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Abstract: This paper aims to apply an acoustic emission (AE) method to characterize the 

damage mechanisms of composite hydrogen pressure vessels (Type IV) with a service pressure 

of 70 MPa. First, AE signals were captured during the multi-step loading of two vessels. 

Second, AE feature parameters in time-domain and frequency-domain analyses such as 

amplitude, frequency, and energy were studied. A multi-parameter statistical analysis (MPSA) 

method based on empirical mode decomposition (EMD) and K-means algorithm was performed 

to cluster AE events. Intrinsic mode functions (IMFs) were decomposed by EMD and three 

IMFs with high frequency were chosen to reconstruct the feature parameters and provide signal 

pre-processing for K-means clustering analysis. Based on the relationship between AE features 

and the damage modes, three main clusters with distinguished amplitude, absolute energy, and 

energy were correlated to matrix cracking, fiber-matrix debonding, and fiber breakage. Besides, 

the effectiveness of MPSA method for signal classification is validated by principal component 

analysis (PCA) and fast Fourier transformation (FFT) methods. Finally, the AE parameters of 

the damages modes, such as amplitude and counts to peak, were studied for both the hydraulic 

proof test and the burst test. This allows the determination of the changes in the damage 

mechanisms with increasing pressure. Results show that AE method can be reliably used to 

characterize the mechanisms of burst damage in composite pressure vessels. 
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*Corresponding author. E-mail: jyzh@zju.edu.cn (J.Y. Zheng); jpnepu@163.com (P. Jiang); 

Tel: 86-571-87952110 



 

 

 

1. Introduction 

Conventional energy sources like fossil fuel are increasingly replaced by alternative 

sources such as hydrogen. One of the main sectors benefiting from this new promising source 

is the automotive industry, where various hydrogen storage methods have been developed [1,2]. 

For instance, composite pressure vessels with metal (Type III) and non-metal (Type IV) liners 

are commonly employed in this sector for high-pressure hydrogen storage. This is due to their 

good strength, stiffness-to-weight ratio, fatigue performance, and corrosion resistance [3]. 

Furthermore, the design and manufacture of these vessels are enhanced by newly-advanced 

filament wound technologies [4]. 

During the past decades, a large number of experimental [5-7] and numerical [8-11] studies 

have explored the structural response of hydrogen composite pressure vessels.  These studies 

showed that the failure mechanism of the vessels is not abrupt but rather progressive depending 

on the accumulated internal pressure. It consists of several modes such as matrix cracking, 

fiber-matrix interface debonding, and fiber. Therefore, monitoring and analyzing the damage 

evolution in composite pressure vessels is important to assess their structural integrity. Also, 

vessels employed for hydrogen storage are significantly susceptible to various damages such 

as abrasion, scratch, impact, and aging [12], which  reduces their load capacity and fatigue 

performance [13]. This necessitates the regular inspection of composite pressure vessels to 

ensure their safety. 

 Recently, a periodic inspection of composite pressure vessels was conducted according 

to ISO 11623 standard using hydraulic proof test and internal and external visual inspections 

[14]. However, this manual method is costly and time-consuming because it includes multiple 

inspection steps. It also relies on subjective judgements, which may lead to high result 

variability. To overcome these limitations, several non-destructive methods including ultrasonic 

scan [12], X-ray tomography [12], and acoustic emission (AE) [15] were employed. Particularly, 

AE-based approach, conducted by implementing many sensors on the whole vessel, provided 

promising results.. 

Accurate assessment criteria should be followed while inspecting  composite hydrogen 

pressure vessels using AE techniques. To fulfill this purpose, damage mechanisms should be 



 

 

first identified and correlated to AE features. This was the objective of several AE studies 

previously performed on composite pressure vessels [12,16,17]. AE methods were used to 

detect the damage caused by constant and cyclic internal gas pressure loading [16], explore the 

thermo-mechanical properties under hydraulic and atmospheric fatigue cycling [17], and 

evaluate the damage status during hydrogen filling process [12]. However, these studies  fell 

short in characterizing the damage modes and evolution mechanisms on the composite vessels. 

