

Delft University of Technology

Agile MDAO Systems
A Graph-based Methodology to Enhance Collaborative Multidisciplinary Design
van Gent, Imco

DOI
10.4233/uuid:c42b30ba-2ba7-4fff-bf1c-f81f85e890af
Publication date
2019
Document Version
Final published version
Citation (APA)
van Gent, I. (2019). Agile MDAO Systems: A Graph-based Methodology to Enhance Collaborative
Multidisciplinary Design. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:c42b30ba-2ba7-4fff-bf1c-f81f85e890af

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:c42b30ba-2ba7-4fff-bf1c-f81f85e890af
https://doi.org/10.4233/uuid:c42b30ba-2ba7-4fff-bf1c-f81f85e890af

AGILE MDAO SYSTEMS
A GRAPH-BASED METHODOLOGY TO ENHANCE
COLLABORATIVE MULTIDISCIPLINARY DESIGN

Imco van Gent

A
gile M

D
A

O
 System

s

Im

co van G
ent

AGILE MDAO SYSTEMS

A GRAPH-BASED METHODOLOGY TO ENHANCE
COLLABORATIVE MULTIDISCIPLINARY DESIGN

AGILE MDAO SYSTEMS

A GRAPH-BASED METHODOLOGY TO ENHANCE
COLLABORATIVE MULTIDISCIPLINARY DESIGN

Dissertation

for the purpose of obtaining the degree of doctor

at Delft University of Technology,

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen

chair of the Board for Doctorates,

to be defended publicly on

Thursday 3 October 2019 at 10:00 o’clock

by

Imco VAN GENT

Master of Science in Aerospace Engineering,
Delft University of Technology, the Netherlands

born in Rotterdam, the Netherlands

This dissertation has been approved by the promotor.

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof. dr. ir. L. L. M. Veldhuis Delft University of Technology, promotor
Dr. ir. G. La Rocca Delft University of Technology, copromotor

Independent members:
Prof. dr. J. Morlier ISAE-SUPAERO, France
Prof. dr. S. Ricci Politecnico di Milano, Italy
Prof. dr. P. Krus Linköping University, Sweden
Dr. ir. L. F. P. Etman Eindhoven University of Technology
Dr. ir. C. J. Simao Ferreira Delft University of Technology
Prof. dr. ir. P. Colonna Delft University of Technology, reserve member

This research was funded by the European Union’s Horizon 2020 Framework Programme
for Research and Innovation through the AGILE project (Aircraft 3rd Generation MDO
for Innovative Collaboration of Heterogeneous Teams of Experts) and has received fund-
ing from the European Union Horizon 2020 Programme (H2020-MG-2014-2015) under
grant agreement n◦ 636202.

Keywords: MDO, MDAO, aircraft design, collaborative design

Printed by: Ipskamp Printing

Graphic design: H-SWAEP illustratie en ontwerp.

Copyright © 2019 by I. van Gent

ISBN 978-94-6384-067-5

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

voor Nina
doctoranda joie-de-vivrisme

SUMMARY

The need to continuously design better aircraft is challenging on multiple fronts: the
existing tube-and-wing aircraft are difficult to improve further, while more creative con-
figurations prove more cumbersome to design due to the lack of empirical knowledge
and the (usually) more highly integrated components. Multidisciplinary Design Analy-
sis and Optimization (MDAO) can offer major benefits to tackle these issues. However,
MDAO is not yet widely applied in the industrial context due to two major hurdles:

configuration hurdle the set-up of the first executable MDAO workflow takes too long
— namely 60-80% of the available project time — in collaborative projects in which
a large team of heterogeneous experts needs to operate a large, complex MDAO
system;

reconfiguration hurdle once the executable system has been established, it lacks agility
and cannot be reconfigured easily to address ‘what if scenarios’ or answer new
questions arising from the insights obtained from previously configured systems.
Typical reconfigurations include the removal, addition, or modification of disci-
plinary tools, adjustment of the MDAO problem to be solved (e.g. new design vari-
ables, different objective, additional constraints), or the alternation of the under-
lying strategy (i.e. design convergence, design of experiments, optimization) that
needs to be implemented as an executable workflow.

This dissertation defines the MDAO-based development process to be performed in five
stages, where each stage contains a transformed version of the MDAO system. The first
three stages occur in the formulation phase and consist of the tool repository, MDAO
problem, and MDAO solution strategy. The final two stages reside in the execution phase,
containing the executable workflow and the MDAOptimal design. Generally, this de-
velopment process is iterative and the design team needs to be able to reconfigure the
MDAO system regularly as described in the reconfiguration hurdle above, thereby switch-
ing from one stage (and one phase) to another continuously. A particularly challeng-
ing transformation — called the implementation gap — occurs between the formulation
and the execution phases, when a formulated solution strategy needs to be instantiated
as an executable workflow.

Based on these observations, this dissertation is motivated by the following research
question:

How can the state-of-the-art methodology for performing MDAO in collabo-
rative projects — involving a large team of heterogeneous experts that needs
to operate a large, complex MDAO system — be enhanced (or replaced) by
a novel methodological approach that lowers the con- and reconfiguration
hurdles encountered nowadays?

To answer this question the goal was set to develop, implement, and assess a new method-
ology, specifically addressing the collaborative aspects of performing MDAO, that enables
formalized MDAO systems in all stages of the formulation phase, such to lower the above-
mentioned hurdles.

vii

The pursuit of this goal resulted in three major developments representing the core of
the novel methodology:

1. A graph-based formalization of MDAO systems was developed by expanding ear-
lier work on this subject. This formalization allows MDAO systems to be repre-
sented as graphs in the three stages of the formulation phase:
Tool repository The repository is represented by the ‘repository connectivity

graph’, which describes the collection of disciplinary tools and how they are
coupled.

MDAO problem The ‘fundamental problem graph’ is used to specify the MDAO
problem that should be addressed. This graph is defined by the design team
based on the repository graph, and should meet strict graph-theoretical con-
ditions so that the final stage of the design process can be automatically in-
stantiated.

MDAO solution strategy This stage is represented by two graphs: the MDAO data
and the MDAO process graph. Together, these graphs constitute the blueprint
of the eventual workflow in the execution phase. The graphs are automati-
cally created by imposing the selected MDAO architecture on the fundamen-
tal problem graph.

The graph-theoretic foundation developed in this work contains new concepts,
such as ‘instances’ and the ‘circularity index’, to handle particular issues of MDAO
systems, and forms the core of the methodological approach. This theoretical
development was implemented as an open-source Python package called KAD-
MOS (Knowledge- and graph-based Agile Design for Multidisciplinary Optimiza-
tion System).

2. Different members of the design team need the KADMOS graph objects for a va-
riety of purposes, such as system visualization, management, and the creation
of executable workflows. Therefore, a new standard was proposed to store and
exchange the graph-based system formulations in a application-agnostic format.
The standard’s implementation as XML schema is called CMDOWS (Common
MDO Workflow Schema).

3. With the MDAO solution strategy — also called workflow blueprint — formalized
as graphs in KADMOS and stored as XML files based on CMDOWS, the opportunity
presented itself to bridge the implementation gap by automatically instantiating
the executable workflow in different Process Integration and Design Optimization
(PIDO) platforms. This capability was developed for the platforms RCE, Optimus,
and OpenMDAO (the first two as native plug-ins and the latter as a separate Python
package called OpenLEGO).

Using the prototyped software implementations, the novel methodology has been veri-
fied and validated based on two MDAO benchmark problems: Sellar problem and NASA’s
supersonic business jet case. This validation included the complex distributed MDO ar-
chitectures ‘collaborative optimization’ and ‘BLISS-2000’. Additionally, the comparison
of the development process with the state-of-the-art approach indicated a 57% time de-
crease for system (re)configuration.

The three core components were developed in the context of the next-generation MDAO
framework project AGILE. In AGILE, an international group of nineteen partners worked
together to establish and test a novel MDAO framework generation: the AGILE devel-
opment framework. This framework combines a range of technologies and has a multi-
layered structure called the knowledge architecture. The methodological approach orig-

viii

inal to this dissertation (and their respective implementations) lie at the heart of the AG-
ILE framework and have been assessed in four collaborative aircraft design projects. In
these projects large, heterogeneous, internationally operating teams used the framework
to perform the MDAO of four unconventional aircraft configurations: strut-braced wing,
box-wing, blended-wing body, and turboprop. Individual framework components were
assessed through a questionnaire from which the following conclusions were drawn con-
cerning this dissertation’s developments:

• CMDOWS demonstrated its capability to act as a data standard to integrate the
heterogeneous collection of applications deployed in the AGILE framework: a user
interface to define the MDAO system with KADMOS under the hood, a visualiza-
tion tool, multiple PIDO platforms, and multiple tool repository databases.

• KADMOS played a central role in the formulation phase of the design projects and
its ability to represent the complex MDAO system was highly appreciated. Survey
respondents estimated that the use of KADMOS for systems formulation leads to
an average time reduction of 49%.

• Automated workflow creation with the RCE and Optimus plug-ins was also consid-
ered valuable with an estimated time reduction of 33%, though the created work-
flows were found to perform less efficiently because of overhead introduced by
additional components in the resulting workflows.

The complete AGILE framework — in which the developments original to this thesis
played a central role — was estimated to positively impact the MDAO development pro-
cess with an associated time reduction of 39%.

The graph-based methodological approach was also tested outside the AGILE project
context. In this additional study a state-of-art aircraft design toolbox, called the Initiator,
was restructured using this dissertation’s approach and code base. The approach helped
to ‘de-spaghettize’ a large computational toolbox and resulted in a well-structured, ag-
ile framework in which disciplinary components and modules can be easily integrated,
connected, and used in a variety of MDAO studies. After the restructured framework
was established, the MDAO system was configured and iteratively reconfigured to per-
form the design of a typical airliner by applying different strategies: design convergence,
design of experiments, and optimization. The restructured toolbox demonstrated how
the same methodology — originally developed and demonstrated in AGILE — is generic
enough to be applied in other frameworks to improve their scalability and flexibility.

Two new concepts were proposed based on this work as an outlook and road map for fu-
ture developments: composite architectures and MDAO bots. The former addresses the
need of designers to define and use their own architectures that can handle the pecu-
liarities of their specific MDAO problem. This need was identified by AGILE users based
on the automation potential offered by the combination of KADMOS, CMDOWS, and
CMDOWS-based workflow creation. The latter concept — MDAO bots — was introduced
to suggest a road map for future research. The bot is defined as an autonomous program
on a network which can interact with an MDAO system and the design team members,
to behave like a human agent that answers a design question by (re)configuring and ex-
ecuting the MDAO system. The automated approach established in this work is consid-
ered to constitute the first MDAO bot. Several bots have been proposed to unburden the
design team of repetitive and error-prone tasks that are part of the MDAO development
process, in order to further lower the con- and reconfiguration hurdles that originally
motivated this work. The actual development of these bots is left to researchers partici-

ix

pating in future collaborative MDAO projects.

x

SAMENVATTING

De behoefte om continu betere vliegtuigen te ontwerpen is op meerdere fronten uit-
dagend: de bestaande buis-en-vleugelvliegtuigen zijn moeilijk te verbeteren, terwijl
creatievere configuraties vaak lastiger te ontwerpen zijn vanwege het gebrek aan empiri-
sche kennis en de (vaak) meer geïntegreerde componenten. Multidisciplinaire Ontwerp
Analyse en Optimalisatie (MOAO) kan grote voordelen bieden om deze belemmeringen
weg te nemen. MOAO wordt echter nog niet breed toegepast in de industriële context
vanwege twee grote hordes/hindernissen:

configuratie-horde het opzetten van de eerste uitvoerbare MOAO-workflow duurt te
lang — namelijk 60-80% van de beschikbare projecttijd — in projecten in samen-
werkingsverband waarbij een groot team bestaand uit heterogene specialisten een
groot, complex MOAO-systeem moeten bedienen;

herconfiguratie-horde zodra een uitvoerbaar system is opgezet, mist het behendig-
heid en kan het niet makkelijk worden hergeconfigureerd om ‘wat als scenario’s’
te adresseren of nieuwe vragen te beantwoorden die voortvloeien uit de opgedane
inzichten die zijn verkregen uit eerder geconfigureerde systemen. Typische her-
configuraties omvatten de verwijdering, toevoeging, of aanpassing van discipli-
naire tools, aanpassing van het MOAO-probleem dat opgelost moet worden (bijv.
nieuwe ontwerpvariabelen, ander optimalisatie-objectief, extra beperkingen), of
de afwisseling van de onderliggende strategie (bijv. ontwerpconvergentie, ontwerp
met experimenten, optimalisatie) die geïmplementeerd moeten worden als een
uitvoerbare workflow.

Dit proefschrift definieert het ontwikkelproces gebaseerd op MOAO als zijnde uitge-
voerd in vijf stadia, waarbij elk stadium een getransformeerde versie van het MOAO-
systeem bevat. De eerste drie stadia vinden plaats in de formuleringsfase en bestaan
uit de tool opslag, MOAO-probleem, en MOAO-oplossingsstrategie. De laatste twee sta-
dia zetelen in de uitvoeringsfase, die de uitvoerbare workflow en het MOAOptimale ont-
werp bevat. In het algemeen is het ontwikkelproces iteratief en het ontwerpteam moet
het MOAO-systeem regelmatig kunnen herconfigureren zoals eerder beschreven in de
herconfiguratie-horde, daarbij continu wisselend tussen het ene stadium (en ene fase)
en de andere. Een bijzonder uitdagende transformatie — genaamd de implementatie-
kloof — doet zich voor tussen de formulerings- en uitvoeringsfases, wanneer een gefor-
muleerde oplossingsstrategie geïnstantieerd moet worden als uitvoerbare workflow.

Gebaseerd op deze observaties, is dit proefschrift gemotiveerd met de volgende onder-
zoeksvraag:

Hoe kan de state-of-the-art-methodologie voor het verrichten van MOAO
bij projecten in samenwerkingsverband — waarbij een groot team van he-
terogene specialisten betrokken is dat een groot, complex MOAO-systeem
moet bedienen — verbeterd (of vervangen) worden door een nieuw uitge-
vonden methodologische aanpak die de huidige con- en herconfiguratie-
hordes verlaagt.

xi

Om deze vraag te beantwoorden is het doel gesteld om een nieuwe methodologie te ont-
wikkelen, implementeren en evalueren, die het aspect van samenwerking in het verrichten
van MOAO specifiek adresseert, en die geformaliseerde MOAO-systemen mogelijk maakt
in alle stadia van de formuleringsfase, om daarbij de eerder genoemde hordes te verlagen.

Het najagen van dit doel heeft geresulteerd in drie belangrijke ontwikkelingen die de
kern van de nieuw uitgevonden methodologie vertegenwoordigen:

1. Een op grafen gebaseerde formalisering van MOAO-systemen is ontwikkeld door
het uitbreiden van eerder werk op dit gebied. Deze formalisering maakt het
mogelijk om MOAO-systemen te representeren als grafen in de drie stadia van de
formuleringsfase:
Tool-opslag De opslag wordt gerepresenteerd door de ‘opslag connectiviteitsgraaf’

die de collectie van disciplinaire tools beschrijft en hoe ze zijn verbonden.
MOAO-probleem De ‘fundamentele probleemgraaf’ wordt gebruikt om het

MOAO-probleem te specificeren dat geadresseerd moet worden. Deze graaf
wordt gedefinieerd door het ontwerpteam, gebaseerd op de opslaggraaf, en
moet voldoen aan strikte graaf-theoretische condities zodat het laatste sta-
dium van het ontwikkelproces automatisch geïnstantieerd kan worden.

MOAO-oplossingsstrategie Dit stadium wordt gerepresenteerd door twee grafen:
de MOAO-data en de MOAO-procesgraaf. Samen vormen deze grafen de
blauwdruk voor de uiteindelijke workflow in de uitvoeringsfase. Deze grafen
worden automatisch gecreëerd door de geselecteerde MOAO-architectuur op
te leggen aan de fundamentele probleemgraaf.

De graaf-theoretische fundering, ontwikkeld in dit onderzoek, bevat nieuwe
concepten, zoals ‘instanties’ en de ‘cirulariteitsindex’, waardoor om kan worden
gegaan met specifieke problemen in MOAO-systemen, en vormt de kern van de
methodologische aanpak. Deze theoretische ontwikkeling is geïmplementeerd
als een open-source Python-pakket genaamd KADMOS (Knowledge- and graph-
based Agile Design voor Multidisciplinaire Optimalization System).

2. Verschillende leden van het ontwerpteam hebben de KADMOS graafobjecten
nodig voor een verscheidenheid aan doeleinden, zoals systeemvisualisaties, ma-
nagement, en het creëren van uitvoerbare workflows. Daarom is er een nieuwe
standaard voorgesteld om de op grafen gebaseerde systeemformuleringen op te
slaan en te delen in een applicatie-onafhankelijk format. De implementatie van
deze standaard als XML-schema is genaamd CMDOWS (Common MDO Workflow
Schema).

3. Met de MOAO-oplossingsstrategie — ook wel workflow blauwdruk — geformali-
seerd als grafen in KADMOS en opgeslagen als XML-bestand gebaseerd op CM-
DOWS, kwam de mogelijkheid om de implementatiekloof te overbruggen door de
uitvoerbare workflow automatisch te instantiëren in verschillende Process Inte-
gratie en Ontwerp Optimalisatie (PIOO) platformen. Deze mogelijkheid is ontwik-
keld voor de platformen RCE, Optimus, en OpenMDAO (de eerste twee als interne
plug-ins en de laatste als een afzonderlijk Python-pakket genaamd OpenLEGO).

Gebruikmakend van deze prototype-software-implementaties, is de nieuw uitgevonden
methodologie geverifieerd en gevalideerd op basis van twee MOAO-benchmark-
problemen: Sellar probleem en NASA’s supersonische zakenjet casus. Deze validatie be-
vatte ook de complex gedistribueerde MOO-architecturen ‘collaborative optimization’
en ‘BLISS-2000’. Bovendien wees een vergelijking van het ontwikkelproces met de state-
of-the-art aanpak op een 57% tijdsvermindering voor (her)configuratie van het systeem.

xii

De drie kerncomponenten zijn ontwikkeld in de context van het volgende-generatie
MOAO-raamwerk project AGILE. In AGILE werkte een internationale groep van
negentien partners samen om een nieuwe MOAO-raamwerk-generatie op te zetten en te
testen: het AGILE ontwikkelraamwerk. Dit raamwerk combineert een scala aan techno-
logieën en heeft een meerlaagse structuur, genaamd de kennisarchitectuur. De metho-
dologische aanpak die voortkwam uit dit proefschrift (en de gerelateerde implementa-
ties) liggen in het hart van het AGILE-raamwerk en zijn geëvalueerd in vier vliegtuigont-
werpprojecten uitgevoerd in samenwerkingsverband. In deze projecten hebben grote,
heterogene, internationaal opererende teams het raamwerk gebruikt om MOAO te
verrichten voor vier onconventionele vliegtuigconfiguraties: strut-braced wing, blended-
wing body, box-wing, en turboprop. Individuele raamwerkcomponenten zijn geëvalu-
eerd door middel van een enquête op basis waarvan de volgende conclusies getrokken
konden worden met betrekking tot de ontwikkelingen beschreven in dit proefschrift:

• CMDOWS heeft aangetoond in staat te zijn om als een datastandaard te funge-
ren voor de integratie van de heterogene applicatie-collectie ingezet in het AGILE-
raamwerk: een gebruikers-interface om het MOAO-systeem te definiëren met
KADMOS op de achtergrond, een visualisatie-tool, meerdere PIOO-platformen, en
meerdere tool-opslagdatabases.

• KADMOS speelde een centrale rol in de formuleringsfase van de ontwerpprojecten
en zijn vermogen om het complexe MOAO-systeem te representeren werd zeer ge-
waardeerd. Respondenten van de enquête schatten in dat het gebruik van
KADMOS voor systeemformulering tot een gemiddelde tijdsvermindering leidt van
49%.

• Geautomatiseerde workflow-creatie met de RCE en Optimus CMDOWS plug-ins
werd ook als waardevol gezien met een ingeschatte tijdsvermindering van 33%,
hoewel de gecreëerde workflows wel als minder efficiënt ondervonden werden
vanwege overhead die geïntroduceerd wordt door extra componenten in de re-
sulterende workflows.

Het complete AGILE raamwerk — waarin de ontwikkelingen beschreven in dit proef-
schrift een centrale rol spelen — werd ingeschat als een positieve impact op het MOAO-
ontwikkelproces met een tijdsvermindering van 39%.

De op grafen gebaseerde methodologische aanpak is ook getest buiten de AGILE-project
context. In deze bijkomende studie is een state-of-the-art vliegtuigontwerp-toolbox, ge-
naamd de Initiator, geherstructureerd gebruikmakend van de aanpak en code base uit
dit proefschrift. De aanpak hielp om een grote computational toolbox te ontwarren en
resulteerde in een goed gestructureerd, behendig raamwerk waarin disciplinaire com-
ponenten en modules gemakkelijk geïntegreerd, gekoppeld, en gebruikt kunnen worden
in een verscheidenheid aan MOAO studies. Nadat het hergestructureerde raamwerk was
vastgesteld, is het MOAO-systeem geconfigureerd en meermaals geherconfigureerd om
het ontwerp van een typische airliner uit te voeren op basis van verschillende stategiën:
ontwerpconvergentie, ontwerp met experimenten, optimalisatie. De hergestructureerde
toolbox liet zien hoe dezelfde methodologie — oorspronkelijk ontwikkeld en gedemon-
streerd in AGILE — algemeen genoeg is om te worden toegepast in andere raamwerken
teneinde hun schaalbaarheid en flexibiliteit te verbeteren.

Twee nieuwe concepten zijn voorgesteld op basis van dit werk als een vooruitzicht en we-
genkaart voor toekomstige ontwikkelingen: composiete architecturen en MOAO-bots.
De eerste komt tegemoet aan de behoefte van ontwerpers om hun eigen architecturen te

xiii

definiëren en te gebruiken die om kunnen gaan met de eigenaardigheden van hun spe-
cifieke MOAO-probleem. Deze behoefte werd geïdentificeerd door AGILE-gebruikers op
basis van het automatiseringspotentieel mogelijk gemaakt door de combinatie van KA-
DMOS, CMDOWS, en op CMDOWS gebaseerde workflowcreatie. Het laatste concept —
MOAO-bots — is geïntroduceerd om een wegenkaart voor te stellen voor
toekomstig onderzoek. De bot is gedefinieerd als een autonoom programma op een net-
werk, dat een wisselwerking heeft met een MOAO-systeem en de leden van het ontwerp-
team, en zich gedraagt als een lid van het team dat ontwerpvragen beantwoordt door het
(her)configureren en uitvoeren van het MOAO-systeem. De geautomatiseerde aanpak
gevestigd in dit onderzoek wordt gezien als de eerste MOAO-bot. Verscheidene bots zijn
al voorgesteld om het ontwerpteam te ontlasten van repetitieve en foutgevoelige taken
die onderdeel zijn van het MOAO-ontwikkelproces, zodat de con- en herconfiguratie-
hordes, die oorspronkelijk dit werk motiveerden, nog verder kunnen worden verlaagd.
De daadwerkelijke uitwerking van deze bots wordt overgelaten aan onderzoekers die
meedoen aan toekomstige MOAO-projecten in samenwerkingsverband.

xiv

CONTENTS

Summary vii

Samenvatting xi

Nomenclature xix

I Background 1

1 Introduction 3

2 State of the art in MDAO system management 11
2.1 Composition . 12

2.1.1 Decentralized data mapping approach 13
2.1.2 Centralized data mapping approach 13
2.1.3 Comparison and conclusion . 16

2.2 Representation . 17
2.2.1 Human-readable. 17
2.2.2 Machine-interpretable . 19

2.3 Manipulation . 21
2.4 Coordination . 23

2.4.1 Monolithic architectures . 23
2.4.2 Distributed architecture: Collaborative Optimization 25
2.4.3 Distributed architecture: BLISS-2000 26

2.5 Execution . 27
2.5.1 RCE . 28
2.5.2 Optimus . 28
2.5.3 Isight. 29
2.5.4 ModelCenter Integrate . 29
2.5.5 HEEDS . 29
2.5.6 OpenMDAO . 30
2.5.7 GEMS . 30

2.6 Framework integration . 31
2.6.1 FrAECs . 31
2.6.2 IDEaliSM. 32
2.6.3 MDA-MDO project. 33
2.6.4 Bombardier’s MDO project. 34

2.7 Towards a new framework generation. 35
2.7.1 MDAO framework generations . 35
2.7.2 AGILE project description . 36
2.7.3 Current limitations and future needs. 40

II Developments 43

3 Graph-based methodological approach for MDAO system development 45
3.1 Functional requirements . 45

xv

3.2 Graph syntax and main graph classes . 46
3.2.1 Node definitions . 48
3.2.2 Edge definitions . 50
3.2.3 Main graph class definitions . 51

3.3 MDAO system graph types . 52
3.4 Definition of MDAO system graphs . 53

3.4.1 Repository connectivity graph . 54
3.4.2 Fundamental problem graph . 56
3.4.3 MDAO data graph . 60
3.4.4 MDAO process graph . 63

3.5 Automated capabilities for graph-based systems 63
3.5.1 XDSM visualization of system graphs 63
3.5.2 Architecture reconfiguration . 64
3.5.3 Sequencing algorithms. 68
3.5.4 Decomposition algorithm . 71

3.6 Validation case study: supersonic business jet 74
3.6.1 Stage I: Tool repository . 75
3.6.2 Stage II: MDO problem. 75
3.6.3 Stage III: Solution strategies . 76

3.7 Demonstration case study: wing design. 79
3.7.1 Tool repository . 79
3.7.2 Initial design point (design convergence study) 82
3.7.3 Design space exploration (DOE) 84
3.7.4 MDO study. 86

3.8 Discussion . 90
3.8.1 Impact on collaborative MDAO development process 90
3.8.2 Originality . 90

4 Proposed standard to store and exchange MDAO system formulations 93
4.1 Introduction . 94

4.1.1 Framework applications . 94
4.1.2 Motivation . 95
4.1.3 State of the art . 96
4.1.4 Impact on framework set-up . 97

4.2 Functional requirements . 98
4.3 Definition of the storage standard. 99

4.3.1 Elements in the information category 101
4.3.2 Elements in the nodes category 101
4.3.3 Elements in the connections category 103

4.4 Illustrative example: Sellar problem. 105
4.4.1 Stage I: Tool repository . 106
4.4.2 Stage II: MDAO problem . 106
4.4.3 Stage III: MDAO solution strategy 106

4.5 Conclusion . 110

5 Bridging the gap between MDAO system formulation and execution 111
5.1 Introduction . 111
5.2 RCE . 113

5.2.1 Materialization approach . 113
5.2.2 Verification of materialized workflows 115

xvi

5.2.3 Development process validation 117
5.3 Optimus . 117

5.3.1 Materialization approach . 117
5.3.2 Verification of materialized workflows 119
5.3.3 Comparison manual and automated process 119
5.3.4 Development process validation 124

5.4 OpenMDAO. 124
5.4.1 Materialization approach: OpenLEGO 125
5.4.2 Verification of materialized workflows 130
5.4.3 Development process validation 134

5.5 Platform comparison . 135

III Framework integrations 137

6 Integration of developed methodology in third-generation MDAO framework 139

6.1 Knowledge architecture . 140
6.1.1 Methodology. 140
6.1.2 Implementation: AGILE development framework 146

6.2 Framework demonstrator: airliner . 151
6.2.1 Step I: Define design case and requirements 151
6.2.2 Step II: Specify product model and design competences 152
6.2.3 Step III: Formulate design problem and solution strategy 155
6.2.4 Steps IV and V . 157

6.3 Framework assessment: aircraft design cases 160
6.3.1 Design case descriptions . 162
6.3.2 Summarized results . 164

6.4 Assessment results . 164
6.4.1 MDAO system storage with CMDOWS 164
6.4.2 MDAO system formulation with KADMOS 169
6.4.3 Workflow materialization in RCE and Optimus. 172
6.4.4 Complete AGILE development framework 173

7 Restructuring a state-of-the-art aircraft design toolbox 175
7.1 Introduction: the Initiator toolbox . 176
7.2 Configuration: establishing an agile Initiator 178

7.2.1 Stage I: tool repository . 178
7.2.2 Stage II: MDAO problem . 181
7.2.3 Stage III: MDAO solution strategy 182
7.2.4 Stages IV & V: materialization, execution, and results 182

7.3 Reconfiguration: optimization . 184
7.3.1 Stage I: tool repository . 185
7.3.2 Stage II: MDAO problem . 186
7.3.3 Stage III: MDAO solution strategy 186
7.3.4 Stages IV & V: materialization, execution, and results 186

7.4 Second reconfiguration: additional constraint 188

IV Outlook & conclusion 193

8 Outlook: composite architectures and MDAO bots 195
8.1 Composite architectures . 195

xvii

8.2 MDAO bots . 199
8.2.1 Conceptual definition of several MDAO bots. 200
8.2.2 Bot automatic selection approaches 208
8.2.3 MDAO bot factory . 209

9 Conclusions and Recommendations 213
9.1 Developments and achievements . 214
9.2 Framework integrations. 216

9.2.1 AGILE development framework 216
9.2.2 Restructured aircraft design toolbox 218

9.3 Recommendations and outlook. 219

References 221

Software references 231

V Appendices 235

A Additional architectures for the SSBJ case study 237

Acknowledgments 243

Curriculum Vitae 247

List of Publications 249

xviii

NOMENCLATURE

GLOSSARY

MDAO architecture A scheme (or recipe) for executing a certain MDAO problem. Well-
known examples for optimization are ‘multidisciplinary feasible’ (MDF) and ‘indi-
vidual discipline feasible’ (IDF).

MDAO development process The collaborative process in an engineering project aimed
at configuring and reconfiguring (hence developing) the MDAO system to answer
design questions.

MDAO framework A collection of support applications (e.g. planning tool, workflow
software, visualization package) assembled together into a coherent set that is
used by an engineering team to manage the group and the MDAO system.

MDAO problem The multidisciplinary analysis or optimization to be solved to answer
a specific design question.

MDAO solution strategy The blueprint of the workflow to be executed. The solution
strategy provides a formalization to solve the given MDAO problem based on a
given architecture.

MDAO system The computational system containing the multidisciplinary analyses re-
quired to design a complex product. This system is a dynamic object that needs to
be built, debugged, executed, and reconfigured continuously based on progressive
insights of the engineering team.

MDAO system management All handling of an MDAO computation system by a engi-
neering team, such as composition, representation, manipulation, and framework
integration.

MDAO workflow The executable process in a process integration and design optimiza-
tion platform matching a given MDAO solution strategy.

tool repository The collection of interlinked disciplinary components (i.e. design com-
petences, surrogate models, mathematical relations) available for execution to the
engineering team.

ACRONYMS
AAO All-At-Once
ADF AGILE Development Framework
AGILE Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams

of Experts
AMR Architecture-specific Mathematical Relation
API Application Programming Interface
ATR Average Temperature Response
AVL Athena Vortex Lattice

BIM Building Information Modeling
BLI Boundary Layer Ingestion

xix

BLISS Bi-Level Integrated System Synthesis
BWA Box-Wing Aircraft
BWB Blended-Wing Body

CA Collaborative Architecture
CAD Computer-Aided Design
CDS Central Data Schema
CMDOWS Common MDO Workflow Schema
CO Collaborative Optimization
CPACS Common Parametric Aircraft Configuration Schema
CSSO Concurrent Subspace Optimization

DLR German Aerospace Center
DOC Direct Operating Cost
DOE Design Of Experiments
DSM Design Structure Matrix
DUT Delft University of Technology
DVD Design Variable Dependent
DVI Design Variable Independent

FAR Federal Aviation Regulations
FDT Functional Dependency Table
FM Fuel Mass
FPG Fundamental Problem Graph
FrEACs Future Enhanced Aircraft Configurations

GEMS Generic Engine for MDO Scenarios
GUI Graphical User Interface

I/O input and output
IDEaliSM Integrated & Distributed Engineering Services Framework for MDO
IDF Individual Discipline Feasible
InFoRMA Integration, Formalization and Recommendation of MDO Architectures
IPACS Initiator Parametric Aircraft Configuration Schema

JSON JavaScript Object Notation

KA Knowledge Architecture
KADMOS Knowledge- and graph-based Agile Design for Multidisciplinary Optimization

System

MAUD Modular Analysis and Unified Derivatives
MCG Maximal Connectivity Graph
MDA Multidisciplinary Design Analysis
MDAO Multidisciplinary Design Analysis and Optimization
MDF MultiDisciplinary Feasible
MDG MDAO Data Graph
MDK Metis-based Decomposition of KADMOS graphs
MDO Multidisciplinary Design Optimization
MPG MDAO Process Graph
MTO Maximum Take-Off

xx

MTOM Maximum Take-Off Mass

NLR Royal Netherlands Aerospace Centre

OEM Operational Empty Mass
OEM Original Equipment Manufacturer
ONERA The French Aerospace Lab
OpenLEGO Open-source Link between AGILE and OpenMDAO

PIDO Process Integration and Design Optimization
PSG Problem Solution Graph
PSN Process Step Number

QOI Quantity Of Interest

RCE Remote Component Environment
RCG Repository Connectivity Graph
REMS REconfigurable Multidisciplinary Synthesis
RMSE Root-Mean-Square Error

SAND Simultaneous Analysis aNd Design
SBW Strut-Braced Wing
SM Surrogate Model
SMR Surrogate Model Repository
SQP Sequential Quadratic Programming
SSBJ SuperSonic Business Jet

TLAR Top-level aircraft requirement
TPA Turbo-Prop Aircraft

UID Unique IDentifier
UML Unified Modeling Language

VISTOMS VISualization TOol for MDO Systems

XDSM eXtended Design Structure Matrix
XML eXtensible Markup Language
XSD XML Schema Definition

ZF Zero-Fuel

VARIABLES

AR = aspect ratio
C f = skin friction coefficient
D = data graph
D = drag
DT = non-dimensional throttle setting
E = edges
ESF = engine scale factor

xxi

F = objective function
F = fundamental problem graph
FF = fuel fraction
G = constraint function
G = graph
Gc = consistency constraint function
L = lift
M = Mach
M = MDAO graph
Nz = max. load factor
P = process graph
R = repository connectivity graph
R = range
S = surface area
Sref = wing reference area
SFC = specific fuel consumption
T = throttle (SSBJ case)
T = thrust
Temp = temperature
V = vertices
V = volume
W = weight
b = wing span
cD = drag coefficient
cL = lift coefficient
cr = root chord length
dpdx = pressure ratio
e = edge
f = factor
fin = fineness ratio (L/D)
gc = consistency constraint
h = altitude
k = scale factor
m = mass
n = number of
s = distance
t = time
t/c = thickness-to-chord ratio
v = node
xsec = wingbox section height
Γ = dihedral angle
Λ = sweep angle
Θ = wing twist
λ = taper ratio
ξ = spar location
σ = stress

xxii

SUBSCRIPTS, SUPERSCRIPTS, AND OVERSETS

BE = baseline engine
E = engine
F = fuel
FS = front spar
FT = fuel tank
L = landing
MTO = maximum take-off
RS = rear spar
T = total
TO = take-off
WA = wingless aircraft
WL = wingloading
c = copy
cr = cruise
f = function
i = instance
p = process
prop = propulsion
s = sample vector
v = variable
0 = initial guess value
∼ = scaled
∗ = final value

xxiii

I
BACKGROUND

1

1
INTRODUCTION

D ESIGNING better aircraft is not a straightforward task. The aircraft flying around the
world today are based on decades of development and experience in the aerospace

industry. Today’s aircraft are significantly more efficient and sustainable than the ma-
chines of past decades, thanks to major developments in separate disciplinary fields
impacting their design, such as propulsion, aerodynamics and structures. However,
the conservative nature of the aerospace industry, where safety concerns have resulted
in stringent certification requirements, in combination with decades of developments
drawing on the same configuration makes it increasingly hard to significantly improve
today’s aircraft even further.

The configuration of today’s aircraft provides a clear indicator of the innovation hurdle
that designers are facing; airliners have been based upon the same basic layout since the
1930s, i.e. the tube-and-wing design (see Fig. 1.1). There is good reason for choosing this
configuration: designing an aircraft requires the difficult integration of multiple engi-
neering disciplines into one vehicle, the tube-and-wing configuration somewhat relieves
this burden by separating the main functions of an aircraft as different components. One
can carry passengers with the fuselage (tube), create lift with the wings, propel the vehi-
cle using engines, and ensure stability & control using the tail. Due to decades of devel-
opment and manufacturing, Original Equipment Manufacturers (OEMs) are also com-
pletely geared towards this configuration, and in their “divide and conquer” approach
they have structured their organizations accordingly.

a) Douglas DC-3 (1935).§ b) Airbus A300 (1972).¶ c) Boeing 787-8 (2009).||

Figure 1.1: Three airliners that were top of the bill in their time (year of first flight indicated between
brackets). Like all current airliner families manufactured by companies such as Airbus, Boeing, Bombardier,

and Embraer, every design uses the tube-and-wing layout. (For credit footnotes, see next page.)

