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ABSTRACT

In the coming years, thousands of quay walls will approach the end of their intended 
fifty-year design lifetime and become part of lifetime extension programmes throughout 
the world. It is presently unclear how reliable these structures are and whether they are 
still capable of bearing ship and crane loads. An appropriate assessment of a quay wall’s 
reliability is essential to safely and responsibly determining its remaining service life. This 
thesis demonstrates how quay wall reliability can be evaluated and what aspects should 
be taken into consideration.

In this study, reliability targets were derived from various risk-acceptance criteria, 
such as the individual risk, group risk, economic optimisation and human safety. For the 
commercial quay walls considered in this study, the economic risk-acceptance criterion 
prevails when deriving reliability targets, provided that the requirements concerning human 
safety have been met. The lifetime reliability targets obtained for a reference period of 
fifty years were in the range of the acceptable reliability levels recommended in literature. 
Furthermore, it was found that the failure rate of quay walls evolves over time, whereas the 
design codes currently in use implicitly assume that rate to be constant. As a result, the 
annual reliability targets obtained are lower than in the Eurocode or ISO 2394. This finding 
is quite relevant, since using a reference period of one year enables us to evaluate quay-
wall reliability, while taking into account the effects of past performance and degradation. 
Moreover, within a one-year reference period, the effects of past performance and 
degradation can be taken into account in an appropriate manner. These findings can play 
an important role in the evaluation of the reliability of an existing quay wall, since then its 
remaining service life and the associated reference period are generally unknown a priori. 
Hence, using annual target reliability indices is preferred.

In addition, the quay wall’s actual reliability level was estimated by performing finite 
element-based reliability analyses. Despite a fairly complex soil-structure interaction (e.g. 
due to inclined retaining walls, relieving platforms and non-linear soil behaviour) and a large 
number of random design variables, this thesis shows that the reliability level of a quay wall 
can be estimated successfully by performing finite element-based reliability assessments 
using the Abdo-Rackwitz1 algorithm. The resulting reliability indices for critical failure modes 
are in the range of the recommended lifetime reliability targets from the Eurocode. Moreover, 
it was found that time-independent variables, such as material properties of soil, steel and 
grout, as well as model uncertainty, significantly influence the reliability of a quay wall.

By performing fully time-dependent reliability analyses, taking into account both 
past service performance and degradation, this thesis demonstrates that the presence of 
dominant time-independent variables is crucial when assessing the reliability of existing 
quay walls. It was found that the (epistemic) uncertainty in time-independent variables, such 
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as the strength of sand, is likely to decrease over time for structures with successful service 
histories. As a result, in the absence of degradation, the quay wall’s failure rate decreases 
over time. Consequently, not only is the quay wall’s actual reliability higher than in its early 
service period, but the net present value of the residual risk will also decrease, and hence 
reliability targets derived from an economic perspective will decrease accordingly. Due to 
corrosion, however, the reliability of a quay wall decreases over time, while our confidence in 
a service-proven structure increases. Both aspects therefore affect the reliability of existing 
quay walls. Since the maximum stresses close to the harbour bottom prevail, and corrosion 
rates are quite low there, it is expected that the lifetime of many existing quay walls can be 
extended safely, despite some degradation.

Furthermore, German and Dutch ports provided this research with new field 
measurements of berthing manoeuvres, which were used to reduce uncertainty in berthing 
impact loads acting on quay walls. The field measurements were statistically examined 
to establish design values for berthing velocity – the speed at which a ship approaches 
the quay wall – since the uncertainty in berthing velocity dominates the uncertainty in the 
associated berthing impact load. No significant correlation was found between berthing 
velocity and ship dimensions, whereas well-established design guidelines for marine 
structures, such as PIANC, suggest a fairly strong negative correlation. By contrast, the 
berthing velocity depends on the berthing policy (e.g. type of landing, experience of pilots 
and the use tug assistance or of berthing aid systems). It is therefore recommended that 
these design guidelines be revised.

In summary, the applicability of finite element-based reliability assessments in quay-
wall engineering has increased considerably. The methods developed for evaluating quay-
wall reliability can be used to determine the remaining service life, to make better use of 
existing structures and to improve the design of new quay walls. The findings of this thesis 
can play a crucial role in the assessment of existing quay walls, and presumably all other 
service-proven geotechnical structures subject to degradation.

1 Gradient-based first order reliability method.
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SAMENVATTING

In de komende periode naderen duizenden kademuren het einde van hun beoogde 
ontwerplevensduur van 50 jaar, waardoor wereldwijd rehabilitatieprogramma’s zullen 
worden opgestart. Op dit moment is het onduidelijk hoe betrouwbaar kadeconstructies 
zijn en of ze de belastingen door schepen en kranen nog aankunnen. Het op een juiste 
wijze beoordelen van de betrouwbaarheid is essentieel om de resterende levensduur van 
deze kades veilig en verantwoord vast te kunnen stellen. In dit proefschrift wordt nader 
ingegaan op welke wijze de betrouwbaarheid van kademuren kan worden beoordeeld en 
met welke aspecten hierbij rekening moet worden gehouden.

In dit onderzoek is allereerst bepaald hoe betrouwbaar een kade moet zijn door 
streefwaardes af te leiden op basis van verschillende risicoacceptatiecriteria, zoals het 
individuele risico, het groepsrisico, economische optimalisatie en menselijke veiligheid. 
Voor de commerciële kademuren die beschouwd zijn in deze studie is gevonden dat het 
economische acceptatiecriterium maatgevend is, mits rekening gehouden wordt met 
sociaaleconomische gevolgschade. De afgeleide streefwaarden voor een referentieperiode 
van vijftig jaar komen overeen met de aanbevolen betrouwbaarheidsniveaus in de literatuur. 
Daarnaast bleek dat de jaarlijkse faalkans van een kademuur aanzienlijk verandert in de 
tijd. Dit in tegenstelling tot de huidige ontwerpcodes, die impliciet veronderstellen dat deze 
faalkans constant is. Hierdoor zijn de streefwaarden voor een referentieperiode van één 
jaar lager dan de aanbevolen waarden uit de Eurocode en ISO 2394. Daarnaast kunnen 
binnen een referentieperiode van één jaar de effecten van bewezen sterkte en degradatie 
goed meegenomen worden. Deze bevindingen kunnen een belangrijke rol gaan spelen bij 
het toetsten van bestaande kademuren, omdat de resterende levensduur en de daarmee 
samenhangende referentieperiode vooraf meestal niet bekend zijn. Om die reden geniet 
het toepassen van jaarlijkse streefwaarden de voorkeur.

Vervolgens is een betrouwbaarheidsanalyse uitgevoerd met als doel de werkelijke 
betrouwbaarheid te schatten, waarbij de kade gemodelleerd is in een eindige elementen 
omgeving. Ondanks de relatief complexe grondconstructie interactie (veroorzaakt door 
een hellende voorwand, een ontlastvloer of sterk niet-lineair grondgedrag) en het grote 
aantal stochastische variabelen kan de betrouwbaarheid van een kademuur worden 
berekend middels een op eindige elementen gebaseerde betrouwbaarheidsanalyse met 
het Abdo-Rackwitz1 algoritme. De gevonden betrouwbaarheid komt voor de maatgevende 
faalmechanismes goed overeen met de aanbevolen streefwaarden uit de Eurocode. 
De resultaten laten ook zien dat tijdsonafhankelijke stochastische variabelen (zoals 
materiaaleigenschappen van grond, staal en grout) en modelonzekerheid een grote invloed 
hebben op de betrouwbaarheid van een kademuur.
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Door het uitvoeren van volledig tijdsafhankelijke betrouwbaarheidsanalyses, waarbij 
rekening is gehouden met zowel bewezen sterkte als degradatie, is in dit onderzoek 
aangetoond dat de aanwezigheid van dominante tijdsonafhankelijke variabelen cruciaal is 
bij het beoordelen van bestaande kademuren. De resultaten laten zien dat de (epistemische) 
onzekerheid in tijdsonafhankelijke variabelen (zoals de sterkte van zand) in de loop van de 
tijd zal afnemen als de kadeconstructie goed functioneert. Hierdoor daalt, in afwezigheid 
van degradatie, de faalkans en is niet alleen de berekende betrouwbaarheid hoger in 
vergelijking met het oorspronkelijke ontwerp, maar zal ook de netto contante waarde 
van het restrisico afnemen, waardoor de daarmee samenhangende streefwaarde voor 
betrouwbaarheid vanuit een economisch perspectief eveneens zal afnemen. Als gevolg 
van corrosie neemt de betrouwbaarheid van een kade na verloop van tijd echter af, terwijl 
ons vertrouwen in een goed functionerende kade daarentegen met de tijd toeneemt. Beide 
aspecten hebben daarmee invloed op de betrouwbaarheid van bestaande kademuren. 
Aangezien de maximale spanningen optreden net boven of onder de havenbodem en de 
corrosiesnelheid hier relatief laag is, is de verwachting dat de levensduur van veel bestaande 
kademuren, ondanks enige degradatie, veilig kan worden verlengd.

Daarnaast hebben Duitse en Nederlandse havens nieuwe veldmetingen van 
afmeermanoeuvres ter beschikking gesteld, welke zijn gebruikt om de onzekerheid in de 
afmeerbelasting op kademuren te reduceren. De veldmetingen zijn – om te bepalen met 
welke snelheid een schip mag afmeren – statistisch geanalyseerd, omdat de onzekerheid in 
de afmeersnelheid een belangrijke rol speelt bij de daarmee samenhangende afmeerkracht 
en zodoende invloed heeft op de betrouwbaarheid van een kademuur. In dit onderzoek is 
geen noemenswaardige correlatie gevonden tussen de afmeersnelheid en de grootte van 
een schip, terwijl veel gebruikte ontwerprichtlijnen voor maritieme constructies, als PIANC, 
dit tot op heden wel veronderstellen. De afmeersnelheid is daarentegen afhankelijk van het 
gevoerde afmeerbeleid (bijvoorbeeld de uitgevoerde manoeuvre, de ervaring van de loods 
en het gebruik van sleepboten of andere dockingsystemen). Het wordt dan ook aanbevolen 
om de huidige ontwerpaanbevelingen op dit vlak te herzien.

Kortom, de toepasbaarheid van op eindige elementen gebaseerde betrouwbaarheids-
analyses bij het beoordelen van kademuren is aanzienlijk toegenomen. De ontwikkelde 
methodes voor het beoordelen van de betrouwbaarheid van kademuren kunnen worden 
gebruikt om de resterende levensduur te bepalen, om de bestaande constructies beter te 
benutten en het ontwerp van nieuwe kademuren te optimaliseren. De bevindingen uit dit 
proefschrift kunnen een belangrijke rol spelen bij het toetsen van kademuren en vermoedelijk 
ook voor andere goed functionerende geotechnische constructies die onderhevig zijn aan 
degradatie.

1 Een op gradiënten gebaseerde eerste orde betrouwbaarheidsmethode.
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INTRODUCTION
“Information is the resolution of uncertainty”
Claude Shannon

Numerous marine structures such as quay walls, jetties and flexible dolphins have been 
constructed all over the world to accommodate ships’ berthing, mooring and loading 
operations. The reliability of these structures has played an essential role in the global 
transhipment of goods and is the cornerstone of a well-functioning port. New quay walls 
are equipped with modern sensors, such as fibre-optic strain sensors installed on soil-
retaining walls or anchor systems, and can therefore become potentially more intelligent 
and reliable (Fig. 1.1). Global digitisation has already created smart port infrastructure using 
‘internet of things’ technologies. However, the biggest challenge is neither to collect data 
nor to facilitate connections, but to translate the available data into useful information and to 
identify which data is lacking in order to resolve uncertainty. The main theme of this thesis 
is the reliability of quay walls, with the present chapter providing an overview of the general 
background and motivation (Section 1.1), the knowledge gaps (Section 1.2), the research 
aim and questions (Section 1.3), the thesis outline (Section 1.4) and limitations (Section 1.5).
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Chapter 1

The quay wall data is centrally collected, and 
then transferred into the cloud using ʻInternet 
of Thingsʼ technology. In addition, the cloud 
includes other data sources, such as 
environmental data and vessel characteristics.

Physical quay wall 
equipped with 
modern sensors.

A digital twin is a digital 
representation of the physical 
quay wall, providing real-time 
information about its status.

Data analytics can be used 
to reduce uncertainty, and 
hence to guarantee safety, 
and to improve the 
performance of a quay wall. 

digital twin data analytics

uncertainty

initial

updated

Risk-based & data-driven decisions using real-time quay wall data

Maintenance required!

Inspection required!

How does a smart quay wall work?

cloud

Damage to 
anchor system

Fig. 1.1. Risk-based and data-driven decisions using real-time quay-wall data

1.1 MOTIVATION AND SOCIETAL RELEVANCE

In port engineering, many uncertainties must be taken into consideration in order to ensure 
the eff ective, safe and effi  cient handling of ships during their service life. Port authorities 
and terminals have to guarantee quay-wall functionality in accordance with service-level 
agreements with their clients. Quay walls are generally designed in such a way that they 
are likely to fulfi l the functional and technical requirements for at least 50 years (De Gijt & 
Broeken, 2013), whereas the duration of these service-level agreements is normally 25 
years. As a result, adjustments may be necessary to improve functionality – for instance, by 
increasing water depths or enhancing terminal loads, since ships are evolving constantly.

New port infrastructure will still be developed, although the focus is shifting towards 
the maintenance, repair, rehabilitation and adaptation of existing structures in fully up-and-
running terminals (Roubos & Grotegoed, 2014). In the coming years, thousands of quay 
walls will have to be reassessed as part of lifetime extension programmes throughout the 
world. Numerous existing marine structures, including half of the 85 kilometres of quay walls 
in the port of Rotterdam (Fig. 1.2), which represent a value of approximately 2 billion euros, 
will approach the end of their design lifetime in the next few decades. However, the end of 
their design lifetime does not automatically align with the end of their service life, because 
most of the quay walls are still in good condition.
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Diaphragm wall + relieving platform Combi-wall + relieving platform
Combi-wall + concrete bar Sheet pile wall + relieving platform
Sheet pile wall + concrete bar Open platform + piled foundation
Gravity wall + piled foundation Caisson quay wall

38%

24%

23%

15%

age > 25 year
25 years ≤ age < 50 years 
50 years  ≤   age < 75 years 
age ≥ 75 years

A) B) 

Quay-wall type: Age of quay walls: 

Fig. 1.2. Overview of the type (A) and age (B) of quay walls in the port of Rotterdam

Nonetheless, these structures may have undergone alteration, deterioration, misuse 
and other changes during their service life. Consequently, port authorities and terminals 
frequently perform inspections and have to maintain their assets to guarantee safety. The 
Port of Rotterdam Authority has already addressed an urgent need to focus on asset 
management. They equip their new quay walls with modern sensors and have developed 
a quay-wall monitoring system for their existing assets (Voogt et al., 2015). This system 
objectively supports the decision-making process, focusing on budgeting and prioritising 
the maintenance of quay walls. Over the years, the Port of Rotterdam Authority has collected 
a great deal of data, which has been used predominantly for asset-management purposes.

1.2	 KNOWLEDGE GAPS

Although some quay walls have been equipped with sensors, and as a result new and 
additional data is being collected, the actual reliability level of most of these structures is still 
unknown; this is mainly because the practical applicability of reliability-based assessments 
in quay-wall engineering is rather low and a probabilistic framework that suits their specific 
risk profile is lacking. In the coming period, the demand for such advanced analyses is likely 
to increase, since many quay walls have to be reassessed and the required computation 
effort will further decrease. This section summarises the main knowledge gaps in relation 
to the evaluation of the reliability of quay walls.

1
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Chapter 1

Unlike reliability-based assessments, conventional structural and geotechnical 
assessments use generalised safety factors to deal with uncertainties. As a result, the 
reliability requirements of existing quay walls are frequently not satisfied even though the 
existing structure itself is performing quite well. One reason is that the target reliability indices 
presently in use were developed mainly for buildings (Vrouwenvelder, 2001; Vrouwenvelder 
& Siemens, 1987) and bridges (Steenbergen & Vrouwenvelder, 2010), assuming a constant 
annual failure rate (Holický, 2011; Leonardo da Vinci Pilot Project, 2005). In reality, a quay 
wall will be subject to both time-dependent and time-independent sources of uncertainty, 
such as inherent natural variability in strength and loads (aleatory uncertainty), as well 
as lack of knowledge or insufficient information (epistemic uncertainty) (ISO 2394, 2015). 
Consequently, it is unclear whether the reliability indices derived for buildings are applicable 
to the specific risk profile of quay walls. Since important assumptions in geotechnical 
engineering, such as characteristic strength properties of soil, are fraught with uncertainties 
(Fenton et al., 2016), it is expected that the annual failure rate (the frequency with which 
a structure fails, expressed in failures per year) of a service-proven and non-deteriorating 
quay wall will decrease during its early years of service and over time approach an almost 
constant value, since after a period of successful service only the uncertainty in time-
dependent design variables, such as live loads, remains (Fig. 1.3-A).

A) Service-proven and non-deteriorating structure B)  Service-proven and deteriorating quay wall
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Time-independent uncertainty

(e.g. a quay wall) 

Deteriorating quay wall subject to low corrosion rate 
Deteriorating quay wall subject to high corrosion rate  

low corrosion rate 

high corrosion rate 

no corrosion 

Fig. 1.3. Failure rate of service-proven and non-deteriorating structures (A) and the effect 
of service-proven deteriorating quay walls (B).

Since quay walls frequently have a complex soil-structure interaction (e.g. due to 
inclined retaining walls or relieving platforms, see Fig. 1.1), structural and geotechnical 
assessments are usually performed semi-probabilistically while modelling the quay wall 
on the basis of finite elements. A more systematic way to account for uncertainties is to 
perform a reliability-based assessment (Phoon & Retief, 2016). While reliability methods 

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   18 28-08-19   12:43



19

Introduction

have already been widely adopted in civil engineering and for flood-risk evaluation (Jonkman 
& Schweckendiek, 2015), the efficiency and robustness of finite element-based reliability 
assessments of quay walls are still fairly low. In particular, it remains quite a challenge to 
achieve a robust coupling between probabilistic methods and finite element models, e.g. 
due to the highly complex and non-linear character of soil behaviour. Although a few studies 
(Rippi & Texeira, 2016; Schweckendiek et al., 2012; Teixeira et al., 2016; Wolters et al., 2012) 
show promising results for quay walls and other soil-retaining structures, most use simplified 
models, a limited number of stochastic variables, neglect correlations and they generally 
do not consider structures that have actually been built. As a result, it is unknown to port 
authorities and terminals to what extent design variables influence quay walls’ reliability, 
what data is relevant and what data or information is lacking.

Two recent studies (Boero et al., 2012; Teixeira et al., 2016) show that the uncertainty in 
material loss due to corrosion significantly influences the reliability level of soil-retaining walls. 
However, clear guidance on how to assess service-proven quay walls subject to corrosion-
induced degradation is lacking. The Port of Rotterdam Authority therefore collected millions 
of wall-thickness measurements and developed an allowable stress-based method using 
specific corrosion curves to predict the end of the service life of its assets (Jongbloed, 2019). 
It is unclear, however, if this method adequately covers the actual reliability level of a quay 
wall that has successfully been in service for a certain period of time, since in the absence 
of degradation it has become more likely that this structure will remain satisfactory and 
safe (Melchers & Beck, 2018). In the event of corrosion-induced degradation, the failure 
rate of a quay wall is expected to increase over time (Fig. 1.3-B). The extent of this effect 
will depend on the corrosion rate. Only a few other studies have investigated the influence 
of corrosion on the reliability of steel soil-retaining walls (Houyoux et al., 2007; Osório et al., 
2010; Schweckendiek et al., 2007), mainly using the first-order reliability method (FORM). 
None of these studies took successful past performance into account, however, and so 
they most likely overestimate the probability of failure of service-proven soil-retaining walls. 
This is because not all effects of the passage of time and service on structural reliability 
are negative (Hall, 1988). These beneficial effects can partly offset negative ones induced 
by degradation (Fig. 1.3-B).

In addition to uncertainties in strength, uncertainties related to loads must be taken into 
consideration. During this research, new datasets of berthing records were provided by the 
port authorities of Bremerhaven, Rotterdam and Wilhelmshaven. Meanwhile, it became clear 
that berthing velocity curves developed during the 1970s are still embedded in the design of 
marine structures throughout the world. Since vessel dimensions have evolved, collecting 
and studying the available berthing records will directly enhance quay wall reliability. The 
datasets obtained have provided a unique opportunity to develop new design guidance 

1
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for berthing energy. This will be beneficial for assessing structural reliability and for lifetime 
extension of quay walls and other marine structures.

Experts in the field of marine structures expect that hidden capacities must be present 
in the failure modes of quay walls, but they are not yet able to explicitly identify and activate 
these. One solution to this situation is to evaluate the failure modes of critical structural 
members by performing reliability-based assessments (Phoon & Retief, 2016).

1.3	 RESEARCH AIM AND QUESTIONS

This research aims to evaluate the reliability of quay walls and to show which aspects need 
to be considered. The associated research objectives are fourfold: (i) to develop methods 
to allocate reliability targets that suit the risk-profile of quay walls over time; (ii) to enable 
finite element-based reliability assessments of quay walls in realistic design conditions; (iii) 
to analyse the effect of corrosion-induced degradation and past service performance on 
the reliability and failure rate of quay walls; and (iv) to provide guidance on the use of field 
observations and derivation of partial factors of safety for loads acting on quay walls. The 
central research question of this thesis is therefore defined as follows.

 “How can quay wall reliability be evaluated, and what aspects should be considered?

The central research question is answered by considering the following key questions.

i.	 How can reliability targets for commercial quay walls be derived using different risk 
acceptance criteria? (Chapter 2)

ii.	 How can we perform a finite element-based reliability assessment in quay-wall 
engineering? (Chapter 3)

iii.	 What is the effect of corrosion-induced degradation on the reliability of service-
proven quay walls? (Chapter 4)

iv.	 How can berthing records be used to improve the reliability of existing quay walls? 
(Chapter 5)

The key questions comply with the requirements and critical success factors of 
this thesis. Ideally, this thesis should provide new target reliability levels and increase the 
applicability of reliability-based analyses in quay-wall engineering, in order to evaluate quay 
walls’ reliability. In addition, the results must be reproducible and should be verified in 
practice. To be successful, the research output should bridge the gap between theory 
and practice and should benefit port authorities or terminals – for example, by identifying 
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hidden capacities or new business opportunities. It should also provide port authorities 
or terminals with more insight into their quay walls’ reliability, allowing them to safely and 
responsibly evaluate their remaining service life and/or make better use of their assets. 
Furthermore, port authorities need to know what data should be collected and whether 
this data is available. To improve the study’s applicability, the insights acquired should be 
shared with the industry, e.g. code developers, authorities, clients and practising engineers. 
A more technical success factor of this study is enhancing the practical application by 
coupling Plaxis – one of the most advanced finite-element models presently used in quay-
wall engineering – to probabilistic tools, using the as-built information and the data available 
from real ports.

1.4	 SCOPE AND OUTLINE

This thesis demonstrates how quay-wall reliability can be evaluated and what aspects 
should be taken into consideration when doing so. Performing reliability-based assessments 
involves allocating reliability targets, estimating the actual probability of failure and taking 
into account variable loads, degradation and past-service performance. In line with these 
aspects and the research questions, this thesis covers four research components (Fig. 1.3). 
It is therefore structured as follows.

·	 The first research component (Chapter 2) provides suggestions for quantifying 
reliability targets and enables the allocation of appropriate ones on the basis of the 
specific risk profile of commercial quay walls. In addition, it includes a framework 
based on the consequences of failure to differentiate the reliability targets of 
various quay wall types. The target reliability indices were derived from various 
risk-acceptance criteria, such as economic optimisation, individual risk, societal 
risk and human safety. This chapter presents a new method to determine reliability 
targets, which takes into account the influence of both time-dependent and time-
independent model parameters.

·	 The second research component (Chapter 3) features the finite element-based 
reliability interface named ProbAna® (Laera & Brinkgreve, 2017), developed 
to calculate a quay wall’s actual reliability level – which is directly related to the 
probability of failure – in respect of critical failure modes. This interface is used to 
estimate the actual failure probability of two real quay walls, taking into account 
a large number of stochastic variables. Since using these advanced tools can 
become a ‘black box’, the second part of this research evaluates the outcomes 
using alternative reliability tools and fairly simple methods. Furthermore, it also 
reflects upon the partial factors presently in used in quay-wall engineering.

1
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· The third research component (Chapter 4) investigates the eff ect over time of 
corrosion-induced degradation on the reliability of quay walls by performing 
a fully time-dependent reliability analysis, taking into account both past service 
performance and degradation. The development of the annual failure rate of service-
proven quay walls is of particular interest, having been modelled by performing 
approximately 7.5 billion limit state evaluations.

· The fi nal research component (Chapter 5) translates the available fi eld observations 
provided by Dutch and German ports into information by statistically examining 
berthing records of large seagoing vessels. Various types of vessel and various 
navigation conditions were examined. The main focus was on berthing velocity, 
because this is the dominant design variable in assessing the berthing impact 
loads acting on quay walls and other types of berthing facility (Ueda et al., 2010). 
This research component evaluates some historically embedded hypotheses within 
the industry, such as the assumption that berthing velocities correlate strongly 
with vessel size, and presents new design values and partial factors of safety. The 
results of this component should help make better use of existing quay walls, e.g. 
by allowing larger vessels to berth and to extend the service life of berthing facilities.

Δt

Reliability targets of quay walls (Chapter 2)

Berthing loads and reliability (Chapter 5) Corrosion and quay wall reliability (Chapter 4)

FEM-based reliability assessment (Chapter 3)

Limit state

νd

Fig. 1.4. Structure of this thesis.

1.5 LIMITATIONS

Since the primary aim of this thesis is to demonstrate how quay wall-reliability can be 
evaluated and what aspects should be taken into consideration when doing so, some 
assumptions and limitations have been imposed on its scope.

· The evaluation of quay-wall reliability involves information about social and economic 
impacts – such as damage to the image and reputation of a port – which is both 
relatively complex to quantify and infl uenced by local conditions. More measurable 
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parameters, such as the discount rate, also contain a certain degree of subjectivity. 
A sensitivity analysis was thus performed to illuminate the impact of the input 
parameters considered.

·	 The type of marine structure as well as the local situation, such as soil properties 
and environmental and/or navigation conditions, may differ per site. The methods 
used have predominantly been verified in the port of Rotterdam, mainly because the 
research was largely funded by Smartport, the collaborative arrangement between 
the Port of Rotterdam Authority, industry representative body Deltalinqs, the City 
of Rotterdam, Erasmus University Rotterdam, TNO, Deltares and Delft University 
of Technology. Although local conditions differ, the type of quay walls considered 
in this study are also found in many other ports throughout the world.

·	 In quay-wall design, many failure modes need to be evaluated and these may 
depend on geographical location – for example, those associated with earthquake-
induced failure. The reliability-based assessments performed in this study are limited 
to relevant structural and geotechnical failure modes. Others, such as ‘liquefaction’, 
‘excessive settlement’, ‘crack width’ and ‘insufficient bearing capacity’, are not taken 
into consideration.

·	 This study shows that past performance can have a positive effect on quay-
wall reliability. In this study, however, soil properties were assumed to be time-
independent, which is not always true. In some circumstances, the strength of the 
soil can further increase over time, whereas in other circumstances (such as fatigue, 
overconsolitated soil, creep or high groundwater flow velocities) the strength of 
materials can decrease with time. In the latter, the passing of time will negatively 
influence quay-wall reliability. Furthermore,  failure modes driven by extreme events, 
such as earthquakes, scour, liquefaction, typhoons or tsunamis were not taken into 
consideration. When quay walls are subject to such dominant time-dependent loads 
the positive effects of past performance are likely to be fairly low.

Other limitations and assumptions concerning more detailed aspects of the research are 
discussed in the relevant chapters.

1
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TARGET RELIABILITY 
INDICES FOR QUAY WALLS
The preceding chapter indicated that it is unclear whether generalised target reliability 
indices used in civil engineering are applicable to the specific risk profile of quay walls. The 
aim of the present chapter is to derive target reliability indices for quay walls from various 
risk-acceptance criteria. The outline of this chapter is as follows. Section 2.1 describes 
the basic principles used to determine reliability targets and includes a comprehensive 
list of recommended target reliability indices presently used in literature. Sections 2.2 and 
2.3 respectively describe the methods used to develop reliability targets on the basis of 
economic optimisation and by verifying requirements concerning human safety. Since 
evaluating quay-wall reliability requires information about social and economic impacts that 
features a certain degree of subjectivity, the results are subjected to a sensitivity analysis 
(Section 2.5). In the discussion section, a reasonable categorisation or rubric is presented 
by elaborating the reliability framework of ISO 2394; in addition, the associated reliability 
levels are proposed for various consequence classes (Section 2.6). The results and insights 
acquired will elucidate the evaluation of reliability targets against the outcome of a reliability-
based assessment, which is further described in Chapter 3.

This chapter is based on the following publication: Roubos, A. A., Steenbergen, R. D. J. M., 
Schweckendiek, T., & Jonkman, S. N. (2018), Risk-based target reliability indices of quay 
walls. Structural Safety 75, pp. 89-109.
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ABSTRACT

Design codes and standards rely on generalised target reliability indices. It is unclear, 
however, whether these indices are applicable to the specific risk profile of marine 
structures. In this chapter, target reliability indices for quay walls are derived from various 
risk acceptance criteria, such as economic optimisation, individual risk (IR), societal risk 
(SR), the life quality index (LQI) and the social and environmental repercussion index 
(SERI). Important stochastic design variables in quay-wall design, such as retaining height, 
soil strength and material properties, are largely time-independent, whereas other design 
variables are time-dependent. The extent to which a reliability problem is time-variant affects 
the present value of future failure costs and the associated reliability optimum. A method 
was therefore developed to determine the influence of time-independent variables on the 
development of failure probability over time. This method can also be used to evaluate 
target reliability indices of other civil and geotechnical structures. The target reliability 
indices obtained for quay walls depend on failure consequences and marginal costs of 
safety investments. The results have been used to elaborate the reliability framework of 
ISO 2394, and associated reliability levels are proposed for various consequence classes. 
The insights acquired are used to evaluate the acceptable probability of failure for different 
types of quay walls.
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2.1	 INTRODUCTION

There are thousands of kilometres of quay wall along inland waterways, in city centres, 
in commercial port areas and even in flood-defence systems throughout the world. The 
reliability level of quay walls is generally determined in accordance with a certain design 
code or standard, such as the Eurocode standard EN 1990 (2011). Table 2.1 shows an 
example of reliability differentiation for buildings by employing a risk-based approach that 
directly relates the target probability of failure and the associated target reliability index to the 
consequences of failure. The consequences of failure can take many different forms, such 
as loss of human life and social, environmental and economic repercussions (Diamantidis, 
2017). It should be noted, too, that target reliability indices were developed mainly for 
buildings (Vrouwenvelder, 2001; Vrouwenvelder & Siemens, 1987) and bridges (Steenbergen 
& Vrouwenvelder, 2010), assuming fully time-variant reliability problems (Holický, 2011; 
Leonardo da Vinci Pilot Project, 2005). However, the source of aleatory and epistemic 
uncertainty (Kubler, 2006) as well as the consequences of failure could be very different 
for quay walls in port areas (Ligtvoet & Van der Lei, 2012).

Table 2.1. Consequence and reliability classes for civil engineering works in EN 1990.

Consequence/
reliability Class Description Examples of buildings and 

civil engineering works
Reliability 
index
βt1

1 βt50
1

CC3/ RC3 High consequences for loss of 
human life or economic, social 
or environmental consequences 
very great.

Grandstands, public buildings 
where the consequences of 
failure are high (e.g. a concert 
hall).

5.2 4.2

CC2/ RC2 Medium consequence for loss 
of human life; economic, social 
or environmental consequences 
considerable.

Residential and office buildings, 
public buildings where the 
consequences of failure are 
medium (e.g. an office building).

4.7 3.82

CC1/ RC1 Low consequence for loss of 
human life and economic, social 
or environmental consequences 
small or negligible.

Agricultural buildings where 
people do not normally enter 
(e.g. storage buildings and 
greenhouses).

4.2 3.3

1) The annual (βt1 ) and lifetime reliability (βt50 ) indices only represent the same reliability level if limit 
state functions are time-dependent.
2) This value is equal to the mean value derived by calibrating building codes (Vrouwenvelder & Siemens, 
1987).

In the Netherlands, the design handbooks for quay walls (De Gijt & Broeken, 2013) and 
sheet pile walls (Janssen, 2012) further elaborate the recommendations of the Eurocode 
standard, because examples of soil-retaining walls are lacking (Table 2.1).

2
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Table 2.2. Reliability classes for quay walls in accordance with Quay Walls handbook (De 
Gijt & Broeken, 2013).

Consequence/
reliability 
Class

Description
consequences of failure Examples of quay walls

Reliability 
index
βt50

CC3/ RC3 Risk danger to life high
Risk of economic damage high

Quay wall in flood defence/LNG 
plant or nuclear plant (hazardous 
goods)

4.2

CC2/ RC2 Risk danger to life negligible
Risk of economic damage high

Conventional quay wall for 
barges and seagoing vessels. 
Retaining height > 5 m

3.8

CC1/ RC1 Risk danger to life negligible
Risk of economic damage low

Simple sheet pile structure/quay 
wall for small barges. Retaining 
height < 5 m

3.3

Table 2.2 suggests that reliability differentiation is influenced to a certain extent by 
the retaining height of a quay wall. Although the retaining height is an important design 
variable, it is not necessarily an assessment criterion for reliability. In port areas, ‘danger 
to life’ is fairly low (OCDI, 2009) because few people are present and quay walls are ideally 
designed in such a way that adequate warning is mostly given by visible signs, such as large 
deformations (Gaba et al., 2017; De Gijt & Broeken, 2013). In reality, however, the factors 
influencing reliability differ per failure mode (Allaix et al., 2017; JCSS, 2001). Fig. 2.1 gives 
an impression of the types of quay walls built in the Port of Rotterdam.

Fig. 2.1. Typical quay walls equipped with a relieving platform in the Port of Rotterdam (De 
Gijt & Broeken, 2013). Used by permission of the Port of Rotterdam Authority.

The primary aim of this chapter is to provide code developers with material to establish 
target reliability indices for quay walls and similar structures in a substantiated manner. In 
addition, its secondary aim is that quay walls can be categorised into existing reliability 
classes by authorities, clients and/or practising engineers. The first part of the chapter 
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is devoted to examining the reliability optimum by economic optimisation on the basis 
of cost minimisation. In quay-wall design, the dominant stochastic design variables, 
such as retaining height, soil strength and material properties, which influence the risk 
profile and hence willingness to invest in safety measures are largely time-independent 
(Schweckendiek et al., 2007; Wolters et al., 2012). In this chapter, a method is developed 
to determine capitalised risk and the associated reliability optimum. The second part of 
this chapter focuses on assessing minimum requirements concerning human safety. A 
sensitivity analysis is performed in order to obtain an insight into those parameters which 
influence the reliability index, such as discount rates, time horizons, marginal costs of safety 
investments and degree of damage in terms of monetary units or number of fatalities. The 
results have been used to elaborate the reliability framework of ISO 2394 (2015), in order 
both to be consistent with most of the codes and standards currently used in quay-wall 
design and to improve guidance on reliability differentiation.

2.2	 TARGET RELIABILITY INDICES IN LITERATURE

2.2.1	 PRINCIPLES OF TARGET RELIABILITY
Basic performance measures are frequently expressed as an allowable probability of failure 
on the basis of a limit state function (Gulvanessian & Holický, 2005). International bodies, 
such as the International Organisation for Standardisation (ISO) and the Joint Committee on 
Structural Safety (JCSS), support reliability-based design and assessments of structures. 
ISO has provided an international standard, ISO 2394 (2015), in order to develop a more 
uniform and harmonised design approach regarding resistance, serviceability and durability. 
ISO 2394 has formed the foundation for many design codes and standards, such as all 
the guidelines compliant with the Eurocodes (BS 6349-1, 2016; BS 6349-2, 2010; Gaba et 
al., 2017; De Gijt & Broeken, 2013; Grabe, 2012; NTC, 2008; ROM 0.0, 2002) and technical 
standards and commentaries for port and harbour facilities in Japan (OCDI, 2009). Modern 
design codes define the probability of failure P𝑓 = P(Z� 0) by a limit state function (JCSS, 
2001). The target reliability index and target probability of failure are then related as follows:
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where: 
 βt Target reliability index [-] 
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
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𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
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where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
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presented in Table 2.1. Eq. (2) is often used to transform annual into lifetime probabilities of failure (Leonardo da 
Vinci Pilot Project, 2005). However, this equation is valid only if reliability problems are largely time-variant (Sýkora 
et al., 2017) and hence should be used carefully (Vrouwenvelder, 2001) in the case of dominant time-independent 
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2.2.2 Reliability differentiation in literature 
This section presents an overview of reliability differentiation and associated target reliabilities in literature for civil-
engineering works. In practice, reliability indices are often derived by calibrating against previous design methods 
in order to maintain an existing reliability level (Bhattacharya et al., 2001; Böckmann & Grünberg, 2009). However, 
target reliability indices can also be derived on the basis of economic optimisation by minimising costs. The 
associated reliability optimum is strongly influenced by marginal costs of safety measures, distribution type and the 
coefficient of variation of stochastic design variables (Leonardo da Vinci Pilot Project, 2005; Rackwitz, 2000).  
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1)	 Target	 reliabilities	 were	 derived	 typically	 for	 bridges	 by	 cost	 minimisation	 assuming	 lognormal	 load	 and	 strength	
distributions	and	neglecting	fatigue	inspection,	maintenance	and	failure	costs	upon	reconstruction	(Rackwitz,	2000). 
 
The target reliabilities derived on the basis of assuming low costs of safety measures listed in Table 2.3 correspond 
to the recommendations of Eurocode standard NEN-EN 1990 (2011) (Table 1.1). The Implementation of Eurocodes 
handbook (Leonardo da Vinci Pilot Project, 2005) and Rackwitz (2000) notes that optimum target reliability indices 
found by cost minimisation are largely influenced by distribution type and the coefficient of variation of stochastic 
design variables. 
 
In civil engineering, the required reliability level is generally defined in terms of certain safety classes, such as 
occupancy, reliability or consequence classes. An overview of safety classes and the accompanying annual and 
lifetime target reliabilities in literature is presented in Table 2.4 and Table 2.5.  
It should be noted that recommendations for the assessment of existing structures, such as ISO 138222 (2010) and 
NEN 8700 (2011), are not included. 
 
The recommendations for reliability differentiation in literature initially seemed inconsistent and quite different 
(Bhattacharya et al., 2001; Sýkora et al, 2014). However, when all the assessment criteria and associated target 
indices were subsequently ordered in accordance with the framework of ISO 2394 (2015), reliability differentiation 
in literature appeared to be quite consistent and uniform. The classes A, B, C, D and E corresponding with ISO 
2394 and the associated assessment criteria are further discussed in Section 2.6.2.  
 
The latest edition of ISO 2394 (2015) determines five consequence classes and associated annual target reliabilities 
for ultimate limit states. The National Building Code of Canada (NBCC) and the Canadian Highway Bridges Design 
Code (CHBDC) incorporate the consequence classes ‘low’, ‘typical’ and ‘high’ and reduce safety factors in the case 
of a detailed understanding of structural behaviour and a detailed site investigation (Fenton et al., 2016). For the 
assessment of existing structures, ISO 13822 (2010) and NEN-EN 8700 (2011) recommend specific target 
reliabilities for renewal and upgrade and minimum values for disapproval. The recommendations of NEN 8700 were 
adopted in the Urban Quay Walls handbook (Roubos & Grotegoed, 2014). The Italian structural code (NTC, 2008) 
does not explicitly recommend target reliability indices, but uses ‘knowledge levels’ and ‘confidence factors’. When 
many people are at risk, safety requirements, often expressed as annual failure rates, will determine the acceptable 
reliability level (Vrouwenvelder & Scholten, 2010; Steenbergen et al., 2015). Detailed overviews of available 
methods for quantitative risk measures of loss of life and accompanying thresholds are given by Jonkman et al. 
(2003) and Bhattacharya et al. (2001). The minimum annual failure rates for ultimate limit states derived by Fischer 
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2.2.2	 RELIABILITY DIFFERENTIATION IN LITERATURE
This section presents an overview of reliability differentiation and associated target 
reliabilities in literature for civil-engineering works. In practice, reliability indices are often 
derived by calibrating against previous design methods in order to maintain an existing 
reliability level (Bhattacharya et al., 2001; Böckmann & Grünberg, 2009). However, target 
reliability indices can also be derived on the basis of economic optimisation by minimising 
costs. The associated reliability optimum is strongly influenced by marginal costs of safety 
measures, distribution type and the coefficient of variation of stochastic design variables 
(Leonardo da Vinci Pilot Project, 2005; Rackwitz, 2000).

Table 2.3. Marginal costs of safety measures and annual target reliability indices for 
structural components.

Marginal costs of safety measures
Consequences of failure

Insignificant Normal Large

High 2.31 3.11 3.71

Moderate 3.11 3.71 4.31

Low 3.71 4.31 4.71

1) Target reliabilities were derived typically for bridges by cost minimisation assuming lognormal load 
and strength distributions and neglecting fatigue inspection, maintenance and failure costs upon 
reconstruction (Rackwitz, 2000).

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   30 28-08-19   12:43



31

Target reliability indices for quay walls

The target reliabilities derived on the basis of assuming low costs of safety measures 
listed in Table 2.3 correspond to the recommendations of Eurocode standard NEN-EN 1990 
(2011) (Table 1.1). The Implementation of Eurocodes handbook (Leonardo da Vinci Pilot 
Project, 2005) and Rackwitz (2000) notes that optimum target reliability indices found by 
cost minimisation are largely influenced by distribution type and the coefficient of variation 
of stochastic design variables.

In civil engineering, the required reliability level is generally defined in terms of certain 
safety classes, such as occupancy, reliability or consequence classes. An overview of 
safety classes and the accompanying annual and lifetime target reliabilities in literature is 
presented in Table 2.4 and Table 2.5.

It should be noted that recommendations for the assessment of existing structures, 
such as ISO 13822 (2010) and NEN 8700 (2011), are not included.

The recommendations for reliability differentiation in literature initially seemed 
inconsistent and quite different (Bhattacharya et al., 2001; Sýkora et al, 2014). However, 
when all the assessment criteria and associated target indices were subsequently ordered 
in accordance with the framework of ISO 2394 (2015), reliability differentiation in literature 
appeared to be quite consistent and uniform. The classes A, B, C, D and E corresponding 
with ISO 2394 and the associated assessment criteria are further discussed in Section 2.6.2.

The latest edition of ISO 2394 (2015) determines five consequence classes and 
associated annual target reliabilities for ultimate limit states. The National Building Code of 
Canada (NBCC) and the Canadian Highway Bridges Design Code (CHBDC) incorporate 
the consequence classes ‘low’, ‘typical’ and ‘high’ and reduce safety factors in the case 
of a detailed understanding of structural behaviour and a detailed site investigation (Fenton 
et al., 2016). For the assessment of existing structures, ISO 13822 (2010) and NEN-EN 
8700 (2011) recommend specific target reliabilities for renewal and upgrade and minimum 
values for disapproval. The recommendations of NEN 8700 were adopted in the Urban 
Quay Walls handbook (Roubos & Grotegoed, 2014). The Italian structural code (NTC, 2008) 
does not explicitly recommend target reliability indices, but uses ‘knowledge levels’ and 
‘confidence factors’. When many people are at risk, safety requirements, often expressed as 
annual failure rates, will determine the acceptable reliability level (Vrouwenvelder & Scholten, 
2010; Steenbergen et al., 2015). Detailed overviews of available methods for quantitative 
risk measures of loss of life and accompanying thresholds are given by Jonkman et al. 
(2003) and Bhattacharya et al. (2001). The minimum annual failure rates for ultimate limit 
states derived by Fischer et al. (2012) – namely 3.1, 3.7 and 4.2 for high, medium and low 
relative life-saving costs, respectively – are implemented in ISO 2394 (2015). Det Norske 
Veritas (DNV, 1992) differentiates the required reliability level of marine structures in terms 
of structural redundancy and warning signals. The American Society of Civil Engineers 
distinguishes four occupancy categories (ASCE 7-10, 2010), representing the number of lives 

2
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placed at risk by failure. The acceptable safety and the associated target reliability index 
are further differentiated for situations when failure is or is not sudden and does or does not 
lead to widespread progression of damage. In the Netherlands, hydraulic structures that 
are part of a flood-defence system are examined using risk-based methods (Jonkman & 
Schweckendiek, 2015). The maximum allowable risk is defined by frequency of inundation 
and socioeconomic damage. Reliability differentiation of failure modes of soil-retaining walls 
that are part of a flood-defence system is applied by distinguishing specific safety classes 
and associated lifetime target reliability indices (STOWA, 2011; TAW, 2003). The technical 
standards and commentaries for port and harbour facilities in Japan (OCDI, 2009) evolved 
into a performance-based design approach (Nagao et al., 2009) which implements the basic 
principles of ISO 2394. For seismic performance verification, high (HR), intermediate (IR) 
and normal seismic (NR) resistance classes were developed. International sea-container 
terminals and facilities with an important role in emergency recovery after earthquakes 
are classified as HR facilities. The Spanish recommendations for maritime structures, 
ROM 0.0 (2002), comply with NEN-EN 1990 and verify structural reliability, functionality 
and operability against failure and stoppage modes. The intrinsic nature of a maritime 
structure is expressed in terms of the social and environmental repercussion index (SERI) 
and the economic repercussion index (ERI) (Losada & Benedicto, 2005). Low and high/
very high SERI-rated maritime works are assumed to correspond with RC1 and RC2 of EN 
1990, respectively (ROM 0.5, 2008). ROM 0.5 notes that maritime works do not have an 
equivalent representation with RC3. ERI is used to determine the ‘minimum useful’ life. The 
German recommendations for the design of waterfront structures, EAU 2012 (Grabe, 2012), 
distinguish safety classes for resistance and typical loading cases, but do not explicitly 
recommend target reliability indices. Neither the British Standard (2016) nor CIRIA (the 
UK’s Construction Industry Research and Information Association) (Cork & Chamberlain, 
2015; Gaba et al., 2017) prescribe a specific target reliability index. However, EAU 2012 
and BS 6349-2 (2010) are consistent with EN 1990 (2011). In the Netherlands, the reliability 
differentiation of EN 1990 is applied unaltered to the design of quay walls (De Gijt & Broeken, 
2013), jetties (Broeken, 2018), dolphins (Roubos, 2018) and sheet pile walls (Janssen, 2012).
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Table 2.4. Overview of annual target reliability indices in literature for the ultimate limit 
state (ULS).

Literature Application Consequence classes

A B C D E

Low Some Considerable High Very high

ISO 2394 (2015) 1 All Class 1 Class 2 Class 3 Class 4 Class 5
4.2 4.4 4.7

JCSS (2001) 1 All Minor Moderate Large
4.2 4.4 4.7

Structural 
concrete (2012) 1

Concrete Small Some Moderate Great

3.5 4.1 4.7 5.1
EN 1990 (2002) All RC1 RC2 RC3

4.2 4.7 5.2
Rackwitz (2000) 1 Bridges Insignificant Normal Large

3.7 4.3 4.7
DNV (1992) Marine Type I Type I & II  Type II & III Type III

3.09 3.71 4.26 4.75
USACE (1997) Geotechnical Average Good High

2.5/3.0 4.0 5.0

1) Reliability indices are derived by assuming low relative costs of safety measures

Table 2.5. Overview of lifetime target reliability indices in literature for the ultimate limit 
state (ULS).

Literature Application Consequence classes

A B C D E

Low Some Considerable High Very high

ISO 2394 
(1998) 1

All Small Some Moderate Great

2.3 3.1 3.8 4.3
ISO 23822 
(2010) 1

All Small Some Moderate Great

2.3 3.1 3.8 4.3
EN 1990 
(2002)

All RC1 RC2 RC3

3.3 3.8 4.3
SANS 10160 
(2010)

All RC1 RC2 RC3 RC4

2.5 3.0 3.5 4.0

2
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Table 2.5. Continued.

Literature Application Consequence classes

A B C D E

Low Some Considerable High Very high

NEN 6700 
(2005)

All Class 1 Class 2 Class 3

3.2 3.4 3.6
ASCE (2010) 2 All Ia IIa, IIIa & Ib IVa, IIb & 1c  IIIb IVb, II c, III c & IV c

2.5 3.0/3.25/3.0 3.5/3.5/3.5 3.75 4.0/4.0/4.25/4.5
NBCC (2010) Buildings Low Typical High

3.1 3.5 3.7
CDHBDC 
(2014)

Bridges Low Typical High

3.1 3.5 3.7
STOWA (2011) Hydraulic QC I QC II, QC III QC IV QC V

2.3 2.7/3.1 3.4 3.7
TAW (2003) Hydraulic River dike Sea dike

3.8 4.3
ROM 0.5-05 
(2008)

Geotechnical Minor Low High/very 
high

2.33 3.09 3.72
CUR 166 
(2012)

Sheet piles Class I Class II Class II

2.5 3.4 4.2
OCDI (2009) Marine NR3 IR3 HR3

2.19/2.67 2.67 3.65
CUR 211 
(2003)

Quay walls Class 1 Class 2 Class 3

3.2 3.4 3.6
CUR 211 
(2013)

Quay walls RC1 RC2 RC3

3.3 3.8 4.3
1) Reliability indices are derived by assuming low relative costs of safety measures.
2) Not sudden, not widespread (a), sudden or widespread (b), sudden and widespread (c).
3) Normal, intermediate and high seismic performance verification.
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2.3	 METHOD FOR DERIVING TARGET RELIABILITY 
INDICES FOR QUAY WALLS

2.3.1	 INTRODUCTION
This section briefly highlights the information required and methods used to establish target 
reliability indices. Fig. 2.2 shows that target reliability indices are influenced by the efficiency 
of safety investments (Section 2.3.4) and the consequences of failure (Section 2.3.5). The 
optimum reliability index β* can be obtained by minimising the sum of investments in 
safety measures and the accompanying capitalised risk (Section 2.3.6). It is important to 
understand both the quay-wall system (Section 2.3.2) and the influence of time-dependent 
uncertainty (Section 2.3.2). The target reliability indices derived on the basis of economic 
optimisation might not be acceptable with regard to requirements concerning human safety 
(ISO 2394, 2015). These reliability indices are denoted as β𝑎cc. The safety criteria are further 
explained in Section 2.4.

C
os

ts

Reliability index 

Total cost Safety investments Capitalised risk

β* βaccβ

Fig. 2.2. Principles of cost minimisation, reliability optimum β* and reliability minimum βacc.

2.3.2	 SYSTEM DECOMPOSITION AND RELEVANT FAILURE MODES
During the design of a quay wall, several failure modes have to be evaluated. Numerous 
design guidelines incorporate comprehensive fault trees including relevant failure modes 
(De Gijt & Broeken, 2013; Janssen, 2012) – for example, yielding of the retaining wall, failure 
of the anchor strut and geotechnical failure modes (Fig. 2.3). It should be noted that not 
all failure modes have been considered in this study. In literature, it is often not very clear 
whether target reliability indices of failure modes are assigned to the structure as a whole or 
to structural components (Leveson, 2004; Terwel, 2014). In this study, the reliability indices 
were ascribed to failure modes of structural components in accordance with modern design 

2
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codes (Arangio, 2012; JCSS, 2001; Leonardo da Vinci Pilot Project, 2005; NEN-EN 1990, 
2011), assuming that progressive damage is mitigated (Gaba, et al., 2017; De Gijt & Broeken, 
2013; Janssen, 2012). Quay walls are generally designed in such a way that brittle failure is 
prevented and adequate warning is given by large deformations (Gaba, et al., 2017; De Gijt 
& Broeken, 2013). Consequently, the reliability level of a structural component is generally 
dominated by one specifi c failure mode. The following two simplifi ed ultimate limit states 
were considered as a reasonable fi rst approach (Fig. 2.3):
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Fig 2.3. Impression of some of the structural (ZSTR) and geotechnical failure modes (ZGEO). 
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A) Failure of retaining wall B) Failure of passive soil wedge C) Failure of anchor system D) Macro instability 

Fig. 2.3. Impression of some of the structural (ZSTR ) and geotechnical failure modes (ZGEO ).

The ultimate limit state for structural failure represents the stresses in the outer fi bre 
of the soil-retaining wall and largely infl uences safety investments, whereas the global 
stability ratio takes account of the mutual dependency of all geotechnical failure modes 
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simultaneously. Both limit states were evaluated by coupling the probabilistic package 
OpenTURNS (Andrianov et al., 2007) to the finite element hardening soil model from the 
firm Plaxis, in order to model the soil-structure interaction as realistically as possible. The 
correlation between soil properties was taken into consideration in order to preclude 
unrealistically high reliability indices. Typical coefficients of correlation between E50;r𝑒𝑓 -φ’r𝑒p, 
γs𝑎t -φ’r𝑒p and E50;r𝑒𝑓 -γs𝑎t are 0.25, 0.5 and 0.5, respectively (Teixeira et al., 2015; Wolters et 
al., 2012). The distribution types and coefficients of variation used are listed in Appendix A.2.

In this study, 2D-Plaxis calculations were performed to gain insight into the extent to 
which a reliability problem is time-variant (Section 2.3.3) and into the efficiency of safety 
measures (Section 2.3.4), but they represent only a certain distance along a quay wall due 
to spatial uncertainty concerning resistance and local loads (Calle & Spierenburg, 1991; 
Hannink, 2008). It is worth noting that it is theoretically impossible for a single metre of quay 
wall to fail. The length of a quay wall was therefore subdivided into equivalent sections for 
which failure events are assumed to be largely independent. In this study, the ‘equivalent 
length’ L𝑒q was assumed to be 40m (Allaix et al., 2018). This length is representative for the 
variability of the soil along a quay wall, but also corresponds with the section length of a 
quay wall that is on the one hand based on construction aspects and on the other hand 
provides sufficient flexural rigidity to redistribute local operational loads. Independent failure 
events are also observed in practice. An inventory of failure modes in Rotterdam, Spain and 
the United Kingdom (Allaix et al., 2017; Allaix et al., 2018) showed that the failure length of the 
limit states under consideration was approximately 25-50m. Consequently, the associated 
proportional change in marginal safety costs (Section 2.3.4) and failure consequences 
(Section 2.3.5) was taken into account for L𝑒q along a quay wall.

2.3.3	 MODELLING TIME-VARIANT RELIABILITY

Introduction
The risk profile of a quay wall evolves over time and influences the capitalised risk, and 
hence the reliability optimum of a quay wall. This section discusses the method used to 
model the marginal increase in the probability of failure over time in order to determine the 
present value of future potential failure costs. The annual failure rate will generally decrease 
during the first period of a wall’s service life if no failure has occurred in previous years 
(Fig. 2.4). Close to the end of the service life, failure due to deterioration is more likely and 
results in an increase in the annual failure rate. Fig. 2.4-A represents a limit state dominated 
by time-independent epistemic uncertainty (McCann & Paxson, 2016) in stochastic design 
variables – for example, a ‘dam’. Many dam failures occur at the first filling of the reservoir 
because of unforeseen soil conditions. By contrast, the annual failure rate of buildings and 
bridges (Fig. 2.4-C) is often assumed to be constant because uncertainty is dominated by 
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time-dependent stochastic design variables and deterioration (Sýkora et al., 2017). In quay 
wall design, uncertainty is largely time-independent (Schweckendiek et al., 2007; Wolters et 
al., 2012). However, quay walls may show some degradation and are subjected to random 
loads, such as operational or ship loads and water head differences. The reliability of quay 
walls is influenced by both time-independent variables (mainly soil properties) and random 
loads, and will typically be in between Fig. 2.4-A and Fig. 2.4-C.

A) Time-independent design variables B)  Combination of  time-dependent and 
      time-independent design variables

C) Time-dependent design variables 
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Fig. 2.4. Conceptual bathtub curves for time-independent (A), a combination of time-
independent and time-dependent (B) and time-dependent (C) uncertainty in design variables.

Development probability of failure during the lifetime
The usual approach to time-variant reliability problems is based on the computation of the 
outcrossing rate of the limit state (Rackwitz, 2001; Sudret, 2008; Sudret, 2011). However, 
here the probability of failure 

 
21 

 

The risk profile of a quay wall evolves over time and influences the capitalised risk, and hence the reliability optimum 
of a quay wall. This section discusses the method used to model the marginal increase in the probability of failure 
over time in order to determine the present value of future potential failure costs. The annual failure rate will 
generally decrease during the first period of a wall’s service life if no failure has occurred in previous years (Fig. 
2.4). Close to the end of the service life, failure due to deterioration is more likely and results in an increase in the 
annual failure rate. Fig. 2.4-A represents a limit state dominated by time-independent epistemic uncertainty 
(McCann & Paxson, 2016) in stochastic design variables – for example, a ‘dam’. Many dam failures occur at the 
first filling of the reservoir because of unforeseen soil conditions. By contrast, the annual failure rate of buildings 
and bridges (Fig. 2.4-C) is often assumed to be constant because uncertainty is dominated by time-dependent 
stochastic design variables and deterioration (Sýkora et al, 2017). In quay wall design, uncertainty is largely time-
independent (Schweckendiek et al., 2007; Wolters et al., 2012). However, quay walls may show some degradation 
and are subjected to random loads, such as operational or ship loads and water head differences. The reliability of 
quay walls is influenced by both time-independent variables (mainly soil properties) and random loads, and will 
typically be in between Fig. 2.4-A and Fig. 2.4-C. 
 

 
Fig 2.4. Conceptual bathtub curves for time-independent (A), a combination of time-independent and time-
dependent (B) and time-dependent (C) uncertainty in design variables. 
 
Development probability of failure during the lifetime 
The usual approach to time-variant reliability problems is based on the computation of the outcrossing rate of the 
limit state (Rackwitz, 2001; Sudret, 2008; Sudret, 2011). However, here the probability of failure 𝑃𝑃2;'d in time interval 
(t,	t+∆t) was modelled assuming two blocks, with one block being largely time-independent Pf;0 and the other being 
fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5).  

 𝑃𝑃2;'d = 𝑃𝑃2;f + ∆𝑃𝑃2;'d   (5)  

 𝑃𝑃2;'456 = 𝑃𝑃2;f + ∆𝑃𝑃2;'d

9456

9g/

 (6)  

where: 
𝑃𝑃2;'d    Probability of failure in time interval [0,	n) [-] 
𝑃𝑃2;f   Time-independent probability of failure [-] 
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Fig.  2.5. Development of cumulative probability of failure (A) and the associated marginal 
increase per year (B) for a largely time-dependent limit state function.

In this study, it was assumed that risks related to human errors – such as design 
and construction errors – are taken into account by means of, for example, quality-control 
procedures and inspections (Melchers, 2007; ISO 2394, 2015; Vrouwenvelder et al., 2001). 
Deterioration was not taken into consideration, because new quay walls are equipped with a 
system of cathodic protection that prevents degradation (De Gijt & Broeken, 2013). Although 
soil conditions could be infl uenced by time – such as variability in soil pressure, liquefaction, 
settlements and compaction (Fenton et al., 2016) – the time eff ect on soil strength was 
assumed to be negligible (Section 1.5). The time-dependent part of the probability of failure 
was taken into consideration by modelling variable loads, such as water head diff erences 
and live loads, in accordance with extreme value theory.

Derivation of equivalent time period t𝑒q

Largely time-dependent limit state functions indicate that failure events are to some extent 
correlated. Sýkora et al. (2017) suggest using a ‘basic’ period in order to account for 
dependency of failure events, which in this study is denoted as t𝑒q; in other words, the 
´equivalent´ period for which failure events are assumed to be independent in subsequent 
years. The cumulative lifetime probability of failure was determined by transforming Eq. 
(2) into the following equations, which formed the basis for the method used (see also 
Appendix A.1):
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Fig. 2.6. Principal diff erences between development of failure probability for time-invariant
(A), time-variant (B) and completely time-variant (C) reliability problems.

2.3.4 M  ARGINAL CONSTRUCTION COSTS
The uncertainty in design variables infl uences not only the extent to which a reliability 
problem is time-variant, but also the effi  ciency of safety investments (Rackwitz, 2000; Smit, 
2014). As explained in Section 2.3.2, the length of a quay wall was subdivided into equivalent 
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sections for which failure events are independent. The associated proportional change in 
marginal safety investments (Fig. 2.2) was found by the following equation:
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a quay wall was subdivided into equivalent sections for which failure events are independent. The associated 
proportional change in marginal safety investments (Fig. 2.2) was found by the following equation:  
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∆𝐶𝐶(𝑥𝑥)
∆𝛽𝛽(𝑥𝑥)

 
(11)  

where: 
Cm Marginal costs of safety measures	[€] 
x A vector representing changes in structural dimensions	[..] 
Leq Equivalent length along a quay wall for which failure events are independent [m] 
∆C Change in construction costs [€/m] 
∆β Change in reliability index [-] 
 

The costs ∆C(x) associated with a change in structural dimensions were derived in consultation with senior costs 
experts at the Port of Rotterdam Authority, and the associated change in reliability index ∆β was derived by 
performing four probabilistic assessments, two for each limit state. The changes in structural dimensions of the 
retaining wall, such as the section modulus Wwall	(Dtube,	ttube)	and the sectional area	Atube	(Dtube,	ttube), were applied to 
the structural limit state function (ZSTR), and changes in length of the retaining wall Lwall and the grout body of the 
anchors Lanchor were applied to the geotechnical limit state function (ZGEO). The fraction ∆C/∆β found was 5-10%, 
which is in accordance with the study by Schweckendiek et al. (2007). The marginal safety investments to prevent 
structural failure were assumed to be higher than those for geotechnically induced failure (Table 2.6).  
 
Table 2.6. Initial construction costs C0	being independent of β and marginal costs of safety measures Cm 
for a quay wall with hretaining=20m, Leq =40 m and construction costs equal to €1m for β=3.8. 

Failure modes x C0 Cm	(x) 
All	failure	modes	 All	structural	dimensions	 €0.60m	 €0.10m	
Yielding	 of	 the	 combi-wall	
(ZSTR<0) 

Wwall	 (Dtube,	 ttube);	 Atube	 (Dtube,	
ttube) 

€0.36m	 €0.06m	

Geotechnical	failure	(ZGEO<0) Lwall	;	Lanchor €0.12m	 €0.02m	
 
2.3.5 Consequences of failure  
As indicated, the consequences of failure can take various forms, and hence can be measured in monetary units Cf 
or number of fatalities	𝑁𝑁s 2 (Chryssanthopoulos et al, 2011). Some information about failure costs Cf was found in 
the background documents of port authorities and terminals (Buijsingh, 2013; Ligtvoet & Van der Lei, 2012), as well 
as in some design guidelines (Cork & Chamberlain, 2015; STOWA, 2011). The little available information was 
extended by administering a questionnaire that asked experts to give both a qualitative and a quantitative estimate 
of the consequences of failure on the basis of the recommendations of ISO 2394 (2015) and JCSS (2001).  
 

 
Fig. 2.7. Impression of failure consequences for commercial quay walls with (A & C) and without (B & D) 
functional redundancy. 
 
Terminal and business managers largely agree that significant economic repercussions are not very likely in large 
ports, because it is often possible to mitigate damage within the overcapacity of a terminal or port cluster (Fig. 2.7-
A and 2.7-C). Substantial economic damage is more likely for terminals without redundancy (Fig. 2.7-B and 2.7-D). 
The business managers also stated that it is important to prevent permanent damage to the image and reputation 
of a port. In reality, if a terminal has had some functional redundancy, the failure costs were estimated to be fairly 
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Where:
Cm	 Marginal costs of safety measures [€]
x	 A vector representing changes in structural dimensions [..]
L𝑒q	 Equivalent length along a quay wall for which failure events are 

independent [m]
∆C	 Change in construction costs [€/m]
∆β	 Change in reliability index [-]

The costs ∆C(x) associated with a change in structural dimensions were derived in 
consultation with senior costs experts at the Port of Rotterdam Authority, and the associated 
change in reliability index ∆β was derived by performing four probabilistic assessments, two 
for each limit state. The changes in structural dimensions of the retaining wall, such as the 
section modulus Ww𝑎ll (Dtub𝑒, ttub𝑒 ) and the sectional area Atub𝑒 (Dtub𝑒, ttub𝑒 ), were applied to 
the structural limit state function (ZSTR), and changes in length of the retaining wall Lw𝑎ll and 
the grout body of the anchors L𝑎nchor were applied to the geotechnical limit state function 
(ZGEO ). The fraction ∆C/∆β found was 5-10%, which is in accordance with the study by 
Schweckendiek et al. (2007). The marginal safety investments to prevent structural failure 
were assumed to be higher than those for geotechnically induced failure (Table 2.6).

Table 2.6. Initial construction costs C0 being independent of β and marginal costs of safety 
measures Cm for a quay wall with hretaining=20m, Leq=40 m and construction costs equal to 
€1m for β=3.8.

Failure modes x C0 Cm (x)

All failure modes All structural dimensions €0.60m €0.10m

Yielding of the combi-wall (ZSTR<0) Ww𝑎ll (Dtub𝑒, ttub𝑒 ); Atub𝑒 (Dtub𝑒, ttub𝑒 ) €0.36m €0.06m
Geotechnical failure (ZGEO<0) Lw𝑎ll ; L𝑎nchor €0.12m €0.02m

2.3.5	 CONSEQUENCES OF FAILURE
As indicated, the consequences of failure can take various forms, and hence can be 
measured in monetary units Cf or number of fatalities NF|f (Chryssanthopoulos et al., 2011). 
Some information about failure costs Cf was found in the background documents of port 
authorities and terminals (Buijsingh, 2013; Ligtvoet & Van der Lei, 2012), as well as in 
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some design guidelines (Cork & Chamberlain, 2015; STOWA, 2011). The little available 
information was extended by administering a questionnaire that asked experts to give both 
a qualitative and a quantitative estimate of the consequences of failure on the basis of the 
recommendations of ISO 2394 (2015) and JCSS (2001).

A) C)

B) D)

Fig. 2.7. Impression of failure consequences for commercial quay walls with (A & C) and 
without (B & D) functional redundancy.

Terminal and business managers largely agree that signifi cant economic repercussions 
are not very likely in large ports, because it is often possible to mitigate damage within 
the overcapacity of a terminal or port cluster (Fig. 2.7-A and 2.7-C). Substantial economic 
damage is more likely for terminals without redundancy (Fig. 2.7-B and 2.7-D). The business 
managers also stated that it is important to prevent permanent damage to the image and 
reputation of a port. In reality, if a terminal has had some functional redundancy, the failure 
costs were estimated to be fairly close to the direct failure costs. The experts largely agreed 
that the failure costs associated with the equivalent length along a commercial quay wall 
are in the ranges €1-5m and €1-15m for structural failure (ZSTR ) and geotechnical failure 
(ZGEO ), respectively. The infl uence of the failure costs on the optimum reliability index was 
taken into consideration in the sensitivity analysis presented in Section 2.5.2.

In this study, the expected number of fatalities was determined in accordance with Eq. (12).
Little information is yet available about the number of people at risk due to their nearness 
to quay walls, and hence a fairly conservative estimate was made assuming NPAR = 5 along 
40 metres of quay wall. The successful escape of people largely depends on the type of 
failure, escape path, perception of danger and recognition of warning signals provided 
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(Lentz, 2007). The probability of a successful escape influences the conditional probability 
that an individual will die in the event of a failure. In Table 2.7, indicative estimates of NF|f are 
presented for the two failure modes under consideration.
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close to the direct failure costs. The experts largely agreed that the failure costs associated with the equivalent 
length along a commercial quay wall are in the ranges €1-5m and €1-15m for structural failure (ZSTR) and 
geotechnical failure (	ZGEO), respectively. The influence of the failure costs on the optimum reliability index was taken 
into consideration in the sensitivity analysis presented in Section 2.5.2.  
  
In this study, the expected number of fatalities was determined in accordance with Eq. (12). Little information is yet 
available about the number of people at risk due to their nearness to quay walls, and hence a fairly conservative 
estimate was made assuming NPAR	= 5 along 40 metres of quay wall. The successful escape of people largely 
depends on the type of failure, escape path, perception of danger and recognition of warning signals provided 
(Lentz, 2007). The probability of a successful escape influences the conditional probability that an individual will die 
in the event of a failure. In Table 2.7, indicative estimates of 𝑁𝑁s 2 are presented for the two failure modes under 
consideration.  
 

 𝑁𝑁s 2 = 𝑁𝑁tuD 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (12)  
where: 

𝑁𝑁s 2  Expected number of fatalities in the event of failure [-] 
𝑁𝑁tuD   Number of people at risk [-] 
𝑃𝑃VvcMw>  Probability of a successful escape [-] 
𝑃𝑃b 2  Conditional probability a random human being present will die in the event of  

  failure [-] 
 

Table 2.7. Expected number of fatalities for commercial quay walls.  
Type	of	structural	failure	 𝑵𝑵𝑷𝑷𝑷𝑷𝑷𝑷

1	 𝑷𝑷𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
2	 𝑷𝑷𝒅𝒅 𝐟𝐟

3	 𝑵𝑵𝑭𝑭 𝐟𝐟
4	

Structural	failure	(ZSTR)	 5	 0.70	 0.10	 0.15	
Geotechnical	failure	(ZGEO)	 5	 0.30	 0.20	 0.70	

1) Conservative estimate, derived by counting the number of people who are near to a quay wall. Catastrophic 
accidents and situations with lots of people near to a quay wall were not taken into consideration.  
2) Conservative value derived by administering a questionnaire. 
3)	Values are based on a best estimate, and therefore a sensitivity analysis is included in Section 2.5.4. 
4)	Values lower than 1 are only used in the LQI criterion.  

 
The monetary value of a human life can be determined on the basis of societal willingness to pay (SWTP) (ISO 
2394, 2015). However, assigning a monetary value to human life, on whatever basis, is a very controversial issue 
(Vrijling & Van Gelder, 2000). According to Rackwitz (2008), a monetary value of life does not exist: “...the value of 
human life is infinite and beyond measure ...”. In this study, a monetary value of €3m, which is in line with the $2-
4m presented in ISO 2394 (2015), was used only in the evaluation of the marginal life-saving cost principle (Section 
2.5.3).  
 
2.3.6 Risk-based optimisation of structural components  
This section concerns the method used to determine target reliability indices using the principles of cost 
minimisation in accordance with the recommendations in literature (Rackwitz, 2000; Sykora & Holický, 2011; Sykora 
et al., 2017). The following objective function was considered: 
  

 𝑓𝑓 𝛽𝛽 = 𝐵𝐵 𝐵 𝐵𝐵Ü9á>v'q>9'v 𝛽𝛽 − 𝐶𝐶àMâ9'>9M9c> − 𝐶𝐶WSväN>vc>9c> 𝛽𝛽
− 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 	 (13)  

 
max 𝑓𝑓 𝛽𝛽 				→ 						

𝜕𝜕𝜕𝜕 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(14)  

 
where: 

𝑓𝑓  Objective function [-] 
B  Benefits related to the investments [€] 

 CInvestments Investments in safety measures [€] 
 CMaintenace Cost of maintenance, repairs and inspections [€] 
 CObsolescense Cost related to a structure becoming obsolete after some time because it  
   is not able to fulfil its originally intended purpose [€] 
	 CCapitalisedRisk Present value of future failure costs [€] 

β  Decision parameter, reliability index [-] 
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close to the direct failure costs. The experts largely agreed that the failure costs associated with the equivalent 
length along a commercial quay wall are in the ranges €1-5m and €1-15m for structural failure (ZSTR) and 
geotechnical failure (	ZGEO), respectively. The influence of the failure costs on the optimum reliability index was taken 
into consideration in the sensitivity analysis presented in Section 2.5.2.  
  
In this study, the expected number of fatalities was determined in accordance with Eq. (12). Little information is yet 
available about the number of people at risk due to their nearness to quay walls, and hence a fairly conservative 
estimate was made assuming NPAR	= 5 along 40 metres of quay wall. The successful escape of people largely 
depends on the type of failure, escape path, perception of danger and recognition of warning signals provided 
(Lentz, 2007). The probability of a successful escape influences the conditional probability that an individual will die 
in the event of a failure. In Table 2.7, indicative estimates of 𝑁𝑁s 2 are presented for the two failure modes under 
consideration.  
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where: 
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𝑁𝑁tuD   Number of people at risk [-] 
𝑃𝑃VvcMw>  Probability of a successful escape [-] 
𝑃𝑃b 2  Conditional probability a random human being present will die in the event of  
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Table 2.7. Expected number of fatalities for commercial quay walls.  
Type	of	structural	failure	 𝑵𝑵𝑷𝑷𝑷𝑷𝑷𝑷

1	 𝑷𝑷𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
2	 𝑷𝑷𝒅𝒅 𝐟𝐟

3	 𝑵𝑵𝑭𝑭 𝐟𝐟
4	

Structural	failure	(ZSTR)	 5	 0.70	 0.10	 0.15	
Geotechnical	failure	(ZGEO)	 5	 0.30	 0.20	 0.70	

1) Conservative estimate, derived by counting the number of people who are near to a quay wall. Catastrophic 
accidents and situations with lots of people near to a quay wall were not taken into consideration.  
2) Conservative value derived by administering a questionnaire. 
3)	Values are based on a best estimate, and therefore a sensitivity analysis is included in Section 2.5.4. 
4)	Values lower than 1 are only used in the LQI criterion.  

 
The monetary value of a human life can be determined on the basis of societal willingness to pay (SWTP) (ISO 
2394, 2015). However, assigning a monetary value to human life, on whatever basis, is a very controversial issue 
(Vrijling & Van Gelder, 2000). According to Rackwitz (2008), a monetary value of life does not exist: “...the value of 
human life is infinite and beyond measure ...”. In this study, a monetary value of €3m, which is in line with the $2-
4m presented in ISO 2394 (2015), was used only in the evaluation of the marginal life-saving cost principle (Section 
2.5.3).  
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This section concerns the method used to determine target reliability indices using the principles of cost 
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close to the direct failure costs. The experts largely agreed that the failure costs associated with the equivalent 
length along a commercial quay wall are in the ranges €1-5m and €1-15m for structural failure (ZSTR) and 
geotechnical failure (	ZGEO), respectively. The influence of the failure costs on the optimum reliability index was taken 
into consideration in the sensitivity analysis presented in Section 2.5.2.  
  
In this study, the expected number of fatalities was determined in accordance with Eq. (12). Little information is yet 
available about the number of people at risk due to their nearness to quay walls, and hence a fairly conservative 
estimate was made assuming NPAR	= 5 along 40 metres of quay wall. The successful escape of people largely 
depends on the type of failure, escape path, perception of danger and recognition of warning signals provided 
(Lentz, 2007). The probability of a successful escape influences the conditional probability that an individual will die 
in the event of a failure. In Table 2.7, indicative estimates of 𝑁𝑁s 2 are presented for the two failure modes under 
consideration.  
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1) Conservative estimate, derived by counting the number of people who are near to a quay wall. Catastrophic 
accidents and situations with lots of people near to a quay wall were not taken into consideration.  
2) Conservative value derived by administering a questionnaire. 
3)	Values are based on a best estimate, and therefore a sensitivity analysis is included in Section 2.5.4. 
4)	Values lower than 1 are only used in the LQI criterion.  

