjects and trans-
fer of algebraic skills into physics class. These core beliefs could be organized into what we 
named main categories: Collaboration, Curricula, Students, Teachers and Textbooks. This 
means that the nine core themes of study (1) were condensed into these five categories. In 
the teachers’ eyes these are the main issues to focus on to improve transfer. We also found 
which main category corresponded to these nine core themes. Based on earlier literature on 
transfer, some of the core beliefs were identified as the harmful naïve beliefs, and others as 
the transfer enhancing desirable beliefs (espoused models) (Schoenfeld, 2014). When naïve 
beliefs are transformed into teaching practice, they may stand in the way of transfer (enacted 

17 A detailed explanation of why this study was necessary can be found in chapter 1. 
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17 A detailed explanation of why this study was necessary can be found in chapter 1. 
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models). Through professional development programmes (Guskey, 2002) aiming at transfer 
both espoused and enacted models should be reconciled.  

Furthermore, the dataset of 16 core beliefs was sufficiently reduced to extract belief sys-
tems with desirable and naïve beliefs in a last data reduction step. This is explained in the 
study (3) below.  

Chapter 4: study (3) 

For this quantitative study we examined the research question (3) “What are the belief systems of 
mathematics and physics teachers about improving students’ transfer of algebraic skills from mathematics into 
physics for solving algebraic problems that occur in senior pre-university education (SPE)?”. To answer this 
question, we needed to conduct an online survey with many mathematics and physics teach-
ers in the Netherlands. For this purpose, we designed a webpage including an online multi-
criteria assessment tool that we have developed, since no such tool was available. This tool 
contained the 16 core beliefs of study (2) that were transformed into 16 claims using the six 
functions of language of Jakobson to make sure that all claims were phrased clearly (Hébert, 
2011; Waugh, 1980). Teachers were asked to select their top 5 claims, and distribute 50 points 
over them, thereby identifying their belief system. We used self-selection sampling (Bryman, 
2015) to select 503 mathematics and physics teachers who had varying years of teaching 
experience. After they selected their top 5, we analyzed the correlations between those 16 
claims and found small correlations between them. Their squares (explained variance) were 
smaller than 0.10. Such small correlations make principal component analysis (PCA) and 
factor analysis ‘pointless’ (Everitt & Hothorn, 2011). Therefore, we used the clustering tech-
nique agglomerative hierarchical clustering (AHC) (Everitt & Dunn, 2001) to analyze and 
gain insight into teachers’ belief systems that might contain naïve and transfer enhancing 
beliefs (desirable beliefs).  

Following Ernest (1991), we categorized teachers into groups based on their belief sys-
tems. We found 3 large clusters for the most experienced teachers (more than 10 years of 
teaching experience), and three large clusters for the very experienced teachers (more than 
20 years of teaching experience). Five of them contained both naïve and desirable beliefs. 
These clusters turned out to be rather coherent sets of beliefs, and thus were regarded as 
belief systems. This empirically justifies Ernest’s (1991) theoretical idea to cluster teachers based 
on their belief systems. Moreover, his social groups are ‘package deals’: the members of his 
groups are supposed to either embrace or reject complete sets of beliefs. He does not admit 
belief systems mixing aspects of different groups. Neither does he allow for different degrees 
of belief. In practice, certain clusters may have ideas that overlap with other groups. Indeed, 
this was the case for our belief systems. For instance, claim number 11 (activation of prior 
knowledge) appeared in all of our belief systems.  

The distinction between the macroscopic and microscopic model of belief systems 
turned out to be useful. The first model containing espoused and enacted models (Ernest, 
1991) was used to explain and understand how the social context of teaching influences a 
teachers’ belief system, and the second one which is a detailed cognitive description of the 
espoused models to understand how the weak naïve beliefs and the strong desirable beliefs 
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in a belief system are related to each other. We recommend future studies on this matter to 
use both models together. 

We found relations between our groups and those of Ernest. Since naïve beliefs turned 
out to be weak in each cluster, science teacher educators can help science teachers to change 
their harmful naïve beliefs, into desirable transfer enhancing beliefs. Otherwise, because of 
the powerful socialization effect in school, teachers are often observed to stick to the same 
ineffective classroom practice (Brown & McNamara, 2011). Furthermore, we discussed some 
implications of our results for science teacher educators, curricula, teachers and textbooks.  

The next two studies, i.e. study (4) and (5) are concerned with students’ symbol sense 
behavior. 