3

1 The compartmentalized organizational structure at large organizations results in a highly
unautomated and decoupled aircraft design process [1, 2]. Disciplinary analyses are per-
formed in isolation by separated departments, so that specialists maintain ownership
and control of their field, with synthesis only taking place manually through sporadic
sharing of new information about an adjusted design discipline. This lack of automation
greatly restricts the number of design iterations that can be performed, thereby hamper-
ing the potential improvements that could be made if more iterations were allowed in a
shorter amount of time [3]. In addition, the lack of automated and coupled disciplinary
analyses complicates the impact assessment of local changes on the overall design.

The impact of this unautomated and decoupled process can be felt in all three categories
of design approaches described by Gero and Maher [4]: routine, innovative and creative
(see Fig. 1.2). In routine design, the known design space is used to find a new solution,
whereas with innovative design, the design space is extended around its known bound-
aries. Finally, with creative design, a completely new design space is explored to find an
answer to the task at hand. Over the past decades, OEMs have only taken routine and in-
novative design approaches to updating the tube-and-wing aircraft, with creative design
posing too high a risk for the conservative attitude of the industry.

Figure 1.2: Three different approaches to performing a design task (adapted from [4])

Each design approach is restricted in its own way by the highly unautomated and de-
coupled design practice in industry. Performing routine design would mean attempting
to further improve the tube-and-wing aircraft in its known design space. With decades
of experience inside this space, manually finding a better design of such a complex and
coupled vehicle is almost impossible. Therefore, the only way to squeeze out a high-level
performance improvement for these designs would be to couple and automate the dis-
ciplinary analyses and perform thousands of iterations using a design space exploration
algorithm.

With innovative design, the tube-and-wing aircraft would be improved by supplement-
ing it with a new technology. Such a technology, can only be assessed properly if its im-
pact on the full aircraft can be appraised by coupling all the analyses and if a new optimal
design can be synthesized around it. Hence, automating the multidisciplinary analysis
of the full aircraft is of key importance to correctly assess technological innovations that
fall outside the routine design space.

§Credits: Flygande Veteraner
¶Credits: Airbus S.A.S.
||Credits: The Boeing Company

4

1With creative design, the design team is presented with a very different challenge. In rou-
tine and innovative design, the analyses can be based on empirical knowledge gathered
in previous projects; Methods based on statistics and experience are used to pursue the
typical design evolution from conceptual, to preliminary, to detailed design. Contrarily,
the very nature of creative design means that the team is looking at a previously unex-
plored design space, thereby making it necessary to apply higher fidelity physics-based
analyses earlier in the process. In addition, many configurations considered in this ap-
proach have highly integrated components (e.g. blended-wing body or flying-V plane,
see right side of Fig. 1.2 for the latter concept) where ‘everything affects everything’. De-
signing such configurations using physics-based models will only work if the different
disciplinary analyses are coupled together so that their interactions are modeled cor-
rectly. The often highly integrated concepts also prevent the design team from changing
the design intuitively, meaning that automatic design exploration methods become a
necessity.

In short, the following challenges are identified in the aircraft design practice:

• Uncoupled multidisciplinary synthesis limits high-level performance improve-
ments for routine design.

• Creative design (and also some innovative design) cannot rely on empirical knowl-
edge and therefore requires high-fidelity coupled analyses earlier.

• Highly integrated concepts in creative design require design intuition to be aug-
mented with design exploration methods.

Looking at these challenges in the different design approaches, it is clear that Multi-
disciplinary Design Analysis and Optimization (MDAO) can offer major benefits. With
MDAO, a multidisciplinary system is created by directly coupling the different design
disciplines so that the full system can be synthesized automatically. The disciplinary
analyses in this system are fully automated, enabling a team to perform a tremendous
number of design iterations and providing the ability to link design space exploration
algorithms (i.e. optimization) as well. MDAO is not a new idea; it has been a field of
research for many decades [5–8]. In the early 2000s, Boeing Phantom Works scientists
estimated that MDAO can offer 8-10% gains for innovative design and even 40-50% gains
for the creative design of radically new and undeveloped concepts [9, 10].

Despite this huge potential, MDAO has not yet been widely incorporated into the every-
day design process that can be seen at OEMs today. If MDAO is applied, then it is gen-
erally limited to the conceptual and preliminary design stages only incorporating classi-
cal MDAO disciplines, such as aerodynamics and structures [11]. The true potential of
MDAO for the aerospace industry would only be unlocked if all disciplines comprising
an aircraft design could be coupled together, such as onboard systems, engine design
and integration, and environmental impact. But for several reasons, MDAO cannot be
utilized in the practical reality of the aerospace industry yet.

Both technical and non-technical challenges [1, 2, 12, 13] are currently hampering the
full exploitation of MDAO in industry. Technically, one needs to be able to couple, main-
tain and execute in a single system a large variety of disciplinary analyses residing in
different parts of a large, heterogeneous organization; one must also have the algorithms
and computational resources available to work with that system. Non-technically, MDAO
presents a radically different approach to designing in groups that requires a different
organizational structure, and thus a more open and collaborative mindset, within the
heterogeneous team of disciplinary experts.

5

1 The multidisciplinary computational system that needs to be built and executed collab-
oratively will be referred to in this dissertation as the MDAO system. This system is a
dynamic object that needs to be built, debugged, executed, and reconfigured continu-
ously based on progressive insights of the engineering team. Fig. 1.3 depicts how the
system transforms through five different stages in a typical MDAO-based project. This
MDAO development process is divided in two main phases: formulation and execution.

Tool
repository

MDAO
problem

MDAO solution
strategy

Executable
work�ow

MDAOptimal
design

triggers
iteration

provides
tools to
analyze

is solved
according to

executed
using an

results
in an

formulation phase execution phase

Figure 1.3: The five main stages of an MDAO system within a typical MDAO-based project and their relation

In the formulation phase the MDAO system is set up in three stages. First the tools (i.e.
disciplinary analyses) required to analyze the design are collected in a tool repository.
Then the MDAO problem is defined based on that repository, i.e. design variables, con-
straints and an objective are specified. Finally, different strategies can be implemented
to solve the problem at hand. The strategy defines the coordination of the execution
process and specifies the interactions between the disciplinary analyses and other com-
ponents, such as optimizers and convergers. In MDAO, these strategies are called ar-
chitectures, with classical examples being MultiDisciplinary Feasible (MDF) and Indi-
vidual Discipline Feasible (IDF) [14]. Imposing an architecture on a problem results in
the MDAO solution strategy, which represents the blueprint of the executable workflow
integrated in the next phase.

In the execution phase this workflow has to be built based on this blueprint. This is a
cumbersome task, especially for large, complex blueprints of systems involving a large
number of disciplines and couplings. In the industrial practice, this workflow is of-
ten built using a PIDO (Process Integration and Design Optimization) platform, such
as ModelCenter Integrate [S1], Optimus [S2], or RCE [S3]. When the workflow is exe-
cuted, this will (hopefully) lead to the final design, or a range of design options in case
of design space exploration. However, more realistically the found design option is food
for thought and triggers the team to improve the MDAO system based on new insights.
For example, a new tool might be required to analyze an extra aspect of the vehicle; or
the MDAO problem needs to be adjusted to include additional constraints and/or new
design variables; or a new strategy is chosen to improve workflow performance.

The need for continuous reconfiguration lies at the core of any design practice. This is
well illustrated by Piperni et al. [11], who describe the adopted approach at Bombardier
to perform multidisciplinary preliminary design of aircraft:

1. Perform a Design Of Experiments (DOE) to filter for significant design variables.
2. Create approximation model(s) based on the DOEs of previous step.
3. Perform a surrogate-based optimization using the approximation methods.
4. Perform a full optimization using exact models, starting from the optimum solu-

tion of the previous step and only using the most significant variables.

In this approach, at least three workflows have to be generated, and the team is using
intermediate results to configure the next workflow. Looking at Fig. 1.3, the adopted ap-
proach thereby requires the team to perform three iterations of the MDAO development

6

1process. Hence, in any design practice the MDAO system needs to be reconfigured con-
tinuously based on the adopted design approach and the needs of the design team, and
one is required to move between the formulation and execution phases repeatedly.

Two major hurdles are present in the current MDAO development process from
Fig. 1.3, here referred to as the configuration and reconfiguration hurdles. The first,
which combines technical and non-technical challenges, is that before a first workflow
can be run, a fully automated, highly coupled MDAO system has to be formulated ready
for execution. This is not a trivial task as the multidisciplinary analysis workflow (which
is a necessary condition for MDAO) is only possible if all the connections between the
different analyses are created correctly, down to the smallest detail. As Pate et al. [15]
point out: the formulation of these problems has become increasingly complex as the
number of analysis tools and design variables included in typical studies has grown. In
this context the problem of determining a feasible data flow between tools to produce
a specified set of system-level outputs is combinatorially challenging. Especially when
complex and high-fidelity tools need to be included, the cost and time requirements to
integrate the MDAO system can easily approach the cost and time requirements of cre-
ating any of the discipline analyses themselves.

In past collaborative MDAO projects, a large team would spend around 60-80% of the
project time to configure this first version of the executable MDAO system [16]. This
leaves little time for performing design iterations or for further improving the system
progressively based on intermediate results. Hence, taking the MDAO approach puts
the heavy burden of setting up this complex system on the design team, while the first
results will only emerge after 60-80% of the project time has already been spent. In other
words, the long set-up time makes MDAO riskier than the classical design approach.

The configuration hurdle in the MDAO development process is effectively summarized
by Flager and Haymaker[3] in Fig. 1.4, which is the result of a comparison study between
the Boeing legacy design method and an MDAO-based process for the development of a
hypersonic vehicle [9, 10]. The main hurdle identified for the MDAO approach was the
long set-up time of the workflow (14 weeks), which was more than double the time nec-
essary to deliver the first design using the legacy method (6 weeks), with the consequent
risk associated to the late availability of the first results. The potential of the MDAO-
based process, however, is also clear: once the set-up of the workflow is complete, an
enormous number of iterations can be performed (1000 vs. 2.5 for the legacy method),
leaving much more time to the interpretation of the results rather than the coordina-
tion of the generated information. In industrial design situations, where deadlines are
strict and a first conceptual design is normally already available within a short time, the
postponement of the initial design, in combination with the time-consuming detailed
specification, is experienced as a risk.

Configuring large, heterogeneous MDAO systems more quickly would already be an a-
chievement, but at that point, the following requirements also have to be met: the sys-
tem has to stay dynamic, comprehensible, and its stages need to be linked such that a
change in an earlier stage can progress automatically to a later one. This is not trivial and
constitutes the (second) reconfiguration hurdle. Gallard et al. [17] refer to this hurdle as
the “combinatorial issue” in the MDAO development process. Fig. 1.5 depicts a small
graph with different choices on use case, strategy, algorithm and PIDO platform. Gallard
et al. point out:

There are 99 paths in this graph: each one represents a possible process [ex-

7

1

Figure 1.4: Legacy and MDAO-based design process metrics for the design of a hypersonic vehicle [3]

ecutable workflow] [. . .]. In addition, each of these items is implemented in
a separate software package, which evolves in time. For three different ver-
sions of each software, this leads to 399 ≈ 1047 potential processes. This is a
major issue for maintenance and industrial deployment of MDO methods.

Pylon MDO
trade-o�

Pylon Aero
optimization

Pylon
Structure

optimization
Pylon MDO

optimization

DOE method Gradient-based
optimization

Isight
work�ow

LHS Sobol L-BFGS-B SQP SNOPT Kriging NBI MGDABLISS 97
formulation

ONERA BLISS
formulation

MDF
formulation

Weighted
sum

ModelCenter
work�ow

WORMS
work�ow

MDO
formulation

Multi-objective
optimization
formulation

RSM

Figure 1.5: Graph with different options at each level for configuring the required executable workflow [17]

In past MDAO projects, the stages in Fig. 1.3 were decoupled, meaning that there are gaps
between stages that need to be filled manually. For example, defining the tool repository
and determining how different tools are coupled together is done using spreadsheets
(e.g. Microsoft Excel [S4]), while the solution strategy is defined separately in a flowchart
software (e.g. Microsoft Visio [S5]), and the executable workflow is built through the
Graphical User Interface (GUI) of the selected PIDO platform (e.g. Optimus [S2]). With
such decoupled stages, reconfiguring the MDAO system gets complicated very easily.
For example, if one tool is modified or substituted by a new one requiring an extra in-
put parameter, then the team might have to add an additional tool able to provide that
parameter, and would need to independently update their spreadsheets, flowchart and
workflow accordingly. Alternatively, one could also just update the workflow, but this
would lead to a mismatch between the formulation and the execution phases, ultimately
making the executable workflow a large, incomprehensible, black box. Hence, to support
continuous reconfiguration, the formulation and execution stages of the system need to

8

1be synchronized semi-automatically and supported by computer automation as much
as possible in order to keep the design team agile and guarantee a high level of trust in
the final results.

Of the gaps between the system stages in Fig. 1.3, a particularly challenging transfor-
mation is performed from MDAO solution strategy to executable workflow. Here, the
system switches from the formulation phase to the execution phase. As mentioned, the
executable workflow is generally built manually using the GUI of a PIDO platform. This
workflow creation method entails a cumbersome, error-prone task for the design team.
Additionally, this method is completely decoupled from the formulation phase, since the
formulated system is incompatible with the way executable workflow are generated in
PIDO platforms. This gap between formulation and execution is called the implementa-
tion gap* and bridging this gap constitutes a major challenge to achieve (re)configurable
MDAO systems.

The culmination of the configuration and reconfiguration hurdles just discussed, have
hampered the implementation of large MDAO systems in industry. Generally, if MDAO
is used, tailor-made solutions are developed for a specific application. Thereby any de-
veloped system and the applied methodology to establish it, are too problem-specific
and difficult to reapply in a different context (i.e. a new design project).

A possible solution to these hurdles would be to more strictly formalize the MDAO sys-
tem in the formulation phase. At the moment, setting up the executable workflow is
generally done through a trial-and-error process, where each disciplinary specialist is
asked to add their analysis to the overall system, and the implementation is checked by
running and debugging the system itself. This is, however, a very inefficient method to
build a multidisciplinary system, especially a large and heterogeneous one. Instead, it
would be more advantageous to first properly formulate the MDAO system, so that the
design team has the right blueprint before implementing the executable MDAO system
itself. With the right formalization, the different stages can be tightly coupled and the
workflow could be generated automatically. To draw an analogy with a completely dif-
ferent field of work: the current way of building MDAO systems is like trying to play a
symphony with a large orchestra in which no one has the score. It would take a long
time for a conductor to get through the full symphony if no one knew beforehand what
to play and when to play it.

Based on these observations, the following research question motivates this dissertation:

How can the state-of-the-art methodology for performing MDAO in collabo-
rative projects — involving a large team of heterogeneous experts that needs
to operate a large, complex MDAO system — be enhanced (or replaced) by
a novel methodological approach that lowers the con- and reconfiguration
hurdles encountered nowadays?

Different formalizations of MDAO systems can be found in literature (and will be dis-
cussed in the next chapter). However, a comprehensive methodology and implementa-
tion to test these formalizations with the aim of reducing the set-up time in realistic col-
laborative design projects does not exist. This dissertation presents the first such imple-
mentation. In addition, the developments shown in this dissertation are also tested in re-
alistic projects, as this work is part of a broader effort that was started in the MDAO com-

*N.B. The implementation gap has a strong analogy with the gap between formulated policies and their actual
implementation, which inspired the term to be used here.

9

1 munity through the AGILE (Aircraft 3rd Generation MDO for Innovative Collaboration
of Heterogeneous Teams of Experts) project [18]. With respect to the AGILE project, this
dissertation constitutes several key components of a novel-generation MDAO frame-
work for collaborative design.

The main research question is addressed by pursuing the goal:

to develop, implement, and assess a new methodology, specifically address-
ing the collaborative aspects of performing MDAO, that enables formalized
MDAO systems in all stages of the formulation phase, such to lower the
aforementioned hurdles.

This goal is broken down in several subgoals:

• Develop methodology concerning:
– formalization of MDAO systems in the formulation phase;
– storing and sharing the formulated system.

• Implement a:
– software solution to formulate MDAO systems;
– storage solution to share system definitions;
– solution for the implementation gap between formulation and execution.

• Assess implemented methodology in:
– reference MDAO test cases for verification and validation purposes;
– the AGILE collaborative MDAO project to measure impact on the design pro-

cess in a collaborative, realistic environment;
– an unrelated design environment to assert the general applicability of the

methodology outside the AGILE context in which it was developed.

Fig. 1.6 depicts the relation between the MDAO-based development process (Fig. 1.3)
and the chapters of this dissertation. This study began by assessing the state of the art of
the formalization and implementation of MDAO systems in collaborative environments,
and by identifying the remaining challenges in this field (Chapter 2). Subsequently, a
new formalization of MDAO systems and its implementation are presented in Chapter 3,
followed by the accompanying storage standard in Chapter 4. The automatic generation
of executable workflows to bridge the implementation gap is discussed in Chapter 5.
This dissertation’s developments are integrated in the MDAO framework developed in
the AGILE project to assess its impact on the broader collaborative MDAO process with
multiple design projects in Chapter 6. Additionally, the methodology has also been ap-
plied in an alternative aircraft design toolbox unrelated to the AGILE project in Chapter 7
to demonstrate its generic applicability outside the context in which it was developed.
Finally, an outlook on future opportunities will be presented in Chapter 8.

Tool
repository

MDAO
problem

MDAO solution
strategy

Executable
work�ow

MDAOptimal
design

formulation phase (Chapters 3 and 4) execution phase (Chapter 5)

= Chapter 3 (formalization) = Chapter 4 (storage)

integration in AGILE framework (Chapter 6) and restructured aircraft design toolkit (Chapter 7)

Figure 1.6: Mapping between MDAO-based development process and the chapters of this dissertation

10

2
STATE OF THE ART IN

MDAO SYSTEM MANAGEMENT

P ERFORMING MDAO collaboratively can be a challenging ordeal full of technical and
non-technical hurdles, as was illustrated in the previous chapter. A complex com-

putational system needs to be set up and executed in a large, heterogeneous team. This
team contains different stakeholders, such as disciplinary specialists, project managers,
and decision makers from upper management. Each team member needs to have a
proper understanding of the MDAO system to defend their interests in the project. Within
such a complicated environment, useful executions of the computational system can
only be achieved efficiently if the system is managed properly. The handling and man-
agement of collaborative computational systems has been a topic of research for many
decades, where researchers have treated different aspects of these systems, ranging from
composition and representation to execution and framework integration. In this chap-
ter, each section will discuss one of the following aspects of the state of the art in MDAO
system management:

Composition: how a collection of disciplinary tools is assembled into a single MDAO
system.

Representation: how the same MDAO system can be described in multiple ways (e.g.
visually, mathematically) to serve different goals.

Manipulation: how MDAO systems are manipulated to advance from one stage in the
MDAO development process to another (see Fig. 1.3).

Coordination: how the execution of the MDAO system can be coordinated based on
different architectures to solve the same underlying design problem.

Execution: how MDAO systems are executed using different PIDO platforms.
Framework integration: how the handling of MDAO systems is integrated in collabora-

tive frameworks in recent projects.

Each of the above aspects will be addressed in a dedicated section. The chapter will
end with a section on the next-generation MDAO framework and the identification of its
needs that are addressed in this work.

11

2

2.1. COMPOSITION

The composition of the MDAO system, i.e. the way tool inputs and outputs (I/Os) are
connected to form a single system, is an unreported topic in most work. Generally, a
convenient approach is adopted without the need to consider alternatives, as the ap-
proach meets the requirements for the particular system, is used in a non-collaborative
environment, and the system is only composed once. With respect to the MDAO de-
velopment process in Fig. 1.3, system composition is part of the first process stage in
which the tool repository is constructed. Though it might seem trivial, depending on the
approach, the assembly of all components (i.e. tools in the repository) can be a cumber-
some task for large MDAO systems, with a considerable impact on the time spent in the
formulation phase. This is especially true when a large, heterogeneous design team is
involved, since the composition process is a collaborative effort that requires contribu-
tions by and agreement between all tool specialists.

I

II

III

a
b

e
f

d

c

g
h

i

I

II

III

B
D

C
E

A

A

B
C

D

=
=
=
=

II.d
III.g
III.h
III.i

=>
=>
=>
=>

A
B
C
D

I.c
I.a
II.e
I.b

schema
A
B
C
D
E

I

II

III II.f / E

A

D

B C

decentralized
data mapping

centralized
data mapping

tool repository exampleapproach MDAO system

mapping-compatible
component de�nitions

central mapping
de�nition+

independent compo-
nent de�nitions

component-based
mapping de�nition+

+ =

+ =

=

=

Figure 2.1: Schematic summary of the two main MDAO system composition approaches found in literature
[19–27].

A key aspect of system composition concerns the determination whether variables are
only related to a single component or shared with and/or coupled to multiple compo-
nents. In this work, different composition methods found in literature are classified in
two basic approaches:

• decentralized data mapping
• centralized data mapping

Both approaches are schematically summarized in Fig. 2.1. With a decentralized ap-
proach a component’s I/Os are defined independently and connected through a sepa-
rate mapping definition directly between the components. The centralized approach
requires components to have I/Os that match a central mapping definition. Although
both approaches would eventually result in the same MDAO system shown on the right
in Fig. 2.1, the reason to elaborately discuss these approaches here is that each one has a

12

2

different workload and scalability. Furthermore, the approaches also differ in their col-
laborative dynamic, as responsibilities and workload change for team members provid-
ing disciplinary analyses (tool specialists) and members responsible for the integration
of the analyses into one system (system integrators).

2.1.1. DECENTRALIZED DATA MAPPING APPROACH

Tosserams et al. [19] have a decentralized data mapping approach in their Ψ language
for problem partitioning (the division of a system into multiple subsystems to enable dis-
tributed analysis). In their language each component can be defined independently and
it is the responsibility of the component provider to define local and global input vari-
ables. When the system is assembled, the integrator has the responsibility to manually
define the coupled I/Os between components, that is to identify which globally defined
variables are actually referring to the same component values. A similar approach can be
found in object-oriented frameworks such as πMDO [20] and OpenMDAO [21–23] [S6].
In OpenMDAO the user can provide different naming conventions for the same variable
in each component and then explicitly state that the components are actually referring
to the same variable by “connecting” them.

The decentralized data mapping approach leads to a high workload for the system inte-
grator, proportional to the size of the MDAO system. The size of the system is measured
by the number of components and the number of I/Os. The mapping definition (see
Fig. 2.1) explicitly connects coupled variables. This definition grows with the number of
tools and variables, and thereby the tasks to modify tool mappings or add new tools to
the system become cumbersome. The maximum number of unidirectional tool inter-
faces equals n(n −1), where n stands for the number of tools, and grows quadratically
with each new tool in the repository. A clear advantage of this approach is the freedom
left to the various tool providers, as they can decide their own variable names as they see
fit. Hence, the MDAO system integrator is assigned extra responsibilities, in exchange
of a non-intrusive approach towards the tool providers. Furthermore, as connections
are handcrafted by the integrator, a valid system can be instantiated directly, without
the need to fix problematic nodes or connections (e.g. multiple tools providing the same
input value for another tool) post hoc.

2.1.2. CENTRALIZED DATA MAPPING APPROACH

In the centralized data mapping
approach, a system-wide nam-
ing convention is used to estab-
lish component connectivity. This
system-wide naming convention is
called a schema. Fig. 2.2 sum-
marizes the mapping approaches
for system composition. Key ad-
vantage of this approach is that
the maximum number of uni-
directional tool interfaces equals

composition approaches

centralized

prede�ned schema
(CPACS)

tailor-made schema
(REMS dictionary,

OpenMDAO promotion,
InFoRMA ontology)

decentralized
(Ψ, OpenMDAO connection)

Figure 2.2: Breakdown of composition approaches

2n and scales linearly (instead of quadratically for the decentralized approach) with the
number of tools in the repository. The schema of the centralized approach can be either

13

2

tailor-made or fixed. The tailor-made schema is more flexible and defined ‘on the fly’.
Alexandrov and Lewis [24, 25] use this method in their linguistic approach called REMS
(REconfigurable Multidisciplinary Synthesis). With REMS, component providers define
their I/O variables according to a shared dictionary of variable names, which needs to be
expanded with each new system component that introduces new variables. The integra-
tor is thus relieved of the mapping burden, at the expense of an extra management task
for the dictionary and a limited freedom in variable naming for the tool providers. This
approach can also be used in OpenMDAO by ‘promoting’ variable names to a common
shared variable name within the model, thereby automatically connecting these vari-
ables. Also Hoogreef [26] uses the tailor-made centralized data mapping approach in
his ontology-based MDAO-support platform InFoRMA (Integration, Formalization and
Recommendation of MDO Architectures). With this platform the user builds and assem-
bles the system using an interactive N2 chart to add components and define couplings.
Each coupling is added to the system definition by extending the tailor-made schema of
the underlying ontology.

The other variant of the centralized approach (Fig. 2.2) would be to adopt a predefined
Central Data Schema (CDS). The adoption of a CDS avoids the issue of updating the dic-
tionary (REMS) or list of promoted names (OpenMDAO) for each system composition.
Nagel et al.[27] have proposed a standard eXtensible Markup Language (XML)-based
schema for aircraft design, called Common Parametric Aircraft Configuration Schema
(CPACS) [S7]. In practice, CPACS (pronounced as: seapacks) provides an extensive pre-
defined standard dictionary, which is meant to contain all the typical I/O data of the
analysis tools; this concerns both geometrical definitions (e.g. airfoils, wings, engines)
and design analysis data (e.g. component masses, mission definition, lift-drag polar)
typically used in conceptual and preliminary aircraft design. When using CPACS, each
disciplinary tool in the MDAO system takes a CPACS file instance as input and has to
write its results to a new CPACS file. All data is then gathered by merging the different
complementary CPACS files. Thus, once all component providers have ‘made the invest-
ment’ of rendering their tool CPACS-compatible, assembling even large MDAO systems
becomes a relatively easy task.

Fig. 2.3 visualizes the high-level elements of CPACS. A fundamental idea in the schema
definition is that information is only stored once in the CPACS file at its designated loca-
tion. This information can then be used by other elements by adding a Unique IDentifier
(UID) to it and referring to that identifier in the other element. For example, the material
properties of Aluminum-2024 would be defined under the ‘materials’ element (level 3 in
Fig. 2.3) and one could use the UID of this material to indicate which parts of the wings
and fuselages are made out of this material by referencing that UID in the appropriate
segments of the ‘wings’ and ‘fuselages’ elements (level 4 in Fig. 2.3). A similar example
from the CPACS documentation is provided in Fig. 2.4.

A key advantage of using a CDS is that one can build an ecosystem of support applica-
tions around the structured schema definition to facilitate the design team integrating
an MDAO system. For example, the German Aerospace Center (DLR) developed a suite
of open-source software packages to enable the assembly of MDAO systems for aircraft
design, based on CPACS:

TiXI [S8]: Read and write XML files with CPACS-specific functionality (e.g. check UIDs).
TiGL [S9]: Library to geometrically handle and visualize CPACS files.

†Adapted from: https://cpacs.de/#contents, accessed: May 27, 2019

14

https://cpacs.de/#contents

2
cpacs

header

vehicles

aircraft

model

@uID

name

description

reference

fuselages

wings

engines

landingGear

global

analyses

engines

profiles

structuralElements

materials

composites

missions

airports

fleets

toolspecific

level 4

level 3

level 2

top level

Figure 2.3: High-level elements of CPACS and the geometries they represent.†

<fuselage uID=”ATTAS fuselage”>...

<wing>
 <name>ATTAS main wing</name>
 <parentUID isLink=”True”>ATTAS fuselage</parentUID>
 ...

Such a node with a UID is then typically referred to by a subnode, like:

Figure 2.4: Example of UID referencing to define a fuselage-wing intersection [28]

15

2

RCE [S3]: PIDO platform with CPACS-specific functionality.

The CPACS definition has so far been used in multiple collaborative projects on aircraft
MDAO [29–32] and has proven its value facilitating the assembly of large and distributed
MDAO systems. Though CPACS is aircraft specific, the approach of a CDS would prove
its value in any other application domain, given a CDS is made available a priori. The ap-
proach is gaining momentum in the MDAO community. For example, Dykes et al. [33]
developed a similar standardization for the wind energy sector to connect the range of
tools involved to perform wind farm MDAO. This schema also uses file I/O to exchange
data (YAML-based instead of XML).* A well-established CDS in another domain is BIM
(Building Information Modeling), which is used as a central digital representation of de-
signs in civil engineering and architecture.

The choice for adopting one of these fixed schemas in a project impacts the collaborative
dynamic by shifting responsibilities and workload. Instead of being free in defining their
tool I/Os, the tool specialists first have to get acquainted with the CDS, and then have to
make their tools compatible with it (also called tool wrapping or, in case of CPACS: tool
CPACSization). Hence, the specialists are forced to comply with the storage format of the
schema, or have to plead for an adjustment of the schema that is supported by the whole
team.† The integrator has to manage the CDS and make sure that all required I/Os are
actually included. Furthermore, the integrator has to determine how tools are coupled
based on their I/Os with respect to the schema.

2.1.3. COMPARISON AND CONCLUSION

Decentralized data mapping approaches offer more control over the correctness of the
assembled system, but bring forth the burden of mapping the variables used and pro-
duced by each component. This approach leaves the most freedom to the tool special-
ists, but it is does not scale well due to the required mapping. A centralized approach
with a tailor-made schema removes the mapping burden, but at the risk of losing con-
trol over the system consistency and at the expenses of making all tools compatible with
the I/O variable mapping definition and creating/updating such definition for each dif-
ferent MDAO system. The adoption of a fixed schema can remove this last issue for the
specific domain the standard is defined (e.g. CPACS for aircraft conceptual and prelimi-
nary design), but it comes with three limitations:

1. The schema might not include all the required I/O elements and needs extensions.
2. One can easily loose oversight on the system’s connectivity. For example, if a tool

providing the values for certain CPACS data nodes is removed, it is difficult to de-
termine whether some other tool is affected by the lack of those input data.

3. Contrary to the handcrafted connections in the decentralized approach, the in-
direct component couplings of the schema-based approach can easily lead to a
system with problematic variables and connections (e.g. multiple tools writing the
same schema element as output).

*It is worth noting that, conceptually, a CDS approach does not necessarily depend on file-based data ex-
change (e.g. a string-based naming convention or Python dictionary), but in practice a broadly recognized
file standard (i.e. XML, YAML) is used for convenience.

†To release some of this rigidness with a fixed schema, CPACS includes a special element called ‘toolspecific’
(see level 2 in Fig. 2.3). Specialists can put any missing I/Os in that element, provided that these I/Os are only
relevant for the tool itself and not coupled to other tools.

16

2

Hence, a dedicated formulation system is required to provide system oversight, check
for problematic variables and connections, and fix them.

In conclusion, one could see the centralized mapping with a CDS as a good approach to
share the burden of composing an MDAO system in a large, heterogeneous design team:
the tool specialist ‘only’ has to make sure to comply to the CDS while the integrator ‘only’
has to ensure a complete schema. Though both tasks are not as trivial as they might seem
in the collaborative engineering reality.

2.2. REPRESENTATION

The system representations in this section are grouped by their intended use. Represen-
tations aimed at providing a human-readable overview of the MDAO system are covered
first in §§2.2.1. Subsequently, machine-interpretable representations geared towards
performing specific automated operations (e.g. partitioning) are discussed in §§2.2.2.

2.2.1. HUMAN-READABLE

Well-known human-readable representations of complete systems are the N2 chart [34]
/ Design Structure Matrix (DSM) [35] and the Functional Dependency Table (FDT) [36],
see Fig. 2.5a and Fig. 2.5b for examples. The DSM approach, which only specifies the
data coupling between different components, was extended by Lambe and Martins [37]
into the eXtended Design Structure Matrix (XDSM) to include also information con-
cerning the process to be executed. Today, the XDSM notation can be considered a de-
facto standard within the MDAO community for providing human-readable overviews of
MDAO systems, independent from any proprietary PIDO platform formalization. Since
the readability of an XDSM as a static document degrades with the size of the repre-
sented computational system, web-based dynamic XDSM visualization tools have been
developed by Gazaix et al. [38] and Aigner et al. [39], with their respective developments
of the XDSMjs [S10] package and VISTOMS (VISualization TOol for MDO Systems) [S11].

The XDSM notation from Lambe and Martins has served as a basis for all MDAO sys-
tem visualizations shown in this dissertation. A small example of an XDSM is shown in
Fig. 2.5c. The executable components of the MDAO system are positioned on the di-
agonal. Iterative components (e.g. optimizers and convergers) have an elliptical shape,
while non-iterative components (e.g. disciplinary analyses and mathematical relations)
are visualized as rectangles. Data dependencies between components are denoted by
off-diagonal parallelograms, where grey-colored shapes indicate couplings and white-
colored ones indicate system I/Os. Note that the data dependencies should be read in
a clockwise direction. Data links between components are accentuated with thick grey
lines. Finally, the execution process of the MDAO solution strategy is indicated using
numbers inside the blocks in combination with thin black process connection lines.

All commercial PIDO platforms (which will be discussed in more detail in §2.5) provide
a GUI to assemble and display executable MDAO systems according to dedicated repre-
sentation approaches. Some, like ModelCenter® Integrate [S1], offer N2-like representa-
tion, others, like Optimus [S2], offer more freedom in the representation of workflows,
including multi-level visualization, but do not display the optimization modules.

17

2

a) N2 chart / Design Structure Matrix [35]

b) Functional Dependency Table [36]

x(0) y(0)

x*

y*1

y*2

y*3

2: x0, x1 3: x0, x2 4: x0, x3 6: x0, 7 —>1:
Optimization

1, 5 —>2:
MDA

2:
Analysis 1

3:
Analysis 2

4:
Analysis 3

6:
Functions7: f, c

5: y1 3: y1 4: y1 6: y1

5: y2 4: y2 6: y2

5: y3 6: y3

3: y32: y2, y3

c) XDSM [37]

Figure 2.5: Examples of different representations of multidisciplinary systems.

18

2

2.2.2. MACHINE-INTERPRETABLE

In the background, the PIDO platforms represent the workflows in a machine-interpreta-
ble format, often based on XML or proprietary standards. Object-oriented frameworks
for MDAO have been described in scientific literature that create machine-interpretable
representations of given computational systems by constructing programming objects
[20, 22, 23]. The packages then include methods to execute the MDAO system the best
way possible (e.g. using different optimization strategies or taking benefit from parallel
computing methods).

In other work, machine-interpretable representations of MDAO systems are created by
defining a language. Examples of these linguistic representations are the χ [40], Ψ [19]
and REMS [24, 25] languages. These languages allow an integrator to compose the MDAO
system in a relatively straightforward way (once familiar with the syntax), so that algo-
rithms built upon the language can perform system manipulations, like problem de-
composition and coordination. A radically different representation of MDAO systems
was investigated by Hoogreef, who makes use of ontologies to model and store MDAO
systems in his InFoRMA platform [26]. By representing the MDAO system as a ‘mean-
ingful’ (semantic) web of data, semantic reasoning engines [41] are used in InFoRMA to
assess and manipulate the system. Although representing the MDAO system as a seman-
tic web initially had potential and enabled the use of reasoning engines, Hoogreef also
found that “their modeling becomes too complex for actual implementation”. Therefore,
the use of semantic web technologies was not further investigated in this work.

Pate et al. realized that many of the MDAO system representations can be brought back
to the basic mathematical construct of (directed) graphs [15]. This is true for some lan-
guages such as REMS and InFoRMA’s ontologies, but also for purely graphical repre-
sentations like the N2 chart and the DSM. Based on this realization, Pate et al. defined
a graph-based syntax to represent and manipulate MDAO systems. Three types of di-
rected graphs are defined in Pate et al.’s graph syntax that map one-on-one to the three
stages of the MDAO development process illustrated in Fig. 1.3:

Maximal Connectivity Graph (MCG): represents the tool repository containing all avail-
able design and analysis tools and how they are interconnected through shared or
coupled variables, see Fig. 2.6a.

Fundamental Problem Graph (FPG): represents the MDAO problem as a subgraph of
the MCG containing a subset of the available tools and marked design variables,
constraints, and objective, see Fig. 2.6b.