Previous studies characterized the damage mechanisms on composite laminates using 

different analytical algorithms and AE parameters such as amplitude, absolute energy, and 

energy [18-24].  It is found that each damage mechanism is associated with a specific AE 

feature parameters [18,19]. For instance, critical AE signals were previously identified using 

Kohonen’s self-organizing map which is based on neural network algorithm [20,21]. Despite 

its high accuracy, the neural network approach requires significant computational time and 

depends on the structure of the network and the number of the neurons. In another study, 

empirical mode decomposition (EMD) and Hilbert-Huang spectral analysis were used to obtain 

the frequencies associated with the composite damage mechanisms [22]. Similarly, Li et al. [23] 

identified the damage modes of composite laminates based on K-means algorithm. To improve 

the recognition process of the damage mechanisms, Marec et al. [24] used fuzzy c-means 

clustering method combined with principal component analysis (PCA). They showed that PCA 

method is a promising and consistent approach. 

The main objective of the current study is to use AE methods to characterize the damage 

mechanisms of Type IV composite pressure vessels used for hydrogen storage under a service 

pressure of 70 MPa. Based on a multistep loading approach, AE signals were detected on two 

vessels with hydraulic pressure ranges of 0-105 MPa and 0-158 MPa, respectively. Then, AE 

parameters, namely amplitude, frequency, and energy, were studied. The change in damage 

mechanisms was  obtained by increasing the pressure during the hydraulic proof test and burst 

test. The clustering of AE events was performed using a multi-parameter statistical analysis 

(MPSA) based on empirical mode decomposition (EMD) and K-means algorithm. The 

characteristic parameters of the resulting clusters (i.e. amplitude, absolute energy, and energy) 

were mainly correlated to the composite damage mechanisms (i.e. matrix cracking, fiber-matrix 

interface debonding, and fiber breakage). To validate the effectiveness of the MPSA method, 



 

 

PCA analysis and fast Fourier transformation (FFT) were conducted.  

 

2. Experimental procedures 

2.1 Model systems 

The model systems used in the experimental tests consist in two Type IV composite 

hydrogen pressure vessels. The vessels were manufactured using high strength carbon fiber-

epoxy layers wrapped on a polyamide liner. They have a capacity, length, external diameter, 

and wall thickness of 42 L, 900 mm, 310 mm, and 26 mm, respectively. The service pressure 

is 70 MPa. Before conducting the experimental tests, the two vessels were both used for 

hydrogen storage onboard one fuel cell vehicle for 46500 kilometers, and then subjected to 

hydraulic fatigue tests of 5500 and 7500 cycles, respectively.  

2.2 Test methods  

Hydraulic proof test and burst test were conducted on the model systems with respect to 

GTR-13 standard [25]. They were performed using the multifunctional pressure test system 

with a pressure increase rate of approximately 0.1 MPa/s shown in Fig.1a, whose maximum 

pressure is 200 MPa. According to this standard, hydraulic proof pressure and minimum burst 

pressure should be 1.5 times and at least 2.25 times the service pressure, respectively. Thus, the 

pressure ranges of these two tests for each vessel are 0-105 MPa and 0-158 MPa respectively, 

as shown in Table 1.  

A multi-step approach was followed to apply the pressure during the experimental tests. 

Each step consists of four phases, namely pressure increasing, pressure holding, pressure 

unloading, and pressure holding. The holding time of the constant pressure is 4 minutes. The 

pressure steps of the 0-105 MPa hydraulic proof test are shown in Fig.1b. Ten steps with a 

pressure increase of 10.5 MPa per step were considered in the hydraulic proof test. Similarly, 

multi-step loading method was also used in 0-158 MPa burst tests as shown in Fig.1c. The AE 

signals were detected at the pressure holding phase because the noise caused by the water-

filling process is avoided during this phase. To avoid the destruction of the AE monitoring 

system during the burst test, AE signals were recorded to a minimum burst pressure of 158 MPa, 

then AE sensors and other devices were removed during the pressure unloading phase and the 

vessels were re-pressurized to burst.  



 

 

2.3 AE monitoring 

The AE monitoring system used in this study was supplied by Physical Acoustic 

Corporation (PAC). It includes an AE software, namely AEWin, and eight-channel data 

acquisition module to record the AE signals. Eight wide band piezoelectric transducers with a 

frequency range of 100-900 kHz were used as AE sensors. Their surfaces were covered by high-

vacuum silicone grease for good acoustic coupling with the vessels. To filter the background 

noise, a threshold value of 40 dB was considered. For each sensor, the AE signals were 

calibrated using standardized pencil-lead breakage test commonly known as Hsu-Nielsen test. 