Chapter 5: study (4) 

This qualitative study with a quantitative component studied the research question (4) 
“To what extent do students in upper secondary education demonstrate symbol sense behavior when solving 
algebraic physics problems?”. To gain insight into students’ symbol sense behavior, we used con-
venience sampling to select 6 students who were available and willing to participate in this 
study. This yielded 3 mathematics A students from a regular school A, and 3 mathematics B 
students from a regular school B. Based on the Dutch ten-point grading system, they had a 
sufficient mathematics grade and an insufficient physics grade, i.e. less than 5.5. This grade 
criterion was to ensure that students’ difficulties with algebraic physics problems were mainly 
because of insufficient application of algebraic skills in physics, and not related to a lack of 
basic mathematics. We designed tasks that should trigger students solving algebraic physics 
problems and provide insight into their algebraic skills with basic algebraic skills and symbol 
sense behavior. Next, we conducted task-based interviews among these students who were 
videotaped while problem-solving and thinking aloud. Both videotaped data and students’ 
work were analyzed using the seven consecutive phases of Powell et al. (2003). An essential 
process during data analysis was the operationalization of research question (4). For this 
purpose, we used a coding scheme. During the coding process, we quantified both basic 
algebraic skills and symbol sense behaviour by comparing their solution set to the systematic 
solution set of our coding scheme. This implies that we adopted the traditional transfer par-
adigm (transfer determined from the researchers’ perspective) to measure to which extent 
transfer occurred. To some extent, we also followed the actor-oriented transfer approach to 
gain insight into their previous learning. Together with the videotaped episodes (to some 
extent) and the transcripts of the audio part of videotaped data, this provided us deeper 
understanding of students’ algebraic problem-solving abilities in physics, especially in the 
underlying mechanisms.  

Our data confirmed that students did indeed struggle to apply algebra to physics, mainly 
because they lacked both sufficient basic algebraic skills and symbol sense behavior. We con-
cluded that students were unsuccessful in the transfer of algebraic skills that students learned 
in mathematics class to solve algebraic physics problems in physics class.  

They used ad hoc strategies instead of correct, systematic rule-based procedures involv-
ing insight. These ad hoc strategies included the cross-multiplication, the numbering, and the 
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permutation strategy. They worked only for basic formulas containing few variables. In prob-
lems with more variables, students got stuck. The latter two strategies substitute numbers for 
variables. The permutation strategy randomly checks several permutations to guess which 
one is correct. The numbering strategy substitutes numbers to check algebraic manipulations. 

Our results indicated insufficient focus on conceptual understanding of algebra in some 
mathematics textbooks, leading to reliance on poorly understood ad hoc strategies. Effective 
teaching of algebraic skills should not focus on either basic algebraic skills or on symbol 
sense behavior. Instead, both aspects should be taught in an integrated manner.  

Our operationalization of symbol sense behavior turned out to be very useful for analysis. 
In contrast to other qualitative studies, we were able to measure symbol sense behavior quan-
titatively. In addition, this was also the case for measuring basic algebraic skills. This opera-
tionalization method should also be applicable to other science subjects.  

Furthermore, we discussed some implications of our results for curricula, teachers, sci-
ence teacher educators, and textbook publishers aiming at successful application of mathe-
matics in physics, especially algebraic skills. 

In the next study (5), we used insights from study (4) and the other three studies to carry 
out interventions in physics textbooks to improve transfer.  

Chapter 6: study (5) 

This qualitative study with a quantitative component is based on insights from the previous 
four studies and guided by research question (5) “How can activation of prior mathematical 
knowledge be used effectively to improve students’ symbol sense behavior in upper secondary education when 
solving algebraic physics problems?”. This question was divided in the two sub questions (5a) “To 
what extent do students in upper secondary education demonstrate symbol sense behavior when solving alge-
braic physics problems that occur in their physics textbooks?”, and (5b) “To what extent do students in 
upper secondary education demonstrate symbol sense behavior when solving the same algebraic physics problems 
that occur in their physics textbooks using activation of prior mathematical knowledge?”. To gain insight 
into their symbol sense behaviour during algebraic problem-solving in physics, we again used 
convenience sampling to select 3 students who were available and willing to participate in 
this study. For the same reason as in study (4), we selected students having a sufficient math-
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and sub question (5b) to round 2. Furthermore, except for the fact that we used different 
tasks and thus a different systematic solution set to check students’ solutions, the analysis of 
data was carried out in the same way as in study (4). This also applied for the analysis of data 
in both rounds were we again quantified both basic algebraic skills and symbol sense behavior 
by comparing their solution set to the systematic solution set of our coding scheme and 
adopting both the traditional actor-oriented transfer approach. By comparing the extent to 
which students used basic algebraic skills correctly and demonstrated symbol sense behavior 
in both rounds, we determined the effectiveness of our intervention.  

Contrary to the average OBAS (%) (overall basic algebraic skills percentage) among all 
students in round one, the average OSSB (%) (overall symbol sense behavior percentage) of 
48.5 % among all students was insufficient. This again confirmed that students did indeed 
struggle to apply algebra to physics. After the intervention in round two, this number in-
creased to 81.8 %, indicating sufficient symbol sense behavior among these students. In 
short, we have shown that successful transfer of algebraic skills from mathematics to physics 
is possible when both subjects use the same pedagogy in teaching algebraic skills. This also 
implied that the way we implemented activation of prior mathematical knowledge in shift-
problems turned out to be very effective.  