Problem Solution Graph (PSG): represents the MDAO solution strategy for the afore-
mentioned MDAO problem by integrating driver components (i.e. optimizers and
convergers) and including data and process connections (similar to the XDSM no-
tation discussed earlier), see Fig. 2.6c.

These graph definitions and their manipulation algorithms are mainly focused on the
challenge of finding possible combinations of design and analysis tools to solve a given
MDAO problem. For example, the FPG shown in Fig. 2.6b is the graph with the least
number of cycles. Alternatively, an FPG could also be constructed by ranking tools based
on its properties (e.g. accuracy, runtime) or the design team’s preferences. Thus their
main objective is the automatic determination of the FPG, starting from the larger MCG.
In addition, the graph-based formalization enables a classification of the variable and
function nodes. This classification can be used to check the graph (e.g. Do all functions
have outputs? Are all variables written by only one function?), fix issues where necessary,

19

2

VSP

PDCYL

NPSS

VORLAX

PMARC

WATE

FLOPSa

FLOPSb

Total weight

Performance

Geometry

Number
of engines

Model node
Variable node
Variable node (0 incoming edges)
Variable node (more than one
 incoming edge)
Connection edge
Connection edge (part of a cycle)

a) MCG (Tool repository)

PDCYL

FLOPSa

Total weight

Performance
Geometry

Number
of engines

b) FPG (MDAO problem)

y1

z2

z1 D2 D2 y2

x1

y1

y2

z2

FF f

x1

y2

z2

z1
D1 D1 y1

y1 G1 G1 g1

y2 G2 G2 g2

x1

z1

z2

O O FminTol.

S STol. Res.

c) PSG (MDAO solution strategy)

Figure 2.6: The three different graphs defined by Pate et al. [15]

20

2

and automatically identify variables that play a special role, such as design variables,
constraints, and objective.

In summary, a large variety of system representations can be found in literature. The
XDSM notation has become a de-facto standard within the MDAO community to create
human-readable overviews for communication and discussion within the design team.
Graph-based representations in different fashions (e.g. semantic webs, directed graphs)
are adopted to represent systems in machine-readable form for analysis and manipula-
tion.

2.3. MANIPULATION

All the machine-interpretable representations discussed in the previous section are set
up to enable various forms of computerized manipulation of the MDAO system. These
manipulations are generally related to the transformation of the system across subse-
quent stages in the formulation phase (Fig. 1.3) and aim at automating (part of) the work
required to advance from one stage to the other. The main manipulations performed at
each link are depicted in Fig. 2.7.

Tool
repository

MDAO
problem

MDAO solution
strategy

Executable
work�ow

formulation phase execution phase

- identify and mark design variables,
constraints, and objective
- select tools to solve problem
- remove unnecessary tools

- decompose system
(partitioning, clustering)
- add coordination
(DOE, MDF, IDF, etc.)

- build work�ow manually
 or
- instantiate work�ow
automatically

Figure 2.7: The main manipulations performed on the MDAO system to advance stages in the MDAO
development process

The first transformation is from tool repository to MDAO problem. In general, automa-
tion in the first link involves the creation of methods to 1) identify potential design vari-
ables, objective values and constraints, and mark them as such, 2) find valid combi-
nations of tools to analyze the problem and, finally, 3) remove unnecessary functions
(tools) and variables. The work of Pate et al. [15] addressed in §2.2 focuses specifically
on this area. They offer a graph syntax and suggest algorithms to determine different
possible MDAO problems (FPG) based on a tool repository definition (MCG). Also in the
REMS language, the necessary manipulations to achieve the MDAO system formulation
are based on the full graph of available functions and coupled variables.

The second transformation, from MDAO problem to MDAO solution strategy, is more
complex and handled in many different ways in earlier work. In this link the MDAO
problem has to be decomposed to make it computationally tractable. This is gener-
ally achieved by means of partitioning and clustering methods. These methods aim at
grouping tools in smaller sets that belong together. This grouping can be intended to
reduce the number of couplings that need to be converged between sets of tools or to
enable efficient parallel computing. The Ψ language is an example of a manipulation
language specifically developed for system decomposition. Other system decomposi-
tion methods are available in literature, based on DSM [42–44] and FDT [45, 46].

21

2

After decomposition, an MDAO architecture has to be imposed on the MDAO prob-
lem to coordinate its execution. Different MDAO architectures exist in literature, each
one providing a different recipe to coordinate the computational system. Martins and
Lambe [14] have provided an extensive review of the most commonly used, including
both monolithic (e.g. MDF, IDF), and distributed types (e.g. CO (Collaborative Optimiza-
tion) [47], BLISS (Bi-Level Integrated System Synthesis)-2000 [48], CSSO (Concurrent
Subspace Optimization) [49]). MDAO architectures will be more elaborately discussed
in §2.4.

Some authors have taken advantage of graph-based formulations to support the cre-
ation of alternatively organized MDAO solution strategies. For example, Lu and Martins
[50] applied graph partitioning methods on directed graphs to automatically coordinate
large MDAO problems using a hybrid MDF-IDF architecture. Thereby tightly integrating
the decomposition and coordination. Another example is provided by Gray et al. [51],
who took advantage of graph-based methods in OpenMDAO to automatically evaluate
multidisciplinary derivatives.

In the third transformation – from MDAO solution strategy to executable workflow – two
approaches are generally used to build the executable workflow: manual creation or au-
tomatic instantiation. Manually created workflows can be built in a variety of PIDO plat-
forms, which will be discussed more elaborately in §2.5. These workflows are generated
from scratch, in the sense that the user is not offered any template to integrate a certain
MDAO system according to an MDAO architecture of choice. As a consequence, there is
generally a gap between the execution and formulation phase. In collaborative MDAO
projects, manual workflow creation is the standard, leading to a process largely based on
trial-and-error to establish the executable workflow, thereby relying on the experience
of the PIDO platform operator. Large, complex MDAO systems require the coupling of
hundreds of variables, a non-trivial and error-prone task to perform manually, especially
when a complex solution strategy, such as one based on a distributed architecture, has
to be implemented.

Concerning automatic instantiation, the fact that the same MDAO problem can be solved
using different solution strategies was one of the reasons to develop the πMDO [20],
OpenMDAO (V0) [22] [S6], GEMS (Generic Engine for MDO Scenarios)[17] [S12] and In-
FoRMA [26] platforms, so that different architectures could be tested quickly on the same
problem by automatically (re)configuring the executable workflow. These platforms ei-
ther tightly integrate the executable workflow and the formulation of the system, as is the
case for πMDO, OpenMDAO, and GEMS, or include methods to establish an automated
transformation to external PIDO platforms. The latter is the case of InFoRMA, where a
built-in mechanism parsing the system knowledge base creates the matching executable
workflow in Optimus. Similarly, Ψ provides an export module to enable the creation of
executable workflows in MATLAB [S13].

Both approaches to create executable workflows are limited in their capability to support
collaborative MDAO projects where system formulation is a team effort and workflows
need to be executed in a distributed server environment. A framework like OpenMDAO
offers excellent possibilities to set up efficient single-user executable MDAO workflows,
but is limited in its capability to support collaborative MDAO system formulation and
execute distributed workflows. Some PIDO platforms available on the market allow the
integration of multilevel and distributed MDAO workflows through manual “drag&drop”
manipulations via their GUI, but, at date, none provides actual formulation capabilities

22

2

[52, 53] or the automatic instantiation of large, complex MDAO solution strategies (i.e.
no commercial PIDO platform offers options to build an executable workflows based on
different MDAO architectures, such as MDF, IDF, and BLISS).

In conclusion, a diverse set of methods and platforms is available to manipulate MDAO
systems and transform them from one stage to the other in the MDAO development
process. However, the state of the art lacks a comprehensive platform to support the en-
tire formulation of collaborative MDAO systems in a large, heterogeneous design team,
where the formulated MDAO solution strategy is also linked to a PIDO platform of choice.

2.4. COORDINATION

The creation of the executable workflows generally follow a certain recipe. Especially for
Multidisciplinary Design Optimization (MDO), many different strategies can be applied
to solve the same optimization problem. Such recipes are called MDAO architectures.
Martins and Lambe [14] created a comprehensive overview and categorization of archi-
tectures for MDO. They state the standard multidisciplinary optimization problem as
follows [14]:

minimize f0(x , y)+
N∑

i=1
fi (x0, x i , y i)

with respect to x , ŷ , y , ȳ (2.1)

subject to c 0(x , y) ≥ 0

c i (x0, x i , y i) ≥ 0 for i = i , . . . , N

c c
i = ŷ i − y i = 0 for i = i , . . . , N

R i (x0, x i , ŷ j 6=i , ȳ i , y i) = 0 for i = i , . . . , N

in which f denotes objective, x design variables, ȳ state variables, y coupling variables,
ŷ variable copies, c and c c denote design and consistency constraints, R analysis con-
straints (e.g. residuals), and the subscripts 0 and i refer to shared and disciplinary data
respectively.

2.4.1. MONOLITHIC ARCHITECTURES

If a single optimizer is employed to solve this problem, four different architectures could
be implemented. The relation between these monolithic architectures is shown in Fig. 2.8.
In this figure, the arrows indicate how three of the architectures can be derived from the
one in the top left:

All-At-Once (AAO) This architecture describes the most exhaustive approach for solv-
ing any MDAO problem, but is merely meant as a theoretical scheme from which
the other three practical architectures are derived. With AAO, the optimization
would be set up using all elements of the standard problem statement in (2.1).

Simultaneous Analysis aNd Design (SAND) This architecture is derived from AAO by
removing the consistency constraints c c (and thereby also the variable copies ŷ
that they require). This simplification is allowed as the consistency constraints are
implicitly satisfied by meeting the analysis constraints R = 0 based on the coupling
and state variables (y and ȳ) provided by the optimizer. With SAND, the optimizer
is both designing the system and analyzing it, where the analysis component is

23

2

AAO

IDF MDF

SAND
Remove
cc, y

Remove
cc, y

Remove
R, y, y

Remove
R, y, y

x(0) y(0)

x*

y*1

y*2

y*3

2: x0, x1 3: x0, x2 4: x0, x3 6: x0, 7 —>1:
Optimization

1, 5 —>2:
MDA

2:
Analysis 1

3:
Analysis 2

4:
Analysis 3

6:
Functions7: f, c

5: y1 3: y1 4: y1 6: y1

5: y2 4: y2 6: y2

5: y3 6: y3

3: y32: y2, y3

0, 3 —>1:
Optimization

1:
Analysis i

2:
Functions

x*

y*i 2: yi

3: f0, c, cc

x(0), y(0)

2: x, y1: x0, xi yj≠i

Figure 2.8: The relation between monolithic architectures with respect to the standard optimization problem
definition (top). XDSM representation for the IDF (bottom left) and MDF (bottom right) architectures [14].

represented by the requirement to satisfy R = 0. These analysis constraints also
represent the major drawback of this architecture, as it means that all disciplinary
tools have to provide their residuals. In practical engineering design, most tools
will internally calculate and satisfy these residuals (e.g. an aerodynamic or struc-
tural solver), and act as black boxes in the multidisciplinary system. This handicap
of SAND is addressed by the remaining two monolithic architectures.

IDF This architecture is derived from AAO by eliminating the analysis constraints R = 0,
see Fig. 2.8 (bottom left) for the XDSM. The consistency constraints are kept and
the variable copies ŷ are added as design variables to the optimizer. Since esti-
mated values of the couplings are available in the form of extra design variables,
the disciplinary analyses can be parallelized. A handicap of IDF is that the design
will only be feasible when all the consistency constraints are satisfied, which is
usually only true when the optimization is finished successfully.

MDF As depicted in Fig. 2.8, MDF can be derived either from SAND or IDF. The key
addition in this scheme is the Multidisciplinary Design Analysis (MDA) loop in-
side the optimizer. The MDA converges each design option that is provided by the
optimizer based on the coupling variables, thereby eliminating the analysis con-
straints R = 0 from the SAND point of view and the consistency constraints c c = 0
with respect to IDF. The strong point of MDF is that a feasible design is available
for each iteration provided by the optimizer, but this comes at the additional cost
of performing an MDA each optimization iteration to converge the system.

Of the four monolithic architectures, the IDF and MDF schemes (or hybrid combina-
tions) are the only two that are useful in the practical engineering design environment,
given the black-box behavior of most disciplinary analyses if existing software packages
are used.

Many other architectures have been devised to handle MDO problems that, in oppo-
sition to monolithic schemes, distribute the optimization task over multiple subsys-

24

2

tems. Conceptually, this distribution is motivated by the typical arrangement of the
disciplinary specialists in departments at industrial organizations. Distributing the op-
timization allows each department to retain ownership of their field and work on their
analysis in isolation, while at the same time the system-level optimization is performed
more efficiently by accounting for specific characteristics of the disciplinary analysis
(e.g. there might be a large difference in the execution times per discipline). The wide
range of distributed architectures is elaborately discussed by Martins and Lambe [14]
and summarized by Hoogreef [26]. Here, two architectures will be discussed in more de-
tail as they will play a role later in this dissertation: Collaborative Optimization (CO) and
BLISS-2000.

2.4.2. DISTRIBUTED ARCHITECTURE: COLLABORATIVE OPTIMIZATION

The CO architecture, which was formulated by Braun [47], is depicted in Fig. 2.9. Note
that the CO2 variation is used here, as it is the most widely used version of the archi-
tecture. With CO, the system is distributed based on shared and disciplinary variables.
Each discipline gets to handle its disciplinary design variables and constraints with its
own optimizer (step 1.0 in Fig. 2.9). Shared design variables are also added at this level as
copies. At the system level, the optimizer is only concerned with system functions, such
as shared constraints and the system objective. In addition, copies of the disciplinary
design variables and coupling variable copies are added at the top-level. The following
key function connects the system- and disciplinary-level optimizers and ensures consis-
tency:

Ji = ‖x̂0i −x0‖2
2 +‖x̂ i −x i‖2

2 +‖ŷ i − y i (x̂0i , x i , ŷ j 6=i)‖2
2 for i = 1, . . . , N (2.2)

This function is used as objective (step 1.3 in Fig. 2.9) for every disciplinary optimization,

0, 3 —>1:
System

Optimization

1:
System

Functions

1.0, 1.3 —>1.1:
Optimization i

1.1:
Analysis i

1.2:
Discipline i
Functions

x*

x*i

y*i

2: J*i

2: f , c

x(0), x(0), . . . , x(0), y(0)
N

x(0), x(0)
i i

1.3: ci, Ji

1.2: yi

1.1: x0i, xi 1.2: x0i, xi

1: x , x , . . . , xN, y 1.2: x xi, y1.1: yj≠i

Figure 2.9: CO architecture [14]

while for the system optimization the same value acts as equality constraint. Hence, the
disciplinary optimizations aim at minimizing system inconsistency, while the system
optimization is actually minimizing the design objective.

CO is an advantageous architectures if the MDAO system mainly contains disciplinary
design variables and constraints and a small amount of shared data, as the disciplinary

25

2

data is handled at their own level. The main advantage of the architecture is the distribu-
tion of the disciplinary analyses in fully separated suboptimizations, potentially match-
ing the separation of departments in the organizational structure. Unfortunately, CO is
also known to have poor computational performance in practice.

2.4.3. DISTRIBUTED ARCHITECTURE: BLISS-2000

The BLISS-2000 architecture [54] is a radically different successor of the initial BLISS for-
mulation [48], both devised by Sobieski. The scheme is depicted in Fig. 2.10 and contains
three main loops:

0, 12 —>1:
Convergence

Check

8, 11 —>9:
System

Optimization

10:
System

Functions

6, 9
Surrogate i

1, 7 —>2:
DOE i

2, 5 —>3:
Optimization i

4:
Discipline i
Functions

3:
Analysis i

(no data)

x*, w*0

x(0)
0

12: x0

x*, y*i i

x(0), y(0), w(0)
0

11: f0, c0, cc

10: x0, y 9: x0, yj≠i , wi 1: x0, yj≠i , wi

3: x0, yj≠i

10: xi , yi
~

x0, yj≠i , wi
(0) (0) (0) xi

(0)

6: x0, yj≠i , wi 4: x0, wi

6: xi 4: xi

6: yi

5: fi, ci

4: yi

3: xi

Figure 2.10: BLISS-2000 architecture. [14]

1. At the system level (steps 8-11 in Fig. 2.10), the optimization is performed based
on system functions and surrogate models of optimal disciplinary design options.

2. In order to run this quick surrogate-based optimization at the system level, the
data to build the surrogate models need to be gathered first. Therefore, a DOE is
performed first (steps 1-7 in Fig. 2.10) for each discipline, in which the disciplinary
analyses are optimized with respect to the disciplinary design variables and con-
straints.

3. The third component of the BLISS-2000 scheme is the convergence check (steps
0-12 in Fig. 2.10). This check is required, because the use of surrogate (approxima-
tion) models at the system level introduces an error between the found and actual
optimum. The magnitude of this error depends on the precision of the surrogate
models. Therefore, after each system optimization the design space used for the
DOE (for which the surrogate models are built) is shrunk to reduce the approxi-
mation error at the system level. This process is repeated until the found optimum
converges. The design space aspect of the scheme is not clearly indicated in the
XDSM in Fig. 2.10: it could be added by introducing a data dependency between
the convergence check and the system optimization and DOE elements, with the
convergence check providing new bounds for the system-level design variables.

26

2

The main element still requiring definition for the BLISS-2000 scheme, is the link be-
tween the disciplinary and system level. Two key elements are introduced in the scheme
for this purpose. The first element is the introduction of a weight coefficient (w in
Fig. 2.10) for each coupling. These coefficients control the priority of different state vari-
ables in each disciplinary optimization. The second element uses these weight coeffi-
cients in the objective function for each disciplinary analysis (step 5 in Fig. 2.10):

fi = w T
i y i (x0, x i , ŷ j 6=i) (2.3)

The weight coefficients are added as design variables in the system optimization. Similar
to IDF, constraints are also added at the system level to ensure consistency between the
coupling variables from the optimizer and their approximated values coming from the
surrogates.

BLISS-2000 is a scheme that can be matched well with a departmentalized organiza-
tional structure: each department can provide their own optimization results for the
given design space, or even directly provide their own surrogate model. Alternatively, a
collaborative process involving an OEM and its Tier 1 and Tier 2 suppliers could also be
defined using BLISS-2000. In addition, the scheme allows a high degree of paralleliza-
tion. At the disciplinary level, the different DOEs can be performed in parallel and each
DOE could also perform multiple experiments in parallel. At the system level, the IDF-
like separation of the surrogate-based disciplines also supports parallel execution.

2.5. EXECUTION

Once the preferred solution strategy has been determined, the next step is to create a
workflow that can actually execute the blueprint from the formulation phase (see Fig. 1.3).
A multidisciplinary workflow can get very large and complex, so that its manual inte-
gration by means of some general-purpose language (i.e. Python, MATLAB) can quickly
become an impractical approach. For this reason, several PIDO platforms (commercial
and open-source) have been developed to support the creation and execution of these
workflows, each with their own methods with respect to the following characteristics:

User interaction How the integrator is supposed to build the workflows.
Workflow concept What is the underlying concept for workflow creation. How disci-

plinary components are combined with special elements, such as optimizers and
DOEs.

Component integration How well the platform supports the integration of heteroge-
neous components built in different software packages (e.g. a workflow contain-
ing a Python-based aerodynamic solver, Abaqus for finite-element analysis and a
MATLAB-based mission analysis).

Distributed execution The execution of the executable workflow on a distributed server
environment (e.g. each disciplinary specialist makes their analysis available on
their own server).

Derivatives The support for incorporating partial derivative calculation and their auto-
matic combination into full derivatives required for a gradient-based optimizer.

Convergence The methods available for converging circular dependencies in the MDAO
system with solvers.

The overview here is limited to those platforms that play a major role in MDAO-related
work. A large variety of platforms is available in this subset, ranging from open-source to

27

2

commercial solutions, either script- or GUI-based. Their main characteristics are sum-
marized in Tab. 2.1.

Table 2.1: Key characteristics of PIDO platforms used in MDAO projects

platform ref.
open-

source?
inter-
action

workflow
concept*

comp.
integr.

distr.
exec.

deriva-
tives

conver-
gence**

RCE [S3] Y GUI AC +/- ++ - FPI
Optimus [S2] N GUI C+M ++ + +/- FPI
Isight [S14] N GUI AC ++ ++ - FPI
ModelCenter [S1] N GUI AC ++ ++ - FPI
HEEDS [S15] N GUI C+M ++ ++ - FPI
OpenMDAO [S6] Y scripts OOC+M - - ++ FPI,NFPI
GEMS [S12] N scripts OOC+M + + + FPI,NFPI

* AC: all components, C+M: Components + methods, OOC+M: object-oriented components + methods
** FPI: Fixed-point iteration, NFPI: Non-fixed-point iteration

2.5.1. RCE

Initially developed for a shipbuilding project, the DLR has created its own open-source
PIDO platform for aerospace research and development: Remote Component Environ-
ment (RCE). [55, 56] [S3] The platform creation was motivated by a need to better meet
organizational requirements with respect to distributed workflow execution and scien-
tific data management. The former is enabled in RCE by supporting teams in configuring
their own server network. Disciplinary specialists can publish their tools on this network
and thereby make them available for execution from their own server as part of a larger
distributed workflow running at another location. The latter is supported specifically
for aircraft design with components and options to easily integrate and handle CPACS-
compatible tools (see §2.1 for more information on CPACS). Within DLR, this has led to
a large network of aircraft design tools that can be easily connected in project-specific
design workflows.

RCE has been used in a range of aircraft MDAO projects, such as SpaceLiner [57], FrEACs
[30, 32], DigitalX [58], and IDEaliSM [59]. In RCE, workflows are created through the
GUI and all aspects of the workflow are added as separate components, including ele-
ments like optimizers, convergers, and DOEs. These elements are typically integrated
from other open-source packages. For example, design analysis methods (i.e. converg-
ers, DOEs, optimizers) from the Dakota package [60] are incorporated in RCE and avail-
able as separate components. There is no specific support in RCE to combine or handle
partial derivatives for gradient-based optimization, though it is possible to include the
full derivatives as input to the optimization components.

2.5.2. OPTIMUS

Optimus [S2] is a commercial package developed by Noesis Solutions. A GUI is used to
let users create workflows (although a Python interface is also available to offer script-
based workflow creation to advanced users) and the package includes a large variety of
component types to easily integrate different disciplinary analyses developed on other
platforms, such as MATLAB, Abaqus, Excel, in a single simulation workflow. The work-
flow set-up is based on a separation between this simulation workflow, containing the

28

2

disciplinary analyses that provide the values of interest, and ‘design methods’, such as
an optimization or DOE. Thanks to this separation the same simulation workflow can
be used to impose different design methods, for example to first simply analyze a design
at a couple of locations in the design space before performing a full-scale optimization.
Optimus supports the addition of derivatives as outputs of individual disciplines and is
able to combine these analytic derivatives with finite-difference values to calculate the
gradients required by the optimizer. However, the derivatives support is quite primitive,
which also indicates that the use of derivatives is not standard practice in the industrial
context (including automotive and aerospace) where Optimus is used.

As mentioned in §2.3, the Optimus platform was used by Hoogreef [26] to automatically
instantiate executable MDAO workflows from the ontology-based InFoRMA platform.
Augustinus [61] describes the inner workings of this automated workflow generation
based on the InFoRMA formulation. On the Optimus side, the automatic instantiation is
supported by the Python-Application Programming Interface (API). With respect to col-
laborative MDAO projects, Optimus has been used to create workflows in the IDEaliSM
project. Another application of Optimus in the MDAO context is described by Liu et al.
[62].

2.5.3. ISIGHT

Isight [S14] is the commercial PIDO platform of Dassault Systèmes. Similar to Optimus,
Isight supports workflow creation through the GUI and a large set of standardized com-
ponents is available to integrate disciplinary tools. Contrary to Optimus, Isight’s work-
flow concept is fully component-based, meaning that the design method used has to
be added explicitly to the workflow (as with RCE). Recently, Isight has been combined
with the Simulia Execution Engine (SEE) to support execution across distributed com-
pute resources. Isight does not support derivatives for gradient-based optimization. The
platform is used in numerous MDAO studies and projects [63–65]. Most notably, Isight
is the PIDO platform of choice for Bombardier’s framework discussed in §2.6.

2.5.4. MODELCENTER INTEGRATE

Phoenix Integration developed the commercial ModelCenter Integrate [S1] platform. In
its setup this platform is nearly identical to Isight: a GUI to create fully component-based
workflows. ModelCenter is used in a number of MDAO studies by organizations like
NASA [66], Lockheed Martin [67], and Boeing [68]. The recently developed GEMS frame-
work [17] (which will be discussed in §2.6) also employs this platform within the broader
framework.

2.5.5. HEEDS

HEEDS [S15] is a commercial PIDO platform developed by Siemens. Its workflow con-
cept is similar to that of Optimus: a combination of components to create simulation
workflows on which methods for design space exploration and optimization can be ex-
ecuted. The HEEDS platform is a popular choice in a range of industries (e.g. aerospace
& defense, automotive, marine, and oil & gas). Strong points of HEEDS are the support
to set up cluster and cloud computing and the wide range of options for post-processing
and visualization.

29

2

2.5.6. OPENMDAO

OpenMDAO [S6] is an open-source platform developed by NASA.[22, 23, 51] Its develop-
ment was motivated by the need to implement more efficient MDAO techniques, with
respect to contemporary PIDO platforms, to enable the solution of large-scale and more
complex optimization problems. Two main techniques lacking in other PIDO platforms
are implemented in OpenMDAO: advanced algorithms for the solution of coupled sys-
tems and methods for derivative computation. With respect to solving the coupled sys-
tem, other PIDO platforms treat every component as an explicit function evaluation,
while OpenMDAO provides support for including tools as implicit functions as well,
thereby opening up a range of possibilities for solving systems using different techniques
(e.g. Newton, Krylov) than the fixed-point convergers (e.g. Gauss-Seidel, Jacobi) gener-
ally implemented. The support for derivative computation is also very limited in other
platforms, whereas it is a key feature of OpenMDAO. In the latest versions of OpenM-
DAO (V1 and V2), derivative computation is based on the Modular Analysis and Uni-
fied Derivatives (MAUD) architecture [69]. Thanks to this architecture it is possible to
build an executable workflow containing both a variety of components types, such as
explicit and implicit functions, and a variety of methods to compute the component’s
derivatives, such as finite-difference, complex step or analytic [70]. OpenMDAO is a
Python-based platform and requires its users to build their executable workflow using
scripts. The integration of components built in different software environments is the
responsibility of the user, who has to make sure this component can be executed as a
Python-based OpenMDAO component.

The potential of OpenMDAO comes forward in the wide range of applications in which
the platform has been used to solve engineering design optimization problems: Hwang
et al. [71] used OpenMDAO to design a small-scale satellite involving over 25,000 design
variables and 2.2 million state variables, Chung et al. [72] performed structural topology
optimizations, and Gray and Martins [73] solved a coupled aeropropulsive design op-
timization problem with OpenMDAO. Many more applications are summarized in [23]
showing the unprecedented scale and complexity of MDAO problems that can be solved
with OpenMDAO. Despite the potential of the platform, it is currently mainly used in
a research-related context, which can be attributed to the lower level of user friendli-
ness (scripts instead of GUI) and the more invasive and cumbersome tool integration
required to benefit from the platform’s advanced methods. Morever, the availability of
derivatives, which is exploited well by OpenMDAO, is uncommon in industrial work-
flows involving commercial, black-box analysis tools.

2.5.7. GEMS

GEMS (Generic Engine for MDO Scenarios) [S12] is a proprietary Python package devel-
oped at the IRT Saint Exupéry research institute by Gallard et al. [17]. The package is de-
veloped within the MDA-MDO project (described in more detail in §2.6) and is strongly
influenced by OpenMDAO. However, there are key differences between GEMS and Open-
MDAO: whereas the former focuses on monolithic architectures and the integration of
“stripped” tools to access derivatives and residuals, GEMS also includes multilevel for-
mulations and provides interfacing for integrating off-the-shelf disciplinary analyses.
The integration of tools is supported in two ways by GEMS: either a generic wrapper
is created for a specific workflow engine or a GEMS base class is used for direct Python
integration. The inputs and outputs of tools are described using JSON (JavaScript Object

30

2

Notation) schemas.

GEMS is not only a PIDO platform, but is also able to reconfigure an MDAO system with
a minimal amount of programming effort. Detailed information on the methods used
for formulating and reconfiguring MDAO systems is unfortunately not available in open
literature.

2.6. FRAMEWORK INTEGRATION

If a team or organization integrates their set of support applications into one coherent
structure, an MDAO framework emerges. In this dissertation, the term (MDAO) frame-
work is used to refer to a collection of integrated support applications.* Recently, many
frameworks have been developed within large, collaborative projects. Here, the discus-
sion is limited to four recent projects.

2.6.1. FRAECS

DLR’s FrEACs (Future Enhanced Aircraft Configurations) project [30, 32] aimed “to quan-
tify uncertainties in the design process for new aircraft and to apply them to the design of
two unconventional configurations.” The two configurations developed were the strut-
braced wing and the blended-wing body. Eleven DLR departments spread across the
country were involved in the project providing technologies and analysis capabilities.
In this project, the distributed design framework developed over the years was used to
perform physics-based analyses at increasing levels of fidelity.

The FrEACs framework for collabo-
rative MDAO is shown in Fig. 2.11.
The framework contains three lay-
ers. The CPACS ecosystem at the
bottom lies at the foundation of
the tool repository. The TiXI and
TiGL libraries are available to tool
specialists to help them make their
tool compatible with the common
language. These libraries make
it easy to read, write, and check
XML files (and CPACS files in par-
ticular) in different programming
languages (TiXI) and also provide
standard methods to analyze the
contents of a CPACS file (TiGL),
for example to get the number of
wings specified for a given model
or the span of a certain wing. The

CPACS ecosystem

tool
repository

DOE

OPT

CONV
collaborative

work�ow

Legend

I/O compatibility

Component available
(over network)

VAMP
zero ...Tor-

nado FSMS PEST

Figure 2.11: FrEACs framework overview (based on [30, 32])

CPACS-compatible tools are made available for a collaborative workflow by publishing
them on the server network through RCE. Thanks to this network environment, an inte-
grator can build a complex workflow combining tools executed all over the country. See

*Other sources use the term framework to describe PIDO platforms such as OpenMDAO and Isight, which were
discussed in §2.5.

31

2

§2.5 for more information on the RCE platform.

The formulation of the MDAO system has to be performed manually in this framework.
Once tools are available on the server, it is not directly clear how its I/Os relate to other
tools in the workflow. Therefore, building larger collaborative workflows is a cumber-
some trial-and-error process. During the project, interactive workshops with tool spe-
cialists were organized to define the system, this definition was then digitized by integra-
tors and further refined through additional group discussions. Visualizing the tool repos-
itory, MDAO problem, and solution strategy was done manually. Hence, the FrEACs
framework supports the execution of a distributed workflow on an institutional network
well, but this workflow had to be built through a manual trial-and-error process. Project
lead Erwin Moerland stated after the project that “one of the key lessons learnt was that
the setup of the collaborative workflows including leaping over the associated hurdles
along the way consumed a large part of the available project time”.*

2.6.2. IDEALISM

In the IDEaliSM (Integrated & Distributed Engineering Services Framework for MDO)
project fourteen European partners worked together on a framework for the automotive
and aerospace industry. The aim of the project was “to reduce the time-to-market and
development cost of high-tech structures and systems through a change in the product
development process by enabling the continuous integration of distributed and highly
specialized development teams” [26]. The project delivered a framework and methodol-
ogy to support the distributed, flexible, and service-oriented development process inte-
grating people, process, and technology [74].

user scenarios

advanced
integration
framework

engineering
language
workbench

engineering
library

build cases
con�gure / execute cases

infrastructure infrastructure infrastructure

Engineering Service Development Toolkit

work�ow templates business process layer

simulation process layer

tool layer

execution infrastructure

engineering services

pre-existing solutions and standards

distributed know
ledge base

...
eng. serv. eng. serv. eng. serv.

Figure 2.12: IDEaliSM framework overview (based on [75])

The IDEaliSM framework is depicted in Fig. 2.12. The framework contains three main
blocks: engineering language workbench, engineering library, and advanced integration
framework. Looking at the user scenarios in the top, the first two blocks are used and

*Personal communication with FrAECs project lead Erwin Moerland, April 4, 2019.

32

2

developed in “build cases”, where a team or a specialist is preparing general workflow
templates and engineering services that could be used in “configure / execute cases” to
actually run an engineering project. The three main blocks contain the following:

Engineering language workbench This block consists of different development toolkits
that can be used to create an engineering service. Three IDEaliSM-native toolkits
are shown in the figure, however, these could also be other toolkits that allow the
creation of an analysis module, such as MATLAB and Python. Note how the CPACS
ecosystem from the FrEACs project is considered one of the possible toolkits here
(DLR is one of the project partners). Other toolkits are the knowledge-based engi-
neering [76] platform ParaPy [S16] and the Design Compiler 43
platform [S17].

Engineering library This block connects the build and configure/execute cases. Here,
different generic templates, engineering services and data standards are devel-
oped (in build cases) or available (for configure/execute cases) for use in MDAO
projects. The lowest layers contains data standards that could be adopted in the
project. The engineering services subblock contains a range of support applica-
tions and analysis modules. InFoRMA (discussed in §2.3) is one of the services to
support a team in formulating the MDAO system. Other services are tools used
for design analysis and therefore this block can also be considered to be the tool
repository. The top subblock contains templates for PIDO platforms (see §2.5) and
for the business process management platform KE-chain as well. These templates
make it easier to set up and reconfigure a (new) project.

Advanced integration framework The final framework block represents the instantia-
tion of elements from the library to perform an engineering design project. The
integration of people is supported in the business process layer, where each user
can access a central platform to perform their tasks. The simulation process layer
contains the executable workflow that is built from tools in the layer below. At the
foundation an execution infrastructure could be used for cloud computing. Data
storage at all these layers can be handled by a distributed knowledge base.

Use cases in the IDEaliSM project have shown that it is possible to build and execute
collaborative workflows by combining a set of supporting technologies into one frame-
work. In one use case, the InFoRMA platform was used to automatically create the ex-
ecutable Optimus workflow, showing a significant reduction in time required to build
large workflows of over 90%. In another use case, the design of a rudder hinge system
was performed by establishing a connection between the full aircraft design of the OEM
and the detailed rudder design tool at supplier Fokker Aerostructures [77].

2.6.3. MDA-MDO PROJECT

The MDA-MDO project [38] was lead by French research institute IRT Saint Exupéry and
includes partners from industry, research institutes, and universities. The project aimed
to develop efficient capabilities to enable the deployment of MDAO in industry by in-
creasing the technology readiness level. The framework developed in the project is de-
picted in Fig. 2.13. The core of the framework is the formulation and PIDO platform
GEMS [17] (discussed in §§2.5.7). Through GEMS, a framework is assembled by inter-
facing a collection of disciplinary analyses with their native workflow engine. The de-

33

2

sign team can visualize formulated MDAO solution strategies using the XDSMjs package
[S10] developed by The French Aerospace Lab (ONERA).

Interface 2

Optimization
algorithms

GEMS

Interface 1

User
interfaces

Meta-models

MDO Research Software Platform

Disciplinary
work�ow

1
work�ow

2

Data
Manager

Disciplinary
work�ow

2

Figure 2.13: Framework of the MDA-MDO project [17]

A demonstrator of the project includes a supersonic business jet design in which four
analyses, integrated in different platforms or languages (namely ModelCenter, a propri-
etary Airbus workflow engine, and Python), are all executed within a single executable
workflow through GEMS. A second demonstrator of the project concerns the high-fidelity
aerostructural optimization of an engine pylon. A differentiating aspect of the MDA-
MDO framework, with respect to the other projects discussed here, is that it is focused
on multi-level architectures that match well with the distributed nature of the industrial
organization and the capability to integrate black-box off-the-shelf disciplinary tools al-
ready available at the company. Except for the visualization package, the majority of the
MDA-MDO project targets the infrastructural aspects of executing MDAO system within
the industrial context, rather than the collaborative ones.

2.6.4. BOMBARDIER’S MDO PROJECT

Piperni et al. [11] describe the multilevel MDAO capability developed at Bombardier.
The framework is divided in three subframeworks matching the three phases of air-
craft design: conceptual, preliminary,
and detailed. The first two subframe-
works are described in the paper. The
conceptual MDAO framework is shown
in Fig. 2.14. In this framework the dis-
ciplinary analyses are of low fidelity, ei-
ther empirical-based for conventional
configurations or physics-based for un-
conventional configurations. The con-
figuration database at the center of
the framework can be either purely
based on numbers through an Excel
[S4] sheet or an interactive CAD-based
application built in CATIA [S18] can be
used. The disciplinary tools are man-

Aerodynamics

Structures

Systems
Integration &
Cabin Layout

A/C
Performance

& S&C
Con�guration

Database

Economics
(LCC / RC / NRC)

Flutter &
Aeroelasticity

Noise &
Climate Model

Multi-Objective
Optimizer

Rubber
Engine

Weight &
Balance

Figure 2.14: Overview of the conceptual MDAO
framework at Bombardier [11]

34

2

ually integrated in Isight (discussed in §§2.5.3) and the multi-objective optimizer is taken
from the PIDO platform. The conceptual design framework is used for broad and thor-
ough design space exploration, including the analysis of aircraft-family concepts, mis-
sion requirements, and engine architectures.