Then, AE signals were detected and amplified by preamplifiers with a fixed gain of 40 dB. Also, 

the AE monitoring system was connected to the multifunctional pressure system through 

pressure transducers to obtain pressure values and AE signals simultaneously. A tested vessel 

with the mounted sensors and preamplifiers is highlighted in Fig.2a. The layout of the sensors 

on the composite pressure vessels is shown in Fig.2b: six sensors were placed on the cylindrical 

part of the vessels and two on the upper and bottom heads. Each three of the eight sensors 

formed a triangular array according to stagger arrangement.  

 

3. Clustering analysis method  

3.1 MPSA method 

3.1.1 EMD process 

EMD process was used to (1) decompose complicated AE signals into finite IMFs, (2) 

remove the noise disturbance, and (3) extract AE features [26,27]. Based on these features, a 

reconstructed signal will be used for K-means clustering analysis. Also, the IMF functions were 

used to identify instantaneous frequencies. Each function is noted as 𝑐𝑘(𝑡) where 𝑘 ∈ [1, 𝑛] 

and corresponds to a specific component of the original signal [27,28]. According to previous 

studies, IMF functions should satisfy two main conditions [27,28]: first, the number of extrema 

and that of zero-crossings must be either equal or different in only one value. Second, the mean 

envelope value defined by local extrema should vanish at any point. Following EMD analysis, 

IMF extraction process from a signal  X t
 
is described as follows [27,28]: 

 Local extrema are connected through splines to form the upper and lower envelopes, 



 

 

whose mean is noted as  1m t . 

 The parameter ℎ1(𝑡) is defined as follows: 

                       ℎ1(𝑡) = 𝑋(𝑡) − 𝑚1(𝑡)                       (1) 

If ℎ1(𝑡) satisfies the two IMF criteria above, then the first IMF component 𝑐1(𝑡) is 

obtained and given by    1 1c t h t . Otherwise,  1h t  is treated as a new data in the 

subsequent sifting process. 

 The sifting process is repeated for 𝑝 iterations. considering  1ph t  as: 

                 ℎ1𝑝(𝑡) = ℎ1(𝑝−1)(𝑡) − 𝑚1𝑝(𝑡)                  (2) 

If  1ph t  satisfies the two IMF criteria above, then the first IMF component 𝑐1(𝑡) 

is 𝑐1(𝑡) = ℎ1𝑝(𝑡).  

 The residue  1r t  is defined as: 

                  𝑟1(𝑡) = 𝑋(𝑡) − 𝑐1(𝑡)                         (3) 

This parameter is treated as the new data to be subjected to the same sifting process 

described above and will be used to get the second IMF component  2c t . 

 The sifting process is finished when one of these conditions is met: (1) the residue 

 nr t   becomes a monotonic function (2)  nc t   or  nr t   is less than a 

predetermined value. 

Thus, the original signal  X t   can be expressed in terms of IMF components 

    1,2,...,kc t i n  and final residue  nr t  as follows [27-29]: 

                       
1

n

k n

k

X t c t r t


                         (4) 

3.1.2 K-means algorithm 

K-means algorithm is a clustering method that assigns m input vectors   1 2, ,...., my y y  to 

k clusters  1 2, ,...., kB B B , where each vector is allocated to the nearest cluster center [20,30]. 

The clustering process implemented by this algorithm is described as follows: First, the cluster 

center
iB   

is randomly initialized. Then, the distance between 
iB   and each input vector is 

computed and the input vectors are assigned to the nearest cluster center. Afterwards, new 
iB  

locations are recalculated for the new clusters. Finally, the second and third steps are repeated 

until
iB locations do not change anymore. 

This algorithm should be performed for different k values because the cluster number is 



 

 

unknown. Also, a previous study showed that good partitioning is defined by Davis-Bouldin 

(DB) criterion expressed as follows [20]: 

                  
1

1
max

k
i j

i j
i ij

s s
DB

k d


  
  

  
                        (5) 

where ijd  corresponds to the distance between the centers of clusters i and j , and si and sj are 

the distances of each input vector to cluster centers i and j, respectively. Low DB index values 

indicate good clustering. 