Chapter 7: general discussion and conclusion 

In this section we first presented the main results and conclusions of all five studies. Next, 
these results and conclusions were put together to answer the central research question. 
Thereafter, we evaluated the models involved in this study and discussed the theoretical con-
tributions to educational research. Then, we presented the limitations of this study followed 
by recommendations for future research. Finally, we discussed the implications of this study 
for educational practice, especially for the mathematics and science audience. 
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Samenvatting 

Hoofdstuk 1: inleiding 

Bèta-docenten hebben de ervaring dat leerlingen en studenten in respectievelijk het voortge-
zet- en hoger onderwijs moeite hebben met het toepassen van wiskunde in de bètavakken 
(Vakken zoals biologie, natuur- en scheikunde. Denk ook aan Elektrotechniek, Werktuig-
bouwkunde en dat soort vakken). Dit wijst op een gebrek aan transfer tussen deze vakken 
(e.g., Redish & Kuo 2014; Roorda, 2012; Wong, 2018). Het gevolg is dat docenten opnieuw 
basiswiskunde moeten onderwijzen. Dit kan frustrerend en tijdrovend zijn, en er blijft weinig 
tijd over voor de inhoud van de bètavakken. Bovendien geldt dat in veel landen dat de cur-
ricula van bètavakken overladen zijn, waardoor docenten gedwongen worden om hun pro-
gramma te behandelen in een nog kortere instructietijd (e.g., Lyons, 2006). Hiermee wordt 
het gebrek aan transfer van wiskunde naar de bètavakken nog beperkter.  

Ondanks het feit dat bovengenoemde transferproblemen van groot belang zijn voor het 
onderwijs, zijn deze onvoldoende bestudeerd. Dit geldt met name voor de transfer van wis-
kunde naar natuurkunde. Er is een zeer beperkt aantal studies (e.g., Hudson & McIntire, 
1977; Rebello et al., 2007) over leerlingen die voldoende basiswiskunde beheersen, maar een 
gebrek aan transfer naar natuurkunde laten zien. Hiernaast zijn de laatste jaren natuurkun-
deopgaven die voor het oplossen ervan een sterk beroep doen op wiskunde, zoals de toepas-
sing van algebraïsche vaardigheden, belangrijker geworden in ons bovenbouw vwo-natuur-
kundeonderwijs. Het onderzoek naar transfer is daarom zowel vanuit onderwijskundig- als 
wetenschappelijk oogpunt relevant.  
 Deze exploratieve studie die uit kwalitatief- en kwantitatief onderzoek bestaat, heeft ten 
doel om de transfer van wiskunde naar de natuurkunde te verbeteren. Onze focus lag op de 
toepassing van algebraïsche vaardigheden waarmee natuurkundeopgaven worden opgelost. 
Deze opgaven bevatten natuurkundeformules en zijn beschreven in symbolische represen-
taties. Twee voorbeelden hiervan zijn de afleiding van de derde wet van Kepler met 𝐺𝐺𝐺𝐺 ∙
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. 

De centrale onderzoeksvraag die hoort bij deze studie is "Hoe kan de transfer van algebraïsche 
vaardigheden uit de wiskunde naar de natuurkunde worden verbeterd voor het oplossen van algebraïsche 
natuurkundeopgaven die zich voordoen in bovenbouw vwo?". Om deze vraag te beantwoorden, hebben 
we vijf deelstudies uitgevoerd en gebruik gemaakt van kwalitatieve- en kwantitatieve onder-
zoeksmethoden. De eerste drie deelstudies betreffen opeenvolgende onderzoeken naar (1) 
de opvattingen van docenten18, (2) kernopvattingen van docenten en (3) opvattingssytemen 

18 In deze studie hebben we een probleemanalyse uitgevoerd, omdat er zeer weinig bekend was over de transfer van 
algebraïsche vaardigheden uit de wiskunde naar natuurkunde in bovenbouw vwo-onderwijs. Een gedetailleerde uit-
leg hierover is te vinden in hoofdstuk 1. 
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van docenten over het bevorderen van transfer van algebraïsche vaardigheden uit de wis-
kunde naar natuurkunde. In deelstudie (4) hebben we het symbol sense gedrag van leerlingen 
onderzocht bij het oplossen van algebraïsche natuurkundeopgaven, en in deelstudie (5) de 
effectiviteit van het activeren van wiskundevoorkennis tijdens het oplossen van algebraïsche 
natuurkundeopgaven. 