In the preliminary MDAO framework, major aircraft features and parameters are already
fixed and the team focuses on the design of both the detailed aerodynamic shape and
preliminary structural sizing of the wing. This framework can be used for single-level
or multilevel formulations, where a bi-level setup is shown in Fig. 2.15. This subframe-
work is also integrated using Isight. All subframeworks at Bombardier are assembled
manually and specialized for aircraft design. In this respect, the Bombardier framework
shows how performing MDAO in an industrial setting requires the cumbersome task of
assembling frameworks which, as Piperni et al. [11] note, are still fully uncoupled with
respect to the different design phases. The authors indicate a need to couple these sub-
frameworks together, thereby achieving a single reconfigurable MDAO system where the
fidelity levels of tools can be changed dynamically to match the design phase.

LOW-SPEED CFD STRUCTURES

DESIGN CASESOPTIMIZER

UPDATE GEOMETRY

U
PD

AT
E

SU
RR

O
G

AT
ES

MATERIALS
HIGH-SPEED CFD

u

ff

FIELD
PERFORMANCE

FLIGHT
PERFORMANCE

MULTI-OBJECTIVE
CONSTRAINTS

SUBSPACE
OPTIMIZATION

METAL / COMPOSITE
AUTOMATIC 3D PANEL

CODE MESHER

VALAREZO CHECK

2D DTO ICING SENSITIVITY

SURFACE MESH MOVER

LOAD SURROGATE
MODELS

VOLUME MESH MOVER

CL RUN FLOW SOLVE

BUILD / UPDATE / SOLVE
STRUCTURAL FEM

min.
w.r.t.
s.t.

min.

w.r.t.

Wstruct

t’s, h’s
{M.S} ≥ {0.0}

Planform, Pro�les

wi OBJi

sii

u

L
D

WstrucCLmax

CLmaxDTO

ηcritical

Figure 2.15: Overview of the bi-level preliminary MDAO framework at Bombardier [11]

2.7. TOWARDS A NEW FRAMEWORK GENERATION

This section sets the stage for the developments presented in the rest of this thesis. First,
the categorization of frameworks in different generations is introduced, as this moti-
vated the creation of a new generation, which provided the context for this work in the
form of a collaborative MDAO project. Finally, current limitations of the state of the art
are summarized to identify the needs for this new framework generation to succeed.

2.7.1. MDAO FRAMEWORK GENERATIONS

The challenge of applying MDAO methods collaboratively in large, heterogeneous or-
ganizations requires multiple dedicated solutions for the range of tasks performed by
the engineering team. For example, the MDAO system needs to be composed by estab-

35

2

lishing a tool repository (§2.1), represented for visual inspection and discussion (§2.2),
manipulated to formulate the right problem and solution strategy (§2.3 and §2.4), and
executed using a PIDO platform (§2.5). The proper support for each of these tasks gen-
erally justifies the development of a stand-alone application, probably written in a pro-
gramming language or created on a platform best suited for the specific task at hand.

In the previous section (§2.6), four projects were discussed that integrated different ap-
plications and standards in one framework, see Figs. 2.11 to 2.15. Ciampa and Nagel
[16] (based on [78] and [30]) categorize such frameworks in three generations, which are
visualized in Fig. 2.16:

integrated analyses (first) generation (Fig. 2.16a) This framework generation refers to
environments that tightly integrate disciplinary capabilities and an optimizer as a
monolithic system. All analysis modules are directly available to the design team
lead, and the design process is deployed via direct interfaces among the multiple
design capabilities.

distributed analyses (second) generation (Fig. 2.16b) This generation is characterized
by the distribution of the analyses on dedicated computational facilities. Disci-
plinary specialists are in charge of providing the analyses, but have to hand them
over to the process integrator for execution. The analyses are called by a central-
ized design and optimization process. The team lead assumes the role of process
integrator and is both owner and operator of the MDAO system. The analysis
modules need to exchange data between themselves and with the centralized opti-
mization components, requiring multiple interfaces to transform the various data
formats and an effective data management system to limit data transfer overhead.

distributed design (third) generation (Fig. 2.16c) In this envisioned generation the dis-
tribution does not only concern the analysis modules, but rather all tasks involved
in assembling and operating the MDAO system. One of the priorities in this frame-
work generation is to support human judgment and collaboration in large, hetero-
geneous teams, with the aim of exploiting the full available spectrum of expertise
offered by the disciplinary specialists. This is done by tackling a number of non-
technical barriers for MDAO [1] that ranges from matching the company’s organi-
zational structure with the system’s setup and execution, handling large data sets
for result interpretation, to streamlining communication between parties.

Elements of the envisioned third-generation framework were already present in some
developments of the IDEaliSM and FrEACs projects. However, the creation of a com-
prehensive third-generation framework was the focus of another collaborative MDAO
project: AGILE. This dissertation presents key contributions to the AGILE project that
were used at the core of the established framework.

2.7.2. AGILE PROJECT DESCRIPTION

The AGILE (Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous
Teams of Experts) project was an international collaboration of nineteen partners from
the aerospace industry that started in June 2015 and finished in December 2018. The
novel framework generation developed in AGILE represents a new paradigm for collab-
orative MDAO: a doctrine based on a set of fundamental theories, assumptions, method-
ologies, and applications on how collaborative MDAO should be performed. In AGILE
[16], performing collaborative MDAO is divided in three phases, see also Fig. 2.17:

36

2

Optimization

Sensitivities

Ite
ra

tio
n

Meta-Models Database

Requirements,
Targets

Parameter

Performance,
Properties

Analysis 2

Analysis n

Analysis 1
Central

Product Model

OAD process

Analysis Domains

a) first generation: integrated analyses

Optimization

Sensitivities

Ite
ra

tio
n

Meta-Models Database

Requirements,
Targets

Parameter

Performance,
Properties

Central
Product Model Analysis 2

Analysis 1

Analysis n

OAD process

Distributed Analysis

b) second generation: distributed analyses

Competence 1

Competence 2

Competence n

Optimization

Sensitivities

Ite
ra

tio
n

Meta-Models Database

Requirements,
Targets

Parameter

Performance,
Properties

Central
Product Model

OAD process

Distributed Competences

c) third generation: distributed design

Figure 2.16: Three generations of MDAO frameworks by Ciampa and Nagel [16]

1. setup
2. operation
3. solution

Each phase presents specific challenges and, accordingly, puts different demands on the
framework that is used to develop the given MDAO system. The goal of the set-up phase
is to gather into a coherent and consistent repository different design competences (e.g.
in the form of disciplinary design tools, or pre-assembled workflows of tools), which
are often provided by different departments within the same organization, or even by
multiple organizations. The first technical challenge here is to ‘let the design compe-
tences speak to each other’, hence to enable the necessary I/O data flow. This is typi-
cally a challenging task, even when using design competences that are available in the
same design team. Its complexity grows exponentially when the tools to connect are dis-
tributed across large and heterogeneous teams, not geographically collocated. This is
not only difficult and time-consuming, but intellectual property protection, tool acces-
sibility and security issues can make any technical solution practically unfeasible. This
is the configuration hurdle that was already identified in Chapter 1.

In the operation phase the MDAO framework is used by the design team to define first
the MDAO problem to be solved, then to determine the right strategy to solve it and,
finally, to implement such strategy as an executable workflow. This second phase too
presents a mix of technical and non-technical challenges. A first main technical chal-
lenge, obviously, concerns the ability to formulate a complex MDAO system involving a
large number of design competences. The second concerns the integration of the system
formulation into an executable computational process (e.g. using a PIDO tool). A third

37

2

design and optimization process

-40% -40% -20%

2nd generation
MDAO frameowork

AGILE ambition for
3rd generation

 MDAO frameowork

setup operation solution

time

project
kick-o�

MDAO system of
interconnected com-
petences established

ready for execution
of MDAO system

MDAO system
solution(s) selected

continue process with
new project iteration
through MDAO system
recon�guration or end
project

design and optimization process supported by:

Knowledge Architecture Collaborative Architecture

AGILE Paradigm

aim: provide a framework for the con�guration of collaborative MDAO
 systems and their agile recon�guration.

aim: provide a framework for the e�cient execution of
 collaborative MDAO work�ows in distributed networks.

Development process Data schemas

Automated
design

Design competences

Step I Step II Step III Step IV Step V

con-

project
schema

schema

product
schemaor or or ...discipline optimization

method
surrogate

model

Figure 2.17: AGILE Paradigm - Conceptual overview

38

2

technical challenge, specifically addressed by AGILE, is the homonym agility challenge;
the ability to reconfigure a previously assembled system, such to support designers ex-
ploring new insights acquired after the first computation runs, to include new or modi-
fied design requirements, or to change or add some design competences to the already
established automated design process. This need for agility matches with the reconfigu-
ration hurdle identified in the introduction of this dissertation.

A fundamental non-technical challenge originates from the loss of top-level overviews
the various MDAO system stakeholders may suffer, as a consequence of the high work-
flow complexity. This can make it hard to find possible inconsistencies in the automated
design process and hampers the identification of design trends and decision making. On
top of that, the fact that disciplinary tools and other design competences involved in a
distributed MDAO system are used outside the direct control of the disciplinary experts,
can undermine the trust on the reliability of the obtained results and, eventually, on the
benefit of the MDAO approach, at all.

The solution phase challenges are mostly of technical nature and concern the capability
to reach convergence of the executable workflow and identify robust optima within the
allocated time. New optimization algorithms and MDAO architectures are continuously
developed to address these issues [14, 79, 80]. Recently, quite some developments are
happening also concerning the computational infrastructure, for which software solu-
tions are being devised to cloudify computationally expensive workflows [81]. Intellec-
tual property, software licensing policies and security issues, again, hamper the practical
usability of such technical solutions. After the third phase the design project is finished
and needs to be stored in a systematic manner to be useful for future reference or if mod-
ifications turn out to be necessary.

The excessive time to configure an MDAO system, the lack of reconfiguration agility dur-
ing deployment, and the struggle to maintain overview and control have been identi-
fied by AGILE as the main limitations of the first two framework generations. To ad-
dress these fundamental challenges, a new methodological approach, the so-called AG-
ILE paradigm, is built on top of two main cornerstones: the Knowledge Architecture (KA)
and the Collaborative Architecture (CA). The KA provides the structured approach and
workbench to formulate, (re)configure and inspect any design process, including fully
specified MDAO systems that are ready to be converted into executable computational
systems. The CA includes the methods and tools to assemble and deploy executable
workflows across distributed networks. More specifically, it provides the means to con-
nect simulation tools in a service-oriented scenario, including solutions for the cross-
human (e.g. disciplinary specialists need to stay in control of their own tools) and cross-
organizational (e.g. intellectual property restrictions and firewalls) issues occurring in
a collaborative distributed process. Fig. 2.17 schematically illustrates the whole AGILE
paradigm and provides a qualitative representation of the targeted time reductions in
the three phases of the MDAO development process: a 40% reduction in time needed to
configure a multidisciplinary system by a team of heterogeneous specialists in the set-
up and operation phases and a further reduction of 20% in time to find an (optimized)
design solution.

The project was divided in three design campaigns and six work packages, see Fig. 2.18.
The developments presented in this dissertation are key components of the final AGILE
framework and were developed under the overarching work package 6 (WP6), in which
the knowledge architecture was developed. These developments were integrated in the

39

2

full framework and tested in the second and third design campaigns. Both the frame-
work and these design campaigns will be elaborately discussed in Chapter 6.

WP 2
Initialization

WP 2
Initialization

WP 2
Initialization

Design Campaign - 1 Design Campaign - 2 Design Campaign - 3

WP 5 - Collaboration techniques (collaborative architecture)

WP 6 - Knowledge enabled information technologies (knowledge architecture)

WP 1 - Coordination & Dissemination

Figure 2.18: AGILE design campaigns and work packages [16]

2.7.3. CURRENT LIMITATIONS AND FUTURE NEEDS

In this chapter, the state of the art concerning six different aspects of handling MDAO
systems was discussed. Here, the current limits are summarized and six needs to move
forward are identified.

In §2.1, two methods were identified for composing the tool repository of the system:
centralized and decentralized mapping. Within the centralized mapping approach the
idea of using a fixed Central Data Schema (CDS) is gaining momentum for collabora-
tive engineering in the MDAO community and is the preferred approach for the AGILE
framework. Two challenges with this approach, where tools are connected indirectly via
the schema, are the loss of system oversight and the presence of problematic variables
and connections, hence:

The fixed schema approach calls for a dedicated composition platform to pro-
vide oversight and the ability to check and fix the system.

In §2.2, the range of representations for MDAO systems was reviewed. A clear distinction
can be made between representations aimed at human-readability (e.g. FDT, XDSM)
and machine-readability (e.g. semantic webs, programming objects). A middle way be-
tween these two was formalized by Pate et al. [15] using graphs. However, their graph-
based approach was limited to automatically identifying the right set of tools to solve a
given MDAO problem and thus:

The graph-based approach represents a solid conceptual basis, but requires
a rigorous revision and extension to match the needs of the third-generation
framework.

The manipulation section (§2.3) listed a broad collection of methods and applications to
transform the system to subsequent stages in the MDAO development process (Fig. 2.7).
Here, the state of the art lacks a comprehensive methodology (and associated platform)
to support the entire formulation phase for a large, heterogeneous design team that is
also able to bridge the gap between formulation and execution, so:

The envisioned collaborative MDAO framework requires a methodology (and

40

2

prototype implementation) to handle the MDAO system at all stages of the de-
velopment process, and needs to support all manipulations required to trans-
form it.

§2.4 showed how the solution strategy for the problem at hand can be coordinated us-
ing monolithic or distributed schemes. In the industrial practice, performing MDAO is
based on exploiting different strategies fitting the status of the project (i.e. what decision
needs to be made) and the team’s understanding of the design space. Monolithic strate-
gies are the most straightforward ones, but do not necessarily match the distributed
nature of the departmentalized organization well. Therefore, distributed architectures,
such as CO and BLISS-2000, might prove their value for these cases, consequently:

Both monolithic and distributed architecture types need to be supported through-
out the development process.

The actual creation and execution of the workflows can be done in a range of PIDO plat-
forms, which were summarized in §2.5. Each of these platforms has their strengths and
weaknesses leading to the conclusion that no single platform would fit every project.
Hence, the formalization applied by the methodology in the formulation phase needs
to be PIDO platform agnostic. In addition, the manual creation of the workflows with
these platforms is a cumbersome and error-prone task and prototypes automating this
task have shown huge potential time benefits. Hence, the needs concerning workflow
execution for the third-generation framework are stated as follows:

The formulated MDAO solution strategy needs to be platform-agnostic and
the creation of the executable workflow has to be automated.

Finally, the section on framework integration (§2.6) discussed four recent collaborative
MDAO projects. These projects showed that it is getting easier to technically set up a
distributed, executable MDAO system, however, a reconfigurable process is not yet part
of the state of the art and the tremendous resource investment required to configure the
first executable workflow remains a hurdle. Hence, as anticipated in the introduction:

The configuration and reconfiguration hurdles need to be lowered to establish
a novel MDAO framework generation.

The developments presented in the next part of this dissertation address the six needs
identified above to enable a novel third-generation MDAO framework.

41

II
DEVELOPMENTS

43

3
GRAPH-BASED

METHODOLOGICAL APPROACH FOR

MDAO SYSTEM DEVELOPMENT

T HE analysis of the state of the art, provided in Chapter 2, revealed the lack of a com-
prehensive methodology to formulate and manipulate MDAO systems throughout

their iterative development process in large, collaborative engineering projects. This
shortcoming is fixed here by a comprehensive formalization of such systems. In addi-
tion, this formal specification is also implemented to test and finetune it. This chapter
presents the theoretic foundation of a novel graph-based methodology, followed by its
demonstration in two case studies. The requirements for the formalization are stated in
§3.1, followed by its theoretical development in §3.2-3.5. In §3.6 and §3.7, two case stud-
ies demonstrate the implemented formalization in KADMOS: the open-source Python
package that was written based on the theoretical foundation presented here.

3.1. FUNCTIONAL REQUIREMENTS

From the review of the state of the art it can be concluded that while multiple solutions
exist for the execution of even large computational systems, there is lack of adequate
support in the formulation phase. Methods have been developed to specifically address
some of the stages in this phase, but no comprehensive solutions addressing the whole
MDAO system formulation in a collaborative environment have been found. While some
methodologies have been proven able to close the gap between formulation and execu-
tion by means of dedicated interfaces with a PIDO tool, none provide the flexibility to
choose between different integration platforms. Several graph-based representation and
manipulation approaches have been proposed by various authors, which have proven
very effective although limited to only some of the formulation stages. The methodolog-
ical approach presented in this chapter, aims at filling this gap in the state of the art, by
leveraging on the high potential of graph-based representation and manipulation meth-
ods, to deliver a neutral, open-source platform, specifically targeted to the development

The contents of this chapter have been adapted from [82].

45

3

of large, distributed and collaborative MDAO systems in the formulation phase, as indi-
cated in Fig. 3.1. To this purpose, the following top-level requirements were set:

Tool
repository

MDAO
problem

MDAO solution
strategy

Executable
work�ow

MDAOptimal
design

= stages of the process covered by the graph-based methodology

Figure 3.1: The coverage of Knowledge- and graph-based Agile Design for Multidisciplinary Optimization
System (KADMOS) in the MDAO development process

I System composition: The methodology should be based on the CDS approach
for I/O data exchange. When a large number of heterogeneous design tools is in-
volved, the overhead of making them all compatible to a CDS is negligible with
respect to the challenge a system integrator would face by manually mapping all
their I/Os, especially when the MDAO system is supposed to be frequently ad-
justed and reconfigured.

II System representation: The syntax should be based on the graph-theoretic foun-
dation for MDAO systems initiated by Pate et al., but should also provide the human-
readability of XDSMs and be extended to cover all stages of the MDAO develop-
ment process.

III System manipulation: The methodology should support automated formulation
of MDAO solution strategies including MDA, DOE and MDO architectures. MDO-
type architectures should include both monolithic and distributed schemes.

IV PIDO platform independence: The formulated MDAO solution strategy should be
portable to a range of PIDO platforms, while maintaining complete independence
from them.

V Controlled automation: The approach should automate all the repetitive, non-
creative tasks necessary to advance from one formulation stage to the other, while
keeping the design team in control of all settings and strategic decisions that re-
quire engineering judgment (e.g. to define the problem, to pick the architecture).

VI Tool heterogeneity: The system should support a broad range of design tool types
ranging from simple mathematical relations, to more complex surrogate model re-
lations, up to complex disciplinary tools to be executed as black boxes on separate
server domains because of intellectual property constraints.

VII Scalability: The system should be able to handle systems of any size and complex-
ity.

3.2. GRAPH SYNTAX AND MAIN GRAPH CLASSES

This section provides a formal definition of the adopted graph syntax adopted. Two main
graph classes are defined as well: the data and process graph. The syntax follows the no-
tation of Diestel [83] and Pate et al. [15]. Key concepts of graph theory are briefly revisited
here for convenience, followed by the definition of nodes (§§3.2.1), edges (§§3.2.2), and
main graph classes (§§3.2.3).

A graph G is built using a set of vertices V (or nodes) and a set of edges E (also called

46

3

connections):

G = (V ,E)

in which E ⊆ [V]2, meaning that the elements of E are two-element subsets of V . All
graphs in the methodology are of a special type, called directed graphs (or digraphs),
where E contains a set of ordered pairs to indicate the edge direction. More specifically,
most graphs are directed cyclic graphs, though acyclic graphs are also possible and sup-
ported in the approach. The node v would be connected to the node w with the edge
e = (v, w). Every edge in a digraph has an initial vertex init(e) and a terminal vertex ter(e).
The set of edges going out of v are denoted with E+(v) and the total number of edges go-
ing out of v is called the outdegree of the node and is denoted with δ+(v). Similarly, the
set of incoming edges are denoted as E−(v) and the indegree is denoted with δ−(v).

An example digraph is shown in Fig. 3.2. This graph is defined with two sets:

V = {n,o, p, q,r, s, t }

E = {(n,n), (n, q), (o,n), (o,r), (q,o), (q, p), (r,o), (r, t), (t ,r)}

A loop in a digraph is defined as an
edge with init(e) = ter(e), see node n
in Fig. 3.2 for an example. Loops are
not allowed, meaning that only simple
digraphs are used. A looped pair is al-
lowed in simple digraphs. Looped pairs
are defined as pairs of nodes {v, w} for
which there is an edge in both direc-
tions, hence (E+(v) ⊃ e | ter(e) = w) ∧
(E−(v) ⊃ e | init(e) = w). See the pairs
{o,r } and {r, t } in Fig. 3.2. The number
of such looped pairs of one node v with
respect to its neighbours is referred to
as the circularity index: cir(v).

looped pair {o,r}

looped
pair {r,t}

loop
 (not allowed)

cir(o) = 1

cir(p) = 0cir(q) = 0

cir(n) = 0

cir(s) = 0

cir(r) = 2

cir(t) = 1q

n o

p

r

ts

Figure 3.2: Example of a directed graph illustrating
some key concepts.

A path Q = (V ,E) from v0 to vk in graph G is a subgraph of G (Q ⊆G) with V = {v0, v1, ..., vk }
and E = {(v0, v1), (v1, v2), ..., (vk−1, vk)}. See as example the path with V = {t ,r,o,n, q, p} in
Fig. 3.2. A cycle C is a path for which v0 = vk , e.g. the cycle with V = {o,n, q,o} in Fig. 3.2.

In an acyclic directed graph the nodes can always be ordered in such a way that one
moves forward when following the edges. This is called a topological ordering of the
graph. Hence, if a directed graph has the topological ordering of the vertices 〈v, w, . . .〉, it
means that for every edge in the graph the initial vertex also comes before the terminal
vertex in the ordering (e.g. if ∃(v, w) : v comes before w in the ordering).

To combine graphs, a notation for the union of a set of sets is required. If we define I to
be a non-empty set such that for each i ∈ I there is a corresponding set Ai , then the set
of sets A = {Ai | i ∈ I } is called an indexed family of sets with index i and indexing set I
[84]. The union of this family of sets can be denoted in different ways:⋃

i∈I
Ai =

⋃
A∈A

A = {x | x ∈ A for some A ∈A }

Finally, the size of a set B is called the cardinality and is denoted by |B |. A set difference
is denoted as A \ B = {x ∈ A | x ∉ B}.

47

3

3.2.1. NODE DEFINITIONS

Graph nodes are enriched using different attributes. The attribute values are used to
inspect and manipulate the graphs. The different node attributes are listed in Tab. 3.1
and explained in the following subsections.

Table 3.1: List of attributes for graph nodes

attribute name notation used for typical values

category cat() V function, variable
subcategory sct() V input, coupling, collision, hole (see Tab. 3.2)
instance ins() V 0, 1, 2, 3
problem role pr() V design variable, objective, coupled
architecture role ar() V initial guesses, copies, optimizer (see Tab. 3.8)
mode mode() V f viscous, inviscid, 1, 2, 3, A, B, C
process step number psn() V f {0,7}, {1}

CATEGORY

The main attribute of a node is its category, denoted as cat(v), which can have the two
following values:

function (v f): operators, also called executable blocks. Every possible operator is de-
fined as a function node in KADMOS, e.g. a mathematical expression, an analysis
tool, an optimizer, a converger. The subset of function nodes in a graph G is de-
noted by V f = {v ∈V | cat(v) = function}.

variable (vv): elements from the CDS. These variable nodes can represent different vari-
able types, such as scalars, vectors, matrices, and strings. The subset of variable
nodes in a graph G is denoted by Vv = {v ∈V | cat(v) = variable}.

SUBCATEGORY

A more refined subcategorization of all the nodes in a graph can be defined based on
their indegree, outdegree, and circularity index. This categorization can be inferred au-
tomatically based on these three properties. All possible subcategories, denoted by sct(v),
are listed in Tab. 3.2. The subcategories play an important role in different graph classes,
as some subcategories are not allowed in certain stages of the MDAO system, while oth-
ers require a specific treatment in the graph manipulation algorithms. For example, the
hole and collision node subcategories are generally considered problematic and need
to be removed or fixed. Circular variable nodes, which are related to the circularity in-
dex introduced in the previous subsection, also require a specific treatment in certain
graphs, as will be discussed in §§3.4.2 and §3.7.

INSTANCE

All nodes can get an instance specified. A node instance attribute is used to allow multi-
ple instances of a node that refer to the same tool in the tool repository, or to the same
element in the CDS. A node instance is an integer value denoted by ins(v), where the
default instance value is zero. A practical example of the use of node instances for a vari-
able is illustrated in Fig. 3.3. Here, the two functions A and B have the same variable b

48

3

Table 3.2: Subcategory definition of graph nodes and references to example nodes

category subcategory δ− δ+ cir Fig. 3.5a

variable

hole 0 0 0 a
supplied input 0 1 0 b
supplied shared input 0 >1 0 c
output 1 0 0 d
collision >1 0 0 e
coupling/
pure circular coupling

1 1
0
1

f
g

shared coupling/
shared circular coupling

1 >1
0
1

h
i

collided coupling/
collided circular coupling

>1 1
0
1

j
k

collided shared coupling/
collided shared circular coupling

>1 >1
0
≥1

-
-

function

hole 0 0 0 A
source 0 >0 0 B
sink >0 0 0 C
complete >0 >0 ≥0 D

as output, but the values written by those tools are required at different moments in the
MDAO system execution by tools C and D . In such a case, it could be required that A first
determines the value of b (ins(b) = 0) which is used by tool C , and B later overwrites this
value (ins(b) = 1) in the schema file so that it can be used used by tool D . Hence, node
instances are required in the graph to be able to indicate which functions are using and
producing a particular node instance. In the aircraft design practice, a typical example
would be the use of two weight estimation tools (class I and class II) that both provide
the maximum take-off mass value as output.

D C

B

ab

A

D

C

B

A

a

b

b1

Figure 3.3: Illustration of the application of the instance attribute to split a variable.

PROBLEM AND ARCHITECTURE ROLE

Two key attributes of both function and variable nodes are defined to describe the role
they play in a certain graph:

• problem role (denoted pr(v))
• architecture role (denoted ar(v))

49

3

The problem role is used on variable nodes (pr(vv)) to indicate special variables, such as
design variables, constraints, objective, and quantities of interest (QOIs). The problem
role of a function (pr(v f)) is related to its position within the MDAO system and will be
further explained in the next section.

The architecture roles are used in the MDAO Data Graph (MDG) and MDAO Process
Graph (MPG). These roles indicate special variable (ar(vv)) and function nodes (ar(v f))
required by MDAO architectures. For variables, these are roles such as initial guess, copy
variable, and final value. For functions, the architecture role can be optimizer, converger,
and consistency constraint function. A full list of architecture roles is provided in Tab. 3.8
and is further discussed in §3.4.

MODE

An attribute specific for function nodes is the mode attribute, denoted by mode(v). This
attribute is used to indicate that the same tool from the repository can be executed in
different operational modes (e.g. an aerodynamic analysis tool can operate both in vis-
cous or inviscid mode), using different I/O branches in the CDS. By using the keyword
‘mode’ the I/Os of the different function modes can be filtered automatically, as shown
in Fig. 3.4. The advantage of using the mode attribute is that a tool with multiple exe-
cution modes can still be stored in the repository as one tool, with only one mapping
definition to the CDS.

Tool: A

schema
x1
x2 [mode=1]
x3 [mode=2]
x4 [mode=1]

schema
y1 [mode=1]
y2 [mode=2]
y3

A
[mode=1]

A
[mode=2]

x1 y3

x3

x4
x2

y2

y1input
specification

output
specification

Tool repositoryCDS-compatible
tool execution

MDAO System

Ainput output

Figure 3.4: Illustration of the use of the attribute mode. Tool A can operate in two modes, using/producing
different I/O values (right). Tool A is stored in the repository as one tool (center), requiring only one mapping

to the CDS accounting for both modes (center, left).

PROCESS STEP NUMBERS

Another function-node-specific attribute is the ordered set containing the process step
numbers (PSNs), denoted by psn(v). These step numbers are integers used to specify
the execution order of the function nodes in a process graph (Fig. 3.5b). The process
numbering adheres to the XDSM convention. A function node can have multiple PSNs
to allow for cycles. The maximum and minimum PSNs present in a graph G are denoted
by respectively maxpsn(G) and minpsn(G).

3.2.2. EDGE DEFINITIONS

Two edge types are defined, called data and process edge, each belonging to a different
graph class. The attributes used for edges are summarized in Tab. 3.3 and the two types
are defined as follows:

50

3

data edge (ed): represents the relation between a variable node and a function node.
All data edges in a graph are denoted by Ed = {e ∈ E | cat(e) = data}. A data edge is
always defined using one variable node and one function node. If ter(ed) ∈V f then
the edge is an input edge and, vice versa, if ter(ed) ∈ Vv then the edge is an output
edge. The data edges are indicated in Fig. 3.5a.

process edge (ep): represents the relation between function nodes in a process graph.
The subset of process edges in graph G is Ep = {e ∈ E | cat(e) = process}. Just like
function nodes, the process edge can have a PSN attribute, denoted by psn(e). For
process edges the PSN is not an ordered set, but a single integer value, since each
process edge can only represent a single step, see Fig. 3.5b for an example.

Table 3.3: List of attributes for graph edges

attribute name notation used for typical values

category cat() E data, process
process step number psn() Ep 1, 2, 3

3.2.3. MAIN GRAPH CLASS DEFINITIONS

Two main graph classes are defined using the node and edge definitions from the previ-
ous sections: the data and the process graph.

DATA GRAPH

Any instance of the DataGraph class is a digraph D = (VD ,ED) complying to the following
conditions:

1. |V f |+ |Vv | = |VD | (nodes are functions or variables)

2. |Ed | = |ED | (edges are data edges)

Hence, the data graph connects function nodes with variable nodes, as shown in Fig. 3.5a.

PROCESS GRAPH

Instances of the ProcessGraph class are digraphs P = (VP ,EP) meeting the following
conditions:

1. |V f | = |VP | (nodes are functions)

2. |Ep | = |EP | (edges are process edges)

3. ∀v ∈VP : δ−(v)+δ+(v) ≥ 1 (each node is connected by at least one edge)

4. minpsn(P) = 0 (process starts at PSN of zero)

5. ∀e ∈ EP : psn(e) ∈Z> (edge PSNs are positive integers larger than zero)

6. ∀v ∈VP : |psn(v)| > 0∧
∀i ∈ psn(v) : i ∈Z≥

(all nodes have at least one PSN which are all
larger or equal to zero)

51

3

7. ∀e ∈ EP : psn(e) ∈ psn(ter(e)) (every edge target node contains the edge’s PSN)

8. ∀e ∈ EP :
psn(init(e)) 3 x | x < psn(e)

(every edge source node contains a PSN smaller
than the edge PSN)

The last two conditions enforce process continuity by demanding the nodes around a
process edge to have corresponding PSNs. For example, a process edge e with psn(e) = 4
should have an init(e) that contains a PSN of 3 or lower and a ter(e) containing a PSN of
4). Fig. 3.5b depicts a small process graph example.

D

C

B

a b
c

d

e
f

g

h

i

j

k

A

variable node

function node

data edge

input edges

output
edges

a) Data graph instance

A B

C

D
function node

process edge

PSNs

1

2

2

3

{0} {1,3}

{2}

{2}

{#,#}

PSN

b) Process graph instance

Figure 3.5: Example instances for each of the two main graph classes.

3.3. MDAO SYSTEM GRAPH TYPES

The two graph types described in the previous section, data and process graph, were
taken as the base for four specialized graph classes that represent the MDAO system
throughout the entire formulation process depicted in Fig. 3.1:

Data graphs
Repository Connectivity Graph (RCG) Based on a repository of CDS-compatible

design and analysis tools, a graph can be created that links all the I/O vari-
ables and represents the first stage of the development process.

Fundamental Problem Graph (FPG) The second graph type matches the second
stage of the process: MDAO problem. The FPG is an enriched (i.e. containing
additional attributes) subset (i.e. due to removal of unnecessary functions
and variables) of the RCG. It is created by performing graph manipulations
on an RCG to define a graph that represents a valid (in terms of strict graph-
theoretic conditions discussed in the next sections) MDAO problem. Thus,
the graph includes the tools from the repository that should be used to solve
the problems, and the indication of key problem variables, such as design
variables, objective, and constraints. Once established, the graph is used to
impose an MDAO architecture on it.

MDAO Data Graph (MDG) The MDAO solution strategy stage is represented by
two graphs: a data and a process graph. The MDG is the graph that stores
the data exchanged by the executable blocks and the CDS nodes that are re-
quired to solve the MDAO problem, according to the selected architecture.

52

3

The executable blocks in the MDG include both the repository tools from the
FPG and the architecture elements, necessary to implement the MDAO ar-
chitecture at hand, such as convergers, optimizers, and Architecture-specific
Mathematical Relations (AMRs) (i.e. consistency constraint functions).

Process graphs
MDAO Process Graph (MPG) This graph does not contain any data node, but only

the executable blocks from the MDG and the specification of their execution
sequence.

The developed methodology has also been implemented as an open-source Python pack-
age: Knowledge- and graph-based Agile Design for Multidisciplinary Optimization Sys-
tem (KADMOS) [S19]. The class diagram of this package is shown in Fig. 3.6. All KADMOS
graphs are subclasses of the DiGraph class from the NetworkX [85] package. The main
graph classes DataGraph and ProcessGraph were defined in the previous section, while
the detailed description of the four MDAO system graphs listed above is provided in the
next section, supported by a small illustrative example.

KadmosGraph

networkx.DiGraph

DataGraph

Repository
ConnectivityGraph

ProcessGraph

FundamentalProblem
Graph

MdaoDataGraph MdaoProcessGraph

ClassName

subclass relation

Legend

dependency

Base classes

Main graph
classes

MDAO system
graph classes

BusinessProcess
Graph

Figure 3.6: Class diagram of the KADMOS package. The BusinessProcessGraph class is added to the
diagram for illustrative purposes.

3.4. DEFINITION OF MDAO SYSTEM GRAPHS

In this section we make use of a simple analytical MDAO problem to clarify the deter-
mination and use of the four graph classes introduced in the previous section: the Sellar
problem [86]. Additionally, this small problem serves as the first demonstration, ver-
ification, and validation case for the other developments presented in this part of the
dissertation. The Sellar problem can be described by the following tools, where the tools
indicated with D represent the actual disciplines, F the objective function, and G the

53

3

constraints:

D [mode=1] ⇒ y1 = c · (z2
1 +x1 + z2 −0.2 · y2)

D [mode=2] ⇒ y2 = c · (
p

y1 + z1 + z2)

F ⇒ f = x2
1 + z2 + y1 +e−y2

G [mode=1] ⇒ g1 = y1

3.16
−1

G [mode=2] ⇒ g2 = 1− y2

24.0

To better illustrate the different KADMOS graphs we assume here to start with a broader
tool repository, where, next to D, F and G, the following five fictitious tools are added:

A ⇒ b = f(a)

B ⇒ b = f(b)

⇒ z1 = f(b)

⇒ z2 = f(b)

C ⇒ c = f(b)

E ⇒ y1 = f(b, z1, z2)

⇒ y2 = f(b, z1, z2)

H ⇒ x1 = f(x0)

Before the first graph in the KADMOS approach, the RCG, can be created, the tools have
to be made compatible to a single CDS and stored in the tool repository, as illustrated in
Figures 3.7a and 3.7b.

