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ABSTRACT: The catalytic asymmetric transfer hydrogenation (ATH) of
ketones is a powerful methodology for the practical and efficient installation
of chiral centers. Herein, we describe the synthesis, characterization, and
catalytic application of a series of manganese complexes bearing simple
chiral diamine ligands. We performed an extensive experimental and
computational mechanistic study and present the first detailed experimental
kinetic study of Mn-catalyzed ATH. We demonstrate that conventional
mechanistic approaches toward catalyst optimization fail and how
apparently different precatalysts lead to identical intermediates and thus

Mechanistic Insight towards Rational Design

N Br
Ol
Mn,
Catalytic Activity @ Enantioselectivity n/ <|:O\CO

Improvements in next-generation catalysts

catalytic performance. Ultimately, the Mn—N,N complexes under study
enable quantitative ATH of acetophenones to the corresponding chiral alcohols with 75—87% ee.

B INTRODUCTION

Homogeneous hydrogenation catalysis with earth-abundant 3d
transition metals (TMs) such as Fe, Co, and Mn has received
remarkable attention from the catalytic community in recent
years as a benign and sustainable alternative to processes
involving noble metals."” This increased focus has led to the
rapid development of highly potent first-row transition metal
catalysts for a vast number of transformations involving
hydrogen-transfer steps, such as hydrogenations, dehydrogen-
ations, and coupling reactions.”~” While Ru and Ir remain the
conventional metals for these reactions,” several examples have
emerged of early TMs matching or even surpassing the
catalytic activity of noble metals, highlighting the vast chemical
potential of this class of homogeneous catalysts.”"*

In addition, first-row TM catalysts exhibit striking reactivity
patterns unprecedented in hydrogenation catalysis.””'>'* A
chemically distinct feature of some manganese hydrogenation
catalysts is that they do not rely on commonly employed
strong donor ligands such as phosphines.'*'® Indeed, for Mn,
the introduction of simple bi- or tridentate nitrogen-donor
ligands was sufficient to promote hydrogenation of carbon
dioxide to formate and formamide'’~ and transfer hydro-
genation of C=X bonds (X = O, N), e.g., ketones, imines, and
aldimines."*™*°

In order to understand the origin of catalytic activity and
causes for the current limitations of Mn systems, we carried
out a detailed mechanistic and kinetic study of Mn catalysts in
the asymmetric transfer hydrogenation of ketones. The groups
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of Kirchner,”® Clarke,”” Beller,”®** and Morris™® reported the
use of Mn catalysts bearing multidentate phosphine ligands for
the asymmetric hydrogenation of ketones. However, we
decided to focus on simpler diamine-based Mn catalysts, as
were reported by Sortais and co-workers.”’ From a practical
and cost point of view, we deemed these catalysts attractive
candidates for industrial applications,*>** as the active system
could be generated in situ and was shown to achieve the ATH
of a large scope of aryl ketones. After an extensive screening of
(chiral) diamines, the combination of 1 mol % Mn(CO)Br
and ligand (1R,2R)-N,N’-Me,-DPEN was identified as the
most potent, ultimately enabling good to quantitative yields of
corresponding alcohols with 30—90% enantiomeric excess (ee)
(Scheme 1).

Scheme 1. Chiral Mn—N,N Catalysts for Asymmetric
Transfer Hydrogenation of Ketones
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Scheme 2. Screening of In-Situ Manganese—N,N and Manganese—P,N Catalysts for Asymmetric Transfer Hydrogenation of

Acetophenone”
O 1)Mn(CO),Br + Ligand (1 mol%) OH
Toluene, 15 min, RT
2) 2-Propanol, KO'Bu (10 mol%)
60°C, 1.5 h 0 25 50 75 100
| poc | | X
NH, N NH NH N NH, ee
. 0 ~N . . . ~N .
L. O C.. G, G, @
NH, NH, NH, NH N~ PPh,
| | L1
L131 L2 L3 L43 L5 L6 L2
(15,25) (15,25) (15,25) (15,25) (15,25) (15,25) L3
X=35% X =146% X=1% X=63% X=1% X=91% L4
ee=41% (R) ee=62% (R) ee=11%(S) ee =69 % (R) ee=1%(S) ee=8% (R)
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NH, tiH @ NH, w, _NH, §:> L6
. . NA - FN L7
WSNH, WSNH, PPh, PPh,
PPh,Ph,P L8
L9
L73 L8 L9 L10 L11%
(1R,2R) (1R,2R) (15,25) (15,25) (15,25) L10
X =67 % X=16% X =90 % X=91% X=159% L1
ee=12%(S) ee=76% (R) ee=2%(R) ee=20% (S) ee=55%(S)