 
The monetary value of a human life can be determined on the basis of societal willingness to pay (SWTP) (ISO 
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human life is infinite and beyond measure ...”. In this study, a monetary value of €3m, which is in line with the $2-
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close to the direct failure costs. The experts largely agreed that the failure costs associated with the equivalent 
length along a commercial quay wall are in the ranges €1-5m and €1-15m for structural failure (ZSTR) and 
geotechnical failure (	ZGEO), respectively. The influence of the failure costs on the optimum reliability index was taken 
into consideration in the sensitivity analysis presented in Section 2.5.2.  
  
In this study, the expected number of fatalities was determined in accordance with Eq. (12). Little information is yet 
available about the number of people at risk due to their nearness to quay walls, and hence a fairly conservative 
estimate was made assuming NPAR	= 5 along 40 metres of quay wall. The successful escape of people largely 
depends on the type of failure, escape path, perception of danger and recognition of warning signals provided 
(Lentz, 2007). The probability of a successful escape influences the conditional probability that an individual will die 
in the event of a failure. In Table 2.7, indicative estimates of 𝑁𝑁s 2 are presented for the two failure modes under 
consideration.  
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Structural	failure	(ZSTR)	 5	 0.70	 0.10	 0.15	
Geotechnical	failure	(ZGEO)	 5	 0.30	 0.20	 0.70	

1) Conservative estimate, derived by counting the number of people who are near to a quay wall. Catastrophic 
accidents and situations with lots of people near to a quay wall were not taken into consideration.  
2) Conservative value derived by administering a questionnaire. 
3)	Values are based on a best estimate, and therefore a sensitivity analysis is included in Section 2.5.4. 
4)	Values lower than 1 are only used in the LQI criterion.  

 
The monetary value of a human life can be determined on the basis of societal willingness to pay (SWTP) (ISO 
2394, 2015). However, assigning a monetary value to human life, on whatever basis, is a very controversial issue 
(Vrijling & Van Gelder, 2000). According to Rackwitz (2008), a monetary value of life does not exist: “...the value of 
human life is infinite and beyond measure ...”. In this study, a monetary value of €3m, which is in line with the $2-
4m presented in ISO 2394 (2015), was used only in the evaluation of the marginal life-saving cost principle (Section 
2.5.3).  
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close to the direct failure costs. The experts largely agreed that the failure costs associated with the equivalent 
length along a commercial quay wall are in the ranges €1-5m and €1-15m for structural failure (ZSTR) and 
geotechnical failure (	ZGEO), respectively. The influence of the failure costs on the optimum reliability index was taken 
into consideration in the sensitivity analysis presented in Section 2.5.2.  
  
In this study, the expected number of fatalities was determined in accordance with Eq. (12). Little information is yet 
available about the number of people at risk due to their nearness to quay walls, and hence a fairly conservative 
estimate was made assuming NPAR	= 5 along 40 metres of quay wall. The successful escape of people largely 
depends on the type of failure, escape path, perception of danger and recognition of warning signals provided 
(Lentz, 2007). The probability of a successful escape influences the conditional probability that an individual will die 
in the event of a failure. In Table 2.7, indicative estimates of 𝑁𝑁s 2 are presented for the two failure modes under 
consideration.  
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Geotechnical	failure	(ZGEO)	 5	 0.30	 0.20	 0.70	

1) Conservative estimate, derived by counting the number of people who are near to a quay wall. Catastrophic 
accidents and situations with lots of people near to a quay wall were not taken into consideration.  
2) Conservative value derived by administering a questionnaire. 
3)	Values are based on a best estimate, and therefore a sensitivity analysis is included in Section 2.5.4. 
4)	Values lower than 1 are only used in the LQI criterion.  

 
The monetary value of a human life can be determined on the basis of societal willingness to pay (SWTP) (ISO 
2394, 2015). However, assigning a monetary value to human life, on whatever basis, is a very controversial issue 
(Vrijling & Van Gelder, 2000). According to Rackwitz (2008), a monetary value of life does not exist: “...the value of 
human life is infinite and beyond measure ...”. In this study, a monetary value of €3m, which is in line with the $2-
4m presented in ISO 2394 (2015), was used only in the evaluation of the marginal life-saving cost principle (Section 
2.5.3).  
 
2.3.6 Risk-based optimisation of structural components  
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close to the direct failure costs. The experts largely agreed that the failure costs associated with the equivalent 
length along a commercial quay wall are in the ranges €1-5m and €1-15m for structural failure (ZSTR) and 
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close to the direct failure costs. The experts largely agreed that the failure costs associated with the equivalent 
length along a commercial quay wall are in the ranges €1-5m and €1-15m for structural failure (ZSTR) and 
geotechnical failure (	ZGEO), respectively. The influence of the failure costs on the optimum reliability index was taken 
into consideration in the sensitivity analysis presented in Section 2.5.2.  
  
In this study, the expected number of fatalities was determined in accordance with Eq. (12). Little information is yet 
available about the number of people at risk due to their nearness to quay walls, and hence a fairly conservative 
estimate was made assuming NPAR	= 5 along 40 metres of quay wall. The successful escape of people largely 
depends on the type of failure, escape path, perception of danger and recognition of warning signals provided 
(Lentz, 2007). The probability of a successful escape influences the conditional probability that an individual will die 
in the event of a failure. In Table 2.7, indicative estimates of 𝑁𝑁s 2 are presented for the two failure modes under 
consideration.  
 

 𝑁𝑁s 2 = 𝑁𝑁tuD 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (12)  
where: 
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𝑁𝑁tuD   Number of people at risk [-] 
𝑃𝑃VvcMw>  Probability of a successful escape [-] 
𝑃𝑃b 2  Conditional probability a random human being present will die in the event of  
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Table 2.7. Expected number of fatalities for commercial quay walls.  
Type	of	structural	failure	 𝑵𝑵𝑷𝑷𝑷𝑷𝑷𝑷

1	 𝑷𝑷𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
2	 𝑷𝑷𝒅𝒅 𝐟𝐟

3	 𝑵𝑵𝑭𝑭 𝐟𝐟
4	

Structural	failure	(ZSTR)	 5	 0.70	 0.10	 0.15	
Geotechnical	failure	(ZGEO)	 5	 0.30	 0.20	 0.70	

1) Conservative estimate, derived by counting the number of people who are near to a quay wall. Catastrophic 
accidents and situations with lots of people near to a quay wall were not taken into consideration.  
2) Conservative value derived by administering a questionnaire. 
3)	Values are based on a best estimate, and therefore a sensitivity analysis is included in Section 2.5.4. 
4)	Values lower than 1 are only used in the LQI criterion.  

 
The monetary value of a human life can be determined on the basis of societal willingness to pay (SWTP) (ISO 
2394, 2015). However, assigning a monetary value to human life, on whatever basis, is a very controversial issue 
(Vrijling & Van Gelder, 2000). According to Rackwitz (2008), a monetary value of life does not exist: “...the value of 
human life is infinite and beyond measure ...”. In this study, a monetary value of €3m, which is in line with the $2-
4m presented in ISO 2394 (2015), was used only in the evaluation of the marginal life-saving cost principle (Section 
2.5.3).  
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This section concerns the method used to determine target reliability indices using the principles of cost 
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   is not able to fulfil its originally intended purpose [€] 
	 CCapitalisedRisk Present value of future failure costs [€] 

β  Decision parameter, reliability index [-] 
β*  Optimum reliability index [-] 
 

It should be noted that the benefits and maintenance costs were considered to be independent of decision 
parameter β. The maintenance costs related to structural deterioration were not taken into account because 
corrosion is so aggressive that it is much more efficient to invest in a system of cathodic protection (De Gijt & 
Broeken, 2013). Costs of financing projects (e.g. interest rates) and costs related to obsolescence (lifetime buy 
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CM𝑎int𝑒n𝑎c𝑒	 Cost of maintenance, repairs and inspections [€]
CObsol𝑒sc𝑒ns𝑒	 Cost related to a structure becoming obsolete after some 

time because it is not able to fulfil its originally intended 
purpose [€]

CCapitalisedRisk	 Present value of future failure costs [€]
β	 Decision parameter, reliability index [-]
β*	 Optimum reliability index [-]

It should be noted that the benefits and maintenance costs were considered to 
be independent of decision parameter β. The maintenance costs related to structural 
deterioration were not taken into account because corrosion is so aggressive that it is 
much more efficient to invest in a system of cathodic protection (De Gijt & Broeken, 2013). 
Costs of financing projects (e.g. interest rates) and costs related to obsolescence (lifetime 
buy versus design refresh) were not taken into account. Obsolescence costs are generally 
activated in the business case of a future design refresh. In this study, the failure costs were 
related to the design lifetime of the structure. If one assumes that the objective function is 
positive, the optimum reliability index β* can be established by minimising the total costs 
and solving the associated derivative.
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The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
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where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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influence the reliability optimum (Rackwitz, 2000).
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Cm	 Marginal construction cost dependent on the reliability index [€]
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
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2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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2.4	 RISK-ACCEPTANCE CRITERIA

The optimum reliability indices derived on the basis of cost minimisation have to be higher than 
the thresholds of acceptance. This section presents the evaluation of four risk-acceptance 
criteria, namely the individual risk (IR) criterion, the societal risk (SR) criterion, the life quality 
index (LQI) acceptance criterion and the social and environmental repercussion index (SERI).
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2.4.1	 INDIVIDUAL RISK CRITERION
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the 
localised individual risk per annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA 
is generally used to assess work-related risks faced by particularly exposed individuals 
(NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making processes, 
whereas LIRA represents the individual risk at a specific geographical location (Johansen, 
2010). LIRA is mainly used in spatial planning and assessing external safety contours in 
the vicinity of hazardous installations or in the design of flood-defence systems (Jongejan 
et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 1998). It should be noted 
that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
 

 𝐶𝐶Cä'MN �'( = 𝐶𝐶Ü9á>v'q>9'v �'( + 𝐶𝐶ãåçéèåêéëíìîéëï �'(    (19)  

 𝐶𝐶Cä'MN �'( = 𝐶𝐶f + 𝐶𝐶q�'( + 𝐶𝐶2 1 − Φ/
S + 𝐶𝐶2𝑐𝑐 Φ/

S − Φ/
/. cm(

° d456

/.¢m(
°    (20)  

 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
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where: 

IRPA Annual probability that a specific individual or hypothetical group member will die due to 
exposure to hazardous events (Rausand, 2013) [-] 

	 LIRA   Annual probability that an unprotected, permanently present individual will die  
  due to an accident at a hazardous site (Jongejan, 2008) [-] 

PPresent  Probability that a specific individual will be present [-] 
PEscape  Probability of a successful escape [-] 
𝑃𝑃b 2  Conditional probability that an individual being present will die in the event of  

  failure [-] 
 
The probability that a hypothetical crane driver is present was based on the following assumptions: cranes are used 
60% of the time; the domain of a crane along a quay was assumed to correspond to three times Leq; a crane driver 
generally works on multiple types of cranes, eight hours a day, 220 days a year. If a crane driver works on three 
different cranes during a year, the probability that an individual driver is present at Leq along a quay wall is 
approximately 1.5% of the time (0.6/3/3*(220/365)/3=1.34%). 
 
According to various recommendations in literature, the risk level (IRPA) related to involuntary work activities 
corresponds to an annual risk level of 10-6 and is generally considered to be ‘broadly acceptable’ (Franks, 2017; 
Health and Safety Executive, 2001; ISO 2394, 1998). Individual risk levels higher than 10-4 corresponding to the 
annual probability of dying as a result of a traffic accident are defined as ‘intolerable’ in well-developed countries 
(Steenbergen & Vrouwenvelder, 2010; TAW, 1985). An annual fatality rate of 10-5 representing LIRA is generally 
defined as ‘tolerable’ and was incorporated into the Dutch design code for flood-defence systems (Bötger & Linde, 
2014; Jonkman et al., 2011; Terwel, 2014). The acceptable reliability index in accordance with IRPA and LIRA was 
derived using:  
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where 
𝛽𝛽Mcc;'(= Annual threshold of acceptance [-]		

	 𝑃𝑃2°®®;o( 	= Acceptable annual probability of failure [-] 
	

2.4.2 Societal risk criterion 
Although the number of people present near commercial quay walls is usually limited, the societal risk criterion was 
also evaluated (Vrouwenvelder et al., 2001) using the F-N curves. The influence of the expected number of fatalities 
in the event of failure was examined on the basis of the upper bound (A=0.01 and k=2) and lower bound (A=0.1 and 
k=1) of the F-N curves in Section 2.5.4.  
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where 
 𝑁𝑁s 2= Expected number of fatalities [-] 
 A = Acceptable risk for one fatality [-]	
 k = Slope factor of the F-N curve [-]	
 
2.4.3 Life quality index criterion 
ISO 2394 (2015) recommends employing the LQI acceptance criterion and provides information with regard to the 
social willingness to pay (SWTP), which corresponds to the amount of money that should be invested in saving one 
additional life (Rackwitz, 2006; Rackwitz, 2008). In a similar way, the willingness to prevent an injury could be taken 
into consideration. Studying the background documents of the LQI	criterion (Fischer et al., 2012; Fischer & Faber, 
2013) revealed that this criterion can be evaluated by applying the principles of cost minimisation if the capitalised 
‘societal’ risk is taken into consideration. The corresponding present value of societal losses, denoted by Cf;Societal, 
then depends on the SWTP and the expected number of fatalities	𝑁𝑁s 2. The associated annual threshold of 
acceptance 𝛽𝛽Mcc;'(was found by solving the derivative of the societal costs function: 
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Where:
IRPA	 Annual probability that a specific individual or hypothetical  

	group member will die due to exposure to hazardous events 
	(Rausand, 2013) [-]

LIRA	 Annual probability that an unprotected, permanently present 
individual will die due to an accident at a hazardous site (Jongejan,  
2008) [-]

PPr𝑒s𝑒nt	 Probability that a specific individual will be present [-]
PEsc𝑎p𝑒	 Probability of a successful escape [-]
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	 Conditional probability that an individual being present will die 
in the event of failure [-]

The probability that a hypothetical crane driver is present was based on the following 
assumptions: cranes are used 60% of the time; the domain of a crane along a quay was 
assumed to correspond to three times L𝑒q; a crane driver generally works on multiple types 
of cranes, eight hours a day, 220 days a year. If a crane driver works on three different 
cranes during a year, the probability that an individual driver is present at L𝑒q along a quay 
wall is approximately 1.5% of the time (0.6/3/3*(220/365)/3=1.34%).

According to various recommendations in literature, the risk level (IRPA) related to 
involuntary work activities corresponds to an annual risk level of 10-6 and is generally 
considered to be ‘broadly acceptable’ (Franks, 2017; Health and Safety Executive, 2001; ISO 
2394, 1998). Individual risk levels higher than 10-4 corresponding to the annual probability of 
dying as a result of a traffic accident are defined as ‘intolerable’ in well-developed countries 
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(Steenbergen & Vrouwenvelder, 2010; TAW, 1985). An annual fatality rate of 10-5 representing 
LIRA is generally defined as ‘tolerable’ and was incorporated into the Dutch design code 
for flood-defence systems (Bötger & Linde, 2014; Jonkman et al., 2011; Terwel, 2014). The 
acceptable reliability index in accordance with IRPA and LIRA was derived using:
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	 LIRA   Annual probability that an unprotected, permanently present individual will die  
  due to an accident at a hazardous site (Jongejan, 2008) [-] 

PPresent  Probability that a specific individual will be present [-] 
PEscape  Probability of a successful escape [-] 
𝑃𝑃b 2  Conditional probability that an individual being present will die in the event of  

  failure [-] 
 
The probability that a hypothetical crane driver is present was based on the following assumptions: cranes are used 
60% of the time; the domain of a crane along a quay was assumed to correspond to three times Leq; a crane driver 
generally works on multiple types of cranes, eight hours a day, 220 days a year. If a crane driver works on three 
different cranes during a year, the probability that an individual driver is present at Leq along a quay wall is 
approximately 1.5% of the time (0.6/3/3*(220/365)/3=1.34%). 
 
According to various recommendations in literature, the risk level (IRPA) related to involuntary work activities 
corresponds to an annual risk level of 10-6 and is generally considered to be ‘broadly acceptable’ (Franks, 2017; 
Health and Safety Executive, 2001; ISO 2394, 1998). Individual risk levels higher than 10-4 corresponding to the 
annual probability of dying as a result of a traffic accident are defined as ‘intolerable’ in well-developed countries 
(Steenbergen & Vrouwenvelder, 2010; TAW, 1985). An annual fatality rate of 10-5 representing LIRA is generally 
defined as ‘tolerable’ and was incorporated into the Dutch design code for flood-defence systems (Bötger & Linde, 
2014; Jonkman et al., 2011; Terwel, 2014). The acceptable reliability index in accordance with IRPA and LIRA was 
derived using:  
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where 
𝛽𝛽Mcc;'(= Annual threshold of acceptance [-]		

	 𝑃𝑃2°®®;o( 	= Acceptable annual probability of failure [-] 
	

2.4.2 Societal risk criterion 
Although the number of people present near commercial quay walls is usually limited, the societal risk criterion was 
also evaluated (Vrouwenvelder et al., 2001) using the F-N curves. The influence of the expected number of fatalities 
in the event of failure was examined on the basis of the upper bound (A=0.01 and k=2) and lower bound (A=0.1 and 
k=1) of the F-N curves in Section 2.5.4.  
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 𝑁𝑁s 2= Expected number of fatalities [-] 
 A = Acceptable risk for one fatality [-]	
 k = Slope factor of the F-N curve [-]	
 
2.4.3 Life quality index criterion 
ISO 2394 (2015) recommends employing the LQI acceptance criterion and provides information with regard to the 
social willingness to pay (SWTP), which corresponds to the amount of money that should be invested in saving one 
additional life (Rackwitz, 2006; Rackwitz, 2008). In a similar way, the willingness to prevent an injury could be taken 
into consideration. Studying the background documents of the LQI	criterion (Fischer et al., 2012; Fischer & Faber, 
2013) revealed that this criterion can be evaluated by applying the principles of cost minimisation if the capitalised 
‘societal’ risk is taken into consideration. The corresponding present value of societal losses, denoted by Cf;Societal, 
then depends on the SWTP and the expected number of fatalities	𝑁𝑁s 2. The associated annual threshold of 
acceptance 𝛽𝛽Mcc;'(was found by solving the derivative of the societal costs function: 
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60% of the time; the domain of a crane along a quay was assumed to correspond to three times Leq; a crane driver 
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different cranes during a year, the probability that an individual driver is present at Leq along a quay wall is 
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2.4.2	 SOCIETAL RISK CRITERION
Although the number of people present near commercial quay walls is usually limited, the 
societal risk criterion was also evaluated (Vrouwenvelder et al., 2001) using the F-N curves. 
The influence of the expected number of fatalities in the event of failure was examined on 
the basis of the upper bound (A=0.01 and k=2) and lower bound (A=0.1 and k=1) of the 
F-N curves in Section 2.5.4.
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2.4.3	 LIFE QUALITY INDEX CRITERION
ISO 2394 (2015) recommends employing the LQI acceptance criterion and provides 
information with regard to the social willingness to pay (SWTP), which corresponds to the 
amount of money that should be invested in saving one additional life (Rackwitz, 2006; 
Rackwitz, 2008). In a similar way, the willingness to prevent an injury could be taken into 
consideration. Studying the background documents of the LQI criterion (Fischer et al., 
2012; Fischer & Faber, 2013) revealed that this criterion can be evaluated by applying the 
principles of cost minimisation if the capitalised ‘societal’ risk is taken into consideration. 
The corresponding present value of societal losses, denoted by Cf;Societal, then depends on 
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The probability that a hypothetical crane driver is present was based on the following assumptions: cranes are used 
60% of the time; the domain of a crane along a quay was assumed to correspond to three times Leq; a crane driver 
generally works on multiple types of cranes, eight hours a day, 220 days a year. If a crane driver works on three 
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Although the number of people present near commercial quay walls is usually limited, the societal risk criterion was 
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where 
𝛽𝛽Mcc;'(= Annual threshold of acceptance [-]		

	 𝑃𝑃2°®®;o( 	= Acceptable annual probability of failure [-] 
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Although the number of people present near commercial quay walls is usually limited, the societal risk criterion was 
also evaluated (Vrouwenvelder et al., 2001) using the F-N curves. The influence of the expected number of fatalities 
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where 
 𝑁𝑁s 2= Expected number of fatalities [-] 
 A = Acceptable risk for one fatality [-]	
 k = Slope factor of the F-N curve [-]	
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where 
 CSocietal = Total societal costs [€] 

Cf;Societal = Societal failure cost [€] 
 
2.4.4 SERI criterion 
The social and environmental repercussion index (SERI) of the Spanish ROM represents the loss of human lives, 
damage to the environment and to historical and cultural heritage and the degree of social disruption. The social 
repercussion index was derived by examining Eq. (32) on the basis of the guidance in ROM 0.0 (2002) and the 
accompanying lifetime target reliability index (Table 2.5) was established in accordance with ROM 0.5 (2008).  
 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆â

≥

âg/

 
(32)  

 
2.5 Reliability targets for failure modes of quay walls 

2.5.1 Reliability optimum β* on the basis of cost minimisation 
This section presents the reliability indices obtained by economic optimisation of the structural and geotechnical 
limit states described in Section 2.3.2. The optimum annual and lifetime reliability indices for structural failure found 
were approximately 2.8 and 2.5 (Fig. 2.8-A), whereas for geotechnical failure 3.5 and 3.3 (Fig. 2.8-B) were found, 
respectively. The steepness of the left side of the total costs function was strongly influenced by the absolute value 
of the capitalised risk and explains the different shapes of the graphs. The steepness of the right side was fairly 
modest due to the quite low absolute value of marginal safety investments	Cm. The influencing parameters of the 
reliability optimum are further examined by performing a sensitivity analysis in the following section.  
 

 
Fig. 2.8. (A) Optimum lifetime reliability indices for structural failure teq=20, r=0.03, tref=50, Leq=40, 
C0=€0.36m, Cm=€0.06m and Cf =€5m; (B) optimum lifetime reliability indices for geotechnical failure teq=30, 
r=0.03, tref=50, Leq=40, C0=€0.12m, Cm=€0.02m and Cf=€15m. 
	
2.5.2 Sensitivity analysis of reliability optimum β* 
The aim of the sensitivity analysis was to gain an insight into the influence of the extent to which reliability problems 
are time-variant, expressed by teq. The effect of discount rates, the marginal costs of safety measures, failure costs 
and reference period were taken into consideration. Fig. 9 shows the optimum target reliability indices for a 
reference period of one year (left) and for the lifetime (right). It should be noted that the optimum annual and lifetime 
reliability indices for teq=50 or tref (solid black lines) are identical because the limit state function was assumed to be 
time-independent.  
 
Time-dependent limit state functions show relatively high annual reliability indices, but the associated lifetime 
reliability indices are fairly low compared with largely time-independent limit state functions. In the case of a high 
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the degree of social disruption. The social repercussion index was derived by examining Eq. 
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2.5	 RELIABILITY TARGETS FOR FAILURE MODES OF 
QUAY WALLS

2.5.1	 RELIABILITY OPTIMUM β* ON THE BASIS OF COST MINIMISATION
This section presents the reliability indices obtained by economic optimisation of the 
structural and geotechnical limit states described in Section 2.3.2. The optimum annual 
and lifetime reliability indices for structural failure found were approximately 2.8 and 2.5 (Fig. 
2.8-A), whereas for geotechnical failure 3.5 and 3.3 (Fig. 2.8-B) were found, respectively. The 
steepness of the left side of the total costs function was strongly influenced by the absolute 
value of the capitalised risk and explains the different shapes of the graphs. The steepness 
of the right side was fairly modest due to the quite low absolute value of marginal safety 
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investments Cm. The influencing parameters of the reliability optimum are further examined 
by performing a sensitivity analysis in the following section.
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Fig. 2.8. (A) Optimum lifetime reliability indices for structural failure teq=20, r=0.03, tref=50, 
Leq=40, C0=€0.36m, Cm=€0.06m and Cf=€5m; (B) optimum lifetime reliability indices for 
geotechnical failure teq=30, r=0.03, tref=50, Leq=40, C0=€0.12m, Cm=€0.02m and Cf=€15m.

2.5.2	 SENSITIVITY ANALYSIS OF RELIABILITY OPTIMUM β*

The aim of the sensitivity analysis was to gain an insight into the influence of the extent to 
which reliability problems are time-variant, expressed by t𝑒q. The effect of discount rates, 
the marginal costs of safety measures, failure costs and reference period were taken into 
consideration. Fig. 9 shows the optimum target reliability indices for a reference period of 
one year (left) and for the lifetime (right). It should be noted that the optimum annual and 
lifetime reliability indices for t𝑒q=50 or tr𝑒𝑓 (solid black lines) are identical because the limit 
state function was assumed to be time-independent.
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Fig. 2.9. Influence of discount rate (A), marginal safety investments (B), failure costs (C) and 
reference period (D) on the annual (left) and lifetime (right) reliability optimum for tref=50, 
Leq=40, C0=€0.6m, Cm=€0.1m and Cf=€5m.

Time-dependent limit state functions show relatively high annual reliability indices, 
but the associated lifetime reliability indices are fairly low compared with largely time-
independent limit state functions. In the case of a high risk profile, expressed in terms of high 
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discount rates, there is less willingness to invest in initial safety measures and hence a lower 
reliability optimum was found (Fig. 9-A). As expected, the effect of discount rates is stronger for 
time-dependent limit state functions. The variance in optimum lifetime reliability indices caused 
by t𝑒q was much lower than that in annual reliability indices given changes in Cm and Cf. This 
was explained by analysing the effect of discounting future costs. However, the absolute value 
of both Cm and Cf significantly influence the reliability optimum (Fig. 9-B and 9-C). Low failure 
costs (Cf≤€10m) result in an exponential decrease in the reliability optimum. A longer reference 
period will generally result in less variability in the optimum annual reliability indices and seem 
to approach an asymptote. A longer reference period resulted in an enhancement of the 
cumulative probability of failure, and hence in a lower lifetime reliability optimum (Fig. 9-D). An 
important finding is that if time-independent stochastic design variables dominate uncertainty, 
the difference between annual and lifetime target reliability indices becomes quite low.

2.5.3	 RELIABILITY MINIMUM βacc ON THE BASIS OF HUMAN SAFETY 
CRITERIA
The minimum requirements concerning human safety were examined on the basis of the 
individual risk (IR) and the societal risk (SR) criterion, the life quality index (LQI) and the social 
and environmental repercussion index (SERI) criteria. Table 2.5 presents the results of all safety 
criteria. The reader is referred to Section 2.3.6 for further background information with regard 
to the input variables used.

Table 2.8. Reliability minimum βacc in accordance with the IR criterion, SR criterion, LQI criterion 
and SERI criteria.

Type of 
failure Input Annual reliability βt1 Lifetime reliability βt50

teq NF|f SWTP ∑SERI IRPA=10-6 LIRA=10-6 LIRA=10-5 SR LQIt1 LQIt50
2 SERI2

ZSTR 20 0.15 €3m 3 2.8 4.0 3.4 <2.31 1.8 1.4 2.3
ZGEO 30 0.70 €3m 15 3.3 4.3 3.8 <2.31 2.8 2.7 3.0

1) The expected value of the number of fatalities was assumed to be equal to 1.
2) It should be noted that requirements concerning human safety are generally related to the annual and 
not the lifetime reliability index.

Table 2.8 shows that the SR criterion is not relevant for failure modes of commercial quay 
walls, because the number of people at risk is fairly low. The reliability minimum β𝑎cc derived 
using the LQI criterion led to lower reliability indices compared with the reliability optimum 
found by economic optimisation in Section 2.5.1. It was also found that the optimum reliability 
indices are quite similar to the results obtained by examining the IRPA criterion. However, LIRA 

2
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within risk contours 10-5 and 10-6 resulted in higher reliability indices. The influence of the 
input variables on the reliability minimum β𝑎cc is further discussed in the following section.

2.5.4	 SENSITIVITY ANALYSIS OF RELIABILITY MINIMUM βacc

Similar to the sensitivity analysis performed for economic optimisation, the differentiating 
factors related to the requirements concerning human safety were evaluated. Fig. 2.10 shows 
that the IR criterion was largely influenced by the product of the conditional probability that 
an individual will die in the event of the failure of a quay wall and the probability of not being 
able to escape in time. When this product becomes fairly low (< 0.05), a significant decrease 
in the acceptable annual reliability index was found. Fig. 2.10-A shows that the probability 
that a hypothetical person, such as a crane driver, is present influences the development of 
the IRPA. Fig. 2.11 shows that the SR criterion and the LQI criterion were largely influenced 
by the expected number of fatalities in the event of the failure of a quay wall. It is worth 
noting that the upper boundary of the SR criterion will become relevant when the expected 
number of fatalities is quite large. Similar to the insights derived by economic optimisation, 
the LQI criterion is influenced by the absolute value of marginal safety investments, social 
failure costs and the extent to which the reliability of failure modes are time-variant. The 
results of the sensitivity analysis are further discussed in Section 2.6.
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Fig. 2.10. Sensitivity analysis of IR criterion: influence of conditional probability of failure 
(A); influence that a specific individual will be present (B).
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Fig. 2.11. Sensitivity analysis of SR and LQI criterion with tref=50, Leq=40, C0=€0.6m, Cm=€0.1m 
and SWTP=€3m.

2.6	 DISCUSSION OF RELIABILITY TARGETS

2.6.1	 TARGET RELIABILITY INDICES FOR COMMERCIAL QUAY WALLS
The results in this chapter show that target reliability indices for commercial quay walls can 
be determined by economic optimisation on the basis of cost minimisation. The annual 
and lifetime target reliability indices ascribed to limit states of structural components and 
geotechnical failure modes of quay walls with a retaining height of 20m are in the ranges 
2.8-3.5 and 2.5-3.3, respectively. The acceptable annual reliability index in accordance 
with the individual risk criterion (IRPA=10 -6) led to fairly similar reliability indices. Table 2.9 
gives an overview of the reliability indices for economic optimisation (β*) and acceptability 
regarding human safety (β𝑎cc ). It should be noted that quay walls with a fairly small retaining 
height and fairly high variable loads could lead to higher differences between annual and 
lifetime target reliability indices (t𝑒q<20).

Table 2.9. Overview of risk-based optimum and acceptable reliability indices for commercial 
quay walls.

Risk-acceptance criteria Type of criterion ZSTR(teq≈20) ZGEO(teq≈30)

β1-year β 50-years β1-year β 50-years

Economic optimisation β* Cost minimisation 2.8 2.5 3.5 3.3
Human safety β𝑎cc Individual risk (IRPA =10-6) 2.8 - 3.3 -

Societal risk (SR) <2.3 - <2.3 -
Life quality index (LQI) 1.8 1.4 2.8 2.7
Social and economic 
repercussion index (SERI)

- 2.3 - 3.0

2
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It should be noted that the localised individual risk per annum (LIRA) criterion is 
assumed to be inactive because the failure of a quay wall will generally not induce the failure 
of hazardous installations, such as chemical plants. However, if the LIRA criterion is active 
the acceptable annual reliability indices are in the range 4.0-4.3. The societal risk (SR) 
criterion is mostly not so relevant for assessing human safety in relation to commercial quay 
walls, but should be taken into account if a large number of people are at risk – for example, 
when quay walls are part of a cruise terminal or a flood-defence system. It is always 
recommended that the LQI criterion be accounted for in order to verify whether the marginal 
life-saving costs principle is sufficiently covered. The SERI criterion is fairly straightforward 
and seems to be quite efficient for selecting a consequence class in accordance with the 
reliability framework proposed in the following section.

2.6.2	 ASSESSMENT CRITERIA FOR CLASSIFICATION
In Table 2.10, an assessment framework for reliability differentiation is proposed which 
complies with the qualitative descriptions embedded in many codes and standards in 
order to make reliability differentiation for quay walls more accessible and interpretable. 
The reliability framework of ISO 2394 (2015) provided a solid foundation, and hence was 
further elaborated by implementing the recommendations from ASCE 7-10 (2010) and DNV 
(1992) for structural redundancy and progression of failure. The social and environmental 
repercussion index (SERI) (ROM 0.0, 2002) and the ratio between the direct costs of 
failure and construction costs (JCSS, 2001) were also incorporated. In reality, quay-wall 
failure can have a significant effect on accessibility as well as on the image and reputation 
of a port. The service values of the Port of Rotterdam Authority, which are in line with 
those of other multinationals (Ligtvoet & Van der Lei, 2012), were therefore embedded 
in the new assessment framework. An upper limit to the allowable degree of economic 
damage was defined for each consequence class using the results of the sensitivity analysis 
and assuming the equivalent length L𝑒q along a quay wall, for which failure events are 
independent, to be in the range 25-50 m. It is worth noting that the row in Table 2.10 which 
shows the most onerous failure consequence determines the required consequence class.

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   54 28-08-19   12:44



55

Target reliability indices for quay walls
Ta

bl
e 

2.
10

. A
ss

es
sm

en
t c

rit
er

ia
 fo

r e
ac

h 
co

ns
eq

ue
nc

e 
cl

as
s 

fo
r t

he
 s

tr
uc

tu
re

 a
s 

a 
w

ho
le

 N
PA

R
.

D
es

cr
ip

tio
n

C
on

se
qu

en
ce

 c
la

ss

A
B

C
D

E

Q
ua

lit
at

iv
e

N
eg

lig
ib

le
/lo

w
So

m
e

C
on

sid
er

ab
le

H
ig

h
Ve

ry
 h

ig
h

H
um

an
 s

af
et

y
- N

um
be

r o
f f

at
al

itie
s 

(IS
O

 
23

94
, 2

01
5)

N 
≤ 

1
N 

≤ 
5

N 
≤ 

50
N 

≤5
00

N 
> 

50
0

- N
um

be
r o

f p
eo

pl
e 

at
 ri

sk
 

(A
SC

E 
7-

10
, 2

01
0)

N
PA

R <
5

N
PA

R <
50

N
PA

R <
50

0
N

PA
R <

15
00

N
PA

R >
15

00

- D
eg

re
e 

of
 w

ar
ni

ng
 (A

SC
E 

7-
10

, 2
01

0;
 D

N
V,

 1
99

2)
Pr

og
re

ss
io

n 
of

 fa
ilu

re
 

is 
no

t p
os

sib
le

 a
nd

 
pe

op
le

 a
t r

isk
 a

re
 a

bl
e 

to
 e

sc
ap

e 
in

 ti
m

e.

Re
du

nd
an

t s
tru

ct
ur

al
 

re
sp

on
se

 a
nd

 
pr

og
re

ss
io

n 
of

 fa
ilu

re
 

is 
m

itig
at

ed
 a

nd
 

fa
ilu

re
 is

 n
ot

 s
ud

de
n 

pr
ov

id
in

g 
ad

eq
ua

te
 

w
ar

ni
ng

 s
ig

na
ls.

Pr
og

re
ss

io
n 

of
 fa

ilu
re

 is
 

m
itig

at
ed

, b
ut

 fa
ilu

re
 is

 
su

dd
en

 w
ith

ou
t p

ro
vid

in
g 

w
ar

ni
ng

 s
ig

na
ls.

W
id

es
pr

ea
d 

pr
og

re
ss

io
n 

of
 d

am
ag

e 
is 

lik
el

y 
to

 o
cc

ur
 a

nd
 fa

ilu
re

 
is 

su
dd

en
 w

ith
ou

t 
pr

ov
id

in
g 

w
ar

ni
ng

 
sig

na
ls.

W
id

es
pr

ea
d 

pr
og

re
ss

io
n,

 in
du

ce
d 

by
 u

ne
xp

ec
te

d 
an

d 
su

dd
en

 e
nv

iro
nm

en
ta

l 
di

sa
st

er
s,

 is
 p

os
sib

le
.

- S
oc

ia
l a

nd
 e

nv
iro

nm
en

ta
l 

re
pe

rc
us

sio
n 

in
de

x 
(R

O
M

 
0.

0,
 2

00
2)

SE
RI

 ≤
 5

SE
RI

 ≤
 1

5
SE

RI
 ≤

 2
5

SE
RI

 ≤
 3

0
SE

RI
 >

 3
0

Ec
on

om
ic

- D
es

cr
ip

tio
n 

(IS
O

 2
39

4,
 

20
15

)
Pr

ed
om

in
an

tly
 

in
sig

ni
fic

an
t m

at
er

ia
l 

da
m

ag
es

.

M
at

er
ia

l d
am

ag
es

 
an

d 
fu

nc
tio

na
lit

y 
lo

ss
es

 o
f s

ig
ni

fic
an

ce
 

fo
r o

w
ne

rs
 a

nd
 

op
er

at
or

s 
an

d 
lo

w
 o

r 
no

 s
oc

ia
l im

pa
ct

.

M
at

er
ia

l lo
ss

es
 a

nd
 

fu
nc

tio
na

lit
y 

lo
ss

es
 o

f 
so

ci
et

al
 s

ig
ni

fic
an

ce
, 

ca
us

in
g 

re
gi

on
al

 
di

sr
up

tio
ns

 a
nd

 d
el

ay
s 

in
 im

po
rta

nt
 s

oc
ie

ta
l 

se
rv

ic
es

 o
ve

r s
ev

er
al

 
w

ee
ks

.

Di
sa

st
ro

us
 e

ve
nt

s 
ca

us
in

g 
se

ve
re

 lo
ss

es
 

of
 s

oc
ie

ta
l s

er
vic

es
 a

nd
 

di
sr

up
tio

ns
 a

nd
 d

el
ay

s 
at

 n
at

io
na

l s
ca

le
 o

ve
r 

pe
rio

ds
 in

 th
e 

or
de

r o
f 

m
on

th
s.

C
at

as
tro

ph
ic

 e
ve

nt
s 

ca
us

in
g 

lo
ss

es
 o

f 
so

ci
et

al
 s

er
vic

es
 a

nd
 

di
sr

up
tio

ns
 a

nd
 d

el
ay

s 
be

yo
nd

 n
at

io
na

l s
ca

le
 

ov
er

 p
er

io
ds

 in
 th

e 
or

de
r o

f y
ea

rs
.

- A
cc

es
sib

ilit
y 

(L
ig

tv
oe

t &
 

Va
n 

de
r L

ei
, 2

01
2)

Ve
ry

 lit
tle

 h
in

dr
an

ce
 

to
 s

hi
pp

in
g,

 ra
ilw

ay
 

tra
ns

po
rt,

 p
ip

el
in

e 
sy

st
em

s.
 (V

er
y 

sh
or

t 
pe

rio
d:

 le
ss

 th
an

 o
ne

 
da

y.)

M
in

or
 c

on
se

qu
en

ce
s 

fo
r a

va
ila

bi
lit

y 
of

 
na

vig
at

io
n 

ch
an

ne
ls,

 
ra

ilw
ay

s,
 ro

ad
s 

or
 

pi
pe

lin
e 

co
rri

do
rs

. 
(O

bs
tru

ct
io

n 
fo

r a
 

pe
rio

d 
of

 o
ne

 d
ay

).

Sh
or

t p
er

io
d 

of
 

ob
st

ru
ct

io
n 

w
ith

 re
ga

rd
 

to
 n

av
ig

at
io

n 
ch

an
ne

ls,
 

ra
ilw

ay
s,

 ro
ad

s 
or

 
pi

pe
lin

e 
co

rri
do

rs
. 

(A
va

ila
bi

lit
y 

is 
lo

w
er

 fo
r a

 
pe

rio
d 

of
 o

ne
 w

ee
k.

)

Da
m

ag
e 

to
 n

av
ig

at
io

n 
ch

an
ne

ls,
 ra

ilw
ay

s,
 

ro
ad

s 
or

 p
ip

el
in

e 
co

rri
do

rs
. (

Av
ai

la
bi

lit
y 

is 
lo

w
er

 fo
r a

 p
er

io
d 

of
 

w
ee

ks
.)

Lo
ss

 o
f m

ai
n 

na
vig

at
io

n 
ch

an
ne

ls,
 ra

ilw
ay

s,
 

ro
ad

s 
or

 p
ip

el
in

e 
co

rri
do

rs
. (

M
ai

n 
tra

ns
po

rt 
ro

ut
es

 a
re

 
un

av
ai

la
bl

e 
fo

r a
 p

er
io

d 
of

 m
on

th
s.

)

2

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   55 28-08-19   12:44



56

Chapter 2
Ta

bl
e 

2.
10

. C
on

tin
ue

d.

D
es

cr
ip

tio
n

C
on

se
qu

en
ce

 c
la

ss

A
B

C
D

E

-R
at

io
 b

et
w

ee
n 

di
re

ct
 fa

ilu
re

 
co

st
s 

an
d 

co
st

s 
of

 s
af

et
y 

in
ve

st
m

en
ts
 ρ
=
 C

f;d
ir

ec
t/

C In
v𝑒
st
m
𝑒n
ts
 (J

C
SS

, 2
00

1)
.

ρ 
≤1

 ρ
 ≤

2
ρ 

≤5
ρ 

≤1
0

 ρ
 >

10

-F
ai

lu
re

 c
os

ts
 C

f
co

rre
sp

on
di

ng
 to

 a
 fa

ilu
re

 
le

ng
th

 o
f 4

0 
m

C f <
€8

m
C f <

€5
0m

C f <
€2

00
m

C f <
€1

50
0m

C f >
€1

50
0m

En
vi

ro
nm

en
ta

l (
IS

O
 2

39
4,

 
20

15
)

Da
m

ag
e 

to
 th

e 
qu

al
ity

 
of

 th
e 

en
vir

on
m

en
t o

f 
an

 o
rd

er
 w

hi
ch

 c
an

 b
e 

re
st

or
ed

 c
om

pl
et

el
y 

in
 

a 
m

at
te

r o
f d

ay
s.

Da
m

ag
e 

to
 th

e 
qu

al
ity

 
of

 th
e 

en
vir

on
m

en
t o

f 
an

 o
rd

er
 w

hi
ch

 c
an

 b
e 

re
st

or
ed

 c
om

pl
et

el
y 

in
 

a 
m

at
te

r o
f w

ee
ks

.

Da
m

ag
e 

to
 th

e 
qu

al
ity

 o
f 

th
e 

en
vir

on
m

en
t l

im
ite

d 
to

 th
e 

su
rro

un
di

ng
s 

of
 

th
e 

fa
ilu

re
 e

ve
nt

 a
nd

 
w

hi
ch

 c
an

 b
e 

re
st

or
ed

 in
 

a 
m

at
te

r o
f w

ee
ks

.

Si
gn

ific
an

t d
am

ag
e 

to
 th

e 
qu

al
ity

 o
f 

th
e 

en
vir

on
m

en
t 

co
nt

ai
ne

d 
at

 n
at

io
na

l 
le

ve
l b

ut
 s

pr
ea

di
ng

 
sig

ni
fic

an
tly

 b
ey

on
d 

th
e 

su
rro

un
di

ng
s 

of
 

th
e 

fa
ilu

re
 e

ve
nt

 a
nd

 
w

hi
ch

 c
an

 b
e 

on
ly 

pa
rtl

y 
re

st
or

ed
 in

 a
 m

at
te

r o
f 

m
on

th
s.

Si
gn

ific
an

t d
am

ag
es

 
to

 th
e 

qu
al

ity
 o

f t
he

 
en

vir
on

m
en

t s
pr

ea
di

ng
 

sig
ni

fic
an

tly
 b

ey
on

d 
th

e 
na

tio
na

l le
ve

l a
nd

 w
hi

ch
 

ca
n 

be
 o

nl
y 

pa
rtl

y 
re

st
or

ed
 in

 a
 m

at
te

r o
f 

ye
ar

s 
to

 d
ec

ad
es

R
ep

ut
at

io
n 

(L
ig

tv
oe

t &
 

Va
n 

de
r L

ei
, 2

01
2)

N
o 

ne
ga

tiv
e 

at
te

nt
io

n 
in

 m
ed

ia
 a

nd
 n

o 
da

m
ag

e 
to

 th
e 

im
ag

e 
of

 th
e 

po
rt.

Ve
ry

 s
ho

rt 
pe

rio
d 

of
 

ne
ga

tiv
e 

at
te

nt
io

n 
in

 lo
ca

l, 
re

gi
on

al
 

an
d 

na
tio

na
l m

ed
ia

 
(>

1 
da

y).
 S

er
io

us
 

co
nc

er
ns

 a
m

on
g 

pe
op

le
 liv

in
g 

in
 

th
e 

vic
in

ity
, l

oc
al

 
go

ve
rn

m
en

t, 
na

tio
na

l 
go

ve
rn

m
en

t o
r 

ex
te

rn
al

 c
lie

nt
s.

 
Da

m
ag

e 
to

 im
ag

e 
of

 a
 

fe
w

 s
ta

ke
ho

ld
er

s.

Sh
or

t a
nd

 lim
ite

d 
pe

rio
d 

of
 n

eg
at

ive
 a

tte
nt

io
n 

in
 lo

ca
l, 

re
gi

on
al

 a
nd

 
na

tio
na

l m
ed

ia
 (>

2 
da

ys
). 

Se
rio

us
 c

on
ce

rn
s 

am
on

g 
pe

op
le

 liv
in

g 
in

 th
e 

vic
in

ity
, l

oc
al

 
go

ve
rn

m
en

t, 
na

tio
na

l 
go

ve
rn

m
en

t o
r e

xt
er

na
l 

cl
ie

nt
s.

 D
am

ag
e 

to
 im

ag
e 

of
 th

e 
po

rt 
fo

r s
om

e 
tim

e.

Pe
rio

d 
of

 n
eg

at
ive

 
at

te
nt

io
n 

in
 lo

ca
l, 

re
gi

on
al

 a
nd

 n
at

io
na

l 
m

ed
ia

 (>
w

ee
k)

, S
er

io
us

 
co

nc
er

ns
 a

m
on

g 
pe

op
le

 
liv

in
g 

in
 th

e 
vic

in
ity

, l
oc

al
 

go
ve

rn
m

en
t, 

na
tio

na
l 

go
ve

rn
m

en
t o

r e
xt

er
na

l 
cl

ie
nt

s.
 D

am
ag

e 
to

 
im

ag
e 

of
 th

e 
po

rt 
fo

r 
so

m
e 

tim
e.

Lo
ng

 p
er

io
d 

of
 n

eg
at

ive
 

at
te

nt
io

n 
in

 lo
ca

l, 
re

gi
on

al
 a

nd
 n

at
io

na
l 

m
ed

ia
 (>

m
on

th
). 

Ve
ry

 
se

rio
us

 c
on

ce
rn

s 
am

on
g 

pe
op

le
 liv

in
g 

in
 th

e 
vic

in
ity

, l
oc

al
 

go
ve

rn
m

en
t, 

na
tio

na
l 

go
ve

rn
m

en
t o

r e
xt

er
na

l 
cl

ie
nt

s.
 P

er
m

an
en

t 
da

m
ag

e 
to

 im
ag

e 
of

 
th

e 
po

rt.

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   56 28-08-19   12:44



57

Target reliability indices for quay walls

2.6.3	 COMPLIANCE WITH CODES AND STANDARDS AND PROPOSAL 
FOR CLASSIFICATION
In engineering, reliability problems are often assumed to be fully time-variant (Section 2.2.2). 
The results of this chapter, however, show that limit state functions of quay walls are to a 
certain extent time-independent. Fairly dangerous geotechnical failure modes, in particular, 
seem to be dominated by uncertainty in time-independent variables, indicating that the 
associated failure rate is higher during the first years of service (Chapter 4). This theory is 
supported by the fact that quay-wall failures not induced by environmental disasters are 
mostly identified directly upon construction or in the first year after completion. In addition, no 
fatalities of end users due to quay failure have been identified at the Port of Rotterdam. The 
decrease in the failure rate during the useful life may explain the relatively low failure frequency 
of geotechnical structures compared with other civil-engineering works (Terwel, 2014).

The target reliability indices derived in this chapter were determined from three risk-
acceptance criteria: economic optimisation, the individual risk (IRPA) criterion and the life 
quality index (LQI) criterion. The results were used to determine target reliability indices in 
accordance with the assessment criteria for structural robustness described in Table 2.10. It 
should be noted that the description of the failure consequences is related to the system as 
whole rather than to individual structural components (ISO 2394, 2015). The recommended 
target reliability indices in Table 2.11 are ascribed to the limit state functions of structural 
components and geotechnical failure modes, because the efficiency of safety measures as 
well as failure consequences differ per limit state. It should be noted that the recommended 
target reliability indices are only valid if progressive failure is mitigated (Janssen, 2012; Gaba 
et al., 2017; De Gijt & Broeken, 2013). The sensitivity analysis showed that differences in 
annual target reliability indices are fairly small for time-independent limit state functions. It 
is therefore recommended that annual target reliabilities be evaluated, rather than lifetime 
reliability indices, and that annual reliability indices be implemented in design codes in 
accordance with the recommendations of ISO 2394 (2015) and Rackwitz (2000). Economic 
optimisation was found to be the governing risk criterion. However, the societal costs will 
become fairly dominant in the case of class D. The LIRA and SR criteria are only relevant 
for failures with consequences that reach far beyond the quay-wall site itself – for instance, 
if installations with hazardous materials are affected. They are therefore not included in the 
recommended values, but should be considered separately when applicable. Table 2.11 
also shows that the recommended annual target reliability indices are within the range of 
the guidance in ISO 2394 (2015).

2
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Table 2.11. Annual target reliability indices for consequence classes of largely time-
independent limit state functions of quay walls.

Criterion Type Consequence class

A B C D E

Low Some Considerable High Very high

ISO 2394 (2015) Large 1 - 3.1 3.3 3.7 -
Medium 1 - 3.7 4.2 4.4 -
Small 1 - 4.2 4.4 4.7 -

Economic optimisation2,3 2.8 3.4 3.8 4.2 excl.5

LQI criterion2,3 2.5 3.0 3.7 4.2 excl.5

IR criterion IRPA=10-6 2.8 3.3 3.7 n/a n/a
IRPA=10-5 1.9 2.5 3.1 n/a n/a
LIRA=10-6 n/a n/a n/a 4.34 excl.5

LIRA=10-5 n/a n/a n/a 3.44 excl.5

SR criterion A=0.01; k=2 n/a 3.4 4.5 5.4 excl.5

A=0.1; k=1 n/a 2.1 2.9 3.5 excl.5

Recommendation for 
design codes (neq<<nref or teq≥20) 2.8 3.4 3.86 4.26 excl. 5

1) Relative costs of safety measures.
2) Dominant design variables are considered to be time-independent (n𝑒q<<nr𝑒𝑓 or t𝑒q≥20) (Section 2.3.3).
3) Input variables tr𝑒𝑓=50, L𝑒q=40, C0=€0.6m, Cm=€0.1m and SWTP=€3m.
4) This criterion is only active at a hazardous site/project location (Section 2.4).
5) It is not possible to provide general recommendations. A project-specific study is recommended 
(Section 2.4).
6) Verify whether LIRA or SR criteria are active.

The failure consequences of quay walls in port areas (Fig. 2.12) with and without 
functional redundancy differ (Section 2.3.5) and have been classified as class A and class 
B, representing ‘low’ and ‘some’ damage respectively. The required reliability level of 
a commercial quay wall also depends on the image and reputation of a port as a safe 
environment for investments and work (Section 2.3.5). Another aspect that needs to be 
considered is the impact of failure on the availability and accessibility of major sailing routes. 
After an earthquake in Japan, numerous quay walls failed simultaneously (Iai et al., 1996) and 
hence multiple berths were unavailable for recovery, leading to much more serious economic 
repercussions (OCDI, 2009). When quay-wall failure could lead to an explosion in, for instance, 
a chemical plant (Fig. 2.12-V) or to the breaking loose of a cruise ship induced by the failure 
of bollards, many more people are at risk. In these circumstances, a higher consequence 
class must be considered. The design of soil-retaining walls that are part of another system, 
such as a preliminary flood-defence system, should take account of the length effect and 
hence higher reliability indices need to be taken into consideration (Calle & Spierenburg, 1991; 
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Janssen, 2012; Roubos & Grotegoed, 2014; STOWA, 2011; TAW, 2003). Although undoubtedly 
not all types of quay walls are covered, the examples listed in Table 2.12 will serve as a useful 
reference for categorising quay-wall types for each consequence class.

Table 2.12. Examples of quay-wall types for the consequence classes described in Table 
2.10 if (and only if) progressive failure is mitigated.

Examples of quay wall types

A B C D E

Negligible or low Some Considerable High Very high

Soil-retaining 
walls where the 
risk of fatalities is 
negligible or very 
low; quay walls 
that are part of a 
terminal or port 
with functional 
redundancy.

Quay walls that 
are part of a 
terminal or port 
without functional 
redundancy.

Quay walls in 
urban areas.

Quay walls for which 
failure will lead to 
the failure of other 
structures, such as 
chemical or power 
plants; soil-retaining 
walls that are part of 
secondary fl ood-
defence systems or 
dams; quay walls 
needed for recovery 
after earthquake 
damage or tsunamis; 
quay walls that 
facilitate cruise ships.

Soil-retaining 
walls that 
are part of a 
primary fl ood 
defence system, 
major dam or 
important sailing 
route.

I) II) III) IV) V)

 Fig. 2.12. Impression of diff erent quay-wall types: (I) commercial quay wall; (II) quay wall 
in urban area; (III) quay wall that is part of a dangerous plant; (IV) quay wall that facilitates 
cruise ships; (V) quay walls that facilitate main sailing routes.

2.7 CONCLUSION AND RECOMMENDATIONS

The results of this chapter provide guidance on reliability diff erentiation for commercial quay 
walls, but have also been used to evaluate reliability indices for other types of quay and 
soil-retaining walls. The most important fi ndings of this chapter are as follows.

2
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·	 In quay-wall design, it is highly likely that dominant stochastic design variables are 
largely time-independent. This influences both the efficiency of safety measures and 
the present value of future failure costs, and hence optimum annual and lifetime 
target reliability indices.

·	 The extent to which limit state functions of quay walls are time-dependent differs 
between failure modes.

·	 Target reliability indices can be derived on the basis of economic optimisation in 
combination with the marginal life-saving cost principle. The annual and lifetime 
target reliability indices for failure modes of commercial quay walls found were in 
the ranges 2.8-3.5 and 2.5-3.3, respectively.

·	 The recommendations for reliability differentiation in literature become more 
consistent and interpretable if the assessment framework ISO 2394 (2015) is 
extended with detailed information about type of failure, warning signals and the 
consequences of failure.

When defining target reliability indices for quay walls and other geotechnical structures, one 
should be very careful using the general guidance developed for buildings and bridges, 
because the degree and source of aleatory and epistemic uncertainty differ, as do the 
consequences of failure. It is strongly recommended that damage to the reputation of a 
terminal or port be taken into account, because marginal safety costs appeared to be quite 
low compared to the total construction costs and expected benefits. During this research 
it was noticed that many experts find it difficult to make a quantitative estimate of the costs 
associated with failure and that little information is available with regard to the conditional 
probability of death in the event of a quay-wall failure. Both aspects require further research. 
A detailed study with regard to the influence of time-independent design variables, failure 
costs and the efficiency of safety measures for each failure mode is highly recommended 
if we are to improve quay-wall design in respect of reliability and safety. The failure rates 
of fairly dangerous geotechnical failure modes seem to be much higher in the first period 
of service, indicating that if a quay wall has already survived a certain period these failure 
modes are less likely to occur (Kunz, 2015). It is therefore highly recommended that specific 
guidance for assessing the reliability and safety of existing quay walls be drawn up, which 
would involve adopting a new and different approach incorporating development of the 
probability of failure over time. It is expected that insight into the actual reliability level of 
soil-retaining walls will increase significantly if the uncertainty in the soil-structure interaction 
is reduced by advanced monitoring – for instance, during the capital dredging works of 
the construction stage. The suggestions for quantifying reliability levels developed in this 
chapter also enable the determination of project-specific target reliability indices.
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FINITE ELEMENT-BASED 
RELIABILITY ASSESSMENT 
OF QUAY WALLS
The reliability targets derived in Chapter 2 function as a threshold of acceptance, and hence 
form the basis for evaluating the outcome of reliability-based assessments. However, when 
finite element models are used in such assessments, the process becomes rather extensive 
and time-consuming. As part of this research, a practical interface was developed to couple 
finite element models to reliability tools. This chapter demonstrates the finite element-based 
reliability assessment of two real-life quay walls and shows which design variables influence 
quay-wall reliability. The outline of this chapter is as follows. Section 3.1 and 3.2 briefly introduce 
the basic principles of reliability-based assessments in relation to quay-wall engineering. 
Subsequently, Section 3.3 focuses on the methods used to perform a finite element-based 
reliability assessment. Its outcomes are presented and are subjected to a sensitivity analysis 
in Section 3.4. It is worth noting that the sensitivity analysis also accounts for the effects of 
deepening the harbour bottom and enhancing operational loads on quay-wall reliability, which 
are both further discussed in Section 3.5. This chapter shows that finite element models can 
be successfully implemented in reliability-based assessments. Furthermore, the practical 
experiences gained from both the settings of the finite-element solver and the probabilistic 
methods used to attain robust calculation results might benefit future users and researchers.

This chapter is based on the following publication: Roubos, A. A., Schweckendiek, T., 
Brinkgreve, R., Steenbergen, R. D. J. M., & Jonkman, S. N. (2019), Finite element-based 
reliability assessment of quay walls. Georisk: Assessment and Management of Risk for 
Engineered Systems and Geohazards (submitted).
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ABSTRACT

While reliability methods have already been widely adopted in civil engineering, the efficiency 
and robustness of finite element-based reliability assessments of quay walls are still fairly 
low. In this chapter, the reliability indices of structural and geotechnical failure modes of two 
real-life quay walls are determined by coupling probabilistic methods with finite element 
models, taking into account a large number of stochastic variables. The reliability indices 
found are within the range of the targets suggested in the design codes presently in use. 
Nevertheless, neglecting model uncertainty and correlations between stochastic variables 
leads to an underestimation of the probability of failure. In addition, low sensitivity factors are 
found for time-independent variables, such as material properties and model uncertainty. 
Furthermore, the results are used to reflect on the partial factors used in the original design. 
Important variables, such as the angle of internal friction, are subjected to a sensitivity 
analysis in order to illuminate their influence on the reliability index. Port authorities and 
terminal operators might be able to use the findings of this chapter to derive more insight 
into the reliability of their marine structures and to optimise their service life and functionality, 
for example by deepening berths or increasing operational loads.
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Finite element-based reliability assessment of quay walls

3.1	 INTRODUCTION

Quay walls are marine structures that ensure safe and efficient handling of ships (Fig. 2.1). 
Since they frequently have a complex soil-structure interaction (e.g. due to inclined retaining 
walls or relieving platforms), structural and geotechnical assessments are usually performed 
semi-probabilistically while modelling the quay wall on the basis of finite elements. A more 
systematic way to account for uncertainties is to perform a reliability-based assessment 
(Phoon & Retief, 2016). However, the efficiency and robustness of finite element-based 
reliability assessments in quay-wall engineering are rather low. In particular, it is still quite a 
challenge to achieve a robust coupling between probabilistic methods and finite element 
models, e.g. due to the highly complex and non-linear character of soil behaviour. Although a 
few studies (Rippi & Texeira, 2016; Schweckendiek et al., 2012; Teixeira et al., 2016; Wolters et 
al., 2012) show promising results for quay walls and other soil-retaining structures, most use 
simplified models and they generally do not consider structures that have actually been built.

The aim of this chapter is threefold: (i) to develop a method to enable finite element-
based reliability assessments of quay walls in realistic design conditions; (ii) to evaluate 
partial factors of safety; and (iii) to provide port authorities with information on the relevant 
parameters to measure and monitor. The following approach was adopted. First, a reliability 
interface named ProbAna® (Laera & Brinkgreve, 2017) was developed to couple Plaxis – 
an advanced finite element software package presently used in quay-wall engineering 
and geotechnical engineering in general – with the open source probabilistic toolbox 
OpenTURNS (‘Open source initiative for the treatment of uncertainties, risks and statistics’). 
Since using these advanced tools can become a ‘black box’, the outcome was evaluated 
by performing reliability-based assessments using an alternative reliability tool, Prob2B 
(Courage & Steenbergen, 2007) while analytically modelling the quay wall using Blum’s 
method (Blum, 1931). The results of the reliability-based assessment were subjected to a 
sensitivity analysis in order to illustrate the impact of relevant design variables on the quay 
walls’ reliability level. Unlike in previous studies, two reference quay walls that have actually 
been built in the port of Rotterdam and comply with the Eurocode standard (NEN-9997-1, 
2016), were selected. Consequently, it has been possible to use the results of this chapter 
to reflect on the safety factors used in the original design.

3.2	 BASIC PRINCIPLES OF RELIABILITY-BASED 
ASSESSMENTS

Basic performance measures of reliability-based assessments are typically expressed as a 
probability of failure Pf on the basis of the limit state function (LSF) Z=𝑔(x)=0 (JCSS, 2001). The 
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failure probability Pf is defined as outcrossing 𝑔(x)=0 (Eq. 34), and is generally directly related to 
the reliability index β (Eq. 35) (Cornell, 1969; Hasofer & Lind,1974). This reliability index can be 
compared with the required or ‘target’ reliability indices stated in codes and standards (Table 
3.1) and derived in Chapter 2. A limit state function can be defined for all sorts of failure, such 
as local or global collapse and exceeding serviceability limits (Vrouwenvelder, 2017). Section 
3.4.2 describes the main failure modes of quay walls and the associated limit state functions.
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
 

	 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	𝑃𝑃2o(𝑃𝑃t=>v>9' 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (22) 	

(35)

Where:
Z	 Limit state function
𝑔(X)	 State function of variable X
X	 Vector of stochastic variables
Pf	 Probability of failure [-]
𝑓X(x)	 Joint probability density function of variable X [-]
β	 Reliability index [-]
Φ	 Standard normal cumulative distribution function [-]

Table 3.1. Overview of lifetime target reliability indices in literature for the ultimate limit 
state (Chapter 2).

Literature Application Failure consequences

Low Some Considerable High Very high

ISO 2394 (2015) 1 All Small Some Moderate Great
2.3 3.1 3.8 4.3

EN 1990 (2011) All RC1 RC2 RC3
3.3 3.8 4.3

ROM 0.5-05 (2008) Geotechnical Minor Low High/very high
2.33 3.09 3.72

CUR 166 (2012) Sheet piles Class I Class II Class II
2.5 3.4 4.2

OCDI (2009) Marine NR2 IR2 HR2

2.19/2.67 2.67 3.65
CUR 211 (2013) Quay walls RC1 RC2 RC3

3.3 3.8 4.3

1) Reliability indices are derived by assuming low relative costs of safety measures.
2) Normal, intermediate and high seismic performance verification.
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Currently, several reliability methods are available. These include the fi rst-order 
reliability method (FORM ), the second-order reliability method (SORM), directional sampling 
(DS), directional adaptive response surface sampling (DARS), and crude Monte Carlo 
(MC), all of which have advantages and disadvantages (Jonkman et al., 2015). The methods 
used in this chapter are described in the next section. For further details with regard to 
probabilistic assessments, the reader is referred to ISO 2394 (2015) or the Probabilistic 
Model Code (JCSS, 2001).

3.3 METHOD FOR FINITE ELEMENT-BASED RELIABILITY 
ASSESSMENT OF QUAY WALLS

3.3.1  INTRODUCTION
This section briefl y introduces the information and methods used to perform fi nite element-
based reliability assessments of a quay wall without (Fig. 3.1-A) and with a relieving platform 
(Fig. 3.1-B). Further structural information can be found in Appendix B.1. The failure modes 
were evaluated on the basis of limit state functions, which are described in Section 3.3.2.

Combi-wall
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3x PU 28

-8.0m

-12.5m

-27.5m

+5.0m

Ref Drainage system+1.5m
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Foundation 
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L
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hpile

hpile

+5.0m

A) Without relieving platform B) With relieving platform

Fig. 3.1. Cross-section of the reference quay walls without (A) and with (B) a relieving 
platform, located in the port of Rotterdam.

Both of these structures have been built in practice and were modelled with the fi nite 
element software Plaxis using the hardening soil constitutive model to represent the soils’ 
stress-strain behaviour, which takes into account the stress dependency of soil stiff ness. 
In addition, recently developed modelling options were implemented, such as embedded 
beam rows to model foundation piles (Sluis, 2012), and realistically take into account the 

3
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soil pressure acting on the combi-wall. Although monitoring data, ‘as-built’ documents 
and detailed soil investigation were used to minimise model uncertainty, its influence was 
explicitly taken into consideration as a stochastic variable. This is because, as in any non-
linear analysis, the numerical solution is an approximation since we do not exactly know the 
real solution. The stochastic variables considered are described in Section 3.3.3.

As part of this research, a new reliability interface was developed. It couples the finite 
element model with the probabilistic toolbox (Andrianov et al., 2007; Laera & Brinkgreve, 
2017) (Fig. 3.2). In this study, a research version of the reliability interface was used, including 
additional options and features such as the possibility to account for uncertainty in water 
levels and geometry. Moreover, this interface enables the use of customised limit state 
functions. It controls both the input and the output for the finite element model via ‘remote 
scripting’ and the settings of the selected reliability method.

E φ c 
E 
φ 
c 

Distribution functions Correlation matrix 

Z=g(X)=0 

Failure modes (LSF) 

μ, σ 

M, N, ux, ΣMsf 

Plaxis calculation output  

OpenTURNS 

Convergence acceptance criteria satisfied? 
e.g. FORM, DS, Monte Carlo

Pf

β

 

Plaxis: Hardening Soil model    

Probability of failure

Reliability index

Settings reliability method 

Max iterations, errors, 
control settings

e.g. normal, lognormal, Gumbel

Library: Reliability methods

, ∗

Relability interface: ProbAna® 

Output 

Finite element model Probabilistic toolbox 

Fig. 3.2. Reliability interface coupling the finite element software Plaxis with the probabilistic 
toolbox OpenTURNS.

In this study, the Abdo-Rackwitz FORM algorithm was used to solve the reliability 
problem. This algorithm and the settings used are further described in Appendix B.2. Since 
coupling a finite element model with a reliability method can easily become a ‘black box’, 
the outcomes were evaluated. This was done by performing reliability-based assessments 
using an alternative reliability tool while analytically modelling the quay wall using Blum’s 
method (Blum, 1931), which was commonly used until the end of the twentieth century to 
design all quay walls in Rotterdam. The Blum-based probabilistic analysis was performed 
on the basis of the Rackwitz-Fiessler FORM algorithm (Rackwitz & Fiessler, 1997), and a 
more computational extensive crude Monte Carlo analysis (Section 3.4.1 and Chapter 4). 
One advantage of FORM is that it provides the design point X* and sensitivity factors αi 
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for each stochastic variable i. Since some variables are correlated, their input sequence 
signifi cantly infl uences the sensitivity factors obtained. Section 3.4.3 therefore presents 
the method used to determine partial factors of safety for correlated stochastic variables.

3.3.2 MAI N FAILURE MODES AND LIMIT STATE FUNCTIONS
Failures of quay walls can be categorised into diff erent failure modes, and hence multiple 
limit states have to be evaluated. This study evaluates the most relevant limit state functions 
of the failure modes in terms of reliability (Fig. 3.3); it does not extend to evaluation of 
the entire system of failure modes, but rather focuses on the reliability index of individual 
structural components or failure modes in accordance with the Eurocode approach (NEN-
EN 1990, 2011). For a detailed fault tree, the reader is referred to design guidelines for 
soil-retaining walls (Calle & Spierenburg, 1991; De Gijt, 2003; De Gijt & Broeken, 2013; 
Janssen, 2012).

STR;yieldingZ
STR;anchorZ GEO; groutZ

A) Failure of retaining wall B) Failure of anchor strut C) Failure of anchor system

GEO;global safetyZ

D1) Failure of passive soil wedge D2) Failure of anchor system D3) Macro instability 

STR;bucklingZ

Fig.  3.3. Failure modes of quay walls considered in this study.

The limit states for yielding and local buckling in the outer fi bres (Fig. 3.3-A) were 
evaluated using Eq. (36) and Eq. (37), respectively, to assess the reliability of the combi-wall. 
The formula to evaluate local buckling was developed on the basis of recent experiments, 
including an empirical formula for the buckling factor fB, which represents the ratio between 

3
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the actual and the theoretical bending moment capacity (Peters et al., 2017). The risk of 
local buckling is stress and strain-level dependent, and hence the parameter Dtub𝑒/ttub𝑒ε2 is 
generally used instead of Dtub𝑒/ttub𝑒. The tubes’ diameter and wall thickness represent the 
actual dimensions, while the yield strength was based on tensile tests. Particularly because 
fB was determined on the basis of experiments, an additional stochastic factor θB, was 
added in this study to account for model uncertainty. In addition, the calculation output of 
the finite element model – such as bending moments, axial forces, anchor forces and ΣMs𝑓 
– was also subjected to model uncertainty by introducing θM, θN, θF, and θMs𝑓, respectively.

 
39 
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Where:
ZSTR;yi𝑒ld	 State function of maximum stress in the combi-wall [kN/m2]
ZSTR;bucklin𝑔	 State function of local buckling of the tube of the combi-wall 

[kNm/m1]
𝑓y	 Yield strength [kN/m2]
𝑓y;r𝑒𝑓	 Reference yield strength, equal to 235 N/mm2 [kN/m2]
Mw𝑎ll	 Bending moment in combi-wall [kNm/m1]
Ntub𝑒	 Axial force in combi-wall [kNm/m1]
Ww𝑎ll	 Section modulus, combi-wall [m3/m1]
Wtub𝑒	 Section modulus, combi-wall [m3/m1]
Atub𝑒	 Sectional area of tube [m2/m1]
MEd	 Maximum bending moment [kNm/pile]
MRd	 Reduced resisting bending moment [kNm/pile]
NRd	 Maximum resistance for axial compressive force [kN/pile]
Ls	 Centre-to-centre distance of combi-wall system [m]
𝑓B	 Empirical formula representing mean value experiments, with 

variation θB [-]
ε	 Ratio of reference to nominal yield strengths, which equals  

√ 𝑓y;r𝑒𝑓 / 𝑓y [-]
z	 Depth across height of combi-wall [m]
θB	 Factor to account for model uncertainty related to buckling 

experiments [-]
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θM	 Factor to account for model uncertainty for bending moments [-]
θN	 Factor to account for model uncertainty for axial forces [-]

The structural (Fig. 3.3-B) and the geotechnical limit states (Fig. 3.3-C) of the anchors 
were evaluated using Eq. (39) and Eq. (40), respectively. The strength of the grout body 
depends largely on the factor αt, which represents the shear capacity along the grout body.
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Where: 
ZSTR;anchor State function of maximum stress in cross-section anchor strut [kN/m2] 
ZGEO;grout  State function of capacity of grout body anchor system [kN]  
Fanchor	  Anchor force [kN] 
Aanchor		 	 Sectional area of anchor strut [m2] 

αt   Tension capacity factor of grout body [-] 
OA  Circumference of grout body [m] 
qc	 	 Cone penetration resistance [MPa] 
LA  Length of grout body [m]  
θN   Factor to account for model uncertainty for axial forces [-] 
θF   Factor to account for model uncertainty for anchor forces [-] 
 
Furthermore, the limit state function ZGEO;global covers all geotechnical failure modes (Fig. 3.3-D) simultaneously 
(Roubos et al., 2018) and is defined as: 
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Where: 
ZGEO;global  State function of global safety factor, geotechnical failure modes [-]  

ΣMsf	 	 Global stability ratio related to φ-c reduction. The friction angle φ’ and    
 cohesion c’ are successively decreased until geotechnical failure occurs [-]  
θMsf   Factor to account for model uncertainty for global stability ratio [-] 
 
3.3.3 Distribution functions and correlations 
This section presents the type of probability distribution function and the variation coefficients for each stochastic 
variable used in this study (Table 3.2), which can significantly affect the outcome of reliability-based assessments 
(Rackwitz, 2000). The marginals of the distribution functions are based on the values used in the original design 
(Eijk, 2011; Timmermans, 2017). By contrast, the type of distribution function was determined in accordance with 
recommendations found in literature, but predominantly on the basis of the Probabilistic Model Code (JCSS, 2001).  
  
Material properties Xi 
The background documents for NEN-EN 9997 (2016) show that the low characteristic value of soil strength φ or c 
and soil stiffness E50 commonly represents a 5% fractile, while the recommendations for weight density γsat	typically 
represent the expected value. Since previous studies have shown that the variability in soil strength is a dominant 
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θMsf   Factor to account for model uncertainty for global stability ratio [-] 
 
3.3.3 Distribution functions and correlations 
This section presents the type of probability distribution function and the variation coefficients for each stochastic 
variable used in this study (Table 3.2), which can significantly affect the outcome of reliability-based assessments 
(Rackwitz, 2000). The marginals of the distribution functions are based on the values used in the original design 
(Eijk, 2011; Timmermans, 2017). By contrast, the type of distribution function was determined in accordance with 
recommendations found in literature, but predominantly on the basis of the Probabilistic Model Code (JCSS, 2001).  
  
Material properties Xi 
The background documents for NEN-EN 9997 (2016) show that the low characteristic value of soil strength φ or c 
and soil stiffness E50 commonly represents a 5% fractile, while the recommendations for weight density γsat	typically 
represent the expected value. Since previous studies have shown that the variability in soil strength is a dominant 

(40)

Where:
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A𝑎nchor	 Sectional area of anchor strut [m2]
αt	 Tension capacity factor of grout body [-]
OA	 Circumference of grout body [m]
qc	 Cone penetration resistance [MPa]
LA	 Length of grout body [m]
θN	 Factor to account for model uncertainty for axial forces [-]
θF	 Factor to account for model uncertainty for anchor forces [-]

Furthermore, the limit state function ZGEO;𝑔lob𝑎l covers all geotechnical failure modes 
(Fig. 3.3-D) simultaneously (Roubos et al., 2018) and is defined as:
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MEd  Maximum bending moment [kNm/pile] 
MRd  Reduced resisting bending moment [kNm/pile] 
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The structural (Fig 3.3-B) and the geotechnical limit states (Fig 3.3-C) of the anchors were evaluated using Eq. (39) 
and Eq. (40), respectively. The strength of the grout body depends largely on the factor αt, which represents the 
shear capacity along the grout body.  
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qc	 	 Cone penetration resistance [MPa] 
LA  Length of grout body [m]  
θN   Factor to account for model uncertainty for axial forces [-] 
θF   Factor to account for model uncertainty for anchor forces [-] 
 
Furthermore, the limit state function ZGEO;global covers all geotechnical failure modes (Fig. 3.3-D) simultaneously 
(Roubos et al., 2018) and is defined as: 
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Where: 
ZGEO;global  State function of global safety factor, geotechnical failure modes [-]  

ΣMsf	 	 Global stability ratio related to φ-c reduction. The friction angle φ’ and    
 cohesion c’ are successively decreased until geotechnical failure occurs [-]  
θMsf   Factor to account for model uncertainty for global stability ratio [-] 
 
3.3.3 Distribution functions and correlations 
This section presents the type of probability distribution function and the variation coefficients for each stochastic 
variable used in this study (Table 3.2), which can significantly affect the outcome of reliability-based assessments 
(Rackwitz, 2000). The marginals of the distribution functions are based on the values used in the original design 
(Eijk, 2011; Timmermans, 2017). By contrast, the type of distribution function was determined in accordance with 
recommendations found in literature, but predominantly on the basis of the Probabilistic Model Code (JCSS, 2001).  
  