3.4.1. REPOSITORY CONNECTIVITY GRAPH

The RCG is a specific type of data graph (see §§3.2.3) that is used to represent the first
stage of the MDAO development process: tool repository. The RCG R = (VR ,ER) can be
built by combining the data graphs that represent individual functions. For each unique
function/mode combination i ∈ Ir stored in the tool repository Ir = {1,2, . . . ,m} a data
graph can be constructed:

Di = (VD,i ,ED,i)

Where the nodes are:

VD,i = v f ,i
⋃

Vv,I ,i
⋃

Vv,O,i

in which v f ,i represents the function node, Vv,I ,i are all the variables from the CDS based
on the input file, and Vv,O,i contains all the output file variables. The edges of Di are then:

ED,i = E−(v f ,i)
⋃

E+(v f ,i)

where:

E−(v f ,i) = {(vv , v f ,i) | vv ∈Vv,I ,i }

E+(v f ,i) = {(v f ,i , vv) | vv ∈Vv,O,i }

54

3

Tool: H

dataSchema
variables
 x1 [mode=1]
 z1
 z2
analyses
 y1 [mode=2]
 y2 [mode=1]
settings
 c

dataSchema
analyses
 y1 [mode=1]
 y2 [mode=2]

Tool: D
input speci�cation output speci�cation

Tool: E
Tool: F

Tool: G

Tool: A
Tool: B

Tool: C

a) Storage of tool D in the repository

dataSchema
variables
 x0
 x1
 z1
 z2
analyses
 y1
 y2
 g1
 g2
 f
settings
 a
 b
 c

b) Sellar CDS

D[1]

c

z2
z1
x1

y1
y2 vf,i

Vv,O,iVv,I,i

E+(vf,i)E+(vf,i)

c) Function data graph for tool D[1] ([1] denotes mode(D) = 1)

Figure 3.7: Extended Sellar problem tool repository

55

3

The data graph of the tool D[1] ([1] denotes mode(D) = 1) is shown in Fig. 3.7c. The nodes
and edges of the RCG can be written as:

VR = ⋃
i∈Ir

VD,i

ER = ⋃
i∈Ir

ED,i

G[1] G[2]
F

D[1] D[2]

A

B

C

E

a b

c

z2
z1

x1

f g1 g2

y1

y2

input / output
function

coupled
problematic

H

x0

Legend

Figure 3.8: RCG of the extended Sellar tool repository

The RCG shown in Fig. 3.8 is automatically instantiated by KADMOS based on the Sel-
lar tool repository defined in Fig. 3.7. After instantiation, the subcategory of the nodes
(Tab. 3.2 in §§3.2.1) can be determined to filter the graph nodes, leading to the identi-
fication of the four main node subcategories for each variable node v , as illustrated in
Fig. 3.8 legend:

• input when δ−(v) = 0∧δ+(v) > 0
• output when δ−(v) = 1∧δ+(v) = 0
• coupled when δ−(v) = 1∧δ+(v) ≥ 1∧ cir(v) = 0
• problematic for all other nodes

The handling of these main node subcategories will be further discussed in the next sec-
tion. Note that for all nodes in an RCG ins(v) = 0.

3.4.2. FUNDAMENTAL PROBLEM GRAPH

The FPG contains the definition of the fundamental MDAO problem to be solved and
represents the second stage of the system development process in Fig. 3.1. The graph is
a subset of the RCG, containing only the tools that are strictly necessary to solve the opti-
mization problem at hand, plus extra information on the specific role of the tools (which
one is a coupled discipline, which the objective function, etc.) and involved variables
(which ones are design variables, which fixed parameters, etc.). The FPG is the start-
ing point to impose one of the MDAO architectures in the third stage of the formulation
phase.

The FPG has to meet stricter requirements than the RCG. In addition to the standard
data graph conditions, an FPG F = (VF ,EF) has to meet the following extra conditions:

56

3

1. ∀v ∈VF, f :
v ∈VR, f ∨ v is merged based on ⊆VR, f

(functions are in RCG or

else are merged from RCG nodes)

2. ∀v ∈VF,v :
v ∈VR,v if ins(v) = 0 else

∃w ∈VR,v : w = v
except ins(w) 6= ins(v)∧ ins(w) = 0

(variables are in RCG or

higher instances of RCG variables)

3. ∀v ∈VF,v :
cir(v) = 0 ∧ δ−(v)+δ+(v) ≥ 1 ∧ δ−(v) ≤ 1

(variables cannot be holes,

collided, or circular, see Tab. 3.2)

4. ∀v ∈VF, f :
δ−(v) ≥ 0∧δ+(v) > 0

(functions have to be

source or complete, see Tab. 3.2)

5. ∀v ∈VF, f :
pr(v) ∈ {uncoupled-DVI, uncoupled-DVD,

coupled, post-coupling}

(all functions have a problem role)

6. ∀v ∈VF,v : if pr(v) = design variable ⇒ δ−(v) = 0 (design variables are inputs)

7. ∀v ∈VF,v : if pr(v) = QOI ⇒ δ−(v) = 1 (QOIs are couplings or outputs)

8. ∀v ∈VF,v :
if pr(v) = objective∨constraint ⇒ δ+(v) = 0

(objective and

constraints are outputs)

9. ∀v ∈VF :
∃ path Q = (VQ ,EQ) where v ∈VQ ∧ VQ 3 w
where pr(w) ∈ {QOI,objective,constraint}

(all nodes eventually

lead to at least one QOI,

objective, or constraint)

The last condition demands that, for all nodes, at least one path can be created that leads
to a QOI, objective, or constraint. Hence, nodes not included in any of those paths can
be removed. This is a useful condition to trim a graph once the key variables have been
indicated, since any node not falling under this condition can be safely removed.

While the RCG can be defined by KADMOS in full automation, on the sole basis of the
tool repository, the FPG graph is defined on the basis of the design team specification of
the MDAO problem to be solved (e.g. what is the objective? what are the constraints?).
Several support functions are provided by KADMOS to assist the design team in the FPG
composition process. The suggested semi-automatic composition process for crafting
the FPG is given in Algorithm 1.

The FPG composition process for the Sellar problem is illustrated in Fig. 3.9. This process
starts from the RCG in Fig. 3.8. The anticipated architecture type (step 1) is MDO. In step
2 (Fig. 3.9a) x0, z1, and z2 are marked as design variables. In order to make z1 and z2 valid
design variables the incoming edges (B, z1) and (B, z2) must be removed. The objective f
and constraints g1 and g2 can directly be marked as such, since these are already of the
valid subcategory output. Finally, if the design team is interested in keeping track of the
coupling variable y2, this has to be defined as a QOI. Therefore, the preferred function to
determine y2 has to be selected (between tool D and E). In this case, tool D is manually
selected by the design team, also for the variable y1, thus the edges (E, y1) and (E, y2) are
removed.

The only problematic nodes left in the graph (step 3) are tool E and variable b. After
the previous edge removal, tool E is now a sink and can safely be removed from the
graph. Node b expresses a special case, in which a tool takes an initial value and then

57

3

Algorithm 1: FPG composition process

1. M: Anticipate whether the MDAO architecture to be imposed is of type MDA, DOE or
MDO.

2. M: Mark problem roles of variables based on the type of MDAO architecture:
a: If architecture type = MDO or DOE, then mark design variables.
b: If architecture type = MDO, then mark objective.
c: If architecture type = MDO, then mark constraints.
d: Mark QOIs for all architecture types.

3. M: Solve problematic nodes based on conditions 3 and 4.
4. A: Check graph validity based on all conditions except condition 5.
5. M: Merge functions to compress graphs.
6. A: Assign problem roles of functions (condition 5).
7. A: Specify execution sequence.
8. A: For distributed MDO architectures, specify the distribution of the coupled functions.

Legend
A: automated step
M: manual step supported by KADMOS scripting commands

G[1] G[2]
F

D[1] D[2]

A

B

C

E

a b

c

z2
z1

x1

f g1 g2

y1

y2

H

x0

Legend

objective
constraint
quantity of interest

design variable
problematic
input / coupled

function

a) steps 1-2

G[1] G[2]
F

D[1] D[2]

A

B

Ca
b

c

z2
z1

x1

f g1 g2

y1

y2

H

x0

bi1

sequential
 merge

parallel
merge

b) steps 3-5

G
[1,2]

F

ABCa
c

z2
z1

x1

f g1 g2

H
x0

D[1] D[2]
y1

y2

cyclic function
cyclic variable

Legend

c) step 6 - cycles

G
[1,2]

F

ABCa
c

z2
z1

x1

f g1 g2

H
x0

D[1] D[2]
y1

y2

uncouped-DVI
uncoupled-DVD
coupled
post-coupling

Legend

d) step 6 - function problem roles

Figure 3.9: Sellar problem FPG composition

58

3

updates that same value. Hence, the input and output point to the same location of the
schema. This is common practice for systems using a CDS approach, when tools take ini-
tial guesses or update the values (e.g. the aircraft weight) stored in a schema file. Similar
to the example in Fig. 3.3, this type of node is made valid by splitting it in two instances
using a KADMOS method resulting in b (ins(b) = 0) and bi 1 (ins(b) = 1). Fig. 3.9b depicts
the FPG of the Sellar problem after the execution of the previous steps.

In step 4 a KADMOS check method is executed which returns a positive result. Then the
team can merge functions that belong together and that can be executed in sequence
(i.e. without any feedback coupling) or in parallel (i.e. without any coupling). Hence,
in step 5 the function sequence 〈A,B,C〉 is merged as one function ABC, and the set of
parallel functions {G[1],G[2]} is merged as G[1,2]. See Fig. 3.9c for the resulting graph.
These function mergers are useful to declutter the system (and maintain oversight) by
clustering more disciplines into fewer “macro-discipline” blocks.

Step 6 of the FPG composition process consists in the determination of the problem
role of the various functions. The function problem roles in an FPG belong to one of
four main groups: uncoupled-DVI, uncoupled-DVD, coupled, and post-coupling, where
the suffix of the two uncoupled types indicates whether the functions are Design Vari-
able Dependent (DVD) or Design Variable Independent (DVI). The coupled functions
are the set of functions that are involved in cycles in the FPG. These cycles indicate that
a method is required to converge the system, since any order of executing the tools will
always require some feedback loop. The single cycle present in the Sellar FPG is depicted
in Fig. 3.9c. Hence, tools D[1] and D[2] have the problem role ‘coupled’. The uncoupled
functions are all the functions on an incoming path with respect to the cycles, for exam-
ple the function ABC on the path {a,ABC,c,D[1]}. The default problem role for uncou-
pled functions is uncoupled-DVI. However, if the FPG contains design variables, then
some of the uncoupled functions could also be DVD and should be marked as such, see
tool H in this example. This distinction is required later to correctly position the uncou-
pled functions either outside (if DVI) or inside (if DVD) the main cycle handling design
variables (i.e. DOE or optimizer block). The post-coupling functions are simply all the
remaining functions. The problem roles are shown in Fig. 3.9d.

In step 7 the description of the fundamental MDAO problem is completed by specify-
ing the sequence of the functions. The sequences for each problem role are determined
automatically in KADMOS. The uncoupled and post-coupling sequences are straight-
forward, since no cycles are present in those function sets. Any sequence of functions
that constitutes a topological order of the nodes is valid, where for the uncoupled func-
tions the most optimal sequence is a sequence where the DVD functions are required
as late as possible, hence 〈ABC,H〉. The sequencing of the coupled functions is more
challenging as the number of feedback variables can depend on the sequence given. For
this purpose, sequencing algorithms have been implemented that search for the opti-
mal sequence by minimizing the number of feedback couplings. These algorithms will
be discussed in §§3.5.3. However, for the Sellar problem both possible sequences have
the same number of feedback variables, thus the sequence 〈D[1],D[2]〉 was arbitrarily
selected. The post-coupling sequence is set to 〈F,G[1,2]〉.
If a distributed MDO architecture needs to be implemented, then the coupled functions
in the FPG need to be grouped to indicate how the system needs to be distributed. This
grouping can be determined automatically using a decomposition algorithm, which is
discussed in more detail in §§3.5.4. In the small Sellar example, the two groups are sim-

59

3

ply the two coupled functions. The other functions in the FPG will be grouped automati-
cally when the distributed MDO architecture is imposed, as further discussed in §§3.5.2.
The FPG in Fig. 3.9d has been defined with the MDO architecture types in mind, but
it is possible to use nearly the same FPG also for MDA and DOE by simply reassigning
variable problem roles based on step 2 of Algorithm 1.

3.4.3. MDAO DATA GRAPH

The MDG, together with the MPG in the next section, belongs to the last set of graphs
produced by KADMOS to enable the third stage of the formulation phase. The MDG is
constructed automatically by a KADMOS graph manipulation algorithm that transforms
the previously generated FPG into the MDAO solution strategy based on the architecture
selected in step 1 of Algorithm 1. The MDG MD = (VMD ,EMD) has to meet the following
conditions:

1. VF ⊂VMD (graph contains all FPG nodes)

2. ∃!v ∈VMD : ar(v) = coordinator ⇒ v = COOR (graph has a single coordinator)

3. ∀v ∈VMD :
∃ cycle C = (VC ,EC) where v ∧COOR ∈VC

(all nodes are on a cycle

that includes the coordinator)

4. ∀v ∈VMD , f ∩VF, f : ar(v) ∈ {1st col. Tab. 3.8} (architecture role FPG functions)

5. ∀v ∈VMD , f \VF, f :
if (∃w ∈VF, f where w = v except

ins(w) 6= ins(v)) ∨ (v is an AMR)

then ar(v) ∈ {1st col. Tab. 3.8}
else

ar(v) ∈ {2nd col. Tab. 3.8}

(architecture role of new

functions: FPG function

instances, AMRs, and others)

6. ∀v ∈VMD ,v \VF,v :
(ar(v) ∈ {3rd col. Tab. 3.8})∨
(∃w ∈VF, f where w = v except ins(w) 6= ins(v))∨
(v ∈ {ter(e) | e ∈ E+(AMR)})

(architecture role

of new variables)

The coordinator node that is required by condition 2 provides the system-level inputs
and collects system-level outputs. Conditions 4 and 5 concern the architecture roles of
function nodes. Conditions 5 states that all nodes from the FPG, their instances, and
AMRs get an architecture role from the same set as the architecture roles in condition
4. Other new function nodes also have an architecture role, but from a different set,
see Tab. 3.8. Condition 6 describes that new variables generally get architecture roles
assigned, except when they are added as instances or to serve as outputs of AMRs by the
algorithm that imposes the MDAO architecture.

Based on the Sellar problem FPG given in Fig. 3.9d, KADMOS can impose any MDO ar-
chitecture. Here, as an example, we illustrate the implementation of the MDF architec-
ture, with a Gauss-Seidel convergence scheme, which requires the addition of a con-
verger block to drive the MDA convergence cycle, see Algorithm 2 and Fig. 3.10a. More
architectures are available in KADMOS, as discussed in §§3.5.2.

60

3

Table 3.8: Lists of possible architecture roles for function and variable nodes in an MDG

existing functions and AMRs new functions new variables

uncoupled-DVI coordinator final design variable
uncoupled-DVD optimizer final output

coupled converger final coupling
post-coupling DOE DOE output samples

Surrogate Model (SM) initial guess design variable
initial guess coupling variable

DOE input samples
coupling copy

design variable copy
coupling weight
SM approximate

Algorithm 2: MDG algorithm for MDF with Gauss-Seidel convergence scheme (Refer to
Fig. 3.10a for the final graph and Fig. 3.10c for the XDSM)

1. Check FPG based on graph conditions.
2. Copy the FPG as a starting point for the MDG.
3. Add coordinator block (COOR).
4. Add and connect the converger block (CONV) to the coupled functions.
a: Remove feedback coupling between coupled functions ⇒ edge (y2, D[1]) in the FPG.
b: Connect feedback coupling to the converger

⇒ edge (y2, CONV) in the MDG.
c: Add and connect a copy variable for each feedback coupling ⇒ node yc

2 and its edges.
d: Add initial guess of the copy variable and connect it to the COOR and CONV blocks ⇒

node yc0
2 and its edges.

e: Add final coupling value variables between the coupled functions and the coordinator
⇒ node y∗2 and its edges.

5. Add and connect optimizer (OPT):
a: Connect design variables as output of the Optimizer ⇒ edges (OPT, x0), (OPT, z1), and

(OPT, z2).
b: Add initial guess for the design variables and connect them to the coordinator (COOR)

and optimizer (OPT) blocks ⇒ e.g. node x0
0 and its edges.

c: Connect the objective and constraint variables from the post-coupling functions as in-
put to the optimizer ⇒ edges (f , OPT), (g1, OPT), (g2, OPT).

d: Add final objective and constraint value variables between the post-coupling functions
and the coordinator ⇒ e.g. node f ∗ and its edges.

6. Connect any remaining input nodes to the coordinator ⇒ edge (COOR, a).
7. Check MDG based on all conditions.

61

3

G
[1,2]

F

D[1]

D[2]

ABC
a

c
z2

z1
x1

f
g1

g2

y1

y2

COOR

OPT

CONV

x00 z10 z20
y2c0

x0*

z1*

z2*

g1*g2* f*

y2*

y2cH

x0

a) MDG

G[1,2]
{8}

F
{8}

D[1]
{5}

D[2]
{6}

ABC
{1}

COOR
{0,10}

OPT
{2,9}

CONV
{4,7}

1

2

3

4

6

7

8
8

9

9

10

H
{3}

5

b) MPG

0, 10:

COOR
1: a 2: x00 , z

0
1 , z

0
2 4: y c02

1:

ABC
5: c 6: c

10: x∗0 , z
∗
1 , z

∗
2

2, 9→ 3:
OPT

3: x0 5: z1, z2 6: z1, z2 8: z2

3:

H
5: x1 8: x1

4, 7→ 5:
CONV

5: y c2

5:

D[1]
6: y1 8: y1 8: y1

10: y ∗2 7: y2
6:

D[2]
8: y2 8: y2

10: f ∗ 9: f
8:

F

10: g∗1, g
∗
2 9: g1, g2

8:

G[1,2]

c) Automatically generated XDSM of the combined MDG+MPG

Figure 3.10: MDAO graphs and XDSM view of the Sellar problem using the MDF architecture with a
Gauss-Seidel convergence scheme

62

3

Algorithm 3: MPG algorithm for MDF with Gauss-Seidel convergence scheme (see Fig. 3.10b
for the final graph and Fig. 3.10c for the XDSM)

1. Check MDG based on graph conditions.
2. Start with an empty directed graph object of the MdaoProcessGraph class.
3. Add the function nodes from the MDG.
4. Set PSN to 0 and assign PSN = 0 to COOR block.
5. Add a process from the COOR block to the OPT block via the uncoupled-DVI functions

⇒ edges (COOR, ABC){1} and (ABC, OPT){2} and the corresponding PSNs on the nodes.
6. Add a process from the OPT block to the CONV block via the uncoupled-DVD functions

⇒ edges (OPT, H){3}, (H, CONV){4} and node PSNs.
7. Add an iterative process from the CONV block through the coupled functions back to the

CONV block ⇒ edges (CONV, D[1]){5}, (D[1], D[2]){6}, and (D[2], CONV){7}.
8. Add a process from the CONV block to the OPT block via the post-coupling functions

⇒ e.g. edges (CONV, F){8} and (F, OPT){9}.
9. Add a process from the OPT block back to the COOR block ⇒ edge (OPT, COOR){10}.

3.4.4. MDAO PROCESS GRAPH

The MPG is the only process type graph discussed in this dissertation. This graph defines
the process steps that are required to solve the MDAO problem based on the selected ar-
chitecture, hence it contains the execution sequence of all the blocks in the architecture,
including the necessary iteration cycles, their nesting, etc. An MPG is always based on
an MDG. The MPG MP = (VMP ,EMP) should meet the following additional conditions
with respect to the ProcessGraph class defined in §§3.2.3:

1. VMP =VMD , f (graph nodes are MDG functions)

2. ∃!v ∈VMP : psn(v) = minpsn(MP) ⇒ v = COOR (process starts at coordinator)

3. ∃!v ∈VMP : psn(v) = maxpsn(MP) ⇒ v = COOR (process ends at coordinator)

4. ∀v ∈VMP :
∃ cycle C = (VC ,EC) where v ∧COOR ∈VC

(all nodes are part of a cycle

that contains the coordinator)

5. ∃ cycle C = (VC ,EC) ∈ MP for which
{psn(e) | e ∈ EC } = [1,maxpsn(VC)]

(there is at least one cycle with con-

tinuously increasing step numbers)

The MPG corresponding to the earlier discussed MDG is automatically determined by
the KADMOS algorithm provided in Algorithm 3.

3.5. AUTOMATED CAPABILITIES FOR GRAPH-BASED SYSTEMS

In this section, four novel capabilities that exploit the graph-based formalization of MDAO
systems are briefly discussed: XDSM visualization, architecture reconfiguration, sequenc-
ing, and partitioning.

3.5.1. XDSM VISUALIZATION OF SYSTEM GRAPHS

In order to offer a convenient visualization of the assembled MDAO system, KADMOS
provides a method to combine the MDG and MPG into a single representation based on

63

3

the XDSM. To do that, KADMOS actually defines the XDSM graph as the union of the
data and process graphs:

XDSM = MD ∪MP

The result is shown in the example in Fig. 3.10c. This XDSM is automatically created
using the Python graph objects MDG and MPG and a graph-based extension of the LATEX-
based XDSM writer [S20] by Lambe and Martins [37]. The same method can also be used
to solely visualize data graphs, which would result in ‘XDSM data flow’ visualizations.
Without process information, such an XDSM would be equivalent to an N2 chart.

Of the two graphs that describe an XDSM, the MDG will grow in size more quickly as
the MDAO system becomes larger and more complex. Since the growing amount of off-
diagonal information to be displayed would affect the readability of the XDSM visualiza-
tion, KADMOS can be set to visualize just the number of connections, rather than the
full list of exchanged I/O data. Hence instead of ‘4: x1, z1, z2’ as shown in Fig. 3.10c,
KADMOS would only state ‘4: 3 connections’. This concise notation will be used in the
case study (§3.7).

As discussed in the introduction, the formulation of an MDAO system in large, collabora-
tive design projects can be severely impaired by a lack of proper visualizations. Debug-
ging, documenting, exchanging information and, even more, maintaining oversight of
the whole systems would easily become impossible, thereby compromising the success
of the very MDAO initiative. The graph-based formalization provided by KADMOS ap-
pears to be a key enabler to such visualization, even beyond the KADMOS native XDSM
generation ability. As discussed later in this dissertation (Chapter 6), its compact, struc-
tured and rigorous syntax provided the opportunity to develop an advanced dynamic
visualization tool, called VISTOMS [S11], able to interactively display in the browser
XDSMs of any size (as well as other type of useful visualizations) and inspect any sin-
gle exchanged data, by toggling and expanding every XDSM block. Details on VISTOMS
are provided by Aigner et al. [39].

3.5.2. ARCHITECTURE RECONFIGURATION

One of the motivations for describing the different stages of MDAO systems using a
graph syntax, is that the system can be reconfigured very easily. Multiple algorithms are
available in KADMOS to automatically determine the reconfigured data connections and
process necessary to solve the optimization problem based on various MDO architec-
tures. Hence, the same FPG in Fig. 3.9d can be used to reconfigure to MDF with a Jacobi
convergence schema, or to impose IDF, or apply distributed architectures. Other archi-
tecture types (i.e. without optimization) would require small adjustments of the FPG, for
example, a DOE strategy would be based on design variables, but instead of objective
and constraint variables, it can only have QOIs. The following MDAO architectures are
currently supported:

• MDA
– without convergence, hence simply running a set of tools in sequence.
– with convergence, based on either Gauss-Seidel or Jacobi scheme.

• DOE with one of the MDA set-ups embedded
• MDO

– monolithic

64

3

¦ MDF with a Gauss-Seidel or Jacobi convergence scheme
¦ IDF

– distributed
¦ CO
¦ BLISS-2000

This section discusses the reconfiguration with CO for the Sellar case. In Fig. 3.10 the
monolithic MDF architecture has been implemented on the FPG shown in Fig. 3.9d. Al-
ternatively, the radically different CO strategy could also be used to solve the same prob-
lem. MDF and CO are just two of the standard MDAO architectures currently available
in KADMOS, but new ones can be defined, possibly requiring the addition of new FPG
graph manipulation methods. When CO was added to KADMOS, for example, its algo-
rithms were built using a combination of the methods previously developed for mono-
lithic architectures and newly developed methods, specific for distributed architectures
(e.g. determination of global and local design variables and constraints, addition of new
AMRs, etc.). With a growing library of MDAO architectures, the number of basic graph
manipulation methods included in KADMOS also grows, making it easier to add new
architectures (or variations of architectures) to the package.

The basic steps of the MDG creation for CO are summarized in Algorithm 4. The combi-
nation of MDG and MPG for the CO strategy is depicted in Fig. 3.11. Multiple concepts
from the KADMOS graph syntax come forward in this small example. For example, many
instances and copies of variables are created, especially for the global design variables z1

and z2, as these are used by functions in all three optimization cycles. In addition, also a
function instance is created for the function H (see: Hi 1 in the sub-OPT-0 cycle), which is
done in this case to keep the suboptimization cycle independent of the functions in the
main Sys-OPT cycle. The algorithm also adds the AMRs J0 and J1, which are the consis-
tency constraint/objective functions that are part of the CO formulation. Also note that
all functions within the optimization cycles now have the architecture role ‘uncoupled-
DVD’ functions, since the distribution of D[1] and D[2] through separate optimization
cycles means that no convergence cycle is required within any optimizations, making
the categories ‘coupled’ and ‘post-coupling’ irrelevant in this situation.

How other architectures from the aforementioned list can be used will be shown in the
case studies in the two upcoming sections. These sections are dedicated to studies that
validate (§3.6) and demonstrate (§3.7) KADMOS’s ability to support the formulation
phase for cases of representative complexity.

65

3

0
,9
:

C
O
O
R

1
:
a

2
:
x
c
,0
0
,
y
c
,0
1

y
c
,0
2
,
z
0 1
,
z
0 2

3
:
x
0 0

z
c
,0
1
,
z
c
,0
2

3
:
z
c
,i
1
,0

1

z
c
,i
1
,0

2

1
:

A
B
C

5
:
c

4
:
c

9
:
x
c
,∗
0
,
y
c
,∗
1

y
c
,∗
2
,
z
∗ 1,
z
∗ 2

2
,8
→
3
:

S
ys
-O
P
T

3
:
x
c 0

4
:
y
c 1
,
y
c 2
,
z 2

5
:
y
c 2

6
:
x
c 0
,
y
c 1
,
z 1
,
z 2

4
:
y
c 1

5
:
y
c 2
,
z 1
,
z 2

3
: H

4
:
x 1

9
:
f
∗

8
:
f

4
: F

9
:
x
∗ 0

z
c
,∗
1
,
z
c
,∗
2

3
,7
→
4
:

S
u
b
-O
P
T
-0

4
:
x 0

5
:
z
c 1
,
z
c 2

6
:
x 0
,
z
c 1
,
z
c 2

4
:

H
i1

5
:
x
i1 1

5
:

D
[1
]

6
:
y 1

6
:
y 1

9
:
g
∗ 1

7
:
g
1

6
:

G
[1
]

9
:
J
0
∗,
∗

8
:
J
0
∗

7
:
J
0

6
:

J0

9
:
z
c
,i
1
,∗

1

z
c
,i
1
,∗

2

3
,6
→
4
:

S
u
b
-O
P
T
-1

4
:
z
c
,i
1

1
,
z
c
,i
1

2
5
:
z
c
,i
1

1
,
z
c
,i
1

2

4
:

D
[2
]

5
:
y 2

5
:
y 2

9
:
g
∗ 2

6
:
g
2

5
:

G
[2
]

9
:
J
1
∗,
∗

8
:
J
1
∗

6
:
J
1

5
:

J1

F
ig

u
re

3.
11

:A
u

to
m

at
ic

al
ly

ge
n

er
at

ed
X

D
SM

o
ft

h
e

C
O

ar
ch

it
ec

tu
re

im
p

o
se

d
o

n
th

e
F

P
G

sh
ow

n
in

F
ig

.3
.9

d

66

3

Algorithm 4: MDG algorithm for CO (Refer to Fig. 3.11 for the corresponding XDSM)

1-3. Same as steps 1-3 in Algorithm 2.
4. Analyze the distribution of the whole system based on the provided distribution

(step 8 in Algorithm 1) of the coupled functions in the FPG:
a: Identify global objective variable ⇒ f .
b: Identify global and local constraint variables ⇒ global: -, local: g1 with D[1] and g2

with D[2] group.
c: Identify global and local design variables ⇒ global: z1, z2, local: x0 with D[1] group.
d: Determine function grouping: for each function, assess whether it belongs to the

system-level and/or to one of the disciplinary groups.
⇒ system-level: ABC, H, F; D[1] group: H, D[1], G[1]; D[2] group: D[2], G[2].

5. Split functions that occur multiple times in the function grouping ⇒ Hi 1.
6. Start loop for each subsystem group:
a: Localize the disciplinary group by introducing copies of design variables and cou-

plings ⇒ e.g. zc
1 .

b: Add the consistency objective function AMR ⇒ J0, J1.
c: If disciplinary group contains cycles: add converger (similar to step 4 in Algorithm 2)

⇒ N/A.
d: Add and connect optimizer (similar to step 5 in Algorithm 2) ⇒ Sub-OPT-0 and Sub-

OPT-1.
7. Add and connect system-level optimizer (similar to step 5 in Algorithm 2)⇒ Sys-OPT.
8-9. Same as steps 6-7 in Algorithm 2.

67

3

3.5.3. SEQUENCING ALGORITHMS

A

� 1s yA

yB
B

� 4s

yC
C

� 3s

yD
D

� 4s

a) Initial (random) order of the
functions

D

� 4s yD

B

� 4s yB

C

� 3s yC

yA
A

� 1s

b) Optimal order for minimum
feedback

Figure 3.12: Illustrative
example to explain sequencing

algorithms

In step 7 of the FPG composition process (Algorithm 1), the
execution sequence of the functions in the problem graph
has to be specified. This is a trivial task for a small system
involving a small number of functions and couplings. How-
ever, for larger systems that have a considerable number of
interconnections, the best function order (where ‘best’ in
this section means a minimum number of feedback vari-
ables) is not obvious neither unique. An automated capa-
bility to obtain a convenient function order saves time com-
pared to adjusting that order manually, even for small sys-
tems. Therefore, sequencing algorithms have been imple-
mented and tested in KADMOS [87].

Two execution sequence properties are considered in the
developed algorithms:

• number of feedback variables;
• execution time of a single sequence.

Fig. 3.12 depicts a small example of a sequencing problem.
The order of the functions on the diagonal is assumed to be
the execution order of the tools. In Fig. 3.12a a random order
is provided. If this system needs to be converged, then three
feedback variables need to be handled by the solver. A better
sequence is provided in Fig. 3.12b, since only one feedback
variable is left. The estimated execution times of the four
functions are also indicated in the figure. In Fig. 3.12a, if the
feedback variables are ignored, then functions A, B, and D
can be executed directly and simultaneously; C can run af-
ter tool A has provided its required input. Hence, the total
execution time of a single iteration sequence is 4 seconds. In
Fig. 3.12b, D and C are started in parallel, followed by B and
A. Thus the execution time is larger and equal to 9 seconds.
Hence, the execution time of a single iteration is larger, but
the sequence in Fig. 3.12b is still considered optimal, since feedback reduction is priori-
tized over iteration time minimization.

The goal of the sequencing algorithms is to find the tool sequence that has the lowest
number of feedback variables in combination with the shortest possible execution time of
a single iteration for that number of feedback variables. The following seven algorithms
have been developed for this purpose:

• brute-force: determines all possible sequences and checks them individually.
• branch-and-bound: performs a smart tree search to find the best sequence.
• swapping: starting from a random sequence, iteratively adjusts the sequence based

on a given swap type (see three options below) until the solution cannot be im-
proved anymore. The three swap options are:

– single-swap: swaps a single function node to a new location between two
other functions.

– two-swap: swaps the position of two function nodes.

68

3

– hybrid-swap: first performs two-swap until converged, then single-swaps to
refine.

• genetic algorithm: employs a genetic algorithm implementation to solve the se-
quencing problem. This algorithm is used as a benchmark solution for large sys-
tems.

The sequencing algorithms were validated using a scalable MDAO system with random-
ized couplings, based on the variable complexity problem described by Zhang et al. [88].
Hundreds of MDAO systems were created automatically and sequenced using the seven
algorithms above, changing the number of disciplines and couplings (the latter is also
called the ‘coupling density’). After validation, the performance of the different algo-
rithms was assessed, which is shown in Fig. 3.13. These tests were performed for systems
ranging from five to fifty disciplines. For each test setting (a combination of number of
disciplines and coupling density), 200 randomly created MDAO systems were analyzed.

Figure 3.13: Performance of the different sequencing algorithms in terms of evaluation time [87]

Fig. 3.13 shows that the evaluation times increase quickly around ten disciplines for
both the brute-force and branch-and-bound algorithms. This is to be expected, as the
number of sequence options grow tremendously with each additional discipline. In the
brute-force approach, the algorithm scales with n f !, where n f is the number of disci-
plines. Hence, at ten functions there are already ∼ 3.6 · 106 options to consider. The
branch-and-bound algorithm reduces the number of options with the smart tree search,
but the execution time still increases exponentially. However, the two aforementioned
algorithms are still advantageous for small systems, since they will always provide the
exact solution for the sequencing problem. Thus, for these systems the algorithms are
still valuable in practice and they are also useful to benchmark the other algorithms.

The swapping algorithms offer a more scalable performance. All three swapping ap-
proaches are quite close in Fig. 3.13. The two-swap algorithm is fastest, the single-swap
slowest, while the hybrid-swap performs between them. Though the performance of
the swapping algorithms is more scalable with system size, their main disadvantage
is the fact that they will not necessarily return the global optimum. From their start-
ing sequence, these algorithms will keep swapping nodes until no improvement can be
achieved anymore. Thereby, the nature of these algorithms does not guarantee that the
best sequence is actually encountered in the iterative process. Hence, the next ques-
tion to answer is which of these algorithms will provide the best results by obtaining the
solution with the lowest number of feedback variables and lowest execution time of an
iteration.

69

3

The sixth algorithm, genetic algorithm, was implemented to assess the results for large
systems where brute-force and branch-and-bound methods cannot be used. As shown
in Fig. 3.13, this algorithm clearly lacks a performance advantage, but it carries out a
more distributed search of the design space with its evolving population of solutions.
This makes the algorithm a good candidate to check the optimality of the swapping al-
gorithms results.

The results of the sequencing algorithms for a range of systems are summarized in
Fig. 3.14. Fig. 3.14a depicts the average feedback difference for small systems, where the
brute-force algorithm is taken as the benchmark. Each point in this plot represents 200
analyses of randomized systems. The average feedback difference is calculated by tak-
ing the mean of the difference in the number of feedback variables obtained by a certain
algorithm and the exact solution of the benchmark for the 200 systems that are analyzed
per point. As expected, the branch-and-bound approach always finds the benchmark
solution and the average feedback difference is zero. The swapping algorithms are not
guaranteed to find the same solution, with the two-swap approach performing worst.
The two-swap algorithm pays for it better evaluation time (Fig. 3.13) by returning less
optimal (i.e. larger number of feedback variables) solutions (Fig. 3.14). This is attributed
to the fact that the algorithm always has to swap two functions, meaning that it is not
always able to find the same solution as the single-swap approach.

5 6 7 8 9 10
disciplines [-]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

av
er

ag
e

fe
ed

ba
ck

 d
iff

er
en

ce
 [-

]

Algorithm
exact (brute-force)
single-swap
two-swap
hybrid-swap
branch-and-bound
genetic-algorithm

a) small MDAO systems

10 20 30 40 50
disciplines [-]

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

av
er

ag
e

fe
ed

ba
ck

 d
iff

er
en

ce
 [-

]

Algorithm
genetic algorithm
single-swap
two-swap
hybrid-swap

b) large MDAO systems

Figure 3.14: Benchmarking results for small (left) and large (right) MDAO systems [87]

Fig. 3.14b shows the average feedback difference for large systems. Here, the genetic al-
gorithm is used as the benchmark. The brute-force and branch-and-bound solutions
cannot handle this system size, so only the swapping algorithms are assessed. The two-
swap algorithm is not able to find the same or better solutions in terms of feedback
variable minimization as the genetic approach, while the single- and hybrid-swap ap-
proaches actually outperform it. Thus, for larger systems, the single- and hybrid-swap
approaches are advantageous compared to a genetic algorithm, with respect to both per-
formance and result optimality.

In conclusion, based on these results which are representative of the broader algorithm
assessment (more details can be found in [87]), the sequencing method implemented in
KADMOS automatically selects the algorithm to be used as follows:

• ≤ 10 coupled disciplines → branch-and-bound
• > 10 coupled disciplines → single-swap

70

3

The sequencing method is used to automatically determine the function order with min-
imal feedback variables and lowest execution time of a single iteration for systems up to
fifty disciplines. In addition, the method is also used in the decomposition algorithm, as
will be discussed in the next section.

3.5.4. DECOMPOSITION ALGORITHM

If the computational environment support this (i.e. multi-core processing), it might be
advantageous to decompose the functions of a large MDAO system in several smaller
parallel function groups. Distributed MDO architectures also require the system to be
decomposed to obtain a convenient distribution of the disciplinary functions. The graph-
based system representation obtained by KADMOS lends itself very well for such decom-
position using partitioning algorithms.