“Conditions: 0.5 mmol of acetophenone, 10.0 mol % KO'Bu, 1.0 mol % Mn(CO);Br, 1.0 mol % ligand, 2.5 mL of 'PrOH + 0.5 mL of toluene, 60
°C, LS h. Yields determined by GC-FID using n-dodecane as an internal standard. A number of ligands have been evaluated before under slightly

different conditions (see refs 29 and 31).

Scheme 3. Synthesis of Well-Defined Mn Precatalysts 1-Cis and 1-Trans®
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Thus far, the open literature does not provide substantial
mechanistic analysis of Mn-catalyzed ATH due to the lack of
isolated or well-defined bidentate Mn complexes for the
asymmetric transfer hydrogenation of ketones. Herein, we
describe the identification, isolation, and characterization of a
series of simple chiral Mn—diamine catalysts. The combination
of stoichiometric reactivity studies, DFT calculations, and
analysis of reaction kinetics allowed the complex reactivity
patterns of apparently simple Mn—N,N catalysts to be
identified in the asymmetric transfer hydrogenation of ketones.

In-Situ Screening and Precatalyst Isolation. We began
our studies by evaluating a series of readily available chiral
diamines and aminophosphines as ligands for the Mn-catalyzed
ATH of acetophenone (Scheme 2). The Mn complexes were
prepared by stirring Mn(CO);Br with 1 equiv of the chiral
ligand in toluene at room temperature for 15 min. The toluene
solution with the Mn/L-combination was transferred into
PrOH containing the substrate and KO'Bu as a base. In these
initial experiments, a catalyst loading of 1 mol % with respect
to acetophenone was used, while base was present at 10 mol %.

The highest catalytic activities were observed for bidentate
aminophosphine ligands L6, L9, and L10, unfortunately with
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low ee’s not exceeding 20%. In contrast, a high enantiomeric
excess of 76% was achieved with tosyl protected DPEN ligand
L8 but at a much lower conversion compared to the
unprotected DPEN ligand L7. Interestingly, dialkylated
diaminocyclohexanes (L2 and L4) led to modest catalytic
activity combined with good enantioselectivity, whereas
nonalkylated analogue L1 was less active and selective, and
tetra-alkylated ligand LS showed no activity at all.

Having identified N,N’-dimethyl 1,2-diaminocyclohexane L4
as the best ligand in our initial evaluation in terms of the trade-
off between activity and enantioselectivity, we sought to isolate
the precatalyst formed upon complexation of L4 to Mn-
(CO)sBr (Scheme 3). The corresponding complex 1 was
readily formed upon refluxing in n-hexane for several hours and
was obtained in 34% yield after recrystallization from DCM/n-
hexane/diethyl ether at —20 °C. The compound was fully
characterized using 'H/BC NMR, FT-IR, elemental analysis,
and single-crystal X-ray analysis (see the Supporting
Information).

Upon complexation, the methyl groups in L4 lose
equivalency and appear in '"H NMR of 1-Cis as two sharp
doublets at 6 = 2.9 ppm and 6 = 2.7 ppm in CD,Cl,. We

DOI: 10.1021/acs.organomet.9b00457
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1-Trans

Figure 1. ORTEP diagrams of 1-Cis (left) and 1-Trans (right). Thermal ellipsoids are drawn at 30% probability. Co-crystallized solvent and
hydrogen atoms (except bound to nitrogen and N—Me) have been omitted for clarity.