Hoofdstuk 2: deelstudie (1) 

Voor deze kwalitatieve deelstudie hebben we de twee onderzoeksvragen (1a) “Hoe karakteri-
seren natuur- en wiskundedocenten het transferprobleem in de casus?”, en (1b) “Welke soort opvattingen 
hebben natuur- en wiskundedocenten over het verbeteren van de transfer van algebraïsche vaardigheden uit de 
wiskunde naar natuurkunde voor het oplossen van algebraïsche natuurkundeopgaven die zich voordoen in 
bovenbouw vwo?” onderzocht. Om deze onderzoeksvragen te kunnen beantwoorden, hebben 
we een gelegenheidssteekproef gebruikt om 10 natuur- en 10 wiskundedocenten uit reguliere 
scholen geselecteerd. Deze scholen zijn representatief voor de Nederlandse context. De le-
raren waren bevoegd om les te geven in bovenbouw vwo en hadden minstens vijf jaar on-
derwijservaring. Zij zijn geïnterviewd door middel van een semi-gestructureerde vragenlijst 
met daarin een concrete casus over een transferprobleem uit de wiskunde naar natuurkunde. 
Voor de oplossing van dit transferprobleem moest de leerling algebraïsche vaardigheden ge-
bruiken. De vragenlijst bestaat uit aspecten als natuur- en wiskundedocenten, samenwerking 
tussen beide docentengroepen, natuur- en wiskundecurricula, en wiskunde- en natuurkunde-
boeken. De interviews zijn vervolgens verbatim getranscribeerd voor analyse, waarvoor de 
leraren toestemming hebben gegeven. 

Voor de analyse van de transcripties (uitgeschreven teksten van de interviews) hebben 
we eerst open coderen gebruikt (Bryman, 2015). Elk fragment van een transcript is gelabeled, 
wat een korte beschrijving gaf van de docentenopvattingen over de onderzoeksvragen (1a) 
en (1b). Voor elk van de twintig transcripties heeft dit geleid tot een reeks labels waarmee de 
opvattingen van docenten is vastgelegd. Hierna hebben we axiaal coderen gebruikt die uit twee 
stappen bestaat. Eerst zijn labels met dezelfde inhoud bij elkaar geplaatst, resulterend in een 
groepering van de labels. Elke groep labels werd samengevat als subthema en bestond uit ten 
minste drie verschillende opvattingen geuit door ten minste drie verschillende docenten. Zo 
niet, dan werd het beschouwd als een uitschieter. In de volgende stap organiseerden we de 
28 subthema's in 9 kernthema's: samenhang, curriculum, onderwijs, pedagogiek van algebra, 
relatie tussen wetenschappelijke vakken, schoolvakken, docent, het gebruik van schoolboe-
ken en transfer. Op deze manier hebben we voor alle 20 docenten een hiërarchische, ge-
meenschappelijke codeboom verkregen, met de kernthema's als hoofdtakken. Deze kern-
thema’s vertakken zich in subthema’s, de kleinere takken. De bladeren van de boom zijn het 
laagste en meest verfijnde niveau van de codeboom en representeren een continuüm van 
ongeveer 1.300 docentenopvattingen die wij hebben gevonden. 

Met betrekking tot onderzoeksvraag (1a), zagen we dat vrijwel alle natuur- en wiskunde 
docenten de aan hen voorgelegde casus herkenden. Zij gaven aan het belangrijk te vinden 
dat leerlingen bekwaam zijn in de transfer van algebraïsche vaardigheden uit de wiskunde 
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naar natuurkunde. Zij denken dat dit soort transferproblemen zich met name in vwo4 voor-
doen.  

Wat betreft onderzoeksvraag (1b), bovengenoemd continuüm van docentenopvattingen 
bevat allerlei aspecten die van invloed zijn op transfer. Deze aspecten gaan over hoe transfer 
verbeterd kan worden, over samenhangend bètaonderwijs (dit concept heeft ten doel de sa-
menhang tussen wiskunde en de sciencevakken te vergroten), waaronder aspecten die de 
mate van samenhang zoals die wordt ervaren door leerlingen kunnen vergroten. Wanneer 
deze aspecten op de juiste manier worden geïmplementeerd in het klaslokaal, kunnen zij de 
eerdergenoemde zorgen van docenten wegnemen.  

In tegenstelling tot natuurkundedocenten voelen de meeste wiskundedocenten niet de 
behoefte om samen te werken met natuurkundedocenten. Dit kan de ontwikkeling van ge-
meenschappelijke onderwijsstrategieën om transferproblemen aan te pakken in de weg staan. 
Dergelijke opvattingen over wiskunde vertegenwoordigen niet de wiskundegemeenschap, 
want er kunnen veel wiskundigen zijn die voorstander zijn van het bevorderen van transfer 
en samenhangend bètaonderwijs. 