Together with Bruggeman, a decomposition method for KADMOS was developed [87]
using the Metis graph partitioning algorithm by Karypis and Kumar [89]. The method
is called Metis-based Decomposition of KADMOS graphs (MDK). Metis itself cannot be
used directly, since additional graph analysis and manipulations are required to take care
of the mismatch between the FPG used by KADMOS to describe the MDAO problem and
the graph that is required by Metis to perform partitioning. Additionally, the specific
decomposition objective for the KADMOS graphs also has to be translated to the right
Metis format. This decomposition objective is:

to find the best decomposition of the system that balances the required coor-
dination between partitions (i.e. minimize the couplings between partitions)
and the execution time of each partition.

This objective is translated to the following function that needs to be minimized:

f = fb ·
nce +nfb

nc
+ (fb −1) · tsys∑n f

i=1 ti

(3.1)

in which:

fb : balance factor (0 ≤ fb ≤ 1) to prioritize coupling or run-

time minimization

nce : total number of edges cut by the partitioning algorithm

nfb : total number of feedback variables within the partitions

nc : total number of couplings in system

tsys : total runtime when partitions are executed in parallel
n f∑
i=1

ti : total runtime of all functions summed individually

The first term in the objective function represents the number of couplings in the de-
composed system and the second term is the normalized execution time of the decom-
posed system. The balance factor is used for both terms and is set by the user to have a
value between zero and one. This factor controls whether the decompositioning will aim
at balancing the couplings between partitions (fb = 1, second term in Eq. (3.1) is always
zero), at balancing the runtime of the partitions (fb = 0, first term in Eq. (3.1) is always
zero), or a hybrid aim in between.

71

3

The process flow of the MDK method is depicted in Fig. 3.15 accompanied by a small
example. The following steps are performed in the method:

1. Inputs have to be provided to start the process flow:
• FPG to be decomposed.
• MDAO architecture that the system has to be decomposed for. Depending

on the architecture, different functions from the FPG are selected for decom-
positioning, see step 2.

• Balance factor (fb) to be used.
• Number of partitions that is required. This should match with the number of

cores that is available in the computational environment.
2. Based on the provided architecture, MDK determines which functions need to be

included in the partitioning graph. For example, with an MDF architecture only
the functions with the problem role ‘coupled’ would be included, while for IDF
both the ‘coupled’ and ‘post-coupling’ functions need to be part of the partition-
ing. In the example provided in Fig. 3.15 all functions are coupled and need to be
part of the partitioning.

3. The FPG is translated to a graph that can be handled by Metis. Metis can only
handle simple, undirected graphs. The partitioning can be influenced by adding
weights to the nodes and edges, where Metis will try to balance the total node and
edge weights of each partition. The following two steps result in a Metis graph:

(a) Function nodes are copied to an empty undirected graph. The execution
time is added as the node weight.

(b) The couplings between two functions are summed and an edge is created if
there is at least one coupling. The edge weight is set to the number of cou-
plings between the two functions.

A translation example from FPG to Metis graph is shown in the figure.
4. The graph is partitioned using Metis. In the example, two partitions are requested

and the edge between functions D3 and D7 is cut.
5. The provided partition needs to be analyzed further. First, the functions in each

partition are sequenced using the sequencing method from §§3.5.3.
6. The objective value can be calculated. Note that due to the applied sequencing

the actual execution time of a partition can be lower than the sum of the node
weights, since some of the functions can be run in parallel, such as D3 and D2 in
the example.

7. MDK checks for convergence by considering the last x iterations. This is a setting
of the method, which defaults to 3.

8. Since Metis is not aware of the function order and considers summed node weights
to represent the execution time of a partition, something needs to be done to take
parallel execution of the functions into account. This is why parallel nodes are
merged at the beginning of the second iteration. The node weight is then set to
the largest execution time among the parallel nodes.

9. As shown in the last column of Fig. 3.15, the merged parallel nodes result in a new
graph to be partitioned, which has an improved objective (f = 0.40 instead of 0.42).

10. This process is iterated until the objective can no longer be improved.

The MDK method was verified and validated using the same randomized scalable prob-
lem used for the sequencing algorithms in the previous section. A benchmark method
was developed based on a brute-force approach: this method determines all possible
partitions for a given system and calculates the objective value for each option. The

72

3

D1

� 3s y11 y11

D2

� 2s y21

D3

� 3s
y31
y32

D4

� 4s
y41
y42
y43

y41

y51
y52

D5

� 5s

y61

y61
y62
y63

D6

� 4s

y71 y71
D7

� 3s

MDK process �ow example (�rst iteration) example (second iteration)

determine
functions to

be partitioned

create Metis
graph

partition
graph

calculate ob-
jective value

unmerge
functions

merge paral-
lel nodes

sequence
functions in

each partition

FPG

balance
factor

number of
partitions

MDAO
architecture

�rst
iteration

?

Y

N

conver-
ged?

Y

N

D1
 3

D2
 2

D3
 3

D4
 4

D5
 5

D6
 4

D7
 3

2 3 3 1

1

2

31

1

D1
 3

D3+2
 5

D4
 4

D5
 5

D6
 4

D7
 3

5 3 1

1

2

31

1

D1
 3

D2
 2

D3
 3

D4
 4

D5
 5

D6
 4

D7
 3

2 3 3 1

1

2

31

1partition line

D1
 3

D2
 2

D3
 3

D4
 4

D5
 5

D6
 4

D7
 3

2 3 3 1

1

2

31

1partition line

D6

� 4s
y61
y62
y63

y61

D3

� 3s
y31
y32

y21
D2

� 2s

D4

� 4s
y41
y42
y43

y41

D5

� 5s
y51
y52

y11
D1

� 3s y11

y71 y71
D7

� 3s

partition 1

partition 2

D1
 3

D3+2
 5

D4
 4

D5
 5

D6
 4

D7
 3

5 3 1

1

2

31

1
partition line

D6

� 4s
y61
y62
y63

y61

D3

� 3s
y31
y32

y21
D2

� 2s

y71
D7

� 3s y71

y41
D4

� 4s
y41
y42
y43

D5

� 5s
y51
y52

y11 y11
D1

� 3s

partition 1

partition 2

...

Figure 3.15: Process flow (left) of the MDK decomposition method implemented in KADMOS with a small
illustrative example for two iterations (middle and right)

73

3

brute-force approach can only be used for small systems up to nine disciplines, as the
number of options grows exponentially with the number of system functions. The com-
parison between MDK and the brute-force approach is shown in the bar plots in Fig. 3.16.
For each bar 200 randomized systems have been decomposed and the average objective
value is shown. The bar plot in Fig. 3.16a shows the results when a increasing number
of disciplines is decomposed in two groups, while in Fig. 3.16b the number of partitions
is varied for systems with eight disciplines. The MDK method is not able to achieve the
same objective values as the brute-force approach, which is related to the aforemen-
tioned limitations of translating the FPG to a Metis graph (for more details, see [87]), but
it is much faster.

5 6 7 8 9
disciplines [-]

0.0

0.1

0.2

0.3

0.4

0.5

av
er

ag
e

ob
je

ct
iv

e
[-]

Algorithm
MDK
brute-force

a) varying the number of disciplines that are
partitioned in two groups

2 3 4 5 6 7 8
partitions [-]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

av
er

ag
e

ob
je

ct
iv

e
[-]

Algorithm
MDK
brute-force

b) varying the number of partitions for a system with
eight functions

Figure 3.16: Typical validation bar plots for the MDK method with respect to a brute-force approach for small
systems [87]

This performance gain of the MDK
method is shown in Fig. 3.17. The
method is able to handle much
larger MDAO systems, up to fifty
functions, wheres the brute-force
approach cannot handle systems
with more than nine. In conclu-
sion, MDK will not guarantee to
find the most optimal decompo-
sition of a system, but it is able
to provide convenient decomposi-
tions for a wide range of system
sizes.

10 20 30 40 50
disciplines [-]

0

20

40

60

80

100

120

140

av
er

ag
e

ev
al

ua
tio

n
tim

e
[s

]

partitions
2 - MDK
3 - MDK
4 - MDK
5 - MDK
2 - brute-force
3 - brute-force
4 - brute-force
5 - brute-force

Figure 3.17: Performance of the MDK and brute-force
methods for a range of MDAO system sizes [87]

3.6. VALIDATION CASE STUDY: SUPERSONIC BUSINESS JET

The SuperSonic Business Jet (SSBJ) case is a small MDAO system developed by Sobieski
et al. [48] to test different BLISS architecture schemes. The system is used to perform
the conceptual design of a business jet by optimizing its cruise segment accounting for

74

3

four disciplines: structures, aerodynamics, propulsion, and performance. In this disser-
tation, the SSBJ case is used to verify new developments at each stage of the collabora-
tive MDAO design process, including executable workflow instances in multiple PIDO
platforms (to be discussed in Chapter 5). The SSBJ disciplines, described in [90] and
originally implemented as MATLAB code, were rewritten and published in Python by
Dubreuil and Lafage [S21]. Subsequently, this Python code was used to create a CDS-
compatible version of the SSBJ case, which has been published as open-source code
[S22] as well. This version of the SSBJ system is used throughout the rest of the disserta-
tion.

3.6.1. STAGE I: TOOL REPOSITORY

The connectivity of the repository is depicted in Fig. 3.18 based on the RCG. Of the four
main disciplines, three have circular dependencies (structures, aerodynamics, propul-
sion). In addition, several mathematical relations are added to serve as constraints and
objective functions in optimization problems. An additional discipline was added (Dpdx)
by extracting the pressure ratio (dpdx) calculation from the aerodynamic analysis, as this
value only depends on a single (global) variable (t/c), which is important for correctly
positioning it when distributed architectures are implemented. The following mathe-
matical relations are included in the system:

Gσ ⇒ σ̃i =σi −1.09 for i = [1,5]

GΘ ⇒ Θ̃=Θ−1.04

Gdpdx ⇒ ˜dpdx = dpdx−1.04

Gprop ⇒ ˜ESF = ESF−1.5

⇒ ˜Temp = Temp−1.02

⇒ D̃T = DT

GL∼WT ⇒ g̃L∼WT = L−WT

kL∼WT

FR ⇒ R̃ =− R

kR

In which k denotes a scaling factor. Multiple MDAO problems can be formulated based
on a single repository, as will be shown for the other case study in §3.7. Here, only the
original optimization problem is considered.

3.6.2. STAGE II: MDO PROBLEM

The SSBJ optimization problem, used for validating the developments in this disserta-
tion, can be stated as follows:

75

3

t/c

t/c , AR, Λ, Sref

λ, xsec

W0, WF,0, Nz

t/c , h, M

AR, Λ, Sref

Cf , CD,min

h, M

T , WBE
h, M kL∼WT kR

Dpdx dpdx

Structures WT , Θ WF , WT σ1−5 Θ WT

L Aerodynamics D fin dpdx L

WE ESF Propulsion SFC

ESF

Temp

DT

Performance R

σ̃1−5 Gσ

Θ̃ GΘ

˜dpdx Gdpdx

˜ESF
˜Temp

D̃T

Gprop

g̃L∼WT
GL∼WT

R̃ FR

Figure 3.18: Automatically generated XDSM data flow (N2 chart) visualization of the RCG for the SSBJ case

minimize: R̃

with respect to: t/c,h, M ,AR,Λ,Sref,λ, xsec,C f ,T

subject to: σ̃i ≤0.0 for i = [1,5]

0.08 ≤ Θ̃≤0.0

˜dpdx ≤0.0

−2.0 ≤ ˜ESF ≤0.0

˜Temp ≤0.0

D̃T ≤0.0

g̃L∼WT =0.0

The last constraint is only used to ensure consistency with distributed architectures. The
XDSM data flow of the FPG is depicted in Fig. 3.19.

3.6.3. STAGE III: SOLUTION STRATEGIES

Using KADMOS, different MDO architectures can be imposed on the problem depicted
in Fig. 3.19. Two options are shown in Fig. 3.20 and Fig. 3.21: MDF with a Jacobi con-
vergence scheme and IDF. Solution strategies based on other architectures are shown in
Appendix A.

76

3

t/c , AR, Λ

Sref, λ, xsec

W0 WF,0, Nz

t/c , h, M, AR

Λ, Sref, Cf

CD,min

h, M, T

WBE

h, M kR

Structures WT , Θ WF , WT σ1−5 Θ

L Aerodynamics D fin dpdx

WE ESF Propulsion SFC

ESF

Temp

DT

Performance R

σ̃1−5 Gσ

Θ̃ GΘ

˜dpdx Gdpdx

˜ESF
˜Temp

D̃T

Gprop

R̃ FR

Legend

design variable objective constraint

Figure 3.19: XDSM data flow (N2 chart) visualization and marked variables of the FPG for the SSBJ
optimization problem

77

3

0, 8:

COOR

1: t/c0, h0

M0, AR0, Λ0

S0ref, λ
0, x0sec

C0f , T 0

2: W c0
E , Lc0

ESFc0, W c0
T

Θc0, Dc0

3: W0
WF,0, Nz

3: CD,min 3: WBE 6: kR

8: t/c∗

h∗, M∗, AR∗

Λ∗, S∗ref, λ
∗

x∗sec, C
∗
f , T ∗

1, 7→ 2:

OPT

3: t/c

AR, Λ

Sref, λ

xsec

3: t/c

h, M

AR, Λ

Sref, Cf

3: h

M, T

5: h

M

2, 4→ 3:

CONV

3: W c
E

Lc

3: ESFc

W c
T

Θc

3: Dc

8: Θ∗, W ∗T 4: WT , Θ
3:

Structures

5: WF

WT

5: σ1−5
Θ

8: D∗, L∗ 4: D, L
3:

Aerodynamics
5: fin 5: dpdx

8: ESF∗, W ∗E 4: WE , ESF
3:

Propulsion
5: SFC

5: ESF

Temp

DT

5:

Performance
6: R

8: σ̃∗1−5
. . .

D̃T
∗

7: σ̃1−5
. . .

D̃T

5:

Gσ
. . .

Gprop

8: R̃∗ 7: R̃
6:

FR

Figure 3.20: XDSM visualization of the solution strategy MDF with a Jacobi convergence scheme for the SSBJ
optimization problem

0, 6:

COOR

1: t/c0, h0, M0

AR0, Λ0, S0
ref, λ

0

x0
sec, C0

f , T 0, W c0
E

Lc0, ESFc0, W c0
T

Θc0, Dc0

2: W0

WF,0, Nz
2: CD,min 2: WBE 4: kR

6: t/c∗

h∗, M∗, AR∗

Λ∗, S∗ref, λ
∗

x∗sec, C∗f , T ∗

1, 5→ 2:

OPT

2: t/c , AR

Λ, Sref, λ

xsec, W c
E , Lc

2: t/c , h, M

AR, Λ, Sref, Cf
ESF c , W c

T , Θc

2: h, M

T , Dc
3: h, M

4: W c
E , Lc

ESF c , W c
T

Θc , Dc

6: Θ∗, W ∗T
2:

Structures

3: WF

WT

3: σ1− 5

Θ
4: WT , Θ

6: D∗, L∗
2:

Aerodynamics
3: fin 3: dpdx 4: D, L

6: ESF ∗, W ∗E
2:

Propulsion
3: SFC

3: ESF

Temp

DT

4: WE

ESF

3:

Performance
4: R

6: σ∗1−5

. . .

D̃T
∗

5: σ1−5

. . .

D̃T

3:

Gσ
. . .

Gprop

6: R̃∗ 5: R̃
4:

FR

5: gWE
, gL, gESF

gWT
, gΘ, gD

4:

Gc

Figure 3.21: XDSM visualization of the solution strategy IDF for the SSBJ optimization problem

78

3

3.7. DEMONSTRATION CASE STUDY: WING DESIGN

In §3.4 the simple Sellar problem was used as a means to explain the KADMOS func-
tionality, its graph syntax and definitions. However, the real KADMOS value stands in its
ability to support the formulation and reconfiguration of large scale (in terms of num-
ber of tools and the size of the design team involved) MDAO systems, of realistic com-
plexity and relevance for the industry. This is the goal of the aerostructural wing design
case study presented in this section. This test case uses a multidisciplinary, distributed
tool repository constituted by a mix of proprietary design tools, mostly working as black
boxes (i.e. aerodynamic solver, weight estimation tool, etc.), which have been linked to-
gether using the CDS approach. The aircraft configuration considered in this case study
is a conventional passenger jet used in one of the AGILE project design campaigns. In
this case study it is assumed that an MDAO integrator is creating a script for the design
team to formulate and reconfigure the MDAO solution strategy using KADMOS meth-
ods. These reconfigurations are representative of a typical MDAO development process,
as described by Piperni et al. [11] and discussed in §2.4, where an initial design point
is determined first through a multidisciplinary convergence study, then design space
exploration is performed using a DOE to assess the sensitivity of the design to some pa-
rameters of interest, to finally set up the actual optimization problem.

3.7.1. TOOL REPOSITORY

The collection of tools available in the database is summarized in Tab. 3.10. This in-
cludes twelve disciplinary tools developed by different experts, some of which featuring
multiple execution modes, thus representing a truly heterogeneous repository. All tools
have been made compatible with the CDS standard CPACS. As long as this compatibility
is respected, any extra tool can be added to the repository in a straightforward man-
ner. After the database has been imported, an RCG is created by KADMOS containing
2,909 nodes and 12,068 edges. By taking advantage of the mode attribute (see Fig. 3.4)
the twelve tools in the database lead to 25 function nodes in KADMOS. Due to the sheer
number of nodes and edges, the obtained RCG cannot be visualized as a graph because
of obvious readability issues. The XDSM data flow with summarized connections can be
used instead, as depicted in Fig. 3.22, although limited to a subset of the database.

79

3

Ta
b

le
3.

10
:T

o
o

lr
ep

o
si

to
ry

to
o

ln
am

e
d

es
cr

ip
ti

o
n

ex
ec

u
ti

o
n

m
et

h
o

d
m

o
d

es
m

o
d

e
d

es
cr

ip
ti

o
n

H
A

N
G

A
R

To
o

ll
o

ad
s

C
PA

C
S

fi
le

w
it

h
ai

rc
ra

ft
ge

o
m

et
ry

.U
se

d
to

h
av

e
d

is
ti

n
ct

io
n

lo
ca

l
A

G
IL

E
A

C
C

o
n

ve
n

ti
o

n
al

ai
rc

ra
ft

d
es

ig
n

cr
ea

te
d

in
th

e
A

G
IL

E
p

ro
je

ct
b

et
w

ee
n

to
o

ls
et

ti
n

gs
an

d
ai

rc
ra

ft
d

es
ig

n
in

X
D

SM
.

A
G

IL
E

A
C

w
in

g
A

d
ju

st
ed

w
in

g
o

ft
h

e
A

G
IL

E
co

n
ve

n
-

ti
o

n
al

d
es

ig
n

fo
r

ca
se

st
u

d
y.

IN
IT

IA
T

O
R

[9
1]

T
L

A
R

-b
as

ed
ai

rc
ra

ft
d

es
ig

n
cr

ea
ti

o
n

.
lo

ca
l

m
ai

n
-

SC
A

M
Si

m
p

li
fi

ed
C

PA
C

S
A

ir
cr

af
t

lo
ca

l
λ

W
in

g
ta

p
er

m
o

rp
h

M
o

rp
h

in
g.

A
d

ju
st

ai
rc

ra
ft

Λ
W

in
g

sw
ee

p
m

o
rp

h
ge

o
m

et
ry

in
d

if
fe

re
n

tw
ay

s.
Γ

W
in

g
d

ih
ed

ra
lm

o
rp

h
c r

W
in

g
ro

o
tc

h
o

rd
m

o
rp

h
b

W
in

g
le

n
gt

h
m

o
rp

h
ξ

W
in

g
sp

ar
p

o
si

ti
o

n
ch

an
ge

G
A

C
A

G
eo

m
et

ri
ca

lA
n

al
ys

is
o

fC
PA

C
S

lo
ca

l
S

w
in

g
C

al
cu

la
te

w
in

g
re

fe
re

n
ce

ar
ea

A
ir

cr
af

tc
o

m
p

o
n

en
ts

.
V

F
T

C
al

cu
la

te
w

in
g

fu
el

ta
n

k
vo

lu
m

e

Q
3D

[9
2]

Q
u

as
i-

3D
A

er
o

d
yn

am
ic

so
lv

er
.

re
m

o
te

V
D

E
V

is
co

u
s

D
ra

g
E

st
im

at
io

n
F

LC
Fl

ig
h

tL
o

ad
C

as
e

(v
o

rt
ex

la
tt

ic
e

m
et

h
.)

A
P

M
A

er
o

p
er

fo
rm

an
ce

M
ap

E
M

W
E

T
[9

3]
W

in
g

m
as

s
es

ti
m

at
io

n
to

o
l.

re
m

o
te

m
ai

n
-

SM
FA

Si
m

p
li

fi
ed

M
is

si
o

n
Fu

el
A

n
al

ys
is

.
re

m
o

te
m

ai
n

-

P
H

A
L

A
N

X
[9

4]
Fl

ig
h

td
yn

am
ic

s
to

o
lb

ox
.

re
m

o
te

Fu
ll

Lo
o

ku
p

Fu
ll

=
fu

ll
d

yn
am

ic
m

o
d

el
Fu

ll
Si

m
p

le
Si

m
p

le
=

em
p

ir
ic

al
en

gi
n

e
d

ec
k

Sy
m

m
.L

o
o

ku
p

Sy
m

m
.=

o
n

ly
lo

n
gi

tu
d

in
al

d
yn

am
ic

s
Sy

m
m

.S
im

p
le

Lo
o

ku
p

=
ex

te
rn

al
en

gi
n

e
d

ec
k

P
R

O
T

E
U

S
[9

5]
A

er
o

el
as

ti
c

w
in

g
an

al
ys

is
to

o
l.

re
m

o
te

m
ai

n
-

M
aC

al
M

as
s

C
al

cu
la

ti
o

n
fo

r
M

T
O

an
d

Z
F

.
re

m
o

te
m

ai
n

-

O
B

J
N

o
rm

al
iz

ed
o

b
je

ct
iv

e
fu

n
ct

io
n

.
sc

ri
p

t
m

ai
n

f M
T

O
M

=
m

M
T

O
/m

M
T

O
,r

ef

C
N

ST
R

N
T

C
o

n
st

ra
in

tv
al

u
e

an
al

ys
is

.
sc

ri
p

t
W

L
(w

in
g

lo
ad

in
g)

c W
L
=

(m
M

T
O

/S
w

in
g

)−
W

L r
ef

sc
ri

p
t

F
T

V
(f

u
el

ta
n

k
vo

l.)
c F

T
=

m
fu

el
/(
ρ

fu
el
·η

F
T

)−
V

F
T

80

3

2
2

3
6

4
4

2
9

8
7

1
2

6
2

6
1

5
3

3
1

1

3
6

H
A

N
G

A
R

[A
G

IL
E

A
C

w
in

g
]

3
1

1
8

1
1

8
1

1
8

1
2

0
1

2
1

1
1

5
1

7
4

6
1

5
5

1
3

8
4

1
1

1
0

9
5

H
A

N
G

A
R

[A
G

IL
E

A
C

]
1

1
1

8
1

1
8

1
1

8
1

1
6

1
1

6
1

1
9

1
6

7
2

1
0

8
8

1
3

5
1

1
2

1
0

7
4

IN
IT

IA
T

O
R

1
0

7
1

0
7

1
0

7
1

0
5

1
0

5
1

0
8

1
1

6
2

1
1

3
8

1
8

5
1

1
2

S
C

A
M

[λ
]

6
6

6
6

6
6

6
6

2
S

C
A

M
[Λ

]
2

2
2

2
2

2
2

G
A

C
A

[S
re
f]

1
1

1

2
Q

3
D

[V
D

E
]

2

4
Q

3
D

[F
L

C
]

1
2

6

Q
3

D
[A

P
M

]
6

1
E

M
W

E
T

1

1
S

M
F

A
1

1
0

4
P

H
A

L
A

N
X

[F
u

ll
L

o
o

k
u

p
]

3
P

R
O

T
E

U
S

4
1

1
2

1
1

M
a

C
a

l
1

1

1
O

B
J

1
C

N
S

T
R

N
T

[W
L

]

F
ig

u
re

3.
22

:A
u

to
m

at
ic

al
ly

ge
n

er
at

ed
X

D
SM

d
at

a
fl

ow
(N

2
ch

ar
t)

vi
su

al
iz

at
io

n
o

fa
su

b
se

to
ft

h
e

R
C

G
(n

o
ta

ll
to

o
lm

o
d

es
ar

e
sh

ow
n

to
m

ai
n

ta
in

re
ad

ab
il

it
y)

.N
u

m
b

er
s

in
si

d
e

p
ar

al
le

lo
gr

am
s

in
d

ic
at

e
th

e
n

u
m

b
er

o
fi

n
p

u
ts

(t
o

p
ro

w
),

o
u

tp
u

ts
(l

ef
tc

o
lu

m
n

)
an

d
co

n
n

ec
ti

o
n

s
(o

ff
-d

ia
go

n
al

)

81

3

3.7.2. INITIAL DESIGN POINT (DESIGN CONVERGENCE STUDY)

In a realistic design project the team would not directly jump to setting up the aerostruc-
tural optimization that they have in mind. Rather, the tools need to be tested first and a
converged initial design point is required to start any optimization study. As discussed in
§3.1, a design convergence study is one of the possible MDAO architectures supported by
KADMOS. Following the algorithm suggested in §§3.4.2, the steps leading to the genera-
tion of the FPG are given here below, while the generated graph is depicted in Fig. 3.23a:

1. Select the MDAO architecture type MDA
2. The design team is interested in the mass balance of the aircraft and marks

the QOIs:
mMTO: Maximum Take-Off (MTO) mass determined by function MaCal.
mwing: Wing mass determined by function EMWET, using loads from
Q3D[FLC].
mfuel: Fuel mass determined by function SMFA using lift-to-drag ratio from
Q3D[VDE].
mZF: Zero-Fuel (ZF) mass by MaCal.

3a. All functions that do not provide any QOI and that are not coupled to tools
providing them are automatically removed. In this case functions such as
PHALANX, PROTEUS, OBJ, CNSTRNT, Q3D[APM] are removed from the
RCG.

3b. For the initial geometry, the HANGAR function with mode AGILE_AC_wing
is selected. The other HANGAR mode and the INITIATOR function are both
removed.

3c. The HANGAR and SCAM functions still cause collisions, since both write
to the same wing geometry elements. At this stage, the HANGAR tool is
selected and SCAM is removed.

4. Graph is found to be valid by KADMOS on all necessary FPG conditions (see
§§3.4.2).

5a. Q3D[VDE] and SMFA are merged sequentially to one function node.
5b. Q3D[FLC] and EMWET are merged sequentially to one function node.
6-7. Function problem roles and order are set as shown in Fig. 3.23a.

Imposing the MDA with a Gauss-Seidel convergence scheme architecture on this FPG
results in the solution strategy shown in Fig. 3.23b.

82

32 inp.: settings 2 inp.: settings 15 inp.: Cf & settings 20 inp.: settings 3 inp.: settings

HANGAR

[AGILE AC wing]

118 conn.:

wing def.

122 conn.:

wing & mission def.

176 conn.:

wing & engine def.

2 conn.:

mWA & UID

GACA

[Swing]
Swing

Q3D[VDE] - SMFA mfuel

Q3D[FLC] - EMWET mwing

mMTO mMTO, mZF MaCal

Legend

quantity of interest

inp.: input
conn.: connection

a) XDSM data flow of the FPG for design convergence study

0, 7:

COOR
1: 2 inp. 2: 2 inp. 3: m0MTO, m

0
ZF 4: 15 inp. 4: 20 inp. 5: 3 inp.

1:

HANGAR

[AGILE AC wing]

2:

118 conn.

4:

122 conn.

4:

176 conn.

5: mWA
& UID

2:

GACA[Swing]
4: Swing

3, 6→ 4:
CONV

4: mcMTO 4: mcMTO, m
c
ZF

7: m∗fuel
4:

Q3D[VDE] - SMFA
5: mfuel

7: m∗wing
4:

Q3D[FLC] - EMWET
5: mwing

7: m∗MTO, m
∗
ZF 6: mMTO, mZF

5:

MaCal

b) XDSM of the combined MDG+MPG for MDA architecture with Gauss-Seidel convergence

Figure 3.23: Automatically generated XDSM visualizations of the KADMOS graphs for the first MDA
convergence study

83

3

3.7.3. DESIGN SPACE EXPLORATION (DOE)

All the stages of the MDAO development process shown in Fig. 3.1 were covered by the
MDA convergence study discussed in the previous section. At this point an iteration
is triggered to reconfigure the MDAO system such to perform design space exploration
through DOE. The following steps have to be taken to reconfigure the previously gener-
ated FPG:

1. Change to MDAO architecture type DOE.
2. QOIs remain and the following design variables are selected:

b and cr : wing span and root chord length
λ1 and λ2: taper ratios of two wing segments
Λ1 andΛ2: wing sweep of two wing segments
ξFS and ξRS: wing front and rear spar loc.
Γ: dihedral of the wing
C f : Friction coefficient
The SCAM tool is added, because of its ability to adjust some design vari-
ables, which are not explicitly stated in CPACS.

3. Collisions are now caused by HANGAR and SCAM writing to the same wing
elements. Furthermore, SCAM introduces circular variables as it has the
wing geometry entries as input and output. The collided and circular vari-
ables are fixed by creating variable instances.

4. Graph validity is checked against all necessary FPG conditions (see
§§3.4.2).

5. The five modes of the SCAM function are merged into one function node.
6-7. Function problem roles and order are set as shown in Fig. 3.24a.

The obtained FPG is shown in Fig. 3.24a. Two key concepts of the KADMOS graph syn-
tax are used at step 3 of FPG creation process: the circularity index and instances. Ini-
tially, some of the wing definition nodes in the FPG are problematic (in a similar fash-
ion as node b in Fig. 3.9a). This is because the HANGAR function provides a full initial
wing definition that is then used and changed by the SCAM function. Fifteen values
are changed by SCAM to adjust the wing based on top-level parameters and these fif-
teen values are initially of the subcategory ‘collided shared coupling’ with a circularity
index of one. These collisions cannot be solved by simply removing connections, since
the wing definition is supposed to be updated by SCAM and the initial geometry should
come from HANGAR. Therefore, KADMOS automatically solves the collision by creating
two instances of these variables, one instance before the SCAM function and one after.
In this way, the collision is solved while the two instances still refer to the same position
in the CDS, as is required.

The generated XDSM for the DOE solution strategy is shown in Fig. 3.24b. The Jacobi
scheme was selected to test the effect of parallelizing all three disciplinary groups. The
graph manipulation algorithm in KADMOS is able to position and connect the nested
iterative elements (i.e. DOE and CONV) such that each design point to be analyzed is
converged within the DOE block. Additional data elements that are required for the de-
sign variables and QOIs are also added and connected, for example, the new vector with
samples for the design variables (e.g. bs) at PSN 2 and the vectors with final values of the
QOIs (e.g. m∗

MTO) at PSN 9.

84

3

2 inp.:

settings

b, cr , Λ1
Λ2, ξFS, ξRS

λ1, λ2, Γ

7/5 inp.: settings

2/9 inp.:

settings

15 inp.:

settings & Cf

20 inp.:

settings

3 inp.:

settings
mMTO,ref

WLref
ρfuel, ηFT

HANGAR

[AGI. . . ing]

118 conn.:

wing def.
103/123 conn.:

wing def.

107/115 conn.:

wing & mission def.

157/165 conn.:

wing & engine def.

2 conn.:

mWA &

UID

SCAM[b,cr ,Λ,ξ]

[λ,Γ]

15/11 conn.:

morphed wing

15/7 conn.:

morphed wing

19/11 conn.:

morphed wing

GACA[Swing]

[VFT]

Swing Swing, VFT

Q3D[VDE] - SMFA mfuel mfuel

Q3D[FLC] - EMWET mwing

mMTO mMTO, mZF MaCal mMTO mMTO

fMTOM OBJ

cWL
cFT

CNSTRNT

[WL,FTV]

Legend

. = only part of DOE FPG

. = only part of MDO FPG

. . . /. . . = number of inp. or conn.
for DOE / MDO FPG

a) XDSM data flow of the FPG for the DOE and MDO type architectures used in this case study

0, 9:

COOR
1: 2 inp.

2: bs , csr , λ
s
1

λs2, Λ
s
1, Λ

s
2, Γ

s

ξsFS, ξsRS, Csf

3: 6 inp.:

settings
4: 2 inp.

5: m0MTO, m0ZF
m0wing, m

0
fuel

6: 14 inp. 6: 20 inp. 6: 3 inp.

1:

HANGAR

[AGI. . . ing]
3: 118 conn. 4: 103 conn. 6: 107 conn. 6: 157 conn. 6: 2 conn.

9: m∗MTO
m∗ZF, m∗wing
m∗fuel

2, 8→ 3:

DOE

3: b, cr , λ1
λ2, Λ1, Λ2, Γ

ξFS, ξRS

6: Cf

3:

SCAM

[b,cr ,λ,Λ,Γ,ξ]
4: 15 conn. 6: 15 conn. 6: 19 conn.

4:

GACA

[Swing]

6: Swing

5, 7→ 6:

CONV
6: mcMTO

6: mcMTO
mcZF

6: mcwing
mcfuel

8: m∗fuel 7: mfuel

6:

Q3D[VDE]

- SMFA

8: m∗wing 7: mwing

6:

Q3D[FLC]

- EMWET

8: m∗MTO, m∗ZF 7: mMTO, mZF
6:

MaCal

b) XDSM of the combined MDG+MPG for the architecture DOE with a Jacobi convergence scheme

Figure 3.24: Automatically generated XDSM visualizations of the KADMOS graphs for the development of the
design space exploration system. Note that the FPG is also used for the MDO strategies, be it with small

changes as indicated.

85

3

3.7.4. MDO STUDY

Based on the interpretation of the design space exploration, the design team can now
formulate an MDO problem. Let’s assume the previous DOE study showed that the QOIs
were not sensitive to changes of dihedral angle (Γ) and taper ratio (λ1, λ2); then these
variables can be excluded from the MDO problem formulation. The FPG that needs to
be defined is based on the following problem definition:

minimize: fMTOM = mMTO

mMTO,ref

with respect to: b,cr,Λ1,Λ2,ξFS,ξRS,C f

subject to: cWL = mMTO

Swing
−WLref ≤ 0

cFT = mfuel

ρfuel ·ηFT
−VFT ≤ 0

Hence, the Maximum Take-Off Mass (MTOM) needs to be minimized for a given mission
by changing the geometry of the wing, while satisfying a constraint on the wing loading
(cWL) and making sure that the fuel tank can carry the required fuel for the mission (cFT).
The FPG is again based on the previous FPG and is created by performing the following
operations in a KADMOS script:

1. Select the MDAO architecture type MDO.
2. Design and QOIs remain from the previous FPG, except Γ, λ1 and λ2, and

the following objective and constraints are selected:
fMTOM: output of function OBJ, hence this function from the RCG is added
to the FPG
cWL: output of function CNSTRNT
cFT: output of function CNSTRNT
In addition, the mode VFT of the GACA tool is added, since the fuel tank
volume is required for the constraint calculation.

5. The GACA modes are merged into one block as well as the two CNSTRNT
modes.

6-7. Function problem roles and order are set as shown in Fig. 3.24a.
8. The coupled functions are distributed in two groups, as indicated in

Fig. 3.24a.

On this FPG different MDO architectures can be imposed, with the resulting XDSMs for
IDF and BLISS-2000 shown in Fig. 3.25 and Fig. 3.26. Of these two architectures, the dis-
tributed BLISS-2000 (Fig. 3.26) renders the idea of the extensive analysis and manipula-
tion of the FPG necessary for the automatic formulation of a complex solution strategy.
Other possible MDAO system reconfigurations, which could become interesting after
the first MDO study, might include the replacement of some tool in the repository, a
modification of the objective function or the addition of extra constraints, or a change in
the MDO strategy. All of them could be easily accommodated and implemented in very
short time (given a CPACS compatible tool repository): minutes instead of hours or even
days, as would be required with the conventional manual approach.

This case study demonstrated how the KADMOS syntax and algorithms can enable a de-
sign team to quickly formulate and reconfigure an MDAO system, starting from a CDS-

86

3

0, 8:

COOR

1:

2 inp.

2: b0, c0r , Λ01, Λ02
ξ0FS, ξ0RS, C0f
mc,0MTO, mc,0ZF
mc,0wing, m

c,0
fuel

3:

5 inp.

4:

9 inp.

5:

14 inp.

5:

20 inp.

5:

3 inp.

6:

mMTO,ref

6:

WLref,

ρfuel,

ηFT

1: HANGAR

[AGI. . . ing]
3:

118 conn.