Material properties Xi 
The background documents for NEN-EN 9997 (2016) show that the low characteristic value of soil strength φ or c 
and soil stiffness E50 commonly represents a 5% fractile, while the recommendations for weight density γsat	typically 
represent the expected value. Since previous studies have shown that the variability in soil strength is a dominant 

(41)

Where:
ZGEO;𝑔lob𝑎l	 State function of global safety factor, geotechnical failure modes [-]
ΣMs𝑓	 Global stability ratio related to φ-c reduction. The friction angle 

φ’ and cohesion c’ are successively decreased until geotechnical  
failure occurs [-]

θMs𝑓	 Factor to account for model uncertainty for global stability ratio [-]
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3.3.3	 DISTRIBUTION FUNCTIONS AND CORRELATIONS
This section presents the type of probability distribution function and the variation 
coefficients for each stochastic variable used in this study (Table 3.2), which can significantly 
affect the outcome of reliability-based assessments (Rackwitz, 2000). The marginals of 
the distribution functions are based on the values used in the original design (Eijk, 2011; 
Timmermans, 2017). By contrast, the type of distribution function was determined in 
accordance with recommendations found in literature, but predominantly on the basis of 
the Probabilistic Model Code (JCSS, 2001).

Material properties Xi

The background documents for NEN-EN 9997 (2016) show that the low characteristic value 
of soil strength φ or c and soil stiffness E50 commonly represents a 5% fractile of the layer 
average, while the recommendations for weight density γs𝑎t typically represent the expected 
value. Since previous studies have shown that the variability in soil strength is a dominant 
source of uncertainty and that the variation coefficient in the literature varies widely (Calle 
& Spierenburg, 1991; Cherubini, 1999; Das & Das, 2010; ISO 2394, 2015; Rippi & Texeira, 
2016; Schweckendiek et al., 2012; Teixeira et al., 2016; Wolters et al., 2012) its influence 
was investigated by performing a sensitivity analysis (Section 3.4.3). Furthermore, the angle 
of internal friction depends on the strain rate. In this study, the reference calculation was 
based on Vx;φ=0.1, considered at 5% strain rate (Lindenberg, 2008), which is in accordance 
with the original design.

Loads Fi

The variable loads represent the lifetime maxima for a reference period of 50 years, and are 
determined using the Gumbel extreme value distribution function. The characteristic value of 
terminal loads is generally determined by an operational limit, whereas characteristic wind-
induced crane loads typically represent a return period, e.g. TR=50 years. In accordance 
with the design report, the characteristic value of the outer water level equals the mean 
value of the ‘low low water’ spring tide level, which seems acceptable because waterhead 
differences are not the dominant load. Furthermore, the corresponding groundwater table 
is largely influenced by the presence of the drainage system. Analogous with NEN-EN 9997 
(2016), the outer water and groundwater levels were considered to be a geometric variable.

Geometric variable 𝑎i

The variation coefficients of structural dimensions such as ttub𝑒 and Dtub𝑒, were determined 
taking into account execution tolerances and project-specific acceptance criteria, which 
in Rotterdam are slightly stricter than the recommendations in the Probabilistic Model 
Code (JCSS, 2001) and NEN-EN 10029 (2010). In this study, geometrical variations such 
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as variation in retaining height, installation depth and the length of the grout body (Fig. 3.1) 
were taken into account. Initially, geological variations in soil deposition were distinguished. 
Their geometrical standard deviations were initially set at ∆𝑎=0.35 m in order to investigate 
whether geological variations in soil-layer thickness are relevant. This appeared not to be 
the case, and consequently the standard deviations were not investigated further.

Model uncertainty θi

Although the measured deformations and anchor forces align with the predictions using 
the finite element model (Berg et al., 2018), a stochastic model factor was applied to the 
calculation output (Section 3.3.2). A variation coefficient of 0.1 was used, which seems a 
reasonable value. Since experiments are lacking, the influence of model uncertainty on the 
reliability index was investigated by performing a sensitivity analysis (Section 3.4.3). 3

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   73 28-08-19   12:44



74

Chapter 3
Ta

bl
e 

3.
2.

 S
to

ch
as

tic
 m

od
el

 v
ar

ia
bl

es
 a

nd
 th

e 
as

so
ci

at
ed

 m
ar

gi
na

ls
 o

f t
he

ir 
di

st
rib

ut
io

n 
fu

nc
tio

n 
fo

r t
he

 r
ef

er
en

ce
 q

ua
y 

w
al

l, 
w

ith
ou

t a
nd

 w
ith

 
a 

re
lie

vi
ng

 p
la

tf
or

m
.

R
an

do
m

 v
ar

ia
bl

es
SI

C
ha

ra
ct

er
is

tic
va

lu
e

W
ith

ou
t r

el
ie

vi
ng

 
pl

at
fo

rm
W

ith
 re

lie
vi

ng
 

pl
at

fo
rm

Ty
pe

 o
f d

is
tr

ib
ut

io
n 

fu
nc

tio
n

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
V 

or
 

ge
om

et
ric

al
 s

ta
nd

ar
d 

de
vi

at
io

n 
∆a

M
at

er
ia

ls
 X

i
-

X i;k
µ x

X i;k
µ x

X i;k
-

V x

E 50
;B
𝑎c

k𝑓
ill

M
Pa

µ X9
50

50
35

35
Lo

gn
or

m
al

0.
20

 (N
EN

-E
N 

99
97

, 2
01

6;
 W

ol
te

rs
 e

t a
l., 

20
12

)
E 50

;R
𝑒c

l𝑎
m
𝑎t

io
n

..
..

30
30

75
75

..
..

E 50
;C

l𝑎
y

..
..

5
5

8
8

..
..

E 50
;H

ol
oc
𝑒n
𝑒

..
..

30
30

22
22

..
..

E 50
;S
𝑎n

dC
l𝑎

y
..

..
n/

a
n/

a
10

10
..

..
E 50

;P
l𝑒
is
to
c𝑒

n𝑒
..

..
50

50
60

60
..

..
φ

B𝑎
ck
𝑓i

ll4
°

X i;5
%

38
.9

32
.5

38
.9

32
.5

N
or

m
al

0.
10

 (N
EN

-E
N 

99
97

, 2
01

6)
φ

R𝑒
cl
𝑎m

𝑎t
io

n4
..

..
35

.9
30

41
.8

35
..

..
φ

Cl
𝑎y

4
..

..
26

.9
22

.5
26

.9
22

.5
..

..
φ

H
ol

oc
𝑒n
𝑒4

..
..

35
.9

30
38

.9
32

.5
..

..
φ

S𝑎
nd

Cl
𝑎y

4
..

..
n/

a
n/

a
32

.3
27

..
..

φ
Pl
𝑒i
st
oc
𝑒n
𝑒4

..
..

38
.9

32
.5

41
.8

35
..

..
γ s

𝑎t
; B
𝑎c

k𝑓
ill

kN
/m

3
µ X

20
20

18
18

N
or

m
al

0.
05

 (N
EN

-E
N 

99
97

, 2
01

6;
 W

ol
te

rs
 e

t a
l., 

20
12

)

γ s
𝑎t

;R
𝑒c

l𝑎
m
𝑎t

io
n

..
..

20
20

20
20

..
..

γ s
𝑎t

;C
l𝑎

y
..

..
17

17
17

.1
17

.1
..

..
γ s

𝑎t
;H

ol
oc
𝑒n
𝑒

..
..

20
20

20
20

..
..

γ s
𝑎t

;S
𝑎n

dC
l𝑎

y
..

..
n/

a
n/

a
19

19
..

..

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   74 28-08-19   12:44



75

Finite element-based reliability assessment of quay walls

Ta
bl

e 
3.

2.
 C

on
tin

ue
d.

R
an

do
m

 v
ar

ia
bl

es
SI

C
ha

ra
ct

er
is

tic
va

lu
e

W
ith

ou
t r

el
ie

vi
ng

 
pl

at
fo

rm
W

ith
 re

lie
vi

ng
 

pl
at

fo
rm

Ty
pe

 o
f d

is
tr

ib
ut

io
n 

fu
nc

tio
n

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
V 

or
 

ge
om

et
ric

al
 s

ta
nd

ar
d 

de
vi

at
io

n 
∆a

γ s
𝑎t

;P
l𝑒
is
to
c𝑒

n𝑒
..

..
20

20
21

21
..

..
c Cl

𝑎y
kP

a
X i;5

%
6.

9
5

13
.9

10
Lo

gn
or

m
al

0.
20

 (N
EN

-E
N 

99
97

, 2
01

6;
 W

ol
te

rs
 e

t a
l., 

20
12

)
c S𝑎

nd
Cl
𝑎y

..
..

n/
a

n/
a

13
.9

10
..

..
𝑓 y;

tu
b𝑒

1
N

/m
m

2
X i;5

%
51

7
48

5
48

3
45

5
..

0.
04

1

𝑓 y;
𝑎n

ch
or

1
..

..
53

9
51

5
64

1
60

0
..

..
α t

-
X i;5

%
0.

01
8

0.
01

5
0.

01
8

0.
01

5
N

or
m

al
7

0.
10

7

q c
M

Pa
µ X

15
15

10
10

10
10

..
0.

10
8

Lo
ad

s 
F i

-
F i;k

µ F
F i;k

µ F
F i;k

-
V F

Q s
ur
ch
ar
ge

2
kN

/m
2

N
om

in
al

6
10

4.
8

10
0

41
.9

40
G

um
be

l
0.

10
2 
(G

ra
ve

, 2
00

2;
 H

ui
jze

r, 
19

96
)

Q bu
lk

2
..

..
n/

a
n/

a
17

8.
2

17
0

..
..

F cr
𝑎n
𝑒2

kN
F i;T

R=
50

n/
a

n/
a

62
8.

7
60

0
..

..
F bo

ll𝑎
rd

2
..

SW
L5

35
.9

34
.3

10
4.

8
10

0
..

..
G

eo
m

et
ry

 a
i

-
a i;k

µ a
a i;k

µ a
a i;k

-
∆a

h OW
L

m
LL

W
S 

5
-0

.9
6

-0
.8

4
-0

.9
6

-0
.8

4
G

um
be

l
0.

20
m

h GW
L

..
h dr

𝑎i
ni
𝑎𝑔
𝑒+
0.
3m

-0
.4

0
-0

.3
4

-0
.4

0
-0

.3
4

..
0.

25
m

h r𝑒
t𝑎

in
in
𝑔

m
 to

 
M

SL
5

µ 𝑎
-2

7.
5

-2
7.

5
-3

1.
5

-3
1.

5
..

0.
35

m
3

h pi
l𝑒

1
m

..
-8

-8
-1

8.
5

-1
8.

5
..

0.
35

m
1

D
So

ilL
𝑎y
𝑒r

..
..

va
rie

s
va

rie
s

va
rie

s
va

rie
s

..
..

3

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   75 28-08-19   12:44



76

Chapter 3

Ta
bl

e 
3.

2.
 C

on
tin

ue
d.

R
an

do
m

 v
ar

ia
bl

es
SI

C
ha

ra
ct

er
is

tic
va

lu
e

W
ith

ou
t r

el
ie

vi
ng

 
pl

at
fo

rm
W

ith
 re

lie
vi

ng
 

pl
at

fo
rm

Ty
pe

 o
f d

is
tr

ib
ut

io
n 

fu
nc

tio
n

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
V 

or
 

ge
om

et
ric

al
 s

ta
nd

ar
d 

de
vi

at
io

n 
∆a

D
tu

b𝑒
1

..
..

1.
06

7
1.

06
7

1.
42

0
1.

42
0

N
or

m
al

V 𝑎
=0

.0
51  (

JC
SS

, 2
00

1)
t tu

b𝑒
1

..
..

0.
01

5
0.

01
5

0.
01

6
0.

01
6

..
..

L 𝑔
ro

ut
1

..
..

8.
5

8.
5

12
12

..
V 𝑎

=0
.0

41

O 𝑔
ro

ut
1

..
..

1.
31

1.
31

1.
06

1.
06

..
..

M
od

el
 u

nc
er

ta
in

ty
 

θ i

-
θ i;k

µ θ
θ i;k

µ θ
θ i;k

-
V θ

θ B
-

µ θ
1

n/
a

1
n/

a
N

or
m

al
(P

et
er

s 
et

 a
l.,

 
20

17
)

0.
10

 (P
et

er
s 

et
 a

l., 
20

17
)

θ M
..

..
1

n/
a

1
n/

a
Lo

gn
or

m
al

0.
10

θ N ;
 θ

F
..

..
1

n/
a

1
n/

a
..

0.
10

 (B
er

g 
et

 a
l., 

20
18

; J
C

SS
, 2

00
1;

 
Ro

ub
os

 e
t a

l., 
20

16
)

θ M
s𝑓

..
..

1
n/

a
1

n/
a

..
0.

10

1 ) 
Ba

se
d 

on
 p

ro
du

ct
io

n 
an

d 
ex

ec
ut

io
n 

to
le

ra
nc

es
 a

s 
w

el
l a

s 
pr

oj
ec

t-s
pe

ci
fic

 a
cc

ep
ta

nc
e 

cr
ite

ria
 in

 th
e 

po
rt 

of
 R

ot
te

rd
am

.
2 ) 

Ex
tre

m
e 

va
lu

e 
di

st
rib

ut
io

n 
fo

r a
 re

fe
re

nc
e 

pe
rio

d 
of

 5
0 

ye
ar

s.
3 ) 

Ba
se

d 
on

 e
xp

er
t j

ud
ge

m
en

t. 
Th

is 
al

so
 c

on
sid

er
s 

sm
al

l m
or

ph
ol

og
ic

al
 c

ha
ng

es
, e

ro
sio

n 
an

d 
se

di
m

en
ta

tio
n.

 T
he

 e
ffe

ct
 o

f la
rg

e 
sc

ou
r h

ol
es

 a
nd

 d
ee

pe
ni

ng
 th

e 
ha

rb
ou

r b
ot

to
m

 w
er

e 
no

t t
ak

en
 in

to
 c

on
sid

er
at

io
n.

4 ) 
An

al
og

ou
s 

w
ith

 T
ab

le
 2

.1b
, N

EN
-E

N 
99

97
 (2

01
6)

, c
on

sid
er

ed
 a

t 5
%

 s
tra

in
 ra

te
 a

nd
 re

pr
es

en
t t

he
 la

ye
r a

ve
ra

ge
.

5 ) 
LW

W
S 

= 
lo

w
 lo

w
 w

at
er

 a
t s

pr
in

g 
tid

e;
 S

W
L 

= 
sa

fe
 w

or
ki

ng
 lo

ad
; M

SL
 =

 m
ea

n 
se

a 
le

ve
l.

6 ) 
Th

e 
ch

ar
ac

te
ris

tic
 v

al
ue

 is
 b

as
ed

 o
n 

an
 o

pe
ra

tio
na

l li
m

it.
7 ) 

Li
ttl

e 
in

fo
rm

at
io

n 
is 

av
ai

la
bl

e 
in

 th
e 

lite
ra

tu
re

. I
n 

th
is 

st
ud

y, 
a 

no
rm

al
 d

ist
rib

ut
io

n 
w

as
 a

ss
um

ed
. T

he
 v

al
ue

s 
ar

e 
ba

se
d 

on
 fu

ll-
sc

al
e 

fie
ld

 te
st

s 
(W

el
l, 

20
18

).
8 ) 

Ba
se

d 
on

 s
oi

l in
ve

st
ig

at
io

n 
us

ed
 in

 th
e 

de
sig

n 
of

 th
e 

qu
ay

 w
al

l.
9 ) 

M
ea

n 
va

lu
es

 w
er

e 
de

riv
ed

 o
n 

th
e 

ba
sis

 o
f e

m
pi

ric
al

 c
or

re
la

tio
ns

 w
ith

 th
e 

co
ne

 re
sis

ta
nc

e 
(B

er
g 

at
 a

l., 
20

18
; E

ijk
, 2

01
1)

.
10

) B
as

ed
 o

n 
m

ax
im

um
 a

llo
w

ab
le

 c
on

e 
re

sis
ta

nc
e 

(c
ut

-o
ff)

, i
n 

ac
co

rd
an

ce
 w

ith
 d

es
ig

n 
gu

id
an

ce
 (J

an
ss

en
, 2

01
2)

.

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   76 28-08-19   12:44



77

Finite element-based reliability assessment of quay walls

Correlation matrix
The dependency between stochastic variables was taken into account to accurately 
estimate the probability of failure. Correlations between soil parameters were determined 
statistically by analysing a relatively large database, including the data from site investigations 
of several projects adjacent to the reference quay walls (Wolters et al., 20012), which align 
with other literature (Teixeira et al., 2016). Table 3.3 presents the correlation matrix used in 
this study. The unsaturated (γdr ) and saturated soil-weight densities (γs𝑎t ) were assumed 
to be fully dependent; likewise, the elastic unloading (Eur ) and reloading moduli (Eo𝑒d ) 
were considered to be fully dependent on the soil stiffness E50. These correlations were 
implemented implicitly in the model by applying a constant deterministic difference or ratio 
between the variables in order to reduce the number of stochastic variables and hence 
minimise the calculation effort. The same approach was undertaken to correlate the two 
vertical crane loads (Fcr𝑎n𝑒 ).

Table 3.3. Simplified correlation matrix.
E50 φ γsat c’ hOWL hGWL

E50 - 0.251 0.501 0.121 - -
φ 0.251 - 0.501 -0.651 - -
γs𝑎t 0.501 0.501 - -0.091 - -
c’ 0.121 -0.651 -0.091 - - -
hOWL - - - - - 0.752

hGWL - - - - 0.752 -

1) Based on a statistical analysis of a large dataset in Rotterdam (Wolters et al., 20012).
2) Approximated on the basis of statistical examination of the waterhead difference of a quay wall 
equipped with sensors in the port of Rotterdam (Berg at al., 2018; Well, 2018). This correlation is only 
valid when waterhead differences are non-dominant loads.

3.3.4	 DERIVATION OF SENSITIVITY AND PARTIAL FACTORS IN THE 
EVENT OF CORRELATIONS
This section describes the derivation of the sensitivity factors and the partial factors of safety, 
taking into account correlations between some dominant stochastic variables. The factor 
αi, obtained by performing a FORM-based reliability assessment, commonly describes the 
sensitivity to variations in random variables with regard to the reliability index β found for a 
specific limit state. In the event that input variables are uncorrelated, the sensitivity factors in 
the normalised physical space (U-space), denoted as αu;i, can be used in analytical formulae 
to determine the partial material factors γm or load factors γ𝑓 (Table 3.4).

3
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Table 3.4. Typical fractiles for characteristic (Xk , Fk ) and design values (Xd , Fd ), and the 
associated partial factors of safety (γm , γf ) for friction angle φ and live load Q (Leonardo da 
Vinci Pilot Project, 2005).

Material property X Action F

Normal distribution Gumbel distribution
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φ	
0.251	 -	 0.501	

-
0.651	 -	 -	

γsat	 0.501	 0.501	 -
-
0.091	 -	 -	

c’	
0.121	

-
0.651	

-
0.091	 -	 -	 -	

hOWL	 - -	 - -	 - 0.752	
hGWL	 - -	 - -	 0.752	 -

1) Based	on	a	statistical	analysis	of	a	large	dataset	in	Rotterdam	(Wolters	et	al.,	20012).
2) Approximated	on	the	basis	of	statistical	examination	of	the	waterhead	difference	of	a	quay	wall	equipped	with	sensors	in
the	port	of	Rotterdam	(Berg	at	al.,	2018;	Well,	2018).	This	correlation	is	only	valid	when	waterhead	differences	are	non-
dominant	loads.

3.3.4 Derivation of sensitivity and partial factors in the event of correlations 
This section describes the derivation of the sensitivity factors and the partial factors of safety, taking into account 
correlations between some dominant stochastic variables. The factor αi, obtained by performing a FORM-based 
reliability assessment, commonly describes the sensitivity to variations in random variables	 with regard to the 
reliability index β found for a specific limit state. In the event that input variables are uncorrelated, the sensitivity 
factors in the normalised physical space (U-space), denoted as αu;i, can be used in analytical formulae to determine 
the partial material factors γm or load factors	γf (Table 3.4). 

Table 3.4. Typical fractiles for characteristic (Xk	,	Fk) and design values	(Xd	,	Fd), and the associated partial 
factors of safety (γm,	γf) for friction angle φ and live load Q (Leonardo da Vinci Pilot Project, 2005).  

Material	property	X	 Action	F	
Normal	distribution	 Gumbel	distribution	

𝑋𝑋™;‹ = 𝜇𝜇‹(1 − 1.645𝑉𝑉‹)	 𝐹𝐹™;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(0.98))	

𝑋𝑋b;‹ = 𝜇𝜇‹(1 − 𝛼𝛼‹𝛽𝛽'𝑉𝑉‹)	 𝐹𝐹b;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(Φ(−𝛼𝛼·𝛽𝛽')))	

𝛾𝛾q;‹ =
𝑋𝑋™;‹
𝑋𝑋b;‹

𝛾𝛾?;· =
𝐹𝐹b;·
𝐹𝐹™;·

In the event of correlations between variables, however, the direct use of these formulae will lead to an incorrect 
physical design point X*. The input sequence of correlated random variables in a FORM approximation can 
significantly influence the sensitivity factor αu found. This is because the correlation influences the joint probability 
distribution function of correlated variables. Consequently, the sensitivity factors of the correlated normal Y-space, 
denoted as αy,	were derived in order to correctly highlight the contribution of a model parameter to the reliability 
index obtained. The importance factors 𝛼𝛼RÕ and 𝛼𝛼GÕ	for the uncorrelated U-space and correlated Y-space, are defined 
as: 

𝛼𝛼R;âÕ =
𝑢𝑢â∗

Õ

𝛽𝛽ÂÊÕ
 (42) 

𝛼𝛼G;âÕ =
𝑦𝑦â∗

Õ

𝑦𝑦∗ Õ (43) 

Where: 
αu;i Sensitivity factor in the uncorrelated normalised U-space [-] 
αy;i Sensitivity factor in the elliptical/correlated normalised Y-space [-] 
βHL Hasover-Lind reliability index [-] 

The reliability index β	of the design point U*	generally does not exactly match the reliability target βt. In order to 
compare the results from this study with the partial factors used in the original design, it was therefore necessary 
to slightly scale the reliability index. Since some input variables are correlated, the Cholesky decomposition L	(Jiang 
et al., 2011; Lemaire, 2009; Melchers & Beck, 2018) was used directly to transform the results from the standard 
space U to the physical space X. The following transformation was applied in order to determine the design value 
of random variable xi given a specific βt	(Lebrun & Dutfoy, 2009a; Lebrun & Dutfoy, 2009b). 

𝑈𝑈∗ = 𝛼𝛼RÕ𝛽𝛽'Õ (44) 

𝑌𝑌∗ = 𝐿𝐿𝐿𝐿∗ (45) 
𝑅𝑅 = 𝐿𝐿 𝐿𝐿 ./	 (46) 
𝑥𝑥â∗ = 𝜇𝜇â√ + 𝑦𝑦â∗𝜎𝜎â√ (47) 

Where: 
U* Design point, vector of design values, in the uncorrelated standardised U-space 
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to slightly scale the reliability index. Since some input variables are correlated, the Cholesky decomposition L	(Jiang 
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index obtained. The importance factors 𝛼𝛼RÕ and 𝛼𝛼GÕ	for the uncorrelated U-space and correlated Y-space, are defined 
as: 

𝛼𝛼R;âÕ =
𝑢𝑢â∗

Õ

𝛽𝛽ÂÊÕ
 (42) 

𝛼𝛼G;âÕ =
𝑦𝑦â∗

Õ

𝑦𝑦∗ Õ (43) 

Where: 
αu;i Sensitivity factor in the uncorrelated normalised U-space [-] 
αy;i Sensitivity factor in the elliptical/correlated normalised Y-space [-] 
βHL Hasover-Lind reliability index [-] 

The reliability index β	of the design point U*	generally does not exactly match the reliability target βt. In order to 
compare the results from this study with the partial factors used in the original design, it was therefore necessary 
to slightly scale the reliability index. Since some input variables are correlated, the Cholesky decomposition L	(Jiang 
et al., 2011; Lemaire, 2009; Melchers & Beck, 2018) was used directly to transform the results from the standard 
space U to the physical space X. The following transformation was applied in order to determine the design value 
of random variable xi given a specific βt	(Lebrun & Dutfoy, 2009a; Lebrun & Dutfoy, 2009b). 

𝑈𝑈∗ = 𝛼𝛼RÕ𝛽𝛽'Õ (44) 

𝑌𝑌∗ = 𝐿𝐿𝐿𝐿∗ (45) 
𝑅𝑅 = 𝐿𝐿 𝐿𝐿 ./	 (46) 
𝑥𝑥â∗ = 𝜇𝜇â√ + 𝑦𝑦â∗𝜎𝜎â√ (47) 

Where: 
U* Design point, vector of design values, in the uncorrelated standardised U-space 

(42)
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φ	
0.251	 -	 0.501	

-
0.651	 -	 -	

γsat	 0.501	 0.501	 -
-
0.091	 -	 -	

c’	
0.121	

-
0.651	

-
0.091	 -	 -	 -	

hOWL	 - -	 - -	 - 0.752	
hGWL	 - -	 - -	 0.752	 -

1) Based	on	a	statistical	analysis	of	a	large	dataset	in	Rotterdam	(Wolters	et	al.,	20012).
2) Approximated	on	the	basis	of	statistical	examination	of	the	waterhead	difference	of	a	quay	wall	equipped	with	sensors	in
the	port	of	Rotterdam	(Berg	at	al.,	2018;	Well,	2018).	This	correlation	is	only	valid	when	waterhead	differences	are	non-
dominant	loads.

3.3.4 Derivation of sensitivity and partial factors in the event of correlations 
This section describes the derivation of the sensitivity factors and the partial factors of safety, taking into account 
correlations between some dominant stochastic variables. The factor αi, obtained by performing a FORM-based 
reliability assessment, commonly describes the sensitivity to variations in random variables	 with regard to the 
reliability index β found for a specific limit state. In the event that input variables are uncorrelated, the sensitivity 
factors in the normalised physical space (U-space), denoted as αu;i, can be used in analytical formulae to determine 
the partial material factors γm or load factors	γf (Table 3.4). 

Table 3.4. Typical fractiles for characteristic (Xk	,	Fk) and design values	(Xd	,	Fd), and the associated partial 
factors of safety (γm,	γf) for friction angle φ and live load Q (Leonardo da Vinci Pilot Project, 2005).  

Material	property	X	 Action	F	
Normal	distribution	 Gumbel	distribution	

𝑋𝑋™;‹ = 𝜇𝜇‹(1 − 1.645𝑉𝑉‹)	 𝐹𝐹™;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(0.98))	

𝑋𝑋b;‹ = 𝜇𝜇‹(1 − 𝛼𝛼‹𝛽𝛽'𝑉𝑉‹)	 𝐹𝐹b;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(Φ(−𝛼𝛼·𝛽𝛽')))	

𝛾𝛾q;‹ =
𝑋𝑋™;‹
𝑋𝑋b;‹

𝛾𝛾?;· =
𝐹𝐹b;·
𝐹𝐹™;·

In the event of correlations between variables, however, the direct use of these formulae will lead to an incorrect 
physical design point X*. The input sequence of correlated random variables in a FORM approximation can 
significantly influence the sensitivity factor αu found. This is because the correlation influences the joint probability 
distribution function of correlated variables. Consequently, the sensitivity factors of the correlated normal Y-space, 
denoted as αy,	were derived in order to correctly highlight the contribution of a model parameter to the reliability 
index obtained. The importance factors 𝛼𝛼RÕ and 𝛼𝛼GÕ	for the uncorrelated U-space and correlated Y-space, are defined 
as: 

𝛼𝛼R;âÕ =
𝑢𝑢â∗

Õ

𝛽𝛽ÂÊÕ
 (42) 

𝛼𝛼G;âÕ =
𝑦𝑦â∗

Õ

𝑦𝑦∗ Õ (43) 

Where: 
αu;i Sensitivity factor in the uncorrelated normalised U-space [-] 
αy;i Sensitivity factor in the elliptical/correlated normalised Y-space [-] 
βHL Hasover-Lind reliability index [-] 

The reliability index β	of the design point U*	generally does not exactly match the reliability target βt. In order to 
compare the results from this study with the partial factors used in the original design, it was therefore necessary 
to slightly scale the reliability index. Since some input variables are correlated, the Cholesky decomposition L	(Jiang 
et al., 2011; Lemaire, 2009; Melchers & Beck, 2018) was used directly to transform the results from the standard 
space U to the physical space X. The following transformation was applied in order to determine the design value 
of random variable xi given a specific βt	(Lebrun & Dutfoy, 2009a; Lebrun & Dutfoy, 2009b). 

𝑈𝑈∗ = 𝛼𝛼RÕ𝛽𝛽'Õ (44) 

𝑌𝑌∗ = 𝐿𝐿𝐿𝐿∗ (45) 
𝑅𝑅 = 𝐿𝐿 𝐿𝐿 ./	 (46) 
𝑥𝑥â∗ = 𝜇𝜇â√ + 𝑦𝑦â∗𝜎𝜎â√ (47) 

Where: 
U* Design point, vector of design values, in the uncorrelated standardised U-space 

(43)

Where:
αu;i	 Sensitivity factor in the uncorrelated normalised U-space [-]
αy;i	 Sensitivity factor in the elliptical/correlated normalised Y-space [-]
βHL	 Hasover-Lind reliability index [-]

The reliability index β  of the design point U* generally does not exactly match the 
reliability target βt. In order to compare the results from this study with the partial factors 
used in the original design, it was therefore necessary to slightly scale the reliability index. 
Since some input variables are correlated, the Cholesky decomposition L (Jiang et al., 2011; 
Lemaire, 2009; Melchers & Beck, 2018) was used directly to transform the results from 
the standard space U to the physical space X. The following transformation was applied 
in order to determine the design value of random variable xi given a specific βt (Lebrun & 
Dutfoy, 2009a; Lebrun & Dutfoy, 2009b).
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φ	
0.251	 -	 0.501	

-
0.651	 -	 -	

γsat	 0.501	 0.501	 -
-
0.091	 -	 -	

c’	
0.121	

-
0.651	

-
0.091	 -	 -	 -	

hOWL	 - -	 - -	 - 0.752	
hGWL	 - -	 - -	 0.752	 -

1) Based	on	a	statistical	analysis	of	a	large	dataset	in	Rotterdam	(Wolters	et	al.,	20012).
2) Approximated	on	the	basis	of	statistical	examination	of	the	waterhead	difference	of	a	quay	wall	equipped	with	sensors	in
the	port	of	Rotterdam	(Berg	at	al.,	2018;	Well,	2018).	This	correlation	is	only	valid	when	waterhead	differences	are	non-
dominant	loads.

3.3.4 Derivation of sensitivity and partial factors in the event of correlations 
This section describes the derivation of the sensitivity factors and the partial factors of safety, taking into account 
correlations between some dominant stochastic variables. The factor αi, obtained by performing a FORM-based 
reliability assessment, commonly describes the sensitivity to variations in random variables	 with regard to the 
reliability index β found for a specific limit state. In the event that input variables are uncorrelated, the sensitivity 
factors in the normalised physical space (U-space), denoted as αu;i, can be used in analytical formulae to determine 
the partial material factors γm or load factors	γf (Table 3.4). 

Table 3.4. Typical fractiles for characteristic (Xk	,	Fk) and design values	(Xd	,	Fd), and the associated partial 
factors of safety (γm,	γf) for friction angle φ and live load Q (Leonardo da Vinci Pilot Project, 2005).  

Material	property	X	 Action	F	
Normal	distribution	 Gumbel	distribution	

𝑋𝑋™;‹ = 𝜇𝜇‹(1 − 1.645𝑉𝑉‹)	 𝐹𝐹™;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(0.98))	

𝑋𝑋b;‹ = 𝜇𝜇‹(1 − 𝛼𝛼‹𝛽𝛽'𝑉𝑉‹)	 𝐹𝐹b;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(Φ(−𝛼𝛼·𝛽𝛽')))	

𝛾𝛾q;‹ =
𝑋𝑋™;‹
𝑋𝑋b;‹

𝛾𝛾?;· =
𝐹𝐹b;·
𝐹𝐹™;·

In the event of correlations between variables, however, the direct use of these formulae will lead to an incorrect 
physical design point X*. The input sequence of correlated random variables in a FORM approximation can 
significantly influence the sensitivity factor αu found. This is because the correlation influences the joint probability 
distribution function of correlated variables. Consequently, the sensitivity factors of the correlated normal Y-space, 
denoted as αy,	were derived in order to correctly highlight the contribution of a model parameter to the reliability 
index obtained. The importance factors 𝛼𝛼RÕ and 𝛼𝛼GÕ	for the uncorrelated U-space and correlated Y-space, are defined 
as: 

𝛼𝛼R;âÕ =
𝑢𝑢â∗

Õ

𝛽𝛽ÂÊÕ
 (42) 

𝛼𝛼G;âÕ =
𝑦𝑦â∗

Õ

𝑦𝑦∗ Õ (43) 

Where: 
αu;i Sensitivity factor in the uncorrelated normalised U-space [-] 
αy;i Sensitivity factor in the elliptical/correlated normalised Y-space [-] 
βHL Hasover-Lind reliability index [-] 

The reliability index β	of the design point U*	generally does not exactly match the reliability target βt. In order to 
compare the results from this study with the partial factors used in the original design, it was therefore necessary 
to slightly scale the reliability index. Since some input variables are correlated, the Cholesky decomposition L	(Jiang 
et al., 2011; Lemaire, 2009; Melchers & Beck, 2018) was used directly to transform the results from the standard 
space U to the physical space X. The following transformation was applied in order to determine the design value 
of random variable xi given a specific βt	(Lebrun & Dutfoy, 2009a; Lebrun & Dutfoy, 2009b). 

𝑈𝑈∗ = 𝛼𝛼RÕ𝛽𝛽'Õ (44) 

𝑌𝑌∗ = 𝐿𝐿𝐿𝐿∗ (45) 
𝑅𝑅 = 𝐿𝐿 𝐿𝐿 ./	 (46) 
𝑥𝑥â∗ = 𝜇𝜇â√ + 𝑦𝑦â∗𝜎𝜎â√ (47) 

Where: 
U* Design point, vector of design values, in the uncorrelated standardised U-space 

(44)
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φ	
0.251	 -	 0.501	

-
0.651	 -	 -	

γsat	 0.501	 0.501	 -
-
0.091	 -	 -	

c’	
0.121	

-
0.651	

-
0.091	 -	 -	 -	

hOWL	 - -	 - -	 - 0.752	
hGWL	 - -	 - -	 0.752	 -

1) Based	on	a	statistical	analysis	of	a	large	dataset	in	Rotterdam	(Wolters	et	al.,	20012).
2) Approximated	on	the	basis	of	statistical	examination	of	the	waterhead	difference	of	a	quay	wall	equipped	with	sensors	in
the	port	of	Rotterdam	(Berg	at	al.,	2018;	Well,	2018).	This	correlation	is	only	valid	when	waterhead	differences	are	non-
dominant	loads.

3.3.4 Derivation of sensitivity and partial factors in the event of correlations 
This section describes the derivation of the sensitivity factors and the partial factors of safety, taking into account 
correlations between some dominant stochastic variables. The factor αi, obtained by performing a FORM-based 
reliability assessment, commonly describes the sensitivity to variations in random variables	 with regard to the 
reliability index β found for a specific limit state. In the event that input variables are uncorrelated, the sensitivity 
factors in the normalised physical space (U-space), denoted as αu;i, can be used in analytical formulae to determine 
the partial material factors γm or load factors	γf (Table 3.4). 

Table 3.4. Typical fractiles for characteristic (Xk	,	Fk) and design values	(Xd	,	Fd), and the associated partial 
factors of safety (γm,	γf) for friction angle φ and live load Q (Leonardo da Vinci Pilot Project, 2005).  

Material	property	X	 Action	F	
Normal	distribution	 Gumbel	distribution	

𝑋𝑋™;‹ = 𝜇𝜇‹(1 − 1.645𝑉𝑉‹)	 𝐹𝐹™;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(0.98))	

𝑋𝑋b;‹ = 𝜇𝜇‹(1 − 𝛼𝛼‹𝛽𝛽'𝑉𝑉‹)	 𝐹𝐹b;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(Φ(−𝛼𝛼·𝛽𝛽')))	

𝛾𝛾q;‹ =
𝑋𝑋™;‹
𝑋𝑋b;‹

𝛾𝛾?;· =
𝐹𝐹b;·
𝐹𝐹™;·

In the event of correlations between variables, however, the direct use of these formulae will lead to an incorrect 
physical design point X*. The input sequence of correlated random variables in a FORM approximation can 
significantly influence the sensitivity factor αu found. This is because the correlation influences the joint probability 
distribution function of correlated variables. Consequently, the sensitivity factors of the correlated normal Y-space, 
denoted as αy,	were derived in order to correctly highlight the contribution of a model parameter to the reliability 
index obtained. The importance factors 𝛼𝛼RÕ and 𝛼𝛼GÕ	for the uncorrelated U-space and correlated Y-space, are defined 
as: 

𝛼𝛼R;âÕ =
𝑢𝑢â∗

Õ

𝛽𝛽ÂÊÕ
 (42) 

𝛼𝛼G;âÕ =
𝑦𝑦â∗

Õ

𝑦𝑦∗ Õ (43) 

Where: 
αu;i Sensitivity factor in the uncorrelated normalised U-space [-] 
αy;i Sensitivity factor in the elliptical/correlated normalised Y-space [-] 
βHL Hasover-Lind reliability index [-] 

The reliability index β	of the design point U*	generally does not exactly match the reliability target βt. In order to 
compare the results from this study with the partial factors used in the original design, it was therefore necessary 
to slightly scale the reliability index. Since some input variables are correlated, the Cholesky decomposition L	(Jiang 
et al., 2011; Lemaire, 2009; Melchers & Beck, 2018) was used directly to transform the results from the standard 
space U to the physical space X. The following transformation was applied in order to determine the design value 
of random variable xi given a specific βt	(Lebrun & Dutfoy, 2009a; Lebrun & Dutfoy, 2009b). 

𝑈𝑈∗ = 𝛼𝛼RÕ𝛽𝛽'Õ (44) 

𝑌𝑌∗ = 𝐿𝐿𝐿𝐿∗ (45) 
𝑅𝑅 = 𝐿𝐿 𝐿𝐿 ./	 (46) 
𝑥𝑥â∗ = 𝜇𝜇â√ + 𝑦𝑦â∗𝜎𝜎â√ (47) 

Where: 
U* Design point, vector of design values, in the uncorrelated standardised U-space 

(45)
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φ	
0.251	 -	 0.501	

-
0.651	 -	 -	

γsat	 0.501	 0.501	 -
-
0.091	 -	 -	

c’	
0.121	

-
0.651	

-
0.091	 -	 -	 -	

hOWL	 - -	 - -	 - 0.752	
hGWL	 - -	 - -	 0.752	 -

1) Based	on	a	statistical	analysis	of	a	large	dataset	in	Rotterdam	(Wolters	et	al.,	20012).
2) Approximated	on	the	basis	of	statistical	examination	of	the	waterhead	difference	of	a	quay	wall	equipped	with	sensors	in
the	port	of	Rotterdam	(Berg	at	al.,	2018;	Well,	2018).	This	correlation	is	only	valid	when	waterhead	differences	are	non-
dominant	loads.

3.3.4 Derivation of sensitivity and partial factors in the event of correlations 
This section describes the derivation of the sensitivity factors and the partial factors of safety, taking into account 
correlations between some dominant stochastic variables. The factor αi, obtained by performing a FORM-based 
reliability assessment, commonly describes the sensitivity to variations in random variables	 with regard to the 
reliability index β found for a specific limit state. In the event that input variables are uncorrelated, the sensitivity 
factors in the normalised physical space (U-space), denoted as αu;i, can be used in analytical formulae to determine 
the partial material factors γm or load factors	γf (Table 3.4). 

Table 3.4. Typical fractiles for characteristic (Xk	,	Fk) and design values	(Xd	,	Fd), and the associated partial 
factors of safety (γm,	γf) for friction angle φ and live load Q (Leonardo da Vinci Pilot Project, 2005).  

Material	property	X	 Action	F	
Normal	distribution	 Gumbel	distribution	

𝑋𝑋™;‹ = 𝜇𝜇‹(1 − 1.645𝑉𝑉‹)	 𝐹𝐹™;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(0.98))	

𝑋𝑋b;‹ = 𝜇𝜇‹(1 − 𝛼𝛼‹𝛽𝛽'𝑉𝑉‹)	 𝐹𝐹b;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(Φ(−𝛼𝛼·𝛽𝛽')))	

𝛾𝛾q;‹ =
𝑋𝑋™;‹
𝑋𝑋b;‹

𝛾𝛾?;· =
𝐹𝐹b;·
𝐹𝐹™;·

In the event of correlations between variables, however, the direct use of these formulae will lead to an incorrect 
physical design point X*. The input sequence of correlated random variables in a FORM approximation can 
significantly influence the sensitivity factor αu found. This is because the correlation influences the joint probability 
distribution function of correlated variables. Consequently, the sensitivity factors of the correlated normal Y-space, 
denoted as αy,	were derived in order to correctly highlight the contribution of a model parameter to the reliability 
index obtained. The importance factors 𝛼𝛼RÕ and 𝛼𝛼GÕ	for the uncorrelated U-space and correlated Y-space, are defined 
as: 

𝛼𝛼R;âÕ =
𝑢𝑢â∗

Õ

𝛽𝛽ÂÊÕ
 (42) 

𝛼𝛼G;âÕ =
𝑦𝑦â∗

Õ

𝑦𝑦∗ Õ (43) 

Where: 
αu;i Sensitivity factor in the uncorrelated normalised U-space [-] 
αy;i Sensitivity factor in the elliptical/correlated normalised Y-space [-] 
βHL Hasover-Lind reliability index [-] 

The reliability index β	of the design point U*	generally does not exactly match the reliability target βt. In order to 
compare the results from this study with the partial factors used in the original design, it was therefore necessary 
to slightly scale the reliability index. Since some input variables are correlated, the Cholesky decomposition L	(Jiang 
et al., 2011; Lemaire, 2009; Melchers & Beck, 2018) was used directly to transform the results from the standard 
space U to the physical space X. The following transformation was applied in order to determine the design value 
of random variable xi given a specific βt	(Lebrun & Dutfoy, 2009a; Lebrun & Dutfoy, 2009b). 

𝑈𝑈∗ = 𝛼𝛼RÕ𝛽𝛽'Õ (44) 

𝑌𝑌∗ = 𝐿𝐿𝐿𝐿∗ (45) 
𝑅𝑅 = 𝐿𝐿 𝐿𝐿 ./	 (46) 
𝑥𝑥â∗ = 𝜇𝜇â√ + 𝑦𝑦â∗𝜎𝜎â√ (47) 

Where: 
U* Design point, vector of design values, in the uncorrelated standardised U-space 

(46)
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φ	
0.251	 -	 0.501	

-
0.651	 -	 -	

γsat	 0.501	 0.501	 -
-
0.091	 -	 -	

c’	
0.121	

-
0.651	

-
0.091	 -	 -	 -	

hOWL	 - -	 - -	 - 0.752	
hGWL	 - -	 - -	 0.752	 -

1) Based	on	a	statistical	analysis	of	a	large	dataset	in	Rotterdam	(Wolters	et	al.,	20012).
2) Approximated	on	the	basis	of	statistical	examination	of	the	waterhead	difference	of	a	quay	wall	equipped	with	sensors	in
the	port	of	Rotterdam	(Berg	at	al.,	2018;	Well,	2018).	This	correlation	is	only	valid	when	waterhead	differences	are	non-
dominant	loads.

3.3.4 Derivation of sensitivity and partial factors in the event of correlations 
This section describes the derivation of the sensitivity factors and the partial factors of safety, taking into account 
correlations between some dominant stochastic variables. The factor αi, obtained by performing a FORM-based 
reliability assessment, commonly describes the sensitivity to variations in random variables	 with regard to the 
reliability index β found for a specific limit state. In the event that input variables are uncorrelated, the sensitivity 
factors in the normalised physical space (U-space), denoted as αu;i, can be used in analytical formulae to determine 
the partial material factors γm or load factors	γf (Table 3.4). 

Table 3.4. Typical fractiles for characteristic (Xk	,	Fk) and design values	(Xd	,	Fd), and the associated partial 
factors of safety (γm,	γf) for friction angle φ and live load Q (Leonardo da Vinci Pilot Project, 2005).  

Material	property	X	 Action	F	
Normal	distribution	 Gumbel	distribution	

𝑋𝑋™;‹ = 𝜇𝜇‹(1 − 1.645𝑉𝑉‹)	 𝐹𝐹™;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(0.98))	

𝑋𝑋b;‹ = 𝜇𝜇‹(1 − 𝛼𝛼‹𝛽𝛽'𝑉𝑉‹)	 𝐹𝐹b;· = 𝜇𝜇· −
1
𝑐𝑐
ln	(−ln	(Φ(−𝛼𝛼·𝛽𝛽')))	

𝛾𝛾q;‹ =
𝑋𝑋™;‹
𝑋𝑋b;‹

𝛾𝛾?;· =
𝐹𝐹b;·
𝐹𝐹™;·

In the event of correlations between variables, however, the direct use of these formulae will lead to an incorrect 
physical design point X*. The input sequence of correlated random variables in a FORM approximation can 
significantly influence the sensitivity factor αu found. This is because the correlation influences the joint probability 
distribution function of correlated variables. Consequently, the sensitivity factors of the correlated normal Y-space, 
denoted as αy,	were derived in order to correctly highlight the contribution of a model parameter to the reliability 
index obtained. The importance factors 𝛼𝛼RÕ and 𝛼𝛼GÕ	for the uncorrelated U-space and correlated Y-space, are defined 
as: 

𝛼𝛼R;âÕ =
𝑢𝑢â∗

Õ

𝛽𝛽ÂÊÕ
 (42) 

𝛼𝛼G;âÕ =
𝑦𝑦â∗

Õ

𝑦𝑦∗ Õ (43) 

Where: 
αu;i Sensitivity factor in the uncorrelated normalised U-space [-] 
αy;i Sensitivity factor in the elliptical/correlated normalised Y-space [-] 
βHL Hasover-Lind reliability index [-] 

The reliability index β	of the design point U*	generally does not exactly match the reliability target βt. In order to 
compare the results from this study with the partial factors used in the original design, it was therefore necessary 
to slightly scale the reliability index. Since some input variables are correlated, the Cholesky decomposition L	(Jiang 
et al., 2011; Lemaire, 2009; Melchers & Beck, 2018) was used directly to transform the results from the standard 
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𝑅𝑅 = 𝐿𝐿 𝐿𝐿 ./	 (46) 
𝑥𝑥â∗ = 𝜇𝜇â√ + 𝑦𝑦â∗𝜎𝜎â√ (47) 

Where: 
U* Design point, vector of design values, in the uncorrelated standardised U-space 
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Y* Design point, vector of design values, in the correlated normalised Y-space 
R  Correlation matrix 
L	 Lower triangular matrix obtained by Cholesky decomposition of R 
𝑥𝑥â∗ Design value of variable i in physical space X 
𝜇𝜇â√  Mean value of equivalent normal distribution 
𝜎𝜎â√  Standard deviation of equivalent normal distribution 
 
The partial factors of the scaled design values 𝑥𝑥â∗ Eq. (47) were derived using Eq. (48). It should, however, be noted 
that this equation does not yet account for model uncertainties. Section 3.5.2 further discusses how model 
uncertainty can be taken into consideration.  
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Where: 
γf;i  Partial factor for load i, without accounting for model uncertainties [-] 
γm;i  Partial factor for material property i, without accounting for model uncertainties [-]  
Xd;i Design value for material property i 
Xk;i  Characteristic for material property i 
Fd;i Design value load i 
Fk;i Characteristic value load i	

 

3.4 Results of reliability-based assessments of quay walls 

3.4.1 Evaluation of Abdo-Rackwitz algorithm outcomes 
Since coupling a reliability method to a finite element model can become a black box, its outcomes were compared 
with the results of other reliability methods and tools using Blum’s analytical method (Section 3.3.1). In this study, 
the comparison was made for the structural limit states of the quay wall without the relieving platform	Zyield	and	
Zbuckling.	This is because both limit states can also be modelled using Blum’s method (Chapter 4). The differences 
found appear to be fairly small (Table 3.5), and hence performing a finite element-based reliability assessment 
using the Abdo-Rackwitz algorithm seems a reasonable approach. Section 3.5.1 further discusses its performance.  
 
Table 3.5. Comparison of lifetime reliability indices found using finite element-based and Blum-based 
reliability assessment for Zyield	of the quay wall without a relieving platform. 

Design	model	 Reliability	toolbox	 Reliability	
method	

Algorithm	 Zyield	 Zbucklin
g	

Plaxis		 Finite	elements	 ProbAna®	3	+OpenTURNS	4	 FORM	 Abdo-Rackwitz	(1991)	 3.761	 3.64	
Blum		 Analytical	 Prob2B®	5	 FORM		 Rackwitz-Fiessler	

(1997)	
3.871,2	 3.492	

Blum		 Analytical	 Matlab	 Crude	 Monte	
Carlo	

n/a	 3.772	 3.582	

1)	The	associated	design	point	and	sensitivity	factors	are	listed	in	Appendix	B.3.	
2)	The	reader	is	referred	to	Chapter	4	for	further	details.		
3)	The	reader	is	referred	to	(Laera	&	Brinkgreve,	2017)	for	further	details.		
4)	The	reader	is	referred	to	(Adrianov	et	al.,	2007)	for	further	details.		
5)	The	reader	is	referred	to	(Courage	&	Steenbergen,	2007)	for	further	details.		
	
	

3.4.2 Results of finite element-based reliability assessments 
The reliability indices obtained for the two reference quay walls, without and with a relieving platform, are listed in 
Table 3.6. This table shows that, when model uncertainty and correlations are taken into account, the reliability 
index decreases. The reliability indices found differ per failure mode, indicating that only some structural 
components or failure modes are close to the target reliability index of RC2, which equals 3.8. It was not possible 
to locate the design point of the limit states Zstrut and Zgrout of the quay wall with a relieving platform, since soil failure 
occurs earlier in the finite element model. The results are further discussed in Section 3.5.1.  
 
Table 3.6. Lifetime reliability index β for the two reference quay walls for the different limit state functions, 
with and without taking into account correlations and model uncertainty θ.  

Correlations		 Model	
uncertainty		

Without	relieving	platform	 With	relieving	platform	

	 	 Zyield	 Zbuckli
ng	

Zstr
ut	

Zgro
ut	 ZGEO	 Zyield	 Zstrut	 Zgrout	 ZGEO	

	 Design value of variable i in physical space X
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the comparison was made for the structural limit states of the quay wall without the relieving platform	Zyield	and	
Zbuckling.	This is because both limit states can also be modelled using Blum’s method (Chapter 4). The differences 
found appear to be fairly small (Table 3.5), and hence performing a finite element-based reliability assessment 
using the Abdo-Rackwitz algorithm seems a reasonable approach. Section 3.5.1 further discusses its performance.  
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3.871,2	 3.492	
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n/a	 3.772	 3.582	

1)	The	associated	design	point	and	sensitivity	factors	are	listed	in	Appendix	B.3.	
2)	The	reader	is	referred	to	Chapter	4	for	further	details.		
3)	The	reader	is	referred	to	(Laera	&	Brinkgreve,	2017)	for	further	details.		
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5)	The	reader	is	referred	to	(Courage	&	Steenbergen,	2007)	for	further	details.		
	
	

3.4.2 Results of finite element-based reliability assessments 
The reliability indices obtained for the two reference quay walls, without and with a relieving platform, are listed in 
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to locate the design point of the limit states Zstrut and Zgrout of the quay wall with a relieving platform, since soil failure 
occurs earlier in the finite element model. The results are further discussed in Section 3.5.1.  
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Y* Design point, vector of design values, in the correlated normalised Y-space 
R  Correlation matrix 
L	 Lower triangular matrix obtained by Cholesky decomposition of R 
𝑥𝑥â∗ Design value of variable i in physical space X 
𝜇𝜇â√  Mean value of equivalent normal distribution 
𝜎𝜎â√  Standard deviation of equivalent normal distribution 
 
The partial factors of the scaled design values 𝑥𝑥â∗ Eq. (47) were derived using Eq. (48). It should, however, be noted 
that this equation does not yet account for model uncertainties. Section 3.5.2 further discusses how model 
uncertainty can be taken into consideration.  
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Where: 
γf;i  Partial factor for load i, without accounting for model uncertainties [-] 
γm;i  Partial factor for material property i, without accounting for model uncertainties [-]  
Xd;i Design value for material property i 
Xk;i  Characteristic for material property i 
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Fk;i Characteristic value load i	

 

3.4 Results of reliability-based assessments of quay walls 

3.4.1 Evaluation of Abdo-Rackwitz algorithm outcomes 
Since coupling a reliability method to a finite element model can become a black box, its outcomes were compared 
with the results of other reliability methods and tools using Blum’s analytical method (Section 3.3.1). In this study, 
the comparison was made for the structural limit states of the quay wall without the relieving platform	Zyield	and	
Zbuckling.	This is because both limit states can also be modelled using Blum’s method (Chapter 4). The differences 
found appear to be fairly small (Table 3.5), and hence performing a finite element-based reliability assessment 
using the Abdo-Rackwitz algorithm seems a reasonable approach. Section 3.5.1 further discusses its performance.  
 
Table 3.5. Comparison of lifetime reliability indices found using finite element-based and Blum-based 
reliability assessment for Zyield	of the quay wall without a relieving platform. 

Design	model	 Reliability	toolbox	 Reliability	
method	

Algorithm	 Zyield	 Zbucklin
g	

Plaxis		 Finite	elements	 ProbAna®	3	+OpenTURNS	4	 FORM	 Abdo-Rackwitz	(1991)	 3.761	 3.64	
Blum		 Analytical	 Prob2B®	5	 FORM		 Rackwitz-Fiessler	
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3.871,2	 3.492	

Blum		 Analytical	 Matlab	 Crude	 Monte	
Carlo	

n/a	 3.772	 3.582	

1)	The	associated	design	point	and	sensitivity	factors	are	listed	in	Appendix	B.3.	
2)	The	reader	is	referred	to	Chapter	4	for	further	details.		
3)	The	reader	is	referred	to	(Laera	&	Brinkgreve,	2017)	for	further	details.		
4)	The	reader	is	referred	to	(Adrianov	et	al.,	2007)	for	further	details.		
5)	The	reader	is	referred	to	(Courage	&	Steenbergen,	2007)	for	further	details.		
	
	

3.4.2 Results of finite element-based reliability assessments 
The reliability indices obtained for the two reference quay walls, without and with a relieving platform, are listed in 
Table 3.6. This table shows that, when model uncertainty and correlations are taken into account, the reliability 
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to locate the design point of the limit states Zstrut and Zgrout of the quay wall with a relieving platform, since soil failure 
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Y* Design point, vector of design values, in the correlated normalised Y-space 
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L	 Lower triangular matrix obtained by Cholesky decomposition of R 
𝑥𝑥â∗ Design value of variable i in physical space X 
𝜇𝜇â√  Mean value of equivalent normal distribution 
𝜎𝜎â√  Standard deviation of equivalent normal distribution 
 
The partial factors of the scaled design values 𝑥𝑥â∗ Eq. (47) were derived using Eq. (48). It should, however, be noted 
that this equation does not yet account for model uncertainties. Section 3.5.2 further discusses how model 
uncertainty can be taken into consideration.  
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Fk;i Characteristic value load i	
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using the Abdo-Rackwitz algorithm seems a reasonable approach. Section 3.5.1 further discusses its performance.  
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4)	The	reader	is	referred	to	(Adrianov	et	al.,	2007)	for	further	details.		
5)	The	reader	is	referred	to	(Courage	&	Steenbergen,	2007)	for	further	details.		
	
	

3.4.2 Results of finite element-based reliability assessments 
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3.4.2 Results of finite element-based reliability assessments 
The reliability indices obtained for the two reference quay walls, without and with a relieving platform, are listed in 
Table 3.6. This table shows that, when model uncertainty and correlations are taken into account, the reliability 
index decreases. The reliability indices found differ per failure mode, indicating that only some structural 
components or failure modes are close to the target reliability index of RC2, which equals 3.8. It was not possible 
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Where:
γ𝑓;i	 Partial factor for load i, without accounting for model  

	uncertainties [-]
γm;i	 Partial factor for material property i, without accounting for  

model uncertainties [-]
Xd;i	 Design value for material property i
Xk;i	 Characteristic for material property i
Fd;i	 Design value load i
Fk;i	 Characteristic value load i
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3.4	 RESULTS OF RELIABILITY-BASED ASSESSMENTS 
OF QUAY WALLS

3.4.1	 EVALUATION OF ABDO-RACKWITZ ALGORITHM OUTCOMES
Since coupling a reliability method to a finite element model can become a black box, its 
outcomes were compared with the results of other reliability methods and tools using Blum’s 
analytical method (Section 3.3.1). In this study, the comparison was made for the structural 
limit states of the quay wall without the relieving platform Zyi𝑒ld and Zbucklin𝑔. This is because 
both limit states can also be modelled using Blum’s method (Chapter 4). The differences 
found appear to be fairly small (Table 3.5), and hence performing a finite element-based 
reliability assessment using the Abdo-Rackwitz algorithm seems a reasonable approach. 
Section 3.5.1 further discusses its performance.

Table 3.5. Comparison of lifetime reliability indices found using finite element-based and Blum-
based reliability assessment for Zyield and Zbuckling of the quay wall without a relieving platform.

Design model Reliability 
toolbox

Reliability 
method Algorithm Zyield Zbuckling

Plaxis Finite elements ProbAna® 3 
+OpenTURNS 4

FORM Abdo-Rackwitz (1991) 3.761 3.64

Blum Analytical Prob2B® 5 FORM Rackwitz-Fiessler (1997) 3.871,2 3.492

Blum Analytical Matlab Crude 
Monte Carlo

n/a 3.772 3.582

1) The associated design point and sensitivity factors are listed in Appendix B.3.
2) The reader is referred to Chapter 4 for further details.
3) The reader is referred to (Laera & Brinkgreve, 2017) for further details.
4) The reader is referred to (Adrianov et al., 2007) for further details.
5) The reader is referred to (Courage & Steenbergen, 2007) for further details.

3.4.2	 RESULTS OF FINITE ELEMENT-BASED RELIABILITY ASSESSMENTS
The reliability indices obtained for the two reference quay walls, without and with a relieving 
platform, are listed in Table 3.6. This table shows that, when model uncertainty and 
correlations are taken into account, the reliability index decreases. The reliability indices 
found differ per failure mode, indicating that only some structural components or failure 
modes are close to the target reliability index of RC2, which equals 3.8. It was not possible 
to locate the design point of the limit states Zstrut and Z𝑔rout of the quay wall with a relieving 
platform, since soil failure occurs earlier in the finite element model. The results are further 
discussed in Section 3.5.1.
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Table 3.6. Lifetime reliability index β for the two reference quay walls for the different limit 
state functions, with and without taking into account correlations and model uncertainty θ.

Correlations Model 
uncertainty Without relieving platform With relieving platform

Zyield Zbuckling Zstrut Zgrout ZGEO Zyield Zstrut Zgrout ZGEO

Yes Yes (V=0.1) 3.76 3.64 5.43 4.51 5.54 3.91 n/𝑎 3 n/𝑎 3 3.69
Yes No 4.07 4.011 5.54 5.12 7.002 4.32 n/𝑎 3 n/𝑎 3 4.49
No No 4.51 4.141 5.80 5.14 7.622 6.682 n/𝑎 3 n/𝑎 3 4.84

1) The model uncertainty related to the experiments conducted by Peters et al. (2017), denoted as 
θm;bucklin𝑔, was taken into account.
2) Beyond accuracy of FORM.
3) It was not possible to locate the design point because soil failure occurred in the hardening soil 
model.

Since some stochastic variables are correlated, the sensitivity factors αy;i, provide the 
most accurate description of their contribution to the reliability index found (Section 3.3.4). 
Table 3.7 includes the sensitivity factors αy taking model uncertainty into account, and 
only lists the values higher than 0.1. A high factor indicates that the variability in a model 
parameter contributes significantly to the probability of failure. Although the sensitivity 
factors can differ substantially per limit state function, the properties of the soil layers which 
largely influence the active and passive earth pressure acting on the quay wall are relatively 
influential, whereas the other soil layers show much lower sensitivity factors. Furthermore, 
uncertainty related to model uncertainty seems to play an important role. According to the 
sensitivity factors in Table 3.7, time-dependent random variables such as loads and water 
levels have quite low sensitivity factors and hence the reliability problem seems largely 
dominated by uncertainty in time-independent random variables, such as soil and grout 
properties. In addition, the limit state functions of the quay wall with the relieving platform 
are completely dominated by the uncertainty about the soil properties of one specific soil 
layer, i.e. the Pleistocene sand.

3
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Table 3.7. Sensitivity factors αy >0.1 for the quay walls without and with a relieving platform, 
taking into account correlations and model uncertainties.

Random variable Time-dependent Without platform With platform

state Zyield Zbuckling Zstrut Zgrout ZGEO Zyield ZGEO

Reliability index β 3.76 3.64 5.43 4.51 5.54 3.91 3.69

Materials Xi

E50;B𝑎ck𝑓ill No
E50;Cl𝑎y No
E50; Holoc𝑒n𝑒 No -0.24 -0.18 -0.25 -0.10 -0.14
E50; R𝑒cl𝑎m𝑎tion No -0.17 -0.21 -0.10
E50;S𝑎ndCl𝑎y No n/a n/a n/a n/a n/a
E50;Pl𝑒istoc𝑒n𝑒 No -0.31 -0.24
φB𝑎ck𝑓ill No -0.11 -0.18
φCl𝑎y No
φHoloc𝑒n𝑒 No -0.44 -0.35 -0.72 -0.18 -0.31
φR𝑒cl𝑎m𝑎tion No -0.36 -0.38 -0.23 -0.21
φS𝑎ndCl𝑎y No n/a n/a n/a n/a n/a
φPl𝑒istoc𝑒n𝑒 No -0.40 -0.76 -0.67
γs𝑎t;B𝑎ck𝑓ill No -0.11
γs𝑎t;Cl𝑎y No
γs𝑎t;Holoc𝑒n𝑒 No -0.34 -0.23 -0.50 -0.14 -0.32
γs𝑎t;R𝑒cl𝑎m𝑎tion No 0.18 0.25 0.12
γs𝑎t;S𝑎ndCl𝑎y No n/a n/a n/a n/a n/a

γs𝑎t;Pl𝑒istoc𝑒n𝑒 No -0.21 -0.51 -0.46
cCl𝑎y No
cS𝑎ndCl𝑎y No n/a n/a n/a n/a
𝑓y;combi-w𝑎ll

1 No -0.19 -0.22 n/a n/a n/a n/a
𝑓y;𝑎nchor

1 No n/a n/a -0.13 n/a n/a n/a n/a
αt No n/a n/a n/a -0.55 n/a n/a n/a
qc No n/a n/a n/a -0.55 n/a n/a n/a
Loads Fi

Qsurch𝑎r𝑔𝑒 Yes 0.13 0.10 0.16 0.13 n/a n/a
Qbulk Yes n/a n/a n/a n/a n/a
Fboll𝑎rd Yes n/a n/a
Fcr𝑎n𝑒 Yes n/a n/a n/a n/a n/a
Geometry αi

hOWL Yes
hGWL Yes
hpil𝑒

1 No -0.16 -0.15
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Table 3.7. Continued.

Random variable Time-dependent Without platform With platform

state Zyield Zbuckling Zstrut Zgrout ZGEO Zyield ZGEO

Reliability index β 3.76 3.64 5.43 4.51 5.54 3.91 3.69

hr𝑒t𝑎inin𝑔 No -0.18 -0.16 -0.13 -0.13
ttub𝑒

1 No -0.16 -0.21
Dtub𝑒

1 No -0.21 -0.26 -0.10
O𝑔rout

1 No n/a n/a n/a -0.17 n/a n/a n/a
L𝑔rout

1 No n/a n/a n/a -0.17 n/a n/a n/a
Model uncertainty θi

θB No n/a -0.46 n/a n/a n/a n/a n/a
θM No 0.42 0.30 n/a n/a n/a n/a
θN ; θF No 0.35 n/a n/a
θΣMSF No n/a n/a n/a n/a -0.74 n/a -0.49

1) Quality control procedures were taken into consideration.

3.4.3	 SENSITIVITY ANALYSIS
The aim of the sensitivity analysis was to show the extent to which reliability indices are 
influenced by small variations in random variables. This section predominantly presents 
the results found for the limit state Zyi𝑒ld. This is because this limit state is well-known, its 
outcomes are close to the reliability targets and it has been widely considered in other 
studies, which helps us to interpret the results obtained in this one. In accordance with 
other literature (Section 3.3.3), Fig. 3.4 shows that small changes in the variation coefficient 
of the soils’ internal friction angle φ substantially influence the reliability index of Zyi𝑒ld for 
both reference quay walls. The effect of the friction angle on the reliability index of the 
geotechnical limit states ZGEO is generally even higher. Since the soil properties of the 
Pleistocene sand are quite dominant for the quay wall with a relieving platform, changing 
the type of distribution of its internal friction angle has more impact than changing the type 
of distribution functions of the quay wall without a relieving platform. Furthermore, Fig. 3.4 
shows that neither changing the variation coefficient of the non-dominant loads nor their 
distribution function makes much of a difference for either reference quay wall.

In addition, Table 3.8 shows that slightly changing the variation coefficients of θM and 
θΣMs𝑓 can also have a fairly high impact on the reliability index obtained.

During the service life of a quay wall, port authorities or terminals frequently ask to 
enhance its functionality by, for example, deepening the berth or increasing operational 
loads. Fig. 3.5 shows the effect of these functional changes on the reliability index and 
demonstrates that the reliability index is also significantly influenced by changing functional 
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requirements, while maintaining the same variation coefficient. Hence, a calculated reliability 
index is always relative to a certain functionality, as further discussed in Section 3.5.1.
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A) Quay wall without relieving platform B) Quay wall with relieving platform

Fig. 3.4. Influence of angle of internal friction φ and live load Q on Zyield for the reference quay 
wall without (A) and with (B) a relieving platform.
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Fig. 3.5. Influence of deepening the harbour bottom (A) and changing the surcharge load 
(B) on the structural limit state Zyield.
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Table 3.8. Influence of variation coefficient Vθ on Zyield and ZGEO for the quay wall without a 
relieving platform.

Limit 
state Description Variation 

coefficient V
Lifetime reliability 
index β

θM θN θΣMsf

Zyi𝑒ld Reference calculation 0.10 0.10 n/a 3.76
Zyi𝑒ld Recommended values for ‘frames’ (JCSS, 2001) 0.20 0.10 n/a 3.06
Zyi𝑒ld Recommended values for ‘plates’ (JCSS, 2001) 0.10 0.05 n/a 3.83
ZGEO Reference calculation n/a n/a 0.10 5.54
ZGEO Slightly lower variation coefficient n/a n/a 0.05 6.83

3.4.4	 RESULTS: PARTIAL FACTORS OF SAFETY
When sensitivity factors are used to derive partial factors, they should ideally be based on 
several FORM-based assessments, the design points of which align with the required target 
reliability index. Table 3.6 shows that only some limit states are close to the reliability target 
βt=3.8 of reliability class RC2 (NEN-EN 1990, 2011). This section presents the partial factors 
related to the limit state Zyi𝑒ld of both reference quay walls, as well as ZGEO of the quay wall 
equipped with the relieving platform. Table 3.9 lists the ratio between the characteristic value 
and the design value associated with RC2 while using the sensitivity factor αu (Section 3.3.4). 
The material factors γm;i lower than 1 indicate that the design values of the non-dominant 
soil layers are lower than the assumed characteristic values, but they are still higher than 
their expected values. Furthermore, the partial factor for the internal friction angle of the 
Pleistocene sand for the quay wall with the relieving platform is fairly high: approximately 
1.3. This can be explained by the dominance of this specific soil layer, for which presumably 
an unrealistic combination of high strength properties and a high variation coefficient was 
assumed (Section 3.5), introducing an unrealistically low design value for φPl𝑒istoc𝑒n𝑒. The 
differences in sensitivity factors between the quay wall with and without a relieving platform 
can be explained by the difference in the number of dominant soil layers. In addition, fairly 
low partial load factors γ𝑓;i were found; most were in the order of 1.1. Since the requirements 
for production tolerances of steel combi-walls in the port of Rotterdam are stricter than 
the regulations in NEN-EN 10029 (2010), fairly low geometrical factors were found for the 
structural dimensions. Table 3.9 also shows that the model factor applied to the bending 
moments has much more influence than applying a model factor to the normal forces for 
Zyi𝑒ld, being approximately 1.15 for the quay wall without the relieving platform, whereas 
θΣMSF significantly influences ZGEO.

3
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Table 3.9. Load and material factors for a fixed target reliability index, β=3.8, assuming that αu 
is invariant and taking into account correlations.

Random 
variable

Characteristic
values Without platform With platform

state Zyield Zyield Zyield Zyield ZGEO ZGEO

with θ without θ with θ without θ with θ without θ

Material 
properties

Xk γm;i γm;i γm;i γm;i γm;i γm;i

E50;B𝑎ck𝑓ill
X5% 0.71 0.73 0.71 0.70 0.72 0.69

E50;Cl𝑎y
X5% 0.74 0.75 0.72 0.71 0.71 0.72

E50; Holoc𝑒n𝑒
X5% 0.90 0.97 0.73 0.72 0.72 0.69

E50; R𝑒cl𝑎m𝑎tion
X5% 0.84 0.82 0.69 0.70 0.72 0.71

E50;S𝑎ndCl𝑎y
X5% n/a n/a 0.75 0.74 0.72 0.72

E50;Pl𝑒istoc𝑒n𝑒
X5% 0.73 0.74 1.01 1.04 0.91 0.90

φ B𝑎ck𝑓ill
X5% 0.82 0.82 0.84 0.84 0.85 0.80

φ Cl𝑎y
X5% 0.84 0.85 0.84 0.83 0.82 0.80

φ Holoc𝑒n𝑒
X5% 1.03 1.15 0.85 0.85 0.85 0.82

φ R𝑒cl𝑎m𝑎tion
X5% 0.99 0.97 0.83 0.78 0.84 0.84

φ S𝑎ndCl𝑎y
X5% n/a n/a 0.87 0.88 0.86 0.84

φ Pl𝑒istoc𝑒n𝑒
X5% 0.83 0.84 1.29 1.28 1.19 1.26

γs𝑎t; B𝑎ck𝑓ill
µ 0.98 0.99 0.99 0.99 1.00 0.98

γs𝑎t; Cl𝑎y
µ 1.01 1.01 1.00 1.00 0.99 1.00

γs𝑎t; Holoc𝑒n𝑒
µ 1.04 1.07 1.00 1.00 1.00 0.99

γs𝑎t; R𝑒cl𝑎m𝑎tion
µ 1.04 1.06 0.99 0.99 1.00 0.99

γs𝑎t; S𝑎ndCl𝑎y
µ n/a n/a 1.01 1.02 1.00 0.99

γs𝑎t; Pl𝑒istoc𝑒n𝑒
µ 1.00 1.00 1.14 1.19 1.11 1.13

cCl𝑎y
X5% 0.72 0.74 0.78 0.75 0.69 0.74

cS𝑎ndCl𝑎y
X5% n/a n/a 0.75 0.74 0.75 0.94

𝑓y;CombiW𝑎ll
2 X5% 1.01 0.97 0.95 0.95 n/a n/a

Loads Fk γf;i
γf;i γf;i γf;i γf;i γf;i

Qsurcharge
Nominal 1.11 1.12 n/a n/a n/a n/a

Qbulk
Nominal n/a n/a 1.06 1.06 1.06 1.07

Fcr𝑎n𝑒
Nominal n/a n/a 1.07 1.05 1.05 1.05

Fboll𝑎rd
X95% 1.06 1.06 n/a n/a n/a n/a

Geometry Δa;k Δa;i
Δa;i Δa;i Δa;i Δa;i

Δa;i

hOWL
LLWS3 0.00m1 -0.02m1 -0.01m1 0.00m1 0.00m1 -0.04m1

hGWL
hdrainage+0.3m 0.04m1 0.01m1 -0.01m1 0.00m1 0.00m1 0.06m1

hpil𝑒
2 µ -0.01m1 -0.01m1 -0.04m1 -0.20m1 -0.22m1 -0.17m1

hr𝑒t𝑎inin𝑔
4 µ -0.26m1 -0.29m1 -0.25m1 -0.10m1 -0.06m1 -0.10m1

ttub𝑒
2 µ -0.05cm1 -0.06cm1 -0.01cm1 -0.01cm1 0.00cm1 0.00cm1
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Table 3.9. Continued.

Random 
variable

Characteristic
values Without platform With platform

state Zyield Zyield Zyield Zyield ZGEO ZGEO

with θ without θ with θ without θ with θ without θ

Dtub𝑒
2 µ 0.00cm1 0.00cm1 0.92cm1 0.32cm1 0.01cm1 0.27cm1

Model 
uncertainty

γθ;i γθ;i γθ;i γθ;i γθ;i γθ;i

θM
µ 1.14 n/a 1.04 n/a n/a n/a

θN
µ 1.04 n/a 1.02 n/a n/a n/a

θΣMSF µ n/a n/a n/a n/a 0.82 n/a

1) Geometrical change Δa in metres, which is added to the characteristic geometrical variable to obtain 
the design value.
2) Quality-control procedures were taken into consideration.
3) Low low water level at spring tide (De Gijt & Broeken, 2013).
4) Scour was not taken into consideration.

3.5	 DISCUSSION ON PARAMETERS THAT INFLUENCE 
RELIABILITY AND PARTIAL FACTORS

3.5.1	 EVALUATION OF RESULTS
Robustness and efficiency of the Abdo-Rackwitz algorithm
The reliability methods available in OpenTURNS were compared in terms of efficiency, 
robustness and accuracy. Performing finite element-based reliability assessments using the 
Abdo-Rackwitz FORM algorithm appeared to be quite efficient; in particular, convergence is 
more efficient in this case than with the gradient-free Cobyla algorithm (Powell, 1994), especially 
when many stochastic variables are taken into consideration. In general, roughly between 
two and ten iterations were needed to satisfy the convergence acceptance criteria. The one 
exception was the limit state function ZGEO, for which the calculation time per evaluation and 
the number of iterations required were approximately a factor of four higher (Table 3.10). This 
was caused mainly by the presence of higher numerical noise in the global stability ratio ΣMs𝑓. 
Using an appropriate finite difference step size ε (see Appendix B.2 for details) and robust 
numerical control settings for the hardening soil solver were crucial to achieve convergence 
(Laera & Brinkgreve, 2017). Although we were able to manage convergence using the 
Abdo-Rackwitz algorithm, this proved much more intensive for the quay wall with a relieving 
platform. The main reason for this was found to be the numerical variations in calculation 
output related to the quay wall’s complex geometry and the associated numerical mesh – 
due, for example, to the inclined wall, the embedded beams and the modelling of the relieving 
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platform – in combination with the accuracy of the finite element solver. Due to restrictions 
associated with the hardening soil constitutive model and limitations in OpenTURNS, it is not 
yet possible to perform finite element-based calculations for the reference quay walls using 
directional sampling. However, using a simplified finite element model shows that FORM is 
likely to outperform directional sampling and crude Monte Carlo with regard to computational 
efficiency. This is due mainly to the number of limit state evaluations required for relatively low 
failure probabilities, in combination with more than 25 model parameters, as Waarts (2000) 
also found. Furthermore, it is recommended that other reliability methods, such as ‘kriging’ 
(Sudret et al., 2017) and directional adaptive response sampling in combination with finite 
element models of quay walls (Waarts, 2000), be tested.