Wat betreft docentenopvattingen over het verbeteren van transfer passen de meeste ge-
interviewde docenten in een van de volgende groepen. De eerste en grootste groep geloofde 
dat het transferprobleem uit de casus kan worden opgelost door veel te oefenen in wiskun-
delessen. De tweede en kleinste groep dacht het tegenovergestelde: het transferprobleem 
moet worden aangepakt door algebraïsche problemen te oefenen bij natuurkunde. De tus-
senliggende groep geloofde in een omvattender algebraïsche aanpak in zowel het natuur- als 
wiskundelokaal. Opvallend is dat inzicht werd genegeerd door leraren uit alle groepen.  

Sommige opvattingen van leraren konden worden georganiseerd als opvattingssysteem 
(Ernest, 1991), i.e. een set coherente (samenhangend geheel) opvattingen over transfer. Ver-
der onderzoek zou zich moeten richten op in hoeverre opvattingssystemen bestaan en uit 
welke opvattingen zij bestaan. Dit wordt uitgelegd in de deelstudies (2) en -(3) hieronder. 

Hoofdstuk 3: deelstudie (2) 

Deze kwalitatieve vervolgstudie op deelstudie (1) was bedoeld19 om de opvattingssystemen 
van leraren uit de codeboom in kaart te brengen. Echter, vanwege de enorme data van on-
geveer 1300 opvattingen was het niet mogelijk om dit in een enkele stap te doen. Hiertoe 
hebben we ‘patroon coderen’ (patterncoding), i.e. een tweede orde codeertechniek verder 
ontwikkeld (e.g., Gibson en Brown, 2009; Saldaña, 2015). Deze techniek reduceert de code-
boom tot een set kernopvattingen die de essentie (kern) van de codeboom weergeeft. Onze 
onderzoeksvragen waren (2a) “Hoe kan ‘patroon coderen’ verder worden ontwikkeld om te komen tot 
een systematische, verfijnde methode waarmee codebomen bestaande uit grote hoeveelheden data gereduceerd 
kunnen worden tot een beperkte dataset?” en (2b) “Wat zijn de kernopvattingen van natuur- en wiskun-
dedocenten over het verbeteren van de transfer van algebraïsche vaardigheden uit de wiskunde naar natuur-
kunde voor het oplossen van algebraïsche natuurkundeopgaven die zich voordoen in bovenbouw vwo? ”. Om 

19 Een gedetailleerde uitleg over waarom dit onderzoek nodig was, is te vinden in hoofdstuk 1. 

Samenvatting 



214 

vraag (2a) te beantwoorden, hebben we de methode van Gibson en Brown (2009) en Saldaña 
(2015) via een stappenplan in detail uitgewerkt. Hiermee waren wij in staat om de codeboom 
te reduceren. Het stappenplan bestond uit 'D1: vormen van samenvattende opvattingen', 
'D2: vormen van hoofdopvattingen' en 'D3: vormen van kernopvattingen'. In tegenstelling 
tot bovenstaande methoden (e.g., Gibson & Brown, 2009; Saldaña, 2015) die vrij algemeen 
uitleggen hoe datareductie kan worden toegepast op reeds gecodeerde data, is onze benade-
ring van ‘pattern coding’ elegant te noemen. Zij bestaat immers uit een geraffineerd en sys-
tematisch stappenplan. Onze manier van tweede orde datareductie is algemeen toepasbaar 
voor het reduceren van grote hoeveelheden gecodeerde data. 

Wat onderzoeksvraag (2b) betreft, onze tweede orde datareductie resulteerde in een set 
van 16 kernopvattingen bestaande uit opvattingen over beperkende- en bevorderende facto-
ren die van invloed kunnen zijn op zowel de transfer van algebraïsche vaardigheden uit de 
wiskunde naar natuurkunde, als op hoe leerlingen samenhang tussen wiskunde en de science-
vakken ervaren. Deze kernopvattingen zijn verder georganiseerd in wat we de ‘kern catego-
rieën’ hebben genoemd. Dit zijn curricula, docenten, lesmateriaal, samenwerking en leer-
lingen. Dit betekent dat de negen kernthema's uit deelstudie (1) als het ware zijn geconden-
seerd in deze vijf kern categorieën. Volgens de geïnterviewde docenten uit deelstudie (1) zijn 
deze vijf categorieën de belangrijkste zaken waarmee transfer kan worden verbeterd.  
Tevens is uitgezocht welke kernthema’s uit deelstudie (1) bij welke kern categorieën horen. 
Op basis van literatuur over transfer zijn sommige kernopvattingen geïdentificeerd als de 
transfer belemmerende naïeve opvattingen, en andere kernopvattingen als de transfer bevor-
derende wenselijke opvattingen (mentale modellen) (Ernest, 1991; Schoenfeld, 2014).  
Naïeve docentenopvattingen kunnen transfer in de weg staan, omdat docenten in het klaslo-
kaal hiernaar handelen. De opvattingen worden dus omgezet naar de onderwijspraktijk (prak-
tische modellen). Door middel van professionele ontwikkelingsprogramma's (Guskey, 2002) 
die gericht zijn op transfer, kunnen de verschillen tussen de mentale- en de praktische mo-
dellen van docenten worden overbrugd en beide modellen op elkaar worden afgestemd.  