4:

123 conn.

5:

115 conn.

5:

165 conn.

5:

2 conn.

8: b∗, c∗r ,

Λ∗1, Λ∗2, ξ
∗
FS

ξ∗RS, C∗f

2, 7→ 3:

OPT

3: b, cr ,

Λ1, Λ2,

ξFS, ξRS

5:

mcMTO
& Cf

5:

mcMTO,

mcZF

5:

mcwing,

mcfuel

6: mcMTO
mcZF
mcwing
mcfuel

3: SCAM

[b,cr ,Λ,ξ]
4:

11 conn.

5:

7 conn.

5:

11 conn.

4:

GACA

[Swing,VFT]

5:

Swing

6:

Swing,

VFT

8: m∗fuel

5:

Q3D[VDE]

- SMFA

6:

mfuel

6:

mfuel

8: m∗wing

5:

Q3D[FLC]

- EMWET

6:

mwing

8: m∗MTO,

m∗ZF

5:

MaCal

6:

mMTO

6:

mMTO

6:

mMTO,

mZF

8: f ∗MTOM 7: fMTOM
6:

OBJ

8: c∗WL, c∗FT 7: cWL, cFT

6:

CNSTRNT

[WL,FTV]

7: gcMTO, gcZF,

gcwing, gcfuel

6:

Gc

Figure 3.25: XDSM of the combined MDG+MPG for the IDF architecture

based repository of design tools. The configuration of the system results in the MDAO
solution strategy: a blueprint of the workflow to be executed. In the next chapter a for-
mat for storing the KADMOS graphs will be presented and in the subsequent chapter
this format will be used to automatically instantiate collaborative workflows in multiple
PIDO platforms.

87

3

0
,1

9
:

C
O

O
R

1
:

2
in

p
.

1
6

:

m
M
T
O
,r
e
f

1
6

:
W

L
re
f,

ρ
fu
e
l,
η
F
T

1
:

H
A

N
G

A
R

[A
G

IL
E

A
C

w
in

g
]

1
,1

8
→

2
:

d
is

tr
.

sy
st

em

co
n

ve
rg

er

1
4

:
b
0
,
c
0 r
,

Λ
0 1
,

Λ
0 2
,

m
c
,0
M
T
O

,
m
c
,0
fu
e
l,

w
0 M
T
O

,
w
0 fu
e
l

1
5

:
b
s
,
c
s r
,

Λ
s 1
,
Λ
s 2
,

m
c
,s
M
T
O

,
w
s fu
e
l

1
5

:
b
s
,
c
s r
,

Λ
s 1
,
Λ
s 2
,

m
c
,s
fu
e
l,
w
s M
T
O

2
:
b
s
,
c
s r
,

Λ
s 1
,
Λ
s 2
,

m
c
,s
M
T
O

,

w
s fu
e
l

2
:
b
s
,
c
s r
,

Λ
s 1
,
Λ
s 2
,

m
c
,s
fu
e
l,

w
s M
T
O

1
9

:
b
∗ ,
c
∗ r,

Λ
∗ 1,

Λ
∗ 2

1
8

:
b
∗ ,
c
∗ r,

Λ
∗ 1,

Λ
∗ 2,

m
c
,∗
M
T
O

,
m
c
,∗
fu
e
l,

w
∗ M
T
O

,
w
∗ fu
e
l

1
4
,1

7
→

1
5

:

O
P

T

1
5

:
b

,
c r

,

Λ
1
,

Λ
2
,

m
c M
T
O

,
w
fu
e
l

1
5

:
b

,
c r

,

Λ
1
,

Λ
2
,

m
c fu
e
l,
w
M
T
O

1
6

:
m
c M
T
O

,

m
c fu
e
l

1
9

:
C
a
,∗
f

1
5

:

S
M

-0

1
6

:
m
a fu
e
l,

S
a w
in
g

1
6

:
m
a fu
e
l

1
9

:
ξa
,∗
F
S

,

ξa
,∗
R
S

1
5

:

S
M

-1
1

6
:
m
a M
T
O

1
6

:
m
a M
T
O

,

V
a F
T

1
6

:
m
a M
T
O

1
9

:
f
∗ M
T
O
M

1
8

:
f
∗ M
T
O
M

1
7

:
f M
T
O
M

1
6

:

O
B

J

1
9

:
c
∗ W
L

,
c
∗ FT

1
7

:
c W
L

,
c F
T

1
6

:

C
N

S
T

R
N

T

[W
L

,F
T

V
]

1
9

:
g
c
∗ M
T
O

,

g
c
∗ fu
e
l

1
7

:
g
c M
T
O

,

g
c f
u
e
l

1
6

:

G
c

1
5

:
m
∗ fu
e
l,

S
∗ wi
n
g
,
C
f

2
,9
→

3
:

D
O

E
-0

1
5

:
m
∗ M
T
O

,
V
∗ FT

,

ξ
∗ FS

,
ξ
∗ RS

2
,1

3
→

3
:

D
O

E
-1

a)
Sy

st
em

-l
ev

el
B

LI
SS

-2
00

0
ap

p
ro

ac
h

88

3
0
,1

9
:

C
O

O
R

1
:

2
in

p
.

3
:

4
in

p
.

4
:

2
in

p
.

5
:
C
0 f

6
:

1
4

in
p

.

1
:

H
A

N
G

A
R

[A
G

I.
..

in
g

]

3
:

1
1

8
co

n
n

.

4
:

1
1

1
co

n
n

.

6
:

1
1

5
co

n
n

.

2
,9
→

3
:

D
O

E
-0

3
:
b
c

,
c
c r

,

Λ
c 1

,
Λ
c 2

6
:
m
c
,i
1

M
T
O

7
:
w
i1 fu
e
l

3
:

S
C

A
M

[b
,c
r
,Λ

]
4

:
7

co
n

n
.

6
:

7
co

n
n

.

9
:
S
w
in
g

4
:

G
A

C
A

[S
w
in
g
]

6
:
S
w
in
g

9
:
C
∗ f

5
,8
→

6
:

O
P

T
-0

6
:
C
f

9
:
m
∗ fu
e
l

6
:

Q
3

D
[V

D
E

]

-
S

M
F

A

7
:
m
fu
e
l

8
:
f 0

7
:

F
-0

b
)

Su
b

-l
ev

el
0

B
LI

SS
-2

00
0

0
,1

9
:

C
O

O
R

1
:

2
in

p
.

3
:

4
in

p
.

4
:
ξ0 F
S

,
ξ0 R
S

5
:

2
in

p
.

6
:

8
in

p
.

7
:
m
0 w
in
g

8
:

3
in

p
.

9
:

2
0

in
p

.

1
:

H
A

N
G

A
R

[A
G

I.
..

w
in

g
]

3
:

1
1

8
co

n
n

.

5
:

1
1

8
co

n
n

.

6
:

1
2

3
co

n
n

.

8
:

2
co

n
n

.

9
:

1
6

5
co

n
n

.

2
,1

3
→

3
:

D
O

E
-1

3
:
b
c
,i
1
,
c
c
,i
1

r
,

Λ
c
,i
1

1
,

Λ
c
,i
1

2

8
:

m
c
,i
1

fu
e
l

1
1

:

w
i1 M
T
O

3
:

S
C

A
M
i1

6
:

7
co

n
n

.

9
:

7
co

n
n

.

1
3

:

ξ∗ F
S

,
ξ∗ R
S

4
,1

2
→

5
:

O
P

T
-1

5
:

ξ F
S

,
ξ R
S

5
:

S
C

A
M

[ξ
]

6
:

4
co

n
n

.

9
:

4
co

n
n

.

1
3

:
V
∗ FT

6
:

G
A

C
A

[V
F
T

]

7
,1

0
→

8
:

C
O

N
V

-1

8
:

m
c w
in
g

1
3

:
m
∗ M
T
O

8
:

M
a

C
a

l

9
:

m
M
T
O

,
m
Z
F

1
1

:

m
M
T
O

1
0

:
m
w
in
g

9
:

Q
3

D
[F

L
C

]

-
E

M
W

E
T

1
2

:f
1

1
1

:

F
-1

c)
Su

b
-l

ev
el

1
B

LI
SS

-2
00

0

F
ig

u
re

3.
26

:A
u

to
m

at
ic

al
ly

ge
n

er
at

ed
X

D
SM

vi
su

al
iz

at
io

n
in

th
re

e
p

ar
ts

o
ft

h
e

K
A

D
M

O
S

gr
ap

h
s

fo
r

th
e

B
LI

SS
-2

00
0

so
lu

ti
o

n
st

ra
te

gy
im

p
o

se
d

o
n

th
e

F
P

G
sh

ow
n

in
F

ig
.3

.2
4a

89

3

3.8. DISCUSSION

A novel graph-based methodological approach and its software implementation was
presented in this chapter, to formulate and integrate large collaborative MDAO systems.
Starting from a distributed repository of disciplinary tools, whose I/O have been previ-
ously mapped on a common data schema, KADMOS can automatically generate a di-
rected graph (RCG) and run preliminary checks to identify possible issues in the repos-
itory connectivity. Then, based on the user specification of some quantity of interests
(i.e. quantities to be evaluated as objectives and constraints, or simply to be monitored),
KADMOS automatically transforms the RCG into the FPG. The FPG is a subset of the
RCG, including only the tools and inputs strictly necessary to produce the selected quan-
tities of interest. At this point, the user can intervene again and select a solution strategy,
among those currently supported by KADMOS (i.e. multidisciplinary convergence study,
DOE or various monolithic and distributed MDO architectures), to apply on the previ-
ously defined fundamental problem. Thus KADMOS automatically transforms the FPG
into a new set of two plots, the MDG and the MPG, which, together, realize the complete
formulation of the MDAO system.

3.8.1. IMPACT ON COLLABORATIVE MDAO DEVELOPMENT PROCESS

The step-by-step formulation approach implemented in KADMOS, dramatically increa-
ses the agility of the design team in the application of collaborative MDAO as it con-
nects and automates the first three steps of the MDAO development process depicted in
Fig. 3.1. After the execution of a multidisciplinary convergence study, for example, de-
signers can easily set up a DOE study and evaluate the sensitivity of the results to certain
parameters. This information can then be used to formulate an optimization problem
that includes as design variables only the parameters resulting as most effective in the
DOE. After that, also the burden to embed the problem into one of the various and di-
verse MDO architectures is totally eliminated, because KADMOS can manipulate the
same FPG into any MDO architecture in just minutes. If preliminary results of the op-
timization suggest the use of a more convenient architecture, changes will be effortless.
Also, if constraints and/or design variables need to be added or removed, or different
objectives selected, or different disciplinary tools be involved (as far as compliant to the
common data schema), KADMOS provides the necessary agility to easily adjust any of
the aforementioned, thus supporting the typical iterative nature of the design process.

The benefit of KADMOS is not limited to the design agility augmentation. The next chap-
ter describes how the KADMOS graphs are stored using a standardized format so other
applications of the MDAO framework can also use the formulated systems. For exam-
ple, the VISTOMS package (co-developed with KADMOS) can be used at any stage of
the formalization process to generate the necessary visualizations to report the status of
the MDAO system under development, to ease debugging and, most of all, to guarantee
discipline experts and MDAO architects the required oversight to manage distributed
computational systems of any size.

3.8.2. ORIGINALITY

Although the graph-based methodological approach proposed in this paper takes inspi-
ration from the work of Pate et al. (discussed in §2.2 and shown in Fig. 2.6), there are

90

3

notable differences in the graph syntax, as well as in the scope and implementation of
the entire MDAO support system:

• Pate’s graph formulation is focused on the transition between the first and second
stage of the MDAO development process, KADMOS has a broader scope including
the transitions to stages three and four. The inclusion of these additional stages re-
quired a more sophisticated definition of the syntax and the graph-theoretic con-
ditions the graphs have to satisfy.

• KADMOS is based on the CDS approach for system composition, which further
differentiates the syntax and conditions.

• The KADMOS syntax covers both monolithic and distributed MDO architectures,
whereas the latter were not covered by Pate’s approach.

• In the syntax, the circularity index is one of the fundamental KADMOS extensions
to Pate’s syntax. Based on the circularity index, crucial new subcategories are in-
troduced to handle circular variable nodes.

• The second key syntax extension is the node instance. Instances enable the split-
ting of nodes to bring together the graph-based and CDS approaches. The splitting
of nodes is a crucial operation, since not every collided or circular node in the data
graph can be solved by just removing edges. As was demonstrated in the demon-
stration case study in §3.7, collisions and looped pairs are commonly present in
realistic design cases and need to be handled properly.

With respect to Hoogreef’s InFoRMA system: while several KADMOS capabilities match
those offered by this system, the theoretical basis drastically differs from Hoogreef’s use
of semantic webs to represent MDAO systems. Furthermore, InFoRMA focuses on ad-
vising the user in selecting the right MDO architecture, which is an aspect that is not
included in KADMOS. InFoRMA on the other hand lacks support for schema-based sys-
tem composition, and the automated sequencing and decompositioning algorithms dis-
cussed in §§3.5.3 and §§3.5.4.

The impact of the graph-based methodology in the broader MDAO framework under
development in the AGILE project will be presented in Chapter 6. Chapter 7 will demon-
strate that the methodology is generic enough to also be applied outside the AGILE con-
text in which it was developed.

91

4
PROPOSED STANDARD

TO STORE AND EXCHANGE

MDAO SYSTEM FORMULATIONS

T HE previous chapter discussed how the graph-based methodological approach,
which was implemented as KADMOS, enables a design team to formulate MDAO

systems for all three stages of the formulation phase in the MDAO development process.
Within a broader third-generation MDAO framework, the KADMOS package is merely
one of the many tools at the team’s disposal, as will be elaborated in detail in Chap-
ter 6. Next to the various disciplinary tools, other applications are present in the frame-
work to support other tasks, such as managing the designers and the design process,
creating visualizations, or instantiating executable workflows. Many of these applica-
tions would benefit from having access to the MDAO system formulations created by
KADMOS. However, this would require all these applications to be Python-based like
KADMOS, or would require the development of multiple APIs in KADMOS. Both options
require developers to become familiar with the KADMOS package, which can be a sig-
nificant time investment. Therefore, a more straightforward way to access the informa-
tion on the KADMOS-generated formulations was devised, based on the definition of a
dedicated storage standard for MDAO systems. This chapter describes in detail this stor-
age format called CMDOWS (pronounced as: commandos): Common MDO Workflow
Schema. The format was developed not only so that other developers and applications
can exploit at best KADMOS’s services, but also to fill the existing gap in the standardiza-
tion of MDAO system representations.

First, the development of the new standard is introduced in §4.1, followed by its func-
tional requirements in §4.2. §4.3 forms the core of this chapter, in which the schema is
presented. CMDOWS is then illustrated with a small example in §4.4.

The contents of this chapter have been adapted from [96].

93

4

Tool
repository

MDAO
problem

MDAO solution
strategy

Executable
work�ow

MDAOptimal
design

= storage stages supported by CMDOWS

Figure 4.1: The coverage of Common MDO Workflow Schema (CMDOWS) in the MDAO development process

4.1. INTRODUCTION

The development of the novel data format for MDAO systems is introduced here in four
subsections. First, the different types of framework applications included in a third-
generation framework are listed in §§4.1.1, followed by an explanation of the motivation
to develop a new standard format in §§4.1.2. The state of the art regarding standard-
ization of MDAO systems will be covered in §§4.1.3 and the section closes with a brief
discussion on the consequences of using a standard format for framework development
in §§4.1.4.

4.1.1. FRAMEWORK APPLICATIONS

The need for a novel MDAO framework generation to support collaborative MDAO in the
industrial context was discussed in §2.7. In order to establish such a novel environment,
the third-generation MDAO framework needs to synthesize a range of applications to
support collaborative multidisciplinary design. The following pivotal application cate-
gories were identified based on past frameworks and the needs identified in the AGILE
project:

Tool repositories A tool repository is a database that contains the definition of a col-
lection of design and analysis tools that can be made available to the design team
for execution. The repository does not necessarily contain the tools themselves,
as the sharing of the tool might be prohibited by intellectual property restrictions.
In that case, a repository contains the specification of the (interlinked) inputs and
outputs of the tools and the way in which each tool can be (remotely) executed.
Different approaches for composing repositories have been discussed in §2.1.

MDAO system formulation applications This type of application is used in the formu-
lation phases of the development process (see Fig. 4.1). These platforms sup-
port the team in defining the MDAO problem and its solution strategy in a PIDO-
platform-agnostic manner. In addition, by automating and supporting the for-
mulation task, the MDAO system can be reconfigured more easily to incorporate
progressive insights of the team. Examples of these applications are the InFoRMA
and GEMS platforms discussed in §2.3, and the KADMOS platform that was pre-
sented in Chapter 3. Earlier work in IDEaliSM [26, 97] has shown that the use of
an MDAO system formulation platform (i.e. InFoRMA), can result in a significant
set-up time reduction, even larger than 90%.

Visualization packages The visualization of large MDAO systems can be challenging,
but is crucial to share and discuss the project developments within the hetero-
geneous team of experts. A visualization package to inspect and communicate
the system formulations at the different stages of the development process, which
are produced by the aforementioned MDAO system formulation applications, can

94

4

also contribute to decreasing the set-up time. In addition, such visualizations in-
crease the trust of the design team in the large, complex automated analysis chain
that is being built. Different forms of visualizations suitable to MDAO have been
discussed in §2.2.

Collaborative workflow platforms The workflows are the executable instances of the
MDAO solution strategies produced during the MDAO system formulation phase
(Fig. 4.1). The term collaborative is used to express the fact that these workflows
combine different disciplinary subworkflows from the tool repository, which are
owned by different disciplinary experts (or teams), into one optimization work-
flow. The combination of such subworkflows can be very challenging, especially
when the disciplinary teams are distributed either geographically, digitally (i.e.
subworkflows running on different server domains), or both. PIDO platforms for
executing these workflows have been discussed in §2.5.

Business process management tool The management of a design team is streamlined
using this type of tool. The management tool enables the collaboration between
various actors by providing a common platform for management tasks, such as
communication, progress tracking, database management, and task planning and
execution. Project management tools come in many shapes and sizes. A modern-
day application would be web-based and allows all users to access and edit tasks
relevant to their project contribution. The team lead uses the platform to keep
track of the planning. In MDAO projects, the business process should be tightly
integrated with the multidisciplinary system that is being built and executed, if
the management tool wants to positively impact project progress.

Schema operations library If standardized files are used to exchange information about
the MDAO system (as will be discussed in this chapter), then this application cat-
egory contains the collection of useful methods to inspect, check, or analyze the
schema-based files. Typically, these applications contain functions to check files
for their validity (e.g. with respect to the schema definition), to determine key val-
ues (e.g. number of tools, number of parameters), and to edit instances of the
schema file (e.g. by removing or adding tools and parameters). These libraries can
be seen as a key enabler to adapt the schema within a framework. This is equiva-
lent to the ecosystem of libraries for CPACS, which was discussed in §2.1.

Many other application categories could be added to this list, as the capabilities of a
third-generation framework extend. Each task of the engineering team could be sup-
ported by an application and each application could be integrated in the framework.
This could be tasks such as requirements management, workflow data postprocessing,
and time planning. In this work, the scope is limited to the application categories listed
above, as these are generally at the core of any collaborative framework.

4.1.2. MOTIVATION

In the AGILE and IDEaliSM projects (discussed in §§2.6.2 and §§2.7.2 respectively), var-
ious applications used to support the development of an MDAO system were initially
coupled in the way illustrated in Fig. 4.2a. Most of the applications had to communicate
directly with each other, with obvious problems of flexibility and maintainability of the
overall framework, due to the many ad-hoc interfaces. In addition, the benefits (in terms
of overall set-up time reduction) of the vendor-neutral graph-based representations of
the MDAO system produced by KADMOS (and InFoRMA in IDEaliSM) were found to be
limited without the possibility to automatically generate the collaborative workflows us-

95

4

ing a PIDO platform of choice. Furthermore, investing in the development of visualiza-
tion packages (such as VISTOMS [S11][39] discussed in §§3.5.1) for one specific MDAO
system formulation tool would not have been worth the effort, while the ad-hoc devel-
opment of such advanced visualization capabilities both inside KADMOS and InFoRMA
was also not feasible within the project time frame.

Tool
repository

Visualization
package

Collabora-
tive

workflow

Business
process

management
MDAO
system

formulation

a) no Central Data Schema

central
data

schema

Tool
repository

Visualization
package

Collabora-
tive

workflow

Business
process

management
MDAO
system

formulation

Schema
operations

library

b) with Central Data Schema

Figure 4.2: Schematic overview of framework integration with and without a central data schema approach.

For all these reasons, and also on the basis of the evident benefit provided by the central-
data-schema-based repository creation using CPACS (discussed in §§2.1.2), a dedicated
standard format to define, store and exchange MDAO systems is proposed here as a key
enabler for the automation of both the formulation and execution phase in any large col-
laborative MDAO project. The presence of a schema reconfigures the application links
to the set-up shown in Fig. 4.2b. The position of such a storage standard in the MDAO
development process is indicated in Fig. 4.1.

4.1.3. STATE OF THE ART

The need for standardization in engineering design is not something new. However, a
standard for storing MDAO system definitions in a neutral format to support the inte-
gration of collaborative frameworks is not a widely addressed topic. This type of format
was first advocated within IDEaliSM to facilitate the translation of the system formaliza-
tion generated by InFoRMA into executable workflows in Optimus. To this purpose, a
prototype neutral format was defined by Hoogreef [26], which is depicted in Fig. 4.3, but
this prototype was never developed further or tested within the project.

Other standardized format definitions can be found in earlier work and are usually mo-
tivated by the same kind of integration as in the IDEaliSM project. For example, Gond-
halekar et al. [98] proposed a neutral format in the context of the “behavioural digital
aircraft” project CRESCENDO[99] to exchange computational workflows, and demon-
strated that through such a format the same workflow can be built in two different work-
flow platforms. Similarly, another format that is gaining momentum is the Functional
Mock-up Interface (FMI)[100]. FMI is a platform-independent standard that is aimed
at supporting both model exchange and co-simulation of dynamic models. Both these
examples are concerned with the sharing of tools within the collaborative workflow, but
do not consider other types of applications used to support the development of MDAO
systems, as was discussed in the previous section. Other related formats store the neu-

96

4

MDO Problem

ID
Name

Architecture Implementation

ID
Architecture Name

Component

ID
Name
Type
Precedes : Component = ID
Succeeds : Component = ID
Requires : Data = ID
Computes : Data = ID
FeedbackFor : Component = ID
FeedbackFrom : Component = ID

Data

ID
Name
VariableType
DataType
inherits from data class in MDO ontology
inherits from simulation work�ow ontology

Discipline

ID
Name
Work�ow : Sub Work�ow = ID

Discipline Collection

ID
Name
Type
Represents : Discipline = ID
Contains : Component = ID

Workflow

ID
Name

Architecture Workflow

ID
Name
Algorithm
inherits from simulation work�ow ontology

Sub Workflow

ID
Name
inherits from simulation work�ow ontology
inherits from schema for automatic work�ow generation

*

1

*

1
*
1

*1

*1

1 1

Figure 4.3: Unified Modeling Language (UML) class diagram with the outline of the schema for a neutral
format’s data structure to exchange MDAO architecture and simulation workflow information proposed by

Hoogreef [26]

tral description and visualization of processes, as is done with BPMN (Business Process
Model and Notation)[101] that is maintained by the Object Management Group. In a
way, the XDSM visualization standard by Lambe and Martins [37] (discussed earlier in
§2.2), can also be seen as a neutral format to store both process and data flow. However,
the file type used for this (either tex or PDF files) is not very suitable to exchange data.

In summary, standardizing MDAO system definitions for information storage and shar-
ing has not been a widely addressed topic. Standards for workflow or (dynamic) model
exchange between execution platforms have been developed in the past, but none are
broad enough to cover the range of MDAO framework applications generally used to
support a design team. The full development of a neutral format for storage and ex-
change of MDAO systems took place in the AGILE project. The result is the CMDOWS
(Common MDO Workflow Schema) format described in this chapter.

4.1.4. IMPACT ON FRAMEWORK SET-UP

Thanks to the definition of CMDOWS, the application links within the AGILE framework
changed from the set-up shown in Fig. 4.2a to the new centralized structure in Fig. 4.2b.
In this approach, the graph-based representations generated by KADMOS are stored as
CMDOWS files and then used by other framework applications. For example, a MDAO
solution strategy stored in a CMDOWS file can be translated into an executable work-
flow with any PIDO platform able to interpret the format. This aspect will be elaborately
discussed in Chapter 5.

As a matter of fact, CMDOWS files are not only usable to store MDAO systems at the final
stage of the development process (MDAO solution strategy) depicted in Fig. 4.1, but also

97

4

for earlier stages (tool repository, MDAO problem). This has two major advantages:

• The visualization package, rather than accessing the different internal data struc-
tures of KADMOS (or alternatively InFoRMA), can read and visualize produced
CMDOWS files and help inspecting and monitoring the state of the MDAO system
during all the stages of the formulation phase.

• The usability of KADMOS is also improved. For example, a tool repository defi-
nition can be provided as input to KADMOS in the form of a CMDOWS file. This
repository definition can now be provided by another dedicated framework appli-
cation that is focused on tool repository management. KADMOS can be used to
enrich that repository CMDOWS file by adding the problem definition data, or the
complete MDAO solution strategy.

The six support application categories discussed in §§4.1.1 can have bidirectional links
to the workflow schema, although, for all of them a primary and a secondary link direc-
tion can be identified*, as is illustrated in Fig. 4.4. For example, the visualization package
has the primary link of being able to open any workflow schema file and depict the visu-
alizations. A secondary link would be in place, if the visualization package would offer
users also the possibility to manually edit the visualized CMDOWS file. Generally, the
primary link is the one that is most directly useful and, most of the time, also the easiest
to develop for the category at hand.

primary link

secondary link

 export �le of
 repository

import
�le

 export �le of MDAO
problem and solution strategy

export schema
 �le of any work�ow

parse
�le with
MDAO solu-
tion strategy

read / write
�le

 visualize
 �le contents

adjust �le contents
 (GUI)

import
�le

work�ow
schema

Tool
repository

Visualization
package

Collaborative
workflow

Business
process

management
MDAO
system

formulation

Schema
operations

library

enrich
�le

central
data

schema

Figure 4.4: Primary and secondary links between the workflow schema and the framework application
categories

4.2. FUNCTIONAL REQUIREMENTS

The proposed schema is based on the following nine main functional requirements:

I Machine-interpretable The format in which the MDAO system is stored should be
machine-interpretable up to the finest level of detail.

*N.B. This primary/secondary link definition can be considered subjective. Here the ordering is based on the
perspective of the system integrator.

98

4

II Human-readable The schema should allow any designer to inspect at least the
top-level correctness of the content, while users and developers with a background
in design engineering or computer science should be able to find and understand
all the fine details. This human-readability aspect is important to enable the use of
the schema by a wider community and ease the connection of new MDAO frame-
work applications.

III Neutral The schema should not contain elements that are specific to any project,
MDAO framework application, or developed product. However, the schema should
accommodate the storage of any such additional information at specific locations
to address practical issues of certain projects, applications, or products, thereby al-
lowing project-specific additions to the schema file at the dedicated file locations.

IV Validation File instances that are based on CMDOWS, should be easily validated
against the schema definition.

V Adaptable From one version release to another, the schema should always be flexi-
ble enough to provide room for extensions and enrichment, while at the same time
its basic structure should not change too drastically to keep any existing frame-
work application links easily (with a small developing effort) compliant with the
release of each new version.

VI Balance of redundant information Data representation in the schema should aim
at minimum redundancy, however, in special cases this redundancy guideline can
be violated for convenience (i.e. to facilitate the link with certain applications that
lack the capability to automatically derive the required input based on the infor-
mation stored in the format). Such redundancies bring the risk of generating in-
consistencies in file instances and therefore a balance should be found between
information that can be implicitly and explicitly stored in the file.

VII Support all MDAO system stages The schema should support storage of the MDAO
system during the three different stages of the formulation phase indicated in
Fig. 4.1.

VIII Support all MDAO framework categories The schema should accommodate all
information that is required to enable the links with the six different MDAO frame-
work application categories depicted in Fig. 4.2b.

IX Support disciplinary tool heterogeneity A broad range of analysis tools from the
tool repository, including their execution methods, should be stored in the schema,
such as simple mathematical expressions, remotely executed ‘black boxes’, and
surrogate models.

With the requirements listed above in mind the CMDOWS version 0.9 has been com-
pleted. The parallelism between CMDOWS and CPACS (the latter was discussed in
§§2.1.2) is evident from the requirement list. The one prominent difference is in the
neutrality requirement. While CPACS is project and disciplinary tool neutral, it is spe-
cific for the developed product: the aircraft. CMDOWS is fully neutral, thus applicable to
any possible domain where MDAO is of interest, such as automative, infrastructure, and
wind energy.

4.3. DEFINITION OF THE STORAGE STANDARD

The eXtensible Markup Language (XML) [S23] was selected as the syntax to store the
schema definition. With XML, a schema is defined through the XML Schema Defini-
tion (XSD) format. This XSD definition of CMDOWS can then be used to validate any

99

4

CMDOWS XML instance, thereby meeting requirement IV (req-IV) on validation in §4.2.
XML also meets req-I and req-II, as it is both human-readable and supports machine-
interpretability. In addition, the XML format is independent of the programming lan-
guage used. Many programming languages actually include utilities to work with the
XML format, thereby supporting the human-readability requirement in the sense that
many users can easily familiarize themselves with CMDOWS within their preferred pro-
gramming environment. Another argument for the use of XML is the adoption of the
XML-based CPACS in the aircraft MDAO community, e.g. the FrAECs, IDEaliSM, and AG-
ILE project all relied on CPACS for tool data, meaning that many, both in industry and
academia, are already familiar with the use of XML as a data storage format.

cmdows

executableBlocks

parameters

architectureElementsworkflow

problemDefinition

header

information

connections

nodes

Figure 4.5: Top-level elements of CMDOWS and the three main element categories

The CMDOWS definition (see Fig. 4.5) is structured in six top-level elements, grouped in
three basic categories:

• information
• nodes
• connections

This categorization is based on the assumption that any MDAO system can be mod-
eled as a graph, as discussed in Chapter 3, thus build up of nodes and their connections
(also referred to as edges). The information category is used to store generic informa-
tion about the system and the MDAO problem definition. All these categories will be
discussed in a separate subsection of this section. For brevity, the description is limited
to the top-level elements of the schema up to level 4 (when the root element is consid-
ered to be at level 0), whereas the full schema, which has elements up to level 7, can be
inspected at the open-source repository [S24].

An important concept, used at different locations in the schema, is the separation be-
tween parameters and executable blocks. Any node element describing a tool repository,
MDAO problem, or MDAO solution strategy will fall under one of these two groups. The
parameters group refers to all the elements inside an MDAO system that are assigned
a certain value. Parameters are the I/O of the executable blocks, such as the actual
optimization parameters (whose values remain constant during optimization) and the
design variables (including both actual design variables and the copy or surrogate vari-
ables introduced by different MDAO architectures). The executable blocks are defined
as elements that take certain inputs, perform an operation, and finally produce certain
outputs. Since the distinction between parameters and executable blocks is a key as-

100

4

pect, the element names parameters and executableBlocks appear at different levels
in the schema. The two terms are analogous to the variable and function categories for
KADMOS graph nodes explained in §§3.2.1.

For example, a parameter x1 is input to an executable block and will be defined in the
main parameters element of the nodes category. Generic information about the pa-
rameter, such as a description, unit, and datatype would be stored directly on the ele-
ment as metadata. When this parameter has to be indicated as a design variable (in-
cluding bounds and nominal value) for a certain MDAO system, then this information is
stored inside the problemFormulation/parameters element. This way, the elements
in the nodes category remain independent and valid for any system, while the problem-
Formulation element contains information that is specific to the MDAO problem stage
from Fig. 4.1. The two elements are linked together through UIDs as will be shown in
more detail in the next sections. The six top-level elements from Fig. 4.5 are discussed in
more detail in the upcoming sections.

4.3.1. ELEMENTS IN THE INFORMATION CATEGORY

The information elements of CMDOWS are header and problemDefinition. Lower
level elements of the information elements are shown in Fig. 4.6. The header element
contains metadata relative to the CMDOWS file itself, such as the creator, a description,
the schema version used. Additionally, the header contains the contacts database and
organigram. The contacts database can be used throughout the schema to refer to
owners, creators, and other agents required at other locations. The organigram allows
the team to store the roles of the people involved in the project.

The definition of the MDAO problem to be solved can be stored in the problemDefi-
nition element. This element can get a UID assigned as an attribute (indicated with the
@ sign in Fig. 4.6) so that it can be referred to in other parts of the schema. The other two
main elements of the problem definition are problemRoles and problemFormulation.
In the problemRoles branch all the special parameters of the MDAO system get their
roles assigned, such as design variable, objective, constraint, or state variable, includ-
ing certain parameter settings for the problem at hand (i.e. upper and lower bounds,
constraint types). All executable blocks also get a problem role, based on their con-
nections with other blocks and their position with respect to the design variables, see
uncoupledDes-VarIndBlocks and uncoupledDesVarDepBlocks in Fig. 4.6. These
roles match the KADMOS function node roles of the FPG described in §§3.4.2. The sec-
ond branch of the problem definition is the problemFormulation, where the specifica-
tion of the MDAO architecture that should be imposed on the problem and the logical
order of the executable blocks are stored. This logical order is required to determine
(among others) the feedback between different blocks and can also be used to automat-
ically determine problem roles of the executable blocks.

4.3.2. ELEMENTS IN THE NODES CATEGORY

The node elements all represent either parameters or executable blocks and are sepa-
rated into three subelements: executableBlocks, parameters, and architecture-
Elements. Their subelements are depicted in Fig. 4.7. The executableBlocks element
contains the function blocks that are stored in the tool repository. Two main types of
executable blocks can be stored inside this element: mathematical functions and design

101

4

cmdows

header

creator [str]

description [str]

timestamp [Y-m-d T H:M:S Z]

fileVersion [str]

cmdowsVersion [str]

updates <...>

organization

contacts <...>

contact

@uID

name [str]

email [str]

company [str]

department [str]

function [str]

address [str]

telephone [str]

country [str]

organigram

architects <...>

integrators <...>

collaborativeEngineers <...>

toolSpecialists <...>

customers <...>

projectSpecific [anyType]

problemDefinition

@uID

problemFormulation

mdaoArchitecture [str]

convergerType [str]

allowUnconvergedCouplings [true/false]

doeSettings

executableBlocksOrder <...>

executableBlocksGrouping <...>

problemRoles

executableBlocks

uncoupledDesVarIndBlocks <...>

uncoupledDesVarDepBlocks <...>

coupledBlocks <...>

postCouplingBlocks <...>

parameters

designVariables <...>

designVariable

@uID

parameterUID [str]

nominalValue [float]

validRanges <...>

variableType [real / imag]

samples <...>

constraintVariables <...>

constraintVariable

@uID

parameterUID [str]

constraintType [equality / inequality]

constraintOperator [==, <, >, <=, >=]

referenceValue [float]

requiredEqualityPrecision [float]

objectiveVariables <...>

stateVariables <...>

...

information

Figure 4.6: Elements in the CMDOWS category Information

102

4

competences. The mathematical functions are simple executable blocks that evaluate an-
alytic expressions to determine the value of the outputs. These expressions can be stored
directly in the mathematicalFunction element, thereby storing the full definition of
that executable block. Hence, the actual operation performed by the block is stored for
mathematical functions. Contrary to this, design competences represent more complex
executable blocks where the operation performed by the block is unknown (or at least
cannot be stored as simple mathematical expressions). The designCompetence ele-
ment therefore stores a block that performs an unknown operation (it acts as a so-called
‘black box’). Instead of storing the operation itself, the schema of the designCompetence
element can accommodate a range of specifications for executing the tool. For example,
a design competence can be an integrated analysis tool on the local system, a remotely
called execution using a special server integration, a surrogate model, or any other form
of computational module present in a collaborative workflow. Additional information
about the competences, such as ownership and the outcome of eventual verification
steps, can be stored in the metadata element, see Fig. 4.7.

The second node element is the parameters element. This element contains all the
inputs and outputs of the executable blocks stored in the main executableBlocks el-
ement. If the executable blocks are integrated using a Central Data Schema (CDS) ap-
proach (i.e. CPACS), then the parameters element will contain all the unique elements
that are used from that schema as separate parameters. Additional information about
the parameters can also be stored, such as a label, description, unit, and data type (real,
float, list, etc.).