Table 3.10. Efficiency of the Abdo-Rackwitz algorithm.

Without platform With platform

Limit state Zyield Zbuckling Zstrut Zgrout ZGEO Zyield ZGEO

Reliability index 3.76 3.64 5.43 4.51 5.54 3.91 3.69

Number of variables 27 28 26 29 25 31 29
Iteration 2 2 9 3 n/a1 2 n/a1

Limit state evaluations 104 108 510 179 n/a1 127 n/a1

Residual error2 <<0.1 <<0.1 <<0.1 <<0.1 <<0.1 <<0.1 <<0.1
Constraint error2 <1% <1% <2% <0.5% <2.5% <2% <1%

1) An alternative starting point was used, since the reliability index was fairly low. This was found by 
only activating the dominate variables, after performing approximately 30 iterations.
2) The reader is referred to Appendix B.2 for additional information.

Comparison with original design
The results of the finite element-based reliability assessments correspond fairly well with the 
original design (Eijk, 2011; Timmermans, 2017), which requires a minimum reliability index 
of 3.8 for structural members to comply with the Eurocode standard (De Gijt & Broeken, 
2013; NEN-EN 1990, 2011). Due to bearing capacity requirements, both quay walls have a 
relatively large installation depth. Consequently, the quay wall without a relieving platform 
has some margin in its geotechnical capacity (ZGEO ), whereas this is not the case for the 
quay wall with a relieving platform. In addition, the anchor systems (Zstrut and Z𝑔rout ) seem 
to be quite safe. The main reasons for this appear to be the low uncertainties due to the 
observance of strict test protocols and the fact that the original design takes into account 
failure of the neighbouring anchors. Taking correlations and model uncertainty into account, 
target reliability indices of 3.76 and 3.63 for Zyi𝑒ld and Zbucklin𝑔 respectively were found for the 
quay wall without the relieving platform (Table 3.6). These are close to the target reliability 
index of 3.8. The reliability indices obtained for Zyi𝑒ld and ZGEO of the quay wall with a 
relieving platform were 3.91 and 3.69 respectively (Table 3.6), which are also fairly close 
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the reliability target. It should, however, be noted that extremely low design values for soil 
strength were sometimes obtained for Zyi𝑒ld, – for example, for the angle of internal friction 
of the Pleistocene sand.

Internal friction angle of soil
The reliability indices found are considered to be somewhat conservative, mainly because 
the reliability index is quite sensitive to changes in the variation coefficient of the internal 
friction angle of soil (Fig. 3.4). Interestingly, a previous study by Huijzer (1996) indicates that 
the mean value of the friction angle rises in line with an increasing soil deformation/strain rate, 
whereas the associated standard deviation decreases. The variation coefficient is therefore 
lower for soils with higher strength properties. This was also found by Cherubini (1999). In 
this study, the variation coefficient of soil strength was assumed to be 0.1 for all soil layers, 
in accordance with NEN-EN 1997 (2004), although Huijzer (1996) showed that the coefficient 
of variation of the sand layers in the Maasvlakte area of the port of Rotterdam is in the 
range 0.03-0.07, which would result in a much higher reliability index (Fig. 3.4). It is therefore 
highly recommended that further studies investigate the type of distribution function and the 
variation coefficient of the soil’s internal friction angle, as well as its vertical correlation length.

Geometrical variations in soil layers
It was also found that the variation in soil-layer thickness had a negligible influence on the 
reliability index. Consequently, there seems to be no direct need to consider soil-layer 
thickness as a random variable when performing reliability-based assessments of soil-
retaining walls with similar soil stratigraphy. This significantly reduces the number of model 
parameters, and hence the required calculation time. When we reduce the sand layers of 
the quay wall without the relieving platform – since they are fairly thick – by 50 per cent, the 
reliability index for Zyi𝑒ld increases accordingly, from 4.07 to 4.55. This addresses the added 
value of soil investigation as well as site-specific knowledge (Schweckendiek et al., 2017).

3.5.2	 EVALUATION AND DERIVATION OF PARTIAL FACTORS OF SAFETY
This section reflects upon the partial factors used in quay-wall engineering and discusses 
how correlations and model uncertainty influence the derivation of partial factors of safety. 
Before comparing and deriving partial factors, it must be clear how model uncertainty can 
be taken into account.

Options for implementation of model uncertainty
In accordance with NEN-EN 1990 (2011), a design is considered to be sufficiently safe if 
the design value of the resistance Rd is higher that the design value of the action effect Ed. 
These two values are defined as:

3
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This is due mainly to the number of limit state evaluations required for relatively low failure probabilities, in 
combination with more than 25 model parameters, as Waarts (2000) also found. Furthermore, it is recommended 
that other reliability methods, such as ‘kriging’ (Sudret et al., 2017) and directional adaptive response sampling in 
combination with finite element models of quay walls (Waarts, 2000), be tested.  
 
Table 3.10. Efficiency of the Abdo-Rackwitz algorithm.  
	 Without	relieving	platform	 With	relieving	

platform	
Limit	state	 Zyield	 Zbuckling	 Zstrut	 Zgrout	 ZGEO	 Zyield	 ZGEO	
Reliability	index	 3.76	 3.64	 5.43	 4.51	 5.54	 3.91	 3.69	
Number	of	variables	 27	 28	 26	 29	 25	 31	 29	
Iteration	 2	 2	 9	 3	 n/a1	 2	 n/a1	
Limit	state	evaluations	 104	 108	 510	 179	 n/a1	 127	 n/a1	
Residual	error2	 <<0.1	 <<0.1	 <<0.1	 <<0.1	 <<0.1	 <<0.1	 <<0.1	
Constraint	error2	 <1%	 <1%	 <2%	 <0.5%	 <2.5%	 <2%	 <1%	

1)	An	alternative	 starting	point	was	used,	 since	 the	 reliability	 index	was	 fairly	 low.	This	was	 found	by	only	activating	 the	
dominate	variables,	after	performing	approximately	30	iterations.		
2)	The	reader	is	referred	to	Appendix	B.2	for	additional	information.	
 
Comparison with original design 
The results of the finite element-based reliability assessments correspond fairly well with the original design (Eijk, 
2011; Timmermans, 2017), which requires a minimum reliability index of 3.8 for structural members to comply with 
the Eurocode standard (De Gijt & Broeken, 2013; NEN-EN 1990, 2011). Due to bearing capacity requirements, 
both quay walls have a relatively large installation depth. Consequently, the quay wall without a relieving platform 
has some margin in its geotechnical capacity (ZGEO), whereas this is not the case for the quay wall with a relieving 
platform. In addition, the anchor systems (Zstrut and Zgrout) seem to be quite safe. The main reasons for this appear 
to be the low uncertainties due to the observance of strict test protocols and the fact that the original design takes 
into account failure of the neighbouring anchors. Taking correlations and model uncertainty into account, target 
reliability indices of 3.76 and 3.63 for Zyield and Zbuckling	respectively were found for the quay wall without the relieving 
platform (Table 3.6). These are close to the target reliability index of 3.8. The reliability indices obtained for Zyield 
and ZGEO of the quay wall with a relieving platform were 3.91 and 3.69 respectively (Table 3.6), which are also fairly 
close the reliability target. It should, however, be noted that extremely low design values for soil strength were 
sometimes obtained for Zyield, – for example, for the angle of internal friction of the Pleistocene sand.  
  
Internal friction angle of soil 
The reliability indices found are considered to be somewhat conservative, mainly because the reliability index is 
quite sensitive to changes in the variation coefficient of the internal friction angle of soil (Fig. 3.4). Interestingly, a 
previous study by Huijzer (1996) indicates that the mean value of the friction angle rises in line with an increasing 
soil deformation/strain rate, whereas the associated standard deviation decreases. The variation coefficient is 
therefore lower for soils with higher strength properties. This was also found by Cherubini (1999). In this study, the 
variation coefficient of soil strength was assumed to be 0.1 for all soil layers, in accordance with NEN-EN 1997 
(2004), although Huijzer (1996) showed that the coefficient of variation of the sand layers in the Maasvlakte area of 
the port of Rotterdam is in the range 0.03-0.07, which would result in a much higher reliability index (Fig. 3.4). It is 
therefore highly recommended that further studies investigate the type of distribution function and the variation 
coefficient of the soil’s internal friction angle, as well as its vertical correlation length.  
 
Geometrical variations in soil layers 
It was also found that the variation in soil-layer thickness had a negligible influence on the reliability index. 
Consequently, there seems to be no direct need to consider soil-layer thickness as a random variable when 
performing reliability-based assessments of soil-retaining walls with similar soil stratigraphy. This significantly 
reduces the number of model parameters, and hence the required calculation time. When we reduce the sand 
layers of the quay wall without the relieving platform – since they are fairly thick – by 50 per cent, the reliability index 
for Zyield increases accordingly, from 4.07 to 4.55. This addresses the added value of soil investigation as well as 
site-specific knowledge (Schweckendiek et al., 2017). 
 
3.5.2 Evaluation and derivation of partial factors of safety  
This section reflects upon the partial factors used in quay-wall engineering and discusses how correlations and 
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Let us for now assume that model uncertainty was not taken into account in the procedure for calibrating the partial 
factors for soil properties (Calle & Spierenburg, 1991). If this is the case, then using the same limit state function 
Zyield and the same model variables and type of distribution functions and coefficient of variation, slightly lower partial 
factors are found for soil properties and the surcharge variable load Qy.  
Since the internal friction angle φ is a dominant design variable, Table 3.11 shows that the material factors γm;φ 
presently suggested for sheet pile walls in Table A.4b of NEN-EN 9997 (2016) will result in a fairly small 
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E	 Action effect
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Fd;i	 Design value of load i
Xd;i	 Design value of material property i
𝑎d;i	 Design value of geometric property i
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In quay-wall engineering, however, material properties of soil layers – such as soil 
strength and weight density – can act simultaneously as resistance and load. Hence, the 
definition of the action effect must be reformulated as Ed =E(Fd;i,Xd;i,𝑎d;i,θd;i ). When deriving 
partial factors, two approaches can generally be distinguished: either model factors γSd 
and γRd can be applied to the representative load and resistance effect respectively (Eq. 
51 and Eq. 52) or model factors γSd and γRd can be applied directly to individual load and 
resistance parameters using γ𝑓 and γm respectively (Eq. 53 and Eq. 54).
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for in the design approach. The design reports on both reference quay walls (Eijk, 2011; Timmermans, 2017), and 
likewise the design manual (De Gijt & Broeken, 2013), show that no model factors are applied either to resistance 
or to action effects. If model uncertainty is accounted for in the design, it must be included in the partial load and 
material factors; that is, via γF and γM. It is, however, rather questionable whether γM includes model uncertainty; 
this is because the partial factors of soil properties are formulated on the basis of a code-calibration procedure 
(Calle & Spierenburg, 1991) specifically for reliability class RC2 in NEN-EN 1990 (2011), which does not provide 
any information regarding model uncertainty. Furthermore, this calibration report (Calle & Spierenburg, 1991) 
reveals that correlations are not taken into consideration.  
Since Zyield was included in the calibration report and the reliability index for the quay wall without the relieving 
platform was found in this chapter to be close to the reliability target for RC2, this limit state was used to determine 
partial factors of safety. Table 3.11 lists the partial material and load factors (γm and γq) found for Zyield, with and 
without correlations, in order to compare them with the partial factors in NEN-EN 9997 (2016). The partial factors 
for the other reliability classes were arrived at by scaling the reliability indices using the method described in Section 
3.3.4.  
Let us for now assume that model uncertainty was not taken into account in the procedure for calibrating the partial 
factors for soil properties (Calle & Spierenburg, 1991). If this is the case, then using the same limit state function 
Zyield and the same model variables and type of distribution functions and coefficient of variation, slightly lower partial 
factors are found for soil properties and the surcharge variable load Qy.  
Since the internal friction angle φ is a dominant design variable, Table 3.11 shows that the material factors γm;φ 
presently suggested for sheet pile walls in Table A.4b of NEN-EN 9997 (2016) will result in a fairly small 

Where:
γ𝑓	 Partial factor for actions [-]
γF	 Partial factor for actions, also accounting for model uncertainties [-]
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γm	 Partial factor for material properties [-]
γM	 Partial factor for material properties, also accounting for model 

uncertainties [-]
γSd	 Partial factor associated with uncertainties in the action or the 

action-effect model [-]
γRd	 Partial factor associated with uncertainties in the resistance  

model [-]

Evaluation of partial factors used in the design without model uncertainty
When reflecting on the partial factors presently used, it is crucial to know if and how 
model uncertainty is accounted for in the design approach. The design reports on both 
reference quay walls (Eijk, 2011; Timmermans, 2017), and likewise the design manual (De 
Gijt & Broeken, 2013), show that no model factors are applied either to resistance or to 
action effects. If model uncertainty is accounted for in the design, it must be included in the 
partial load and material factors; that is, via γF and γM. It is, however, rather questionable 
whether γM includes model uncertainty; this is because the partial factors of soil properties 
are formulated on the basis of a code-calibration procedure (Calle & Spierenburg, 1991) 
specifically for reliability class RC2 in NEN-EN 1990 (2011), which does not provide any 
information regarding model uncertainty. Furthermore, this calibration report (Calle & 
Spierenburg, 1991) reveals that correlations are not taken into consideration.

Since Zyi𝑒ld was included in the calibration report and the reliability index for the quay 
wall without the relieving platform was found in this chapter to be close to the reliability 
target for RC2, this limit state was used to determine partial factors of safety. Table 3.11 lists 
the partial material and load factors (γm and γq ) found for Zyi𝑒ld, with and without correlations, 
in order to compare them with the partial factors in NEN-EN 9997 (2016). The partial factors 
for the other reliability classes were arrived at by scaling the reliability indices using the 
method described in Section 3.3.4.

Let us for now assume that model uncertainty was not taken into account in the 
procedure for calibrating the partial factors for soil properties (Calle & Spierenburg, 1991). If 
this is the case, then using the same limit state function Zyi𝑒ld and the same model variables 
and type of distribution functions and coefficient of variation, slightly lower partial factors 
are found for soil properties and the surcharge variable load Qy.

Since the internal friction angle φ is a dominant design variable, Table 3.11 shows 
that the material factors γm;φ presently suggested for sheet pile walls in Table A.4b of 
NEN-EN 9997 (2016) will result in a fairly small differentiation between the reliability classes. 
Consequently, a design using the partial safety factor associated with RC1 is quite safe, 
whereas a design per RC3 is presumably too optimistic. Furthermore, the design value 
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found for soil stiffness E50 is fairly close to its mean value, and hence a partial factor of 1.3 
seems unnecessary.

In the present design codes, correlations between soil properties are not taken into 
account and no distinction is made between dominant and non-dominant soil layers. 
Neglecting correlations could lead to an underestimation of the probability of failure, 
while assuming all soil layers to be dominant may lead to an overestimation. It is therefore 
recommended that correlations between soil properties be accounted for when defining 
partial factors, even though this will make the design process more complex.

Table 3.11. Partial factors γm and γq for Zyield with and without correlations between soil 
conditions, for target reliability indices of 3.3, 3.8 and 4.3 respectively.

Model 
parameter

Xrep, 
Frep

V Eurocode 
standard6 Without correlations With correlations

Reliability class RC1 RC2 RC3

Reliability target 3.3 3.8 4.3 3.34 3.84 4.34 3.34 3.84 4.34

Correlations No No No No No No Yes Yes Yes
Soil stiffness E50

Xk;5% 0.20 1.30 1.30 1.30 0.781 0.791 0.791 0.941 0.971,5 1.011

Tangent of friction 
angle φ

Xk;5% 0.10 1.15 1.175 1.20 1.051 1.101 1.151 1.111 1.181,5 1.251

Weight density γs𝑎t
µX 0.05 1.00 1.00 1.00 0.971 0.971 0.971 1.061 1.071,5 1.081

Surcharge load Q Fk;max
2 0.01 1.233 1.363 1.503 1.10 1.11 1.12 1.11 1.125 1.13

1) Partial factor represents dominant Holocene sand layer and does not account for model uncertainty.
2) Operational limit as specified in service level agreement with the user.
3) This partial factor does not includes model uncertainty and represents γq, which was derived by 
dividing γQ by a model factor of 1.1 (NEN-EN 1990, 2011).
4) The target reliability index was scaled using the sensitivity factors in the U-space for Zyi𝑒ld, associated 
with β = 4.07.
5) See fourth column of Table 3.9.
6) Based on NEN-EN 1990 (2011) and NEN-EN 9997 (2016).

Example of the derivation of partial factors with model uncertainty
This section presents the partial factors of safety derived from the results of the two 
reference quay walls, taking into account model uncertainty and correlations. They serve 
only as an example, since partial factors for codes and standards should ideally be derived 
from far more reliability-based assessments. Table 3.12 and Table 3.13 respectively list the 
partial factors found for the quay walls without and with a relieving platform, for the limit 
states of which the reliability indices found are close to the reliability target of RC2.

For both quay walls, lower partial factors were found for soil stiffness and the surcharge 
load than recommended in NEN-EN 9997 (2016) and NEN-EN 1990 (2011), respectively. 
Furthermore, partial factors for weight density and model factors need to be considered. It 
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should be noted, however, that the variation coefficient of all model factors was assumed to 
be 0.1, whereas really this value should preferably be based on experimental findings. The 
partial factors found for the soils’ internal friction angle differ widely, both per failure mode and 
per reliability class. This is because the friction angle is a dominant variable and because the 
number of dominant soil layers present differs per failure mode. Again the results show lower 
and higher partial factors for the soils’ friction angle than the values recommended in the design 
guideline for quay walls for RC1 (βt=3.3) and RC3 (βt=4.3) respectively (De Gijt & Broeken, 2013).

Table 3.12. Partial factors γm and γq for Zyield and Zbuckling with correlations between soil 
conditions for various target reliability indices, for the quay wall without a relieving platform.

Model parameter Xrep, Frep SI V Zyield Zbuckling

Reliability target 3.33 3.84 4.33 3.33 3.84 4.33

Soil stiffness E50
Xk;Low 5% - 0.20 γm 0.87 0.901,5 0.921 0.841 0.861 0.871

Tangent of friction 
angle φ

Xk;Low 5% - 0.10 γm 1.00 1.031,5 1.071 0.951 0.981 1.011

Weight density γs𝑎t
µX - 0.05 γm 1.04 1.041,5 1.051 1.041 1.041 1.051

Surcharge load Qy Fk;m𝑎x
2 - 0.10 γq 1.11 1.115 1.12 1.09 1.09 1.10

Retaining height 
hr𝑒t𝑎inin𝑔

µ𝑎 cm n/a ∆𝑎 -0.23 -0.265 -0.30 -0.20 -0.23 -0.26

Model factor θB
µθ - 0.10 γRd n/a n/a n/a 0.83 0.81 0.78

Model factor θM
µθ - 0.10 γSd 1.12 1.145 1.16 1.11 1.13 1.14

1) Partial factor represents the Holocene sand layer for which the layer average of the internal friction 
angle is derived at 5% strain rate.
2) Operational limit as specified in service level agreement with user.
3) The target reliability index was scaled, while maintaining the sensitivity factors in the U-space.
4) The obtained reliability indices of 3.76 and 3.64 are very close to this target reliability index.
5) See third column of Table 3.9.

3
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Table 3.13. Partial safety factors γm and γq for Zyield and ZGEO with correlations between soil 
conditions for various target reliability indices, for the quay wall with a relieving platform.

Model parameter Xrep, Frep SI Zyield ZGEO

Reliability target V 3.33 3.84 4.33 V 3.33 3.85 4.33

Soil stiffness E50
Xk;Low 5% - γm 0.104 0.981 1.011 1.051 0.20 0.881 0.911,6 0.941

Tangent of friction 
angle φ

Xk;Low 5% - γm 0.074 1.101 1.141 1.231 0.10 1.161 1.241,6 1.321

Weight density уs𝑎t
µX - γm 0.05 1.131 1.161 1.181 0.05 1.101 1.111,6 1.131

Surcharge load Qy Fk;m𝑎x
2 - γq 0.10 1.08 1.08 1.09 0.10 1.06 1.066 1.06

Retaining height 
hr𝑒t𝑎inin𝑔

µ𝑎 cm ∆𝑎 n/a -0.06 -0.07 -0.07 n/a -0.05 -0.066 -0.07

Model factor θM
µθ - γSd 0.10 1.05 1.06 1.07 0.10 n/a n/a n/a

Model factor θ∑Ms𝑓 µθ - γRd 0.10 n/a n/a n/a 0.10 0.84 0.826 0.80

1) Partial factor represents the Pleistocene sand layer for which the layer average of the internal friction 
angle is derived at 5% strain rate.
2) Operational limit as specified in service level agreement with user.
3) The target reliability index was scaled, while maintaining the sensitivity factors in the U-space.
4) The design point found using VE50 = 20% and Vφ = 10% resulted in an unrealistically low design value 
for the angle of internal friction φ for Zyi𝑒ld. Consequently, an additional probabilistic calculation was 
made using VE50 = 10% and Vφ = 7%, in accordance with the recommendations made by Huijzer. The 
reliability index thus obtained was approximately 4.3.
5) The obtained reliability index of 3.69 is very close to this target reliability index.
6) See seventh column of Table 3.9.

3.5.3	 REFLECTION ON RESULTS FROM A PRACTICAL PERSPECTIVE
Since time-independent model parameters show high sensitivity factors (Table 3.7), this 
finding can be relevant when assessing service-proven quay walls (Allaix et al., 2018; 
Roubos et al., 2018). This is because the annual failure rate of a quay wall with a successful 
service history is likely to decrease over time in the absence of significant degradation. 
It is therefore likely that the remaining lifetime of many well-functioning quay walls can 
be extended. However, this aspect is not included in the existing codes of practice. It is 
therefore highly recommended that it be the subject of further study (Chapter 4).

Moreover, Fig. 3.5 shows that a reliability-based assessment can demonstrate the 
effect of changing functional requirements such as deepening the harbour bottom or 
enhancing operational loads. If the uncertainty over time is decreased by updating all the 
information available, then it seems possible to optimise the functionality of service-proven 
quay walls. Logically, though, there are limits. Although local conditions play an important 
role, it seems possible to deepen service-proven structures by approximately one metre 
without making structural adjustments, or to increase the loads they bear by about 20 per 
cent. This can be done using the data obtained from quay walls equipped with sensors, 
in combination with advanced reliability methods such as Bayesian updating. A further 
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functional increase is often not possible, because then the quay wall is most likely not able 
to withstand accidental limit states (ALS) such as extremely low outer water levels. It should 
be emphasised, too, that activating these ‘hidden’ capacities also requires extra attention 
from the user to prevent functional misuse – for example, overloading of the quay wall.

3.6	 CONCLUSION AND RECOMMENDATIONS

The results of this chapter provide guidance on performing finite element-based reliability 
assessments of quay walls in realistic design conditions. Its most important findings are 
as follows.

·	 Finite element-based reliability assessments have been successfully performed 
using the gradient-based Abdo-Rackwitz FORM algorithm, which converges quite 
efficiently and accurately while taking into account a large number of stochastic 
variables.

·	 The reliability indices found for critical structural members align with the code 
requirements. However, they seem quite sensitive to changes in the variation 
coefficient of variables with a high sensitivity factor, such as the friction angle of soil.

·	 The structural failure modes of the combi-wall play an important role. In addition, 
the geotechnical stability of the quay wall equipped with a relieving platform has 
been found to be an important failure mode. Furthermore, the reliability of anchor 
systems seems to be fairly high.

·	 Neglecting model uncertainty and correlations between input variables leads to an 
underestimation of the probability of failure.

·	 The highest sensitivity factors were found for time-independent stochastic variables 
such as material properties of soil, steel and grout, as well as model uncertainty.

·	 The local soil stratigraphy and project-specific functional requirements, such as the 
retaining height and operational loads, can significantly influence the reliability of 
a quay wall. However, these stochastic variables show low sensitivity factors and 
hence require relatively low partial factors of safety.

·	 The differences between the partial factors found for the angle of internal friction 
of soil in the various reliability classes are greater than the recommended values in 
the Eurocode standard.

Since it is unclear if and how model uncertainty is accounted for in quay-wall engineering 
(De Gijt & Broeken, 2013), it is recommended that the partial factors presently used be 
re-evaluated and that, for instance, distinctions be drawn between dominant and non-
dominant soil layers. In addition, the results of this chapter show that the variation in the soils’ 
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angle of internal friction greatly influences quay-wall reliability. It is therefore recommended 
that a detailed study be conducted of relevant statistical properties, such as the type of 
distribution function and its variation coefficient. Although the reliability indices found for the 
anchor system are already quite high (Table 3.6), it is likely that dense sand layers contain 
additional capacity with regard to the grout body. This additional capacity can become 
relevant when deepening an existing berth or enhancing operational loads. Consequently, 
it is recommended that full-scale failure tests be performed on the grouted anchors in 
order to reveal their full capacity and to derive more insight into the statistical properties of 
αt. Furthermore, it is highly recommended that new and existing quay walls be equipped 
with sensors to reduce the uncertainty related to modelling the soil-structure interaction. 
Studying this aspect will shed new light on model uncertainty and the actual capacity of 
a quay wall. The insights obtained will significantly benefit asset managers. Moreover, the 
data required is quite easy to obtain by simultaneously measuring deformations, water-
level differences and anchor forces. This type of information can also be used in Bayesian 
reliability updating analyses.

The finding that time-independent random variables significantly influence the reliability 
index can play a crucial role in the assessment of existing quay walls, and presumably in that 
of all other service-proven geotechnical structures. It is therefore highly recommended that 
further investigation be conducted into the evolution of the probability of failure over time, 
including the effect of degradation, taking into account the successful service history of the 
quay walls. In the absence of degradation, e.g. by installing a system of cathodic protection, 
it is likely that the annual failure rate will decrease over time, and hence the service life of 
service-proven quay walls can safely be extended (Chapter 4).
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THE EFFECT OF CORROSION 
ON THE RELIABILITY OF 
COMBI-WALLS
The sensitivity analysis presented in the previous chapter shows that quay-wall reliability 
is influenced by both the size and the variation of model parameters. In particular, the 
time-independent variables, such as retaining height, soil strength and material properties, 
greatly influence the reliability of a quay wall. As a result, the annual failure probability will 
decrease if the structure has survived in previous years, assuming that degradation is 
prevented; otherwise, the annual failure probability will increase. One of the main causes 
of quay-wall degradation is corrosion of steel structural members exposed to salt water. 
The aim of this chapter is to show the effect of corrosion-induced degradation on the 
reliability of steel combi-walls. The chapter outline is as follows. The principles of uniform 
and pitting corrosion are described in Section 4.2, the methods used to assess the reliability 
of corroded combi-walls are addressed in Section 4.3 and the results obtained are given 
in Section 4.4. The results are further discussed in Section 4.5 and conclusions are drawn 
in Section 4.6. The effect of corrosion was slightly lower than expected a priori, and hence 
the insights obtained make it possible to safely extend the service lifetime of quay walls.

This chapter is based on the following publication: Roubos, A. A., Allaix, D., Schweckendiek, 
T., Steenbergen, R. D. J. M., & Jonkman, S. N. (2019), Time-dependent reliability analysis of 
service-proven quay walls subject to corrosion-induced degradation. Reliability Engineering 
& System Safety (submitted).
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ABSTRACT

The assessment of service-proven quay walls subject to corrosion-induced degradation 
is inherently a time-dependent reliability problem. Two major challenges are the modelling 
of corrosion and taking into account the decrease of epistemic uncertainty throughout the 
quay wall’s service life. The main objective of this chapter is to examine the probability of 
failure, despite successful past performance, when the quay wall is subject to corrosion and 
randomly imposed variable loads. The development of the annual failure rate is modelled 
using crude Monte Carlo and by performing a first-order system reliability analysis. The 
annual failure rates found for service-proven quay walls vary over time. For those with 
successful service histories and subject to low corrosion rates, the highest reliability indices 
are observed in the first year of the service life, whereas with higher corrosion rates the final 
year prevails. In general, it seems more practical to evaluate reliability on an annual basis 
rather than over longer time periods, since the latter will introduce an iterative procedure to 
determine the wall’s remaining lifetime. The key findings of this chapter can be crucial for 
the lifetime extension of existing quay walls, and presumably also for other service-proven 
geotechnical structures subject to corrosion.
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4.1	 INTRODUCTION

Marine structures such as quay walls and jetties often suffer from corrosion-induced 
degradation. In the coming years, many such structures throughout the world will approach 
the end of their design lifetime and will be reassessed as part of lifetime-extension 
programmes (Roubos & Grotegoed, 2014). Steel structural members of quay walls generally 
show some degree of wall-thickness loss after a certain exposure period. This decrease 
in strength needs to be taken into consideration in the reassessment of quay walls. Two 
recent studies (Boero et al., 2012; Teixeira et al., 2016) show that the uncertainty in material 
loss due to corrosion-induced degradation significantly influences the reliability level of 
soil-retaining walls.

The parameters that influence corrosion can generally be classified into endogenous 
parameters related to the steel material, exogenous parameters related to the environment 
and a time-dependent component related to the exposure period (Houyoux et al., 2007). In 
the port of Rotterdam, corrosion rates depend mainly on geometry, orientation and the type 
of marine structure concerned, as well as site-specific environmental conditions (Jongbloed, 
2008; Jongbloed, 2019). The wide diversity of deterioration agents, such as dissolved 
oxygen, salinity, water quality, temperature and exposure period, makes predicting the 
corrosion phenomenon a fairly complex process (Melchers & Jeffrey, 2008; Melchers & 
Wells, 2006). There tends to be a rather high level of uncertainty associated with the various 
influences (Melchers, 1999; Melchers, 2015; Melchers & Beck, 2018).

Consequently, millions of wall-thickness measurements and multiple destructive 
coupon tests have been performed in order to study the impact of uniform and pitting 
corrosion in the port of Rotterdam (Jongbloed, 2019). On the basis of this information, the 
Port of Rotterdam Authority has developed a practical method (Section 4.2) to assess the 
effect of corrosion on the remaining ‘factor of safety’ (FoS) using field observations. It is 
unclear, however, if a constant and time-independent factor of safety adequately covers the 
actual reliability level of a quay wall that has successfully been in service for a certain period 
of time, since in the absence of degradation it has become more likely that this structure 
will remain satisfactory and safe (Melchers & Beck, 2018).

Only a few studies have investigated the influence of corrosion on the reliability of steel 
soil-retaining walls (Houyoux et al., 2007; Osório et al., 2010; Schweckendiek et al., 2007), 
mainly using the first-order reliability method (FORM). None of these studies took successful 
past performance into account, however, and so they most likely overestimate the probability 
of failure of service-proven soil-retaining walls. This is because not all effects of the passage 
of time and service on structural reliability are negative (Hall, 1988). Hall (1988) found that 
the failure rate of non-deteriorating structures with successful service histories decreases 
significantly over time if the initial uncertainty in time-independent random variables is high. 
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Fig. 4.1-A shows that a structure without degradation has a constant failure rate if all the 
uncertainty involved is variability in time. By contrast, the failure rate of a structure will 
approach zero directly after completion if we assume that the uncertainty is exclusively 
epistemic in nature, since it only involves time-invariant random variables.

In reality, a quay wall will be subject to both time-dependent and time-independent 
sources of uncertainty, such as inherent natural variability in strength and loads (aleatory 
uncertainty), as well as lack of knowledge or insufficient information (epistemic uncertainty) 
(ISO 2394, 2015). In quay-wall engineering, time-independent uncertainties in soil properties 
and model uncertainty significantly influence the reliability level (Chapter 3). It is therefore 
expected that the annual failure rate of a service-proven and non-deteriorating quay wall 
will decrease during its early years of service and over time approach a constant value, 
since after a period of successful service only the time-dependent (aleatory) uncertainty 
remains (Fig. 4.1-A). If the effect of corrosion is included, the failure rate of the quay wall 
is expected to increase over time as the structure becomes subject to corrosion-induced 
degradation (Fig. 4.1-B). The extent of this effect will depend on the corrosion rate. In 
addition, Fig. 4.1-B shows that the beneficial effects of past performance can partly offset 
negative effects induced by corrosion.

A) Service-proven and non-deteriorating structure B)  Service-proven and deteriorating quay wall
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low corrosion rate 

high corrosion rate 

no corrosion 

Fig. 4.1. Failure rate of service-proven and non-deteriorating structures (A), and the effect 
of service-proven deteriorating quay walls (B).

The primary aim of this chapter is to analyse the effect of corrosion-induced 
degradation on the reliability of steel structural members of quay walls. A secondary aim is 
to show how the overall factor of safety (FoS) and the reliability index (β) are related, and 
how they change over time for systems subject to corrosion. When assessing the impact 
of wall-thickness loss on structural reliability, our particular interest was to determine the 
annual failure rate of service-proven quay walls. In this chapter, a time-dependent reliability 
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analysis is performed by introducing time-independent and time-dependent uncertainty 
as random variables in order to account simultaneously for successful past performance 
and corrosion (Allaix et al., 2018; Roubos et al., 2018). In addition, a sensitivity analysis 
reveals the impact of the variability in dominant parameters, such as soil strength, yield 
strength, live loads and corrosion, on the evolution of the reliability index over time. The 
results of this chapter have been used to reflect on the ‘allowable stress-based’ method, 
which is presently used to assess combi-walls subject to corrosion-induced degradation 
in Rotterdam (Section 4.2).

4.2	 ALLOWABLE STRESS-BASED METHOD TO ASSESS 
CORRODED COMBI-WALLS

This section describes the main principles of the ‘allowable stress-based’ method presently 
used by the Port of Rotterdam Authority to facilitate predictive asset management (Voogt, 
2014), by evaluating the structural integrity of steel combi-walls, which represent about half 
of the quay walls in its port. For more in-depth details, the reader is referred to the corrosion 
handbook by Jongbloed (2019), which includes an overview of all research conducted into 
the phenomenon of corrosion at the port of Rotterdam.

A combined quay wall consists of steel primary elements such as H-profiles (Fig. 4.2-A) 
or tubular piles (Fig. 4.2-B), with sheet piles in between, which only have a soil retaining 
function. The corrosion rate of the primary steel element is usually higher due to a galvanic 
reaction with the secondary elements. This is because these elements generally have a 
higher steel quality, and hence are the less precious metal (Jongbloed, 2019). Furthermore, 
the wall-thickness loss on the landside of the primary elements appears to be negligible 
compared with the loss on the waterside, most likely because there is a lack of oxygen 
in the soil (Jongbloed, 2019). The wall-thickness reduction Δt is therefore only taken into 
account on the waterside of primary elements (Fig. 4.2).
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Δ Δ

Shift of the centre of gravity due to corrosion

Landside 

Waterside 

Landside 

Waterside 

A) Combi-wall with H-profile (Peiner) B) Combi-wall with tubular pile

Fig. 4.2. Residual wall thickness and corrosion Δt of the primary combi-wall elements; cross-
sections of Peiner system with H-piles (A) and of combi-tube system (B). The parts where 
corrosion is considered are highlighted in red.

The foundation for assessing corrosion-induced degradation relies on a strict in-situ 
test protocol using ultrasonic wall-thickness measurements and a procedure for measuring 
local corrosion pits (Roubos & Grotegoed, 2014). Signifi cant pitting not only aff ects the 
structural failure modes but can also introduce geometrical openings which may cause 
soil erosion directly behind the quay wall. The fi eld observations are examined statistically 
in order to assess both these failure modes.

Over the years, the Port of Rotterdam Authority has collected a large number of 
wall-thickness measurements in salt, brackish and fresh-water conditions. Although the 
corrosion rates found align with those described in the literature, it appears that predicting 
corrosion without fi eld observations is fairly diffi  cult. Even quay walls with similar geometries 
and in similar environmental conditions may show signifi cant diff erences in corrosion rates 
(Jongbloed, 2019). Clear correlations between corrosion and other deterioration agents have 
not yet been identifi ed. Jongbloed interpreted all the information available and developed 
dedicated typical corrosion curves (Fig. 4.3-B) for all the ports in the Netherlands (De Gijt & 
Broeken, 2013). If wall-thickness measurements have been taken after a certain exposure 
period, the representative corrosion curve can be selected and extrapolated to predict the 
evolution of corrosion over time. It should be noted that Jongbloed’s curves represent the 
equivalent mean value of corrosion Δt𝑒q, which equals the sum of the mean uniform and 
pitting corrosion with an accuracy of approximately 1 mm during an exposure period of 50 
years (Jongbloed, 2019). When developing these curves, however, data from the fi rst ten 
years was lacking and so the curves have only been verifi ed for longer-term exposures.
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The corrosion rates diff er across the height of the quay wall, and therefore diff erent 
corrosion zones are distinguished. These include the atmospheric, splash, intertidal, accelerated 
low-water corrosion (ALWC), permanent immersion and embedded zones (Fig. 4.3-A).

Geometrical openings induced by biochemical pitting corrosion generally occur in the 
ALWC zone (De Gijt & Broeken, 2013). Since the corrosion rates of the secondary sheet piles 
are fairly low, soil erosion due to geometric openings is not very likely in case of combi-walls 
and has yet to be observed in reality. This is because a hole in a tubular pile does not result 
directly in a geometrical opening, whereas the fl ange thickness of H-piles is relatively large. 
At present, the remaining service life is generally determined by ascertaining when the yield 
stress in the outer fi bre of structural members subject to corrosion becomes excessive. These 
stresses largely depend on bending moments and axial forces (Eq. 55), and mostly prevail in the 
permanent immersion zone (Fig. 4.3-A). In order to assess the infl uence of pitting corrosion, a 
geometrical reduction is applied to the initial wall thickness (t0 –Δt𝑒q), resulting in the ‘equivalent 
wall thickness’ t𝑒q (Eq. 57). This geometrical factor represents the decrease in the net capacity 
of the cross-section, and it depends on the ratio between pitting corrosion and residual wall 
thickness (Jongbloed, 2019). The structural assessment of corrosion relies on the FoS (Eq. 58) .
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Analogous	to	equation	Eq.	(66),	the	cumulative	probability	of	failure	for	a	specific	period	was	determined	using	Eq.	(67)	
and	Eq.	(68).	It	should	be	noted	that	the	term	𝑃𝑃5,8 9𝑃𝑃9	represents	the	probability	𝑃𝑃5L ∩ 𝑃𝑃9,	which	is	approximated	by	the	
conditional	failure	probability	𝑃𝑃5,8 9.	This	is	allowed	since	the	probability	of	failure	is	fairly	low.	
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(58)  

 
Where: 
teq  Equivalent wall thickness [m] 
t0  Initial wall thickness [m] 
Δteq  Equivalent wall-thickness loss due to uniform and pitting corrosion [m]  
FoS  Factor of safety [-]  
fy;k   Characteristic value yield strength [N/m2]  
σy   Stress in outer fibre of tube [N/m2]  
σy;k   Characteristic stress in outer fibre of tube [N/m2] 
Mwall	  Bending moment in combi-wall [kNm/m1] 
Ntube  Axial force at position of maximum bending moment in combi-wall [kNm/m1] 
Wcombi-wall		 Section modulus of combi-wall [m3/m1] 
Atube		 	 Sectional area of tube [m2/m1] 
z  Depth [m] 
 
Until the end of the twentieth century, the stresses σy were calculated using Blum's method (Blum, 1931). Nowadays, 
however, finite element models are available to model the soil-structure interaction more accurately. When using 
Blum's method, it was common practice to apply a factor of safety to σy;k to verify the nominal yield strength	fy;k. The 
minimum FoS required in the design of a new quay wall was 1.5. This does not remain constant, however: asset 
managers distinguish different stages (Fig. 4.4) in a quay wall’s service life. As long as the FoS remains higher than 
1.3, an existing quay wall is considered to be sufficiently safe; if the remaining FoS is between 1.2 and 1.3, the wall-
thickness loss is monitored more frequently. An FoS lower than 1.2 is considered unacceptable, because then the 
quay wall may not be able to withstand ‘accidental’ load combinations any more. In the latter case, the quay wall 
must be retrofitted or replaced. 
 

  
Fig.	4.4.	Typical	degradation	curve	due	to	corrosion	and	asset-management	stages	of	steel	combi-tubes	in	Rotterdam.	

 
4.3 Reliability-based method to assess corrosion-induced degradation  

4.3.1 Introduction 
This section introduces the methods and input used to determine the effect of corrosion-induced degradation on 
the reliability of service-proven quay walls over time. In this chapter, a quay wall that has actually been built in 
Rotterdam serves as a reference (Fig. 4.5). This structure consists of a concrete slab and a combi-wall, and is 
equipped with grout anchors. The original design model and the as-built information were consulted (Timmermans, 
2017). Fig. 4.5 shows the associated diagrams of the bending moments, the normal force and the horizontal 
deformation in ‘design’ conditions, which represent the fundamental ultimate limit state (ULS). It should be noted 
that the highest stresses occur at the position of the maximum bending moment in the span, which is in the 
‘permanent immersion’ zone (Fig. 4.5). 
The failure modes affected by corrosion were reformulated on the basis of limit state functions (Section 4.3.2) using 
random variables (Section 4.3.3).  
 

(58)
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Where:
t𝑒q	 Equivalent wall thickness for a particular corrosion curve [m]
t0	 Initial wall thickness [m]
Δt𝑒q	 Equivalent wall-thickness loss due to uniform and pitting  

	corrosion [m]
FoS	 Factor of safety [-]
𝑓y;k	 Characteristic value yield strength related to characteristic loads 

and material properties [N/m2]
σy	 Stress in outer fibre of tube [N/m2]
σy;k	 Characteristic stress in outer fibre of tube [N/m2]
Mw𝑎ll	 Bending moment in combi-wall [kNm/m1]
Ntub𝑒	 Axial force at position of maximum bending moment in combi- 

wall [kNm/m1]
Ww𝑎ll	 Section modulus of combi-wall [m3/m1]
Atub𝑒	 Sectional area of tube [m2/m1]
z	 Depth [m]

Until the end of the twentieth century, the stresses σy were calculated using Blum’s 
method (Blum, 1931). Nowadays, however, finite element models are available to model 
the soil-structure interaction more accurately. When using Blum’s method, it was common 
practice to apply a factor of safety to σy;k to verify the nominal yield strength 𝑓y;k. The 
minimum FoS required in the design of a new quay wall was 1.5. This does not remain 
constant, however: asset managers distinguish different stages (Fig. 4.4) in a quay wall’s 
service life. As long as the FoS remains higher than 1.3, an existing quay wall is considered 
to be sufficiently safe; if the remaining FoS is between 1.2 and 1.3, the wall-thickness loss 
is monitored more frequently. A FoS lower than 1.2 is considered unacceptable, because 
then the quay wall may not be able to withstand ‘accidental’ load combinations any more. 
In the latter case, the quay wall must be retrofitted or replaced.
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Fig. 4.4. Typical degradation curve due to corrosion and asset-management stages of steel 
combi-tubes in Rotterdam.

4.3 RELIABILITY-BASED METHOD TO ASSESS 
CORROSION-INDUCED DEGRADATION

4.3.1 INTRODUCTION
This section introduces the methods and input used to determine the eff ect of corrosion-
induced degradation on the reliability of service-proven quay walls over time. In this chapter, 
a quay wall that has actually been built in Rotterdam serves as a reference (Fig. 4.5). This 
structure consists of a concrete slab and a combi-wall, and is equipped with grout anchors. 
The original design model and the as-built information were consulted (Timmermans, 2017). 
Fig. 4.5 shows the associated diagrams of the bending moments, the normal force and the 
horizontal deformation in ‘design’ conditions, which represent the fundamental ultimate limit 
state (ULS). It should be noted that the highest stresses occur at the position of the maximum 
bending moment in the span, which is in the ‘permanent immersion’ zone (Fig. 4.5).

The failure modes aff ected by corrosion were reformulated on the basis of limit state 
functions (Section 4.3.2) using random variables (Section 4.3.3).
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Fig. 4. 5. Main dimensions of the reference quay wall, a combi-wall with grouted anchor 
(left), and its typical bending moment (A), normal forces (B) and deformation diagrams (C).

The assessment of service-proven structures is inherently a time-dependent reliability 
problem (Hall, 1988). The main objective is to determine the probability of failure, after 
successful past performance, while the quay wall is subject to corrosion-induced 
degradation and randomly imposed variable loads. This problem was solved numerically 
by performing a crude Monte Carlo analysis (Section 4.3.4) for each year of service life, with 
Blum’s method used to model the quay wall analytically (Blum, 1931). It is well known that 
this method has some limitations, however, and so its calculation results were calibrated 
using a fi nite element model (Section 4.3.5).

4.3.2 LIMIT S  TATE FUNCTIONS OF COMBI-WALLS SUBJECT TO 
CORROSION
Since structural failure modes generally determine the remaining service life of a combi-
wall subject to corrosion (Section 4.2), this study focuses on the limit states for ‘yielding’ 
and ‘buckling’. Fig. 4.5 shows that the stresses in outer fi bre on the waterside σy;w𝑎t𝑒r are 
generally lower than on the landside σy;l𝑎nd, due to the presence of the axial force Ntub𝑒

(Fig. 4.6). As a result, the landside of the combi-wall is more susceptible to local buckling, 
whereas the development of the stresses on the waterside is more sensitive to corrosion. 
The wall-thickness loss on the waterside results in a proportional increase of σy;w𝑎t𝑒r and a 
slight increase of σy;l𝑎nd (Fig. 4.6). This is caused by a decrease of Atub𝑒, a shift of the centre of 
gravity and the reduction of the section modulus on the waterside Ww𝑎ll;w𝑎t𝑒r. Consequently, 
the eff ect of corrosion on the yielding capacity of the combi-wall was studied for both the 
landside (Eq. 59) and the waterside (Eq. 60).
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Fig. 4.6. Stress decomposition (A) over the cross-section of a combi-tube without (B) and 
subject to corrosion (C).

The formula to evaluate local buckling (Eq. 61) was derived from recent experiments, 
including the following empirical formula for the buckling factor fB (Eq. 62), which represents 
the ratio between the actual and the theoretical bending moment capacity (Peters et 
al., 2017). The risk of local buckling is stress and strain level-dependent, and hence the 
parameter Dtub𝑒/ttub𝑒ε2 is generally used instead of Dtub𝑒/ttub𝑒. The tubes’ diameter Dtub𝑒 and 
wall thickness ttub𝑒 represent the actual dimensions, and the yield strength 𝑓y was based 
on tensile tests. Particularly because fB was determined from experiments, in this study we 
included an additional stochastic factor θB to account for model uncertainty. In addition, the 
model factors θM and θN were applied to the calculated bending moments and axial forces. 
The following three state functions were considered as a reasonable approach:
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And where:
Zyi𝑒ld;l𝑎nd	 State function, maximum stress in outer fibre of combi-wall on 

	landside	[kN/m2]
Zyi𝑒ld;w𝑎t𝑒r	 State function, maximum stress in outer fibre of combi-wall on 

waterside [kN/m2]
Zbucklin𝑔	 State function, local buckling of tube [kNm/m1]
𝑓y	 Yield strength [kN/m2]
𝑓y;m𝑒𝑎sur𝑒d	 Measured yield strength during full-scale tests [kN/m2]
𝑓y;r𝑒𝑓	 Reference yield strength in accordance with NEN-EN1993	

(2011) [kN/m2]
Mw𝑎ll	 Bending moment in combi-wall [kNm/m1]
Ntub𝑒	 Axial force at position of maximum bending moment in combi- 

wall [kNm/m1]
F𝑎nchor	 Anchor force [kN]
Wcombi-w𝑎ll	 Section modulus, combi-wall [m3/m1]
Wtub𝑒	 Section modulus, tube [m3/m1]
Atub𝑒	 Sectional area tube [m2/m1]
MEd	 Maximum bending moment [kNm/pile]
MRd	 Reduced resisting bending moment [kNm/pile]
NRd	 Maximum resistance for axial compressive force [kN/pile]
Ls	 Centre-to-centre distance, combi-wall system [m]
fB	 Empirical formula based on experiments [-]
NRd	 Maximum resistance for axial compressive force [kN/pile]
z	 Depth across height of combi-wall
θB	 Factor to account for model uncertainty related to buckling 

experiments [-]
θM	 Factor to account for model uncertainty in bending moments [-]
θN	 Factor to account for model uncertainty in axial forces [-]

4.3.3	 DISTRIBUTION FUNCTIONS AND CORRELATIONS
This section presents the properties of the random variables used in this chapter (Table 
4.1). The characteristic values employed comply with the original design (Timmermans, 
2017), and for the most part the variation coefficients were determined in accordance 
with recommendations in literature (JCSS, 2001). Furthermore, time-dependent and time-
independent random variables were taken into account. The methods used to perform the 
time-dependent reliability analysis are described in Section 4.3.4. The material properties 
and model uncertainty were considered to be time-independent variables, whereas water 
levels, operational loads and corrosion were assumed to vary over time.
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The equivalent wall-thickness loss due to corrosion ∆t𝑒q was modelled using 
Jongbloed’s corrosion curves (Fig. 4.3-B), which represent the mean value of uniform 
and pitting corrosion combined. It should be noted that these curves, which are based on 
millions of wall-thickness measurements, exhibit higher corrosion rates when compared 
with other design guidance (Grabe, 2012; NEN-EN 1993-5, 2007). To illustrate the influence 
of different corrosion environments, this study examines the effect of all nine corrosion 
curves on the annual failure rate in the permanent immersion zone. The uncertainty related 
to corrosion-induced degradation was estimated using field measurements from the port 
of Rotterdam (De Jong, 2018). The variation coefficients found for distinctive corrosion 
environments range between 0.1 and 0.5, which is in accordance with other literature (Allaix 
et al., 2018; Boero et al., 2012; Roubos et al., 2018). The effect of the coefficient of variation 
on the reliability index was examined by performing a sensitivity analysis (Section 4.3.3).

Furthermore, the uncertainty in the corrosion rate was assumed to be fully correlated 
over time, since the experience with corrosion measurements is that the uncertainty is 
mainly epistemic in nature. In other words, the main uncertainty is usually which corrosion 
curve applies; but once the relevant curve has been determined using measurements, the 
development of corrosion mostly follows that curve throughout the quay wall’s service life. 
In modelling terms, this means that the random variable representing the uncertainty in 
corrosion determines the position relative to the mean curve throughout the entire reference 
period being considered. Mainly to prevent simulation of unrealistically high or low corrosion 
rates during the crude Monte Carlo analysis, the respective probability distribution function 
was truncated; the effect of that on the results of this study was negligible, as demonstrated 
in the sensitivity analysis (Section 4.3.3). The reader is therefore referred to Chapter 3 for a 
detailed description of other random variables.

4
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In addition, dependency between input variables was taken into account in order 
to prevent underestimation of the probability of failure. Table 4.2 presents the correlation 
matrix considered. It is worth noting that the unsaturated (γdr ) and saturated (γs𝑎t ) soil 
weight densities were assumed to be fully dependent. This correlation was implemented 
automatically by applying a deterministic constant initial difference.

Table 4.2. Simplified correlation matrix.
φ γsat c’ OWL GWL θM θN

φ - 0.501 -0.651 - - - -
γs𝑎t 0.501 - -0.091 - - - -
c’ -0.651 -0.091 - - - - -
OWL - - - - 0.752 - -
GWL - - - 0.752 - - -
θM - - - - - - 1.00
θN - - - - - 1.00 -

1) Based on statistical analysis of a large dataset from Rotterdam (Wolters et al., 2012).
2) Approximated on the basis of statistical examination of the waterhead difference of a quay wall 
equipped with sensors in the port of Rotterdam (Berg et al., 2018). This correlation is only valid when 
waterhead differences are non-dominant loads.

4.3.4	 NUMERICAL APPROACH TO TIME-DEPENDENT RELIABILITY 		
ANALYSIS
This section describes the numerical approach to solve the time-dependent reliability 
problem. The solution to this problem was expressed as the probability of failure Pf. For 
each state function presented in Section 4.3.2, the probability of failure was defined 
as the probability of outcrossing the limit state 𝑔(X)=0 (JCSS, 2001). In this study, the 
failure probability Pf was directly related to the reliability index β on the basis of Eq. (64) 
(Cornell,1969; Hasofer & Lind, 1974). In addition, the conditional failure rate – which is 
defined as the probability of failure given that the structure has survived all previous years 
– was determined taking time-dependent effects on resistance R(t) due to corrosion and 
variable loads S(t) into account. When the instantaneous probability density functions of 
R(t) and S(t) are known, the instantaneous probability of failure Pf(t) can be estimated. The 
basic formulation of the time-variant reliability problem is as follows:

 
63 

 

 
 
Table 4.2. Simplified correlation matrix. 

  φ	 γsat	 c’	 OWL	 GWL	 θM	 θN	

φ	
-	 0.501	

-
0.651	 -	 -	 -	 -	

γsat	 0.501	 -	
-
0.091	 -	 -	 -	 -	

c’	
-
0.651	

-
0.091	 -	 -	 -	 -	 -	

OWL	 -	 -	 -	 -	 0.752	 -	 -	
GWL	 -	 -	 -	 0.752	 -	 -	 -	
θM	 -	 -	 -	 -	 -	 -	 1.00	
θN	 -	 -	 -	 -	 -	 1.00	 -	

1)	Based	on	statistical	analysis	of	a	large	dataset	from	Rotterdam	(Wolters	et	al.,	2012).	
2)	Approximated	on	the	basis	of	statistical	examination	of	the	waterhead	difference	of	a	quay	wall	equipped	with	sensors	in	
the	port	of	Rotterdam	(Berg	et	al.,	2018).	This	correlation	is	only	valid	when	waterhead	differences	are	non-dominant	loads.		
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This time-variant reliability problem was solved by performing a crude Monte Carlo analysis (Allaix et al, 2018). The 
evolution of the annual probability of failure Pf,i was examined for different scenarios using Blum’s analytical method 
(Section 4.3.5). The probability of failure in year i was defined as the probability that failure occurs during year i, 
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Subsequently, the cumulative probability of failure for a specific reference period and for the remaining service life 
were determined using the following equations: 
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 𝑃𝑃5(𝑡𝑡) = 	𝛷𝛷(−�(𝑡𝑡)) (65) 
	

Equation	(66):	
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Analogous	to	equation	Eq.	(66),	the	cumulative	probability	of	failure	for	a	specific	period	was	determined	using	Eq.	(67)	
and	Eq.	(68).	It	should	be	noted	that	the	term	𝑃𝑃5,8 9𝑃𝑃9	represents	the	probability	𝑃𝑃5L ∩ 𝑃𝑃9,	which	is	approximated	by	the	
conditional	failure	probability	𝑃𝑃5,8 9.	This	is	allowed	since	the	probability	of	failure	is	fairly	low.	
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
 

 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 = 𝐶𝐶2𝑃𝑃2;f 𝛽𝛽 + 𝐶𝐶2 ∙
∆tû;od(n)
/ü= d

9456
9g/    for   𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛𝑛=>?) (18)  

 
The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
 

 𝐶𝐶Cä'MN �'( = 𝐶𝐶Ü9á>v'q>9'v �'( + 𝐶𝐶ãåçéèåêéëíìîéëï �'(    (19)  

 𝐶𝐶Cä'MN �'( = 𝐶𝐶f + 𝐶𝐶q�'( + 𝐶𝐶2 1 − Φ/
S + 𝐶𝐶2𝑐𝑐 Φ/

S − Φ/
/. cm(

° d456

/.¢m(
°    (20)  

 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
 

	 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	𝑃𝑃2o(𝑃𝑃t=>v>9' 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (22) 	
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Where:
𝑔(X)	 State function of variable X
X	 Vector of random variables
R(t)	 Resistance function at time t
S(t)	 Solicitation or load function at time t
Pf(t)	 Instantaneous probability of failure at time t, assuming that the 

structure has survived the previous period [-]
𝑓X(x)	 Joint probability density function of the vector X of random 

variables [-]
β	 Reliability index [-]

This time-variant reliability problem was solved by performing a crude Monte Carlo 
analysis (Allaix et al, 2018). The evolution of the annual probability of failure Pf,i was examined 
for different scenarios using Blum’s analytical method (Section 4.3.5). The conditional 
probability of failure in year i was defined as the probability that failure occurs during year 
i, given that the structure has survived the previous period.

Equation	(57):	
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Equation	(65):	
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Equation	(68):	
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Analogous	to	equation	Eq.	(66),	the	cumulative	probability	of	failure	for	a	specific	period	was	determined	using	Eq.	(67)	
and	Eq.	(68).	It	should	be	noted	that	the	term	𝑃𝑃5,8 9𝑃𝑃9	represents	the	probability	𝑃𝑃5L ∩ 𝑃𝑃9,	which	is	approximated	by	the	
conditional	failure	probability	𝑃𝑃5,8 9.	This	is	allowed	since	the	probability	of	failure	is	fairly	low.	
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Table 4.2. Simplified correlation matrix. 

  φ	 γsat	 c’	 OWL	 GWL	 θM	 θN	

φ	
-	 0.501	

-
0.651	 -	 -	 -	 -	

γsat	 0.501	 -	
-
0.091	 -	 -	 -	 -	

c’	
-
0.651	

-
0.091	 -	 -	 -	 -	 -	

OWL	 -	 -	 -	 -	 0.752	 -	 -	
GWL	 -	 -	 -	 0.752	 -	 -	 -	
θM	 -	 -	 -	 -	 -	 -	 1.00	
θN	 -	 -	 -	 -	 -	 1.00	 -	
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the	port	of	Rotterdam	(Berg	et	al.,	2018).	This	correlation	is	only	valid	when	waterhead	differences	are	non-dominant	loads.		
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This time-variant reliability problem was solved by performing a crude Monte Carlo analysis (Allaix et al, 2018). The 
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Analogous	to	equation	Eq.	(66),	the	cumulative	probability	of	failure	for	a	specific	period	was	determined	using	Eq.	(67)	
and	Eq.	(68).	It	should	be	noted	that	the	term	𝑃𝑃5,8 9𝑃𝑃9	represents	the	probability	𝑃𝑃5L ∩ 𝑃𝑃9,	which	is	approximated	by	the	
conditional	failure	probability	𝑃𝑃5,8 9.	This	is	allowed	since	the	probability	of	failure	is	fairly	low.	
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Practical application of crude Monte Carlo 
In each simulation, the time-independent variables (Section 4.3.3) were generated once. In the case of time-
dependent variables, new values were generated for each year of the reference period. The increase in corrosion 
over time was modelled on the basis of a specific corrosion curve (Fig. 4.2). The crude Monte Carlo approach to 
solve the time-variant reliability problem starts by generating 10 million samples for the first year. The failures F1 
were used to estimate the annual failure rate 𝑃𝑃2,/ B. Subsequently, only the survivals S1 that did not cross the limit 
state continued to year two. Starting from the second year, the time-independent variables remained unchanged, 
whereas new samples were generated for time-dependent variables such as corrosion Δteq and the variable load 
Qt1. Again, the failures 𝐹𝐹Õ	determine the annual failure rate 𝑃𝑃2,Õ B. This process subsequently removes implausible 
realisations from the simulation (i.e. realisations in which the model predicts failure whereas the structure is 
supposed to survive) and was repeated for each year of the reference period.  
 As an example, Fig. 3.7 presents the number of failures estimated on the basis of crude Monte Carlo. For 
this chapter a reference period of 75 years was assumed, and consequently a total of approximately 750 million 
Blum-based evaluations was performed for each corrosion curve. However, Fig. 4.7 shows that the numerical noise 
for the situation without corrosion is still fairly high. This is because 750 million samples are too few to accurately 
calculate the failure rates in all individual years.  
 
First-order system reliability analysis 
In addition to crude Monte Carlo, a first-order approximation was performed to describe the development of the 
failure rate more accurately for fairly low failure rates. The annual failure rate (Eq. 66) was reformulated by Eq. (70), 
where the failures Fi are conditional on the survivals S, which represents several survival events Si	(Melchers & Beck, 
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Since some dominant random variables are time-independent, the failures Fi and survivals S correlate to some 
extent. The numerator and the denominator of Eq. (70) were therefore solved using FORM, taking into account the 
correlation between individual events. The system of correlated limit state functions has a different vector of random 
variables X, which were solved by performing a first-order parallel system reliability analysis (Lemaire, 2009; 
Sørensen, 2004). Fig. 37 shows the results of the first-order system reliability analysis. A more accurate method to 
solve Eq. (70) is the ‘equivalent planes method’ (Roscoe et al., 2018). 
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dependent variables, new values were generated for each year of the reference period. The increase in corrosion 
over time was modelled on the basis of a specific corrosion curve (Fig. 4.2). The crude Monte Carlo approach to 
solve the time-variant reliability problem starts by generating 10 million samples for the first year. The failures F1 
were used to estimate the annual failure rate 𝑃𝑃2,/ B. Subsequently, only the survivals S1 that did not cross the limit 
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over time was modelled on the basis of a specific corrosion curve (Fig. 4.2). The crude Monte Carlo approach to 
solve the time-variant reliability problem starts by generating 10 million samples for the first year. The failures F1 
were used to estimate the annual failure rate 𝑃𝑃2,/ B. Subsequently, only the survivals S1 that did not cross the limit 
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Qt1. Again, the failures 𝐹𝐹Õ	determine the annual failure rate 𝑃𝑃2,Õ B. This process subsequently removes implausible 
realisations from the simulation (i.e. realisations in which the model predicts failure whereas the structure is 
supposed to survive) and was repeated for each year of the reference period.  
 As an example, Fig. 3.7 presents the number of failures estimated on the basis of crude Monte Carlo. For 
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failure rate (Eq. 66) was reformulated by Eq. (70), where the failures Fi are conditional on the 
survivals S, which represents several survival events Si (Melchers & Beck, 2018).
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Since some dominant random variables are time-independent, the failures Fi and survivals S correlate to some 
extent. The numerator and the denominator of Eq. (70) were therefore solved using FORM, taking into account the 
correlation between individual events. The system of correlated limit state functions has a different vector of random 
variables X, which were solved by performing a first-order parallel system reliability analysis (Lemaire, 2009; 
Sørensen, 2004). Fig. 37 shows the results of the first-order system reliability analysis. A more accurate method to 
solve Eq. (70) is the ‘equivalent planes method’ (Roscoe et al., 2018). 
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Fig. 4.7. Example of failure estimates obtained by performing a crude Monte Carlo and a 
first-order system reliability analysis for a service-proven quay wall.

4.3.5	 FINITE-ELEMENT-BASED CALIBRATION OF BLUM’S METHOD
Recent developments have shown that advanced finite element models of soil retaining 
walls can be successfully coupled to reliability tools (Andrianov et al., 2007; Boero, 2012; 
Waarts, 2000). However, performing a finite element-based Monte Carlo analysis requires 
too much calculation effort and was not feasible within the framework of this study. It was 
therefore decided to model the reference quay wall (Fig. 4.5) using Blum’s analytical method 
(Blum, 1931; ThyssenKrupp GfT Bautechnik, 2007). This method analytically searches for 
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equilibrium, while performing a plasticity analysis to estimate the horizontal stresses in 
the soil (Eq. 71 and Eq. 72) (Bakker, 2000; Blum, 1931). Since Blum’s method has some 
limitations, its outcome was evaluated using the finite element model Plaxis. This section 
discusses the calibration between Blum and the Plaxis hardening soil model.
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Where:  
 Ka;h  Horizontal component of active earth-pressure coefficient [-] 
	 Kp;h Horizontal component of passive earth-pressure coefficient [-] 
 φ Angle of internal friction [°] 
 δ Wall-friction angle [°] 
 
The deterministic outputs of the two models were compared for design conditions (Fig. 4.5-A). When using Blum’s 
method, it is common practice to correct its calculation output (Grabe, 2012) since this method overestimates the 
bending moments and underestimates the anchor force. The calculation output of the finite element model shows 
a small rotation and translation at the toe (Fig. 4.5-C), whereas Blum assumes ‘full fixation’ of the combi-wall in the 
soil (Karamperidou, 2018; Steenepoorte, 1992). Moreover, Blum’s method does not take into account vertical 
arching, assumes a rigid anchor support and neglects the structural rigidity of the combi-wall, as well as the 
backfilling of soil above the anchor. As a result, the bending moments and anchor forces derived using Blum are, 
respectively, higher and lower than those derived from the finite element model (Fig. 4.5-A). The differences 
between the deterministic finite element-based and Blum-based calculations are within acceptable limits assuming 
δ=0	in combination with the following assumptions. 

• The anchor force Fa calculated using Blum’s method was increased by 15% (Hoesch, 1977).  
• Blum’s method does not return the normal force Nwall. Hence, this force was estimated using the Plaxis 

calculation output, which is approximately twice the horizontal anchor force Fa found using Blum.  
• The maximum bending moment in the span Mwall was reduced by 30% (Leatemia & Heijndijk, 1998; Well, 

2018).  
 
In addition, the reliability index, the sensitivity factors and the design point found were also evaluated by performing 
Blum-based and finite element-based reliability assessments. The latter was undertaken using the reliability 
interface ProbAna® (Chapter 3), in which the gradient-based FORM algorithm Abdo-Rackwitz (1991) was selected. 
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K𝑎;h	 Horizontal component of active earth-pressure coefficient [-]
Kp;h	 Horizontal component of passive earth-pressure coefficient [-]
φ	 Angle of internal friction [°]
δ	 Wall-friction angle [°]

The deterministic outputs of the two models were compared for design conditions (Fig. 
4.5-A). When using Blum’s method, it is common practice to correct its calculation output 
(Grabe, 2012) since this method overestimates the bending moments and underestimates 
the anchor force. The calculation output of the finite element model shows a small rotation 
and translation at the toe (Fig. 4.5-C), whereas Blum assumes ‘full fixation’ of the combi-
wall in the soil (Karamperidou, 2018; Steenepoorte, 1992). Moreover, Blum’s method does 
not take into account vertical arching, assumes a rigid anchor support and neglects the 
structural rigidity of the combi-wall, as well as the backfilling of soil above the anchor. As a 
result, the bending moments and anchor forces derived using Blum are, respectively, higher 
and lower than those derived from the finite element model (Fig. 4.5-A). The differences 
between the deterministic finite element-based and Blum-based calculations are within 
acceptable limits assuming δ=0 in combination with the following assumptions.

·	 The anchor force F𝑎 calculated using Blum’s method was increased by 15% (Hoesch, 
1977).

·	 Blum’s method does not return the normal force Nw𝑎ll. Hence, this force was 
estimated using the Plaxis calculation output, which is approximately twice the 
horizontal anchor force F𝑎 found using Blum.

·	 The maximum bending moment in the span Mw𝑎ll was reduced by 30% (Leatemia 
& Heijndijk, 1998; Well, 2018).

In addition, the reliability index, the sensitivity factors and the design point found were 
also evaluated by performing Blum-based and finite element-based reliability assessments. 
The latter was undertaken using the reliability interface ProbAna® (Chapter 3), in which the 
gradient-based FORM algorithm Abdo-Rackwitz (1991) was selected. ProbAna® facilitates 
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the coupling between Plaxis and the open-source probabilistic toolbox OpenTURNS 
(Andrianov et al., 2007). Meanwhile, the Blum-based probabilistic analysis was conducted 
on the basis of the FORM and Monte Carlo. The FORM calculations are based on the 
Rackwitz-Fiessler algorithm (Rackwitz & Fiessler, 1997) using the reliability tool Prob2B 
(Allaix et al., 2017; Allaix et al., 2018). The results presented in the next section show that 
the reliability index, the design point and the associated sensitivity factors are quite similar.
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4.4.2 Influence of corrosion on the FoS and the reliability index β 
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corroded combi-walls, the highest stresses typically develop in the permanent immersion zone (Fig. 4.3-A). For the 
reference quay wall, this zone corresponds with corrosion curve 3 (Section 4.1.5); Fig. 4.8 therefore presents its 
corresponding effect on the remaining FoS	and the annual reliability index β. The FoS on the waterside is initially 
much higher than that on the landside due to the presence of axial force Ntube (Fig. 4.6). Furthermore, Fig. 4.8-A 
shows that the FoS for yielding on the landside and local buckling are quite similar (overlapping). By contrast, the 
results shown in Fig. 4.8-B indicate that the uncertainty in time-independent random variables significantly 
influences the limit state for local buckling of a service-proven quay wall, since the annual reliability index 
significantly increases in the early service period.  
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show that the reliability index, the design point and the associated sensitivity factors are quite similar. 
 
 
4.4 Results of reliability analysis of corroded combi-walls 

4.4.1 Comparison of Blum-based and FEM-based reliability assessment 
This section compares the results of the reliability-based assessments performed using the analytical Blum model 
and the finite element model of the reference quay wall. It should be noted that this comparison does not yet take 
corrosion into account, since the main objective here is to compare the lifetime reliability indices 𝛽𝛽'456associated 
with the cumulative failure probability 𝑃𝑃2;'456  for a reference period of 50 years, as well as the annual reliability 
indices 𝛽𝛽'(  related to Pf,i. The results obtained show fairly small differences (Table 4.3), and hence modelling using 
the calibrated Blum’s method seems a reasonable approach to reveal the effect of corrosion-induced degradation 
on the reliability of a quay wall. 
In addition, the marginal differences in the FoS found by performing the allowable stress-based assessments also 
align with the marginal differences of the established reliability indices. The detailed results for Zyield are presented 
in Appendix C.1. 
 
Table 4.3. FoS, lifetime reliability index and annual reliability index for Zyield and ZBuckling. 

Design	model	 Reliability	
interface	

Reliability	method	 	 Zyield;landsi
de	

Zyield;waterside	 Zbuckling	

Plaxis	 Finite	
elements	

n/a	 n/a		 FoS	 1.49	 2.64	 1.51	

Plaxis		 Finite	
elements	

ProbAna®	 FORM-AbdoRackwitz	 𝛽𝛽'456 	 3.762	 5.332	 3.632	

Blum		 Analytical	 Prob2B®	 FORM-
RackwitzFiessler		

𝛽𝛽'456 	 3.87	 5.05	 3.49	

Blum		 Analytical	 Matlab	 Monte	Carlo	 𝛽𝛽'456 	 3.74	 4.941	 3.58	
Plaxis		 Finite	

elements	
ProbAna®	 FORM-AbdoRackwitz	 𝛽𝛽'( 	 4.39	 5.79	 n/a	

Blum		 Analytical	 Prob2B®	 FORM-
RackwitzFiessler		

𝛽𝛽'( 	 4.44	 5.68	 3.84	

Blum		 Analytical	 Matlab	 Monte	Carlo	 𝛽𝛽'( 	 4.36	 5.181	 3.94	
1)	The	number	of	samples	 is	too	 low	to	determine	the	reliability	 index;	a	more	accurate	result	should	be	obtained	with	a	
higher	number	of	samples.	
2)	Results	were	derived	in	Chapter	3.	

 
4.4.2 Influence of corrosion on the FoS and the reliability index β 
Corrosion-induced degradation reduces the FoS and reliability index β of the structural limit states. When assessing 
corroded combi-walls, the highest stresses typically develop in the permanent immersion zone (Fig. 4.3-A). For the 
reference quay wall, this zone corresponds with corrosion curve 3 (Section 4.1.5); Fig. 4.8 therefore presents its 
corresponding effect on the remaining FoS	and the annual reliability index β. The FoS on the waterside is initially 
much higher than that on the landside due to the presence of axial force Ntube (Fig. 4.6). Furthermore, Fig. 4.8-A 
shows that the FoS for yielding on the landside and local buckling are quite similar (overlapping). By contrast, the 
results shown in Fig. 4.8-B indicate that the uncertainty in time-independent random variables significantly 
influences the limit state for local buckling of a service-proven quay wall, since the annual reliability index 
significantly increases in the early service period.  
 

4.44 5.68 3.84

Blum Analytical Matlab Monte Carlo

 
66 

 

ProbAna® facilitates the coupling between Plaxis and the open-source probabilistic toolbox OpenTURNS 
(Andrianov et al., 2007). Meanwhile, the Blum-based probabilistic analysis was conducted on the basis of the FORM 
and Monte Carlo. The FORM calculations are based on the Rackwitz-Fiessler algorithm (Rackwitz & Fiessler, 1997) 
using the reliability tool Prob2B (Allaix et al., 2017; Allaix et al., 2018). The results presented in the next section 
show that the reliability index, the design point and the associated sensitivity factors are quite similar. 
 
 
4.4 Results of reliability analysis of corroded combi-walls 

4.4.1 Comparison of Blum-based and FEM-based reliability assessment 
This section compares the results of the reliability-based assessments performed using the analytical Blum model 
and the finite element model of the reference quay wall. It should be noted that this comparison does not yet take 
corrosion into account, since the main objective here is to compare the lifetime reliability indices 𝛽𝛽'456associated 
with the cumulative failure probability 𝑃𝑃2;'456  for a reference period of 50 years, as well as the annual reliability 
indices 𝛽𝛽'(  related to Pf,i. The results obtained show fairly small differences (Table 4.3), and hence modelling using 
the calibrated Blum’s method seems a reasonable approach to reveal the effect of corrosion-induced degradation 
on the reliability of a quay wall. 
In addition, the marginal differences in the FoS found by performing the allowable stress-based assessments also 
align with the marginal differences of the established reliability indices. The detailed results for Zyield are presented 
in Appendix C.1. 
 
Table 4.3. FoS, lifetime reliability index and annual reliability index for Zyield and ZBuckling. 

Design	model	 Reliability	
interface	

Reliability	method	 	 Zyield;landsi
de	

Zyield;waterside	 Zbuckling	

Plaxis	 Finite	
elements	

n/a	 n/a		 FoS	 1.49	 2.64	 1.51	

Plaxis		 Finite	
elements	

ProbAna®	 FORM-AbdoRackwitz	 𝛽𝛽'456 	 3.762	 5.332	 3.632	

Blum		 Analytical	 Prob2B®	 FORM-
RackwitzFiessler		

𝛽𝛽'456 	 3.87	 5.05	 3.49	

Blum		 Analytical	 Matlab	 Monte	Carlo	 𝛽𝛽'456 	 3.74	 4.941	 3.58	
Plaxis		 Finite	

elements	
ProbAna®	 FORM-AbdoRackwitz	 𝛽𝛽'( 	 4.39	 5.79	 n/a	

Blum		 Analytical	 Prob2B®	 FORM-
RackwitzFiessler		

𝛽𝛽'( 	 4.44	 5.68	 3.84	

Blum		 Analytical	 Matlab	 Monte	Carlo	 𝛽𝛽'( 	 4.36	 5.181	 3.94	
1)	The	number	of	samples	 is	too	 low	to	determine	the	reliability	 index;	a	more	accurate	result	should	be	obtained	with	a	
higher	number	of	samples.	
2)	Results	were	derived	in	Chapter	3.	