KBr Il s \|_:|1
KOPr AE=20
0 N\ AG=-29
HZ
"‘.N/ Br )J\
R co
‘ \I\I!n/ P
N/ | ~Nco ~/ H
S\ co O:N\w!n/co
7 \Co
l ﬂ s‘N\ (l:o
H1
[e]
Vi v Ej)k AE=-29
- e AG=21
’»,_N/ :_b
W\
Ly
N
— S M
AE=-45 H'
AE* =20
AG=-33
AG*=30

Figure 2. Proposed catalytic cycle for asymmetric transfer hydrogenation with 1-Cis. AG and G¥ represent reaction and activation Gibbs free
energy changes in k] mol™" at 333 K, respectively. Cycle for formation of (R)-product shown.

hypothesize that the observed dissimilarity of the methyl
groups originates from the locked chair conformation of the
cyclohexane ring due to chelation to Mn. The different steric
environments of the axially and equatorially bound nitrogen
atoms (i.e., varied proximity to ring-bound C—H) lead to the
observation of the two distinct signals. The NH resonances of
1-Cis are present as two broad singlets at § = 3.3 ppm and 6 =
2.6 ppm, further indicating the chemical inequivalence of the
amino groups (see the Supporting Information for full
characterization).

Under the selected reaction conditions, we could observe
the formation of a secondary product that has a distinct 'H

NMR spectrum from 1-Cis. This complex features a '"H NMR
spectrum in which resonances from the NH and N—Me groups
overlap and produce a band of signals between 6 = 3.0—2.8
ppm. This compound could be separated from 1-Cis by slow
vapor diffusion crystallization from the original mother liquor
by further addition of n-hexane (see the Supporting
Information, 1-Trans, procedure A).

Single-crystal X-ray diffraction data of both products
revealed their identities as cis and trans isomers. The solid-
state structure of 1-Cis features the methyl groups bound in cis
fashion, both oriented in opposite direction to the bromide
ligand bound in the axial position of octahedral complex 1-Cis

3189 DOI: 10.1021/acs.organomet.9b00457
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Scheme 4. DFT Calculations into the Origin of Enanantioselectivity of Catalysis with Mn—Hydrides V-H' and V-H*“

V-H'/Si/ (R)
Favorable

V-H'/ Re / (S)
Unfavorable

V-H?*/Re/ (S)

V-H?/Si/ (R)

Favorable Unfavorable
1-Cis 1-Trans
Product Reaction Site (H") Reaction Site (H?) Reaction Site (H')
AE* AG* AE* AG* AE# AGH
(R)-1-Phenylethanol 20 30 31 44 20 33
(S)-1-Phenylethanol 26 40 2 39 25 40

“Dotted yellow lines highlight steric interactions of unfavorable high-energy TS.

(Figure 1). The second product was identified as 1-Trans, a
minor isomer (<20%) of 1 in which the NH protons are
oriented trans (Figure 1). The ratio of 1-Cis/1-Trans was
found to be strongly dependent on the complexation
conditions; a nearly inverse ratio of 1-Cis/1-Trans was
obtained when the reaction was performed in dichloromethane
at 25 °C (Scheme 3).

Isomers 1-Cis and 1-Trans did not interconvert upon
prolonged heating at 70 °C in THF-d; or C¢Dy, indicating that
their formation and relative abundance is a kinetic ratio
governed by synthetic conditions rather than chemical
exchange phenomena. Additionally, no ligand substitution
occurred when 1-Cis or 1-Trans was refluxed in benzene in the
presence of 2 equiv of triphenylphosphine, further confirming
their thermal and chemical stability. The presence of a 2-fold
L4 excess during complexation did not result in the formation
of cationic [Mn(L),(CO),]* species, which are frequently
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observed when stronger phosphine-donor ligands are uti-
lized 272834

With the isolated complexes 1-Cis and 1-Trans in hand, we
tested whether they would have different catalytic perform-
ances. Both complexes, however, produced a virtually identical
yield of (R)-1-phenylethanol of ~40% in 1 h at 60 °C with
74% ee, which is a slight improvement in performance over the
situation when the catalyst was generated in situ (Table S2).
Preactivation of precatalysts 1-Cis and 1-Trans with
NaHBEt,*”*° allowed the catalytic reaction to be operated
base free. Catalytic performance was not improved and was
identical for both complexes, again indicating that the
catalytically active species formed from precatalysts 1-Cis and
1-Trans are identical.