Via een laatste datareductiestap kunnen nu uit de dataset met 16 kernopvattingen de op-
vattingssytemen van docenten worden verkregen. Dit wordt uitgelegd in deelstudie (3) hier-
onder. 

Hoofdstuk 4: deelstudie (3) 

Voor deze kwantitatieve deelstudie onderzochten we de onderzoeksvraag (3) "Wat zijn de 
opvattingssystemen van natuur- en wiskundedocenten over het verbeteren van de transfer van algebraïsche 
vaardigheden uit de wiskunde naar natuurkunde voor het oplossen van algebraïsche natuurkundeopgaven die 
zich voordoen in bovenbouw vwo?”. Om deze vraag te beantwoorden, hebben we een online en-
quête afgenomen onder 503 Nederlandse natuur- en wiskundedocenten. Zij zijn geselecteerd 
via zelfselectie. In dit kader is een webpagina ontworpen met daarin een online ‘multi-criteria 
assesment tool’ die we ook zelf hebben ontworpen, omdat deze tool simpelweg niet beschik-
baar was. Deze ‘multi-criteria assesment tool’ bevatte de 16 kernopvattingen uit deelstudie 
(2) die waren omgezet in 16 claims. Hiervoor hebben we de zes functies van de taal van
Jakobson gebruikt. Deze functies hadden ten doel dat alle claims zo duidelijk mogelijk
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werden geformuleerd (Hébert, 2011; Waugh, 1980). Aan docenten met verschillende jaren 
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en factoranalyse 'onbeduidend' (Everitt & Hothorn, 2011). Daarom hebben we de cluste-
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pen. Hij kent ook geen verschillende gewichten toe aan opvattingen. In de praktijk geldt dat 
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ook wat wij hebben gevonden. Zo kwam claim nummer 11 (activeren van voorkennis) voor 
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tische modellen (Ernest, 1991) werd gebruikt om uit te leggen en te begrijpen hoe de sociale 
context van het onderwijs de opvattingssystemen van leraren kan beïnvloeden. Het andere 
model geeft een gedetailleerde cognitieve beschrijving van de mentale modellen. Hiermee 
kan worden begrepen hoe de in deze deelstudie zwak naïeve- en de sterk wenselijke opvat-
tingen in een opvattingssysteem aan elkaar zijn gerelateerd. Omdat beide modellen elkaar 
aanvullen, bevelen we toekomstige studies aan om die samen te gebruiken. Er geldt dat de 
naïeve opvattingen die wij hadden gevonden zwak waren in elke cluster. Dit kan het mogelijk 
maken dat lerarenopleiders sciencedocenten helpen om hun transfer beperkende  
naïeve opvattingen te veranderen in wenselijke transfer bevorderende opvattingen. In het 
andere geval, kan het sterke effect van socialisatie op school ertoe leiden dat leraren vasthou-
den aan dezelfde minder effectieve manieren van lesgeven (Brown & McNamara, 2011).  
 Verder zijn op basis van bovengenoemde resultaten de onderwijskundige implicaties 
voor lerarenopleiders, curricula, leraren en studieboeken besproken. De volgende twee deel-
studies hieronder, i.e. deelstudies (4) en -(5) betreffen onderzoek naar symbol sense gedrag 
bij leerlingen. 

Samenvatting 



216 

Hoofdstuk 5: deelstudie (4) 

In dit kwalitatieve onderzoek met een kwantitatief onderdeel hebben we de volgende onder-
zoeksvraag (4) bestudeerd "In hoeverre laten bovenbouw vwo-leerlingen symbol sense gedrag zien bij het 
oplossen van algebraïsche natuurkundeopgaven?". Om deze vraag te beantwoorden, hebben we 6 
leerlingen geselecteerd die beschikbaar en bereid waren om deel te nemen aan dit onderzoek. 
Dit leverde 3 wiskunde A-leerlingen op van een reguliere school (I), en 3 wiskunde B-leer-
lingen van een reguliere school (II).  