3.2 Validation of the clustering analysis 

To verify the validity of the clustering algorithm, signals separated by MPSA clustering 

process were visualized using principal component analysis [30,31]. PCA is a multivariate 

method that significantly reduces the dataset dimensions to improve data visualization. The 

dataset is transformed to new uncorrelated variables known as principal components. The 

principal components are determined through the eigenvectors in the covariance matrix with 

the highest eigenvalues. 

Let X denotes the n m  input dataset where n and m are the number of AE signals and 

related AE features, respectively. First, the dataset should be standardized so all the variables 

have the same weight [30,31]. This is achieved by converting all data to have a zero mean and 

a unit standard deviation. Then, the covariance matrix C and the correlative eigenvalues 

  1,2, ,i i m    are determined [30,31]. The resultant eigenvectors correspond to the 

columns of the matrix A given by TC ADA , where 

       

  𝐷 = [

𝜆1 0
0 𝜆2

⋯ 0
⋯ 0

⋯ ⋯
0 0

⋯ ⋯
0 𝜆𝑚

]  with 1 2 ... m                       (6) 

The principal components are transformed by the first l eigenvectors, which are expressed 

as Eq. (7). 

ly XA                                    (7) 

The fast Fourier transformation can transform time-domain information to frequency-

domain information. This method will be used to validate the frequency range associated with 

specific damage mechanism for the MPSA clustering results. More details about FFT method 

can be found in the literature [32]. 



 

 

3.3 Analysis procedure for AE signals 

To characterize the damage modes induced by the hydraulic tests, an AE technique was 

employed and ten AE parameters were selected. They consist in seven time-domain parameters 

(amplitude, rise time, counts, duration, counts to peak, energy, and absolute energy) and three 

frequency-domain parameters (initiation frequency, average frequency, and peak frequency).  

Initially, AE signals cannot be classified and analyzed because they are highly discrete and 

randomly distributed. To extract meaningful results, they should be treated using efficient 

analytical tools. In our study, MPSA method was adopted for damage mode recognition 

following the steps highlighted in Fig.3. First, the original signals are decomposed from high 

frequency to low frequency using EMD algorithm. The three IMFs with the highest frequencies 

are chosen to reconstruct the waveform information. Then, K-means algorithm was employed 

to conduct the clustering analysis and recognize the damage mode for the regenerated feature 

parameters after the correlation analysis. Finally, PCA and FFT methods were used to validate 

the results. 

 

4. Results and discussion 

4.1 Recognition of the damage modes  

4.1.1 EMD decomposition of the AE signals 

The AE signals obtained during the hydraulic tests were decomposed using EMD method. 

The resultant IMF functions are shown in Fig.4. The low, middle, and high amplitude signals 

of 45 dB, 70 dB, and 89 dB are selected for these examples. Given that EMD process follows 

an adaptive decomposition with intrinsic timescales, each IMF function exhibits a particular 

timescale modal and no inter-modal aliasing was obtained. Therefore, different IMF scales 

range from high frequency to low frequency as shown in Fig.4. In this figure, the most important 

functions are IMF-1, IMF-2, and IMF-3 because they consider high-frequency components and 

significant proportion of all the frequencies in the original signal. Therefore, these functions 

were selected to accurately determine AE feature parameters and effectively eliminate modal 

interference with low-frequency components. Then, their components were chosen to 

reconstruct the feature parameters and provide signal pre-processing for subsequent K-means 

clustering analysis. Each feature parameter in the time and frequency domains has some 



 

 

information about the AE signals. If these parameters are not selected properly, the damage 

recognition process will be affected by redundant information. Thus, amongst the ten 

parameters obtained using the EMD reconstruction process, appropriate features were selected 

and redundant features were eliminated by commonly-used linear correlation analysis. Absolute 

energy-amplitude and counts to peak-energy were selected for the clustering analysis due to 

their low correlation coefficient. 

4.1.2 K-means clustering analysis 

To choose the appropriate number of clusters, DB index values of K-means clustering 

analysis were computed. DB index values of V1-H, V1-B, V2-H and V2-B tests on the two 

vessels are shown in Fig.5. The lowest DB index is obtained for three clusters for both hydraulic 

proof test and burst test. Thus, this number of clusters was selected for the K-means clustering 

analysis conducted in this paper.  