Mechanistic Investigations and Origin of Stereo-
selectivity. We next employed density functional theory
(DFT) to rationalize the observed trends in catalysis with
complexes 1-Cis and 1-Trans. The reaction mechanism was

DOI: 10.1021/acs.organomet.9b00457
Organometallics 2019, 38, 3187—-3196


http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.9b00457/suppl_file/om9b00457_si_001.pdf
http://dx.doi.org/10.1021/acs.organomet.9b00457

Organometallics

Scheme S. Stoichiometric Reactivity Studies with Complexes 1-Cis and 1-Trans
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Scheme 6. Isolated Chiral Manganese—Diamine Complexes
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investigated at the PBE0-D3(BJ)-SMD('PrOH)/ DefZQZVPP
level of theory using the Gaussian 09 D.01 program.”® The
proposed catalytic mechanism as well as reaction and standard
activation Gibbs free energies for elementary steps are
summarized in Figure 2.

The catalytic cycle starts by activation of precatalyst 1-Cis
with KO'Bu and 'PrOH (or KO'Pr, created in situ) to form
Mn—isopropoxide complex II, which is a resting state in the
catalytic cycle. f-Hydride elimination of the anionic isoprop-
oxide ligand with concomitant formation of Mn—hydride
complex III proceeds with the highest activation Gibbs free
energy in the catalytic cycle of 70 kJ mol™'. Acetone is
removed from III to produce catalytically active Mn—hydride
IV. The ketone substrate subsequently coordinates to IV via
NH-assisted hydrogen bonding, forming Mn adduct V, and
reacts endergonically (AG¥ gy = 30 kJ mol™, AG¥) = 39 kJ
mol™") through enantiodetermining hydride transfer, leading
to the formation of Mn—alkoxide resting state VI. Liberation of
the 1-phenylethanol product is an activated process with a high
barrier of 60 k] mol™" and results in the formation of reactive
Mn—amido intermediate VII-I. Deprotonated complex VII—
II readily reacts with free PrOH in an exergonic reaction with
a low barrier of only 12 k] mol™ to regenerate MnO'Pr species
IT and complete the catalytic cycle.

Cis-complex 1-Cis possesses two accessible and reactive N—
H moieties (H' and H? in Figure 2), whereas trans-ligated
systems only bear one (H'). The steric environment of both
N—H’s, however, is different because of the close proximity of
up-and-down oriented carbon/hydrogen atoms in the cyclo-
hexyl ring (Scheme 4). This difference potentially impacts
stereoselectivity, as it may lead to preferential precoordination
of the Re or Si face of acetophenone to 1-Cis and 1-Trans. We
therefore studied the enantiodeterminative step in more detail
using DFT and calculated the energies for coordination of the
Re and Si faces of acetophenone to all reactive protons, ie.,
four combinations for 1-Cis and two for 1-Trans (Scheme 4).
These studies revealed preferential formation of (R)-1-
phenylethanol for both conformers which originates from
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coordination of the Si face to proton H'. Enantioselective
induction is predominantly achieved through steric repulsion
between the substrate CH; and nearby ligand-bound CH and
NH (transition states for 1-Cis shown in Scheme 4).

The differences in activation barriers for the transfer of
proton H' are 9 and 7 kJ mol™" between H' and H? for cis and
trans V—hydrides, respectively (details in Scheme 4 and the
Supporting Information). Thus, reaction at H* is a more
activated process and results in (S)-alcohols. Calculated results
correctly predict the preferential formation of the major (R)
enantiomer found experimentally and, contrary to our original
hypothesis, predict virtually identical enantioselective perform-
ance of 1-Cis and 1-Trans.