Deze leerlingen stonden een voldoende voor wiskunde en een onvoldoende voor natuur-
kunde (< 5,5). Dit criterium was ervoor om te zorgen dat de problemen van leerlingen met 
algebraïsche problemen bij natuurkunde voornamelijk te wijten waren aan het toepassen van 
algebraïsche vaardigheden bij natuurkunde, en niet vanwege een gebrek aan voldoende ba-
siswiskunde. De opgaven die we hebben ontworpen, moesten leerlingen triggeren om alge-
braïsche natuurkundeopgaven op te lossen en tevens inzicht verschaffen in hun algebraïsche 
expertise bestaande uit algebraïsche basisvaardigheden en symbol sense gedrag. De leerlingen 
hebben deze opgaven hardop denkend opgelost tijdens interviews die zijn opgenomen op 
video. De data zijn geanalyseerd met behulp van de zeven opeenvolgende fasen van Powell 
et al. (2003). Een essentieel onderdeel tijdens data-analyse was de operationalisering van de 
onderzoeksvraag waarvoor we een coderingsschema hebben gebruikt.  

Tijdens het coderingsproces zijn de oplossingen van leerlingen vergeleken met onze sys-
tematische oplossingen. Hierna hebben we een score toegekend aan hun algebraïsche basis-
vaardigheden en symbol sense gedrag. Dit impliceert dat wij de mate van transfer hebben 
bepaald door gebruik te maken van het traditionele transfer paradigma (transfer wordt be-
paald door de onderzoeker). In beperktere mate hebben we ook gebruik gemaakt van het 
actor-georiënteerde transfer paradigma. Dit gaf ons inzicht in hoe kennis was verworven.  
De video-opnamen in combinatie met het werk van leerlingen en de transcripties van het 
audiodeel van videopnamen gaf ons dieper inzicht in de onderliggende mechanismen van 
hun algebraïsche vaardigheden tijdens het oplossen van algebraïsche problemen bij natuur-
kunde. 

De resultaten bevestigden dat leerlingen inderdaad moeite hebben om wiskunde toe te 
passsen bij natuurkunde, met name vanwege beperkte algebraïsche basisvaardigheden en een 
gebrek aan symbol sense gedrag. Onze conclusie was dat leerlingen niet succesvol waren in 
het toepassen (transfer) van algebraïsche vaardigheden (geleerd in het wiskundelokaal) bij 
natuurkundeopgaven (in het natuurkundelokaal). In plaats van correcte, systematische alge-
braïsche procedures gebaseerd op standaard middelbare school wiskunderegels met inzicht 
gebruikten zij de ad-hoc strategieën cijferen, kruislinks vermenigvuldigen en permuteren. Bij 
cijferen en permuteren worden variabelen vervangen door getallen. De permutatiestrategie 
(zonder rekenkundig inzicht) controleert willekeurig meerdere permutaties om te raden welke 
juist is, en bij cijferen (met rekenkundig inzicht) worden getallen vervangen door variabelen 
om algebraïsche manipulaties te controleren. Deze strategieën werken alleen voor niet al te 
complexe formules met weinig variabelen. Bij opgaven met formules bestaande uit meerdere 
variabelen liepen leerlingen vast.  

Onze resultaten wezen op onvoldoende focus op conceptueel begrijpen van algebra in 
sommige wiskundemethoden, wat leidt tot afhankelijkheid van onvoldoende begrepen ad 
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hoc strategieën. Effectief lesgeven van algebraïsche vaardigheden moet niet gericht zijn op 
algebraïsche basisvaardigheden of symbol sense gedrag alleen. Beide concepten moeten op 
een geïntegreerde manier worden aangeleerd.  

Onze operationalisering van symbol sense gedrag bleek erg nuttig voor analyse. In tegen-
stelling tot eerdere kwalitatieve studies, waren we in staat om symbol sense gedrag kwantita-
tief te maken. Dit gold ook voor algebraïsche basisvaardigheden. Deze manier van operatio-
naliseren zou ook bij andere bètavakken kunnen worden gebruikt. 

Verder hebben we enkele implicaties van onze resultaten besproken voor curricula, lera-
ren, lerarenopleiders en tekstboekuitgevers die zich ten doel stellen om het toepassen van 
algebraïsche vaardigheden uit de wiskunde bij natuurkunde te bevorderen.  

De inzichten die zijn verkregen uit deelstudie (4) en de andere drie deelstudies worden in 
de onderstaande deelstudie (5) gebruikt om interventies te plegen in natuurkundelesmateriaal 
om transfer te verbeteren. 

Hoofdstuk 6: deelstudie (5) 