As shown in Fig.6, the correlated distribution of the amplitude and absolute energy are 

studied for the vessels. In this figure, CL-1, CL-2 and CL-3 designate the clustering results of 

AE signals during all the constant pressure phases of the multistep pressure tests. For instance, 

for CL-1 cluster of the vessel V1-H, the ranges of the amplitude and absolute energy are 40-55 

dB and 0-2×103 aJ, respectively. Similarly, those of CL-2 cluster are 50-72 dB and 2×103-4×104 

aJ, consecutively. For CL-3 class, the amplitude is within 70-90 dB and the absolute energy is 

higher than that of CL-1 and CL-2 classes.  

Similarly, Fig.7 shows the correlated distributions between the counts to peak feature and 

the energy feature. For example, for V1-H test, the energy range for CL-1 and CL-2 are 0-10 

and 10-100, consecutively. For CL-3, the energy is greater than 100 (the energy in AE technique 

has no unit). This figure shows that the distribution ranges of counts to peak for CL-1, CL-2, 

and CL-3 clusters are not significantly different. Based on the results of K-means clustering 

analysis, the number of clusters is in good agreement for both the hydraulic proof test and burst 

test. 

Tables 2 and 3 summarize the ranges of the amplitude, absolute energy, and energy values 

for the three clusters observed in hydraulic proof test and burst test for the two vessels. These 

are the time-domain results of the correlated distributions of amplitude-absolute energy and 

counts to peak-energy presented above. It is observed that CL-1 and CL-3 have the lowest and 



 

 

highest amplitude, absolute energy, and energy, respectively. The tables also show that the 

amplitude, absolute energy, and energy cluster boundaries are about 65 dB, 2×103 aJ, and 20 

between CL-1 and CL-2, and about 75 dB, 5×104 aJ, and 100 between CL-2 and CL-3. There 

are only a few changes in the distributions of the three clusters for the two vessels due to 

differences in pressure and fatigue cycles. 

According to previous studies, three predominant damage mechanisms were observed in 

fiber-reinforced composites: matrix cracking, fiber-matrix debonding, and fiber breakage 

[22,24]. It is also found that the AE signals associated with matrix damage generally correspond 

to low amplitude and energy values in the ranges of 40-60 dB and 0-2×103 aJ, consecutively 

[33,34]. Similarly, those associated with fiber breakage correspond to high amplitude and 

energy values in the range of 80-100 dB and above 2.5×104 aJ, respectively. And the signal 

strength and distribution range of the fiber/matrix debonding signals are between the matrix 

cracking and fiber breakage signals [33-35]. Considering the energy and amplitude values of 

three different clusters presented in Tables 2 and 3, it is concluded that CL-1, CL-2, and CL-3 

clusters mainly correspond to matrix cracking, fiber-matrix debonding, and fiber breakage 

damages, respectively. 

4.1.3 Validation of the clustering results 

In order to validate the effectiveness of the clustering algorithm, PCA analysis was used 

to obtain two-dimensional visualizations of K-means clustering results. AE signals are 

separated by three principal components PCA 0, PCA 1 and PCA 2. The scatter plot is mapped 

onto the PCA 0 – PCA 2 plane as shown in Fig.8. It is found that AE signals are well separated 

with clear boundaries and spatial distributions. This demonstrates the consistency of the 

clustering method employed in our analysis. 

Using FFT method, the clusters spectrum information in the frequency-domain were 

obtained from the waveform information in the time-domain (Fig.9). It is found that the 

dominant frequency for CL-1, CL-2, and CL-3 clusters is about 100 kHz, 250 kHz, and 450 

kHz, respectively. Previous studies investigated the relationship between AE frequencies and 

the damage mechanisms of composite materials [20,30,31,35,36]. It is found that the ranges of 

the dominant frequencies of matrix cracking, fiber-matrix debonding, and fiber breakage 

damages are about 100-200 kHz, 210-320 kHz and 390-460 kHz, respectively [20,30,31,35,36]. 



 

 

Thus, CL-1, CL-2, and CL-3 clusters with low, medium, and high frequencies mainly 

correspond to matrix cracking, fiber-matrix debonding, and fiber breakage, respectively. This 

indicates the strong correlation between AE clusters and the damage mechanisms. They also 

demonstrate the effectiveness of MPSA clustering approach in characterizing the damage 

mechanisms of hydrogen composite pressure vessels. 