 
4.4.2 Influence of corrosion on the FoS and the reliability index β 
Corrosion-induced degradation reduces the FoS and reliability index β of the structural limit states. When assessing 
corroded combi-walls, the highest stresses typically develop in the permanent immersion zone (Fig. 4.3-A). For the 
reference quay wall, this zone corresponds with corrosion curve 3 (Section 4.1.5); Fig. 4.8 therefore presents its 
corresponding effect on the remaining FoS	and the annual reliability index β. The FoS on the waterside is initially 
much higher than that on the landside due to the presence of axial force Ntube (Fig. 4.6). Furthermore, Fig. 4.8-A 
shows that the FoS for yielding on the landside and local buckling are quite similar (overlapping). By contrast, the 
results shown in Fig. 4.8-B indicate that the uncertainty in time-independent random variables significantly 
influences the limit state for local buckling of a service-proven quay wall, since the annual reliability index 
significantly increases in the early service period.  
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1) The number of samples is too low to determine the reliability index; a more accurate result should 
be obtained with a higher number of samples.
2) Results were derived in Chapter 3.
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4.4.2	 INFLUENCE OF CORROSION ON THE FoS AND THE RELIABILITY 
INDEX β
Corrosion-induced degradation reduces the FoS and reliability index β of the structural limit 
states. When assessing corroded combi-walls, the highest stresses typically develop in the 
permanent immersion zone (Fig. 4.3-A). For the reference quay wall, this zone corresponds 
with corrosion curve 3 (Section 4.1.5); Fig. 4.8 therefore presents its corresponding effect 
on the remaining FoS and the annual reliability index β. The FoS on the waterside is initially 
much higher than that on the landside due to the presence of axial force Ntub𝑒 (Fig. 4.6). 
Furthermore, Fig. 4.8-A shows that the FoS for yielding on the landside and local buckling 
are quite similar (overlapping). By contrast, the results shown in Fig. 4.8-B indicate that the 
uncertainty in time-independent random variables significantly influences the limit state for 
local buckling of a service-proven quay wall, since the annual reliability index significantly 
increases in the early service period.
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Fig. 4.8. Development of FoS (A) and annual reliability index (B) for Zyield and Zbuckling of a 
service-proven quay wall subject to corrosion curve 3 in the permanent immersion zone. 
The annual reliability curves are based on the first-order system analysis.

Fig. 4.9 shows the results of the Blum-based reliability assessment for the limit state 
yielding (Zyi𝑒ld ) on the landside; The main reason for focusing on this limit state is that it is 
well-known and is currently used in the allowable stress-based assessments of corroded 
quay walls (Section 4.2). The annual failure rates and the associated annual reliability index 
were determined using crude Monte Carlo for all nine corrosion curves, as well as for the 
situation without corrosion. Furthermore, the trendlines of the corrosion curves are based 
on a first-order system analysis (Section 4.3.3). The results clearly illustrate that the annual 
failure rate is not constant (Fig. 4.9). During its early years of service, the annual failure rate 
of a service-proven quay wall shows a downward trend, which is the result of successful 
resistance to past service loading (Hall, 1988). With low corrosion rates, the annual failure 
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rate keeps decreasing throughout the first 75 years, whereas with higher corrosion rates 
the annual failure rate will start increasing at some point during this time.
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Fig. 4.9. Evolution of annual failure rate for different corrosion curves for the Zyield;landside in 
the permanent immersion zone.

Fig. 4.10-A shows the impact of corrosion on the FoS. As expected, the FoS decreases 
due to wall-thickness loss, which is directly related to the service life using the corrosion 
curves (Fig. 4.3). When a quay wall is undamaged, the FoS remains constant (Fig. 4.10-
A) while the cumulative probability of failure of a service-proven uncorroded quay wall 
increases slightly over time (Fig. 4.10-C). This indicates that the allowable stress-based 
method is only related to the reference period tr𝑒𝑓 via the corrosion curves, while a change 
in tr𝑒𝑓 always results in a change in 
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uncorroded quay wall increases slightly over time (Fig. 4.10-C). This indicates that the allowable stress-based 
method is only related to the reference period tref via the corrosion curves, while a change in tref always results in a 
change in 𝑃𝑃2;'456 B; This is because unfavourable time-dependent variables, such live loads, are more likely to occur 
during a longer reference period. 
In addition, Fig. 4.10-B shows that the annual reliability index for all curves increases in the early period of service 
due to past service performance. For the situation without corrosion and for corrosion curve 3, the annual reliability 
index keeps increasing as the quay wall ages successfully, whereas curves 6 and 9 show already show a decrease.
  
If we assume that the quay wall’s service life is 75 years and that it has survived all previous service loads, its 
residual cumulative probability of failure for its remaining lifetime can be determined. Fig. 4.10-D shows that, despite 
corrosion, the residual cumulative probability of failure for a service-proven quay wall will decrease. When its 
remaining service life becomes short, e.g. trem<10 years, Fig. 4.10-D shows an exponential decrease in the 
cumulative probability of failure. This is a direct consequence of the decrease in uncertainty with regard to time-
dependent variables, which play a much more dominant role in the remaining uncertainty compared with the 
uncertainty present during the design stage. Since unfavourable variable loads are less likely to occur during a 
shorter period of time, then where it has a successful service history the remaining cumulative probability of failure 
of a quay wall will decrease accordingly. 
 

 
Fig. 4.10. Remaining factor of safety (A), development of annual reliability index (B), development of 
cumulative probability of failure (C) and remaining cumulative probability of failure (D) for Zyield;landside of a 
service-proven quay wall in the permanent immersion zone. 
 
4.4.3 Sensitivity analysis  
This sensitivity analysis aims to reveal the impact of the variation coefficient of important random variables – such 
as the angle of internal friction φ (Fig. 4.11-A), the surcharge loads Qt1 (Fig. 4.11-B), the yield strength fy (Fig. 4.11-
C) and corrosion Δteq (Fig. 4.11-D) – on the conditional annual reliability index. In general, small variations in strength 
properties of soil have a higher impact on the annual reliability index than small variations in loads, yield strength 
and corrosion-induced degradation. Since the curves found overlap, Fig. 4.11-D illustrates that the variation 
coefficient of corrosion has almost no influence on the outcomes. This can be explained by a fairly low sensitivity 
factor, e.g. approximately 0.05 for Δteq (see Appendix C.2). Furthermore, it was found that replacing the truncated 
normal with a normal distribution function had negligible effect on the outcome. The reader is referred to Appendix 
C.2 for the comparison with and without truncated distribution function. 

; This is because unfavourable time-dependent 
variables, such live loads, are more likely to occur during a longer service life.

In addition, Fig. 4.10-B shows that the annual reliability index for all curves increases 
in the early period of service due to past service performance. For the situation without 
corrosion and for corrosion curve 3, the annual reliability index keeps increasing as the quay 
wall ages successfully, whereas curves 6 and 9 show already show a decrease.

If we assume that the quay wall’s service life is 75 years and that it has survived all 
previous service loads, its residual cumulative probability of failure for its remaining lifetime 
can be determined. Fig. 4.10-D shows that, despite corrosion, the residual cumulative 
probability of failure for a service-proven quay wall will decrease. When its remaining service 
life becomes short, e.g. tr𝑒m<10 years, Fig. 4.10-D shows an exponential decrease in the 
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cumulative probability of failure. This is a direct consequence of the decrease in uncertainty 
with regard to time-dependent variables, which play a much more dominant role in the 
remaining uncertainty compared with the uncertainty present during the design stage. 
Since unfavourable variable loads are less likely to occur during a shorter period of time, 
then where it has a successful service history the remaining cumulative probability of failure 
of a quay wall will decrease accordingly.
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Fig. 4.10. Remaining factor of safety (A), development of annual reliability index (B), 
development of cumulative probability of failure (C) and remaining cumulative probability 
of failure (D) for Zyield;landside of a service-proven quay wall in the permanent immersion zone.

4.4.3	 SENSITIVITY ANALYSIS
This sensitivity analysis aims to reveal the impact of the variation coefficient of important 
random variables – such as the angle of internal friction φ (Fig. 4.11-A), the surcharge loads 
Qt1 (Fig. 4.11-B), the yield strength 𝑓y (Fig. 4.11-C) and corrosion Δt𝑒q (Fig. 4.11-D) – on the 
conditional annual reliability index. In general, small variations in strength properties of 
soil have a higher impact on the annual reliability index than small variations in loads, yield 
strength and corrosion-induced degradation. Since the curves found overlap, Fig. 4.11-D 
illustrates that the variation coefficient of corrosion has almost no influence on the outcomes. 
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This can be explained by a fairly low sensitivity factor, e.g. approximately 0.05 for Δt𝑒q (see 
Appendix C.2). Furthermore, it was found that replacing the truncated normal with a normal 
distribution function had negligible effect on the outcome. The reader is referred to Appendix 
C.2 for the comparison with and without truncated distribution function.

The variation coefficient of the soils’ internal friction angle was directly applied to its 
expected value in order to determine the standard deviation, while the characteristic value 
for the live load was considered to be invariant, representing a return period of 50 years.

In addition, Fig. 4.11-A and Fig. 4.11-B show that the annual reliability index will become 
practically constant if Zyi𝑒ld is dominated by uncertainty in time-dependent variables. By 
contrast, when time-independent random variables are dominant, the annual reliability 
index will increase during the early years of service. Furthermore, Fig. 4.11-B shows that 
a relatively small coefficient of variation for live loads only leads to a lower annual reliability 
index during the early service period. This is because the uncertainty in the live load Qt1 
does not significantly influence the annual reliability indices – or, in other words, because the 
time-independent variables are dominant. Nevertheless, all the curves show higher annual 
reliability indices for lower variation coefficients of random variables, which is the direct 
result of a general decrease in the amount of uncertainty present in the reliability problem.

In general, the variation coefficient of random variables will determine the degree to 
which the reliability problem is time-variant, and hence whether the failure rate in the first or 
the final year of a reference period will prevail. This is discussed further in the next section.
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Fig. 4.11. Influence of variation coefficient of the soils’ friction angle (A), surcharge load (B), 
yield strength (C) and corrosion (D) on the annual reliability index of a service-proven quay 
wall subject corrosion curve 3 in the permanent immersion zone. Trendlines are based on 
a crude Monte Carlo analysis.

4.5	 DISCUSSION

4.5.1	 INFLUENCE OF CORROSION ON FoS AND β OF REFERENCE QUAY 
WALL
Since the corrosion rate of the reference quay wall corresponds with corrosion curve 3 in 
the permanent immersion zone (Fig. 4.3-A), this section describes the impact of that curve 
on the FoS and β. Also discussed are the results obtained for non-deteriorated, service-
proven quay walls, in order to be able to better interpret the influence of wall-thickness loss 
on the reliability of a quay wall.

When an uncorroded quay wall has shown the ability to function during a certain 
reference period, our confidence in its actual reliability level will increase. This is because 
it will be less likely that the strength properties of soil or steel, which show high sensitivity 
factors (Appendix C.1), are unfavourable. For quay walls subject to corrosion, this favourable 
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effect will also be present. However, the quay wall’s reliability level will also be negatively 
influenced by corrosion-induced degradation.

The annual failure rate of a service-proven quay wall subject to corrosion curve 
3 (Fig. 4.9) still shows a slightly downward trend after 75 years of successful service 
history. Successful service seems to reduce the remaining time-independent uncertainty. 
Consequently, it is unlikely that the end of the service life of this quay wall will be reached 
due to corrosion in the first 75 years. In this regard, the presence of the normal force 
induced by the vertical component of the anchor force plays a crucial role. It ensures that 
the stresses on the landside prevail over those on the waterside (Fig. 4.8). For quay walls 
without inclined anchors, it is highly likely that stresses on the waterside rather than the 
landside will determine the end of their service life. Furthermore, the annual reliability index 
(Fig. 4.10-B) of service-proven quay walls exposed to high corrosion rates, as in corrosion 
curves 6 and 9, will therefore continue to decrease.

4.5.2	 INFLUENCE OF REMAINING SERVICE LIFE ON PROBABILITY OF 
FAILURE OF SERVICE-PROVEN QUAY WALLS
The annual failure rate found in this chapter generally shows a downward trend in the early 
years of service (Fig. 4.8-B). However, the further evolution of the failure rates depends 
on the rate of corrosion and the number of years survived. When assessing quay walls, 
therefore, either the first or the last year of the service life will prevail, for low and high 
corrosion rates respectively. The reference period of new quay walls is presently based 
on a design lifetime of 50 years, which is quite arbitrary. Changing this reference period 
will directly affect the cumulative probability of failure (Fig. 4.10-C), since the presence of 
higher loads and a higher degree of deterioration are more likely during a longer period 
of time. Furthermore, the uncertainty of time-independent variables such as soil or yield 
strength is not significantly affected by changing the reference period. In fact, the presence 
of fairly unfavourable time-independent variables becomes increasingly unlikely as a quay 
wall ages successfully.

When assessing a service-proven quay wall, it is possible to predict the end of its 
lifetime and the associated remaining service life. But this requires adjustment of the 
reference period. If we assume that a quay will be replaced after 75 years of service, 
for instance, we can determine the remaining cumulative probability of failure given its 
successful past performance (Fig. 4.8-D). Since reliability is always related to a certain 
reference period, and the remaining service lives of different existing quay walls will probably 
differ, deriving reliability targets for the remaining lifetime does not seem very efficient. In 
general, it appears more practical to evaluate reliability on an annual basis rather than for 
longer time periods, since the latter will introduce an iterative procedure to determine the 
remaining service life.

4
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4.5.3	 EVALUATION OF ALLOWABLE STRESS-BASED METHOD TO 
ASSESS CORRODED COMBI-WALLS
Before discussing the allowable stress-based method to assess corrosion-induced 
degradation of combi-walls (Section 4.2), it is worth noting that neither yielding nor local 
buckling failures have been identified in practice. This indicates that the method is rather 
conservative, a finding also supported by the decrease found in the annual failure rate (Fig. 
4.9). Moreover, the allowable stress-based method presently features the assessment of 
single structural members, e.g. one tube in a combi-wall system. However, a combi-wall 
system generally has a some additional capacity to redistribute internal forces. As a result, 
it is almost impossible that only a single combi-tube will show yielding or local buckling. 
This redistribution has not yet been taken into account. Furthermore, despite the allowable 
stress-based method already distinguishing different corrosion zones across the height of 
the combi-wall (Fig. 4.3-A), it neglects spatial variation along the quay wall. It is therefore 
highly recommended that horizontal correlation lengths in the different corrosion zones be 
studied, because it seems unlikely that multiple tubes will show the same amount of pitting 
corrosion at the exact same position. Hence, it is expected that the actual reliability level 
of combi-walls is significantly higher.

Example
The differences between the allowable stress-based method and the probabilistic approach 
can best be discussed by presenting an example. However, our reference quay wall is 
subject to the relatively low corrosion rates of curve 3 and as a result its likely service lifetime 
is well beyond 75 years. Consequently, the end of the lifetime of the reference quay wall was 
predicted using the results from the more conservative corrosion curve 9, predominantly 
to demonstrate the differences and also to show the possible impact of corrosion on the 
stresses on the waterside. Predictions on the basis of the allowable stress approach show 
that the stresses on the waterside after approximately 50 years become higher than those 
on the landside, whereas following the probabilistic method shows that this is already likely 
after approximately 40 years (Fig. 4.12). Furthermore, the minimum required FoS is reached 
after 49 years. If we assume that the reference quay wall corresponds with RC1 of EN 1990 
(2011), the minimum annual target reliability index is exceeded after 72 years (Table 4.4). 
In other words, using the probabilistic approach results in an increase of the remaining 
service life of approximately 35%. In addition, the residual cumulative probability of failure 
for the last three years is 2.85, which is higher than the minimum target reliability indices 
presented in literature (NEN-EN 1997, 2004; NEN-EN 8700, 2011; Roubos et al., 2018). 
This example illustrates the potential benefits of performing reliability-based assessments 
to safely extend the lifetime of service-proven quay walls. However, it should be noted that 
accidental load combinations, such as earthquake-induced ground motion and extreme 
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tidal waterhead differences, were not taken into consideration in the present investigation 
(Section 1.5). Where loading events are infrequent, satisfactory past performance may not 
be a good indicator (Melchers & Beck, 2018).

Table 4.4. Exceeding of safety limits and annual reliability targets on the basis of the 
allowable stress and reliability-based assessments, respectively.

Allowable stress-based assessment Reliability-based assessment

F�S Zyield;landside Zyield;waterside Zbuckling β Zyield;landside Zyield;waterside Zbuckling

New 
design < 1.5 Year 1 Year 36 Year 1 New 

design < 4.2 Year 50 Year 43 Year 38

Intensive 
monitoring < 1.3 Year 35 Year 47 Year 29 Repair 

works < 3.8 > Year 75 Year 56 Year 66

Disapproval < 1.2 Year 61 Year 53 Year 49 Disapproval < 3.2 > Year 75 Year 72 > Year 75

1) NEN-EN 1990 (2011) and NEN-EN 1997 (2004).
2) Roubos et al. (2018).
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Fig. 4.12. Comparison of allowable stress-based (A) and reliability-based (B) assessments of 
a service-proven quay wall subject to corrosion curve 9 in the permanent immersion zone.
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4.6	 CONCLUSION AND RECOMMENDATIONS

The results of this chapter show the effect of corrosion-induced degradation on the reliability 
of service-proven combi-walls. Its most important findings are as follows:

·	 Annual failure rates and the associated reliability indices of service-proven quay 
walls are largely time-dependent. The failure rate of non-deteriorating quay walls 
decreases over time. For quay walls with successful service histories and subject 
to low corrosion rates, the highest annual reliability indices were typically observed 
in the first year of the service life, while for higher corrosion rates the final year is 
critical.

·	 The allowable stress-based method of assessing corrosion-induced degradation 
of combi-walls is conservative rather than optimistic in the case of service-proven 
quay walls.

·	 The ratio between the factor of safety and the reliability index changes over time 
and depends on the corrosion rate and the number of years survived. Hence, no 
generally applicable relationship was found.

·	 The reliability assessments performed using the calibrated Blum model show results 
similar to those from finite element-based reliability assessments.

·	 The variation coefficient of the angle of internal friction significantly influences the 
evolution of the annual failure rate over time.

Successful service, i.e. the survival of service loads, enables us to reduce time-independent 
uncertainties (Hall, 1988) such as uncertainty in soil strength of quay walls, leading to an 
increase in reliability. However, this positive effect will be less pronounced for quay walls 
exposed to rare extreme events such as earthquakes or accidental loading (Section 1.5). 
Hence, it is highly recommended that further investigation be undertaken into the influence 
of extreme events and accidental load combinations. 

A reference period of one year enables us to evaluate quay-wall reliability, while taking 
into account the effects of past performance and degradation. Moreover, within a one-
year reference period, the effects of past performance and degradation can be taken 
into account in an appropriate manner. These findings can play an important role in the 
evaluation of the reliability of an existing quay wall, since then its remaining service life and 
the associated reference period are generally unknown a priori. Hence, using annual target 
reliability indices is preferred.

Based on the findings of this chapter, the early application of a test load close to 
the characteristic/design load applied directly after completion of the structure can be 
an effective strategy to increase its reliability during its remaining service life (Hall, 1988; 
Melchers & Beck, 2018). The application of such a test load in a pre-posterior analysis is 
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therefore recommended. And if the outcomes are favourable in cost-benefit terms, so is 
the development of full-scale test protocols for new and service-proven quay walls.

Furthermore, this chapter has shown that a calibrated Blum-based crude Monte Carlo 
analysis gives quite similar results to the finite-element-based FORM approximation. It 
would therefore be very interesting to compare these results with those obtained from other 
reliability methods, e.g. using response surfaces (a.k.a. surrogate models such as kriging 
(Sudret et al., 2017)) or directional adaptive response surface sampling (DARS) (Waarts, 
2000), in order to verify the applicability of such methods for finite element-based and time-
dependent reliability assessments.

In addition, further study of the development of pitting corrosion over time (position 
and propagation) (Kolios et al., 2014; Melchers & Jeffrey, 2008) is recommended, as is work 
to clarify how the combination of uniform and pitting corrosion can be taken into account 
when assessing combi-walls, e.g. by applying random field theory. Moreover, we suspect 
that truncating the probability distribution of corrosion does not always have a negligible 
effect on the outcome. This effect is probably much greater for sheet pile walls than for 
combi-walls, and hence we do not recommend truncation of the corrosion uncertainty as 
general practice.

Finally, the results of this chapter show that time-independent uncertainty decreases 
during the early years of a quay wall’s service life. This finding can play a crucial role in 
the assessment of existing quay walls, and presumably in that of all other service-proven 
geotechnical structures. It is therefore highly recommended that practical guidelines 
be further developed, e.g. by updating the initial estimates of time-dependent random 
variables, in order to safely extend the service life of existing quay walls and other structures 
with similar features.

4
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REDUCING UNCERTAINTY 
BY ANALYSING BERTHING 
RECORDS
While ships evolve constantly, berthing velocity curves developed during the 1970s are still 
used in the design of quay walls and other types of marine structure. The main objective of 
the present chapter is to translate new field observations from the ports of Bremerhaven, 
Rotterdam and Wilhelmshaven into valuable information by statistically examining berthing 
records of large seagoing vessels. It presents new, revised design values for berthing velocity 
and the associated partial factors of safety, which can be used to assess the reliability of 
quay walls. The outline of this chapter is as follows. Section 5.2 briefly discusses the relevant 
literature, while Section 5.3 describes the collected data and the methods used to examine 
berthing records. The results are presented in Section 5.4, with reference to Appendix 
D, which includes a more detailed parametric analysis to show the correlation between 
berthing velocity and other factors, e.g. ship dimensions, environmental conditions, under-
keel clearance and number of tugs used. Section 5.5 further discusses the correlations and 
recommended partial factors of safety, after which conclusions are drawn in Section 5.6. 
Due to newly acquired insights, some historically embedded design aspects with regard to 
berthing velocity will need to be reconsidered.

This chapter is based on the following publications. Roubos, A. A., Peters, D. J., Groenewegen, 
L., & Steenbergen, R.D.J.M. (2018), Partial Safety Factors for Berthing Velocity and Loads on 
Marine Structures. Marine Structures 58, pp.73-91. 
Roubos, A. A., Groenewegen, L., & Peters, D.J. (2017), Berthing velocity of large seagoing 
vessels in the port of Rotterdam, Marine Structures 51, pp. 202-219.
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ABSTRACT

Whilst design methods for quay walls have evolved into load and resistance factor design, 
existing partial factors of safety related to berthing velocity and loads have still not been 
verified and validated by measurement campaigns. In this chapter, field observations of 
modern seagoing vessels berthing at Bremerhaven, Rotterdam and Wilhelmshaven are 
used to evaluate partial factors of safety for berthing energy and berthing impact loads. 
Various types of vessel and navigation conditions are examined statistically. The results 
show that characteristic values of berthing velocity with a return period of 50 years are in line 
with design recommendations in literature. Design values of berthing velocity are sensitive 
to the number of berthing operations during the lifetime of a quay wall. Typical partial factors 
of safety for sheltered and exposed navigation conditions are derived by extrapolating 
distribution fits and applying extreme value theory. The probability of an uncontrolled 
berthing event is higher for exposed navigation conditions (strong tidal currents). In these 
circumstances, higher partial factors of safety for berthing velocity should be considered in 
the design of quay walls. When berthing aid systems are used, the probability of extreme 
berthing velocities is lower, resulting in lower partial factors of safety. The key findings of 
this chapter could be beneficial for the structural design of new quay walls and other types 
of marine structure and for the lifetime extension of existing ones.
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5.1	 INTRODUCTION

Numerous marine structures, such as quay walls, jetties and flexible dolphins, have been 
constructed all over the world to accommodate ships’ berthing, mooring and loading 
operations. During the service life of a quay wall, its functional requirements may change. 
These changes often result in uncertainty regarding actual berthing energy and structural 
integrity, especially if the size of vessels using existing berthing facilities increases. Existing 
design guidance for assessing berthing energy, such as PIANC (2002), British Standards 
(BS 6349-4, 2016), the German EAU 2012 (Grabe, 2012) and the Spanish ROM (ROM 02-90, 
1990), suggest applying an overall safety margin. But these guidelines do not include partial 
factor analyses of individual berthing parameters and their individual contributions to the 
uncertainty in berthing energy. It is often unclear how resultant fender forces derived from 
such analyses should be applied in accordance with the safety philosophy of Eurocode 
standards (NEN-EN 1990, 2011), which predominantly recommend applying a partial factor 
of safety to characteristic values of loads and resistance.

Metzger et al. (2014) state that load demands on berthing structures are not well 
understood due to a lack of information about berthing parameters. Hence, there is a strong 
need to determine design values of berthing parameters and partial factors of safety by 
using field observations. Although design guidelines recommend collecting sophisticated 
berthing records, little data of this kind is available. Ueda et al. (2010) have shown that 
berthing velocity is the most important design variable in defining berthing energy. The port 
authorities of Bremerhaven (Hein, 2014) and Rotterdam (Appendix D.1) therefore decided 
to start a measurement campaign for berthing velocity in order to evaluate and validate 
the performance of existing quay walls and the design guidance of EAU and PIANC. They 
wanted to know whether the berthing velocity curves of EAU and PIANC, as presented in 
Fig. 5.1, are still representative of and safe for modern vessels.

5
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Fig. 5.1. Berthing velocity curves of PIANC 2002 (Brolsma curves) and EAU 2012 as a function 
of navigation conditions and vessel size.

The statistical meaning of berthing velocity curves is often unknown to or misinterpreted by 
designers and code writers of marine structures (Beckett Rankine, 2010). Where berthing 
records are available, existing design guidelines do not provide explicit recommendations 
with regard to the statistical examination of berthing velocities. For the most part, therefore, 
it is not clear how to use field observations.

This chapter aims to provide guidance to code developers and engineers on the use of 
field observations and the derivation of partial factors of safety for berthing velocity and loads 
on quay walls. The main focus is on deriving characteristic values and associated partial 
factors of safety for berthing velocity, because this is the dominant variable in assessing 
berthing impact (Ueda et al., 2010) on quay walls. Recently recorded field observations of 
berthing velocities in the ports of Bremerhaven, Rotterdam and Wilhelmshaven are used to 
determine theoretical design berthing velocities and corresponding partial factors of safety 
in accordance with the Eurocode standard (NEN-EN 1990, 2011). The characteristic and 
design berthing velocities found are compared with the design guidance presently in use. 
Furthermore, partial factors of safety have been derived using large datasets for sheltered 
and exposed navigation conditions. The results of this chapter show that further research 
could introduce new business and other opportunities by, for example, allowing larger 
vessels to berth at existing quay walls and/or extending the service life of these marine 
structures.
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5.2	 BERTHING VELOCITY IN LITERATURE

5.2.1	 GENERAL PRINCIPLES OF BERTHING ENERGY AND IMPACT
The objective of this section is to elucidate the general principles of and methods used to 
account for berthing energy and the resulting berthing impact loads in structural design. 
Berthing energy is generally calculated on the basis of a large number of parameters, in 
line with the following equation:
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Fig. 5.1. Berthing velocity curves of PIANC 2002 (Brolsma curves) and EAU 2012 as a function of 
navigation conditions and vessel size. 
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5.2 Berthing velocity in literature  

5.2.1 General principles of berthing energy and impact  
The objective of this section is to elucidate the general principles of and methods used to account for berthing 
energy and the resulting berthing impact loads in structural design. Berthing energy is generally calculated on the 
basis of a large number of parameters, in line with the following equation: 
 

 𝐸𝐸™â9 = 1
2𝑀𝑀𝑣𝑣Õ	𝐶𝐶q𝐶𝐶v𝐶𝐶c𝐶𝐶V (73)  

Where: 
Ekin  Kinetic energy [kNm]  

 M Mass of vessel/water displacement [tonnes] 
 ν Total translation velocity of centre of mass at time of first contact (includes component 

 parallel and perpendicular to berthing line) [m/s] 
	 Cm Virtual mass factor [-] 
	 Cs Ship flexibility factor [-] 
	 Cc Waterfront structure attenuation factor [-] 

(73)

Where:
Ekin	 Kinetic energy [kNm]
M	 Mass of vessel/water displacement [tonnes]
ν	 Total translation velocity of centre of mass at time of first contact 

(includes component parallel and perpendicular to berthing line) 
[m/s]

Cm	 Virtual mass factor [-]
Cs	 Ship flexibility factor [-]
Cc	 Waterfront structure attenuation factor [-]
CE	 Eccentricity factor [-]

Eq. (73) is embedded in most design guidelines, or they refer to PIANC (2002). PIANC 
berthing velocity curves are widely used by the industry to determine ‘normal’ berthing 
energy. Given a normal berthing energy, an abnormal berthing impact factor C𝑎b is applied 
to derive an abnormal berthing energy. In fact, C𝑎b is an overall safety margin, but since the 
introduction of the Eurocodes this has been used as a partial factor of safety for variable 
berthing impact loads together with design values of resistance parameters.
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 𝐸𝐸MS9ä=qMN = 𝐶𝐶MS𝐸𝐸9ä=qMN (74)  
Where: 

Eabnormal   Abnormal berthing energy [kNm] 
Cab   Abnormal berthing factor [-] 
Enormal	  Normal berthing energy [kNm] 

 
The berthing impact load F	to which a quay wall is subjected is a function of the kinetic energy absorbed by the 
berthing system and of its deformation characteristics δ. Given a certain berthing velocity, the resulting berthing 
impact load largely depends on the stiffness of the structure and the soil conditions (ROM 02-90, 1990).  
 

 𝐸𝐸™â9 = 	 𝐹𝐹 𝛿𝛿 𝑑𝑑𝛿𝛿&Ú°'
f   (75)  

The deformation characteristics of a berthing system can be linear or non-linear. Eq. (79) shows that a berthing 
impact load in a linear system (e.g. flexible dolphins without fenders) is proportional to berthing velocity. The effect 
of linear and non-linear behaviour is further discussed in Section 5.5.1. In the case of linear-elastic behaviour, a 
berthing impact load can generally be derived by applying the following equations:  
 

 𝐸𝐸™â9 =
1
2
𝐹𝐹𝛿𝛿 (76)  

 𝛿𝛿 =
𝐹𝐹
𝑘𝑘

 (77)  

 
 𝐹𝐹 = 2𝐸𝐸™â9𝑘𝑘 (78)  

 
 𝐹𝐹 𝐹 𝑣𝑣	 𝑀𝑀𝑀𝑀𝑀q	𝐶𝐶v	𝐶𝐶c	𝐶𝐶>𝑘𝑘 (79)  

Where: 
F  Berthing impact load [kN]  

 δ Deflection of berthing structure [m] 
 k Stiffness of berthing structure and soil [kN/m] 
 
Eurocode standards do not recommend using an overall safety margin, but advise applying partial factors of safety 
to characteristic design variables. Partial factors of safety are predominantly related to both loads and resistance. 
Within the framework of this chapter, the load component is of particular interest and partial load factors define the 
ratio between the design value for load Sd and its characteristic value Sk.  
  

 𝑆𝑆b = 𝛾𝛾·𝑆𝑆™ (80)  
 
Where: 

Sd Design value for variable load [kN] 
Sk  Characteristic value for variable load [kN] 
γQ  Partial factor of safety for variable load [-] 

 
It should be noted that the partial factor for variable loads	γQ already takes account of the possibility of unfavourable 
deviations as well as uncertainties in modelling the effects of loads.  
 
5.2.2 Return periods of berthing velocity curves 
The berthing velocity curves presented in Fig. 5.1 are frequently used to determine berthing impact loads in the 
design of quay walls. In this section, return periods of berthing velocity curves in literature are summarised in order 
to provide an insight into the reliability of berthing impact loads used in practice. 
 
The German recommendations for waterfront structures, EAU 2012 (Grabe, 2012), do not include information on 
the reliability of velocity curves but instead refer to ROM 0.2-90 (1990). The berthing velocity tables of the Spanish 
ROM appear to be based on a return period of 50 years. The general recommendation of the Japanese OCDI 

(74)

Where:
E𝑎bnorm𝑎l	 	Abnormal berthing energy [kNm]
C𝑎b	 	Abnormal berthing factor [-]
Enorm𝑎l	 	Normal berthing energy [kNm]

The berthing impact load F  to which a quay wall is subjected is a function of the kinetic 
energy absorbed by the berthing system and of its deformation characteristics δ. Given a 
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certain berthing velocity, the resulting berthing impact load largely depends on the stiffness 
of the structure and the soil conditions (ROM 02-90, 1990).
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Where:
Sd	 Design value for variable load [kN]
Sk	 Characteristic value for variable load [kN]
γQ	 Partial factor of safety for variable load [-]

It should be noted that the partial factor for variable loads γQ already takes account of the 
possibility of unfavourable deviations as well as uncertainties in modelling the effects of loads.
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5 .2.2 RETURN PERIODS OF BERTHING VELOCITY CURVES
The berthing velocity curves presented in Fig. 5.1 are frequently used to determine berthing 
impact loads in the design of quay walls. In this section, return periods of berthing velocity 
curves in literature are summarised in order to provide an insight into the reliability of 
berthing impact loads used in practice.

The German recommendations for waterfront structures, EAU 2012 (Grabe, 2012), 
do not include information on the reliability of velocity curves but instead refer to ROM
0.2-90 (1990). The berthing velocity tables of the Spanish ROM appear to be based on a 
return period of 50 years. The general recommendation of the Japanese OCDI (2009) and 
Eurocode NEN-EN 1990 (2011) do not cover this topic. Brolsma’s original curves have been 
reproduced and slightly modifi ed over time, and published in PIANC (2002) and BS 6349-4
(2014). The authors noted that Brolsma’s berthing velocity curves are often not applied 
correctly. In particular, the term ‘mean design’, included in PIANC 2002, is misinterpreted. 
This value is not equal to the mean berthing velocity of a vessel. Scrutiny of the original 
Brolsma paper reveals that the measurements were extrapolated. The associated berthing 
velocity curves were derived for a berthing frequency of 3000 vessels during a reference 
period of 30 years. This is equal to 100 berthings per year, assuming two very large crude 
carrier (VLCC) vessels per week.
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Fig. 5.2. Extrapolation of 150 measurements derived by Brolsma et al. (1977).

Fig. 5.2 was included in the original paper by Brolsma et al. (1997) and shows an 
extrapolation of berthing velocities up to 3000 berthings. Brolsma showed that the average 
value (solid line representing the 0.50 quantile in Fig. 5.2) of a VLCC tanker (265,000 DWT) 
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in a reference period of 30 years was approximately 7 cm/s. The berthing velocities with a 
5% probability of exceedance in a reference period of 30 years (dashed lines representing 
the 0.95 quantile in Fig. 5.2) were approximately 10 cm/s and 16 cm/s for VLCC tankers and 
Aframax tankers (120,000 DWT), respectively. A reference period close to 30 years is in line 
with industry practice values for the design lifetime of a quay wall in the 1970s. An overview 
of return periods of berthing velocity curves in relevant literature is given in Table 5.1.

Table 5.1. Overview of return periods of berthing velocity curves in literature.

SI PIANC BS 6349-4 EAU ROM OCDI NEN-EN 1990

(2002) (2014) (2012) (1990) (2009) (2011)

TR year 301 301 502 50 - -

1) Based on berthing frequency published by Brolsma et al. (1997).
2) Based on ROM 0.2-90 (1990).

5.2.3	 ABNORMAL BERTHING AND LOAD FACTORS
When the backgrounds of the berthing velocity curves are known, the abnormal berthing 
factors C𝑎b and partial factors of safety γQ are compared in order to gain an insight into 
the actual reliability of relevant literature. Given a general cargo vessel, BS 6394-4 (2014) 
recommends using an abnormal berthing factor equal to C𝑎b=1.5. For LNG, LPG and ferries, 
C𝑎b=2.0 is recommended. EAU 2012 (Grabe, 2012) recommends applying a factor of safety 
to characteristic berthing energy to account for exceptional berthing manoeuvres. These 
factors of safety correspond to the abnormal berthing factors in PIANC (2002). An overview 
of abnormal berthing factors in literature is given in Table 5.2.

Table 5.2. Abnormal berthing factor Cab in literature.

Ship type Size PIANC EAU BS 6349-4 ROM OCDI NEN-EN 1990

(2002) (2012) (2014) (1990) (2009) (2011)

Tankers Largest-smallest 1.25-2.00 1.25-2.001 - 2.00 - -
Bulkers Largest-smallest 1.25-2.00 1.25-2.001 - 2.00 - -
Container Largest-smallest 1.50-2.00 1.50-2.001 - 2.00 - -
General Cargo - 1.75 1.751 1.502 2.00 - -
Roro, ferries - ≥ 2.00 ≥ 2.001 - 2.00 - -
Tugs, 
workboats

- 2.00 2.001 - 2.00 - -

LNG, LPG - - - 2.00 2.00 - -
Island berth - - - 2.00 2.00 - -

1) Based on PIANC (2002).
2) Continuous quay handling of conventional cargo vessels.
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As indicated, berthing energy is absorbed by the deflection of a marine structure and 
the hull of a vessel, resulting in a berthing impact load on the marine structure. BS 6349-4 
(2014) therefore recommends also applying additional partial factors of safety to a resulting 
berthing impact load. The partial factors for normal and abnormal berthing impact loads 
are γQ=1.35 (persistent situation) and γQ=1.2 (transient situation), respectively.

BS 6394-1-2 (2016) considers an uncontrolled berthing procedure to be an accidental 
design situation, and so the consequences of failure of a fender system being overloaded 
(e.g. direct and indirect future losses) must be taken into consideration. According to the 
British Standards, typical return periods of extreme environmental events for permanent 
structures are 50-100 years in persistent design situations and 500-1000 years in accidental 
ones. The recommended design lifetimes for quay walls and fender systems are 50 and 
15 years, respectively. Replacement of fenders during the lifetime of the structure is thus 
considered normal practice.

The German EAU 2012 distinguishes permanent, transient and accidental design 
situations and is consistent with Eurocode NEN-EN 1990 (2011). The partial factors of 
safety γQ of loading classes 1, 2 and 3 for unfavourable variable loads are 1.0, 1.3 and 1.5, 
respectively. No exceptional/accidental berthing impacts (collisions/loss of control) need 
to be taken into consideration. The partial factors of safety for loads related to berthing 
manoeuvres in the design of quay walls are in line with these values, but the partial factors 
in the design of flexible dolphins are all set at 1.0 in accordance with Table R218-1 of EAU 
2012 (Grabe, 2012).

The Spanish ROM 0.2-90 (1990) determines berthing loads as variable dynamic impact 
loads and also accounts for accidental berthing impacts (mechanical failures of tugs or 
vessels, mooring line breakage, sudden environmental condition changes, human error, 
etc.). Typical return periods of accidental impact loads are 1000 years and they are classified 
as ‘abnormal’ impacts. In this case, it is recommended that a factor of safety for berthing 
energy of C𝑎b=2.0 be applied. The recommended partial factor of safety for a berthing 
impact load is γQ=1.5, which needs to be combined with other permanent and variable 
loads on marine structures (ROM 0.0, 2002).

The Japanese OCDI design code for marine structures considers serviceability, 
restorability and safety (Nagao et al., 2009). Its design philosophy emphasises minimum 
port performance requirements and does not prescribe reliability standards. The general 
recommendation is to use a return period of 50 years for the derivation of characteristic 
variable loads. The OCDI suggests that a variable action with an annual exceedance 
probability of at least 1% should be the basic performance requirement. In fact, this 
probability is a threshold and represents a minimum return period of 100 years. The OCDI 
recommends using the threshold carefully, as it is only a guide for situations in which a 
design working life is in accordance with design standards.

5
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Eurocode NEN-EN 1990 (2011) does not provide specific recommendations for the 
design of marine structures. In the case of environmental loads, a characteristic value with a 
return period of 50 years is recommended. The partial factors of safety γQ of reliability classes 
RC1, RC2 and RC3 are 1.35, 1.5 and 1.65 for unfavourable variable loads, respectively. An 
overview of return periods TR and partial factors of safety γQ in literature is given in Table 5.3.

Table 5.3. Return periods and partial factors of variable and berthing impact loads in 
literature.

SI PIANC BS 6394-1-2 EAU ROM OCDI EN 1990

(2002) (2015) (2012) (1990) (2009) (2011)

Variable loads (in general) 1

TR SLS Year - 50-100 50 50 50 50
TR ALS Year - 500-1000 - 1000 - -2

γQ ULS - - 1.35-1.50 1.3-1.5 1.50 - 1.35/1.5/1.65
Berthing impact
γQ (persistent) - - 1.35 1.003 - - -
γQ (transient) - - 1.20 1.003 - - -

1) Design codes do not uniformly describe SLS, ULS and ALS and are not completely consistent.
2) In the case of earthquakes, characteristic values with return periods in the range of 475-2475 years 
are recommended.
3) In the case of flexible dolphins.

5.3	 METHODS TO EXAMINE BERTHING VELOCITY

5.3.1	 DATA COLLECTION
Approximately 1393 records of berthing operations were collected in Germany and about 
555 Netherlands (Appendix D.1). The field observations regarding these berthing operations 
are further described by Hein (2014) and in Appendix D.1. Various types of vessel, berth and 
navigation conditions were represented in the datasets. All berthing records were collected 
in well-organised port environments, namely Bremerhaven (1235), Rotterdam (555) and 
Wilhelmshaven (158). An overview of the collected data is given in Table 5.4. The berths in 
Bremerhaven were classified as exposed and berthing operations seemed to be influenced 
by strong tidal currents; the tidal range there is typically about 3.8 m, with tidal currents of 
2.5-3.5 knots. All other berths were classified as sheltered.
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Table 5.4. Overview of field observations of berthing velocity.

Ship type
[-]

n
[-]

vµ
[cm/s]

vmax
[cm/s]

Berth type
[-]

Berthing aids
[-]

Wind
[-]

Waves
[-]

Current
[-]

Container □ 177 4.0 10 Closed quay None High Sheltered Low

Tanker ○ 329 4.3 12 Jetty/dolphin PPU/docking 
system High Sheltered Low

Bulker ◊ 144 4.4 13 Closed quay Portable pilot 
units High Sheltered Low

Container □ 1235 6.6 26 Closed quay None High Exposed High

The vessels were differentiated by ship type into container vessels, tankers and 
bulkers. They were then further differentiated into specific vessel classes in order to illustrate 
their differences or similarities. The classification was based largely on the international 
Lloyds database of vessels. All container vessels berthed at closed quay walls equipped 
with either hard buckling or soft cylindrical fender systems. Bulkers berthed at closed quay 
walls equipped with rigid timber beams. The tanker berths were equipped with flexible 
breasting dolphins fitted with buckling fender systems. Studies by Yamase et al. (2014) and 
Appendix D.1 have shown that berthing velocities are not influenced by the type of marine 
structure being berthed or the type of fendering used.

5.3.2	 PARTIAL FACTORS OF SAFETY
A probabilistic study by Ueda et al. (2010) showed that the contribution of berthing velocity to 
the uncertainty in kinetic berthing energy was approximately 85%, indicating that factors of 
safety should be applied predominantly to berthing velocity. When defining kinetic berthing 
energy, berthing velocity is assumed to be the only stochastic variable in Eq. (73). The partial 
factors of safety derived in the present chapter were therefore applied to a characteristic 
value of berthing velocity. The partial factor γv was defined as the ratio between a design 
berthing velocity 𝑣d and a characteristic berthing velocity 𝑣k. The following equation was 
then used to determine partial factors of safety for berthing velocity:

 
79 

 

 
5.3 Methods to examine berthing velocity 

5.3.1 Data collection 
Approximately 1393 records of berthing operations were collected in Germany and about 555 Netherlands 
(Appendix D.1),. The field observations regarding these berthing operations are further described by Hein (2014) 
and in Appendix D.1. Various types of vessel, berth and navigation conditions were represented in the datasets. All 
berthing records were collected in well-organised port environments, namely Bremerhaven (1235), Rotterdam (555) 
and Wilhelmshaven (158). An overview of the collected data is given in Table 5.4. The berths in Bremerhaven were 
classified as exposed and berthing operations seemed to be influenced by strong tidal currents; the tidal range 
there is typically about 3.8 m, with tidal currents of 2.5-3.5 knots. All other berths were classified as sheltered.  
 
Table 5.4. Overview of field observations of berthing velocity.  

Ship	type	
[-]	

	 n	
[-]	

vµ	
[cm/s]	

vmax	
[cm/s]	

Berth	type	
[-]	

Berthing	aids	
[-]	

Wind	
[-]	

Waves	
[-]	

Current	
[-]	

Container	 □	 177	 4.0	 10	 Closed	quay		 None	 High	 Sheltered	 Low	

Tanker	 ○	 329	 4.3	 12	 Jetty/dolphin	 PPU/docking	system	 High	 Sheltered	 Low	

Bulker	 ◊	 144	 4.4	 13	 Closed	quay	 Portable	pilot	units	 High	 Sheltered	 Low	

Container	 □	 1235	 6.6	 26	 Closed	quay		 None	 High	 Exposed	 High	
 
The vessels were differentiated by ship type into container vessels, tankers and bulkers. They were then further 
differentiated into specific vessel classes in order to illustrate their differences or similarities. The classification was 
based largely on the international Lloyds database of vessels. All container vessels berthed at closed quay walls 
equipped with either hard buckling or soft cylindrical fender systems. Bulkers berthed at closed quay walls equipped 
with rigid timber beams. The tanker berths were equipped with flexible breasting dolphins fitted with buckling fender 
systems. Studies by Yamase et al. (2014) and Appendix D.1 have shown that berthing velocities are not influenced 
by the type of marine structure being berthed or the type of fendering used. 
 
5.3.2 Partial factors of safety  
A probabilistic study by Ueda et al. (2010) showed that the contribution of berthing velocity to the uncertainty in 
kinetic berthing energy was approximately 85%, indicating that factors of safety should be applied predominantly to 
berthing velocity. When defining kinetic berthing energy, berthing velocity is assumed to be the only stochastic 
variable in Eq. (73). The partial factors of safety derived in the present chapter were therefore applied to a 
characteristic value of berthing velocity. The partial factor γv was defined as the ratio between a design berthing 
velocity vd and a characteristic berthing velocity vk. The following equation was then used to determine partial factors 
of safety for berthing velocity:  
 

 𝛾𝛾á =
𝑣𝑣b
𝑣𝑣™
	 (81)  

Where: 
γv  Partial factor of safety for berthing velocity [-] 
vd Design value of berthing velocity [cm/s] 
vk  Characteristic value of berthing velocity [cm/s] 

 
Characteristic and design berthing velocities were considered to be extreme events and were derived by 
extrapolating distribution fits and applying extreme value theory. For this chapter, characteristic berthing velocities 
had a return period of 50 years, representing a time-variant berthing velocity with a 2% probability of being exceeded 
during a reference period of one year. It should be noted that this is not equal to a 2% probability that a single 
berthing operation will exceed the characteristic berthing velocity. This insight is important, since a quay wall 
accommodates multiple vessels per year. It is further emphasised that a return period is not the same as a reference 
period. The probability that an event with a return period of 50 years will occur in a reference period of one year is 
2%, and in a reference period of 50 years it is 63.5%.  
 
A design value for berthing velocity is typically selected such that a quay wall has sufficient reliability (or a sufficiently 
low probability of failure). Assuming a normal distribution, this is written as follows: 
 

 𝑃𝑃2 = Φ(−�b)	or	�b = Φ./(𝑃𝑃2)	 (82)  
 
Where: 

Pf  Probability of failure of an event [-] 
 βd Target reliability index [-] 

(81)

Where:
γv	 Partial factor of safety for berthing velocity [-]
𝑣d	 Design value of berthing velocity [cm/s]
𝑣k	 Characteristic value of berthing velocity [cm/s]
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Characteristic and design berthing velocities were considered to be extreme events 
and were derived by extrapolating distribution fits and applying extreme value theory. For 
this chapter, characteristic berthing velocities had a return period of 50 years, representing 
a time-variant berthing velocity with a 2% probability of being exceeded during a reference 
period of one year. It should be noted that this is not equal to a 2% probability that a single 
berthing operation will exceed the characteristic berthing velocity. This insight is important, 
since a quay wall accommodates multiple vessels per year. It is further emphasised that 
a return period is not the same as a reference period. The probability that an event with 
a return period of 50 years will occur in a reference period of one year is 2%, and in a 
reference period of 50 years it is 63.5%.

A design value for berthing velocity is typically selected such that a quay wall has 
sufficient reliability (or a sufficiently low probability of failure). Assuming a normal distribution, 
this is written as follows:
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
 

 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 = 𝐶𝐶2𝑃𝑃2;f 𝛽𝛽 + 𝐶𝐶2 ∙
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/ü= d
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
 

 𝐶𝐶Cä'MN �'( = 𝐶𝐶Ü9á>v'q>9'v �'( + 𝐶𝐶ãåçéèåêéëíìîéëï �'(    (19)  

 𝐶𝐶Cä'MN �'( = 𝐶𝐶f + 𝐶𝐶q�'( + 𝐶𝐶2 1 − Φ/
S + 𝐶𝐶2𝑐𝑐 Φ/

S − Φ/
/. cm(

° d456

/.¢m(
°    (20)  

 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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Where:
Pf	 Probability of failure of an event [-]
βd	 Target reliability index [-]
Φ-1

	 Inverse of standard normal distribution function [-]

Target reliability indices βd are generally prescribed in design codes, such as the 
Eurocode standards (NEN-EN 1990, 2011). The derivation of design berthing velocities 
with a probability of exceeding a certain threshold is further explained in Section 5.3.4, in 
accordance with the following principle:
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 Φ-1 Inverse of standard normal distribution function [-] 
 
Target reliability indices βd are generally prescribed in design codes, such as the Eurocode standards (NEN-EN 
1990, 2011). The derivation of design berthing velocities with a probability of exceeding a certain threshold is further 
explained in Section 5.3.4, in accordance with the following principle: 
 

 P 𝑣𝑣 > 𝑣𝑣b	 = 𝛷𝛷(−αB�b)	 (83)  
Where: 

v Berthing velocity [cm/s] 
vd Design value of berthing velocity [cm/s] 
αS Sensitivity factor for dominating load/solicitation [-] 

 
When establishing extreme berthing velocities from field observations, the size of the datasets was of significant 
importance, especially as the objective was to derive a set of generalised partial factors of safety. Partial factors 
are preferably derived using large datasets, because extreme berthing velocities are influenced by the fit of the low 
probability tail of an extreme value distribution to field observations. In the present chapter, three large datasets 
were developed, namely ‘All tankers’, ‘All sheltered’ and ‘All exposed’. ‘All tankers’ is a subset of ‘All sheltered’ and 
represents the use of berthing aid systems, such as portable pilot units (PPU) and fixed shore-based laser docking 
systems. The use of berthing aid systems should reduce the probability of extreme/uncontrolled berthing events. 
Moreover, the available data was subdivided into ‘sheltered’ and ‘exposed’ navigation conditions. An overview of 
the datasets is given in Table 5.5.  
 
Table 5.5. Large datasets. 

Large	
datasets	
[-]	

n	
[-]	

vµ	
[cm/s]	

vmax	
[cm/s]	

Berth	type	
[-]	

Berthing	aids	
[-]	

Wind	
[-]	

Waves	
[-]	

Current	
[-]	

All	tankers	○1	 392	 4.6	 12	 Open	 PPU/docking	system	 High	 Sheltered	 Low	

All	sheltered	
∆	

713	 4.4	 13	 Mixture	 Mixture	 High	 Sheltered	 Low	

All	exposed	□	 1235	 7.1	 26	 Closed		 None	 High	 Exposed	 High	

All	data	 1948	 6.6	 26	 Mixture	 Mixture	 High	 Mixture	 Mixture	
1) Dataset is a subset of ‘All sheltered’. 
 
5.3.3 Data analysis 
This section describes the methods used to derive berthing velocities with low probabilities of exceedance in order 
to determine partial factors of safety. In Appendix D.1 and in the OCDI (2009). field observations of single berthing 
velocities are examined statistically. Both studies show that a distribution fit of the low-probability tail is closer to a 
Weibull distribution F(x;λ,k) than to a normal or lognormal distribution. For this chapter, the collected berthing 
velocities were therefore described using a Weibull distribution fit on the basis of maximum likelihood estimation. 
Typical distribution fits for all ‘sheltered’ and ‘exposed’ data are illustrated in Fig. 5.3 and Fig. 5.4.  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
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The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
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where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
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  dimensions [-] 
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time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
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(83)

Where:
𝑣	 Berthing velocity [cm/s]
𝑣d	 Design value of berthing velocity [cm/s]
αS	 Sensitivity factor for load/solicitation [-]. When the load is a 

dominant variable this factor equals -0.7. For non-dominant 
loads this factor equals -0.28 (ISO 2394, 2015).

When establishing extreme berthing velocities from field observations, the size of 
the datasets was of significant importance, especially as the objective was to derive a set 
of generalised partial factors of safety. Partial factors are preferably derived using large 

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   142 28-08-19   12:45



143

Reducing uncertainty by analysing berthing records

datasets, because extreme berthing velocities are influenced by the fit of the low probability 
tail of an extreme value distribution to field observations. In the present chapter, three 
large datasets were developed, namely ‘All tankers’, ‘All sheltered’ and ‘All exposed’. ‘All 
tankers’ is a subset of ‘All sheltered’ and represents the use of berthing aid systems, such 
as portable pilot units (PPU) and fixed shore-based laser docking systems. The use of 
berthing aid systems should reduce the probability of extreme/uncontrolled berthing events. 
Moreover, the available data was subdivided into ‘sheltered’ and ‘exposed’ navigation 
conditions. An overview of the datasets is given in Table 5.5.

Table 5.5. Large datasets.

Large 
datasets
[-]

n
[-]

vµ
[cm/s]

vmax
[cm/s]

Berth type
[-]

Berthing aids
[-]

Wind
[-]

Waves
[-]

Current
[-]

All tankers ○1 392 4.6 12 Open PPU/docking 
system High Sheltered Low

All sheltered ∆ 713 4.4 13 Mixture Mixture High Sheltered Low
All exposed □ 1235 7.1 26 Closed None High Exposed High
All data 1948 6.6 26 Mixture Mixture High Mixture Mixture

1) Dataset is a subset of ‘All sheltered’.

5.3.3	 DATA ANALYSIS
This section describes the methods used to derive berthing velocities with low probabilities 
of exceedance in order to determine partial factors of safety. In Appendix D.1 and in the 
OCDI (2009), field observations of single berthing velocities are examined statistically. 
Both studies show that a distribution fit of the low-probability tail is closer to a Weibull 
distribution F(x;λ,k) than to a normal or lognormal distribution. For this chapter, the collected 
berthing velocities were therefore described using a Weibull distribution fit on the basis of 
maximum likelihood estimation. Typical distribution fits for all ‘sheltered’ and ‘exposed’ data 
are illustrated in Fig. 5.3 and Fig. 5.4.

5
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Fig. 5.3. Histogram and probability density functions of all ‘sheltered’ berthing records 
(n=713).
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Fig. 5.4. Histogram and density functions of all ‘exposed’ berthing records (n=1235).

Characteristic and design berthing velocities were derived on the basis of extreme value 
theory, using the following methods.

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   144 28-08-19   12:46



145

Reducing uncertainty by analysing berthing records

·	 A direct assessment performed by extrapolating the Weibull distribution fit to the 
original dataset.

·	 An indirect assessment based on the use of normal distributions only, in line with 
the method often used for load extrapolations as per the Eurocode by applying a 
two-step extreme value analysis of annual and lifetime maxima.

The first method was based on the extrapolation of a distribution fit to the original data. 
Assuming that the number of berthings per year and the required target reliability during a 
certain reference period are known, characteristic 𝑣k and design berthing velocities 𝑣d were 
established by extrapolating the Weibull distribution fit. The probability that a berthing velocity 
X was higher than a particular berthing velocity x was calculated by generating corresponding 
berthing velocities directly from the Weibull distribution function P(X > x)=1-F(x):
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Where: 

F(..) Probability distribution function [-]  
x Berthing velocity [cm/s] 
µ Mean value [cm/s]  
σ Standard deviation [cm/s] 
λ Scale parameter in Weibull distribution [cm/s]  
k Shape parameter in Weibull distribution [-]  
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The parameters x1,…x2 represent field measurements of berthing velocities ν1,…v2 and were assumed to be 
independent Weibull distributed random variables: 
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From the typical Weibull distribution fit, random berthing velocities corresponding to a certain reference period were 
generated. The maximum berthing velocities during this reference period were selected and stored. 
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This process was repeated at least 200 times to ensure an appropriate population of maximum berthing velocities. 
In this way a new distribution of maxima was formed, which appeared to be a normal distribution (Fig. 5.5). The fit 
to the tail of this distribution was of significant importance when deriving berthing velocities with low probabilities of 
occurrence. The dark blue dashed line in Fig. 5.5 is the distribution of annual maxima and represents the distribution 
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Chapter 5

The second method is based on extreme value theory and is suggested in the 
Implementation of Eurocodes handbook (Leonardo da Vinci Pilot Project, 2005). In the 
case of time-dependent loads, distributions of annual and lifetime maxima were used to 
account for alternative reference periods or target reliability indices in order to determine and 
generalise partial factors of safety. In this study, the probability that all berthing operations 
during a certain reference period would be lower than or equal to a particular berthing 
velocity was calculated by examining distributions of extreme berthing velocities. As in the 
Eurocodes, the extreme value distributions were called distributions of annual and lifetime 
maxima. The following general mathematical principles of extreme value theory were applied:
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This process was repeated at least 200 times to ensure an appropriate population of 
maximum berthing velocities. In this way a new distribution of maxima was formed, which 
appeared to be a normal distribution (Fig. 5.5). The fit to the tail of this distribution was of 
significant importance when deriving berthing velocities with low probabilities of occurrence. 
The dark blue dashed line in Fig. 5.5 is the distribution of annual maxima and represents 
the distribution of maximum berthing velocities during a reference period of one year. The 
red dashed line is the lifetime maxima and represents the maximum berthing velocity during 
a reference period of 50 years.
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Fig. 5.5. Distribution of annual and lifetime maxima (tref=50 years)for VLCC vessels at 
Rotterdam.

It should be noted that the second method was also influenced by the number of 
berthings during a certain reference period. An increase in berthings resulted in an increase 
in the mean value and a decrease in the coefficient of variation. This insight is essential to 
interpret the results of extreme value theory and the influence of berthing frequency.

5.3.4	 CHARACTERISTIC AND DESIGN BERTHING VELOCITIES
The magnitude of extreme berthing velocities largely depends on the number of berthings 
during a certain reference period. Some design codes explicitly provide recommendations 
on target reliability βd index and other codes on return period TR. Given a target reliability 
index for a certain reference period, the corresponding return period was calculated with 
the following equations:
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Where: 
Pd Lifetime probability of failure of an event [-] 

 TR Return period of variable load [years] 
tref Reference period [years] 
αS Sensitivity factor for dominating load/solicitation [-] 
βd Prescribed target reliability index [-] 
 

In this study, the principles of ISO 2394 (2015) were applied in order to comply with existing design codes and 
standards. The safety philosophies of Eurocodes (NEN-EN 1990, 2011) and OCDI (2009) are both based on the 
principles of ISO 2394, and British Standards, EAU and ROM are consistent with Eurocodes. ISO 2394 
recommends applying sensitivity factors to dominant and non-dominant loads. In this study, both load and strength 
were assumed to be important and only dominant loads were taken into consideration. Non-dominating loads were 
not taken into account because, in the case of load combinations, modern design codes generally recommend 
applying a set of combination factors to transform dominating loads into non-dominating loads. The importance of 
berthing velocity was expressed by applying a sensitivity factor αS=-0.7 to dominating variable loads. It should be 
noted that αS has a negative value and could be verified by a probabilistic assessment. Consequently, the probability 
of a dominating variable berthing velocity exceeding a design berthing velocity was evaluated by Eq. (83). 
  
Eurocode standard EN 1990 defines target reliability indices βd for reliability classes RC1, RC2 and RC3. Other 
design guidelines incorporate recommendations for return periods TR (Section 5.2.2). The theoretical return periods 
of the target reliability indices of EN 1990 for dominant loads (αS=-0.7) for a reference period of 50 years were 
determined by applying Eq. (94) and are listed in Table 5.6. 
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
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The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
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where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
 

	 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	𝑃𝑃2o(𝑃𝑃t=>v>9' 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (22) 	

(94)

Where:
Pd	 Lifetime probability of failure of an event [-]
TR	 Return period of variable load [years]
tr𝑒𝑓	 Reference period [years]
αS	 Sensitivity factor for dominating load/solicitation [-]
βd	 Prescribed target reliability index [-]
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Chapter 5

In this study, the principles of ISO 2394 (2015) were applied in order to comply with 
existing design codes and standards. The safety philosophies of Eurocodes (NEN-EN 1990, 
2011) and OCDI (2009) are both based on the principles of ISO 2394, and British Standards, 
EAU and ROM are consistent with Eurocodes. ISO 2394 recommends applying sensitivity 
factors to dominant and non-dominant loads. In this study, both load and strength were 
assumed to be important and only dominant loads were taken into consideration. Non-
dominating loads were not taken into account because, in the case of load combinations, 
modern design codes generally recommend applying a set of combination factors to 
transform dominating loads into non-dominating loads. The importance of berthing velocity 
was expressed by applying a sensitivity factor αS=-0.7 to dominating variable loads. It should 
be noted that αS has a negative value and could be verified by a probabilistic assessment. 
Consequently, the probability of a dominating variable berthing velocity exceeding a design 
berthing velocity was evaluated by Eq. (83).

Eurocode standard NEN-EN 1990 defines target reliability indices βd for reliability 
classes RC1, RC2 and RC3. Other design guidelines incorporate recommendations for 
return periods TR (Section 5.2.2). The theoretical return periods of the target reliability indices 
of EN 1990 for dominant loads (αS=-0.7) for a reference period of 50 years were determined 
by applying Eq. (94) and are listed in Table 5.6.

Table 5.6. Theoretical return periods for variable loads during a reference period of 50 years 
according to EN 1990.

SI RC1 RC2 RC3

βd - 3.3 3.8 4.3
αs - -0.7 -0.7 -0.7
Pd % 1.05 0.40 0.13
TR year 4750 12,500 38,250

In the present study, extreme berthing velocities for different return periods were derived 
in order to compare field observations with existing design guidelines. Design berthing 
velocities corresponding to return periods of 100, 475, 1000, 4750, 12,500 and 38,250 years 
were derived. It should be noted that the codes are intended not to cover the incidence 
of such very rare events, but to create a low probability that structures will fail under the 
conditions of a reasonably rare incident during their service lifetime, also taking into account 
all sources of errors and adverse conditions not explicitly covered by the partial factors. 
Characteristic berthing velocities represented a return period of 50 years. For comparison, 
the number of berthings was set at approximately 100 berthings of a design vessel per 
year. This is similar to the underlying assumption of the berthing velocity curves derived 
by Brolsma et al. (1977).
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Reducing uncertainty by analysing berthing records

Characteristic berthing velocities were derived by directly extrapolating the Weibull 
distribution fit (method 1) and by examining distributions of annual maxima (method 2). The 
distribution of annual maxima appeared to be a normalised distribution with a mean value 
and standard deviation (

 
84 

 

  
Table 5.6. Theoretical return periods for variable loads during a reference period of 50 years according to 
EN 1990. 

	 SI	 RC1	 RC2	 RC3	
βd	 -	 3.3	 3.8	 4.3	
αs	 -	 -0.7	 -0.7	 -0.7	
Pd	 %	 1.05	 0.40	 0.13	
TR	 year	 4750	 12,500	 38,250	

 
In the present study, extreme berthing velocities for different return periods were derived in order to compare field 
observations with existing design guidelines. Design berthing velocities corresponding to return periods of 100, 475, 
1000, 4750, 12,500 and 38,250 years were derived. It should be noted that the codes are intended not to cover the 
incidence of such very rare events, but to create a low probability that structures will fail under the conditions of a 
reasonably rare incident during their service lifetime, also taking into account all sources of errors and adverse 
conditions not explicitly covered by the partial factors. Characteristic berthing velocities represented a return period 
of 50 years. For comparison, the number of berthings was set at approximately 100 berthings of a design vessel 
per year. This is similar to the underlying assumption of the berthing velocity curves derived by Brolsma et al. (1977).  
 
Characteristic berthing velocities were derived by directly extrapolating the Weibull distribution fit (method 1) and 
by examining distributions of annual maxima (method 2). The distribution of annual maxima appeared to be a 
normalised distribution with a mean value and standard deviation (𝜇𝜇áÍ	, 𝜎𝜎áÍ) (Fig. 5.7). Given n=100 berthings per 
year, the reliability of TR =50 years corresponds to once per 5000 berthings (TR*n). The inverse of TR =50 years is a 
probability of 2% being exceeded in a reference period of one year, and the corresponding annual reliability index 
therefore equals β2%=2.054. In this study, the following equations were used to determine berthing velocities with a 
return period of 50 years: 
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The design berthing velocities for different return periods and the probability of exceedance were derived using the 
same methods. Design berthing velocities according to method 1 were derived by using Eq. (97). In the case of 
normalised distributions of lifetime maxima (method 2), the corresponding design berthing velocities were found by 
applying Eq. (98). 
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Where: 
 µv;	d Mean value of lifetime maxima [cm/s] 
 σv;	d Standard deviation of lifetime maxima [cm/s] 

αS Sensitivity factor for dominating berthing velocity [-] 
Vs;	d  Covariation of lifetime maxima [-]  
 

5.4 Design values for berthing velocity and partial factors 

5.4.1 Extreme berthing velocities 
As an example, the population of VLCCs with a deadweight tonnage of 260,000-319,000 was examined statistically 
by using direct extrapolation of the Weibull distribution fit (method 1) and extreme value distributions (method 2).  
 
An extrapolation of the Weibull distribution fit based on 80 field measurements of VLCC tankers was used to 
determine extreme berthing events (Fig. 5.6). Assuming 100 berthings of a design vessel per year, the characteristic 
berthing velocity νk was approximately 11.9 cm/s. The design berthing event corresponding to a target reliability 
equal to βd=3.8 and a sensitivity factor equal to αS=-0.7 had a probability of exceedance equal to P(v	≤	vd)≈0.4%. In 
practice, this means a 0.4% chance of exceedance during a period of 50 years, which corresponds to a theoretical 
return period of 12,500 years and a probability of exceedance of 1/1,250,000. A design berthing velocity νd of 
approximately 14.4 cm/s was found (Fig. 5.6). 
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TR =50 years corresponds to once per 5000 berthings (TR*n). The inverse of TR =50 years is 
a probability of 2% being exceeded in a reference period of one year, and the corresponding 
annual reliability index therefore equals β2%=2.054. In this study, the following equations 
were used to determine berthing velocities with a return period of 50 years:
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The design berthing velocities for different return periods and the probability of exceedance 
were derived using the same methods. Design berthing velocities according to method 1 were 
derived by using Eq. (97). In the case of normalised distributions of lifetime maxima (method 2), 
the corresponding design berthing velocities were found by applying Eq. (98).
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
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= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
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where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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Table 5.6. Theoretical return periods for variable loads during a reference period of 50 years according to 
EN 1990. 

	 SI	 RC1	 RC2	 RC3	
βd	 -	 3.3	 3.8	 4.3	
αs	 -	 -0.7	 -0.7	 -0.7	
Pd	 %	 1.05	 0.40	 0.13	
TR	 year	 4750	 12,500	 38,250	

 
In the present study, extreme berthing velocities for different return periods were derived in order to compare field 
observations with existing design guidelines. Design berthing velocities corresponding to return periods of 100, 475, 
1000, 4750, 12,500 and 38,250 years were derived. It should be noted that the codes are intended not to cover the 
incidence of such very rare events, but to create a low probability that structures will fail under the conditions of a 
reasonably rare incident during their service lifetime, also taking into account all sources of errors and adverse 
conditions not explicitly covered by the partial factors. Characteristic berthing velocities represented a return period 
of 50 years. For comparison, the number of berthings was set at approximately 100 berthings of a design vessel 
per year. This is similar to the underlying assumption of the berthing velocity curves derived by Brolsma et al. (1977).  
 
Characteristic berthing velocities were derived by directly extrapolating the Weibull distribution fit (method 1) and 
by examining distributions of annual maxima (method 2). The distribution of annual maxima appeared to be a 
normalised distribution with a mean value and standard deviation (𝜇𝜇áÍ	, 𝜎𝜎áÍ) (Fig. 5.7). Given n=100 berthings per 
year, the reliability of TR =50 years corresponds to once per 5000 berthings (TR*n). The inverse of TR =50 years is a 
probability of 2% being exceeded in a reference period of one year, and the corresponding annual reliability index 
therefore equals β2%=2.054. In this study, the following equations were used to determine berthing velocities with a 
return period of 50 years: 
 

 𝑣𝑣™ = 𝜆𝜆 ln 𝑇𝑇D𝑛𝑛
(
Í = 𝜆𝜆 ln 5000

(
Í  (method 1) (95)  

 
 𝑣𝑣™ = 𝜇𝜇áÍ	 + 𝛽𝛽Õ%×𝜎𝜎á = 𝜇𝜇áÍ 1 + 2.054×𝑉𝑉áÍ   (method 2) (96)   

 
The design berthing velocities for different return periods and the probability of exceedance were derived using the 
same methods. Design berthing velocities according to method 1 were derived by using Eq. (97). In the case of 
normalised distributions of lifetime maxima (method 2), the corresponding design berthing velocities were found by 
applying Eq. (98). 
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(98)  

Where: 
 µv;	d Mean value of lifetime maxima [cm/s] 
 σv;	d Standard deviation of lifetime maxima [cm/s] 

αS Sensitivity factor for dominating berthing velocity [-] 
Vs;	d  Covariation of lifetime maxima [-]  
 

5.4 Design values for berthing velocity and partial factors 

5.4.1 Extreme berthing velocities 
As an example, the population of VLCCs with a deadweight tonnage of 260,000-319,000 was examined statistically 
by using direct extrapolation of the Weibull distribution fit (method 1) and extreme value distributions (method 2).  
 
An extrapolation of the Weibull distribution fit based on 80 field measurements of VLCC tankers was used to 
determine extreme berthing events (Fig. 5.6). Assuming 100 berthings of a design vessel per year, the characteristic 
berthing velocity νk was approximately 11.9 cm/s. The design berthing event corresponding to a target reliability 
equal to βd=3.8 and a sensitivity factor equal to αS=-0.7 had a probability of exceedance equal to P(v	≤	vd)≈0.4%. In 
practice, this means a 0.4% chance of exceedance during a period of 50 years, which corresponds to a theoretical 
return period of 12,500 years and a probability of exceedance of 1/1,250,000. A design berthing velocity νd of 
approximately 14.4 cm/s was found (Fig. 5.6). 
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
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where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
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The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
 

	 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	𝑃𝑃2o(𝑃𝑃t=>v>9' 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (22) 	

	 (method 2) (98)

Where:
µν; d	 Mean value of lifetime maxima [cm/s]
σν; d	 Standard deviation of lifetime maxima [cm/s]
αS	 Sensitivity factor for berthing velocity [-]. When the berthing 

impact load is a dominant variable this factor equals -0.7. For 
non-dominant variables this factor equals -0.28.  

Vs; d	 Covariation of lifetime maxima [-]

5.4	 DESIGN VALUES FOR BERTHING VELOCITY AND 
PARTIAL FACTORS

5.4.1	 EXTREME BERTHING VELOCITIES
As an example, the population of VLCCs with a deadweight tonnage of 260,000-319,000 
was examined statistically by using direct extrapolation of the Weibull distribution fit (method 
1) and extreme value distributions (method 2).

An extrapolation of the Weibull distribution fit based on 80 field measurements of VLCC 
tankers was used to determine extreme berthing events (Fig. 5.6). Assuming 100 berthings 
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of a design vessel per year, the characteristic berthing velocity νk was approximately 11.9 
cm/s. The design berthing event corresponding to a target reliability equal to 𝛽d=3.8 and a 
sensitivity factor equal to αS=-0.7 had a probability of exceedance equal to P(ν � νd )≈0.4%. 
In practice, this means a 0.4% chance of exceedance during a period of 50 years, which 
corresponds to a theoretical return period of 12,500 years and a probability of exceedance 
of 1/1,250,000. A design berthing velocity νd of approximately 14.4 cm/s was found (Fig. 5.6).
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Fig. 5.6. Extrapolation of Weibull distribution fit to VLCC tankers (method 1).

The Implementation of Eurocodes handbook (Leonardo da Vinci Pilot Project, 2005) 
uses extreme value theory to determine appropriate partial factors of safety. The same 
principles were applied in this study. They are illustrated in Fig. 5.7. The solid blue line 
represents the probability density function of a Weibull distribution fit to the original dataset. 
The dashed blue and red lines are the normalised extreme value distributions of annual 
maxima and lifetime maxima, respectively. The mean value of lifetime maxima was higher 
and the probability density function was steeper than the density function of annual maxima.
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for VLCC tankers (method 2).
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On the basis of 80 VLCC berthing operations, a single berthing had a mean berthing 
velocity νµ of approximately 4.5 cm/s. The characteristic berthing velocity νk with a 
theoretical return period of 50 years was equal to approximately 12 cm/s. Assuming 5000 
VLCC berthings and a 0.4% chance of exceedance during a reference period of 50 years, 
a design berthing velocity νd of approximately 13.6 cm/s was found (Fig. 5.7).

This example showed that similar design berthing velocities νd were found by applying 
direct extrapolation (method 1) and indirect extreme value distributions (method 2). The 
small differences were caused mainly by inadequate modelling of the low-probability tail 
of both normalised annual and lifetime maxima distributions. The typical shape and scale 
parameters of the Weibull distribution fits and distributions for annual and lifetime maxima 
are given in Appendix D.2. An overview of calculation results for both methods is given in 
Table 5.7. It should be noted that the derived berthing velocities were based on a berthing 
frequency of 100 berthings per year, a sensitivity factor αS=-0.7 and a reference period of 
50 years.
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5.4.2 CHARACTERISTIC BERTHING VELOCITIES
In Fig. 5.8, the berthing velocities of individual vessel classes representing a return period of 
50 years are compared with those in EAU 2012 (Grabe, 2012) and PIANC (2002). It should 
be noted that the berthing velocity curves in EAU 2012 represent berthing velocities with 
a return period of 50 years, while those in PIANC 2002 represent berthing velocities with 
a return period of 30 years. The characteristic values of berthing velocity νk of individual 
vessel classes were determined by using existing design practice and by interpreting the 
results derived in Section 5.4.1.
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F ig. 5.8. Characteristic berthing velocities compared with PIANC 2002 and EAU 2012.

In the statistical examination of extreme berthing velocities, no real correlation between 
berthing velocity and the mass of the vessel was found for tankers in sheltered conditions. 
The goodness of fi t of the Weibull distribution function to the individual dataset of Aframax 
tankers was low and should be used with care (Appendix D.1). In practice, characteristic 
values of berthing velocity are generally higher than 10 cm/s. If a shore-based docking 
system has been installed, characteristic berthing velocities of 8 cm/s are more common. 
Similar values were found in Section 5.4.1. It should be noted that individual datasets for 
bulk carriers most likely contain overestimated berthing velocities at the moment of impact 
(Appendix D.1). For large seagoing bulkers, no real correlations were found. Characteristic 
berthing velocities of 12 cm/s for large bulkers in sheltered conditions were typically used 
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in practice. A small correlation between vessel size and berthing velocity was found for 
container vessels in sheltered conditions. The berthing velocities were influenced by type 
of manoeuvre/landing procedure and berthing policy (Appendix D.1). Berthing velocities 
of large seagoing container vessels in exposed navigation conditions showed no real 
correlation with vessel size (Hein, 2014). The berthing velocities were higher than in EAU 
velocity curves, but due to very low berthing angles (always between 0◦ and 1◦) deflection 
of the fenders showed that the actual berthing energy was still less than the design energy 
(Hein, 2014). It should be noted that for most individual vessel classes there was insufficient 
data to determine partial factors of safety per vessels class and therefore large datasets 
were developed.