A stoichiometric reactivity study was performed using '
NMR spectroscopy to experimentally substantiate results
obtained with DFT. Reaction of 1-Cis and KO'Bu in THF-dg
(i.e., in the absence of 'PrOH) led to the formation of a new
octahedral Mn—alkoxide complex II-O'Bu (Scheme §, top),
evidenced by the significant change of the '"H NMR spectrum
(Figure S18). Addition of 'PrOH to a solution of II-O'Bu in
THEF-dg resulted in a rapid color change of the reaction
mixture from red to yellow, associated with the formation of
the Mn—isopropoxide complex II. The identity of neutral
complex II is suggested on the basis of "H NMR, indicated by
the appearance of a new resonance at 6 = 4.07 ppm that is
assigned to the Mn-bound isopropoxide moiety. Interestingly,
the "PrO anion in II is dynamic and rapidly exchanges with free
'PrOH in solution, as evidenced by 2D-NOE measurements
(Figure S34). The same cis-Mn—alkoxides II—O'Bu and II
were formed upon treatment of 1-Cis or 1-Trans with KO'Bu
in the absence of 'PrOH (II-O'Bu) or with 'PrOH (II). This
observation implies that the treatment of 1-Trans with KO'Bu
converts it into a complex where both protons and methyls are
in a cis-configuration. Consequently, both isomers 1-Cis and 1-
Trans show an identical catalytic reactivity and selectivity in
the ATH reaction.

Interestingly, even in the presence of minor quantities
"PrOH (ca. 2—3 equiv), Mn—isopropoxide complex II appears

DOI: 10.1021/acs.organomet.9b00457
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Figure 3. Kinetic reaction analysis of 1-Cis catalyzed ATH of acetophenone. (a, b) Reaction order determination for 1-Cis + 2 equiv of KO'Bu. (c,
d) Reaction order determination for acetophenone. (e, f) Reaction order determination for 2-propanol. Conditions unless otherwise noted: 0.5
mmol of acetophenone (0.128 M), 1.0 mol % KO'Bu, 0.5 mol % 1-Cis, 3.82 mL of 'PrOH (diluted with toluene for parts e and f), 60 °C. Yields

determined by GC-FID using n-dodecane as an internal standard.

to be remarkably stable at temperatures tested up to 75 °C and
does not produce any dehydrogenation products (e.g.,
acetone). This observation is in stark contrast to the behavior
of aminopincer Mn—PNP or Mn—NHC complexes,”**® which
are known to promote secondary alcohol dehydrogenation and
typically form readily observable manganese—hydride com-
plexes.”” Complex II, however, reduces acetophenone to the
corresponding alcohol, despite the notable absence of
detectable hydride resonances in 'H NMR (Figure S25).
Furthermore, II—O'Bu is resilient toward heterolytic hydrogen
activation under basic conditions and did not form detectible
amounts of Mn—hydride species upon pressurization with 3
bar of hydrogen gas.

We hypothesized that the introduction of more sterically
demanding N-alkyl groups on the chiral ligand could improve
the stereoselectivity. To test this hypothesis, complex 1-
Trans—'Pr was prepared (Scheme 6). ATH of acetophenone

3192

with 1-Trans—Pr led to the formation of (R)-1-phenylethanol
with an identical ee of 71% as with 1-Cis and 1-Trans, while
catalytic activity was dramatically reduced to only one turnover
(Table S2). Fully methylated complex 2 did not show any
catalytic activity, therewith stressing the importance of
accessible NH protons and confirming the proposed bifunc-
tional mechanism involving protonation/deprotonation of the
amino group of 1-Cis and 1-Trans.

Compounds 1-Cis and 1-Trans are moderately enantiose-
lective ketone transfer hydrogenation catalysts, which may be
beneficial for future benchmarking of computational models
and methods. We carried out a detailed kinetic analysis of the
ATH using acetophenone as a model substrate with 1-Cis. At
60 °C, complex 1-Cis (0.5 mol %) reacts with an initial
turnover frequency of 79 h™' and (R)-1-phenylethanol is
produced quantitatively in 4 h with 73% ee. The initial reaction
rates increase with increased catalyst loading (0.1—1.0 mol %
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Scheme 7. In-Situ Preparation and Detection of Mn—Alkoxide II-OPhEt
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Figure 4. (a) Arrhenius plot for acetophenone ATH with 1-Cis (left). (b) Kinetic isotope effect studies for ATH with 1-Cis (right). Conditions: 0.5
mmol of acetophenone (0.128 M), 1.0 mol % KO'Bu, 0.5 mol % 1-Cis, 3.82 mL of 'PrOH or 'PrOD, 40—70 °C. Yields determined by GC-FID

using n-dodecane as an internal standard.