In addition, SEM microscopy was employed to observe the damage mechanisms on the 

burst pressure vessels. Macroscopic images of the vessels after burst and microscopic SEM 

images of the two vessels are presented in Fig.10a and Fig.10b. The figures clearly show the 

three damage mechanisms found in the current literature, which is consistent with the results of 

MPSA clustering analysis.  

4.2 Damage evolution mechanisms 

In Fig.11, the change in amplitude and pressure with time is studied for the hydraulic proof 

test (Fig.11a and Fig.11b) and burst test (Fig.11c and Fig.11d) for pressure ranges of 0-105 MPa 

and 0-158 MPa, respectively. The variation of AE signals with increasing pressure highlights 

the damage evolution mechanisms in the vessels. 

According to Fig.11a and Fig.11b, only a few damage signals were initially obtained at 70 

MPa. This can be explained by the elastic deformation of the vessel at this pressure. However, 

as the hydraulic proof test progresses, the signals increased slightly from 70 MPa to 105 MPa, 

which is mainly caused by matrix damage and fiber/matrix debonding. More significant 

damage is observed on the second vessel. This can be explained by its high fatigue cycles (7500 

cycles) compared to the first vessel (5500 cycles). Similarly, Fig.11c and Fig.11d show that AE 

signals are initially insignificant at a pressure range of 70-105 MPa. This can be explained by 

the second loadings applied to the composite materials. These loadings were previously reached 

in the first loading 0-105 MPa of the hydraulic proof test. Thus, higher pressure is needed to 

create further damage. This also indicates that the damage is irreversible and that matrix damage, 

fiber-matrix debonding, and fiber breakage become significant at high pressures of 135 MPa, 

150 MPa, and 158 MPa, consecutively.  

In Fig.12, the variations of counts to peak and pressure with time are studied for the 

hydraulic proof test (Fig.12a and Fig.12b) and burst test (Fig.12c and Fig.12d). The pressure 

ranges are similar to those considered in Fig.11. With regards to the hydraulic proof test, Fig.12a 



 

 

and Fig.12b show that signals associated with matrix damage correspond to a pressure range of 

30-50 MPa and increase with increasing pressure. Similarly, Fig.12c and Fig.12d show that the 

pressure range for fiber-matrix debonding is mainly at a range of 100-130 MPa in the burst test, 

and the number of counts to peak signals for fiber-matrix debonding is smaller than that of 

matrix cracking. The fiber breakage damage has the least amount of signals located mainly near 

the highest pressure of 158 MPa. This indicates that the fiber breakage is mainly caused by high 

loading. These results are consistent with previous studies on the AE response of composite 

structures conducted by Pashmforoush et al. [30,31] and Mahdian et al. [35]. Thus, matrix 

cracking signals appear at low loading and their total amount during the loading process exceed 

other signals. The active loading distribution range for fiber-matrix debonding signals is 

generally greater than that for matrix cracking. Fiber breakage signals mainly appear at high 

applied loads and the amount of fiber breakage signals before ultimate failure is much less than 

that of the other damage modes. After conducting burst tests in a pressure range of 0-158 MPa, 

the vessels were re-pressurized to burst. The obtained burst pressure of vessels V1 and V2 are 

168 MPa and 165 MPa, respectively. The damaged vessels due to burst-induced failure are 

shown in Fig.10, The vessels were shattered into several pieces. Around the cylinder part, 

matrix cracking, fiber-matrix debonding, and fiber breakage damage mechanisms can be clearly 

observed at the failure position. 

 

5. Concluding remarks 

The study presented in this paper consists in using an AE method to investigate the damage 

mechanisms of Type IV hydrogen pressure vessels with a service pressure of 70 MPa. AE 

signals were detected while conducting hydraulic proof test (pressure up to 105 MPa) and burst 

test (pressure up to 0-158 MPa) on two vessels using multi-step loading method. A multi-

parameter statistical analysis (MPSA) based on empirical mode decomposition (EMD) and the 

K-means algorithm was employed to cluster the AE events. A relationship was found between 

AE features and the observed damage modes: the three MPSA clusters with separate amplitude, 

absolute energy, and energy were mainly correlated to three damage mechanisms namely, 

matrix cracking, fiber-matrix debonding, and fiber breakage. Also, the variation of AE feature 



 

 

parameters with increasing pressure during the hydraulic proof and the burst tests was 

investigated and correlated to the damage evolution mechanisms observed on the vessels. Three 

main conclusions were obtained: 

(a) The absolute energy, amplitude, energy, and counts to peak are applicable for the 

clustering of AE signals of composite hydrogen pressure vessels. The amplitude, absolute 

energy, and energy of the matrix cracking are generally the lowest, those associated with fiber 

breakage are the highest, and those corresponding to fiber-matrix debonding are in-between. 