5.4.3	 PARTIAL FACTORS OF SAFETY FOR BERTHING VELOCITY γv
In this study, partial factors of safety were defined as the ratio between a design value and 
a characteristic value of berthing velocity, and they were derived by direct interpolation of 
a Weibull distribution fit (method 1) to large datasets. The results are given in Table 5.8. 
It is important to realise that partial factors of safety for time-dependent design berthing 
velocities are theoretically inconstant. Partial factors are influenced by the uncertainly and 
importance of a berthing velocity, as well as the target probability of failure during a certain 
reference period.

Table 5.8. Partial factors of safety for berthing velocity γv by applying method 1, extrapolation 
of Weibull distribution fit.

SI Reliability class of EN 1990

RC1 RC2 RC3

All tankers ○ - 1.17 1.20 1.24
All sheltered ∆ - 1.21 1.25 1.29
All exposed □ - 1.29 1.34 1.41
All data - 1.31 1.38 1.44

Fig. 5.9 shows that the Weibull distribution fits to the datasets ‘All tankers’ and ‘All 
sheltered’ slightly underestimate low-probability berthing velocities. This was considered 
acceptable because the highest measured berthing velocities were caused by overly 
conservative measurements of, for example, small seagoing tankers and large seagoing 
bulkers (Appendix D.1). The dataset ‘All exposed’ contains numerous berthing velocities 
just below 20 cm/s, as well as two higher ones of 25 and 26 cm/s (Fig. 5.9). The Q-Q 
probability plot in Fig. 5.10 shows that the theoretical and empirical quantiles of the two 
extreme berthing velocities measured in Bremerhaven were almost identical.
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Fig. 5.9. Probability of exceedance plot for large datasets.
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Fig. 5.10. Probability distribution plots for all ‘sheltered’ and all ‘exposed’ data

5.5	 DISCUSSION ON HOW TO DETERMINE DESIGN 	
VALUES FOR BERTHING VELOCITY

5.5.1	 HOW TO USE BERTHING VELOCITY RECORDS AND PARTIAL 
FACTORS IN THE DESIGN
This section discusses how to implement field observations of berthing velocity and partial 
factors of safety in structural assessments of berthing impact loads on quay walls. As 
explained in Section 5.2.1, the berthing impact load to which a marine structure is subjected 

5

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   155 28-08-19   12:46



156

Chapter 5

largely depends on the type of berthing structure; that is, whether it has linear or non-
linear deformation characteristics. The effect of linear and non-linear behaviour on berthing 
impact load F is further explained by the following simplified equation to illustrate the effect 
of difference in performance:

 
88 

 

velocities were caused by overly conservative measurements of, for example, small seagoing tankers and large 
seagoing bulkers (Appendix D.1). The dataset ‘All exposed’ contains numerous berthing velocities just below 20 
cm/s, as well as two higher ones of 25 and 26 cm/s (Fig 5.9). The Q-Q probability plot in Fig 5.10 shows that the 
theoretical and empirical quantiles of the two extreme berthing velocities measured in Bremerhaven were almost 
identical.  

 
Fig 5.9. Probability of exceedance plot for large datasets. 
 

 
Fig 5.10. Probability distribution plots for all ‘sheltered’ and all ‘exposed’ data 
 

5.5 Discussion on how to determine design values for berthing velocity 

5.5.1 How to use berthing velocity records and partial factors in the design 
This section discusses how to implement field observations of berthing velocity and partial factors of safety in 
structural assessments of berthing impact loads on quay walls. As explained in Section 5.2.1, the berthing impact 
load to which a marine structure is subjected largely depends on the type of berthing structure; that is, whether it 
has linear or non-linear deformation characteristics. The effect of linear and non-linear behaviour on berthing impact 
load F is further explained by the following simplified equation to illustrate the effect of difference in performance: 
 

 𝐹𝐹 = 𝑘𝑘𝛿𝛿√ (99)  

Where: 
F  Berthing impact load [kN]  

 δ Deflection of fender + berthing structure [m] 

(99)

Where:
F	 Berthing impact load [kN]
δ	 Deflection of fender + berthing structure [m]
k	 Stiffness of berthing structure and soil [kN/m]
N	 Coefficient for linearity [-]

Examples of berthing structures showing linear and non-linear structural behaviour are 
given in Table 5.9. When, for instance, a pneumatic or cylindrical fender system is installed 
on a rigid quay wall, the berthing energy is absorbed by fender deflection, showing non-
linear hardening (N>1). Flexible dolphins equipped with timber fendering absorb berthing 
energy by deflection, showing an approximately linear-elastic behaviour (N=1). When a 
buckling-type fender system is installed on a flexible dolphin, structural behaviour often 
shows softening (N<1), but when the capacity of a fender system is exceeded, the response 
of a berthing structure will be similar to a situation without fendering (N=1) – for example, 
during the full compression of a fender equipped with a fender stop. If buckling-type fender 
systems are installed on rigid quay walls, the amount of energy absorbed by the marine 
structure itself is negligible. In this case, the fender system absorbs most of the berthing 
energy by deflection and the resulting berthing impact load is influenced mainly by fender 
characteristics, showing typically ideal plastic behaviour (N≈0).

Table 5.9. Examples of linear and non-linear behaviour of marine structures.

Range Behaviour Examples

N > 1 Non-linear hardening Rigid marine structure (quay wall) + cylindrical/pneumatic type 
fender system
Flexible dolphin + cylindrical/pneumatic type fender system

N = 1 Linear elastic Flexible dolphin without energy-absorbing fender system (timber 
fendering)

N < 1 Non-linear softening Flexible dolphin + buckling-type fender system
N ≈ 0 Ideal plastic Rigid marine structure (quay wall) + buckling-type fender system
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The process to derive a design berthing impact load by simultaneously applying the 
two design approaches described in Section 5.2.1 is illustrated in Fig. 5.11. The principal 
difference is the application of a partial factor of safety to either a characteristic berthing 
velocity γν or a characteristic berthing impact load γQ. The flowchart starts with the 
determination of a characteristic berthing velocity νk by using field observations. Typical 
characteristic berthing velocities measured at well-organised ports are presented in Fig. 
5.8. It should be noted that the berthing frequency influences the characteristic berthing 
velocity. This is further discussed in Section 5.5.3. The derivation of partial factor of safety 
γν was based on a statistical examination of sophisticated datasets from representative 
field observations. The partial factor of safety γν does not take into account uncertainty in 
modelling the effects of loads, while partial factor of safety γQ complies with design codes 
and standards, such as NEN-EN 1990 (2011), and already includes model uncertainty. In line 
with the Eurocode standard, Eq. 6.2 of NEN-EN 1990, an additional partial factor of safety 
γSd for berthing impact load Fν needs to be applied. It should be noted that the governing 
berthing impact load Fd depends on the type of berthing structure and the values of partial 
factors γν, γSd and γQ.

Fig. 5.12 shows that a partial factor of safety for berthing velocity γν is only proportional 
to a partial factor of safety for berthing impact load γQ for linear-elastic behaviour (N=1). If we 
assume that γν =γQ, then in the case of non-linear softening (N<1) the partial factor of safety 
for berthing impact load γQ will result in the governing berthing impact load Fd. Conversely, 
in the case of non-linear hardening (N>1) a partial factor of safety for berthing velocity γν 
will result in the governing berthing impact load Fd. The effect of uncertainty in modelling 
the load effect is illustrated by applying γSd to Fν.

5
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Determine characteristic berthing velocity vk based on berthing velocity records 

Determine design berthing velocity vd = γ
v vk 

Determine characteristic berthing impact load Fk

Determine design berthing impact load FQ= γ
Q Fk 

Determine associated berthing impact load Fv

Assess characteristic berthing energy Ekin;k

Assess design berthing energy Ekin;d

Assess governing design berthing impact load Fd with maximum effect on marine structure 

Determine design berthing impact load FS= γSd Fv

Fig. 5.11. Global fl owchart assessing berthing impact on a marine structure.
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Fig. 5.12. Infl uence of linear and non-linear behaviour on design berthing impact load.

If large datasets are available for a statistical approach, it is recommended that 
partial factors of safety be determined by evaluating extreme berthing velocities. Table 
5.10 presents generalised partial factors of safety for berthing velocities γν as concluded in 
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this study. It should be noted that γν is proportional to 

90

Fig. 5.11. Global flowchart assessing berthing impact on a marine structure.

Fig. 5.12. Influence of linear and non-linear behaviour on design berthing impact load.

If large datasets are available for a statistical approach, it is recommended that partial factors of safety be 
determined by evaluating extreme berthing velocities. Table 5.10 presents generalised partial factors of safety for 
berthing velocities γv as concluded in this study. It should be noted that γv is proportional to 𝐶𝐶MS. For the dataset 
of sheltered navigation conditions, partial factors of safety are lower than in the dataset of exposed navigation 
conditions (strong tidal currents). The use of berthing aid systems resulted in even lower design velocities and lower 
partial factors of safety. 

Table 5.10. Partial factor of safety γv for berthing velocity (vk) and abnormal berthing factor Cab for berthing 
energy (Ek), given well-organised navigation conditions.

Determine characteristic berthing velocity vk based on berthing velocity records

Determine design berthing velocity vd	=	γv	vk

Determine characteristic berthing impact load Fk

Determine design berthing impact load FQ=	γQ	Fk	Determine associated berthing impact load Fv

Assess characteristic berthing energy Ekin;k

Assess design berthing energy Ekin;d

Assess governing design berthing impact load Fd with maximum effect on marine structure 

Determine design berthing impact load FS=	γSd Fv

. For the dataset of sheltered 
navigation conditions, partial factors of safety are lower than in the dataset of exposed 
navigation conditions (strong tidal currents). The use of berthing aid systems resulted in 
even lower design velocities and lower partial factors of safety.

Table 5.10. Partial   factor of safety γv for berthing velocity (vk ) and abnormal berthing factor 
Cab for berthing energy (Ek ), given well-organised navigation conditions.

Navigation conditions Pilot assistance Symbol
Reliability class EN 1990

RC1 RC2 RC3

Sheltered and monitored1 Yes γv 1.15 1.20 1.25
C𝑎b 1.35 1.45 1.55

Sheltered Yes γv
1.20 1.25 1.30

C𝑎b 1.45 1.55 1.70

Exposed2 Yes γv
1.30 1.35 1.40

C𝑎b 1.70 1.80 2.00

1) Pilots are aware of the allowable berthing velocity and use berthing aid systems, such as portable 
pilot units.
2) Strong tidal currents.

When signifi cant softening (N<1) occurs between a characteristic berthing impact load 
(service limit state) and a design berthing impact load (ultimate limit state), a reduction of the 
partial factor of safety 

When significant softening (N<1) occurs between a characteristic berthing impact load (service limit state) and a 
design berthing impact load (ultimate limit state), a reduction of the partial factor of safety 𝛾𝛾" could be considered. 
The effect of softening on energy absorption due to linear and non-linear behaviour is illustrated in Fig 5.13. When 
the hatched areas below the linear (left) and non-linear (right) load-deflection curve are equal, the design berthing 
impact load FQ is lower in the case of softening.  
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Fig. 5.13. Linear system (left) and non-linear system with significant softening (right).

In case of non-linear softening, the partial factor of safety is smaller than γQ. The 
berthing impact load should be derived by using a partial factor of safety γν on berthing 
velocity, based on the assumption that an ultimate limit state is a theoretical situation/event 
which has a very low probability of occurrence during the service life. In the case of repetitive 
loading above a service limit state situation, the effect of softening should not be applied 
or should be used carefully. The partial factor γSd, applied to berthing impact load Fν, was 
suggested in order to comply with the safety philosophy of the Eurocode standard (NEN-EN 
1990, 2011). It should be noted that all partial factors of safety in that standard were derived 
by accounting for uncertainties in modelling the effect of loads, and γSd was generally 
assumed to be equal to approximately 1.1. Applying γSd to resulting berthing impact loads 
acting on marine structures should be done with great care, because additional factors 
of safety are already considered in the determination of berthing energy as well as in the 
design of fender systems. It is recommended that further research be conducted into the 
application of γSd in the case of berthings with and without pilot assistance.

5.5.2	 EVALUATION OF PARTIAL FACTORS OF SAFETY
Although existing design guidelines do not differentiate between sheltered and exposed 
navigation conditions, the partial factors of safety listed in Table 5.10 are in the range of the 
recommended values in literature (Table 5.2). BS 6394-4 (2014) recommends using C𝑎b=1.5 
for situations with a low risk profile and C𝑎b=2.0 for situations with a high risk profile. Given the 
absence of field observations, an abnormal berthing factor equal to C𝑎b=1.5 must be used in 
the case of general cargo vessels. This is quite similar to the results found in Section 5.4.1 for 
sheltered berthings in RC2. For LNG, LPG and ferries, C𝑎b=2.0 is recommended; this is close 
to the abnormal berthing factor for exposed conditions in RC3. The reason for this increase 
is not explicitly given in BS 6394-4. For an LNG or LPG berth, a higher consequence class 
with a higher reliability index could be considered. One explanation for C𝑎b=2.0 for ferry berths 

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   160 28-08-19   12:46



161

Reducing uncertainty by analysing berthing records

could be their higher berthing frequency, combined with the fact that captains of ferries do 
not make use of pilot or tug assistance and they have large numbers of passengers on board.

PIANC (2002) and EAU 2012 (Grabe, 2012) recommend applying lower abnormal berthing 
factors, approximately C𝑎b=1.25, for large seagoing tankers and bulkers. In this study, higher 
abnormal berthing factors were found for these vessels. This could be due to the higher 
target reliability index in the Eurocodes, or to the use of shore-based docking systems. PIANC 
is aware of the influence of the low reliability level and, for berths with very low approach 
velocities, recommends using a higher confidence level in the case of normal berthing (Section 
4.2.8.4 of PIANC (2002)). PIANC and EAU 2012 suggest that there is a correlation between 
vessel size and abnormal factor of safety C𝑎b. Although berthing policy (e.g. use of berthing 
aid systems, pilot and tug assistance) was to some extent related to vessel size, in this study 
no correlation was found between type and size of vessel and partial factor of safety γν.

BS 6349-4 (2014) also recommends applying an additional partial factor of safety 
to the resulting berthing impact load. The partial factors of safety representing normal 
(characteristic) and design situations given in the code are 1.35 for persistent situations and 
1.2 for transient ones. The values found were quite similar to the partial factor of safety of 
exposed and sheltered navigation conditions. Although without accounting for non-linear 
softening, following BS 6349-4 could result in a conservative design.

5.5.3	 INFLUENCE OF BERTHING FREQUENCY
As explained, partial factors γν were based on a berthing frequency of 100 design vessels per 
year. The Spanish ROM (ROM 02-90, 1990) already addresses the importance of berthing 
frequency. Logically, if fewer arrivals are expected during a reference period then the design 
berthing velocity will decrease, because theoretically each berthing operation has a probability 
of exceeding the design berthing velocity. There are two ways to deal with this effect: apply 
either an alternative characteristic berthing velocity νk or a correction factor to partial factor γν. If 
used correctly, both methods should result in the same design berthing velocity. The influence 
of berthing frequency on partial factor γν was calculated by applying a correction factor Cb𝑒rthin𝑔:
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Where: 

Cberthing Correction factor for γv [-]  
γa Alternative partial factor of safety [-] 
va Alternative berthing velocity [cm/s] 

 
The alternative berthing velocity va was derived by using Eq. (97). The correction factors for the datasets ‘All 
tankers’, ‘All sheltered’ and ‘All exposed” are given in Table 5.11 and illustrated in Fig 5.14. 
 
Table 5.11. Correction factor Cberhting for partial factor of safety γv given an alternative berthing frequency 
n. 
n 1 2 5 10 25 50 100 200 1000 
All	tankers	○ 0.863 0.886 0.915 0.936 0.962 0.981 1.000 1.018 1.058 
All	sheltered	∆ 0.840 0.866 0.900 0.924 0.955 0.978 1.000 1.021 1.069 
All	exposed	□ 0.782 0.817 0.862 0.895 0.938 0.969 1.000 1.030 1.099 
All	data 0.776 0.812 0.858 0.892 0.936 0.968 1.000 1.031 1.102 

 
Fig 5.14. Influence of alternative numbers of berthings on partial factor of safety γv given a reference 
period of 50 years. 
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impact load FQ is lower in the case of softening.  
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Where:
Cb𝑒rthin𝑔	 Correction factor for γν [-]
γ𝑎	 Alternative partial factor of safety [-]
ν𝑎	 Alternative berthing velocity [cm/s]

The alternative berthing velocity ν𝑎 was derived by using Eq. (97). The correction 
factors for the datasets ‘All tankers’, ‘All sheltered’ and ‘All exposed” are given in Table 5.11 
and illustrated in Fig. 5.14.
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Table 5.11. Correction factor Cberhting for partial factor of safety γv given an alternative berthing 
frequency n.

n 1 2 5 10 25 50 100 200 1000

All tankers ○ 0.863 0.886 0.915 0.936 0.962 0.981 1.000 1.018 1.058
All sheltered ∆ 0.840 0.866 0.900 0.924 0.955 0.978 1.000 1.021 1.069
All exposed □ 0.782 0.817 0.862 0.895 0.938 0.969 1.000 1.030 1.099
All data 0.776 0.812 0.858 0.892 0.936 0.968 1.000 1.031 1.102
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Fig. 5.14. Influence of alternative numbers of berthings on partial factor of safety γv given 
a reference period of 50 years.

5.6	 CONCLUSIONS AND RECOMMENDATIONS

This chapter has provided guidance on the use of field observations and partial factors of 
safety for berthing velocity and loads on quay walls and other types of marine structure. 
The results have been used to evaluate existing design guidance. The most important 
conclusions from this are as follows. 

·	 The measured berthing velocities were low, compared with current recommendations 
on design values. Typically, the mean values for individual vessel classes varied 
between 4 and 7 cm/s. The maximum observed berthing velocities were 13 
cm/s and 26 cm/s, in sheltered and exposed navigation conditions respectively. 
Characteristic values of berthing velocities found in this chapter were generally in 
the range of recommendations in literature. Only the derived characteristic berthing 
velocity of large seagoing vessels in exposed navigation conditions (strong tidal 
currents) was higher, but these berthings appeared to have very low berthing angles 
at the moment of impact, resulting in less fender compression.
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·	 A characteristic value of berthing velocity with a return period of 50 years based 
on a berthing frequency of 100 berthings per year shows a close correlation with 
existing recommendations for the design of new quay walls. When assessing quay 
walls, actual berthing frequency needs to be taken into consideration.

·	 The collected data does not confirm the historical assumption that berthing velocities 
of large seagoing vessels are strongly related to ship dimensions. No evidence was 
found to suggest that berthing velocities are influenced by the vessel’s draught or 
under-keel clearance, or the type of marine structure they are berthing at. Nor was any 
correlation found between wind speed (environmental factors) and berthing velocity. 
However, berthing velocities do depend strongly on berthing policy (type of landing, 
experienced and well-trained pilots, tug assistance, berthing aid systems, etc.).

·	 A partial factor of safety for berthing velocity is not a fixed value, as it is influenced by the 
prescribed probability of failure during a reference period and by variations in berthing 
velocity. The partial factors of safety found in this chapter did not show a correlation 
with vessel size. Higher partial factors of safety were found for exposed navigation 
conditions (strong tidal currents), and lower ones when berthing aids were applied. 

·	 The existing design guidelines were considered to be safe for most situations. Applying 
the British Standards (BS 6349-4, 2014) could result in a conservative design. When 
using the recommendations of PIANC (2002) and EAU (Grabe, 2012), applying an 
abnormal berthing factor C𝑎b lower than 1.5 should be done with great care. 

If site-specific data is not available, partial factors of safety for berthing velocity γν as derived in 
this chapter could be used instead of applying an overall safety margin. It is recommended that 
further study by undertaken into the risk of high berthing velocities in the case of navigation 
conditions with strong tidal currents. In particular, the effect of a second berthing impact could 
reduce the amount of energy transferred if berthing angles are low. Sophisticated datasets 
and partial factors of safety for the berthing velocity of inland barges and smaller seagoing 
coasters are still lacking. It is therefore recommended that field observations of such smaller 
vessels be collected in order to better account for the human influence on berthing velocity, 
which is believed to be greater when berthings are not assisted by well-trained pilots. The 
presented methods for deriving characteristic and design values for berthing velocity are easy 
to apply and could be beneficial for assessing existing quay walls (e.g. capping beams and 
fender systems) and other types of marine structure. Given the distribution characteristics 
listed in Appendix D.2, the effect of lower target reliabilities, alternative reference periods and 
berthing frequencies could be accounted for by using Eq. (97). This will generally result in 
lower design berthing velocities. 

5
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CONCLUSION AND 
RECOMMENDATIONS
“Knowledge is an unending adventure at the edge of uncertainty.” 
Jacob Bronowski 

This thesis has addressed some important aspects to consider in reliability-based 
assessments of quay walls. It shows how to derive target reliability indices and to perform 
reliability analyses using finite element models. Moreover, the evolution of the failure rate 
over time was examined, taking into account the effects of past service performance 
and degradation. The findings have enhanced our understanding of quay walls’ reliability, 
enabling us to determine their residual lifetime more accurately and so make better use of 
these assets.

This chapter presents the main findings and overall conclusion of this thesis (Section 
6.1). It also summarises the detailed findings of each chapter (Section 6.2). Furthermore, 
recommendations for follow-up research and practical implementation are proposed 
(Section 6.3). In addition to its scientific value, the output of this research should benefit 
end users such as port and terminal authorities, engineers, asset managers and code 
writers. Based on its findings, a series of improvements to several national and international 
standards and design manuals have already been implemented (Section 6.4). 
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6.1	 MAIN FINDINGS

The main objective of this thesis was to show how quay-wall reliability can be evaluated and 
what aspects should be considered. Of these, especially important is how a quay wall’s 
evolution affects its probability of failure over time. The five main findings of this thesis are 
listed below.

1.	 For the commercial quay walls considered in this study, it was found that the 
economic risk-acceptance criterion prevails when deriving reliability targets, 
provided that the requirements concerning human safety are met via the marginal 
lifesaving cost principle. Allocating reliability targets dedicated to the specific risk 
profile of a quay wall is essential when performing reliability-based assessments. 
The lifetime reliability targets obtained for a reference period of fifty years were in 
the range of values recommended in literature. Furthermore, it was found that the 
failure rate of quay walls evolves significantly over time (Finding 3), whereas the 
design codes currently in use, such as the Eurocode (NEN-EN 1990, 2011), implicitly 
assume that rate to be constant. As a result, the annual reliability targets found are 
lower than those in the Eurocode. Moreover, within a one-year reference period, 
the effects of past performance and degradation can be taken into account in an 
appropriate manner.  These findings can play an important role in the evaluation of 
the reliability of an existing quay wall, since then its remaining service life and the 
associated reference period are generally unknown a priori. Hence, using annual 
target reliability indices is preferred.

2.	 Despite highly non-linear soil behaviour and complex soil-structure interaction (e.g. 
due to inclined retaining walls or relieving platforms), the reliability level of a quay 
wall can be estimated successfully by performing finite element-based reliability 
assessments using the Abdo-Rackwitz algorithm, which is a gradient-based first 
order reliability method (FORM). This method proved to be able to evaluate various 
failure modes considering twenty nine random variables. In general, two to ten 
iterations were needed to satisfy the convergence acceptance criteria. The resulting 
reliability indices for the critical failure modes of two real-life quay walls were fairly 
close to the reliability target of the original design, which corresponds with reliability 
class RC2 in NEN-EN 1990 (2011).

3.	 Time-independent stochastic variables, such as material properties of soil, steel and 
grout, as well as model uncertainty, influence the evolution of the failure probability 
over time. This finding is crucial when assessing existing quay walls, since (epistemic) 
uncertainty in time-independent variables decreases over time for quay walls with 
successful past service performance. In the absence of significant degradation, the 
failure rate of a service-prove quay wall therefore decreases over time. Consequently, 
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not only is the quay wall’s actual reliability higher than assumed in its early service 
period, but the net present value of the residual risk also decreases, and hence 
reliability targets derived from an economic perspective will decrease accordingly. 

4.	 In the event of non-deteriorating quay walls, the probability of failure of a structure 
with a successful service history decreases over time, resulting in a higher reliability 
level compared to the reliability level in the early years of service. In this context, it 
was found that for service-proven combi-walls1 subject to low corrosion rates, the 
highest failure rates occur in the first year of the service life, while for high corrosion 
rates the final year prevails. Since many existing combi-walls are subject to low 
corrosion rates near the maximum bending moment, this finding indicates that, 
despite some degradation, their remaining lifetime is longer than previously assumed 
based on past performance. 

5.	 Berthing velocity, the speed at which a ship approaches the quay wall, and 
the dimensions of seagoing vessels are not strongly correlated. However, well-
established design recommendations, such as PIANC (2002), assume a strong 
negative correlation. Consequently, the associated design values for berthing impact 
loads acting on quay walls induced by small and large seagoing vessels are too 
conservative and too optimistic, respectively. By contrast, the berthing velocity 
depends mainly on the berthing policy (e.g. type of landing, experience of pilots, 
and the use of tug assistance or berthing aid systems). These design guidelines 
should be revised.

In addition to the five main findings, reliability is always related to a reference period and a 
certain functionality, such as water depth or operational activities. Both factors are important 
preconditions when evaluating quay-wall reliability. 

In summary, the applicability of finite element-based reliability assessments in quay-
wall engineering has increased considerably. The methods developed to evaluate quay-wall 
reliability can be used to determine the remaining service life, to make better use of existing 
structures, and to improve the design of new quay walls. The main findings of this thesis 
can play a crucial role in the assessment of existing quay walls and, presumably, all other 
service-proven geotechnical structures subject to degradation.

1 combi-walls are quay walls consisting of king piles with sheet pile walls between them 
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6.2	 DETAILED FINDINGS

6.2.1	 RISK-BASED RELIABILITY TARGETS FOR QUAY WALLS
When performing reliability-based assessments, it is essential to allocate an appropriate 
reliability target. This thesis has derived reliability targets from different risk perspectives, 
such as the acceptance criteria associated with economic optimisation, individual risk, 
group risk and the life quality index. For commercial quay walls, it was found that target 
reliability indices can generally be determined on the basis of economic optimisation. The 
annual and lifetime target reliability indices obtained were in the range 2.8–3.5 and 2.5–3.3, 
respectively. However, it should be noted that the individual and group risk are relevant if 
failure consequences reach far beyond the quay wall itself: for instance, if failure leads to 
the release of hazardous substances or large explosions. 

Although the reliability criteria in codes and standards presently used in civil 
engineering differ significantly, it was found that the allocation of reliability targets appears 
to be fairly consistent and uniform throughout the world if the assessment criteria and the 
associated reliability targets from ISO 2394 (2015) are applied systematically. The framework 
of ISO 2394 therefore forms a solid basis for assessing quay walls’ reliability. However, this 
thesis has also revealed that this framework will become richer and more interpretable if 
it is extended with considerations regarding the type of failure, the likelihood of warning 
signals, concepts of functional and structural redundancy and indirect impacts such as 
damage to the reputation of a port or terminal. 

It is vitally important to allocate reliability targets for quay walls and other geotechnical 
structures that suit their risk profile, since the degree and sources of time-dependent and 
time-independent uncertainty – such as inherent natural variability in strength and loads 
(aleatory uncertainty), as well as lack of knowledge or insufficient information (epistemic 
uncertainty) – differ from the recommendations for buildings and bridges currently in use, 
as do the consequences of failure. It is therefore recommended to add an appendix to 
Eurocode NEN-EN 1990 that provides specific guidance for the design of quay walls, e.g. 
examples for the classification (CC1, CC2 or CC3) and partial factors of safety.
 
6.2.2	 FINITE ELEMENT-BASED RELIABILITY ASSESSMENT OF QUAY WALLS
One objective of this thesis was to develop a method to perform a finite element-based 
reliability assessment of a quay wall, while realistically modelling the soil-structure interaction. 
The reliability indices for relevant failure modes of two real-life quay walls in Rotterdam were 
therefore estimated by coupling probabilistic methods with finite element models. In spite 
of a fairly complex soil-structure interaction, the presence of numerical noise and a fairly 
large number of stochastic variables, finite element-based reliability assessments could 
be performed successfully using the algorithm named Abdo-Rackwitz, which converged 
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quite efficiently and accurately. In general, between two and ten iterations were needed to 
satisfy the convergence acceptance criteria. 

The reliability indices found for prevailing failure modes correspond fairly well to the 
prescribed target reliability for RC2 of Eurocode NEN-EN 1990 (2011). Furthermore, the 
results show that model uncertainty and correlations between input variables, such as the 
correlation between the stiffness, weight density and friction angle of soil layers, must be 
taken into account, since otherwise the failure probability is significantly underestimated. 

In addition, this thesis has provided insight into parameters that influence quay-wall 
reliability by presenting the obtained sensitivity factors for all stochastic input variables. 
These factors show that quay-wall reliability is largely dependent on uncertainty in time-
independent variables, such as the material properties of soil, steel and grout. By contrast, 
much lower sensitivity factors were found for loads and geometrical variables, such as the 
soil-retaining height. Despite their fairly low sensitivity factors, changing the quay wall’s 
retaining height and operation loads can substantially affect the quay walls’ reliability level, 
since the estimated reliability index is conditional upon a certain functionality. In this context 
it should be noted that variability (aleatory uncertainty) in these functional preconditions 
does not significantly influence the quay wall’s reliability level, and hence they require fairly 
low partial factors of safety. Likewise, fairly low required partial factors were found for soil 
stiffness by comparison with the recommendations in the Eurocode. 

Regarding the determination of design values of strength variables, the results suggest 
that the differentiation in the partial factors of safety from Eurocode 7 (NEN-EN 9997, 2016) 
for the soil’s internal friction angle is fairly low for the distinguished reliability classes. As 
a result, a design using the partial factors of safety associated with reliability class RC1 is 
relatively safe, whereas a design for RC3 is presumably too optimistic. Furthermore, the 
current set of partial factors suggested by Eurocode 7 does not account for correlations. As 
a result, the influence of dominant soil layers on the reliability of quay walls is underestimated, 
whereas there is an overestimation in the case of non-dominant layers in the guidelines 
presently used in quay-wall design.

6.2.3	 THE EFFECT OF CORROSION ON THE RELIABILITY OF SERVICE-
PROVEN QUAY WALLS 
The assessment of service-proven quay walls subject to corrosion-induced degradation is 
inherently a time-dependent reliability problem. Two major challenges here are modelling 
corrosion and taking into account the decrease in epistemic uncertainty throughout the 
quay wall’s service life. This thesis has examined the probability of failure given successful 
past performance, while the quay wall is subject to corrosion and randomly imposed 
variable loads. The annual failure rates found for service-proven quay walls vary over time, 
and they decrease over time in the case of non-deteriorating quay walls. Although corrosion 
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results in an increase in the failure rate, this thesis has concluded that some corrosion 
of combi-walls can be allowed; this is because this phenomenon occurs mainly on the 
waterside (Jongbloed, 2019), while the stress on the landside prevails during the initial 
design process. Consequently, the initial reliability level of a combi-wall is higher on the 
waterside and so some corrosion is acceptable. Only in the event of severe corrosion rates 
(corrosion curves 6-9 in Fig. 4.3) does the probability of failure increase significantly.

In addition, the ratio between the reliability index and the factor of safety (this factor is 
commonly used in allowable-stress-based assessments to evaluate the residual capacity 
of existing quay walls) is not constant over time. Due to corrosion, the strength of a combi-
wall decreases while at the same time our confidence in a quay wall that has survived 
all previous years increases. Both these aspects influence the reliability level, while the 
factor of safety is influenced only by loss of wall thickness. As a result, the actual failure 
probability of an existing quay wall will be lower than presently assumed when performing an 
allowable stress-based analysis. Consequently, in spite of corrosion-induced degradation, 
it is expected that the remaining service life of many service-proven quay walls can be 
extended safely and responsibly by performing a time-dependent reliability analysis. 

6.2.4	 CUSTOMISED DESIGN VALUES FOR BERTHING VELOCITY TO 
ENHANCE QUAY WALL RELIABILITY
While the dimensions and propulsion systems of vessels have evolved considerably, no 
comprehensive research has been conducted on berthing velocities and the associated 
berthing impact loads acting on quay walls since the 1970s (Beckett Rankine, 2010). In 
this thesis, the berthing velocity of large seagoing vessels was examined statistically using 
new berthing records provided by the port authorities of Bremerhaven, Rotterdam and 
Wilhelmshaven. The distribution functions found can serve as input for reliability-based 
assessments of quay walls and for allocating tolerable design values for berthing velocity. 

Although the berthing velocity curves (Brolsma et al.,1977) presently used in the design 
of fender systems suggest that there is a strong negative correlation between berthing 
velocity and the size of a vessel, this dependency could not be confirmed in this study. By 
contrast, the results show that berthing velocities depend on the berthing policy, which 
indirectly includes the influence of the type of landing procedure, the experience of pilots 
and captains and the use of tug assistance or docking aid systems. Furthermore, no 
evidence was found that berthing velocity is greatly affected by the vessels’ draft, the type 
of vessel, the wind speed or the under-keel clearance.

The maximum tolerable berthing velocity depends on the prescribed reliability target, 
the influence of the berthing impact force on the failure mode being evaluated and the 
variation expected in the berthing velocities of individual arrivals. In addition, the berthing 
frequency and the reference period play an important role. However, none of these aspects 
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is yet explicitly taken into account in the methods presently in use to assess berthing impact 
loads. This thesis therefore offers a new formula Eq. (97), based on a Weibull distribution 
fit, which can be used to customise design values for berthing velocity aiming for a specific 
reliability target. On the basis of both the data available and this formula, a generic set of 
partial factors of safety has been determined for favourable and unfavourable navigation 
conditions in accordance with the reliability requirements of NEN-EN 1990 (2011).

When assessing berthing impact loads acting on existing quay walls, a lower target 
reliability level will generally be required than for new structures, the actual berthing 
frequency can be estimated more accurately and the reference period will be shorter. As a 
result, a lower partial factor of safety can be applied to the characteristic berthing velocity, 
which makes it possible to allow larger vessels to berth onto existing fender systems or to 
extend their service life.

6.3	 RECOMMENDATIONS

6.3.1	 RELIABILITY TARGETS AND FAILURE CONSEQUENCES

1) Allocate appropriate target reliability indices
Since reliability methods have become more robust and efficient, it is expected that they 
will be used more frequently. However, it is quite remarkable that less effort has been 
put into customising target reliability indices for different types of civil engineering works. 
Consequently, the results of advanced reliability-based assessments have to be compared 
with fairly general reliability targets, which were derived predominantly for buildings. It is 
therefore recommended that design codes and standards, such as ISO 2394 (2015) and 
the Eurocodes (NEN-EN 1990, 2011), be improved in order to allocate appropriate reliability 
targets for quay walls and other civil engineering works. 

In addition, this thesis has shown that it is more practical to use annual target reliability 
indices when assessing existing quay walls, since otherwise an iterative procedure to 
determine the quay wall’s remaining lifetime will be required. In the case of new quay walls, 
however, the reference period is known. Consequently, both annual or lifetime reliability 
indices can be used in the design of quay walls. Furthermore, in literature it is often not very 
clear whether targets are assigned to the structure as a whole or to structural components. 
Since quay-wall systems are fairly long structures, it is recommended that there be a focus 
on component reliability and the associated failure consequences. However, quay walls that 
are part of a larger system, such as a primary flood-defence system, should take account 
of the length effect (Calle & Spierenburg, 1991; Janssen, 2012; Roubos & Grotegoed, 2014; 
STOWA, 2011; TAW, 2003) in order guarantee the reliability of the system.
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2) Classify all marine structures in a port
Allocating an appropriate reliability class is crucial to prevent service-proven structures 
from being unjustly condemned. In this thesis, it has been found that unavailability of a 
single berth generally results in fairly low indirect economic damage for ports and terminals. 
However, there are also special berths that may influence the performance of several 
other terminals or companies. It is therefore recommended that all berths in a port be 
consciously classified and that functional redundancy in the port be assessed when a 
berth is temporarily unavailable. Moreover, as revealed by natural disasters in Japan (Iai 
et al., 1996), the efficiency of the recovery of the port and its hinterland must also be 
considered in the classification of berths, e.g. by investing in the ability of port infrastructure 
to withstand severe earthquakes, tsunamis and/or other disasters (OCDI, 2009). From these 
perspectives, a higher reliability class can be assigned strategically. 

3) Develop a database and a model to describe quay-wall failures 
The damage that occurs when a quay wall is temporarily unavailable or collapses plays 
an important role in defining an acceptable reliability target. Predicting direct and indirect 
impacts, such as social consequences and damage to the reputation of a port, is often 
beyond the expertise of engineers. In addition, records of actual quay-wall failures are 
lacking. This thesis has shown that the failure consequences may differ considerably 
depending on the failure mode. Presently, neither a database with past failures nor a 
model is available to accurately predict social and economic repercussions. It is therefore 
recommended that such a database be developed, along with a damage estimation model 
targeted at a better understanding of the causes and consequences of failure in order to 
determine custom reliability targets for critical structural members or failure modes. This will 
prevent erroneous conclusions based on excessively generic criteria, e.g. the conclusion 
that a quay wall has insufficient reliability or needs to be replaced when in fact it meets all 
relevant requirements. 

6.3.2	 REDUCING UNCERTAINTY IN STRENGTH

4) Develop methods to account for past performance
This thesis has shown that uncertainty in the soil-structure interaction greatly influences 
the reliability of quay walls. Since local soil conditions differ, it is recommended that a soil-
structure interaction log be developed for all new quay walls; this should include sensor-
based information about the quay walls’ structural response to loading, e.g. by measuring 
deformations, water levels and anchor forces. Doing so will shed new light on model 
uncertainty and the actual strength of a quay wall. In addition, it is particularly recommended 
that the variability in and correlations between soil properties be investigated. In this context, 
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it is important to realise that what is relevant is not the point-to-point variation, but rather 
the uncertainty in the average strength of a soil layer associated with the soil volumes 
affected by the different failure modes. By reducing these uncertainties, it is expected that 
the functionality of many quay walls can be enhanced, e.g. by allowing bigger vessels to 
berth or the installation of larger cranes. 

Many existing quay walls in the port of Rotterdam are in good condition and have 
a successful service history. However, they regularly do not comply with modern code 
requirements developed for new structures. The main reason for this is that these guidelines 
do not yet account for past performance, and hence neglect the decrease in epistemic 
uncertainty. It is therefore recommended that further study of this effect on quay-wall 
reliability be carried out, taking degradation into consideration, and also that new design 
guidance for the assessment of existing quay walls be developed. 

Based on the findings of this thesis, it appears that the early application of a test load 
close to the maximum design load directly after completion of new quay walls can be an 
effective strategy to increase their reliability during their remaining service life. It is therefore 
recommended that the effectiveness of a test load in such a pre-posterior analysis be 
investigated. If the outcomes are favourable, full-scale test protocols for new quay walls 
should be developed. In addition, it is recommended that a test procedure be developed 
to increase the functionality of existing quay walls by gradually applying a well-controlled 
test load and simultaneously logging the associated quay-wall behaviour – for instance, 
deformations and strains. In this case, the quay wall would not be tested until failure in 
order to maintain the structure after the test. Another option is to test a quay wall nominated 
for replacement in the near future until failure. Yet another is to develop a quay wall fully 
equipped with sensors dedicated to testing.

5) Modelling corrosion-induced degradation
The quay-wall monitoring system (KMS) used by the Port of Rotterdam Authority presently 
assesses the stresses in single structural members subject to corrosion-induced degradation, 
such as the king piles of a combi-wall system. It is worth noting that KMS includes corrosion 
curves, which were developed from millions of wall-thickness measurements (Jongbloed, 
2019). These curves enable the Port of Rotterdam Authority to manage the relatively high 
coefficient of variation in wall-thickness measurements. It is therefore recommended that 
other port authorities also start measurement campaigns and develop a similar method 
to take corrosion induced degradation into consideration. This thesis, however, has found 
that quay walls generally ensure redistribution of structural forces. As a result, it is almost 
impossible that a single member will display yielding or buckling. This redistribution has not 
yet been included in KMS. While KMS already distinguishes between different corrosion 
zones across the height of the combi-wall, spatial variation of these zones along the quay 
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wall is not yet taken into consideration. It is therefore recommended that horizontal correlation 
lengths of the distinctive corrosion zones be subject to further study. Both these factors 
show that the current version of KMS is conservative and most likely underestimates the 
actual structural capacity of steel combi-walls subject to pitting corrosion.

6.3.3	 REDUCING UNCERTAINTY IN LOADS

6) Perform reliability-based assessments for quay walls subject to earthquakes and 
large tidal differences
The methods developed in this thesis have been applied successfully to the quay walls in 
the port of Rotterdam. However, this port has a relatively favourable geographical location 
with regard to earthquakes and tidal loads. It is therefore recommended that the results and 
conclusions be verified in other load environments, since it is not yet possible to exclude 
the possibility that time-independent loads also dominate the failure modes of quay walls 
subject to earthquakes and/or extreme water heads. If such loads do heavily influence quay-
wall reliability, then it is likely that another set of safety factors will apply to these structures.

7) Manage and predict accidental load combinations
When assessing existing quay walls, partial factors of safety applied to characteristic values 
of loads are generally reduced. However, clear guidance on how to deal with extreme loads, 
such as accidental load combinations for which the partial factors in the original design are 
already equal to one, is still lacking. It may therefore be that an existing structure complies 
with these standards but nevertheless is unable to withstand accidental load combinations. 
If engineers blindly follow the existing standards, they may create dangerous situations. It is 
therefore recommended that code writers revise these standards by explicitly addressing 
how to deal with accidental load combinations.

Although this thesis has found that failure modes exhibit warning signals, it is 
recommended that port authorities be alert to the potential functional misuse of quay walls 
while they are subject to extreme environmental conditions, such as a very low outer water 
level. In this context, it is recommended that quay-wall deformations be verified regularly, along 
with the functioning of the drainage system and the presence of scour, and also that visual 
checks for overloading be performed prior to such extreme conditions (or that quay walls be 
equipped with sensors to measure the terminal loads). Predicting accidental load combinations 
seems possible when real-time data is available and is coupled to predictive models. 

8) Start collecting berthing records of inland barges
Several guidelines include design values for the berthing velocity of inland vessels. However, 
these values are inconsistent and it is unclear how they were derived. As there are many 

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   174 28-08-19   12:46



175

Conclusion and recommendations

berths for inland barges throughout the world, it is recommended that measurement 
campaigns be started to collect up-to-date data. Ideally, a new PIANC working group 
should start collecting these measurements throughout the world. It is likely that the 
landings of inland barges will also be influenced by human behaviour, and it is therefore 
recommended that work be undertaken to reveal the extent to which captains’ behaviour 
can be influenced in this regard – for instance, by showing the maximum permissible 
berthing velocity on a display. 

9) Statistically examine mooring loads
During its service life, one frequently asked question is whether larger vessels may be 
allowed to berth onto an existing quay wall. At multiple berths in the port of Rotterdam, 
mooring loads are already registered. However, this data is not yet used to assess the 
reliability of quay walls; moreover, it could also be used to optimise or validate the models 
used for performing static and dynamic mooring analyses. In addition, specific safety 
factors for mooring loads can be determined by statistically examining the data available. 
It is therefore recommended that examining mooring loads be the subject of further study. 
A second recommendation is to equip bollards and quick release hooks with sensors to 
receive real-time information, which would make it possible to predict whether a dangerous 
situation might arise by using the available data from wind and/or vessel-traffic models. It is 
expected that these suggestions will enhance the functionality (e.g. larger ships at higher 
wind speeds) of marine structures as well as the safety within a port. 
	

6.4	 RELEVANCE AND IMPLICATIONS

In addition to presenting its scientific results, this thesis has devoted particular attention to 
the implementation of its main findings and the methods developed in order to ensure that 
its outcomes benefit both industry and society, e.g. port and terminal authorities, engineers, 
asset managers and code writers. Consequently, it has proposed practically applicable 
formulas, new methods and concrete recommendations to improve design guidance, and 
these have already been implemented in revisions of national and international design 
guidelines. The formula derived in Chapter 5 to establish customised design values ​​for 
berthing velocity based on field measurements has been included in the PIANC guideline 
Berthing velocities analysis of seagoing vessels over 30 kDWT (PIANC, 2019) and in the 
design manual Flexible Dolphins (Roubos, 2018). Moreover, this formula has already been 
used by the Port of Rotterdam Authority to make better use of existing marine structures 
by allowing larger vessels to berth onto existing facilities. Furthermore, based on the main 
findings of this thesis specific recommendations have been written for the allocation of 
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reliability targets to marine structures, and these are now included in the Dutch annex of 
NEN-EN 1990 (2019) as well as in the design manuals Quay Walls (De Gijt & Broeken, 2018), 
Jetties and Wharfs (Broeken, 2018) and Flexible Dolphins (Roubos, 2018). 

In collaboration with the firm Plaxis, the reliability interface ProbAna® has been developed 
to calculate the reliability of a quay wall in a finite element environment. Since January 2017, 
a commercial version of this interface has been available (Laera & Brinkgreve, 2017); it is 
now used to assess not only quay walls, but also hydraulic structures and the Dutch primary 
flood-defence system. Due to the robustness and efficiency of this interface, the practical 
application of finite-element-based reliability assessments has increased considerably.

Another finding of this thesis – the lack of correlation between the size of a vessel and 
its berthing velocity – has led to a reconsideration of the historically embedded berthing 
velocity curves developed by Brolsma (1977), which have been used since 1977 in the 
design of maritime constructions throughout the world. In this regard, the new working 
group PIANC WG211 will review the recommendations presently used for assessing 
berthing energy and the associated berthing impact force (PIANC, 2019). Furthermore, 
during this research no background documents or berthing velocity measurements were 
found to support the design recommendations’ current values for inland barges, which 
immediately led Rijkswaterstaat (the Dutch national public works agency) and the Port of 
Rotterdam Authority to start new measurement campaigns. 

By illuminating the aspects that influence quay walls’ reliability, this thesis has 
discovered new opportunities to make better use of these structures. The Port of Rotterdam 
Authority is now using these insights to optimise its monitoring programme and to perform 
specific tests on its quay walls. New ideas have also arisen to increase the functionality 
of existing quay walls and jetties by applying structural modifications (Schutte, 2017). By 
contrast, it seems possible to optimise the functionality of existing quay walls, such as by 
deepening berths or installing larger cranes, without structural adjustments. Based on the 
results of this thesis, it is expected that the nautical guaranteed depth (NGD) and operational 
loads of quay walls in Rotterdam can be increased by approximately 0.5-1.0 metres and 
10-20%, respectively. A further increase would be inappropriate, because then the ability 
of a quay wall to withstand accidental load combinations would be insufficient. It should, 
however, be noted that searching for operational limits with regard to safety is not without 
risks and also requires additional efforts to prevent overloading and functional misuse. 
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Fig. 6.1. Optimising functionality, maintenance and guidelines using quay-wall data

Since quay walls are increasingly equipped with sensors, a great deal of data has 
become available. This can serve as input for the methods developed in this thesis, thus 
facilitating predictive modelling and fostering reliability and safety. Fig. 6.1 shows how 
port authorities or terminals can make better use of sensor data and reliability-based 
assessments by distinguishing and connecting commercial, asset-management and 
data-management cycles. In the asset-management cycle, sensor data allows us to lay 
foundations for data-driven and risk-based decisions to optimise the required maintenance. 
In addition, data-driven information will enable us to continuously improve our understanding 
of quay walls and can be used in the application of Bayesian updating. In the data-
management cycle, data analytics in combination with fi nite element models can be used 
to update the functional requirements of a specifi c quay wall, which boosts the commercial 
cycle, e.g. by creating new business opportunities. Furthermore, data-driven research is of 
the utmost importance to maintain design guidelines and to validate new methods. 

In summary, the methods developed in this thesis enable reliability-based assessments of 
quay walls. However, it is of the utmost importance that engineers do not rely solely on these 
advanced methods, and keep using their engineering sense and expert judgement as well.
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Appendix A1. Derivation of analytical formulas

APPENDIX A1. DERIVATION OF ANALYTICAL 
FORMULAS

In this appendix, analytical formulas of the objective function CTot𝑎l and the associated derivative 
have been derived to determine the discounted future failure costs in each year of the reference 
period. The analytical formulas were also used in the sensitivity analyses (Sections 2.5.2 and 
2.5.4). It should be noted that the Hasofer-Lind reliability index β is the decision parameter.
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The mathematical notation of time-variant reliability problems is well described by Sudret (2008; 2011) and Rackwitz 
(2001). In addition to the formulation of the limit state function (Section 2.3.2), time-dependent uncertainty such as 
deterioration or due to variable loads must also be taken into account. The failure probability in the time interval 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡     is defined in accordance with the notation of Sudret and Rackwitz as: 
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When the time interval (t,	t+∆t) approaches zero, the point-in-time instantaneous probability of failure – in other 
words, the failure rate – can be found (Sudret, 2008). The probability of failure at time instant t is defined as: 
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The mathematical notation of time-variant reliability problems is well described by Sudret (2008; 2011) and Rackwitz 
(2001). In addition to the formulation of the limit state function (Section 2.3.2), time-dependent uncertainty such as 
deterioration or due to variable loads must also be taken into account. The failure probability in the time interval 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡     is defined in accordance with the notation of Sudret and Rackwitz as: 
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When the time interval (t,	t+∆t) approaches zero, the point-in-time instantaneous probability of failure – in other 
words, the failure rate – can be found (Sudret, 2008). The probability of failure at time instant t is defined as: 
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𝑃𝑃2;'*   Part of the probability of failure not influenced by time interval [0,tref) [-] 
∆𝑃𝑃2  Reference period, dependent increase in cumulative probability of failure in  

   the year n 
n  Number of years [-] 
nref  Number of years in the reference period [-]  

 	 r  Real annual discount rate [-] 
 

The probability of failure was determined on the basis of a standard normal distribution. Hence, the following 
equations were used:  
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In this appendix the following properties of the standard normal distribution were used: 
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The mathematical notation of time-variant reliability problems is well described by Sudret (2008; 2011) and Rackwitz 
(2001). In addition to the formulation of the limit state function (Section 2.3.2), time-dependent uncertainty such as 
deterioration or due to variable loads must also be taken into account. The failure probability in the time interval 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡     is defined in accordance with the notation of Sudret and Rackwitz as: 

 
 𝑃𝑃2 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    = ℙ ∃𝑡𝑡𝜖𝜖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    : 𝑍𝑍 𝑍 𝑍   (113)  

 
When the time interval (t,	t+∆t) approaches zero, the point-in-time instantaneous probability of failure – in other 
words, the failure rate – can be found (Sudret, 2008). The probability of failure at time instant t is defined as: 
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Appendix A1. Derivation of analytical formulas 
	
In this appendix, analytical formulas of the objective function CTotal and the associated derivative have been derived 
to determine the discounted future failure costs in each year of the reference period. The analytical formulas were 
also used in the sensitivity analyses (Sections 2.5.2 and 2.5.4). It should be noted that the Hasofer-Lind reliability 
index β is the decision parameter.  
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The mathematical notation of time-variant reliability problems is well described by Sudret (2008; 2011) and Rackwitz 
(2001). In addition to the formulation of the limit state function (Section 2.3.2), time-dependent uncertainty such as 
deterioration or due to variable loads must also be taken into account. The failure probability in the time interval 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡     is defined in accordance with the notation of Sudret and Rackwitz as: 
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Where: 
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   the year n 
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The mathematical notation of time-variant reliability problems is well described by Sudret (2008; 2011) and Rackwitz 
(2001). In addition to the formulation of the limit state function (Section 2.3.2), time-dependent uncertainty such as 
deterioration or due to variable loads must also be taken into account. The failure probability in the time interval 
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When the time interval (t,	t+∆t) approaches zero, the point-in-time instantaneous probability of failure – in other 
words, the failure rate – can be found (Sudret, 2008). The probability of failure at time instant t is defined as: 
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Where: 
 CInvestments Investments in safety measures [€] 
 CCapitalisedRisk Present value of future failure costs [€] 

β  Decision parameter [-] 
β*  Optimum reliability index [-] 
C0  Initial construction costs independent of reliability level [€] 
Cm  Marginal construction cost dependent on reliability level [€] 
Cf  Summation of direct and indirect costs of failure [€] 
𝑃𝑃2;'*   Part of the probability of failure not influenced by time interval [0,tref) [-] 
∆𝑃𝑃2  Reference period, dependent increase in cumulative probability of failure in  

   the year n 
n  Number of years [-] 
nref  Number of years in the reference period [-]  

 	 r  Real annual discount rate [-] 
 

The probability of failure was determined on the basis of a standard normal distribution. Hence, the following 
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𝜙𝜙 𝛽𝛽  Probability density function of normal distribution [-] 
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In this appendix the following properties of the standard normal distribution were used: 
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The mathematical notation of time-variant reliability problems is well described by Sudret (2008; 2011) and Rackwitz 
(2001). In addition to the formulation of the limit state function (Section 2.3.2), time-dependent uncertainty such as 
deterioration or due to variable loads must also be taken into account. The failure probability in the time interval 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡     is defined in accordance with the notation of Sudret and Rackwitz as: 
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When the time interval (t,	t+∆t) approaches zero, the point-in-time instantaneous probability of failure – in other 
words, the failure rate – can be found (Sudret, 2008). The probability of failure at time instant t is defined as: 
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Appendix A1. Derivation of analytical formulas 
	
In this appendix, analytical formulas of the objective function CTotal and the associated derivative have been derived 
to determine the discounted future failure costs in each year of the reference period. The analytical formulas were 
also used in the sensitivity analyses (Sections 2.5.2 and 2.5.4). It should be noted that the Hasofer-Lind reliability 
index β is the decision parameter.  
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The mathematical notation of time-variant reliability problems is well described by Sudret (2008; 2011) and Rackwitz 
(2001). In addition to the formulation of the limit state function (Section 2.3.2), time-dependent uncertainty such as 
deterioration or due to variable loads must also be taken into account. The failure probability in the time interval 
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The mathematical notation of time-variant reliability problems is well described by Sudret (2008; 2011) and Rackwitz 
(2001). In addition to the formulation of the limit state function (Section 2.3.2), time-dependent uncertainty such as 
deterioration or due to variable loads must also be taken into account. The failure probability in the time interval 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡     is defined in accordance with the notation of Sudret and Rackwitz as: 

 
 𝑃𝑃2 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    = ℙ ∃𝑡𝑡𝜖𝜖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    : 𝑍𝑍 𝑍 𝑍   (113)  

 
When the time interval (t,	t+∆t) approaches zero, the point-in-time instantaneous probability of failure – in other 
words, the failure rate – can be found (Sudret, 2008). The probability of failure at time instant t is defined as: 
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time 
interval (t, t+∆t) (Rackwitz, 2001).
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
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Where: 

𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  Probability of failure in interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
𝑃𝑃2;f  Part of the probability of failure being independent of time interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑁𝑁ü  Number of outcrossings of the limit state [-] 

 Z  State function [-] 
 
The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
 

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ(     (118)  
 𝑃𝑃2;'d = 1 − 1 − 𝑃𝑃2;'(

M9üS   (119)  
 𝑃𝑃2;'* = 1 − 1 − 𝑃𝑃2;'(

S   (120)  
 

𝑎𝑎 𝑎
𝑛𝑛>i − 1
𝑛𝑛=>? − 1

 (121)  

 𝑏𝑏 =
𝑛𝑛=>? − 𝑛𝑛>i
𝑛𝑛=>? − 1

 (122)  

 
The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
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 𝑃𝑃2;'( = 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐹𝐹𝐹�'() (124)  
 1 − 𝑃𝑃2;'( = Φ(�'() (125)  

 
The above transformation was applied to Eq. (119). 
 

 𝑃𝑃2;'d = 1 − (Φ(�'())
M9üS (126)  

 𝑃𝑃2;'dˆ( = 1 − (Φ(�'())
M(9./)üS (127)  

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ( = 1 − (Φ(�'())
M9üS − 1 − (Φ(�'())

M(9./)üS  (128)  

 
If one implements the following denotation:  
 

 Φ �'( = Φ/  (129)  

 
∆𝑃𝑃2 is defined as: 
 

 ∆𝑃𝑃2 = −Φ/
M9Φ/

S +Φ /
M9Φ/

.MΦ/
S (130)  

 ∆𝑃𝑃2 = Φ/
M9Φ/

.MΦ/
S − Φ/

M9Φ/
S (131)  

 ∆𝑃𝑃2 = Φ/
M9Φ/

S Φ/
.M − 1  (132)  

(115)

Where:

 
113 

 

 
Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
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Appendix A1. Derivation of analytical formulas
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
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[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
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The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
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Where: 
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𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
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The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
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𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
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does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
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bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
 

 max
'J ','ü∆'

𝑃𝑃2,â(𝑡𝑡â) ≤ 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡 ≤ 𝑃𝑃2;f + 𝐸𝐸 𝑁𝑁ü 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  (115)  
 
Where: 

𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  Probability of failure in interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
𝑃𝑃2;f  Part of the probability of failure being independent of time interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑁𝑁ü  Number of outcrossings of the limit state [-] 

 Z  State function [-] 
 
The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
 

 𝑃𝑃2;'d = 𝑃𝑃2;f + ∆𝑃𝑃2;'d   (116)  

 𝑃𝑃2;'456 = 𝑃𝑃2;f + ∆𝑃𝑃2;'d

9456

9g/

 

 

(117)  
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does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
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The above transformation was applied to Eq. (119). 
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
 

 max
'J ','ü∆'

𝑃𝑃2,â(𝑡𝑡â) ≤ 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡 ≤ 𝑃𝑃2;f + 𝐸𝐸 𝑁𝑁ü 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  (115)  
 
Where: 

𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  Probability of failure in interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
𝑃𝑃2;f  Part of the probability of failure being independent of time interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑁𝑁ü  Number of outcrossings of the limit state [-] 

 Z  State function [-] 
 
The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
 

 𝑃𝑃2;'d = 𝑃𝑃2;f + ∆𝑃𝑃2;'d   (116)  
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
 

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ(     (118)  
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𝑎𝑎 𝑎
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 (121)  

 𝑏𝑏 =
𝑛𝑛=>? − 𝑛𝑛>i
𝑛𝑛=>? − 1

 (122)  

 
The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
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 𝑃𝑃2;'( = 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐹𝐹𝐹�'() (124)  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
 

 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 = 𝐶𝐶2𝑃𝑃2;f 𝛽𝛽 + 𝐶𝐶2 ∙
∆tû;od(n)
/ü= d

9456
9g/    for   𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛𝑛=>?) (18)  

 
The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
 

 𝐶𝐶Cä'MN �'( = 𝐶𝐶Ü9á>v'q>9'v �'( + 𝐶𝐶ãåçéèåêéëíìîéëï �'(    (19)  

 𝐶𝐶Cä'MN �'( = 𝐶𝐶f + 𝐶𝐶q�'( + 𝐶𝐶2 1 − Φ/
S + 𝐶𝐶2𝑐𝑐 Φ/

S − Φ/
/. cm(

° d456

/.¢m(
°    (20)  

 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
 

	 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	𝑃𝑃2o(𝑃𝑃t=>v>9' 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (22) 	
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
 

 max
'J ','ü∆'

𝑃𝑃2,â(𝑡𝑡â) ≤ 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡 ≤ 𝑃𝑃2;f + 𝐸𝐸 𝑁𝑁ü 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  (115)  
 
Where: 

𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  Probability of failure in interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
𝑃𝑃2;f  Part of the probability of failure being independent of time interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑁𝑁ü  Number of outcrossings of the limit state [-] 

 Z  State function [-] 
 
The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
 

 𝑃𝑃2;'d = 𝑃𝑃2;f + ∆𝑃𝑃2;'d   (116)  

 𝑃𝑃2;'456 = 𝑃𝑃2;f + ∆𝑃𝑃2;'d
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(117)  

The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
 

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ(     (118)  
 𝑃𝑃2;'d = 1 − 1 − 𝑃𝑃2;'(

M9üS   (119)  
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S   (120)  
 

𝑎𝑎 𝑎
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 (121)  

 𝑏𝑏 =
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 (122)  

 
The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
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 1 − 𝑃𝑃2;'( = Φ(�'() (125)  

 
The above transformation was applied to Eq. (119). 
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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Appendix A1. Derivation of analytical formulas

The above transformation was applied to Eq. (119).
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
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Where: 
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𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
𝑃𝑃2;f  Part of the probability of failure being independent of time interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑁𝑁ü  Number of outcrossings of the limit state [-] 

 Z  State function [-] 
 
The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
 

 𝑃𝑃2;'d = 𝑃𝑃2;f + ∆𝑃𝑃2;'d   (116)  
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
 

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ(     (118)  
 𝑃𝑃2;'d = 1 − 1 − 𝑃𝑃2;'(

M9üS   (119)  
 𝑃𝑃2;'* = 1 − 1 − 𝑃𝑃2;'(

S   (120)  
 

𝑎𝑎 𝑎
𝑛𝑛>i − 1
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 (121)  

 𝑏𝑏 =
𝑛𝑛=>? − 𝑛𝑛>i
𝑛𝑛=>? − 1

 (122)  

 
The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
 

 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹 (123)  
 𝑃𝑃2;'( = 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐹𝐹𝐹�'() (124)  
 1 − 𝑃𝑃2;'( = Φ(�'() (125)  

 
The above transformation was applied to Eq. (119). 
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If one implements the following denotation:  
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∆𝑃𝑃2 is defined as: 
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
 

 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 = 𝐶𝐶2𝑃𝑃2;f 𝛽𝛽 + 𝐶𝐶2 ∙
∆tû;od(n)
/ü= d
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
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𝑃𝑃2,â(𝑡𝑡â) ≤ 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡 ≤ 𝑃𝑃2;f + 𝐸𝐸 𝑁𝑁ü 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  (115)  
 
Where: 

𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  Probability of failure in interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
𝑃𝑃2;f  Part of the probability of failure being independent of time interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑁𝑁ü  Number of outcrossings of the limit state [-] 

 Z  State function [-] 
 
The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
 

 𝑃𝑃2;'d = 𝑃𝑃2;f + ∆𝑃𝑃2;'d   (116)  

 𝑃𝑃2;'456 = 𝑃𝑃2;f + ∆𝑃𝑃2;'d
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
 

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ(     (118)  
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The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
 

 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹 (123)  
 𝑃𝑃2;'( = 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐹𝐹𝐹�'() (124)  
 1 − 𝑃𝑃2;'( = Φ(�'() (125)  

 
The above transformation was applied to Eq. (119). 
 

 𝑃𝑃2;'d = 1 − (Φ(�'())
M9üS (126)  

 𝑃𝑃2;'dˆ( = 1 − (Φ(�'())
M(9./)üS (127)  

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ( = 1 − (Φ(�'())
M9üS − 1 − (Φ(�'())

M(9./)üS  (128)  

 
If one implements the following denotation:  
 

 Φ �'( = Φ/  (129)  

 
∆𝑃𝑃2 is defined as: 
 

 ∆𝑃𝑃2 = −Φ/
M9Φ/

S +Φ /
M9Φ/

.MΦ/
S (130)  

 ∆𝑃𝑃2 = Φ/
M9Φ/

.MΦ/
S − Φ/

M9Φ/
S (131)  

 ∆𝑃𝑃2 = Φ/
M9Φ/

S Φ/
.M − 1  (132)  

 
25 

 

versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
 

 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 = 𝐶𝐶2𝑃𝑃2;f 𝛽𝛽 + 𝐶𝐶2 ∙
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
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𝑃𝑃2,â(𝑡𝑡â) ≤ 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡 ≤ 𝑃𝑃2;f + 𝐸𝐸 𝑁𝑁ü 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  (115)  
 
Where: 

𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  Probability of failure in interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
𝑃𝑃2;f  Part of the probability of failure being independent of time interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑁𝑁ü  Number of outcrossings of the limit state [-] 

 Z  State function [-] 
 
The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
 

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ(     (118)  
 𝑃𝑃2;'d = 1 − 1 − 𝑃𝑃2;'(
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The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
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 𝑃𝑃2;'( = 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐹𝐹𝐹�'() (124)  
 1 − 𝑃𝑃2;'( = Φ(�'() (125)  

 
The above transformation was applied to Eq. (119). 
 

 𝑃𝑃2;'d = 1 − (Φ(�'())
M9üS (126)  

 𝑃𝑃2;'dˆ( = 1 − (Φ(�'())
M(9./)üS (127)  

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ( = 1 − (Φ(�'())
M9üS − 1 − (Φ(�'())

M(9./)üS  (128)  

 
If one implements the following denotation:  
 

 Φ �'( = Φ/  (129)  

 
∆𝑃𝑃2 is defined as: 
 

 ∆𝑃𝑃2 = −Φ/
M9Φ/

S +Φ /
M9Φ/

.MΦ/
S (130)  

 ∆𝑃𝑃2 = Φ/
M9Φ/

.MΦ/
S − Φ/

M9Φ/
S (131)  

 ∆𝑃𝑃2 = Φ/
M9Φ/

S Φ/
.M − 1  (132)  

 
25 

 

versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
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The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
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where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
 

 max
'J ','ü∆'

𝑃𝑃2,â(𝑡𝑡â) ≤ 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡 ≤ 𝑃𝑃2;f + 𝐸𝐸 𝑁𝑁ü 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  (115)  
 
Where: 

𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  Probability of failure in interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
𝑃𝑃2;f  Part of the probability of failure being independent of time interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑁𝑁ü  Number of outcrossings of the limit state [-] 

 Z  State function [-] 
 
The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
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The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
 

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ(     (118)  
 𝑃𝑃2;'d = 1 − 1 − 𝑃𝑃2;'(

M9üS   (119)  
 𝑃𝑃2;'* = 1 − 1 − 𝑃𝑃2;'(

S   (120)  
 

𝑎𝑎 𝑎
𝑛𝑛>i − 1
𝑛𝑛=>? − 1

 (121)  

 𝑏𝑏 =
𝑛𝑛=>? − 𝑛𝑛>i
𝑛𝑛=>? − 1

 (122)  

 
The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
 

 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹 (123)  
 𝑃𝑃2;'( = 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐹𝐹𝐹�'() (124)  
 1 − 𝑃𝑃2;'( = Φ(�'() (125)  

 
The above transformation was applied to Eq. (119). 
 

 𝑃𝑃2;'d = 1 − (Φ(�'())
M9üS (126)  

 𝑃𝑃2;'dˆ( = 1 − (Φ(�'())
M(9./)üS (127)  

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ( = 1 − (Φ(�'())
M9üS − 1 − (Φ(�'())

M(9./)üS  (128)  

 
If one implements the following denotation:  
 

 Φ �'( = Φ/  (129)  

 
∆𝑃𝑃2 is defined as: 
 

 ∆𝑃𝑃2 = −Φ/
M9Φ/

S +Φ /
M9Φ/

.MΦ/
S (130)  

 ∆𝑃𝑃2 = Φ/
M9Φ/

.MΦ/
S − Φ/

M9Φ/
S (131)  

 ∆𝑃𝑃2 = Φ/
M9Φ/

S Φ/
.M − 1  (132)  

 is defined as:
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
 

 max
'J ','ü∆'

𝑃𝑃2,â(𝑡𝑡â) ≤ 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡 ≤ 𝑃𝑃2;f + 𝐸𝐸 𝑁𝑁ü 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  (115)  
 
Where: 

𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  Probability of failure in interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
𝑃𝑃2;f  Part of the probability of failure being independent of time interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑁𝑁ü  Number of outcrossings of the limit state [-] 

 Z  State function [-] 
 
The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
 

 𝑃𝑃2;'d = 𝑃𝑃2;f + ∆𝑃𝑃2;'d   (116)  
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
 

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ(     (118)  
 𝑃𝑃2;'d = 1 − 1 − 𝑃𝑃2;'(
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The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
 

 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹 (123)  
 𝑃𝑃2;'( = 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐹𝐹𝐹�'() (124)  
 1 − 𝑃𝑃2;'( = Φ(�'() (125)  

 
The above transformation was applied to Eq. (119). 
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M9üS (126)  
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
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𝑃𝑃2,â(𝑡𝑡â) ≤ 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡 ≤ 𝑃𝑃2;f + 𝐸𝐸 𝑁𝑁ü 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  (115)  
 
Where: 

𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  Probability of failure in interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
𝑃𝑃2;f  Part of the probability of failure being independent of time interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑁𝑁ü  Number of outcrossings of the limit state [-] 

 Z  State function [-] 
 
The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
 

 𝑃𝑃2;'d = 𝑃𝑃2;f + ∆𝑃𝑃2;'d   (116)  

 𝑃𝑃2;'456 = 𝑃𝑃2;f + ∆𝑃𝑃2;'d
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
 

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ(     (118)  
 𝑃𝑃2;'d = 1 − 1 − 𝑃𝑃2;'(

M9üS   (119)  
 𝑃𝑃2;'* = 1 − 1 − 𝑃𝑃2;'(
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𝑎𝑎 𝑎
𝑛𝑛>i − 1
𝑛𝑛=>? − 1

 (121)  

 𝑏𝑏 =
𝑛𝑛=>? − 𝑛𝑛>i
𝑛𝑛=>? − 1

 (122)  

 
The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
 

 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹 (123)  
 𝑃𝑃2;'( = 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐹𝐹𝐹�'() (124)  
 1 − 𝑃𝑃2;'( = Φ(�'() (125)  

 
The above transformation was applied to Eq. (119). 
 

 𝑃𝑃2;'d = 1 − (Φ(�'())
M9üS (126)  

 𝑃𝑃2;'dˆ( = 1 − (Φ(�'())
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Eq. (115) shows the classical upper and lower bounds of the probability of failure in the time interval 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  
(Rackwitz, 2001). 
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𝑃𝑃2,â(𝑡𝑡â) ≤ 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡 ≤ 𝑃𝑃2;f + 𝐸𝐸 𝑁𝑁ü 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  (115)  
 
Where: 

𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  Probability of failure in interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑃𝑃2,â(𝑡𝑡â)  Probability of failure at time instant	ti	[-] 
𝑃𝑃2;f  Part of the probability of failure being independent of time interval (𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡) [-] 
𝑁𝑁ü  Number of outcrossings of the limit state [-] 

 Z  State function [-] 
 
The usual approach to a time-variant reliability problem is based on the computation of the outcrossing rate 
𝐸𝐸 𝑁𝑁ü 𝑡𝑡𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  of the limit state under consideration (Sudret, 2008). However, in this study the upper and lower 
bounds were not used. Instead, the probability of failure in time interval 𝑃𝑃2 𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡  was defined by subdividing 𝑃𝑃2;'d  
into a block that is largely time-independent Pf;0 and a block that is fully time-dependent ∆𝑃𝑃2;'d  (Fig. 2.5). 
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The main difference between a time-invariant and a time-variant reliability problem is that in the latter case one 
does not know when a failure occurs (Sudret, 2011). When teq is determined, the marginal change in probability of 
failure in each year can be established by subtracting the cumulative probability of failure in the intervals [0,	tn) and 
[0,	tn-1) using Eq. (118). This equation is a function of the probability of failure during a reference period of one year 
𝑃𝑃2;'(  (Fig. 2.6). The cumulative failure probability in the time interval [0,	tn) was derived by transforming Eq. (7) into 
Eq. (118), and the time-independent part using Eq. (120). The equations are illustrated in Fig. 2.6. When 𝑃𝑃2;'( , teq 
and tref are known, 𝑃𝑃2;'456  and ∆𝑃𝑃2;'d  can be derived by the following equations: 
 

 ∆𝑃𝑃2;'d = 𝑃𝑃2;'d − 𝑃𝑃2;'dˆ(     (118)  
 𝑃𝑃2;'d = 1 − 1 − 𝑃𝑃2;'(

M9üS   (119)  
 𝑃𝑃2;'* = 1 − 1 − 𝑃𝑃2;'(
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𝑎𝑎 𝑎
𝑛𝑛>i − 1
𝑛𝑛=>? − 1

 (121)  

 𝑏𝑏 =
𝑛𝑛=>? − 𝑛𝑛>i
𝑛𝑛=>? − 1

 (122)  

 
The probability of failure over a certain time interval (t,	t+∆t) can be described using the cumulative distribution 
function 𝐹𝐹𝐹𝐹𝐹𝐹. 
 

 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹 (123)  
 𝑃𝑃2;'( = 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐹𝐹𝐹�'() (124)  
 1 − 𝑃𝑃2;'( = Φ(�'() (125)  

 
The above transformation was applied to Eq. (119). 
 

 𝑃𝑃2;'d = 1 − (Φ(�'())
M9üS (126)  

 𝑃𝑃2;'dˆ( = 1 − (Φ(�'())
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Consequently, the following formula of CC𝑎pit𝑎lis𝑒dRisk was found:
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Consequently, the following formula of CCapitalisedRisk was found: 
 

 𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2
m(

°dm(
– m(

ˆ°./
/ü= d

'456
9gf  for 𝑛𝑛 𝑛 [0, 𝑛𝑛=>?) (133)  

 𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2Φ/
S Φ/

.M − 1 m(
°

/ü=

99456
9gf   (134)  

 𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2 Φ/
S.M − Φ/

S m(
°

/ü=

99456
9gf   (135)  

 
If one separates the part 𝑃𝑃2;f – being not influenced by a change in reference period – from the part ∆𝑃𝑃2;'d  – which 
depends on the reference period – the following equation is obtained:  
 

 𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2𝑃𝑃2;f + 𝐶𝐶2 Φ/
S.M − Φ/

S m(
°

/ü=

99456
9g/  for 𝑛𝑛 𝑛 [1, 𝑛𝑛=>?) 

(136)  

 
Now the following transformation rule is used: 
 

 
𝐴𝐴𝐴𝐴â

9456

âgf

= 𝐴𝐴
1 − 𝑥𝑥9456ü/

1 − 𝑥𝑥
 

(137)  

And thus: 

 
 
 

𝐴𝐴𝑥𝑥â
9456

âgf

= 𝐴𝐴𝐴𝐴f + 𝐴𝐴𝑥𝑥â
9456

âg/

= 𝐴𝐴𝑥𝑥f + 𝐴𝐴𝑥𝑥âü/
9456./

âgf

= 𝐴𝐴𝑥𝑥f + 𝐴𝐴𝑥𝑥â
9456./

âgf

𝑥𝑥 

= 𝐴𝐴𝐴𝐴f + 𝐴𝐴𝐴𝐴
1 − 𝑥𝑥9456

1 − 𝑥𝑥
 

(138)  

Where: 

 𝑥𝑥𝑥  m(
°

/ü=
 (in fact, this an adjusted grow rate) (139)  

 𝐴𝐴 𝐴𝐴𝐴 2 Φ/
S.M − Φ/

S  (140)  
 
Consequently, the following formula of CCapitalisedRisk was found: 
 

 
𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2𝑃𝑃2;f + 𝐴𝐴 𝑥𝑥

1 − 𝑥𝑥 9456

1 − 𝑥𝑥
 (141)  

 

𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2𝑃𝑃2;f + 𝐶𝐶2 Φ/
S.M − Φ/

S Φ/
M

1 + 𝑟𝑟

1 − Φ/
M

1 + 𝑟𝑟
9456

1 − Φ/
M

1 + 𝑟𝑟
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𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2𝑃𝑃2;f + 𝐶𝐶2
Φ/

S − Φ/
SüM
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Appendix A1. Derivation of analytical formulas
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depends on the reference period – the following equation is obtained:  
 

 𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2𝑃𝑃2;f + 𝐶𝐶2 Φ/
S.M − Φ/

S m(
°

/ü=

99456
9g/  for 𝑛𝑛 𝑛 [1, 𝑛𝑛=>?) 