Deze kwalitatieve deelstudie met een kwantitatief onderdeel is gebaseerd op inzichten uit de 
voorgaande vier deelstudies en bestudeert de onderzoeksvraag "Hoe kan het activeren van wis-
kundevoorkennis effectief worden gebruikt om het symbol sense gedrag van bovenbouw vwo-leerlingen te ver-
beteren bij het oplossen van algebraïsche natuurkundeopgaven? ”. Deze vraag was verdeeld in twee 
deelvragen, namelijk (5a) "In welke mate laten bovenbouw vwo-leerlingen symbol sense gedrag zien bij het 
oplossen van algebraïsche natuurkundeopgaven zoals die voorkomen in natuurkundeboeken?", en (5b) "In 
welke mate laten bovenbouw vwo-leerlingen symbol sense gedrag zien bij het oplossen van dezelfde eerder 
genoemde algebraïsche natuurkundeopgaven in natuurkundeboeken nadat wiskundevoorkennis is geacti-
veerd?". Om meer inzicht te verkrijgen in symbol sense gedrag hebben we 3 leerlingen gese-
lecteerd die beschikbaar en bereid waren om deel te nemen aan deze deelstudie. Deze leer-
lingen stonden vanwege dezelfde reden als bij de vorige deelstudie een voldoende voor wis-
kunde en een onvoldoende voor natuurkunde, i.e. kleiner dan een 5,5. Gebaseerd op het 
iteratieve 3D-principe (Palha, Dekker, Gravemeijer, & van Hout-Wolters, 2013), hebben we 
nieuwe opgaven ontworpen. Deze opgaven betroffen andere natuurkunde-contexten dan die 
in deelstudie (4). Evenals bij de vorige deelstudie moesten de opgaven de leerlingen triggeren 
om algebraïsche natuurkundeopgaven op te lossen en tevens inzicht te verschaffen in hun 
algebraïsche basisvaardigheden en symbol sense gedrag.  

Om deelvraag (5a) te beantwoorden, hebben leerlingen in ronde 1 deze opgaven hardop 
denkend opgelost terwijl ze werden gefilmd. Twee weken later hebben we aan dezelfde op-
gaven kleine ingrepen gepleegd en deze opgaven in ronde 2 aangeboden aan dezelfde leer-
lingen als ‘shift-problems’. Hierbij werd meteen bij het begin van deze opgaven via hints de 
wiskundevoorkennis van leerlingen geactiveerd. Het idee hierachter was dat leerlingen via 
deze interventie hun systematisch probleemoplossend vermogen, en in het bijzonder, hun 
symbol sense gedrag zouden verbeteren. De algebraïsche vaardigheden en hiermee samen-
hangende algebraïsche technieken zijn op een zeer vergelijkbare manier aangeboden als in 
hun wiskundeboeken (Reichard et al., 2014). Daarom heeft deelvraag (5a) betrekking op 
ronde 1, en deelvraag (5b) op ronde 2. Vanwege andere opgaven dan in deelstudie (4), waren 
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de systematische oplossingen ook anders. De analyse van data werd op dezelfde manier uit-
gevoerd als in deelstudie (4). Voor de eerste- en de tweede ronde werd het werk van leer-
lingen geanalyseerd en gekoppeld aan een score die inzicht geeft in hun basis algebraïsche 
vaardigheden en hun symbol sense gedrag. Door deze scores in beide ronden te vergelijken, 
is de effectiviteit van onze interventie bepaald. Tijdens deze analyse hebben we wederom de 
mate van transfer hebben bepaald door gebruik te maken van het traditionele transfer para-
digma. Ook was er weer gebruik gemaakt van het actor-georiënteerde transfer paradigma.  

In tegenstelling tot het gemiddelde van algebraïsche basisvaardigheden onder alle leer-
lingen in de eerste ronde, was het gemiddelde symbol sense gedrag van 48,5% onder alle 
leerlingen onvoldoende. Dit bevestigde opnieuw dat leerlingen moeite hadden om algebra 
uit de wiskunde toe te passen bij natuurkunde.   

Na de interventie in de tweede ronde steeg het percentage van 48,5% naar 81,8%. Dit 
wijst op voldoende symbol sense gedrag bij deze leerlingen. We hebben hiermee laten zien 
dat succesvolle transfer van algebraïsche vaardigheden uit de wiskunde naar natuurkunde 
mogelijk is wanneer er bij wiskunde en natuurkunde dezelfde didactische methoden voor het 
onderwijzen van algebraïsche vaardigheden worden gebruikt. Dit impliceert ook dat de ma-
nier waarop we hun wiskundevoorkennis hebben geactiveerd via ‘shift-problems’ zeer effec-
tief is gebleken.  

Hoofdstuk 7: algemene discussie en conclusie 

In dit laatste hoofdstuk zijn eerst de belangrijkste resultaten en conclusies van alle vijf deel-
studies gepresenteerd. Hierna zijn deze resultaten en conclusies samengebracht om de cen-
trale onderzoeksvraag te beantwoorden. Daarna zijn de verschillende modellen uit ons on-
derzoek geëvalueerd en de theoretische bijdragen aan het onderzoeksveld besproken. Aan-
sluitend zijn ook de beperkingen van de deelstudies besproken. Voor de actoren in het bèta- 
en wiskundeonderwijs bestaande uit curricula, lesmaterialen, leraren en lerarenopleiders heb-
ben we een aantal aanbevelingen voor toekomstig onderzoek gedaan. Als laatste zijn de im-
plicaties van deze deelstudies voor de onderwijspraktijk besproken.  
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