1-Cis) and are in agreement with a catalyst reaction order of
1.0 (Figure 3ab and the Supporting Information). The
influence of base concentration on precatalyst activation and
the catalytic reaction rate was evaluated at various base
loadings (see the Supporting Information). No effect is
observed when 2—20 equiv of base relative to 1-Cis was
used, while lower base concentration resulted in reduced
catalytic performance. Additionally, the catalyst reaction order
in the presence of a large excess (S mol %) of KO'Bu similarly
was equal to 1.0 (see the Supporting Information). Thus, all
observations suggest that base solely acts as the precatalyst
activator and does not play a significant role in the catalytic
cycle for ATH.

The interpretation of kinetic data for acetophenone and
PrOH is less straightforward and revealed orders of 0 and 0.6,
respectively (Figure 3c—f). Previously, Heeres and co-workers
have derived a kinetic rate equation for the Ru-catalyzed ATH
of ketones, taking into account effects caused by the reverse
reaction (terms in the nominator), and effects due to catalyst
inhibition by acetophenone (A), 'PrOH (B), 1-phenylethanol
(C), and acetone (D) (terms in the denominator), with
parameters k, m, n, and p, as the reaction orders for inhibition
caused by the respective reaction component (eq 1).**

dc, k'C,Cy — k; C.Cpy
—_—_— =, =
dt ALk O+ K CE+ ECE (1)
ac, 3 kFC,Cy
dt 1+ k,CE + k,Cr @)

At the start of the reaction, one can assume a negligible
influence from the reverse reaction and its product (i.e,, C and
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D), and the kinetic rate equation simplifies to eq 2. Both DFT
and stoichiometric reactivity studies suggest a rapid reaction of
the activated complex with 'PrOH (B) to MnO'Pr complex IL
The f-H elimination step to convert II to Mn—hydride III and
acetone is the rate-determining step (RDS) in the catalytic
cycle. Subsequent elementary reactions lead to transfer of the
hydride to acetophenone through a sequence of low-barrier
transformations (Figure 2). This process is similar to
conventional saturation kinetics® and is consistent with a
zeroth order reaction rate in acetophenone, since the substrate
is not involved in the RDS.

The predicted facile formation of Mn—alkoxide II also
provides a rationalization for the positive fractional reaction
order of the hydrogen donor and solvent, 'PrOH. If inhibition
by 'PrOH is much faster than substrate inhibition (i.e., k;Cp"
> 1+ k,C,*) and C, effectively is constant, eq 2 can be further
reduced to eq 3. The extent of inhibition by 'PrOH, as
expressed in parameter m, directly impacts the observed
reaction order in 'PrOH, leading to the positive fractional
reaction order value of 0.6 for ATH with 1-Cis.

_dg kfc,c
= —ry= =2 = Ky Gy with
dt k,Cy
Kobs = k1+CA
k, (3)

The relative stability of Mn—alkoxide complexes in hydro-
genations has been observed before by our group for closely
related Mn—P,N complexes.”**’ This led us to investigate the
extent of product inhibition in ATH with 1-Cis by means of
additional stoichiometric reactivity studies. The Mn—1-
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Figure 5. (a) Erosion of ee as a function of 'PrOH concentration. (b) Erosion of ee as a function of reaction temperature. (c) Reaction rate of
acetophenone and isobutyrophenone ATH with 1-Cis. (d) Erosion of ee for acetophenone and isobutyrophenone ATH. Conditions unless
otherwise noted: 0.5 mmol of acetophenone (0.128 M), 1.0 mol % KOBu, 0.5 mol % 1-Cis (2.0 mol % KO‘Bu and 1.0 mol % 1-Cis for parts c and
d), 3.82 mL of 'PrOH (diluted with toluene for parts a and b), 40—70 °C. Yields determined by GC-FID using n-dodecane as an internal standard.

phenylethoxide complex II-OPhEt was detected with 'H
NMR after reaction of 1-Cis or II—O'Bu with 1-phenylethanol
and base (Scheme 7). Addition of ~3 equiv of 'PrOH led to
the formation of a mixture of Mn—alkoxide complexes II and
II-OPhEt, suggesting both may be present and that product
inhibition cannot be ruled out in catalysis with 1-Cis.

In summary, catalyst inhibition by 'PrOH is a significant
process for the 1-Cis-catalyzed ATH of ketones and results in
observed zeroth order kinetics for the substrate and a positive
fractional reaction order for the hydrogen donor.