(136)  

 
Now the following transformation rule is used: 
 

 
𝐴𝐴𝐴𝐴â
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And thus: 
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(138)  

Where: 

 𝑥𝑥𝑥  m(
°

/ü=
 (in fact, this an adjusted grow rate) (139)  

 𝐴𝐴 𝐴𝐴𝐴 2 Φ/
S.M − Φ/

S  (140)  
 
Consequently, the following formula of CCapitalisedRisk was found: 
 

 
𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2𝑃𝑃2;f + 𝐴𝐴 𝑥𝑥
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𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2𝑃𝑃2;f + 𝐶𝐶2 Φ/
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𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2𝑃𝑃2;f + 𝐶𝐶2
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𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2 1 − Φ/
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The analytical formula of the objective function now becomes: 
 

 𝑓𝑓(𝛽𝛽) = 𝐶𝐶f + 𝐶𝐶q�'( + 𝐶𝐶2 1 − Φ/
S + 𝐶𝐶2𝑐𝑐 Φ/

S − Φ/
/. cm(

° d456

/.¢m(
°    (145)  

Where: 
Φ/ = Φ �'(  Standard normal cumulative distribution function [-] 

  
The derivative of the objective function was used to determine the optimum reliability index β* and to derive insight 
into the sensitivity of the input variables, such as the discount rate r, the absolute value, Cf, marginal costs of safety 
measures Cm and the reference period tref.  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
 

 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 = 𝐶𝐶2𝑃𝑃2;f 𝛽𝛽 + 𝐶𝐶2 ∙
∆tû;od(n)
/ü= d

9456
9g/    for   𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛𝑛=>?) (18)  

 
The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
 

 𝐶𝐶Cä'MN �'( = 𝐶𝐶Ü9á>v'q>9'v �'( + 𝐶𝐶ãåçéèåêéëíìîéëï �'(    (19)  

 𝐶𝐶Cä'MN �'( = 𝐶𝐶f + 𝐶𝐶q�'( + 𝐶𝐶2 1 − Φ/
S + 𝐶𝐶2𝑐𝑐 Φ/

S − Φ/
/. cm(

° d456

/.¢m(
°    (20)  

 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
 

	 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	𝑃𝑃2o(𝑃𝑃t=>v>9' 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (22) 	
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Consequently, the following formula of CCapitalisedRisk was found: 
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 𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2 Φ/
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If one separates the part 𝑃𝑃2;f – being not influenced by a change in reference period – from the part ∆𝑃𝑃2;'d  – which 
depends on the reference period – the following equation is obtained:  
 

 𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2𝑃𝑃2;f + 𝐶𝐶2 Φ/
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Now the following transformation rule is used: 
 

 
𝐴𝐴𝐴𝐴â

9456

âgf

= 𝐴𝐴
1 − 𝑥𝑥9456ü/

1 − 𝑥𝑥
 

(137)  

And thus: 
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Where: 

 𝑥𝑥𝑥  m(
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/ü=
 (in fact, this an adjusted grow rate) (139)  
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Consequently, the following formula of CCapitalisedRisk was found: 
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The analytical formula of the objective function now becomes: 
 

 𝑓𝑓(𝛽𝛽) = 𝐶𝐶f + 𝐶𝐶q�'( + 𝐶𝐶2 1 − Φ/
S + 𝐶𝐶2𝑐𝑐 Φ/
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Where: 
Φ/ = Φ �'(  Standard normal cumulative distribution function [-] 

  
The derivative of the objective function was used to determine the optimum reliability index β* and to derive insight 
into the sensitivity of the input variables, such as the discount rate r, the absolute value, Cf, marginal costs of safety 
measures Cm and the reference period tref.  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
 

 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 = 𝐶𝐶2𝑃𝑃2;f 𝛽𝛽 + 𝐶𝐶2 ∙
∆tû;od(n)
/ü= d

9456
9g/    for   𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛𝑛=>?) (18)  

 
The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
 

 𝐶𝐶Cä'MN �'( = 𝐶𝐶Ü9á>v'q>9'v �'( + 𝐶𝐶ãåçéèåêéëíìîéëï �'(    (19)  

 𝐶𝐶Cä'MN �'( = 𝐶𝐶f + 𝐶𝐶q�'( + 𝐶𝐶2 1 − Φ/
S + 𝐶𝐶2𝑐𝑐 Φ/

S − Φ/
/. cm(

° d456

/.¢m(
°    (20)  

 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
 

	 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	𝑃𝑃2o(𝑃𝑃t=>v>9' 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (22) 	

	 Standard normal cumulative distribution function [-]

The derivative of the objective function was used to determine the optimum reliability index 
β* and to derive insight into the sensitivity of the input variables, such as the discount rate 
r, the absolute value, Cf, marginal costs of safety measures Cm and the reference period tr𝑒𝑓.
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Consequently, the following formula of CCapitalisedRisk was found: 
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 𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2 Φ/
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If one separates the part 𝑃𝑃2;f – being not influenced by a change in reference period – from the part ∆𝑃𝑃2;'d  – which 
depends on the reference period – the following equation is obtained:  
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Now the following transformation rule is used: 
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And thus: 
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Where: 

 𝑥𝑥𝑥  m(
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/ü=
 (in fact, this an adjusted grow rate) (139)  
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Consequently, the following formula of CCapitalisedRisk was found: 
 

 
𝐶𝐶<Mwâ'MNâv>bDâv™ = 𝐶𝐶2𝑃𝑃2;f + 𝐴𝐴 𝑥𝑥

1 − 𝑥𝑥 9456

1 − 𝑥𝑥
 (141)  
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The analytical formula of the objective function now becomes: 
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Where: 
Φ/ = Φ �'(  Standard normal cumulative distribution function [-] 
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
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The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
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capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
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Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
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The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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Consequently, the following formula of CCapitalisedRisk was found: 
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If one separates the part 𝑃𝑃2;f – being not influenced by a change in reference period – from the part ∆𝑃𝑃2;'d  – which 
depends on the reference period – the following equation is obtained:  
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Now the following transformation rule is used: 
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And thus: 
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Where: 
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Consequently, the following formula of CCapitalisedRisk was found: 
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The analytical formula of the objective function now becomes: 
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Where: 
Φ/ = Φ �'(  Standard normal cumulative distribution function [-] 

  
The derivative of the objective function was used to determine the optimum reliability index β* and to derive insight 
into the sensitivity of the input variables, such as the discount rate r, the absolute value, Cf, marginal costs of safety 
measures Cm and the reference period tref.  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
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The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
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where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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The formula of CCapitalisedRisk was rearranged as follows:  
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The derivative of CCapitalisedRisk was derived using a derivative calculator. 
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Where: 

𝜙𝜙/ = 𝜙𝜙/ �'(  Standard normal probability density function [-] 

Φ/ = Φ �'(  Standard normal cumulative distribution function [-] 
 
The derivative of CInvestments is presented in Eq. (156).  
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The solution to the optimisation problem was found using the following equations:  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
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Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
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The formula of CC𝑎pit𝑎lis𝑒dRisk was rearranged as follows:
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𝜙𝜙/ = 𝜙𝜙/ �'(  Standard normal probability density function [-] 

Φ/ = Φ �'(  Standard normal cumulative distribution function [-] 
 
The derivative of CInvestments is presented in Eq. (156).  
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The solution to the optimisation problem was found using the following equations:  
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The derivative of CCapitalisedRisk was derived using a derivative calculator. 
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Where: 
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
 

 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 = 𝐶𝐶2𝑃𝑃2;f 𝛽𝛽 + 𝐶𝐶2 ∙
∆tû;od(n)
/ü= d

9456
9g/    for   𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛𝑛=>?) (18)  

 
The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
 

 𝐶𝐶Cä'MN �'( = 𝐶𝐶Ü9á>v'q>9'v �'( + 𝐶𝐶ãåçéèåêéëíìîéëï �'(    (19)  

 𝐶𝐶Cä'MN �'( = 𝐶𝐶f + 𝐶𝐶q�'( + 𝐶𝐶2 1 − Φ/
S + 𝐶𝐶2𝑐𝑐 Φ/

S − Φ/
/. cm(

° d456

/.¢m(
°    (20)  

 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
 

	 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	𝑃𝑃2o(𝑃𝑃t=>v>9' 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (22) 	

(154)

Where:
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The derivative of CCapitalisedRisk was derived using a derivative calculator. 
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Where: 
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The solution to the optimisation problem was found using the following equations:  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
 

 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 = 𝐶𝐶2𝑃𝑃2;f 𝛽𝛽 + 𝐶𝐶2 ∙
∆tû;od(n)
/ü= d

9456
9g/    for   𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛𝑛=>?) (18)  

 
The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
 

 𝐶𝐶Cä'MN �'( = 𝐶𝐶Ü9á>v'q>9'v �'( + 𝐶𝐶ãåçéèåêéëíìîéëï �'(    (19)  

 𝐶𝐶Cä'MN �'( = 𝐶𝐶f + 𝐶𝐶q�'( + 𝐶𝐶2 1 − Φ/
S + 𝐶𝐶2𝑐𝑐 Φ/

S − Φ/
/. cm(

° d456

/.¢m(
°    (20)  

 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
 

	 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	𝑃𝑃2o(𝑃𝑃t=>v>9' 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (22) 	

	 Standard normal probability density function [-]
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The formula of CCapitalisedRisk was rearranged as follows:  
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The derivative of CCapitalisedRisk was derived using a derivative calculator. 
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Where: 

𝜙𝜙/ = 𝜙𝜙/ �'(  Standard normal probability density function [-] 

Φ/ = Φ �'(  Standard normal cumulative distribution function [-] 
 
The derivative of CInvestments is presented in Eq. (156).  
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The solution to the optimisation problem was found using the following equations:  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
 

 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 = 𝐶𝐶2𝑃𝑃2;f 𝛽𝛽 + 𝐶𝐶2 ∙
∆tû;od(n)
/ü= d

9456
9g/    for   𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛𝑛=>?) (18)  

 
The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
 

 𝐶𝐶Cä'MN �'( = 𝐶𝐶Ü9á>v'q>9'v �'( + 𝐶𝐶ãåçéèåêéëíìîéëï �'(    (19)  

 𝐶𝐶Cä'MN �'( = 𝐶𝐶f + 𝐶𝐶q�'( + 𝐶𝐶2 1 − Φ/
S + 𝐶𝐶2𝑐𝑐 Φ/
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 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐 (21)  
where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
 

	 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 	𝑃𝑃2o(𝑃𝑃t=>v>9' 1 − 𝑃𝑃VvcMw> 𝑃𝑃b 2 (22) 	

 	 Standard normal cumulative distribution function [-]

The derivative of CInv𝑒stm𝑒nts is presented in Eq. (156).
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The formula of CCapitalisedRisk was rearranged as follows:  
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The derivative of CCapitalisedRisk was derived using a derivative calculator. 
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Where: 

𝜙𝜙/ = 𝜙𝜙/ �'(  Standard normal probability density function [-] 

Φ/ = Φ �'(  Standard normal cumulative distribution function [-] 
 
The derivative of CInvestments is presented in Eq. (156).  
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The solution to the optimisation problem was found using the following equations:  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
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𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
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where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
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The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
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The formula of CCapitalisedRisk was rearranged as follows:  
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The derivative of CCapitalisedRisk was derived using a derivative calculator. 
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Where: 

𝜙𝜙/ = 𝜙𝜙/ �'(  Standard normal probability density function [-] 

Φ/ = Φ �'(  Standard normal cumulative distribution function [-] 
 
The derivative of CInvestments is presented in Eq. (156).  
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The solution to the optimisation problem was found using the following equations:  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
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The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
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where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   
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It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
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The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
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Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
 

 𝐶𝐶Ü9á>v'q>9'v(𝛽𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽𝛽 f + 𝐶𝐶q(𝑥𝑥𝑥𝑥𝑥 (17)  
 
where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
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the total costs function and the associated derivative.  
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is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
 

	
𝜕𝜕𝜕𝜕Cä'MN 𝛽𝛽∗

𝜕𝜕𝜕𝜕
= 0 

(16)  

 
The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
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It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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The derivative of CCapitalisedRisk was derived using a derivative calculator. 
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Where: 

𝜙𝜙/ = 𝜙𝜙/ �'(  Standard normal probability density function [-] 
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The derivative of CInvestments is presented in Eq. (156).  
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versus design refresh) were not taken into account. Obsolescence costs are generally activated in the business 
case of a future design refresh. In this study, the failure costs were related to the design lifetime of the structure. If 
one assumes that the objective function is positive, the optimum reliability index β* can be established by minimising 
the total costs and solving the associated derivative. 
 

 min 𝐶𝐶Cä'MN 𝛽𝛽 = 𝐶𝐶Ü9á>v'q>9'v 𝛽𝛽 + 𝐶𝐶ãåçéèåêéëíìîéëï 𝛽𝛽 		 (15)  
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The investments in safety measures were divided into initial construction costs C0 and marginal construction costs 
Cm	(Section 2.3.4). The initial construction costs C0	often dominate structural investments (De Gijt, 2010; De Gijt & 
Vinks, 2011), but unlike Cm do not influence the reliability optimum (Rackwitz, 2000).  
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where: 

C0  Initial construction costs independent of the reliability index [€] 
Cm  Marginal construction cost dependent on the reliability index [€] 
x  Vector representing the changes in design parameters, e.g. structural   

  dimensions [-] 
 

It should be noted that even if adequate safety measures are implemented, there will always be a residual 
capitalised risk. In this study, the method proposed by Holický (2011) was extended by distinguishing Pf;0 and 
∆𝑃𝑃2;'d  representing the blocks of the probability of failure over a certain time interval being time-independent and 

time-dependent, respectively (Section 2.3.3): 
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The capitalised risk represents the present value of future costs and was established by assuming a real discount 
rate r (nominal rate of interest after correction for inflation) (Sykora & Holický, 2011; Rackwitz, 2006). The minimum 
discount rate is equal to the time-averaged economic growth rate per capita (Rackwitz, 2008). Fischer et al. (2013) 
showed that different discount rates could be used for private and social decision-makers. The summation of direct 
and indirect economic consequences of failure was expressed by Cf	(Section 2.3.5).  
 
Eq. (20) presents an analytical formula of the objective function and was used to obtain an insight into the influencing 
factors of the reliability optimum. The reader is referred to Appendix A.1 for the full derivation and explanation of 
the total costs function and the associated derivative.  
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where: 

Φ/ = Φ �'( = 𝐹𝐹(�'() Cumulative distribution function 𝐹𝐹(𝛽𝛽) of normal distribution [-] 
 

2.4 Risk-acceptance criteria 

The optimum reliability indices derived on the basis of cost minimisation have to be higher than the thresholds of 
acceptance. This section presents the evaluation of four risk-acceptance criteria, namely the individual risk (IR) 
criterion, the societal risk (SR) criterion, the life quality index (LQI) acceptance criterion and the social and 
environmental repercussion index (SERI).  
 
2.4.1 Individual risk criterion 
The individual risk (IR) is often defined as the individual risk per annum (IRPA) or the localised individual risk per 
annum (LIRA) (Johansen, 2010; Paltrinieri & Khan, 2016). IRPA is generally used to assess work-related risks faced 
by particularly exposed individuals (NORSOK, 2001; Skjong et al., 2007) and is frequently used in decision-making 
processes, whereas LIRA represents the individual risk at a specific geographical location (Johansen, 2010). LIRA 
is mainly used in spatial planning and assessing external safety contours in the vicinity of hazardous installations 
or in the design of flood-defence systems (Jongejan et al., 2009; Jonkman et al., 2003; Vrijling, 2001; Vrijling et al., 
1998). It should be noted that LIRA does not change even if no people are present, and hence the main difference 
between IRPA and LIRA is the probability that an individual is present:  
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The derivative of CCapitalisedRisk was derived using a derivative calculator. 
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Appendix A2. Probability distribution functions

APPENDIX A2. PROBABILITY DISTRIBUTION 
FUNCTIONS

Table A2.1. Type of distribution and variation coefficient (CoV) of important model parameters.

Design parameter Soil layer SI µ Distribution CoV

Unit weight of soil γs𝑎t Backfill1 kN/m3 20 Normal 0.052

Reclamation sand1 kN/m3 20 Normal 0.052

Holocene sand1 kN/m3 20 Normal 0.052

Clay layer1 kN/m3 19 Normal 0.052

Pleistocene sand1 kN/m3 20 Normal 0.052

Friction angle φ’r𝑒p Backfill1 ˚ 39 Normal 0.102,3

Reclamation sand1 ˚ 36 Normal 0.102,3

Holocene sand1 ˚ 36 Normal 0.102,3

Clay layer1 ˚ 27 Normal 0.102.3

Pleistocene sand1 ˚ 39 Normal 0.102,3

Cohesion c’ Clay layer1 kpa 7 Lognormal 0.202

Soil stiffness E50;r𝑒𝑓 Backfill1 Mpa 50 Lognormal 0.202

Reclamation sand1 Mpa 30 Lognormal 0.202

Holocene sand1 Mpa 30 Lognormal 0.202

Clay layer1 Mpa 5 Lognormal 0.202

Pleistocene sand1 Mpa 60 Lognormal 0.202

Yield strength 𝑓y N/mm2 5105 Lognormal 0.074

Tube diameter Dtub𝑒 m 1.625 Normal 0.01
Wall thickness ttub𝑒 m 0.235 Uniform 0.05
Annual live loads Qt1 kN/m2 265 Gumbel 0.20
Lifetime live loads Qt50 kN/m2 425 Gumbel 0.10

1)Top levels of backfill sand, reclamation sand, Holocene sand, clay layer and Pleistocene sand are 
MSL +5.0 m, MSL -0.0 m, MS -8.0 m, MSL -20.0 m and MSL -21.0 m, respectively, where MSL = mean 
sea level.
2) Value is based on soil investigation in accordance with Eurocode 7 (NEN-EN 9997-1, 2016).
3) Value represents the average variability of the soil layer and is verified by the research by Huijzer 
(Huijzer & Hannink, 1995; Huijzer 1996).
4) Value is based on Peters et al. (2017) and the probabilistic model code (JCSS, 2001).
5) Value is based on a quay wall situated in the Maasvlakte area of the port of Rotterdam.
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Appendix B1. Additional information on reference quay walls

APPENDIX B1. ADDITIONAL INFORMATION ON 
REFERENCE QUAY WALLS

Table B.1. Structural properties and modelling of the reference quay walls.

SI Without relieving platform With relieving platform

Combi-wall Plate element Plate element
Steel quality tube - X70 X65
Steel quality sheet pile - S355GP S355GP
E steel GPa 210 210
EI kNm2/m 5.466E05 1.031 E6
EA kN/m 3.476E06 6.058 E6
System length m 2.995 3.724
Anchor Grout anchor Grout anchor
Strut - Note to node Node to node
Grout - Embedded beam row Embedded beam row
Steel quality - E470 AC600D
Strut diameter mm 101.6 82.5
Wall thickness strut mm 17.5 22.2
Centre to centre m 1.47 2.735
Level - NAP+1.50m NAP+0.9m
EA kN per pile 9.7E5 n/a
.. kN/m n/a 310.5 E3
E grout body kN/m2 per pile 7E6 n/a
.. kN/m2/m n/a 2.10 E8
τskin kN/m 750 330
Inclination ◦ 45 18
Foundation piles n/a Embedded beam row
Inclination - n/a 1:3.5
Diameter m n/a 0.560/0.650
Centre to centre m n/a 2.28
EI kNm2/m n/a 21.17 E3
EA kN/m n/a 1.08 E6
τskin kN/m n/a 100

&
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Appendix B2. Abdo-Rackwitz FORM algorithm

APPENDIX B2. ABDO-RACKWITZ FORM ALGORITHM

When conducting finite element-based FORM assessments, understanding the background 
of the algorithm used is crucial in order to increase calculation robustness. However, clear 
descriptions of the Abdo-Rackwitz algorithm are lacking in the literature. This appendix 
describes the algorithm used in our study.

Like other FORM-based algorithms, Abdo-Rackwitz models the uncertainties regarding 
the random variables x using a random vector X with joint cumulative distribution function 
FX. The vector X is converted into a standard normal vector U by means of isoprobabilistic 
transformation T(X)=U, e.g. using the Nataf or the Rosenblatt transformation (Andrianov 
et al., 2007; Lebrun & Dutfoy, 2009a; Rosenblatt, 1952). OpenTURNS has implemented the 
following objective function and equality constraint (Andrianov et al., 2007):
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lacking in the literature. This appendix describes the algorithm used in our study.  
 
Like other FORM-based algorithms, Abdo-Rackwitz models the uncertainties regarding the random variables x using 
a random vector X with joint cumulative distribution function FX. The vector X is converted into a standard normal 
vector U by means of isoprobabilistic transformation T(X)=U, e.g. using the Nataf or the Rosenblatt transformation 
(Andrianov et al., 2007; Lebrun & Dutfoy, 2009a; Rosenblatt, 1952). OpenTURNS has implemented the following 
objective function and equality constraint (Andrianov et al., 2007): 
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Where: 
𝑓𝑓 𝑢𝑢  Objective function [-] 
u Vector of input variables in standard space [-] 
𝑔𝑔 𝑢𝑢  State function or level function [-] 
β Reliability index [-] 
αu;i	 Sensitivity factor in the U-space [-] 
 
One advantage of this objective function is that its derivative equals the identity function ∇𝑓𝑓(𝑢𝑢) = 𝑢𝑢, which simplifies 
the optimisation process. The limit state criterion is approximated point-wise, by a tangent hyperplane g(u)=0 in the 
standard space during the iteration process (Rackwitz & Fiessler, 1997). From geometrical representation, it follows 
that the vector β is perpendicular to the hyperplane, which in turn is tangential to the linearised failure surface g(u)=0 

(160)
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Table B.1. Structural properties and modelling of the reference quay walls. 

	 SI	 Without	relieving	
platform	

With	relieving	platform	

Combi-wall	 	 Plate	element	 Plate	element	
Steel	quality	tube	 -	 X70	 X65	
Steel	quality	sheet	
pile	

-	 S355GP	 S355GP	

E	steel	 GPa	 210		 210	
EI		 kNm2/m	 5.466E+05	 1.031	E6	
EA	 kN/m	 3.476E+06	 6.058	E6	
System	length	 m	 2.995	 3.724	
Anchor	 	 Grout	anchor	 Grout	anchor	
Strut	 -	 Note	to	node	 Node	to	node	
Grout	 -	 Embedded	beam	row	 Embedded	beam	row	
Steel	quality	 -	 E470	 AC600D	
Strut	diameter	 mm	 101.6	 82.5	
Wall	thickness	strut	 mm	 17.5	 22.2	
Centre	to	centre	 m	 1.47	 2.735	
Level	 -	 NAP+1.50m	 NAP+0.9m	
EA		 kN	per	pile	 9.7E5	 n/a	
..	 kN/m	 n/a	 310.5	E3	
E	grout	body		 kN/m2	per	

pile	
7E6	 n/a	

..	 kN/m2/m	 n/a	 2.10	E8	
τskin	 kN/m	 750	 330	
Inclination		 ◦	 45	 18	
Foundation	piles	 	 n/a	 Embedded	beam	row	
Inclination	 -	 n/a	 1:3.5	
Diameter	 m	 n/a	 0.560/0.650	
Centre	to	centre	 m	 n/a	 2.28	
EI		 kNm2/m	 n/a	 21.17	E3	
EA	 kN/m	 n/a	 1.08	E6	
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One advantage of this objective function is that its derivative equals the identity function ∇𝑓𝑓(𝑢𝑢) = 𝑢𝑢, which simplifies 
the optimisation process. The limit state criterion is approximated point-wise, by a tangent hyperplane g(u)=0 in the 
standard space during the iteration process (Rackwitz & Fiessler, 1997). From geometrical representation, it follows 
that the vector β is perpendicular to the hyperplane, which in turn is tangential to the linearised failure surface g(u)=0 

, which simplifies the optimisation process. The limit state criterion is 
approximated point-wise, by a tangent hyperplane 𝑔(u)=0 in the standard space during the 
iteration process (Rackwitz & Fiessler, 1997). From geometrical representation, it follows that 
the vector β is perpendicular to the hyperplane, which in turn is tangential to the linearised 
failure surface 𝑔(u)=0 in the point closest to the origin (u*). This is the maximum probable 
point (MPP) (Hasofer & Lind, 1974) of failure and is associated with the minimum distance 
to the hypersphere, which is equal to 
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in the point closest to the origin (u*). This is the maximum probable point (MPP) (Hasofer & Lind, 1974) of failure 
and is associated with the minimum distance to the hypersphere, which is equal to	𝛽𝛽 𝛽 𝑢𝑢∗ . The point u* can be 
found by: 
  

 𝑢𝑢∗ = 	 argmin
Ω R gf

𝑓𝑓 𝑢𝑢 	 	 (162)  

 
In order to find u*, the projected gradient-based Abdo-Rackwitz algorithm was used. This includes a line search 
based on exact penalisation of the constraint g(u)=0. To a lesser extent, the algorithm is also influenced by the 
number of random variables. But there is no need to know the exact formulation of g(x) (Abdo & Rackwitz, 1991). 
Nor does it require determination of the precise ‘Hessian’ (Lemaire, 2009), so that consequently the iteration 
process is quite efficient. However, detailed information about its settings is lacking in the literature. To support 
future users, the modifications applied to this algorithm and the settings used are therefore briefly explained. In 
addition, the settings for hardening soil were further studied in order to improve the applicability and efficiency of 
ProbAna® (Laera, & Brinkgreve, 2017). 
 
The iteration process of the Abdo-Rackwitz algorithm is quite similar to that of the Rackwitz-Fiessler (1997) 
algorithm (abbreviated HL-RF) (Zhang & Der Kiureghian, 1995), if αk =1. HL-RF generally results in a higher 
convergence rate, but can also cause unstable results (Makhduomi et al., 2017). From the present iterate, the next 
one was found by determining a search direction d and step length a: 
 

 𝑢𝑢™ü/ = 𝑢𝑢™ + 𝑎𝑎™𝑑𝑑™ (163)  
 
Where: 
u	 Vector of input variables in the standard space [-]	
a Step size or step length, initially 1 and then gradually shrinking by a factor of τ [-] 
d Directional vector [-] 
k Iteration number [-] 
 
At iteration k, the algorithm first computes the search direction (Eq. 164) (Liu & Der Kiureghian, 1990), and the 
partial derivatives of the constraint function (Eq. 165), which determine the gradient ∇𝑔𝑔 𝑥𝑥 	on the basis of ‘centred’ 
finite differences. The difference interval 𝑑𝑑𝑥𝑥â = 2𝜖𝜖â should be large enough to allow some numerical noise induced 
by the finite difference solver of the hardening soil model, whereas fairly low values will not assure global 
convergence. If numerical noise dominates the calculation output of the finite element model, the prediction of the 
gradient will become inaccurate. Consequently, it will be pure luck if this gradient is in a descent direction (Nocedal 
& Wright, 2000). Evaluating the finite difference interval is highly recommended, in order to improve the efficiency 
of the backtracking line-search procedure. 
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Where: 
d Directional vector [-] 
k Iteration number [-] 
𝑔𝑔 𝑢𝑢™  Linearised limit state function in the standard space at the point uk [-] 
∇𝑔𝑔 𝑢𝑢™  Gradient of limit state function in the standard space at the point uk [-] 
Ui Input variable in standard space [-] 
n Number of input variables [-] 
𝜀𝜀â Finite difference step for each dimension i in the original space [-] 
 
Secondly, the algorithm initiates a line search by approximately solving the exact penalisation of the optimisation 
problem (Eq. 160) in the direction dk to obtain the most ideal step length (Lemaire, 2009). This exact penalisation 
transforms the constrained optimisation problem into an unconstrained one by introducing a merit of the objective 
function m(u)	(Eq. 171).	Since this merit function includes a penalty coefficient c and does not involve the gradient 
of the constraint function g(u), it requires less computation effort.	The line search starts by updating c in order to 
ensure a descent direction: 
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Secondly, the algorithm initiates a line search by approximately solving the exact penalisation of the optimisation 
problem (Eq. 160) in the direction dk to obtain the most ideal step length (Lemaire, 2009). This exact penalisation 
transforms the constrained optimisation problem into an unconstrained one by introducing a merit of the objective 
function m(u)	(Eq. 171).	Since this merit function includes a penalty coefficient c and does not involve the gradient 
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In order to find u*, the projected gradient-based Abdo-Rackwitz algorithm was used. 
This includes a line search based on exact penalisation of the constraint 𝑔(u)=0. To a lesser 
extent, the algorithm is also influenced by the number of random variables. But there is no 
need to know the exact formulation of 𝑔(x) (Abdo & Rackwitz, 1991). Nor does it require 
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determination of the precise ‘Hessian’ (Lemaire, 2009), so that consequently the iteration 
process is quite efficient. However, detailed information about its settings is lacking in 
the literature. To support future users, the modifications applied to this algorithm and the 
settings used are therefore briefly explained. In addition, the settings for hardening soil were 
further studied in order to improve the applicability and efficiency of ProbAna® (Laera, & 
Brinkgreve, 2017).

The iteration process of the Abdo-Rackwitz algorithm is quite similar to that of the 
Rackwitz-Fiessler (1997) algorithm (abbreviated HL-RF) (Zhang & Der Kiureghian, 1995), if 
αk =1. HL-RF generally results in a higher convergence rate, but can also cause unstable 
results (Makhduomi et al., 2017). From the present iterate, the next one was found by 
determining a search direction d and step length 𝑎:
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future users, the modifications applied to this algorithm and the settings used are therefore briefly explained. In 
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convergence. If numerical noise dominates the calculation output of the finite element model, the prediction of the 
gradient will become inaccurate. Consequently, it will be pure luck if this gradient is in a descent direction (Nocedal 
& Wright, 2000). Evaluating the finite difference interval is highly recommended, in order to improve the efficiency 
of the backtracking line-search procedure. 
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transforms the constrained optimisation problem into an unconstrained one by introducing a merit of the objective 
function m(u)	(Eq. 171).	Since this merit function includes a penalty coefficient c and does not involve the gradient 
of the constraint function g(u), it requires less computation effort.	The line search starts by updating c in order to 
ensure a descent direction: 
 

 
𝑐𝑐™ü/ = max	(1 + 𝑐𝑐™, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ

𝑢𝑢™

∇g 𝑢𝑢™
 (166)  

 

	 Gradient of limit state function in the standard space at the point 
𝑢𝑘[-]

Ui	 Input variable in standard space [-]
n	 Number of input variables [-]

 
118 

 

in the point closest to the origin (u*). This is the maximum probable point (MPP) (Hasofer & Lind, 1974) of failure 
and is associated with the minimum distance to the hypersphere, which is equal to	𝛽𝛽 𝛽 𝑢𝑢∗ . The point u* can be 
found by: 
  

 𝑢𝑢∗ = 	 argmin
Ω R gf
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It should be noted that, if c is large enough, the solution of the line search is fairly close 
to the exact solution of the constrained problem. Zang and Kiureghian (1995) have proved 
that d𝑘 is in a descent direction and results in global convergence if:
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The loop to determine the ideal step size starts at j=0 by assuming an initial step size equal to 𝜏𝜏f =1. Subsequently, 
this step size is gradually reduced with a multiplicative factor τ, in accordance with: 
 

 𝑎𝑎_™ = 	 𝜏𝜏_	for 𝜏𝜏 ∈ 0,1  (168)  
 
The loop continues until one of the following two exit conditions is satisfied: 
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Where: 
 𝑚𝑚 𝑢𝑢 = /

Õ
𝑢𝑢C𝑢𝑢 + 𝑐𝑐 𝑔𝑔 𝑢𝑢   (171)  

 ∇m 𝑢𝑢 = 𝑢𝑢 𝑢𝑢𝑢𝑢   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔 𝑢𝑢 ∙ ∇g 𝑢𝑢   (172)  

Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
the iteration process was finished. The iteration process stops if one of the following two convergence acceptance 
criteria has been satisfied:  
 

 εMSväNR'> < εqM/;MSväNR'> 	∩ ε=>NM'âá> < εqM/;=>NM'âá> (173)  
 ε=>vâbRMN < εqM/;=>vâbRMN 	∩ εcä9v'=Mâ9' < εqM/;cä9v'=Mâ9' (174)  

Where: 
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 εcä9v'=Mâ9' = 𝑔𝑔 𝑢𝑢™   
 

(178)  

Where: 
εMSväNR'>  = absolute error of two successive iterates[-] 
ε=>NM'âá>  = relative error of two successive iterates [-] 
ε=>vâbRMN  = orthogonality error at the point uk [-]  
εcä9v'=Mâ9' = absolute error of the constraint function g(u)  
 
In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 
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The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
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(168)

The loop continues until one of the following two exit conditions is satisfied:

 
119 

 

It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
 

 
𝑐𝑐 𝑐

𝑢𝑢™

∇g 𝑢𝑢™
 (167)  

 
The loop to determine the ideal step size starts at j=0 by assuming an initial step size equal to 𝜏𝜏f =1. Subsequently, 
this step size is gradually reduced with a multiplicative factor τ, in accordance with: 
 

 𝑎𝑎_™ = 	 𝜏𝜏_	for 𝜏𝜏 ∈ 0,1  (168)  
 
The loop continues until one of the following two exit conditions is satisfied: 
 

 𝑎𝑎_™ <
𝜀𝜀qM/;MSväNR'>

𝑑𝑑™
	 (169)  

 𝑚𝑚 𝑢𝑢_ü/™ ≤ 𝑚𝑚 𝑢𝑢_™ + 𝑎𝑎_™ ∙ 𝜔𝜔 ∙ ∇𝑚𝑚 𝑢𝑢_™
C
∙ 𝑑𝑑™ (170)  

Where: 
 𝑚𝑚 𝑢𝑢 = /

Õ
𝑢𝑢C𝑢𝑢 + 𝑐𝑐 𝑔𝑔 𝑢𝑢   (171)  

 ∇m 𝑢𝑢 = 𝑢𝑢 𝑢𝑢𝑢𝑢   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔 𝑢𝑢 ∙ ∇g 𝑢𝑢   (172)  

Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
the iteration process was finished. The iteration process stops if one of the following two convergence acceptance 
criteria has been satisfied:  
 

 εMSväNR'> < εqM/;MSväNR'> 	∩ ε=>NM'âá> < εqM/;=>NM'âá> (173)  
 ε=>vâbRMN < εqM/;=>vâbRMN 	∩ εcä9v'=Mâ9' < εqM/;cä9v'=Mâ9' (174)  

Where: 
 εMSväNR'> = 𝑢𝑢™ü/ − 𝑢𝑢™  

 
(175)  

 
ε=>NM'âá> =

𝑢𝑢™ü/ − 𝑢𝑢™

𝑢𝑢™ü/
=
εMSväNR'>
𝑢𝑢™ü/

 (176)  

 
ε=>vâbRMN = 𝑢𝑢™ + Ω RÍ .∇Ω RÍ c

∙RÍ

∇Ω RÍ “   (177)  

 εcä9v'=Mâ9' = 𝑔𝑔 𝑢𝑢™   
 

(178)  

Where: 
εMSväNR'>  = absolute error of two successive iterates[-] 
ε=>NM'âá>  = relative error of two successive iterates [-] 
ε=>vâbRMN  = orthogonality error at the point uk [-]  
εcä9v'=Mâ9' = absolute error of the constraint function g(u)  
 
In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 

(169)

 
119 

 

It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
 

 
𝑐𝑐 𝑐

𝑢𝑢™

∇g 𝑢𝑢™
 (167)  

 
The loop to determine the ideal step size starts at j=0 by assuming an initial step size equal to 𝜏𝜏f =1. Subsequently, 
this step size is gradually reduced with a multiplicative factor τ, in accordance with: 
 

 𝑎𝑎_™ = 	 𝜏𝜏_	for 𝜏𝜏 ∈ 0,1  (168)  
 
The loop continues until one of the following two exit conditions is satisfied: 
 

 𝑎𝑎_™ <
𝜀𝜀qM/;MSväNR'>

𝑑𝑑™
	 (169)  

 𝑚𝑚 𝑢𝑢_ü/™ ≤ 𝑚𝑚 𝑢𝑢_™ + 𝑎𝑎_™ ∙ 𝜔𝜔 ∙ ∇𝑚𝑚 𝑢𝑢_™
C
∙ 𝑑𝑑™ (170)  

Where: 
 𝑚𝑚 𝑢𝑢 = /

Õ
𝑢𝑢C𝑢𝑢 + 𝑐𝑐 𝑔𝑔 𝑢𝑢   (171)  

 ∇m 𝑢𝑢 = 𝑢𝑢 𝑢𝑢𝑢𝑢   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔 𝑢𝑢 ∙ ∇g 𝑢𝑢   (172)  

Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
the iteration process was finished. The iteration process stops if one of the following two convergence acceptance 
criteria has been satisfied:  
 

 εMSväNR'> < εqM/;MSväNR'> 	∩ ε=>NM'âá> < εqM/;=>NM'âá> (173)  
 ε=>vâbRMN < εqM/;=>vâbRMN 	∩ εcä9v'=Mâ9' < εqM/;cä9v'=Mâ9' (174)  

Where: 
 εMSväNR'> = 𝑢𝑢™ü/ − 𝑢𝑢™  

 
(175)  

 
ε=>NM'âá> =

𝑢𝑢™ü/ − 𝑢𝑢™

𝑢𝑢™ü/
=
εMSväNR'>
𝑢𝑢™ü/

 (176)  

 
ε=>vâbRMN = 𝑢𝑢™ + Ω RÍ .∇Ω RÍ c

∙RÍ

∇Ω RÍ “   (177)  

 εcä9v'=Mâ9' = 𝑔𝑔 𝑢𝑢™   
 

(178)  

Where: 
εMSväNR'>  = absolute error of two successive iterates[-] 
ε=>NM'âá>  = relative error of two successive iterates [-] 
ε=>vâbRMN  = orthogonality error at the point uk [-]  
εcä9v'=Mâ9' = absolute error of the constraint function g(u)  
 
In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 

(170)

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   202 28-08-19   12:47



203

Appendix B2. Abdo-Rackwitz FORM algorithm

Where:

 
119 

 

It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
 

 
𝑐𝑐 𝑐

𝑢𝑢™

∇g 𝑢𝑢™
 (167)  

 
The loop to determine the ideal step size starts at j=0 by assuming an initial step size equal to 𝜏𝜏f =1. Subsequently, 
this step size is gradually reduced with a multiplicative factor τ, in accordance with: 
 

 𝑎𝑎_™ = 	 𝜏𝜏_	for 𝜏𝜏 ∈ 0,1  (168)  
 
The loop continues until one of the following two exit conditions is satisfied: 
 

 𝑎𝑎_™ <
𝜀𝜀qM/;MSväNR'>

𝑑𝑑™
	 (169)  

 𝑚𝑚 𝑢𝑢_ü/™ ≤ 𝑚𝑚 𝑢𝑢_™ + 𝑎𝑎_™ ∙ 𝜔𝜔 ∙ ∇𝑚𝑚 𝑢𝑢_™
C
∙ 𝑑𝑑™ (170)  

Where: 
 𝑚𝑚 𝑢𝑢 = /

Õ
𝑢𝑢C𝑢𝑢 + 𝑐𝑐 𝑔𝑔 𝑢𝑢   (171)  

 ∇m 𝑢𝑢 = 𝑢𝑢 𝑢𝑢𝑢𝑢   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔 𝑢𝑢 ∙ ∇g 𝑢𝑢   (172)  

Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
the iteration process was finished. The iteration process stops if one of the following two convergence acceptance 
criteria has been satisfied:  
 

 εMSväNR'> < εqM/;MSväNR'> 	∩ ε=>NM'âá> < εqM/;=>NM'âá> (173)  
 ε=>vâbRMN < εqM/;=>vâbRMN 	∩ εcä9v'=Mâ9' < εqM/;cä9v'=Mâ9' (174)  

Where: 
 εMSväNR'> = 𝑢𝑢™ü/ − 𝑢𝑢™  

 
(175)  

 
ε=>NM'âá> =

𝑢𝑢™ü/ − 𝑢𝑢™

𝑢𝑢™ü/
=
εMSväNR'>
𝑢𝑢™ü/

 (176)  

 
ε=>vâbRMN = 𝑢𝑢™ + Ω RÍ .∇Ω RÍ c

∙RÍ

∇Ω RÍ “   (177)  

 εcä9v'=Mâ9' = 𝑔𝑔 𝑢𝑢™   
 

(178)  

Where: 
εMSväNR'>  = absolute error of two successive iterates[-] 
ε=>NM'âá>  = relative error of two successive iterates [-] 
ε=>vâbRMN  = orthogonality error at the point uk [-]  
εcä9v'=Mâ9' = absolute error of the constraint function g(u)  
 
In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 

(171)

 
119 

 

It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
 

 
𝑐𝑐 𝑐

𝑢𝑢™

∇g 𝑢𝑢™
 (167)  

 
The loop to determine the ideal step size starts at j=0 by assuming an initial step size equal to 𝜏𝜏f =1. Subsequently, 
this step size is gradually reduced with a multiplicative factor τ, in accordance with: 
 

 𝑎𝑎_™ = 	 𝜏𝜏_	for 𝜏𝜏 ∈ 0,1  (168)  
 
The loop continues until one of the following two exit conditions is satisfied: 
 

 𝑎𝑎_™ <
𝜀𝜀qM/;MSväNR'>

𝑑𝑑™
	 (169)  

 𝑚𝑚 𝑢𝑢_ü/™ ≤ 𝑚𝑚 𝑢𝑢_™ + 𝑎𝑎_™ ∙ 𝜔𝜔 ∙ ∇𝑚𝑚 𝑢𝑢_™
C
∙ 𝑑𝑑™ (170)  

Where: 
 𝑚𝑚 𝑢𝑢 = /

Õ
𝑢𝑢C𝑢𝑢 + 𝑐𝑐 𝑔𝑔 𝑢𝑢   (171)  

 ∇m 𝑢𝑢 = 𝑢𝑢 𝑢𝑢𝑢𝑢   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔 𝑢𝑢 ∙ ∇g 𝑢𝑢   (172)  

Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
the iteration process was finished. The iteration process stops if one of the following two convergence acceptance 
criteria has been satisfied:  
 

 εMSväNR'> < εqM/;MSväNR'> 	∩ ε=>NM'âá> < εqM/;=>NM'âá> (173)  
 ε=>vâbRMN < εqM/;=>vâbRMN 	∩ εcä9v'=Mâ9' < εqM/;cä9v'=Mâ9' (174)  

Where: 
 εMSväNR'> = 𝑢𝑢™ü/ − 𝑢𝑢™  

 
(175)  

 
ε=>NM'âá> =

𝑢𝑢™ü/ − 𝑢𝑢™

𝑢𝑢™ü/
=
εMSväNR'>
𝑢𝑢™ü/

 (176)  

 
ε=>vâbRMN = 𝑢𝑢™ + Ω RÍ .∇Ω RÍ c

∙RÍ

∇Ω RÍ “   (177)  

 εcä9v'=Mâ9' = 𝑔𝑔 𝑢𝑢™   
 

(178)  

Where: 
εMSväNR'>  = absolute error of two successive iterates[-] 
ε=>NM'âá>  = relative error of two successive iterates [-] 
ε=>vâbRMN  = orthogonality error at the point uk [-]  
εcä9v'=Mâ9' = absolute error of the constraint function g(u)  
 
In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 

(172)

Where:
m(u)		 Merit function of the objective function 𝑓(u) at point u [-]
ω		 Armijo factor [-]
c		 Penalty coefficient [-]
εm𝑎x;𝑎bsolut𝑒	 Allowable absolute error between two iterates [-]

Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. 
(170) determines the minimum improvement to be made to the penalised objective function 
during the line search. This merit function m(u) (Zhang & Der Kiureghian, 1995) includes 
the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an appropriate 
decrease of the next iterate uk+1.

The influence of the Armijo factor ω appeared to be marginal, so the default value 
(recommended in literature, i.e. Nocedal & Wright, 2000) 10-4 was used. Furthermore, the 
absolute value of τ in the range 0.5-0.8 generally leads to an acceptable calculation time. 
During this study it was found that the first step in the line-search procedure was quite 
large, frequently introducing soil failure into the finite element model. This was mitigated 
by adapting the finite difference interval 

 
119 

 

It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
 

 
𝑐𝑐 𝑐

𝑢𝑢™

∇g 𝑢𝑢™
 (167)  

 
The loop to determine the ideal step size starts at j=0 by assuming an initial step size equal to 𝜏𝜏f =1. Subsequently, 
this step size is gradually reduced with a multiplicative factor τ, in accordance with: 
 

 𝑎𝑎_™ = 	 𝜏𝜏_	for 𝜏𝜏 ∈ 0,1  (168)  
 
The loop continues until one of the following two exit conditions is satisfied: 
 

 𝑎𝑎_™ <
𝜀𝜀qM/;MSväNR'>

𝑑𝑑™
	 (169)  

 𝑚𝑚 𝑢𝑢_ü/™ ≤ 𝑚𝑚 𝑢𝑢_™ + 𝑎𝑎_™ ∙ 𝜔𝜔 ∙ ∇𝑚𝑚 𝑢𝑢_™
C
∙ 𝑑𝑑™ (170)  

Where: 
 𝑚𝑚 𝑢𝑢 = /

Õ
𝑢𝑢C𝑢𝑢 + 𝑐𝑐 𝑔𝑔 𝑢𝑢   (171)  

 ∇m 𝑢𝑢 = 𝑢𝑢 𝑢𝑢𝑢𝑢   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔 𝑢𝑢 ∙ ∇g 𝑢𝑢   (172)  

Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
the iteration process was finished. The iteration process stops if one of the following two convergence acceptance 
criteria has been satisfied:  
 

 εMSväNR'> < εqM/;MSväNR'> 	∩ ε=>NM'âá> < εqM/;=>NM'âá> (173)  
 ε=>vâbRMN < εqM/;=>vâbRMN 	∩ εcä9v'=Mâ9' < εqM/;cä9v'=Mâ9' (174)  

Where: 
 εMSväNR'> = 𝑢𝑢™ü/ − 𝑢𝑢™  

 
(175)  

 
ε=>NM'âá> =

𝑢𝑢™ü/ − 𝑢𝑢™

𝑢𝑢™ü/
=
εMSväNR'>
𝑢𝑢™ü/

 (176)  

 
ε=>vâbRMN = 𝑢𝑢™ + Ω RÍ .∇Ω RÍ c

∙RÍ

∇Ω RÍ “   (177)  

 εcä9v'=Mâ9' = 𝑔𝑔 𝑢𝑢™   
 

(178)  

Where: 
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In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 
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It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
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The loop to determine the ideal step size starts at j=0 by assuming an initial step size equal to 𝜏𝜏f =1. Subsequently, 
this step size is gradually reduced with a multiplicative factor τ, in accordance with: 
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Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
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Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 
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quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
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In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 
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It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
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to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
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Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 
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It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
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Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
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The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
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In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 
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It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
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Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
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It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
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 𝑎𝑎_™ <
𝜀𝜀qM/;MSväNR'>

𝑑𝑑™
	 (169)  

 𝑚𝑚 𝑢𝑢_ü/™ ≤ 𝑚𝑚 𝑢𝑢_™ + 𝑎𝑎_™ ∙ 𝜔𝜔 ∙ ∇𝑚𝑚 𝑢𝑢_™
C
∙ 𝑑𝑑™ (170)  

Where: 
 𝑚𝑚 𝑢𝑢 = /

Õ
𝑢𝑢C𝑢𝑢 + 𝑐𝑐 𝑔𝑔 𝑢𝑢   (171)  

 ∇m 𝑢𝑢 = 𝑢𝑢 𝑢𝑢𝑢𝑢   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔 𝑢𝑢 ∙ ∇g 𝑢𝑢   (172)  

Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
the iteration process was finished. The iteration process stops if one of the following two convergence acceptance 
criteria has been satisfied:  
 

 εMSväNR'> < εqM/;MSväNR'> 	∩ ε=>NM'âá> < εqM/;=>NM'âá> (173)  
 ε=>vâbRMN < εqM/;=>vâbRMN 	∩ εcä9v'=Mâ9' < εqM/;cä9v'=Mâ9' (174)  

Where: 
 εMSväNR'> = 𝑢𝑢™ü/ − 𝑢𝑢™  

 
(175)  

 
ε=>NM'âá> =

𝑢𝑢™ü/ − 𝑢𝑢™

𝑢𝑢™ü/
=
εMSväNR'>
𝑢𝑢™ü/

 (176)  

 
ε=>vâbRMN = 𝑢𝑢™ + Ω RÍ .∇Ω RÍ c

∙RÍ

∇Ω RÍ “   (177)  

 εcä9v'=Mâ9' = 𝑔𝑔 𝑢𝑢™   
 

(178)  

Where: 
εMSväNR'>  = absolute error of two successive iterates[-] 
ε=>NM'âá>  = relative error of two successive iterates [-] 
ε=>vâbRMN  = orthogonality error at the point uk [-]  
εcä9v'=Mâ9' = absolute error of the constraint function g(u)  
 
In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 

(178)

&
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Where:
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It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
 

 
𝑐𝑐 𝑐

𝑢𝑢™

∇g 𝑢𝑢™
 (167)  

 
The loop to determine the ideal step size starts at j=0 by assuming an initial step size equal to 𝜏𝜏f =1. Subsequently, 
this step size is gradually reduced with a multiplicative factor τ, in accordance with: 
 

 𝑎𝑎_™ = 	 𝜏𝜏_	for 𝜏𝜏 ∈ 0,1  (168)  
 
The loop continues until one of the following two exit conditions is satisfied: 
 

 𝑎𝑎_™ <
𝜀𝜀qM/;MSväNR'>

𝑑𝑑™
	 (169)  

 𝑚𝑚 𝑢𝑢_ü/™ ≤ 𝑚𝑚 𝑢𝑢_™ + 𝑎𝑎_™ ∙ 𝜔𝜔 ∙ ∇𝑚𝑚 𝑢𝑢_™
C
∙ 𝑑𝑑™ (170)  

Where: 
 𝑚𝑚 𝑢𝑢 = /

Õ
𝑢𝑢C𝑢𝑢 + 𝑐𝑐 𝑔𝑔 𝑢𝑢   (171)  

 ∇m 𝑢𝑢 = 𝑢𝑢 𝑢𝑢𝑢𝑢   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔 𝑢𝑢 ∙ ∇g 𝑢𝑢   (172)  

Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
the iteration process was finished. The iteration process stops if one of the following two convergence acceptance 
criteria has been satisfied:  
 

 εMSväNR'> < εqM/;MSväNR'> 	∩ ε=>NM'âá> < εqM/;=>NM'âá> (173)  
 ε=>vâbRMN < εqM/;=>vâbRMN 	∩ εcä9v'=Mâ9' < εqM/;cä9v'=Mâ9' (174)  

Where: 
 εMSväNR'> = 𝑢𝑢™ü/ − 𝑢𝑢™  

 
(175)  

 
ε=>NM'âá> =

𝑢𝑢™ü/ − 𝑢𝑢™

𝑢𝑢™ü/
=
εMSväNR'>
𝑢𝑢™ü/

 (176)  

 
ε=>vâbRMN = 𝑢𝑢™ + Ω RÍ .∇Ω RÍ c

∙RÍ

∇Ω RÍ “   (177)  

 εcä9v'=Mâ9' = 𝑔𝑔 𝑢𝑢™   
 

(178)  

Where: 
εMSväNR'>  = absolute error of two successive iterates[-] 
ε=>NM'âá>  = relative error of two successive iterates [-] 
ε=>vâbRMN  = orthogonality error at the point uk [-]  
εcä9v'=Mâ9' = absolute error of the constraint function g(u)  
 
In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 

 	 = absolute error of two successive iterates[-]

 
119 

 

It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
 

 
𝑐𝑐 𝑐

𝑢𝑢™

∇g 𝑢𝑢™
 (167)  

 
The loop to determine the ideal step size starts at j=0 by assuming an initial step size equal to 𝜏𝜏f =1. Subsequently, 
this step size is gradually reduced with a multiplicative factor τ, in accordance with: 
 

 𝑎𝑎_™ = 	 𝜏𝜏_	for 𝜏𝜏 ∈ 0,1  (168)  
 
The loop continues until one of the following two exit conditions is satisfied: 
 

 𝑎𝑎_™ <
𝜀𝜀qM/;MSväNR'>

𝑑𝑑™
	 (169)  

 𝑚𝑚 𝑢𝑢_ü/™ ≤ 𝑚𝑚 𝑢𝑢_™ + 𝑎𝑎_™ ∙ 𝜔𝜔 ∙ ∇𝑚𝑚 𝑢𝑢_™
C
∙ 𝑑𝑑™ (170)  

Where: 
 𝑚𝑚 𝑢𝑢 = /

Õ
𝑢𝑢C𝑢𝑢 + 𝑐𝑐 𝑔𝑔 𝑢𝑢   (171)  

 ∇m 𝑢𝑢 = 𝑢𝑢 𝑢𝑢𝑢𝑢   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔 𝑢𝑢 ∙ ∇g 𝑢𝑢   (172)  

Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
the iteration process was finished. The iteration process stops if one of the following two convergence acceptance 
criteria has been satisfied:  
 

 εMSväNR'> < εqM/;MSväNR'> 	∩ ε=>NM'âá> < εqM/;=>NM'âá> (173)  
 ε=>vâbRMN < εqM/;=>vâbRMN 	∩ εcä9v'=Mâ9' < εqM/;cä9v'=Mâ9' (174)  

Where: 
 εMSväNR'> = 𝑢𝑢™ü/ − 𝑢𝑢™  

 
(175)  

 
ε=>NM'âá> =

𝑢𝑢™ü/ − 𝑢𝑢™

𝑢𝑢™ü/
=
εMSväNR'>
𝑢𝑢™ü/

 (176)  

 
ε=>vâbRMN = 𝑢𝑢™ + Ω RÍ .∇Ω RÍ c

∙RÍ

∇Ω RÍ “   (177)  

 εcä9v'=Mâ9' = 𝑔𝑔 𝑢𝑢™   
 

(178)  

Where: 
εMSväNR'>  = absolute error of two successive iterates[-] 
ε=>NM'âá>  = relative error of two successive iterates [-] 
ε=>vâbRMN  = orthogonality error at the point uk [-]  
εcä9v'=Mâ9' = absolute error of the constraint function g(u)  
 
In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 

 	 = relative error of two successive iterates [-]

 
119 

 

It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
 

 
𝑐𝑐 𝑐

𝑢𝑢™

∇g 𝑢𝑢™
 (167)  

 
The loop to determine the ideal step size starts at j=0 by assuming an initial step size equal to 𝜏𝜏f =1. Subsequently, 
this step size is gradually reduced with a multiplicative factor τ, in accordance with: 
 

 𝑎𝑎_™ = 	 𝜏𝜏_	for 𝜏𝜏 ∈ 0,1  (168)  
 
The loop continues until one of the following two exit conditions is satisfied: 
 

 𝑎𝑎_™ <
𝜀𝜀qM/;MSväNR'>

𝑑𝑑™
	 (169)  

 𝑚𝑚 𝑢𝑢_ü/™ ≤ 𝑚𝑚 𝑢𝑢_™ + 𝑎𝑎_™ ∙ 𝜔𝜔 ∙ ∇𝑚𝑚 𝑢𝑢_™
C
∙ 𝑑𝑑™ (170)  

Where: 
 𝑚𝑚 𝑢𝑢 = /

Õ
𝑢𝑢C𝑢𝑢 + 𝑐𝑐 𝑔𝑔 𝑢𝑢   (171)  

 ∇m 𝑢𝑢 = 𝑢𝑢 𝑢𝑢𝑢𝑢   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔 𝑢𝑢 ∙ ∇g 𝑢𝑢   (172)  

Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
the iteration process was finished. The iteration process stops if one of the following two convergence acceptance 
criteria has been satisfied:  
 

 εMSväNR'> < εqM/;MSväNR'> 	∩ ε=>NM'âá> < εqM/;=>NM'âá> (173)  
 ε=>vâbRMN < εqM/;=>vâbRMN 	∩ εcä9v'=Mâ9' < εqM/;cä9v'=Mâ9' (174)  

Where: 
 εMSväNR'> = 𝑢𝑢™ü/ − 𝑢𝑢™  

 
(175)  

 
ε=>NM'âá> =
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(178)  

Where: 
εMSväNR'>  = absolute error of two successive iterates[-] 
ε=>NM'âá>  = relative error of two successive iterates [-] 
ε=>vâbRMN  = orthogonality error at the point uk [-]  
εcä9v'=Mâ9' = absolute error of the constraint function g(u)  
 
In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 

 	 = orthogonality error at the point u𝑘 [-]
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It should be noted that, if c is large enough, the solution of the line search is fairly close to the exact solution of the 
constrained problem. Zang and Kiureghian (1995)	have proved that dk is in a descent direction and results in global 
convergence if:  
 

 
𝑐𝑐 𝑐

𝑢𝑢™

∇g 𝑢𝑢™
 (167)  

 
The loop to determine the ideal step size starts at j=0 by assuming an initial step size equal to 𝜏𝜏f =1. Subsequently, 
this step size is gradually reduced with a multiplicative factor τ, in accordance with: 
 

 𝑎𝑎_™ = 	 𝜏𝜏_	for 𝜏𝜏 ∈ 0,1  (168)  
 
The loop continues until one of the following two exit conditions is satisfied: 
 

 𝑎𝑎_™ <
𝜀𝜀qM/;MSväNR'>

𝑑𝑑™
	 (169)  

 𝑚𝑚 𝑢𝑢_ü/™ ≤ 𝑚𝑚 𝑢𝑢_™ + 𝑎𝑎_™ ∙ 𝜔𝜔 ∙ ∇𝑚𝑚 𝑢𝑢_™
C
∙ 𝑑𝑑™ (170)  

Where: 
 𝑚𝑚 𝑢𝑢 = /

Õ
𝑢𝑢C𝑢𝑢 + 𝑐𝑐 𝑔𝑔 𝑢𝑢   (171)  

 ∇m 𝑢𝑢 = 𝑢𝑢 𝑢𝑢𝑢𝑢   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔 𝑢𝑢 ∙ ∇g 𝑢𝑢   (172)  

Where: 
m(u)  Merit function of the objective function f(u)	at point u	[-] 
ω  Armijo factor [-] 
c  Penalty coefficient [-] 
εmax;absolute  Allowable absolute error between two iterates [-] 
 
Eq. (169) represents the maximum allowable step size per iteration k, whereas Eq. (170) determines the minimum 
improvement to be made to the penalised objective function during the line search. This merit function	m(u)	(Zhang 
& Der Kiureghian, 1995) includes the Armijo rule (Armijo, 1966; Luenberger, 1986). This loop guarantees an 
appropriate decrease of the next iterate uk+1.  
The influence of the Armijo factor ω appeared to be marginal, so the default value (recommended in literature, i.e. 
Nocedal & Wright, 2000) 10-4 was used. Furthermore, the absolute value of τ in the range 0.5-0.8 generally leads 
to an acceptable calculation time. During this study it was found that the first step in the line-search procedure was 
quite large, frequently introducing soil failure into the finite element model. This was mitigated by adapting the finite 
difference interval 𝜖𝜖â and by adjusting the loop to determine the ideal step size (Laera & Brinkgreve, 2017). 
  
After the line-search procedure, the allowable convergence errors were evaluated in order to verify whether or not 
the iteration process was finished. The iteration process stops if one of the following two convergence acceptance 
criteria has been satisfied:  
 

 εMSväNR'> < εqM/;MSväNR'> 	∩ ε=>NM'âá> < εqM/;=>NM'âá> (173)  
 ε=>vâbRMN < εqM/;=>vâbRMN 	∩ εcä9v'=Mâ9' < εqM/;cä9v'=Mâ9' (174)  

Where: 
 εMSväNR'> = 𝑢𝑢™ü/ − 𝑢𝑢™  

 
(175)  

 
ε=>NM'âá> =

𝑢𝑢™ü/ − 𝑢𝑢™

𝑢𝑢™ü/
=
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𝑢𝑢™ü/

 (176)  

 
ε=>vâbRMN = 𝑢𝑢™ + Ω RÍ .∇Ω RÍ c

∙RÍ

∇Ω RÍ “   (177)  

 εcä9v'=Mâ9' = 𝑔𝑔 𝑢𝑢™   
 

(178)  

Where: 
εMSväNR'>  = absolute error of two successive iterates[-] 
ε=>NM'âá>  = relative error of two successive iterates [-] 
ε=>vâbRMN  = orthogonality error at the point uk [-]  
εcä9v'=Mâ9' = absolute error of the constraint function g(u)  
 
In this study, the second of the two acceptance criteria was used (Eq. 174). This is because otherwise the Abdo-
Rackwitz algorithm did not necessarily converge to a global solution. When the residual error is fairly low, it is highly 
likely that the solution is a global minimum, whereas a low absolute error could also represent a local minimum. 
Since the absolute error influences the backtracking line-search procedure, the maximum allowable error was set 

 	 = absolute error of the constraint function 𝑔(u) [-]

In this study, the second of the two acceptance criteria was used (Eq. 174). This is 
because otherwise the Abdo-Rackwitz algorithm did not necessarily converge to a global 
solution. When the residual error is fairly low, it is highly likely that the solution is a global 
minimum, whereas a low absolute error could also represent a local minimum. Since the 
absolute error influences the backtracking line-search procedure, the maximum allowable 
error was set at 0.01, because values lower than 0.001 appeared to be in the range of the 
numerical noise of the calculation output of the finite element model. The relative error 
was set lower than 0.00001 in order to urge the algorithm to converge to a global solution.

The maximum residual error was set at 0.01. The constraint error depends on the limit 
state under consideration. A maximum constraint error of 0.05 times 𝑔(u) was acceptable, 
and generally higher than the numerical noise around the Plaxis calculation output.
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APPENDIX B3. COMPARISON OF BLUM & PROB2B 
WITH PLAXIS & OPENTURNS

Table B3.1. Comparison of Blum & Prob2B with Plaxis & OpenTURNS in respect of lifetime 
reliability index, the design points in physical space X* and normal space U* and the 
sensitivity factor α for Zyield.

Blum & Prob2B Plaxis & OpenTURNS

Reliability index β 3.87 3.76

Parameter SI X* U* αu-space X* U* αu-space

E50;B𝑎ck𝑓ill MP𝑎 n/a n/a n/a 50.9 0.19 0.05
E50; R𝑒cl𝑎m𝑎tion MP𝑎 n/a n/a n/a 25.7 -0.68 -0.19
E50; Holoc𝑒n𝑒

MP𝑎 n/a n/a n/a 24.3 -0.96 -0.26
E50; Cl𝑎y

MP𝑎 n/a n/a n/a 4.8 -0.07 -0.02
E50;Pl𝑒istoc𝑒n𝑒

MP𝑎 n/a n/a n/a 49.2 0.02 0.01
φ B𝑎ck𝑓ill ° 39.4 0.13 0.03 39.7 0.16 0.04
φ R𝑒cl𝑎m𝑎tion ° 33.1 -0.78 -0.20 30.6 -1.34 -0.37
φ Holoc𝑒n𝑒 ° 24.7 -3.11 -0.80 29.4 -1.60 -0.44
φ Cl𝑎y ° 26.6 -0.12 -0.03 26.7 -0.07 -0.02
φ Pl𝑒istoc𝑒n𝑒 ° 38.6 -0.06 -0.02 39.3 0.09 0.03
γs𝑎t; B𝑎ck𝑓ill kN/m3 20.3 0.32 0.08 20.5 0.41 0.11
γs𝑎t; R𝑒cl𝑎m𝑎tion kN/m3 20.0 0.45 0.12 19.3 0.17 0.05
γs𝑎t; Holoc𝑒n𝑒 kN/m3 17.8 -0.77 -0.20 18.6 -0.39 -0.11
γs𝑎t; Cl𝑎y kN/m3 17.0 0.00 0.00 16.9 -0.06 -0.02
γs𝑎t; Pl𝑒istoc𝑒n𝑒 kN/m3 20.0 0.01 0.00 20.1 0.03 0.01
hOWL m -0.82 0.06 0.01 -0.84 0.01 0.00
hGWL m -0.27 -0.24 -0.06 -0.31 -0.22 -0.06
Qt50 kN/m2 116 1.12 0.29 112 0.61 0.17
hr𝑒t𝑎inin𝑔 m n/a n/a n/a 0.25 -0.72 -0.20
ttub𝑒 mm 14.6 -0.53 -0.14 14.5 -0.67 -0.18
Dtub𝑒 m 1.029 -0.72 -0.19 1.021 -0.86 -0.24
𝑓y N/mm2 479.7 -0.84 -0.22 473.8 -1.74 -0.48
θM - 1.10 0.96 0.25 1.14 1.36 0.37
θN - 1.02 0.24 0.06 1.04 0.36 0.10

&
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APPENDIX C1. COMPARISON OF RELIABILITY 
METHODS

Table C1.1. Comparison of Blum&Prob2B with Plaxis & OpenTURNS in respect of lifetime 
reliability index, the design points in physical space X* and normal space U* and the 
sensitivity factor α for Zyield;landside.

Blum & Prob2B Plaxis & OpenTURNS

Reliability index β 3.87 3.77

Parameter SI X* U* αu-space X* U* αu-space

E50;B𝑎ck𝑓ill
MP𝑎 n/a n/a n/a 47.9 -0.12 -0.03

E50; R𝑒cl𝑎m𝑎tion
MP𝑎 n/a n/a n/a 25.6 -0.70 -0.19

E50; Holoc𝑒n𝑒
MP𝑎 n/a n/a n/a 24.7 -0.88 -0.23

E50; Cl𝑎y
MP𝑎 n/a n/a n/a 4.8 -0.09 -0.02

E50;Pl𝑒istoc𝑒n𝑒
MP𝑎 n/a n/a n/a 47.6 -0.15 -0.04

φ B𝑎ck𝑓ill ° 39.4 0.13 0.03 39.7 0.26 0.07
φ R𝑒cl𝑎m𝑎tion ° 33.1 -0.78 -0.20 29.2 -1.74 -0.46
φ Holoc𝑒n𝑒 ° 24.7 -3.11 -0.80 28.4 -1.93 -0.51
φ Cl𝑎y ° 26.6 -0.12 -0.03 27.5 0.24 0.06
φ Pl𝑒istoc𝑒n𝑒 ° 38.6 -0.06 -0.02 39.7 0.26 0.07
γs𝑎t; B𝑎ck𝑓ill kN/m3 20.3 0.32 0.08 20.2 0.20 0.05
γs𝑎t; R𝑒cl𝑎m𝑎tion kN/m3 20.0 0.45 0.12 19.2 -0.23 -0.06
γs𝑎t; Holoc𝑒n𝑒 kN/m3 17.8 -0.77 -0.20 18.5 -0.36 -0.10
γs𝑎t; Cl𝑎y kN/m3 17.0 0.00 0.00 17.1 0.11 0.03
γs𝑎t; Pl𝑒istoc𝑒n𝑒 kN/m3 20.0 0.01 0.00 20.0 -0.02 -0.00
hOWL m -0.82 0.06 0.01 -0.83 0.06 0.02
hGWL m -0.27 -0.24 -0.06 -0.29 -0.25 -0.07
Qt50 kN/m2 116 1.12 0.29 112 0.56 0.15
hr𝑒t𝑎inin𝑔 m n/a n/a n/a 0.23 -0.66 -0.18
ttub𝑒 mm 14.6 -0.53 -0.14 14.3 -0.91 -0.24
Dtub𝑒 m 1.029 -0.72 -0.19 1.035 -1.03 -0.27
𝑓y N/mm2 479.7 -0.84 -0.22 503.5 -0.72 -0.19
θM

1 - 1.10 0.96 0.25 1.15 1.52 0.40
θN

1 - 1.02 0.24 0.06 1.03 0.33 0.09

1) The model uncertainties θM and θN are assumed to be independent.
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APPENDIX C2. COMPARISON WITH AND WITHOUT 
TRUNCATION

Table C2.1. Comparison between truncated normal distribution and normal distribution in 
respect of lifetime reliability index, the design points in physical space X* and normal space 
U* and the sensitivity factor α for corrosion curve 3 of Zyield;landside

Truncated normal 
distribution for ∆teq

Normal distribution for ∆teq

Reliability index β 4.30 4.29

Parameter SI X* U* αu-space X* U* αu-space

φ B𝑎ck𝑓ill ° 39.5 0.15 0.03 39.4 0.12 0.03
φ R𝑒cl𝑎m𝑎tion ° 33.1 -0.78 -0.18 32.9 -0.82 -0.19
φ Holoc𝑒n𝑒 ° 24.1 -3.29 -0.77 24.1 -3.28 -0.76
φ Cl𝑎y ° 26.6 -0.13 -0.03 26.6 -0.13 -0.03
φ Pl𝑒istoc𝑒n𝑒 ° 38.6 -0.06 -0.01 38.5 -0.08 -0.02
γs𝑎t; B𝑎ck𝑓ill kN/m3 20.4 0.38 0.09 20.4 0.36 0.08
γs𝑎t; R𝑒cl𝑎m𝑎tion kN/m3 20.0 0.50 0.12 20.0 0.49 0.12
γs𝑎t; Holoc𝑒n𝑒 kN/m3 17.6 -0.85 -0.20 17.6 -0.85 -0.20
γs𝑎t; Cl𝑎y kN/m3 16.9 -0.01 -0.01 17.0 0.01 0.00
γs𝑎t; Pl𝑒istoc𝑒n𝑒 kN/m3 20.0 -0.01 -0.01 20.0 0.01 0.00
c Cl𝑎y kP𝑎 6.66 -0.00 -0.00 6.64 -0.01 -0.00
hOWL m -0.83 0.13 0.03 -0.83 0.14 0.03
hGWL m -0.28 -0.29 -0.07 -0.28 -0.28 -0.06
Qt1 kN/m2 90.5 1.54 0.36 89.8 1.49 0.35
ttub𝑒 mm 14.36 -0.66 -0.15 14.36 -0.66 -0.15
Dtub𝑒 m 1.029 -0.73 -0.17 1.028 -0.72 -0.17
𝑓y N/mm2 478 -0.89 -0.21 478 -0.89 -0.21
θM - 1.13 1.27 0.30 1.13 1.27 0.30
θN - 1.13 0.00 0.00 1.13 0.00 0.00
∆t𝑒q mm 3.12 0.16 0.04 3.52 0.35 0.08

&
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APPENDIX D1. BERTHING VELOCITY OF LARGE 
SEAGOING VESSELS IN ROTTERDAM

This appendix is based on the following publication: Roubos, A. A., Groenewegen, L., & 
Peters, D. J. (2017), Berthing velocity of large seagoing vessels in the port of Rotterdam. 
Marine Structures 51, pp. 202-219.

Introduction
During their service life, marine structures such as quay walls, jetties and flexible dolphins 
have to ensure the effective, safe and efficient handling of ships. In the coming years, many 
marine structures at the port of Rotterdam will be upgraded as part of a lifetime extension 
programme. The actual performance and reliability of quay walls depend largely on the 
ratio between the actual loads acting on these structures, the original design values and 
the deterioration of the facility. The loads associated with berthing impact need to be taken 
into consideration in the structural analysis. Ueda et al. (2010) showed that the contribution 
of berthing velocity to the uncertainty in kinetic berthing energy was approximately 85%, 
which provides an indication of the need for further investigation on berthing velocity.

At the 1953 International Navigation Congress in Rome, Prof. A. L. L. Baker examined 
berthing velocity based on field observations of exposed locations in the United Kingdom 
and the Arabian Gulf. His work was extended by Saurin (1963) and Brolsma et al. (1997), and 
resulted in the so-called Brolsma curves. The Brolsma curves included in the design guideline 
of fender systems (PIANC, 2002) are shown in Fig. 5.1. Brolsma collected field measurements 
from shore-based docking systems at three berths in Rotterdam and one in Scotland. The 
proposed mean design values of the berthing velocities were called normal berthings and 
represent a return period of 30 years based on 100 arrivals per year. Over time, Brolsma’s 
original curves were reproduced, slightly modified and published in PIANC (2002) and BS 
6349-4 (2014). The German recommendations for waterfront structures, EAU 2012 (Grabe, 
2012), and the Spanish ROM 0.2-90 (1990) both provide recommendations for characteristic 
values of berthing velocities. The berthing velocity of large seagoing vessels with a DWT 
greater than approximately 50,000 tonnes was assumed to be independent of the size and 
type of vessel. Three categories of navigation conditions were distinguished (Fig. 5.1).

The Japanese OCDI (2009) presented mean berthing velocities of approximately 5 
cm/s related to single berthings of small seagoing vessels, based on a survey by Moriya 
et al. The highest observed berthing velocity was 15 cm/s. A data collection published by 
Ueda and Shirashi in 1992 was also included. The measurements included in the dataset 
consisted of 738 berthing operations of oil tankers with a DWT of approximately 200,000 
tonnes at offshore berths. These displayed a Weibull distribution:
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Introduction  
During their service life, marine structures such as quay walls, jetties and flexible dolphins have to ensure the 
effective, safe and efficient handling of ships. In the coming years, many marine structures at the port of Rotterdam 
will be upgraded as part of a lifetime extension programme. The actual performance and reliability of quay walls 
depend largely on the ratio between the actual loads acting on these structures, the original design values and the 
deterioration of the facility. The loads associated with berthing impact need to be taken into consideration in the 
structural analysis. Ueda et al. (2010) showed that the contribution of berthing velocity to the uncertainty in kinetic 
berthing energy was approximately 85%, which provides an indication of the need for further investigation on 
berthing velocity.  
 
At the 1953 International Navigation Congress in Rome, Prof. A. L. L. Baker examined berthing velocity based on 
field observations of exposed locations in the United Kingdom and the Arabian Gulf. His work was extended by 
Saurin (1963) and Brolsma et al. (1997), and resulted in the so-called Brolsma curves. The Brolsma curves included 
in the design guideline of fender systems (PIANC, 2002) are shown in Fig. 5.1. Brolsma collected field 
measurements from shore-based docking systems at three berths in Rotterdam and one in Scotland. The proposed 
mean design values of the berthing velocities were called normal berthings and represent a return period of 30 
years based on 100 arrivals per year. Over time, Brolsma’s original curves were reproduced, slightly modified and 
published in PIANC (2002) and BS 6349-4 (2014). The German recommendations for waterfront structures, EAU 
2012 (Grabe, 2012), and the Spanish ROM 0.2-90 (1990) both provide recommendations for characteristic values 
of berthing velocities. The berthing velocity of large seagoing vessels with a DWT greater than approximately 50,000 
tonnes was assumed to be independent of the size and type of vessel. Three categories of navigation conditions 
were distinguished (Fig. 5.1). 
 
The Japanese OCDI (2009) presented mean berthing velocities of approximately 5 cm/s related to single berthings 
of small seagoing vessels, based on a survey by Moriya et al. The highest observed berthing velocity was 15 cm/s. 
A data collection published by Ueda and Shirashi in 1992 was also included. The measurements included in the 
dataset consisted of 738 berthing operations of oil tankers with a DWT of approximately 200,000 tonnes at offshore 
berths. These displayed a Weibull distribution: 
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Where: 

λ  Scale parameter in Weibull distribution [m/s] λ ≈ 0.04 m/s 
 x Velocity [m/s]  
 k Shape parameter in Weibull distribution [-] k	≈ 2 
 
 
The highest recorded berthing velocity was 13 cm/s and a design value of 14.5 cm/s with a return period of once 
per 1000 arrivals was recommended.  
 