(b) AE signals at a pressure range of 70-105 MPa during the burst tests are insignificant. 

This can be explained by the second loadings applied to the composite materials, which were 

previously reached in the first hydraulic proof test loading (pressure up to 105 MPa). Higher 

pressure is needed to create further damage. 

(c) The signals associated with matrix damage appear initially at low loading of 30-50 

MPa, then increase with increasing pressure. More counts to peak were found for this damage 

is compared to fiber-/matrix debonding and fiber breakage damages. The active pressure range 

of fiber-matrix debonding signals is greater than that for matrix cracking. Also, signals 

associated with fiber breakage mainly appear near the highest pressure of 158 MPa and the 

amount of fiber breakage is much less than that of the two other damage modes before failure. 
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Fig.1 (a) Multifunctional pressure test system used for hydraulic proof test and burst test, (b) Multi-step loading 

method for hydraulic proof test and (c) Multi-step loading method for burst test. 



 

 

        

(a)                             (b) 

Fig.2 (a) Vessels mounted with sensors and preamplifiers (b) Layout of the sensors on the vessels. 

 

Fig.3 AE signals analysis procedure 



 

 

 

(a) 

 

(b) 

 

(c) 

Fig.4 EMD-decomposed IMFs of AE signals with (a) low amplitude of 45 dB, (b) middle amplitude of 70 dB, and 

(c) high amplitude of 89 dB. 



 

 

 

Fig.5 DB indexes of (a) V1-H, (b) V1-B, (c) V2-H and (d) V2-B tests 

 

 

                   (a)                                    (b) 

 

(c)                                    (d) 

Fig.6 Correlated distribution between the amplitude and absolute energies for the AE signals of two vessels for (a) 

V1-H (b) V1-B (c) V2-H and (d) V2-B tests. 



 

 

 

                   (a)                                    (b) 

 

(c)                                    (d) 

Fig.7 Correlated distribution between the counts to peak and energy parameters for AE signals of two vessels for 

(a) V1-H(b) V1-B (c) V2-H and (d) V2-B tests. 



 

 

  

Fig.8 PCA visualization of K-means clustering results for (a) V1-H, (b) V1-B, (c) V2-H and (d) V2-B tests. 

 



 

 

 

 

 
Fig.9 Time-domain (amplitude [mV] vs. time [s]) and frequency-domain (FFT amplitude [mV2/Hz] vs. frequency 

[Hz]) results for clusters (a) CL-1, (b) CL-2, and (c) CL-3. 

 

 

 

 

 

 



 

 

 

Fig.10 Burst status and SEM observation of damage mechanisms for (a) Vessel V1 and (b) Vessel V2. 

 

(a)                                    (b) 

 

(c)                                    (d) 

Fig.11 Variation of amplitude and pressure with testing time for (a) V1-H (b) V2-H (c) V1-B and (d) V2-B tests. 



 

 

 

                   (a)                                    (b) 

 

(c)                                    (d) 

Fig.12 Variation of counts to peak and pressure with testing time for (a) V1-H (b) V2-H (c) V1-B and (d) V2-B 

tests.  



 

 

 

Table 1 Pressure ranges of hydraulic proof and burst tests. 

 

Table 2. Clustering results for hydraulic proof and burst tests for V1 vessel. 

 

Table 3. Clustering results for hydraulic proof and burst tests for V2 vessel. 

 

Vessel Test Pressure Range (MPa) Initial Fatigue Cycles Test Label 

V1 Hydraulic Proof  0-105 5500 V1-H 

V1 Burst  0-158 5500 V1-B 

V2 Hydraulic Proof  0-105 7500 V2-H 

V2 Burst  0-158 7500 V2-B 