Activation Energies and KIE Measurements. We
concluded our mechanistic studies with the determination of
apparent activation energies and kinetic isotope effect (KIE)
measurements to get a better experimental insight into the
RDS. Acetophenone ATH with 1-Cis proceeds with an
apparent, nonasymmetric activation energy of 87 kJ mol™
(Figure 4a). Detailed analysis of reaction rates allowed
determination of the apparent E, for the formation of
individual (R) and (S) enantiomers, which is particularly
useful for benchmarking computational models. The reaction
to (R)-1-phenylethanol exhibits a barrier of 85 kJ mol™', while
the pathway to (S)-1-phenylethanol proceeds with a marginally
higher barrier of 93 k] mol™". This observed AAE,* of 8 kJ
mol ™" for formation of both enantiomers corresponds well with
the computed value of AAG* for ATH of acetophenone with
1-Cis (Scheme 4), with the overall observed and predicted
barriers for the RDS showing some difference (AAE of 15 kJ
mol™!; 70 kJ mol™ from DFT versus experimental 85 kJ
mol™"). At this moment, however, it remains unclear what is
the cause of this observed divergence between theory and
experiments.
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Studies in 'PrOD-dg reveal a strong primary kinetic isotope
effect (KIE) of 2.72 + 0.07, consistent with hydride transfer
from 'PrOH being involved in the RDS of the catalytic cycle.
This finding correlates well with the proposed mechanism
(Figure 2), where f-hydride elimination from the coordinated
isopropoxide ligand to form Mn—hydride III was identified as
the most energetically demanding transformation. When
PrOD was used, we observed a secondary KIE of 1.22 +
0.07 (Figure 4b). Proton transfer is clearly of less importance
than hydride transfer, yet this process too has a clear impact on
the rate-determining processes in the catalytic reaction
mechanism.

ee Erosion and Preservation. The reversible nature of
the transfer hydrogenation reaction of ketones with secondary
alcohols as hydrogen donors is known to induce an erosion of
product enantiomeric excess.”' A strategy to prevent such ee
erosion is to use an azeotropic mixture of formic acid and
triethylamine as the hydrogen donor.>** However, to the best
of our knowledge, the reduction of ketones with 3d base metals
and formic acid has not yet been reported. As with Ru-based
systems,”" we performed the reaction under dilute conditions
in order to prevent the decrease of ee over time (Figure Sa).
Indeed, in the presence of a large excess of 'PrOH, erosion of
ee was less pronounced. Increased reaction temperature
resulted in significantly reduced product ee (Figure Sb).

We hypothesized that use of a more sterically demanding
ketone substrate would lead to improved ee’s compared to
acetophenone (Figure Sc and d). Indeed, the ATH of
isobutyrophenone under identical conditions results in
quantitative production of (R)-2-methyl-1-phenylpropanol
with 87% ee, albeit at a reduced reaction rate, ie, ~85%
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TOF® obtained with acetophenone reduction at 60 °C with 1
mol % 1-Cis.

B CONCLUSION

In conclusion, we have synthesized and characterized a series
of simple chiral manganese—diamine complexes which were
evaluated for their catalytic performance in asymmetric transfer
hydrogenation of acetophenones. Complexes 1-Cis and 1-
Trans are stereoselective ATH catalysts for the synthesis of
enantio-enriched secondary alcohols in good to quantitative
yields. We conducted a detailed theoretical and experimental
mechanistic investigation including the first detailed kinetic
study for the Mn-catalyzed ATH of ketones. Our ligand
screening revealed that introduction of simple diamine ligands
does not induce sufficient steric strain to facilitate high
enantioselectivity. We however found that such strain cannot
practically be applied on the described Mn complexes bearing
N-donors while concomitantly maintaining high catalytic
activity. We demonstrated that different stereoisomeric
precatalysts upon activation converge to shared intermediates
and thus exhibit identical catalytic performance. This renders
conventional approaches toward catalyst optimization un-
successful and thus demands more thorough studies.
Mechanistic insight and the recent applications of bidentate
ligands containing a NHC group'*** suggest that introduction
of a strongly donating but small bidentate ligand could lead to
highly active and selective second-generation Mn catalysts for
ATH of ketones.
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