Relatively little data on berthing velocity has been collected since the 1970s, and measurements of large seagoing 
container vessels have been completely lacking (Beckett Rankine, 2010). PIANC therefore initiated a new working 
group, MarCom 145, with the objective of producing a report providing data on actual vessel approaches for a range 
of environmental conditions and presenting clear and uniform guidelines on the use of design berthing velocities. 
The Port of Rotterdam Authority supported this PIANC initiative and decided to develop a measurement programme 
to collect new observations. This programme was subsequently extended to various ports in the United States 
(Burkhart & Matakis, 2013). A detailed description of the method can be found in Rath (2012). Similar initiatives 
were undertaken in Germany, South Asia and Japan, as described by Hein (2014) and Jamase et al. (2014). 
Berthing operations of ferry-class vessels were conducted in the ports of Juneau and Seattle (Metzger et al., 2014). 
Typically, mean berthing velocities of 5 cm/s were found. The maximum berthing velocity measured was 13 cm/s.  
 
This appendix considers the most relevant parameters which could influence berthing velocities . The historical 
assumption that berthing velocity is correlated to the dimensions of large seagoing vessels is not supported by all 
design guidelines. Remarkably, the variety in types of vessel, their propulsion systems, berthing policies and pilot 
experience is not included in any guideline. For berths with a relatively low under-keel clearance and/or a relatively 
closed type of marine structure (e.g. a quay wall), lower berthing velocities are to be expected due to the so-called 
water cushion effect. Hence, the main focus of this appendix is the correlation between berthing velocity and ship 
dimensions, type of fendering, water cushion effect, type of marine structure, environmental factors, berthing policy 
and navigation aids. Its main objective is to enhance understanding of landing procedures and berthing velocities. 
The probability distribution functions of berthing velocity are of particular interest, as they provide a solid base for 
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Where: 

F(..) Probability distribution function [-]  
x Berthing velocity [cm/s] 
µ Mean value [cm/s]  
σ Standard deviation [cm/s] 
λ Scale parameter in Weibull distribution [cm/s]  
k Shape parameter in Weibull distribution [-]  

 
Given the number of berthings within a year, n berthing velocities with a certain probability of exceedance during a 
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Where: 

TR Return period [years] 
n Number of berthings per year [-] 

 
The second method is based on extreme value theory and is suggested in the Implementation of Eurocodes 
handbook (Leonardo da Vinci Pilot Project, 2005). In the case of time-dependent loads, distributions of annual and 
lifetime maxima were used to account for alternative reference periods or target reliability indices in order to 
determine and generalise partial factors of safety. In this study, the probability that all berthing operations during a 
certain reference period would be lower than or equal to a particular berthing velocity was calculated by examining 
distributions of extreme berthing velocities. As in the Eurocodes, the extreme value distributions were called 
distributions of annual and lifetime maxima. The following general mathematical principles of extreme value theory 
were applied: 
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The parameters x1,…x2 represent field measurements of berthing velocities ν1,…v2 and were assumed to be 
independent Weibull distributed random variables: 
 

 
𝐹𝐹 𝑥𝑥𝑥�, 𝑘𝑘 = 1 − exp −

𝑥𝑥
�

™
 (91)  

 
From the typical Weibull distribution fit, random berthing velocities corresponding to a certain reference period were 
generated. The maximum berthing velocities during this reference period were selected and stored. 
 

 𝑃𝑃 𝑋𝑋 𝑋 𝑋𝑋 = 𝑃𝑃𝑃max	(𝑣𝑣/,𝑣𝑣Õ … ..  , 𝑣𝑣9)>  𝑥𝑥𝑥 
 

(92)  

This process was repeated at least 200 times to ensure an appropriate population of maximum berthing velocities. 
In this way a new distribution of maxima was formed, which appeared to be a normal distribution (Fig. 5.5). The fit 
to the tail of this distribution was of significant importance when deriving berthing velocities with low probabilities of 
occurrence. The dark blue dashed line in Fig. 5.5 is the distribution of annual maxima and represents the distribution 
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n Number of berthings per year [-] 

 
The second method is based on extreme value theory and is suggested in the Implementation of Eurocodes 
handbook (Leonardo da Vinci Pilot Project, 2005). In the case of time-dependent loads, distributions of annual and 
lifetime maxima were used to account for alternative reference periods or target reliability indices in order to 
determine and generalise partial factors of safety. In this study, the probability that all berthing operations during a 
certain reference period would be lower than or equal to a particular berthing velocity was calculated by examining 
distributions of extreme berthing velocities. As in the Eurocodes, the extreme value distributions were called 
distributions of annual and lifetime maxima. The following general mathematical principles of extreme value theory 
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This process was repeated at least 200 times to ensure an appropriate population of maximum berthing velocities. 
In this way a new distribution of maxima was formed, which appeared to be a normal distribution (Fig. 5.5). The fit 
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	 (Weibull distribution) (179)

Where:
λ	 Scale parameter in Weibull distribution [m/s] λ ≈ 0.04 m/s
x	 Velocity [m/s]
k	 Shape parameter in Weibull distribution [-] k ≈ 2

The highest recorded berthing velocity was 13 cm/s and a design value of 14.5 cm/s 
with a return period of once per 1000 arrivals was recommended.

Relatively little data on berthing velocity has been collected since the 1970s, and 
measurements of large seagoing container vessels have been completely lacking (Beckett 
Rankine, 2010). PIANC therefore initiated a new working group, MarCom 145, with the 
objective of producing a report providing data on actual vessel approaches for a range of 
environmental conditions and presenting clear and uniform guidelines on the use of design 
berthing velocities (PIANC ,2019). The Port of Rotterdam Authority supported this PIANC 
initiative and decided to develop a measurement programme to collect new observations. 
This programme was subsequently extended to various ports in the United States (Burkhart 
& Matakis, 2013). A detailed description of the method can be found in Rath (2012). Similar 
initiatives were undertaken in Germany, South Asia and Japan, as described by Hein (2014) 
and Jamase et al. (2014). Berthing operations of ferry-class vessels were conducted in the 
ports of Juneau and Seattle (Metzger et al., 2014). Typically, mean berthing velocities of 5 
cm/s were found. The maximum berthing velocity measured was 13 cm/s.

This appendix considers the most relevant parameters which could influence berthing 
velocities. The historical assumption that berthing velocity is correlated to the dimensions of 
large seagoing vessels is not supported by all design guidelines. Remarkably, the variety in 
types of vessel, their propulsion systems, berthing policies and pilot experience is not included 
in any guideline. For berths with a relatively low under-keel clearance and/or a relatively closed 
type of marine structure (e.g. a quay wall), lower berthing velocities are to be expected due to 
the so-called water cushion effect. Hence, the main focus of this appendix is the correlation 
between berthing velocity and ship dimensions, type of fendering, water cushion effect, type of 
marine structure, environmental factors, berthing policy and navigation aids. Its main objective 
is to enhance understanding of landing procedures and berthing velocities. The probability 
distribution functions of berthing velocity are of particular interest, as they provide a solid base 
for future reliability-based assessments of quay walls. It was expected that actual berthing 
velocities would most likely be lower than in the current design guidance, because existing 
quay walls are still in good condition. The results of this appendix could contribute to new 
business opportunities, e.g. to allow larger vessels to berth at existing quay walls and/or to 
extend the service life of quay walls and other types of marine structure.

&

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   209 28-08-19   12:47



210
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D.1.1 BERTHING RECORDS AND DATA ANALYSIS

Type of vessel and project location in Rotterdam
Berthing velocities of small and large seagoing container vessels, tankers and bulkers 
were of interest. Unfortunately it was impossible to measure the berthing velocity of small 
vessels with limited freeboard. To acquire more insight into the correlation between berthing 
velocity and type of vessel, a differentiation was made between container vessels, tankers 
and bulkers. Subsequently, each of these vessel types was subdivided into specific 
vessel classes. The classification of vessels was largely based on the international Lloyds 
database. Various berth types were involved. All container vessels moored at closed quay 
walls equipped with either hard buckling or soft cylindrical fender systems. Bulkers berthed 
at closed quay walls where rigid timber beams were installed. At tanker berths, flexible 
mooring dolphins with buckling fender systems were utilised adjacent to open jetties. The 
geographical location of the berths is indicated in Fig. D.1.

Fig. D.1. Berths associated with either PPU data, mobile or shore-based laser observations 
in the Maasvlakte area of the port of Rotterdam.

Data collection
Several methods were used for collecting data on berthing velocities. Interviews and 
questionnaires appeared to be less efficient and vessels’ automatic identification systems 
(AIS) did not provide enough accuracy. A berthing velocity accuracy of mm/s was preferred 
for this study, with at least cm/s being required. Container vessels were measured using a 
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portable laser system provided by Trelleborg Marine Systems, called SmartDock® laser LITE 
(Fig. D.2). With this, tracking records of actual berthing operations were collected during 
the windy season (Oct.-Dec. 2011). In total, 178 measurements of relatively large seagoing 
container vessels were recorded. These were collected by the Port of Rotterdam Authority 
in close co-operation with KRVE (the Royal Boatmen’s Association Eendracht in the Port of 
Rotterdam) and the Dutch Pilotage Service. This appeared to be an efficient and safe way 
to gather a large amount of data in a short period of time. Following this data-gathering 
campaign, the method developed for it was also used in several ports in the United States.

      
Fig. D.2. SmartDock® laser LITE and software interface.

A typical berthing operation recorded with portable lasers is illustrated in Fig. D.3. 
Firstly, the point of maximum fender deflection and zero (berthing) velocity was determined. 
Because the distance between the portable workstation and the fender line is known, the 
exact moment of impact and corresponding berthing velocity were established relatively 
easily. It should be noted that, in this case, the container vessel rebounds a little shortly 
after its first contact with the fender. A few moments later, a second impact is visible. In 
this particular case, the first impact was predominant. For small feeder, tanker and bulker 
berthings, the velocity of the second impact was often higher.

&
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Fig. D.3. Approach velocity of Post-Panamax container vessel to moment of impact, recorded 
with SmartDock® portable workstation.

As well as the portable laser data, the Dutch Pilotage Service provided approximately 
222 portable pilot unit (PPU) tracking records and two terminals provided data from five 
jetties equipped with shore-based docking aid systems, covering approximately 161 
berthings. The accuracy of these measurements was cm/s for the shore-based systems 
and mm/s for the PPU data. PPUs are only installed on vessels with a draught greater than 
17m, because they have to sail very accurately through the main port channels. A total of 
225 tanker berthing measurements were collected, and 144 for bulkers.

According to the GPS tracking records, even moored vessels are always in motion. It 
was therefore extremely difficult to determine the berthing velocity at the moment of impact 
if fender systems were installed on flexible dolphins. The GPS position of the fender line 
could not be compared directly with the location of first impact, and a second berthing 
impact often predominated over the first due to the yaw motion of the tanker. This issue 
was resolved by finding the maximum berthing velocity within a range of 0.8 m (based on 
actual measured deformations of the dolphins). The extreme events deduced from PPU data 
are therefore most likely slightly conservative, especially those for bulk carriers. Verification 
showed that no correction was made for the PPU tracking records of bulkers berthing at 
closed quay walls equipped with rigid fender beams. The extreme berthing velocities of 
bulkers are therefore most likely overestimated, because there is negligible deflection of 
quay walls and rigid fender beams.

It was envisaged at the start of this test programme that a clear distinction would have 
to be made between various berthing and navigation parameters. A large database was 
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developed including all available and most likely relevant data which might influence berthing 
velocity. Besides observations of berthing velocity, the following data was collected.

·	 General data (date and arrival time).
·	 Measured data (berthing velocity and angle).
·	 Geometric conditions (type of terminal, number of bollards, type of waterfront 

structure, design depth/level of harbour bottom, berthing condition, type of 
fendering, exposed or sheltered).

·	 Vessel characteristics (name, type, length, width, maximum draught, actual draught, 
type of thrusters for main propeller, stern and bow thrusters, bow radius).

Data analysis
Several hypotheses, mainly regarding correlations between berthing velocity and other 
berthing parameters, were tested using linear regression analyses. This section provides 
an overview of the statistical methods used to acquire insight into the key parameters 
influencing berthing velocity.

For various types of vessel, the mean value, standard deviation and the maximum 
observed berthing velocity were established in order to verify the hypothesis that berthing 
velocity correlates with the size of the vessel. All vessel classes were individually analysed 
with normal, lognormal and Weibull cumulative distribution functions. One important 
disadvantage of such a differentiation into populations of individual vessel classes is a 
significant decrease of the number of measurements within a certain population. The 
volume of data within a population sometimes becomes too low for empirical analysis. 
The following probability distribution functions were applied to the datasets of the collected 
berthing velocities:
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Where: 

F(..) Probability distribution function [-]  
x Berthing velocity [cm/s] 
µ Mean [cm/s]  
σ Standard deviation [cm/s] 
λ Scale parameter in Weibull distribution [m/s ]  
k Shape parameter in Weibull distribution [-]  
 

It should be noted that if a single extreme berthing velocity was measured in a small population, the Weibull fit could 
be excessively influenced by that one extreme value and this could easily lead to unrealistic and unreliable extreme 
berthing velocities. The influence of the maximum observed berthing velocities was investigated with a Weibull fit 
for the data points with a peak over threshold (POT) of 95%. These principles are illustrated in Fig. D.16. If the fit 
of the distribution had a lower coefficient of correlation than R2 < 0.85, the results of the data analysis were carefully 
studied and should be neglected in future extreme value analysis. An adequate fit of the tail of the distribution 
functions to the dataset is of the utmost importance. The dataset of tanker berthings was enlarged with the 
measurements from those in Germany, which resulted in larger populations. This location had navigation conditions 
and a berthing policy similar to those in Rotterdam. 
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of Rotterdam Authority (e.g. actual draught, water levels, wind power and direction, type of berth, etc.). The methods 
used to collect this data were all relatively basic and reliable. Because the actual draught, actual bottom level and 
actual water level are known, a regression analysis between the under-keel clearance (UKC) of container vessels 
was carried out in order to measure the water cushion effect adjacent to closed quay walls.  
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It should be noted that if a single extreme berthing velocity was measured in a small population, the Weibull fit could 
be excessively influenced by that one extreme value and this could easily lead to unrealistic and unreliable extreme 
berthing velocities. The influence of the maximum observed berthing velocities was investigated with a Weibull fit 
for the data points with a peak over threshold (POT) of 95%. These principles are illustrated in Fig. D.16. If the fit 
of the distribution had a lower coefficient of correlation than R2 < 0.85, the results of the data analysis were carefully 
studied and should be neglected in future extreme value analysis. An adequate fit of the tail of the distribution 
functions to the dataset is of the utmost importance. The dataset of tanker berthings was enlarged with the 
measurements from those in Germany, which resulted in larger populations. This location had navigation conditions 
and a berthing policy similar to those in Rotterdam. 
 
Most of the data which could influence berthing velocity was in the public domain or already registered by the Port 
of Rotterdam Authority (e.g. actual draught, water levels, wind power and direction, type of berth, etc.). The methods 
used to collect this data were all relatively basic and reliable. Because the actual draught, actual bottom level and 
actual water level are known, a regression analysis between the under-keel clearance (UKC) of container vessels 
was carried out in order to measure the water cushion effect adjacent to closed quay walls.  
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Given the number of berthings within a year, n berthing velocities with a certain probability of exceedance during a 
reference period expressed by a return period TR,	were calculated using the following equation: 
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Where: 

TR Return period [years] 
n Number of berthings per year [-] 

 
The second method is based on extreme value theory and is suggested in the Implementation of Eurocodes 
handbook (Leonardo da Vinci Pilot Project, 2005). In the case of time-dependent loads, distributions of annual and 
lifetime maxima were used to account for alternative reference periods or target reliability indices in order to 
determine and generalise partial factors of safety. In this study, the probability that all berthing operations during a 
certain reference period would be lower than or equal to a particular berthing velocity was calculated by examining 
distributions of extreme berthing velocities. As in the Eurocodes, the extreme value distributions were called 
distributions of annual and lifetime maxima. The following general mathematical principles of extreme value theory 
were applied: 
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The parameters x1,…x2 represent field measurements of berthing velocities ν1,…v2 and were assumed to be 
independent Weibull distributed random variables: 
 

 
𝐹𝐹 𝑥𝑥𝑥�, 𝑘𝑘 = 1 − exp −

𝑥𝑥
�

™
 (91)  

 
From the typical Weibull distribution fit, random berthing velocities corresponding to a certain reference period were 
generated. The maximum berthing velocities during this reference period were selected and stored. 
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This process was repeated at least 200 times to ensure an appropriate population of maximum berthing velocities. 
In this way a new distribution of maxima was formed, which appeared to be a normal distribution (Fig. 5.5). The fit 
to the tail of this distribution was of significant importance when deriving berthing velocities with low probabilities of 
occurrence. The dark blue dashed line in Fig. 5.5 is the distribution of annual maxima and represents the distribution 
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F(..)	 Probability distribution function [-]
𝑥	 Berthing velocity [cm/s]
µ	 Mean [cm/s]
σ	 Standard deviation [cm/s]
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Appendix D1. Berthing velocity of large seagoing vessels in Rotterdam

It should be noted that if a single extreme berthing velocity was measured in a small 
population, the Weibull fit could be excessively influenced by that one extreme value and 
this could easily lead to unrealistic and unreliable extreme berthing velocities. The influence 
of the maximum observed berthing velocities was investigated with a Weibull fit for the data 
points with a peak over threshold (POT) of 95%. These principles are illustrated in Fig. D.16. 
If the fit of the distribution had a lower coefficient of correlation than R2 < 0.85, the results 
of the data analysis were carefully studied and should be neglected in future extreme value 
analysis. An adequate fit of the tail of the distribution functions to the dataset is of the 
utmost importance. The dataset of tanker berthings was enlarged with the measurements 
from those in Germany, which resulted in larger populations. This location had navigation 
conditions and a berthing policy similar to those in Rotterdam.

Most of the data which could influence berthing velocity was in the public domain 
or already registered by the Port of Rotterdam Authority (e.g. actual draught, water levels, 
wind power and direction, type of berth, etc.). The methods used to collect this data were 
all relatively basic and reliable. Because the actual draught, actual bottom level and actual 
water level are known, a regression analysis between the under-keel clearance (UKC) of 
container vessels was carried out in order to measure the water cushion effect adjacent 
to closed quay walls.
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 𝑈𝑈𝑈𝑈𝑈𝑈 = ℎL − ℎSä''äq−𝑑𝑑Mc' (183)  
 
Where: 

UKC Under-keel clearance [m]  
hw Actual water level [m + MSL]  

 hbottom Actual bottom level [m + MSL] 
 dact Actual draught [m] 
 

(183)

Where:
UKC	 Under-keel clearance [m]
h𝑤	 Actual water level [m + MSL]
hbottom	 Actual bottom level [m + MSL]
d𝑎ct	 Actual draught [m]

The influence of wind speed and wind direction on the berthing velocity of container 
vessels was examined during the windy season. The position of the berth relative to the 
wind direction was registered in a central database (Bochen, 2012). Logically, the windage 
area of a vessel strongly depends on its actual draught. The lateral wind force acting on the 
vessels was quantified in order to find out whether wind was influencing berthing velocity 
by using the following equations:
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 𝑃𝑃NM' = 𝑞𝑞𝑞𝑞𝑞Mc' sin 𝛼𝛼 =
1
2
𝜌𝜌𝜌𝜌fÕ sin 𝛼𝛼  (184)  

 	𝐴𝐴Mc' = 	𝐴𝐴qâ9 + 𝑇𝑇qM/ − 𝑇𝑇Mc' 𝐿𝐿𝐿𝐿𝐿𝐿 (185)  
 
Where: 

Plat Lateral wind force [kN]  
 q Dynamic pressure [kN/m2] 
 Aact Actual windage area [m2] 
	 Amin Minimum windage area [m2] 
	 α Angle between wind and the hull [◦] 
	 ρ Air density [kg/m3] 
	 νw Wind velocity [m/s] 
	 Tact Actual draught [m] 
	 Tmax Maximum draught [m] 
 LBP Length between perpendiculars [m] 
  
In the Rotterdam datasets for tankers and bulkers, both fore and aft velocities of the berthing records are listed. 
That data includes a combination of translational and angular velocity just before the first moment of impact. At the 
moment of maximum fender compression, the translational berthing velocity at the point of contact becomes zero 
and the ship maintains angular momentum. During the manoeuvre, tugs may change the angular position of the 
vessel. A model based only on translational velocities of the centre of mass of vessels seemed inaccurate, 
especially at low velocities and low berthing angles. Although low angles seemed to be favourable, greater approach 
angles could contribute to a reduction in the amount of energy to be absorbed by the fender system. If vessels are 
berthed in a direction perpendicular to the line connecting the centre of gravity of the ship and the point of contact 
of the fender system, the amount of energy absorbed by the fender will be reduced. A negative rotation of the vessel 
during the final landing procedure will also reduce the berthing impact. This type of berthing could be efficient in the 
case of berths with high currents. The berthing angle during this type of landing must be larger in order to allow 
enough time to reduce the vessel’s rotational velocity, otherwise the second impact could be more severe than the 
first. The following formula is included in the EAU 2012 (Grabe, 2012): 
 

 𝐸𝐸™â9 = 1
2𝑚𝑚𝑚𝑣𝑣	𝐶𝐶q𝐶𝐶v𝐶𝐶c𝐶𝐶V (186)  
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2(𝑘𝑘Õ + 𝑟𝑟Õ)
 (187)  

 
Before the first impact, the measured fore and aft perpendicular velocities include rotational effects. During 
evaluations of the Rotterdam measurements, the maximum fore and aft velocities were treated conservatively as 
translation velocities perpendicular to the berthing line. Only a part of the ship’s energy is absorbed by the fender 
during the first impact, which is dominated by translation movements by the vessel. The second impact is dominated 
by rotation and also contains angular momentum, and can be more severe compared to the first. Typically, the 
translational velocity of the first impact is close to the mean berthing velocity, while the velocity of the second impact 
is approximately 2-3 cm/s higher. This depends on the type of landing, the direction of vessel movements and the 
rotational component (Fig. D.4). The CE factor of the rotational component is smaller and the landing will generally 
be smoother than the impact dominated by translation (Vasco Costa, 1986).  
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The influence of wind speed and wind direction on the berthing velocity of container vessels was examined during 
the windy season. The position of the berth relative to the wind direction was registered in a central database 
(Bochen, 2012). Logically, the windage area of a vessel strongly depends on its actual draught. The lateral wind 
force acting on the vessels was quantified in order to find out whether wind was influencing berthing velocity by 
using the following equations: 
 

 𝑃𝑃NM' = 𝑞𝑞𝑞𝑞𝑞Mc' sin 𝛼𝛼 =
1
2
𝜌𝜌𝜌𝜌fÕ sin 𝛼𝛼  (184)  
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Where: 

Plat Lateral wind force [kN]  
 q Dynamic pressure [kN/m2] 
 Aact Actual windage area [m2] 
	 Amin Minimum windage area [m2] 
	 α Angle between wind and the hull [◦] 
	 ρ Air density [kg/m3] 
	 νw Wind velocity [m/s] 
	 Tact Actual draught [m] 
	 Tmax Maximum draught [m] 
 LBP Length between perpendiculars [m] 
  
In the Rotterdam datasets for tankers and bulkers, both fore and aft velocities of the berthing records are listed. 
That data includes a combination of translational and angular velocity just before the first moment of impact. At the 
moment of maximum fender compression, the translational berthing velocity at the point of contact becomes zero 
and the ship maintains angular momentum. During the manoeuvre, tugs may change the angular position of the 
vessel. A model based only on translational velocities of the centre of mass of vessels seemed inaccurate, 
especially at low velocities and low berthing angles. Although low angles seemed to be favourable, greater approach 
angles could contribute to a reduction in the amount of energy to be absorbed by the fender system. If vessels are 
berthed in a direction perpendicular to the line connecting the centre of gravity of the ship and the point of contact 
of the fender system, the amount of energy absorbed by the fender will be reduced. A negative rotation of the vessel 
during the final landing procedure will also reduce the berthing impact. This type of berthing could be efficient in the 
case of berths with high currents. The berthing angle during this type of landing must be larger in order to allow 
enough time to reduce the vessel’s rotational velocity, otherwise the second impact could be more severe than the 
first. The following formula is included in the EAU 2012 (Grabe, 2012): 
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Before the first impact, the measured fore and aft perpendicular velocities include rotational effects. During 
evaluations of the Rotterdam measurements, the maximum fore and aft velocities were treated conservatively as 
translation velocities perpendicular to the berthing line. Only a part of the ship’s energy is absorbed by the fender 
during the first impact, which is dominated by translation movements by the vessel. The second impact is dominated 
by rotation and also contains angular momentum, and can be more severe compared to the first. Typically, the 
translational velocity of the first impact is close to the mean berthing velocity, while the velocity of the second impact 
is approximately 2-3 cm/s higher. This depends on the type of landing, the direction of vessel movements and the 
rotational component (Fig. D.4). The CE factor of the rotational component is smaller and the landing will generally 
be smoother than the impact dominated by translation (Vasco Costa, 1986).  
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Where:
Pl𝑎t	 Lateral wind force [kN]
q	 Dynamic pressure [kN/m2]
A𝑎ct	 Actual windage area [m2]
Amin	 Minimum windage area [m2]
α	 Angle between wind and the hull [◦]
ρ	 Air density [kg/m3]
νw	 Wind velocity [m/s]
T𝑎ct	 Actual draught [m]
Tm𝑎x	 Maximum draught [m]
LBP	 Length between perpendiculars [m]

In the Rotterdam datasets for tankers and bulkers, both fore and aft velocities of 
the berthing records are listed. That data includes a combination of translational and 
angular velocity just before the first moment of impact. At the moment of maximum fender 
compression, the translational berthing velocity at the point of contact becomes zero 
and the ship maintains angular momentum. During the manoeuvre, tugs may change the 
angular position of the vessel. A model based only on translational velocities of the centre 
of mass of vessels seemed inaccurate, especially at low velocities and low berthing angles. 
Although low angles seemed to be favourable, greater approach angles could contribute 
to a reduction in the amount of energy to be absorbed by the fender system. If vessels 
are berthed in a direction perpendicular to the line connecting the centre of gravity of the 
ship and the point of contact of the fender system, the amount of energy absorbed by the 
fender will be reduced. A negative rotation of the vessel during the final landing procedure 
will also reduce the berthing impact. This type of berthing could be efficient in the case of 
berths with high currents. The berthing angle during this type of landing must be larger in 
order to allow enough time to reduce the vessel’s rotational velocity, otherwise the second 
impact could be more severe than the first. The following formula is included in the EAU 
2012 (Grabe, 2012):
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the windy season. The position of the berth relative to the wind direction was registered in a central database 
(Bochen, 2012). Logically, the windage area of a vessel strongly depends on its actual draught. The lateral wind 
force acting on the vessels was quantified in order to find out whether wind was influencing berthing velocity by 
using the following equations: 
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In the Rotterdam datasets for tankers and bulkers, both fore and aft velocities of the berthing records are listed. 
That data includes a combination of translational and angular velocity just before the first moment of impact. At the 
moment of maximum fender compression, the translational berthing velocity at the point of contact becomes zero 
and the ship maintains angular momentum. During the manoeuvre, tugs may change the angular position of the 
vessel. A model based only on translational velocities of the centre of mass of vessels seemed inaccurate, 
especially at low velocities and low berthing angles. Although low angles seemed to be favourable, greater approach 
angles could contribute to a reduction in the amount of energy to be absorbed by the fender system. If vessels are 
berthed in a direction perpendicular to the line connecting the centre of gravity of the ship and the point of contact 
of the fender system, the amount of energy absorbed by the fender will be reduced. A negative rotation of the vessel 
during the final landing procedure will also reduce the berthing impact. This type of berthing could be efficient in the 
case of berths with high currents. The berthing angle during this type of landing must be larger in order to allow 
enough time to reduce the vessel’s rotational velocity, otherwise the second impact could be more severe than the 
first. The following formula is included in the EAU 2012 (Grabe, 2012): 
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Before the first impact, the measured fore and aft perpendicular velocities include rotational effects. During 
evaluations of the Rotterdam measurements, the maximum fore and aft velocities were treated conservatively as 
translation velocities perpendicular to the berthing line. Only a part of the ship’s energy is absorbed by the fender 
during the first impact, which is dominated by translation movements by the vessel. The second impact is dominated 
by rotation and also contains angular momentum, and can be more severe compared to the first. Typically, the 
translational velocity of the first impact is close to the mean berthing velocity, while the velocity of the second impact 
is approximately 2-3 cm/s higher. This depends on the type of landing, the direction of vessel movements and the 
rotational component (Fig. D.4). The CE factor of the rotational component is smaller and the landing will generally 
be smoother than the impact dominated by translation (Vasco Costa, 1986).  
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The influence of wind speed and wind direction on the berthing velocity of container vessels was examined during 
the windy season. The position of the berth relative to the wind direction was registered in a central database 
(Bochen, 2012). Logically, the windage area of a vessel strongly depends on its actual draught. The lateral wind 
force acting on the vessels was quantified in order to find out whether wind was influencing berthing velocity by 
using the following equations: 
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	 α Angle between wind and the hull [◦] 
	 ρ Air density [kg/m3] 
	 νw Wind velocity [m/s] 
	 Tact Actual draught [m] 
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In the Rotterdam datasets for tankers and bulkers, both fore and aft velocities of the berthing records are listed. 
That data includes a combination of translational and angular velocity just before the first moment of impact. At the 
moment of maximum fender compression, the translational berthing velocity at the point of contact becomes zero 
and the ship maintains angular momentum. During the manoeuvre, tugs may change the angular position of the 
vessel. A model based only on translational velocities of the centre of mass of vessels seemed inaccurate, 
especially at low velocities and low berthing angles. Although low angles seemed to be favourable, greater approach 
angles could contribute to a reduction in the amount of energy to be absorbed by the fender system. If vessels are 
berthed in a direction perpendicular to the line connecting the centre of gravity of the ship and the point of contact 
of the fender system, the amount of energy absorbed by the fender will be reduced. A negative rotation of the vessel 
during the final landing procedure will also reduce the berthing impact. This type of berthing could be efficient in the 
case of berths with high currents. The berthing angle during this type of landing must be larger in order to allow 
enough time to reduce the vessel’s rotational velocity, otherwise the second impact could be more severe than the 
first. The following formula is included in the EAU 2012 (Grabe, 2012): 
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Before the first impact, the measured fore and aft perpendicular velocities include rotational effects. During 
evaluations of the Rotterdam measurements, the maximum fore and aft velocities were treated conservatively as 
translation velocities perpendicular to the berthing line. Only a part of the ship’s energy is absorbed by the fender 
during the first impact, which is dominated by translation movements by the vessel. The second impact is dominated 
by rotation and also contains angular momentum, and can be more severe compared to the first. Typically, the 
translational velocity of the first impact is close to the mean berthing velocity, while the velocity of the second impact 
is approximately 2-3 cm/s higher. This depends on the type of landing, the direction of vessel movements and the 
rotational component (Fig. D.4). The CE factor of the rotational component is smaller and the landing will generally 
be smoother than the impact dominated by translation (Vasco Costa, 1986).  
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berthing line. Only a part of the ship’s energy is absorbed by the fender during the first impact, 
which is dominated by translation movements by the vessel. The second impact is dominated 
by rotation and also contains angular momentum, and can be more severe compared to the 
first. Typically, the translational velocity of the first impact is close to the mean berthing velocity, 
while the velocity of the second impact is approximately 2-3 cm/s higher. This depends on 
the type of landing, the direction of vessel movements and the rotational component (Fig. 
D.4). The CE factor of the rotational component is smaller and the landing will generally be 
smoother than the impact dominated by translation (Vasco Costa, 1986).
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The influence of wind speed and wind direction on the berthing velocity of container vessels was examined during 
the windy season. The position of the berth relative to the wind direction was registered in a central database 
(Bochen, 2012). Logically, the windage area of a vessel strongly depends on its actual draught. The lateral wind 
force acting on the vessels was quantified in order to find out whether wind was influencing berthing velocity by 
using the following equations: 
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In the Rotterdam datasets for tankers and bulkers, both fore and aft velocities of the berthing records are listed. 
That data includes a combination of translational and angular velocity just before the first moment of impact. At the 
moment of maximum fender compression, the translational berthing velocity at the point of contact becomes zero 
and the ship maintains angular momentum. During the manoeuvre, tugs may change the angular position of the 
vessel. A model based only on translational velocities of the centre of mass of vessels seemed inaccurate, 
especially at low velocities and low berthing angles. Although low angles seemed to be favourable, greater approach 
angles could contribute to a reduction in the amount of energy to be absorbed by the fender system. If vessels are 
berthed in a direction perpendicular to the line connecting the centre of gravity of the ship and the point of contact 
of the fender system, the amount of energy absorbed by the fender will be reduced. A negative rotation of the vessel 
during the final landing procedure will also reduce the berthing impact. This type of berthing could be efficient in the 
case of berths with high currents. The berthing angle during this type of landing must be larger in order to allow 
enough time to reduce the vessel’s rotational velocity, otherwise the second impact could be more severe than the 
first. The following formula is included in the EAU 2012 (Grabe, 2012): 
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The influence of wind speed and wind direction on the berthing velocity of container vessels was examined during 
the windy season. The position of the berth relative to the wind direction was registered in a central database 
(Bochen, 2012). Logically, the windage area of a vessel strongly depends on its actual draught. The lateral wind 
force acting on the vessels was quantified in order to find out whether wind was influencing berthing velocity by 
using the following equations: 
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In the Rotterdam datasets for tankers and bulkers, both fore and aft velocities of the berthing records are listed. 
That data includes a combination of translational and angular velocity just before the first moment of impact. At the 
moment of maximum fender compression, the translational berthing velocity at the point of contact becomes zero 
and the ship maintains angular momentum. During the manoeuvre, tugs may change the angular position of the 
vessel. A model based only on translational velocities of the centre of mass of vessels seemed inaccurate, 
especially at low velocities and low berthing angles. Although low angles seemed to be favourable, greater approach 
angles could contribute to a reduction in the amount of energy to be absorbed by the fender system. If vessels are 
berthed in a direction perpendicular to the line connecting the centre of gravity of the ship and the point of contact 
of the fender system, the amount of energy absorbed by the fender will be reduced. A negative rotation of the vessel 
during the final landing procedure will also reduce the berthing impact. This type of berthing could be efficient in the 
case of berths with high currents. The berthing angle during this type of landing must be larger in order to allow 
enough time to reduce the vessel’s rotational velocity, otherwise the second impact could be more severe than the 
first. The following formula is included in the EAU 2012 (Grabe, 2012): 
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Before the first impact, the measured fore and aft perpendicular velocities include rotational effects. During 
evaluations of the Rotterdam measurements, the maximum fore and aft velocities were treated conservatively as 
translation velocities perpendicular to the berthing line. Only a part of the ship’s energy is absorbed by the fender 
during the first impact, which is dominated by translation movements by the vessel. The second impact is dominated 
by rotation and also contains angular momentum, and can be more severe compared to the first. Typically, the 
translational velocity of the first impact is close to the mean berthing velocity, while the velocity of the second impact 
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The influence of wind speed and wind direction on the berthing velocity of container vessels was examined during 
the windy season. The position of the berth relative to the wind direction was registered in a central database 
(Bochen, 2012). Logically, the windage area of a vessel strongly depends on its actual draught. The lateral wind 
force acting on the vessels was quantified in order to find out whether wind was influencing berthing velocity by 
using the following equations: 
 

 𝑃𝑃NM' = 𝑞𝑞𝑞𝑞𝑞Mc' sin 𝛼𝛼 =
1
2
𝜌𝜌𝜌𝜌fÕ sin 𝛼𝛼  (184)  

 	𝐴𝐴Mc' = 	𝐴𝐴qâ9 + 𝑇𝑇qM/ − 𝑇𝑇Mc' 𝐿𝐿𝐿𝐿𝐿𝐿 (185)  
 
Where: 

Plat Lateral wind force [kN]  
 q Dynamic pressure [kN/m2] 
 Aact Actual windage area [m2] 
	 Amin Minimum windage area [m2] 
	 α Angle between wind and the hull [◦] 
	 ρ Air density [kg/m3] 
	 νw Wind velocity [m/s] 
	 Tact Actual draught [m] 
	 Tmax Maximum draught [m] 
 LBP Length between perpendiculars [m] 
  
In the Rotterdam datasets for tankers and bulkers, both fore and aft velocities of the berthing records are listed. 
That data includes a combination of translational and angular velocity just before the first moment of impact. At the 
moment of maximum fender compression, the translational berthing velocity at the point of contact becomes zero 
and the ship maintains angular momentum. During the manoeuvre, tugs may change the angular position of the 
vessel. A model based only on translational velocities of the centre of mass of vessels seemed inaccurate, 
especially at low velocities and low berthing angles. Although low angles seemed to be favourable, greater approach 
angles could contribute to a reduction in the amount of energy to be absorbed by the fender system. If vessels are 
berthed in a direction perpendicular to the line connecting the centre of gravity of the ship and the point of contact 
of the fender system, the amount of energy absorbed by the fender will be reduced. A negative rotation of the vessel 
during the final landing procedure will also reduce the berthing impact. This type of berthing could be efficient in the 
case of berths with high currents. The berthing angle during this type of landing must be larger in order to allow 
enough time to reduce the vessel’s rotational velocity, otherwise the second impact could be more severe than the 
first. The following formula is included in the EAU 2012 (Grabe, 2012): 
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Before the first impact, the measured fore and aft perpendicular velocities include rotational effects. During 
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by rotation and also contains angular momentum, and can be more severe compared to the first. Typically, the 
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is approximately 2-3 cm/s higher. This depends on the type of landing, the direction of vessel movements and the 
rotational component (Fig. D.4). The CE factor of the rotational component is smaller and the landing will generally 
be smoother than the impact dominated by translation (Vasco Costa, 1986).  
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The influence of wind speed and wind direction on the berthing velocity of container vessels was examined during 
the windy season. The position of the berth relative to the wind direction was registered in a central database 
(Bochen, 2012). Logically, the windage area of a vessel strongly depends on its actual draught. The lateral wind 
force acting on the vessels was quantified in order to find out whether wind was influencing berthing velocity by 
using the following equations: 
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In the Rotterdam datasets for tankers and bulkers, both fore and aft velocities of the berthing records are listed. 
That data includes a combination of translational and angular velocity just before the first moment of impact. At the 
moment of maximum fender compression, the translational berthing velocity at the point of contact becomes zero 
and the ship maintains angular momentum. During the manoeuvre, tugs may change the angular position of the 
vessel. A model based only on translational velocities of the centre of mass of vessels seemed inaccurate, 
especially at low velocities and low berthing angles. Although low angles seemed to be favourable, greater approach 
angles could contribute to a reduction in the amount of energy to be absorbed by the fender system. If vessels are 
berthed in a direction perpendicular to the line connecting the centre of gravity of the ship and the point of contact 
of the fender system, the amount of energy absorbed by the fender will be reduced. A negative rotation of the vessel 
during the final landing procedure will also reduce the berthing impact. This type of berthing could be efficient in the 
case of berths with high currents. The berthing angle during this type of landing must be larger in order to allow 
enough time to reduce the vessel’s rotational velocity, otherwise the second impact could be more severe than the 
first. The following formula is included in the EAU 2012 (Grabe, 2012): 
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Before the first impact, the measured fore and aft perpendicular velocities include rotational effects. During 
evaluations of the Rotterdam measurements, the maximum fore and aft velocities were treated conservatively as 
translation velocities perpendicular to the berthing line. Only a part of the ship’s energy is absorbed by the fender 
during the first impact, which is dominated by translation movements by the vessel. The second impact is dominated 
by rotation and also contains angular momentum, and can be more severe compared to the first. Typically, the 
translational velocity of the first impact is close to the mean berthing velocity, while the velocity of the second impact 
is approximately 2-3 cm/s higher. This depends on the type of landing, the direction of vessel movements and the 
rotational component (Fig. D.4). The CE factor of the rotational component is smaller and the landing will generally 
be smoother than the impact dominated by translation (Vasco Costa, 1986).  
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 𝑘𝑘 = 	𝐿𝐿	 0.19𝐶𝐶≈ + 0.11  for 𝐶𝐶≈ < 1 (192)  
 
Where: 

Ekin  Kinetic energy [kNm]  
 m Mass of vessel/water displacement [tonnes] 
 k Radius of gyration of vessel [m] 
 r Distance of vessel’s centre of gravity from point of contact with marine structure [m] 
 ν Total translation velocity of centre of mass at time of first contact (includes component 
      parallel and perpendicular to berthing line) [m/s] 
 νt Component of the translation velocity perpendicular to the berthing line [m/s] 
	 νr Perpendicular velocity due to vessel rotation considered at a distance equal to the 
   radius of gyration from the vessel’s centre of gravity [m/s].  

ω Vessel’s angular velocity at time of first contact with fender [rad/s] 
φ Angle between velocity vector ν and distance r [◦] 
α Berthing angle [◦] 
L Length of vessel [m] 
B Width of vessels [m] 

	 CB Block coefficient, CB ≈ 0.72-0.85 for bulkers or CB ≈ 0.85 for tankers [-] 
	 Cm Virtual mass factor [-] 
	 Cs Vessel flexibility factor [-] 
	 Cc Waterfront structure attenuation factor [-] 

CE Eccentricity factor, CE ≈ 0.4-0.6 for quarter-point and CE ≈ 0.6-0.8 for third-point berthing [-] 
 

 
Fig. D.4. Principles of translational and angular velocity during first impact. 
 
An overview of typical design berthing velocities was developed for various design vessels in order to compare the 
new measurements with the currently recommended design guidance. Logically, these values were established by 
a desk study of the programme of requirements and relevant design reports. The desk study was limited to the most 
important berths constructed between 1990 and 2015. All marine structures involved are owned by the Port of 
Rotterdam Authority. 

 
D.1.2 Results of data analysis of Rotterdam berthing records  
Measurements were collected for various berths in several port basins. In an attempt to increase understanding of 
the recorded berthing velocities, differentiating factors were accounted for by vessel characteristics, environmental 
aspects and berthing policy. The key findings of that exercise are presented in this section. 
  
Ship dimensions and characteristics 
The mean berthing velocity of large seagoing vessels was approximately 4 cm/s and the maximum measured 
velocity from 555 berthings was 13 cm/s (Table D.1). Almost all arrivals were assisted by tugs and guided by pilots.  

(192)

Where:
E𝑘𝑖𝑛	 Kinetic energy [kNm]
m	 Mass of vessel/water displacement [tonnes]
k	 Radius of gyration of vessel [m]
r	 Distance of vessel’s centre of gravity from point of contact with 

marine structure [m]
ν	 Total translation velocity of centre of mass at time of first contact 

(includes component parallel and perpendicular to berthing line) 
[m/s]

νt	 Component of the translation velocity perpendicular to the 
berthing line [m/s]

νr	 Perpendicular velocity due to vessel rotation considered at a 
distance equal to the radius of gyration from the vessel’s centre 
of gravity [m/s].

⍵	 Vessel’s angular velocity at time of first contact with fender 
[rad/s]

𝜙	 Angle between velocity vector ν and distance r [◦]
α	 Berthing angle [◦]
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L	 Length of vessel [m]
B	 Width of vessels [m]
CB	 Block coefficient, CB ≈ 0.72-0.85 for bulkers or CB ≈ 0.85 for 

tankers [-]
Cm	 Virtual mass factor [-]
Cs	 Vessel flexibility factor [-]
Cc	 Waterfront structure attenuation factor [-]
CE	 Eccentricity factor, CE ≈ 0.4-0.6 for quarter-point and CE ≈ 0.6-

0.8 for third-point berthing [-]
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Fig. D.4. Principles of translational and angular velocity during first impact.

An overview of typical design berthing velocities was developed for various design 
vessels in order to compare the new measurements with the currently recommended design 
guidance. Logically, these values were established by a desk study of the programme of 
requirements and relevant design reports. The desk study was limited to the most important 
berths constructed between 1990 and 2015. All marine structures involved are owned by 
the Port of Rotterdam Authority.

D.1.2 RESULTS OF DATA ANALYSIS OF ROTTERDAM BERTHING RECORDS
Measurements were collected for various berths in several port basins. In an attempt to 
increase understanding of the recorded berthing velocities, differentiating factors were 
accounted for by vessel characteristics, environmental aspects and berthing policy. The 
key findings of that exercise are presented in this section.

&
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Ship dimensions and characteristics
The mean berthing velocity of large seagoing vessels was approximately 4 cm/s and the 
maximum measured velocity from 555 berthings was 13 cm/s (Table D.1). Almost all arrivals 
were assisted by tugs and guided by pilots.

Table D.1. Collection of berthing velocity survey from measurements.

Ship 
type

n νµ
[cm/s]

νmax
[cm/s] Berth type Berthing aids Wind Waves Current

Container □ 178 4.0 10 closed quay None high sheltered low

Tanker ○ 225 4.3 12 jetty/dolphin
Portable pilot 
units/shore-based 
docking aids

high sheltered low

Bulker ◊ 144 4.4 13 closed quay Portable pilot 
units high sheltered low

The frequency of arrivals was set at 100 berthings by the design vessel per year, 
in line with the recommendations made by Brolsma et al. (1977). The berthing velocity 
corresponding to a return period of 50 years was derived by extrapolating the Weibull 
distribution fit of individual vessel classes (Fig. D.5).
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Fig. D.5. Field measurements of berthing velocity against extreme berthing velocities with 
a return period of 50 years.
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The berthing velocities of individual vessel classes with a return period of 50 years were 
compared with the design curves in EAU 2012 (Grabe, 2012) and PIANC (2002), as shown 
in Fig. D.6. The values in the EAU graphs are characteristic values with a return period of 
50 years. The PIANC curves represent a return period of 30 years.
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Fig. D.6. Berthing velocities with a return period of 50 years against EAU 2012 and PIANC 2002.

According to the new measurements, tankers showed a very small correlation between 
berthing velocity and vessel mass. Large seagoing bulkers did not show any correlation. 
A gentle correlation was found only for container vessels. It should be stressed that the 
volume of data obtained for some vessel classes was too small to be able to draw a final 
conclusion. Furthermore, no difference was found between the actual water displacement 
and the maximum water displacement of the vessel.

The ratio between the actual draught and maximum draught was further studied by 
means of linear regression analysis. The dataset showed a high degree of dispersion and 
no real correlation was found.

Despite the fact that the datasets were too small to draw strong conclusions, the 
trend suggests that berthing velocity does not vary for different vessel draughts within the 
considered range. As an example, the under-keel clearances of Post-Panamax arrivals are 
shown in Fig. D.7. The median value of the under-keel clearance of all container vessels was 
approximately 6 m, and the water cushion effect did not significantly influence the berthing 
velocities of container vessels. Moreover, no correlation between berthing velocity and 
under-keel clearance was found for bulkers and tankers.

&
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Fig. D.7. Relationship between UKC and berthing velocity for Post-Panamax class container 
vessels.

A comparison of the various locations showed that the distribution of berthing velocities 
for container vessels was more or less constant for the port basins in the Maasvlakte area of 
the port of Rotterdam. The basins’ geometric characteristics (wide or narrow) had no effect 
on the distribution of berthing speeds. Nor did occupancy of the surrounding berths have 
any significant influence. Typical distributions for container vessels are shown in Fig. D.8.
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Fig. D.8. Histogram of berthing velocities of individual container vessel classes.

Environmental conditions
The relevant berths in the port of Rotterdam are classified as sheltered with respect to 
currents and waves (Fig. D.1). Nevertheless, manoeuvres at them by large container vessels 
with high freeboards and large numbers of containers on deck are still potentially highly 
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wind-sensitive. Almost all nautical experts agreed on this. For several types of container 
vessels, the lateral wind force acting on the vessel was calculated. The results for the 
Panamax and Post-Panamax classes are shown in Fig. D.9. Generally, the coefficient of 
correlation was negligible or small for container vessels. No real correlations were found for 
small feeders and Panamax vessels, but Post-Panamax vessels do show a small correlation.
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Fig. D.9. Lateral wind force versus berthing velocity for small feeders (a), Panamax (b) and 
Post-Panamax (c) vessels.

Fig. D.10 shows that wind does not have a major influence on berthing velocity. In this 
figure, measurements for container vessels are divided into three categories according to 
weather conditions: favourable (wind speed < 7 m/s), normal (wind speed 8-12 m/s) and 
unfavourable (wind speed > 12 m/s) conditions. It should be noted that tankers and bulkers 
may not enter the port of Rotterdam when wind speeds exceed Beaufort force 8 (< 20.7 
m/s) unless the wind direction is favourable, when the maximum is Beaufort force 9 (< 24.4 
m/s). Container vessels may not enter the port when wind speeds exceed Beaufort force 
6 (< 13.8 m/s). No clear distinction between categories was observed.

&

Volledig Binnenwerk_Alfred Roubos_FINAL.indd   221 28-08-19   12:47



222

Appendix D1. Berthing velocity of large seagoing vessels in Rotterdam

 

0
1
2
3
4
5
6
7
8
9

10

0 25 50 75 100 125 150 175

B
er

th
in

g 
ve

lo
ci

ty
 [c

m
/s

]

Deadweight Tonnage [in 1000 tonnes]

Favourable conditions Normal conditions Unfavourable conditions

Fig. D.10. Influence of wind on the berthing velocity of container vessels.

Tug assistance
The individual container vessel classes were compared in terms of tug assistance (Table 
D.2). Generally, the number of tugs required depends on the type of vessel (size, actual 
draught), the navigation conditions (occupancy of the berths) and the environmental 
conditions (lateral wind force). Although there was not enough data to derive reliable 
correlations between number of tugs and all these parameters, some trends were apparent.

·	 The number of tugs used does not affect berthing velocity;
·	 There was a significant difference between small feeders and feeders (Fig. D.11). In 

order to explain this, the tracking records were studied in more detail. It was found 
that the significant change was caused by a different type of landing procedure.

Table D.2. Number of tugs used by individual container vessel classes and mean value of 
berthing velocity (cm/s).

Vessel type
No tugs One tug Two tugs Three tugs

n v DWT n v DWT n v DWT n v DWT

Small feeder 29 6.1 9004 2 8.5 7617
Feeder 12 5.7 16250 11 4.5 21771 3 3.3 36583
Panamax 15 3.8 42424 22 3.6 55120 2 5.5 55170
Post-Panamax 1 3.0 104696 13 2.8 87340 37 3.1 90029
New-Panamax 4 3.0 114327 18 3.1 114277 2 3.0 116733
ULCV 5 1.8 153552 4 1.5 153140
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Fig. D.11. Correlation between tug assistance and dimensions of container vessels for mean 
berthing velocities and DWT.

Type of landing
Small feeders and feeders (DWT < 38,500 tonnes) appeared to have higher berthing 
velocities, as assumed in most of the design codes. Studying these particular berthing 
records showed that the smaller vessels were unable to accomplish parallel landing 
operations. Their angle of approach was much higher and fewer tugs were used. The 
berthing angle at the moment of impact usually remained between 0° and 1.5° (Fig. D.12), 
and sometimes the second berthing impact was dominant. Large container vessels always 
used tug assistance and were equipped with bow and stern thrusters, which allowed them 
to berth almost parallel to the fender line. Container vessels with large displacements (DWT 
> 38,500 tonnes) were stopped 20-30 m from the berth and parallel to it. Consequently, 
their angle of approach during the landing procedure remained small. Initial approach 
velocities measured at some distance from the berthing line were generally in the order 
of approximately 10-40 cm/s (Table D.3). The tracking records showed that captains still 
seemed to have some influence over the landing procedure in the final metres. Berthing 
velocities at the moment of impact for various container vessel types generally remained 
between 0 and 10 cm/s. All records of berthing operations of container vessels showed 
berthing angles, typically of 1.5° or less (Fig. D.12).
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Table D.3. Approach velocity during berthing manoeuvres of container vessels at Maasvlakte, 
Rotterdam.

Distance to fender line [m] Approach velocity [cm/s]

20-50 10-30
5-20 10-20
0-5 5-15
0 0-10
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Post-Panamax: 5,500 - 9,999 TEU
New Panamax: 10,000 - 12.999 TEU
ULCV: More than 13,000 TEU

Fig. D.12. Distributions of berthing angles of container vessels at Maasvlakte, Rotterdam.

For tankers and bulkers, only the velocities at the moment of impact were available. 
Landing operations of large seagoing tankers and bulkers showed similarities with those of 
small container vessels. For the datasets of tankers and bulkers, the angular velocity was 
calculated. The perpendicular component of the angular velocity νr=⍵k was plotted against 
the translational velocity perpendicular to the berthing line (Fig. D.13). This component is 
not exactly the same as the rotational component of the actual berthing velocity, due to 
the fact that the distance from the point of impact to the centre of mass is not necessarily 
the same as the radius of gyration. The translational component parallel to the berthing line 
was not recorded. The latter value has an effect on the velocity angle 𝜙 and thus on the 
CE factor. It was noted that, on average, an angular velocity term of 2-3 cm/s was added. 
The dependency on the translational velocity was weak. For bulk carriers, measurements 
of the berthing angles were available (Fig. D.14). A slight effect of higher angular velocities 
at small berthing angles was observed.
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Fig. D.13. Measured rotational and translational velocities for tankers and bulkers.
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Fig. D.14. Measured rotational velocity for bulk carriers versus berthing angle.

Distribution of berthing velocities
An adequate fit of the low-probability tail of the distribution to the dataset was made in order 
to estimate extreme berthing velocities. The accuracy of the fit of the tail was investigated 
for normal, lognormal and Weibull distributions (Fig. D.15). In addition, a Weibull fit for the 
data points with a peak over threshold (POT) of 95% was conducted. The parameters for the 
best fit with normal, lognormal and Weibull and Weibull POT 95% probability distributions 
functions are listed in Table D.4, per vessel class.
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Table D.4. Cumulative distribution functions for various vessel classes.

Ship type kDWT n max Normal Lognormal Weibull Weibull 
POT 95%

µS σS Vs Ln(µS) Ln(σS) λ k λ k

Tankers
Panamax 60-85 23 0.09 0.055 0.018 0.33 -2.96 0.339 0.063 3.09 0.059 2.82
Aframax1 85-105 175 0.12 0.044 0.018 0.40 -3.21 0.469 0.050 2.68 0.031 1.26
Suezmax 115-165 95 0.11 0.047 0.018 0.39 -3.13 0.395 0.053 2.75 0.057 2.49
VLCC 260-319 80 0.10 0.047 0.019 0.40 -3.15 0.422 0.053 2.65 0.044 1.91
Fixed laser 260-319 19 0.07 0.035 0.013 0.36 -3.40 0.348 0.041 2.77 0.019 0.92
Bulkers
Capesize 150-205 107 0.13 0.045 0.022 0.50 -3.22 0.449 0.050 1.91 0.046 1.51
VLBC 205-365 37 0.10 0.042 0.019 0.44 -3.25 0.405 0.048 2.18 0.048 1.85
Containers
Coasters 7-15 37 0.10 0.063 0.019 0.31 -2.83 0.360 0.071 3.68 0.063 2.74
Feeders 15-42 31 0.09 0.047 0.019 0.41 -3.17 0.496 0.054 2.63 0.058 2.99
Panamax 42-70 31 0.08 0.036 0.016 0.46 -3.46 0.510 0.041 2.22 0.034 1.51
Post 
Panamax 70-118 60 0.07 0.030 0.015 0.52 -3.66 0.540 0.034 1.93 0.036 2.27

New 
Panamax 118-171 18 0.03 0.018 0.006 0.33 -4.06 0.361 0.021 3.60 0.010 0.92

Rotterdam 
data 7-365 555 0.13 0.043 0.021 0.59 -3.29 0.594 0.046 2.28 0.044 1.72

All data 7-365 713 0.13 0.044 0.020 0.45 -3.24 0.498 0.049 2.28 0.043 1.75

1) The fit of the Weibull distribution to the measured data resulted in an underestimation of the highest 
actual measured berthing velocities with the use of PPUs. Although the reliability of the maximum 
values measured with the PPU was analysed carefully, these values are probably unsafe to use for 
determining the design berthing velocity.

Generally, the fit of the Weibull distribution of the berthing velocity of a single berthing 
operation provided the most appropriate description of the tail, by comparison with a normal 
or lognormal distribution This is illustrated by the theoretical density functions and the Q-Q 
probability plot (Fig. D.15).
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Fig. D.15. Histogram of theoretical density functions (left) and Q-Q probability plot (right) 
of all 713 observations.

Only the Aframax tankers had a coefficient of correlation less than R2 < 0.85, meaning 
that the results should be treated with caution. The lognormal distribution was not convincing 
as a realistic estimation of the low-probability tail and overestimated the extreme berthing 
velocities with a small probability of exceedance (Fig. D.16). Conversely, the normal 
distribution regularly resulted in an underestimation of the maximum measured berthing 
velocity. The shape of the POT distribution fits is useful, but not reliable for small populations.
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Fig. D.16. Probability distribution functions for 80 observations of VLCC tankers (260 - 319 
kDWT) measured in Germany and Rotterdam.

The number of berthings during the service life of each berth may differ. Design 
berthing velocities are in fact time-dependent. It should be noted that extreme berthing 
conditions were therefore most likely not included in small data populations. The probability 
of exceedance in Fig. D.16 is related to a single berthing operation and not to the return 
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period of a certain berthing velocity during the design lifetime. The number of arrivals during 
the lifetime will influence the relevant design berthing velocities for a marine structure. For 
example, according to a Weibull distribution the velocity of a single berthing with a probability 
of exceedance of approximately 1% (P = 0.01) is approximately 9.4 cm/s. This corresponds 
to a return interval of once per 100 arrivals. Note that the maximum observed velocity in a 
population of 80 observations of VLCCs was 10.0 cm/s. If 1000 arrivals are to be expected 
during the lifetime, the berthing velocity with a return interval of once per 1000 berthings is 
approximately 11.0 cm/s (P = 0.001). This indicates the importance of the distribution of the 
extreme values and the frequency of arrivals during a certain reference period.

D.1.3 DISCUSSION OF BERTHING RECORDS AT THE PORT OF ROTTERDAM

Performance of berthing facilities and fender systems
In order to correctly interpret the collected data, the performance of marine structures 
during the service life was discussed briefly with nautical experts, pilots and asset managers 
from the port of Rotterdam. The asset managers explained that some berthing facilities are 
approaching the end of their design lifetime. Most of the marine structures still appear to 
be in good condition. Quay walls equipped with soft cylindrical fenders require significantly 
less maintenance than those with hard buckling fenders. Reported damage to fender 
systems was often related to chains, stairs and panels. Damage of this type is usually not 
caused directly by excessively high berthing velocities. The asset managers also noted 
that berths which are suitable for both seagoing vessels and inland barges showed much 
more local damage to their fender systems. Local damage to fender panels was caused 
mainly by irregularities of the ship’s hull or by inappropriate use of mooring lines. The timber 
structures installed on bulker quay walls appeared to be subjected to frequent uncontrolled 
manoeuvring by inland barges (pusher/towboats). These do not absorb energy, resulting 
in high hull pressures. Assuming that an increase in hull pressure is undesirable, berthing 
velocity was expected to be lower. The measurements for bulkers showed slightly lower 
mean values (Table D.4), but the coefficient of variance and maximum/extreme berthing 
velocities appeared to be higher. This could be explained by the overestimation of berthing 
velocities from the PPU tracking records. Generally, no significant differences were found 
between the berthing velocities of various fender systems at container terminals. The pilots 
confirmed that they do not consider the type of fender system in their berthing policy.

Navigation aids and target berthing velocity
In recent decades, there has been an increase in the use of navigation aids such as 
portable pilot units (PPUs) and fixed shore-based docking systems. In Rotterdam, pilots and 
boatmen are all well-trained and have ample experience. It is their job to moor and unmoor 
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vessels in a safe and efficient manner. The pilots and boatmen confirmed that modern tools, 
which have introduced real-time monitoring of vessel movements, increase their control 
and confidence during the berthing process. According to nautical experts, uncontrolled 
berthings of large seagoing vessels are not likely to happen in well-organised ports.

In most situations, the pilots and captains are not aware of the design berthing velocity. 
Generally, their objective is to land with a berthing velocity of approximately 3-4 cm/s. A 
berthing velocity of 8 cm/s was mentioned as unlikely to happen when using pilot and tug 
assistance. Five jetties for liquid bulk carriers are equipped with shore-based docking aid 
systems to assist in reducing berthing velocities. Generally, the determination of such a 
target resulted in increased confidence concerning the condition of the marine structure. On 
the one hand, a pilot may observe a berthing facility that is in a relatively poor condition. In 
this case, they seem likely to adopt a lower approach velocity. On the other hand, although 
there is often less experience with brand new berthing facility in its first months in service, 
its condition is relatively good. In this case, pilots may consider a higher berthing velocity. 
Typical target berthing velocities for onshore docking systems are shown in Table D.5.

Table D.5. Target berthing velocities for onshore docking systems at tanker berths in the 
port of Rotterdam.

Target berthing velocity [cm/s]
Traffic light Explanation

Terminal 11 Terminal 22 Terminal 3

0-7 0-4 0-6 Green zone Safe
7-11 4-6 6-10 Orange zone Too high
> 11 > 6 > 10 Red zone Unsafe/damage

1) Vessels with a DWT > 150,000 tonnes have to berth in the green zone. The landing of vessels with 
a DWT < 150,000 may incidentally exceed the green zone.
2) If the velocity is higher than 8 cm/s, an alarm signal is given.

In cases where approach velocities exceeded the limit, a red signal was visible. If the 
manoeuvre was continued, the captain of the vessel would be held responsible for any 
damage. At some berths, vessels with less water displacement were allowed to berth in 
the orange zone. Note that the measurements taken were almost perfectly in line with these 
target berthing velocities. The pilots explained that they try to reach the upper limit of the 
green light range rather than aiming for 3-4 cm/s. Establishing a target berthing velocity 
may prevent extreme velocities, but could result in higher mean values.

The ‘human factor’, expressed in terms of captains’ experience and knowledge of local 
environmental as well as navigation conditions is an important parameter with regard to 
berthing velocity. For large seagoing vessels, human influence will most likely result in fewer 
extreme events. If the pilots intuitively classify an approach velocity as too high, adequate 
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measures will be taken or the berthing operation will be aborted immediately. Conversely, 
the opposite could be the case regarding smaller seagoing vessels and inland barges, 
due to less experience or captains’ greater responsibility. The human factor could result in 
an increase of extreme events or higher values for uncontrolled berthing velocities. Small 
seagoing vessels and inland barges berthing without tug assistance and pilot assistance 
should therefore have a greater margin of safety.

Vessel characteristics and water cushion effect
For tankers and bulkers with relatively large water displacements, i.e. a DWT > 100,000 
tonnes, the correlation between ship mass and velocity seems insignificant. This is more 
or less in line with the recommendations given in the EAU and ROM. Although there was 
a weak correlation between the dimensions of a container vessel (DWT) and its berthing 
velocity, the collected data did not confirm the historical assumption that berthing velocities 
correlate strongly with ship dimensions (Fig. D.6). The mean berthing velocities of large 
seagoing vessels were between 3 and 4 cm/s (Table D.4), which is in accordance with the 
objective of the pilots. It should be noted that the maximum values were still below the 
design velocities (for ‘abnormal’ berthing operations). The maximum berthing velocities 
were generally caused by vessels smaller than the design vessel (Fig. D.17). The abnormal 
berthing velocities were established by multiplying the normal betting velocities by 
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this being the abnormal berthing impact factor as concluded from design recommendations 
(PIANC, 2002). It should also be noted that a value of 10 cm/s was implemented as a lower 
limit for ‘normal’ berthing velocities.
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Fig. D.17. Field observations versus currently recommended abnormal berthing velocities.
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The pilots suggested that, due to low approach velocities, advanced propulsion 
systems, the parallel landing procedure and their ability to stop a container vessel even at 
one metre in front of the berth, the influence of the cushion effect did not play a dominant 
role in the berthing velocities of container vessel arrivals. To underline their experience, the 
pilots mentioned that they are actually able to ‘feel’ the water cushion at specific bulker 
berths. The water cushion was only felt during the final metre of the landing procedure for 
vessels with low under-keel clearance at closed quay walls. The UKC effect was most likely 
excluded due to the overestimation from the PPU tracking records. The influence of the 
water cushion effect most likely existed only in the case of very low UKC (Bochen, 2012).

The maximum berthing velocities measured were slightly higher than the maximum 
of 8 cm/s mentioned by the pilots. It should be emphasised that the extreme berthing 
velocities of tankers and bulkers measured using PPUs are likely to be slightly conservative. 
The higher extreme velocities were mostly caused by a second berthing impact due to 
yaw motion and the angular velocity of vessels. This has also been found at other ports, in 
Germany (Hein, 2014) and Japan (Yamase et al., 2014). The observations of approximately 
1500 large container vessel arrivals in Bremerhaven were compared with the measurements 
in Rotterdam (Fig. D.18).
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Fig. D.18. Measurements of container vessels in Bremerhaven and Rotterdam versus PIANC 
2002.

The berthing velocities measured at Bremerhaven deviate significantly from those for 
the same individual container vessel classes as measured in Rotterdam. After consulting 
the German and Dutch pilots, it was concluded that a reasonable explanation for this 
discrepancy is that it is most likely caused by variations in angular velocity due to different 
environmental conditions (strong tidal currents) and types of landing procedure.
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Environmental conditions and type of landing
All berths in the Maasvlakte area of the port of Rotterdam have high degrees of shelter 
to waves and currents. At Rotterdam, the manoeuvring of container vessels is influenced 
mainly by wind. For this reason, berthing operations of such vessels were deliberately 
recorded during the windy season. However, examination of the resulting data showed that 
wind did not influence berthing velocities, either directly or indirectly. Similar conclusions 
were drawn from filed observations of onshore container berths in Japan and other parts 
of Asia (Yamase et al., 2014). One plausible explanation for the fact that wind is not of major 
influence may be found in the berthing policy used. Harbour masters and pilots adjusted 
this depending on environmental conditions.

The measurements conducted at the port of Bremerhaven have enhanced 
understanding of the effects of currents, since this port has relatively exposed navigation 
conditions. The German pilots take the tidal current of the River Weser into account in their 
landing strategy. In particular, the angle approach during the berthing procedure is high. At 
the final moment of impact, however, the berthing angle is always less than 1 degree. Fig. 
D.18 shows that the effects of strong currents can double or even triple berthing velocities 
(sum of transverse and angular velocity component), compared with the parallel landing 
procedure applied in Rotterdam. With the use of tug assistance and the early attachment 
of mooring lines during the final landing, at Rotterdam container vessels practically always 
berth parallel to the quay wall (Rath, 2012).

The berthing angles at the moment of impact in Rotterdam and Bremerhaven were 
significantly smaller than in the literature (Table D.6). It should be noted that the angle of 
approach was higher in Bremerhaven, but the berthing angle at the moment of impact 
was small. For large seagoing container vessels, the maximum measured berthing angle 
in a population of 1500 berthings was 0.82°. The average angle was approximately 0.24° 
(Hein, 2014).

Table D.6. Comparison of measured berthing angles of container vessels with guidelines.

Design codes Ship dimensions Berthing angle 
without tugs

Berthing angle 
with tugs

PIANC (2002) > 50,000 DWT - Smaller than 5-6°
Coasters 8°-10° -
Barges 15° -

EAU (2012) All 10°-15° Smaller than 6°
ROM 0.2-90 (1990) All 5°-15° 7°-10°
Measurements (2011) > 50,000 DWT - 0°-1°

Coasters 0°-1.5° -
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The current design guidelines tend to prescribe rather conservative values for berthing 
angles. For some vessels and quay types, these high angles are very unlikely and do not 
correspond with observed practice. In many cases the vessel would hit the quay wall or 
cranes before it touches the fender system. If the berthing angle is relatively small, the vessel 
might touch more than one fender, which is of course favourable for energy absorption. 
For parallel berthing against flexible dolphins at dedicated positions, this will often not be 
the case. Generally, engineers assess the most onerous condition where all the berthing 
energy is absorbed by a single fender with a minimum berthing angle. More fenders will be 
activated simultaneously only at very low berthing angles. However, this approach needs 
to be reconsidered for closed quay walls in the case of container berths. An improved 
understanding of actual berthing angles is relevant for assessments of fender spacing and 
offset relative to marine structures, in order to avoid collisions between ships and quays. 
Further analysis on this aspect is recommended so as optimise design values.

Differences between tankers and container vessels
Seagoing tankers displayed berthing velocities 20-30% higher than those of large seagoing 
container vessels with similar dimensions (water displacement), even though the same pilots, 
boatmen and environmental conditions were involved. One plausible explanation could be 
that most tankers were berthing at berths with shore-based docking aid systems. Captains 
and pilots were therefore aware of allowable/target berthing velocities. Moreover, most 
tankers arrived with PPU assistance as well. The pilots therefore had an enhanced confidence 
level and aimed for target berthing velocities. Generally, there was no cushion effect at tanker 
berths, whereas all container vessels berthed at closed quay walls. Also, the added mass 
of tankers could be larger and their greater angle of approach causes the water between a 
sloped revetment and a jetty to be squeezed out. Additional rotational velocity was therefore 
excluded. Tankers are not equipped with bow thrusters. The availability of these thrusters 
give captains of container vessels more control during berthing operations, and they are 
used to reduce angles of approach. Berthing angles adjacent to container berths are often 
restricted due to interfaces between the bow flare angles of vessels and container cranes, or 
occupancy of berths. The allowable hull pressure of tankers is probably higher due to safety 
requirements in vessel design guidance (this needs further investigation). The total duration 
of general berthing procedures for tankers appears to two to three times longer (durations 
are 1 hour for Aframax, 1 hour for VLCC and 20-30 minutes for containers). Due to greater 
inertia, tankers have to stay in motion in order to guarantee manoeuvrability, while container 
vessels can be stopped in a parallel position a few metres in front of the fender line. Note, 
too, that stopping a tanker will consume an extra 15-20 minutes, compared with stopping 
a container vessel. Tankers have a smaller freeboard and windage area. Within the port of 
Rotterdam, the berthing policy regarding container vessels depends heavily on weather 
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conditions. The governing wind conditions probably occurred during navigation though 
main channels, and an extra tug was probably available to assist during the final landing.

D.1.4 CONCLUSIONS ON BERTHING VELOCITIES OF LARGE SEAGOING 
VESSELS IN ROTTERDAM
Since the development of the Brolsma curves in the 1970s, new measurements of berthing 
velocities have been provided by the port of Rotterdam. And data analyses have resulted in 
a better understanding of various factors influencing berthing velocity. The most important 
conclusions are as follows.

·	 The measured berthing velocities were low, compared with current recommendations 
on design values. Typically, the mean values for individual vessel classes varied between 
3 and 5 cm/s. The maximum observed velocity during 555 berthings was 13 cm/s.

·	 The collected data does not confirm the historical assumption that berthing velocities 
of large seagoing vessels are strongly related to ship dimensions. No evidence was 
found to suggest that berthing velocities of fully-laden vessels are lower than those 
of empty or partly ballasted ones.

·	 No evidence was found to suggest that berthing velocity is influenced by the type 
of marine structure or type of fender system.

·	 No correlation between wind speed (environmental factors) and berthing velocity 
was found in the sheltered (no waves and currents) port basins of Rotterdam.

·	 Berthing velocities depend heavily on berthing policy (type of landing, experienced 
and well-trained pilots, tug assistance, berthing aid systems, etc.)

·	 Establishing a target berthing velocity results in a decrease of extreme berthing events, but 
does not necessarily reduce berthing velocity during regular/normal berthing operations.

·	 The theoretical distribution of the low-probability tail of the measurements is closer 
to a Weibull distribution then to a normal or lognormal distribution.

In the design of marine structures berthing impact loads largely influence the reliability of 
fender systems, reinforcement of capping beams and (flexible) dolphins. Berthing velocity 
seemed to be the dominant design parameter for fender systems. Nominal values for the 
mass of a vessel and the accompanying water displacement could be considered for 
structural assessments of marine structures. The measured berthing angles were much 
lower at the moment of impact, compared with the design guidance. Further investigation 
of these aspects is recommended. It is also recommended that a rotational velocity 
component should be considered if no parallel landing operation is guaranteed. Strong tidal 
and non-tidal currents, in particular, may result in far higher berthing velocities. The factors 
affecting berthing velocity may change during the life of hydraulic structures. These factors 
include the experience of captains and pilots and the condition of the berthing facility.
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APPENDIX D2. TYPICAL DISTRIBUTION FUNCTIONS 
FOR BERTHING VELOCITY

Table D2.1. Typical distribution parameters in Weibull fit and annual and lifetime maxima 
distributions.

Ship type Size n1 Max2 Weibull fit Annual maxima Lifetime maxima

λ k µv;1 σv;1 VS;1 µv;50 σv;50 VS;50

[-] [kDWT] [-] [cm/s] [cm/s] [-] [cm/s] [cm/s] [-] [cm/s] [cm/s]  [-]

Tankers ○
Panamax 60-85 23 9 6.3 3.09 10.61 0.90 0.085 12.83 0.56 0.044
Aframax3 85-105 175 12 5.0 2.68 9.24 0.74 0.080 11.42 0.61 0.053
Suezmax 115-165 95 11 5.3 2.75 9.58 0.81 0.085 11.75 0.54 0.046
VLCC 260-319 80 10 5.3 2.65 9.51 0.88 0.093 12.10 0.58 0.048
Fix. laser 260-319 19 7 4.1 2.77 7.26 0.64 0.088 8.95 0.43 0.048
Bulkers ◊
Capesize4 150-205 107 13 5.0 1.91 11.44 1.20 0.105 15.73 1.14 0.073
VLBC4 205-365 37 10 4.8 2.18 10.10 0.95 0.094 13.31 0.90 0.067
Containers □
Coasters 7 - 15 37 10 7.1 3.68 11.05 0.80 0.072 12.86 0.47 0.037
Feeders 15 -42 31 9 5.4 2.63 10.37 1.10 0.106 12.56 0.68 0.054
Panamax 42-70 31 8 4.1 2.22 8.45 0.78 0.092 11.15 0.74 0.066
Post Panamax 70-118 60 7 3.4 1.93 7.83 1.00 0.128 10.56 0.74 0.070
New 
Panamax3 118-171 18 3 2.1 3.60 3.36 0.25 0.074 3.86 0.16 0.041

Containers □

Coasters 7 - 15 177 20 7.2 1.50 21.10 3.23 0.153 31.40 2.90 0.092
Feeders 15 -42 250 20 7.4 1.55 21.29 3.46 0.162 30.84 2.78 0.090
Panamax 42-70 104 19 8.5 1.86 20.62 2.67 0.130 27.73 1.78 0.064
Post Panamax 70-118 288 25 8.0 1.68 21.24 3.15 0.148 29.86 2.28 0.076
New Panamax 118-171 150 20 8.1 1.79 20.10 2.71 0.135 27.82 2.14 0.077
ULCV 171-195 266 26 6.2 1.47 18.76 3.13 0.167 28.04 2.39 0.085
Large 
datasets
All tankers ○ 60-319 392 12 5.2 2.69 9.40 8.4 0.089 11.67 0.58 0.049
All sheltered ∆ 7-365 713 13 4.9 2.28 10.05 9.9 0.098 13.00 0.85 0.065
All exposed □ 7-195 1235 26 7.4 1.61 20.44 29.1 0.142 29.04 2.44 0.084
All data 60-319 1948 26 6.4 1.57 17.83 23.5 0.132 26.19 2.41 0.092

1) Number of field observations.
2) Maximum measured berthing velocity.
3) Dataset is most likely too optimistic (Appendix D.1).
4) Dataset is most likely too conservative (Appendix D.1).
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