The last node element is architectureElements. This element includes both para-
meters and executableBlocks, which differ from those stored in the top-level para-
meters and executableBlocks element because they are the additional elements cre-
ated when an MDAO architecture is imposed on a specified problem. For example, when
an architecture has to be imposed, a new executable block has to be introduced to han-
dle the optimization loop: an optimizer. This new element is stored as an architec-
tureElements/executableBlock. New parameters also have to be introduced to con-
nect the optimizer to the rest of the system. Initial guesses for all design variables are
required as input of the optimizer and the optimal (final) values of the design variables,
objective, and constraints have to be connected as outputs. These parameters do not
exist before the imposition of the MDAO architecture and are therefore instantiated and
stored as architectureElements/parameters. Similarly, other architecture elements
are introduced including convergers, DOE blocks and other components that are spe-
cific to a given architecture. The complete list of possible architecture elements in the
schema is shown in Fig. 4.7. Next to newly introduced elements, the original executable
blocks are also grouped based on their KADMOS architecture role (discussed in §§3.2.1
and listed in Tab. 3.8) via their UID, see uncoupledDesVarIndAnalyses element and
below in Fig. 4.7. This categorization can, for example, be used for assigning colors in
the visualization of the CMDOWS file or when parsing the file to create an executable
workflow.

4.3.3. ELEMENTS IN THE CONNECTIONS CATEGORY

CMDOWS contains a single element for storing the connections: workflow. In this ele-
ment two different types of graphs can be stored: data graphs and process graphs. As was
discussed in §3.4, the combination of these two graphs constitutes the neutral definition

103

4

cmdows

executableBlocks

designCompetences <...> designCompetence

@uID

ID [str]

modeID [str]

instanceID [int]

relatedInstanceUID [str]

version [str]

label [str]

inputs <...>

outputs <...>

metadata

projectSpecific [anyType]

mathematicalFunctions <...> mathematicalFunction

@uID

label [str]

functionType [str]

sleepTime [float]

inputs <...>

outputs <...>

parameters <...>
parameter

@uID

label [str]

InstanceID [int]

relatedInstanceUID [str]

description [str]

schemaPath [str]

note [str]

defaultValue [str]

unit [str]

dataType [str]

architectureElements

parameters

initialGuessCouplingVariables <...>

finalCouplingVariables <...>

couplingCopyVariables <...>

initialGuessDesignVariables <...>

finalDesignVariables <...>

finalOutputVariables <...>

copyDesignVariables <...>

consistencyConstraintVariables <...>

doeInputSampleLists <...>

doeOutputSampleLists <...>

surrogateModelApproximates <...>

couplingWeights <...>

executableBlocks

coordinators <...>

optimizers <...>

convergers <...>

does <...>

surrogateModels <...>

distributedSystemConvergers <...>

uncoupledDesVarIndAnalyses <...>

uncoupledDesVarDepAnalyses <...>

coupledAnalyses <...>

postCouplingAnalyses <...>

...

nodes

Figure 4.7: Elements in the CMDOWS category Nodes
104

4

of a workflow that needs to be executed to solve an MDAO problem: the MDAO solu-
tion strategy. The dataGraph element contains a data graph storing the connections
(or edges) between parameters and executable blocks according to their I/O relations.
This data graph can be stored for any formulation stage of the MDAO system in Fig. 4.1,
where each stage would be represented by a separate CMDOWS file. The processGraph
element is only used for the MDAO solution strategy to store the process steps for run-
ning the different executable blocks. Metadata about the graphs can also be stored, such
as the number of nodes and edges, and the nesting of the process steps for the process
graph.

cmdows

workflow

problemDefinitionUID [str]

dataGraph

name [str]

edges <...>

edge
fromParameterUID / fromExecutableBlockUID [str]

toParameterUID / toExecutableBlockUID [str]

metadata [anyType]

processGraph

name [str]

edges <...>

edge

fromExecutableBlockUID [str]

toExecutableBlockUID [str]

processStepNumber [int]

nodes <...>

node

referenceUID [str]

processStepNumber [int]

convergerStepNumber [int]

diagonalPosition [int]

partitionID [int]

metadata

loopNesting

...

connections

Figure 4.8: Elements in the CMDOWS category Connections

4.4. ILLUSTRATIVE EXAMPLE: SELLAR PROBLEM

The Sellar problem, introduced in §3.4, is used in this section to demonstrate the use
of CMDOWS as a schema to store the three different stages of the MDAO system during
the formulation phase. As the MDAO system is transformed between each stage (see
Fig. 4.1), a different CMDOWS file is stored for each of them. This section describes
how each stage is stored, thereby giving the reader a clearer understanding of the differ-
ent schema elements. The way this enrichment is performed with the formulation tool
KADMOS has been discussed in detail in the previous chapter (§3.4).

105

4

4.4.1. STAGE I: TOOL REPOSITORY

The tool repository for the Sellar problem was described in §3.4. The original Sellar prob-
lem actually contains only five tools, but here, fictitious tools (A, B, C, etc.) were added to
demonstrate how an MDAO problem can be based on a subset of tools from the reposi-
tory. The CMDOWS file shown in Fig. 4.9 matches the RCG described in §§3.4.1. The only
elements from the schema needed to store a tool repository are the executableBlocks,
parameters, and workflow/dataGraph. As shown in Fig. 4.9, the different executable
blocks are integrated differently: the disciplinary analyses D[1] and D[2] are design com-
petences, meaning that the mathematical expressions to be executed are assumed to be
unknown (for illustration purposes), while for the remaining functions mathematical ex-
pressions are available. For all executable blocks the inputs and outputs of each block
are defined by referring to the right elements from the parameters list using the relative
parameter UID (as is shown for parameters x1 and f in the figure). Finally, the dataGraph
element contains the full graph, as illustrated on the lower right of the figure, by listing
the edges between all executable blocks and parameters. The storage of the edge y1 → F
is illustrated in the figure.

4.4.2. STAGE II: MDAO PROBLEM

One additional element is required to store the MDAO problem in a CMDOWS file: pro-
blemDefinition, see Fig. 4.10. In this element, the problem roles and problem for-
mulation are indicated. The creation of this FPG matching the CMDOWS file has been
discussed in §§3.4.2. As shown in Fig. 4.10, the parameters z1, z2, and x0 get the special
role of design variable. Similarly, f is assigned the role of objective for the optimization.
The roles of the executable blocks are also specified and only the tools strictly needed to
solve the problem have been selected from the tool repository.

4.4.3. STAGE III: MDAO SOLUTION STRATEGY

When the problem formulation has been set, in this example to an MDF architecture
with a Gauss-Seidel type converger, the full schema is used to store the MDAO solution
strategy, as depicted in Fig. 4.11. This strategy is automatically imposed on the MDAO
problem using KADMOS, see §§3.4.3 and §§3.4.4. Two new elements are added to the file
with respect to the problem definition: the architectureElements and the workflow/
processGraph. Actually, it is not just that these elements are added, but all the elements
in the CMDOWS file are updated when the architecture is imposed on the problem. For
example, compare the data graphs depicted in Fig. 4.10 and Fig. 4.11 to see the large
number of adjusted data connections. With the MDF architecture used in this example,
the architectural executable blocks optimizer and converger are added to the file, and
a range of architectural parameters are added, such as initialGuessDesignVariables
and couplingCopyVariables.

This concludes a brief illustration of using CMDOWS to store MDAO systems at different
stages. The use of the different CMDOWS elements for each stage of the MDAO system is
summarized in Tab. 4.1. Naturally, the schema was not created for such small cases, such
as the Sellar problem example, but rather to exchange large-scale systems in a collabo-
rative MDAO setting. The application of the schema will be more elaborately discussed

106

4

cmdows

header

executableBlocks

designCompetences <...> D[1]

D[2]

mathematicalFunctions <...>

A

B

...

F

@uID: F

label: F

functionType: regular

inputs

input

parameterUID: /dataSchema/variables/x1

equationLabel: x1

input

parameterUID: /dataSchema/analyses/z2

equationLabel: z2

...

outputs output

parameterUID: /dataSchema/analyses/f

equations <...>

@uID: F_equation

equation: x1**2+z2+y1+exp(-y2)

@language: Python

G[1]

G[2]

H

parameters <...>

a

b

c

f

@uID: /dataSchema/analyses/f

label: f

description: calculation of f value.

defaultValue: 3.15

unit: -

dataType: float

...

x1

@uID: /dataSchema/variables/x1

label: x1

...

y1

@uID: /dataSchema/analyses/y1

label: y1

...

y2

z1

z2

workflow
dataGraph

name: RCG_Sellar

edges <...>

edge

fromParameterUID: /dataSchema/analyses/y1

toExecutableBlockUID: F

edge

edge

...

G[1] G[2]
F

D[1] D[2]

A

B

C

E

a b

c

z2
z1

x1

f g1 g2

y1

y2

H

x0

data graph

information

nodes

connections

Figure 4.9: Illustration of the storage of the Sellar tool repository in a CMDOWS file. The RCG from Fig. 3.8 is
shown in the figure for reference.

107

4

cmdows

header

problemDefinition

@uID: MDO_problem

problemFormulation

mdaoArchitecture: MDF

convergerType: Gauss-Seidel

executableBlocksOrder <...>

executableBlockUID: ABC

executableBlockUID: H

executableBlockUID: D[1]

executableBlockUID: D[2]

executableBlockUID: F

executableBlockUID: G[1,2]

problemRoles

parameters

designVariables <...>

designVariable
x0

...

designVariable

z1

nominalValue: 2.0

validRanges <...>

limitRange

minimum: -10.0

maximum: 10.0

designVariable
z2

...

objectiveVariables <...>
objectiveVariable

f

constraintVariables <...>

constraintVariable

g1

constraintType: inequality

constraintOperator: >=

referenceValue: 0.0

constraintVariable
g2

...

stateVariables <...>
stateVariable

y2

executableBlocks

uncoupledDesVarIndBlocks <...> ABC

uncoupledDesVarDepBlocks <...> H

coupledBlocks <...>
D[1]

D[2]

postCouplingBlocks <...>
F

G[1,2]

parameters <...>

executableBlocks

workflow

problemDefinitionUID: MDO_problem

dataGraph

data graph

G
[1,2]

F

ABCa
c

z2
z1

x1

f g1 g2

H
x0

D[1] D[2]
y1

y2

information

nodes

connections

Figure 4.10: Illustration of the storage of the Sellar MDAO problem in a CMDOWS file

108

4

cmdows

header

problemDefinition

parameters <...>

executableBlocks

architectureElements

parameters <...>

initialGuessDesignVariables <...>
x0^0

z1^0

z2^0

finalDesignVariables <...>
x0*

z1*

z2*

initialGuessCouplingVariables <...>
y2^{c0}

finalCouplingVariables <...>
y2*

couplingCopyVariables <...>
y2^c

finalOutputVariables <...>

y2*

f*

g1*

g2*

executableBlocks <...>

coordinators <...> COOR

optimizers <...> OPT

convergers <...> CONV

uncoupledDesVarIndAnalyses <...> ABC

uncoupledDesVarDepAnalyses <...> H

coupledAnalyses <...>
D[1]

D[2]

postCouplingAnalyses <...>
F

G[1,2]

workflow

dataGraph

processGraph

name: Process_graph_MDF-GS

edges <...>

edge

fromExecutableBlockUID: A

toExecutableBlockUID: OPT

processStepNumber: 1

edge

...

nodes <...>

node

referenceUID: A

processStepNumber: 1

diagonalPosition: 1

node

...

metadata loopNesting

problemDefinitionUID: MDO_problem

data graph

G
[1,2]

F

D[1]

D[2]

ABC
a

c
z

z
x

f
g

g

y

y

COOR

OPT

CONV

x z z
yc

x*

z*

z*

g*g* f*

y*

ycH

x

process graph

G[1,2]
{8}

F
{8}

D[1]
{5}

D[2]
{6}

ABC
{1}

COOR
{0,10}

OPT
{2,9}

CONV
{4,7}

1

2

3

4

6

7

8
8

9

9

10

H
{3}

5

connections

nodes

information

Figure 4.11: Illustration of the storage of the Sellar MDAO solution strategy according to the MDF architecture
with a Gauss-Seidel convergence scheme in a CMDOWS file

109

4

in the ensuing chapters.

Table 4.1: Tabular top-level overview of the CMDOWS schema for MDAO system representations

root repo problem strategy
Metadata about the file (e.g. creator,
creation date, version). ✓ ✓ ✓

Definition of the MDAO problem to be
solved (design competences used,
design variables, constraints, etc.).

⨯ ✓ ✓

design
Competences

Function definition (inputs, outputs,
metadata) of executable blocks that are
not simple mathematical relations
(hence, black boxes).

✓ ✓ ✓

mathematical
Functions

Function definition (inputs, outputs,
equations) of executable blocks that
can be described by a set of
mathematical relations.

✓ ✓ ✓

All elements from the product schema
that are used as inputs or outputs of
the executableBlocks.

✓ ✓ ✓

Additional elements that are required
to solve an MDAO problem according
to a certain architecture, such as initial
guesses, copy variables, or convergers.

⨯ ⨯ ✓

dataGraph

All data input (e.g. parameter x →
executableBlock F) and output (e.g.
executableBlock F → parameter y)
connections of an MDAO system.

✓ ✓ ✓

processGraph

Full process description of an MDAO
solution strategy using connections
and step numbers between
exectableBlocks (e.g. F --(step 3)-→ G).

⨯ ⨯ ✓

information

nodes

connections

element
category

elements

used to describe
MDAO system stagedescriptionschema

cmdows

header

problemDefinition

executableBlocks

parameters

architectureElements

workflow

4.5. CONCLUSION

The latest version (0.9) of the MDAO system exchange format CMDOWS has been pre-
sented in this chapter. CMDOWS supports the storage of an MDAO system of any size
at three different stages of the formulation phase: tool repository, MDAO problem, and
MDAO solution strategy (see Fig. 4.1). The main goal of CMDOWS is to provide a format
that allows different framework applications to exchange the definition of the system.

This chapter has been restricted to a description and illustration of the novel schema
to convey the basic underlying ideas and top-level schema definition. The full valida-
tion and discussion of the schema will follow later in this dissertation. First, the use of
CMDOWS to automatically create executable workflows in multiple PIDO platforms will
be covered in the next chapter. Second, the application of CMDOWS at the heart of the
third-generation AGILE MDAO framework is demonstrated, analyzed, and discussed in
Chapter 6.

110

5
BRIDGING THE GAP

BETWEEN MDAO SYSTEM

FORMULATION AND EXECUTION

U SING KADMOS (Chapter 3), a design team can create the blueprint of an MDAO
workflow and afterwards store it as a CMDOWS file (Chapter 4). As helpful as such

a blueprint might already be for formulating complex MDAO workflows collaboratively,
it cannot be executed yet. Fortunately, many different PIDO platforms are dedicated
to this particular task, as was discussed in §2.5. However, these workflows need to be
scripted or built manually; a very time-consuming and error-prone task for complex
workflows. With the blueprint of the MDAO workflow available as a standalone XML file
based on CMDOWS, an opportunity presents itself to automatically build the executable
workflows using this information in any PIDO platform. This automated creation of the
workflow is called materialization and the developed platform capability to achieve it
is referred to as a CMDOWS parser. After a brief introduction (§5.1), this chapter aims
to present and discuss workflow materialization for three PIDO platforms: RCE (§5.2),
Optimus (§5.3), and OpenMDAO (§5.4). The chapter ends with §5.5, which contains a
comparison on how the different PIDO platforms enable bridging the gap and support
collaborative MDAO, followed by recommendations for future developments.

5.1. INTRODUCTION

The developments described in this chapter complete the staged MDAO development
process that was introduced in Chapter 1, as visualized in Fig. 5.1. Using the develop-
ment process discussed in this thesis, a graph-based blueprint of the MDAO workflow
is available at the end of the formulation phase. This blueprint was formulated using
KADMOS and is stored as a CMDOWS file. Typically, the design team would take this
blueprint as a reference document and will start building the executable workflow man-
ually using one of the many PIDO platforms available (Tab. 2.1). Manual workflow cre-
ation is not a straightforward task, especially if a large amount of data needs to be passed

The contents of §5.3 have been adapted from [102].

111

5

around between different disciplines and/or the blueprint describes a complex scheme
for solving the design problem, like the distributed architectures CO and BLISS-2000.

Tool
repository

MDAO
problem

MDAO solution
strategy

Executable
work�ow

MDAOptimal
design

= stages of the process discussed in
 this chapter

I II III IV V

Figure 5.1: The two stages of the MDAO development process that are covered by the workflow
materialization discussed in this chapter

Instead of building workflows manually, CMDOWS unlocked the opportunity to auto-
matically generate (hence: materialize) executable workflows based on a single XML
file. This idea was actively supported by two prominent PIDO platform developers from
the AGILE project, namely Noesis Solutions and the DLR, who saw in the neutral data
exchange schema a potential solution to the flexibility demand of their customers, as
well as a means to deliver more easily custom solutions to their advanced users. Noe-
sis Solutions and the DLR each own a PIDO platform: Optimus and RCE, which were
both discussed in §2.5. In addition to the CMDOWS parsers for these two AGILE plat-
forms, a workflow materialization capability (hence: CMDOWS parser) was also devel-
oped for the OpenMDAO platform. Contrary to the other two parsers, which were de-
veloped in cooperation with the platform owners, the parser for OpenMDAO was devel-
oped in-house for this dissertation. This additional development was motivated by two
considerations: 1) a potential performance benefit that was identified based on initial
evaluations of this platform, and 2) the need to also materialize blueprints of distributed
architectures.

This chapter is compiled from the workflow materialization capabilities developed for
three PIDO platforms: RCE, Optimus, and OpenMDAO. These CMDOWS parsers are pre-
sented in this chapter for the following purposes:

1. Verify the correctness of the translation by executing materialized workflows and
checking the results with theoretical values for different MDAO architectures sup-
ported by KADMOS and stored as CMDOWS files:

• MDA (Gauss-Seidel, Jacobi)
• DOE
• monolithic MDO (MDF, IDF)
• distributed MDO (CO, BLISS-2000).

2. Compare the novel automated development process with a state-of-the-art man-
ual process to:

• evaluate time gain using the automated process;
• evaluate how the materialized workflow affects the PIDO platform’s perfor-

mance;
• evaluate user experience.

3. Validate the automated MDAO development process concerning:
• independence from PIDO-specific properties and completeness of CMDOWS

in describing the solution strategy for the architectures listed above;
• flexibility to reconfigure the problem definition and/or solution strategy.

The aforementioned targets are not fully covered by all three platforms due to limited

112

5

time and resources in the AGILE project. Consequently, workflows employing a dis-
tributed MDO architecture can only be materialized in OpenMDAO, while the compari-
son between the automatic and manual approach was only performed with Optimus.

Workflow verification was carried out for each platform using the earlier discussed Sel-
lar problem and SSBJ test cases. The Sellar problem was used as illustrative example
in the previous two chapters, see §3.4 and §4.4. The SSBJ case was covered in §3.6 and
additional solution strategies are shown in Appendix A. The focus of materialization de-
velopment was on automating the creation of reliable, executable workflows. Hence,
the performance of the workflows is not necessarily optimized, though their execution
times will be compared between platforms. The materialized workflows are considered
verified if they can be created fully automatically from a given CMDOWS file and their ex-
ecution results in the expected outcome within a small margin of error. The verification
thereby demonstrates the bridging of the formulation-execution gap as well as the value
of the platform-agnostic formulation developments from the previous two chapters to
achieve a fully automated development process.

5.2. RCE
RCE [S3] is a GUI-based platform, which has been discussed elaborately in §2.5. The
platform was used in FrAECs (§§2.6.1), IDEaliSM (§§2.6.2), and the beginning of the AG-
ILE (§§2.7.2) project to manually create collaborative MDAO workflows. RCE does not
include any scripting capabilities and therefore the CMDOWS parser had to be build
from square one.

5.2.1. MATERIALIZATION APPROACH

RCE workflows are stored as single files with a ‘.wf’ extension: the workflow file. This
file contains the full workflow definition in JSON format. Normally, this workflow file
is generated by performing actions in the GUI to add components, connect them, and
specify component settings. With the parsing of the CMDOWS file the workflow file is
generated automatically. Hence, the XML-based CMDOWS file is translated to the JSON-
based RCE format.

The CMDOWS parser has been implemented as a separate plug-in. When a user opens
the plug-in an interface appears on the screen. In this interface, the user has to select the
CMDOWS file to be parsed. In addition, an XML file that contains initial values for the
workflow can also be supplied. A materialized workflow for the SSBJ test case is shown
in Fig. 5.2. The matching XDSM of this workflow was shown in Fig. 3.20.

The square components in Fig. 5.2 match with the diagonal components of the XDSM
in Fig. 3.20. The round elements are XML readers/writers used to manage XML files and
extract I/Os that are required separately by certain components. Following the diagonal
from top left to bottom right:

• The coordinator is split into an input and output file block. The input file block is
the starting point of the workflow and contains the input file provided in the plug-
in’s interface. The output file block is the end point of the workflow and collects
the optimization results to store them as an XML file.

• The RCE-native optimizer element does not operate on XML files directly, hence

113

5

optimizer element

converger
element

XML readers / writers

CDS-
compatible

tools

mathematical
functions

CDS-based �le transfer
between components

input / output �le

Figure 5.2: Screenshot of the automatically instantiated RCE workflow for the SSBJ validation case for an MDF
architecture with a Jacobi convergence scheme. This workflow matches the XDSM shown in Fig. 3.20.

114

5

multiple (round) XML elements are added around this block. These blocks read
out the optimizer’s input from an XML file and write the optimizer’s output to an
XML file so that the other XML-based tools can directly use these files.

• Similarly, the RCE-native converger element operates on individual values and re-
quires XML elements to operate.

• After the converger, the four CDS-compatible, black-box tools (structures, aerody-
namics, propulsion, and performance) are integrated as stand-alone, XML-based
components. These tools were stored as design competences in the CMDOWS
file. The only prerequisite for a successful materialization, is that locally executed
design competences have been integrated as components in the platform’s tool
library with a matching name and version. The parser then looks for a match be-
tween the design competence (name and version) stored in the CMDOWS file and
the tools available in the platform library to place the right component on the di-
agonal. Note that, since the parser assumes that these components are already
CDS-based (using a single XML I/O file), no special XML elements are required for
their workflow integration.

• The last five square diagonal elements are the mathematical functions from the
CMDOWS file, representing the constraints and objective calculations. These com-
ponents are integrated as Python scripts, using the mathematical relation that is
stored in the CMDOWS file. These scripts need individual values (instead of a sin-
gle XML file) to run, therefore an XML reader is used to read out the inputs before
the script element, and a merger is used to write the results after the script and
combine them with the input values.

• Finally, the components are connected based on the data connections specified in
the CMDOWS file. All connectors in the screenshot are XML file transfers, except
the connections between a round and a square element.

Instead of being tools from the local library, the design competences indicated in a CM-
DOWS file can also be available remotely, on a separate server domain operated by a
partner in the design team. In this case, the tool needs to be integrated in the main
workflow as a ‘Brics component’. Brics, developed by Baalbergen et al. [103] at the Royal
Netherlands Aerospace Centre (NLR), is a collection of protocols and middleware that
enables data exchange between components residing at two different server domains,
whilst respecting the security constraints of both. In RCE, standardized Brics compo-
nents are available to call a remote tool and to handle such a call on the tool side as
well. If remote execution metadata is provided in the CMDOWS file, the design com-
petence will be integrated as a Brics component. In the plug-in the user can provide
settings (server address, authentication information, etc.) for distributed workflow exe-
cution through Brics. The Brics capability was not used in the verification cases, but will
come forward in the next chapter, where RCE workflows are instantiated in collaborative
design projects.

5.2.2. VERIFICATION OF MATERIALIZED WORKFLOWS

The automatic workflow creation in RCE was validated using two classical MDAO test
cases from literature: the Sellar problem and the SSBJ design case. RCE’s CMDOWS
parser supports all architecture types, except distributed ones. For brevity’s sake, the
verification presented in this section is limited to three different MDO schemes, as these
are the most complex workflows that can be built at the moment. The MDA scheme
is implicitly validated, as it is part of the MDF strategy, while the DOE scheme would

115

5

simply involve the exchange of the optimizer component with a design exploration one.
In RCE, the optimizer block provides different algorithms from the Dakota [60] pack-
age. For these validations, the COBYLA (Constrained Optimization BY Linear Approxi-
mations) algorithm was selected from the package.

The Sellar workflows were instantiated using CMDOWS files containing only mathemat-
ical relations. The objective value history per iteration of the COBYLA algorithm is shown
for the three architectures in Fig. 5.3a. All three workflows perform as expected and the
optimizer is able to find the theoretical objective value and matching design variables.
Profiling data and the objective values for the three cases are listed in Tab. 5.1. The Root-
Mean-Square Error (RMSE) in the last column is calculated with the following expression
for a generic result vector x :

RMSE =
√∑N

i=1(x̃i −xi)2

N
(5.1)

in which x̃ is the theoretical optimal value, x is the value obtained by the workflow, and
N is the length of the vector. The objective value is a single-element vector, but the
same expression for the RMSE is used in §5.4 to also verify obtained design variables
and couplings.

The execution times for the different cases are comparable, with IDF slightly outper-
forming MDF in this particular case, though it is worth noting that the performance of
IDF depends strongly on the selection of an appropriate starting point; IDF would have
more trouble with a starting point where its consistency constraints are not satisfied,
while MDF handles coupling consistency with its converger. In general, the optimization
times are relatively long for such a small problem in which all components are integrated
as native scripts. A direct implementation of the Sellar problem in a Python or MATLAB
script would only require a couple of seconds at maximum. This indicates that the ma-
terialized workflow with its XML management elements causes quite a lot of overhead,
which will be further discussed when the different platforms are compared in §5.5.

a) Sellar b) SSBJ

Figure 5.3: Objective values (denormalized) during execution of materialized RCE workflows for three
different MDO architectures

The materialized SSBJ workflows, which contain a mix of mathematical relations and de-
sign competences (see Fig. 5.2), also perform as expected, with the objective value his-
tory shown in Fig. 5.3b. The IDF scheme requires nearly double the number of iterations,
but since it does not enter a convergence loop for each iteration, the execution time is

116

5

Table 5.1: Profiling data of the Sellar and SSBJ verification workflows with RCE.

test case architecture iters. execution time (s) objective RMSE objective

Sellar MDF (GS) 40 82 3.1835 9.03E-05
MDF (J) 59 83 3.1835 1.08E-04
IDF 57 73 3.1834 1.56E-05

SSBJ
MDF (GS) 119 1092 3963.9 1.08E-01
MDF (J) 112 1203 3967.0 2.95E+00
IDF 207 996 3966.2 2.24E+00

comparable to MDF. Performance of the workflows could potentially be improved by
fine-tuning the tolerance settings of the optimizer and converger, as the objective his-
tory reveals that all workflows perform many iterations close to the theoretical optimum.
However, such performance improvements are out of scope of the current verification
study, as was described in §5.1.

5.2.3. DEVELOPMENT PROCESS VALIDATION

The verification of RCE’s CMDOWS plug-in demonstrates the possibility to build a com-
plete executable workflow in a specific PIDO software, based on the platform-agnostic
definition of that workflow in a CMDOWS file. No additional user intervention was re-
quired to generate and execute the workflows through the plug-in. Thereby, the veri-
fication not only covers the plug-in itself, but also validates the standardized workflow
schema from the previous chapter. The RCE CMDOWS plug-in is an important step in
the automation of the full MDAO development process, which will be further assessed
based on the collaborative MDAO design projects covered in the next chapter. A strong
point of the automatically instantiated workflows in RCE is that, after materialization,
the workflows are still fully accessible in the GUI for any further adjustments, such as
fine-tuning component settings or manually including an additional component.

5.3. OPTIMUS

Optimus [S2] is a commercial PIDO environment developed by Noesis Solutions. As with
RCE, Optimus provides a GUI to build workflows. A key difference between the two plat-
forms, also discussed in §2.5, is that Optimus combines simulation workflows built from
tool components with separate analysis methods (e.g. optimizer, DOE). Hence, there is
no explicit optimization component in the workflow, but the optimizer is configured ‘on
top’ of the workflow itself.

5.3.1. MATERIALIZATION APPROACH

In addition to the standard GUI-based workflow generation, Optimus also provides a
Python-API that enables the programmatic creation of workflows through scripts. This
advanced feature is not targeted to single task workflow generation, but is oriented to-
wards more complex applications where multiple instances of a workflow must be cre-
ated and customized efficiently. This Python-API is used to automatically create the
complex MDAO workflows formulated by KADMOS and stored as CMDOWS files.

117

5

The materialization is achieved by performing a sequence of operations that translate
the CMDOWS formalism into Optimus workflow features. The translation tasks are sched-
uled according to a fixed sequence to ensure the coherence of the disciplines and their
links. This is necessary due to the underlying ordered-graph schema used internally by
Optimus. Thereby the automated procedure literally mimics the operations that would
have been performed by a specialist through the GUI using an XDSM (or equivalent) as
reference.

As a first step, the XML-type dataset is parsed into a Python dictionary. The elements
of the workflow and their roles are explicitly stated in the CMDOWS file, but some re-
ordering and clustering are needed. The CMDOWS parser takes the following steps,
based on extracted information from the CMDOWS file:

1. Define design variables, along with their name, type (float, integer, string), exten-
sion (high-low, stepped, list) and range.

2. Identify parameters; inputs with a constant value.
3. Characterize objective functions and related definition (evaluation method, for-

mula, involved variables).
4. Introduce constraints (limit values, type).
5. Prepare couplings (connection schema of the elements in the workflow).
6. Add components (or disciplines) based on their required inputs and produced

outputs.
7. Set execution order.
8. Specify architecture-related components, such as cycles and target variables.
9. Perform equation conversion to ensure correct interpretation and required vari-

able management.

The materialized workflow is structured with two levels, as depicted in Fig. 5.4: architec-
ture and discipline. In case of remote disciplines, an intermediate level is introduced,
as discussed later in this section. The single architecture level at the top represents the
MDAO solution strategy, and the lower levels are populated by multiple, single tool, in-
dependent disciplinary workflows. The top-level workflow is the only one that retains
global knowledge of the ongoing analysis, whereas at the remote connection and disci-
pline level ‘separation of concerns’ is implemented.

The data transfer between the architecture-level Optimus workflow and the disciplinary
Optimus workflows is ensured by an integrated feature called ‘Optimus-In-Optimus’
[104]. This feature allows a master workflow to invoke a nested subworkflow and trans-
mit the necessary variable values. The two square blocks with a blue ’e’ in Fig. 5.4 are the
nested subworkflows. This feature enables clean and modular workflows, positioning
discipline-specific elements, such as commercial off-the-shelf software interfaces and
file pre- and post-processing, at the appropriate level. The disciplinary workflows are
linked to the architecture level only after cross-checking all the variables to ensure that
every variable in the MDAO system is mapped to its counterpart in the discipline. This
operation saves the user from a time-consuming and error-prone procedure.

As discussed in the previous section, the CMDOWS file supports distributed execution
with remote disciplines through Brics. For these type of components, an intermediate
remote connection level is introduced to manage data transfer and handle potential syn-
chronization issues. Of the two workflows in the lower left of Fig. 5.4, the top workflow is
executed locally and requests the execution of a remote discipline. Thanks to Brics, the
lower workflow can reside on another server domain and communicates with the main

118

5

executable work�ow
based on
MDAO solution strategy

local remote
connection management

remote local

ar
ch

ite
ct

ur
e

di
sc

ip
lin

e
re

m
ot

e
co

nn
ec

tio
n

Figure 5.4: The multi-level structure used to automatically build executable workflows from CMDOWS files in
Optimus

workflow through the Brics elements in the remote connection workflow. The set-up of
the connection interfaces (remote or local) is based on metadata stored in the CMDOWS
file. One of the great advantages of the remote connection level is that the remote dis-
cipline itself can actually be a workflow preassembled in any other PIDO platform that
supports Brics.

After the script-based materialization is complete, the workflow can be inspected in the
GUI and if need be, edited. Intrusive modifications, such as re-routing of connections,
are possible, but in large MDAO systems this could introduce consistency issues. There-
fore, the most convenient approach is to perform structural or architectural changes
through KADMOS and re-materialize the workflow. The materialized workflow for the
SSBJ optimization case with an MDF architecture is shown in Fig. 5.5.

5.3.2. VERIFICATION OF MATERIALIZED WORKFLOWS

The CMDOWS parser was verified using the same test cases discussed in the previous
section. The objective value history per iteration is shown in Fig. 5.6. Note that the Se-
quential Quadratic Programming (SQP) optimization algorithm has been selected from
the Optimus library (instead of the previously used COBYLA algorithm in RCE). This al-
gorithm requires the system’s derivatives which are calculated using the finite-difference
method. The achieved objective values and profiling data are listed in Tab. 5.2. All design
variables and constraints also match their theoretical value, but this is not shown here
for conciseness. Hence, the implemented automated approach identified the optimal
design points, thereby successfully validating the automatically built workflows.

5.3.3. COMPARISON MANUAL AND AUTOMATED PROCESS

The two verification cases from the previous section have also been performed manu-
ally based on a state-of-the-art approach, to be able to assess the complete automated
MDAO development process shown in Fig. 5.1 (hence using KADMOS, CMDOWS and

119

5

XML inputs

XML outputs

mathematical functions
objective

and constraints

CDS-compatible tools

converger
element

XML data transfer

Figure 5.5: Screenshot of materialized Optimus workflow for the SSBJ verification case for an MDF
architecture with a Gauss-Seidel convergence scheme. This workflow matches the XDSM shown in Fig. A.1.

a) Sellar b) SSBJ

Figure 5.6: Objective values (denormalized) during execution of materialized Optimus workflows for three
different MDO architectures

Table 5.2: Profiling data of the Sellar and SSBJ verification workflows with Optimus.

test case architecture iters. execution time (s) objective RMSE objective

Sellar MDF (GS) 5 394 3.1833 5.95E-05
MDF (J) 5 538 3.1834 2.82E-05
IDF 9 268 3.1834 5.52E-05

SSBJ MDF (GS) 6 3047 3954.1 9.87E+00
MDF (J) 6 5811 3954.0 1.00E+01
IDF 10 2417 3927.6 3.64E+01

120

5

materialization in Optimus). The development process was first followed to configure
optimization workflows based on the MDF architecture with a Gauss-Seidel convergence
scheme. Subsequently, two reconfigurations were performed to change the architecture:
first to MDF with a Jacobi scheme and finally to IDF. The goal of this development pro-
cess simulation in manual and automated mode was to quantify three aspects for system
configuration and two successive reconfigurations:

• time difference between manual and KADMOS-based MDAO system formulation;
• time difference between manual workflow creation and automated materializa-

tion, while accounting for the difference in the preceding formulation phase (ma-
terialization requires a CMDOWS and hence KADMOS-based formulation);

• execution time difference between manually created and materialized workflows.

In the manual approach, the formulation of the MDAO system was performed without
KADMOS by creating hand-written N2 charts, problem descriptions, and XDSMs on pa-
per. The workflows were also created manually using the GUI of Optimus. An example of
a manually created workflow in Optimus is shown in Fig. 5.7. With the manual approach
all components are placed in a single workflow, contrary to the multi-level approach vi-
sualized in Fig. 5.4. The automated approach exploits the developments presented in
this dissertation: KADMOS to formulate the solution strategy based on a tool repository,
CMDOWS to store the solution strategy, and the Optimus CMDOWS parser to create the
workflow. All activities were timed to compare the two approaches. The recorded tim-
ings per activity are listed in Tab. 5.4 and 5.3.

Figure 5.7: Manually created workflow for the SSBJ test case

Table 5.3: Time (minutes) required to perform each step for the different test cases and architectures with
hand-written system formulations (hence, no KADMOS script) and manual workflow assembly using the

Optimus GUI

stage & activity Sellar SSBJ

confi- reconfi- reconfi- confi- reconfi- reconfi-
gure for gure to gure to gure for gure to gure to

MDF-GS MDF-J IDF MDF-GS MDF-J IDF

I-II formulate problem 4 - - 5 - -
III create XDSM 5 3 4 25 8 10
IV create workflow 10 3 3 30 5 5
V execution ~0 ~0 ~0 <1 <1 <1

total 19 6 7 60 13 25

The comparison in terms of total time spent is listed in Tab. 5.5. Looking at the total
timings for the configuration of the Sellar test case, the automated approach clearly does

121

5

Table 5.4: Time (minutes) required to perform each step for the different test cases and architectures using
the automated approach

stage & activity Sellar SSBJ

confi- reconfi- reconfi- confi- reconfi- reconfi-
gure for gure to gure to gure for gure to gure to

MDF-GS MDF-J IDF MDF-GS MDF-J IDF

I load repository 15 - - 2 - -
inspect and debug 2 - - 3 - -

II formulate problem 5 - - 14 - -
inspect and debug 2 - - 2 - -

III create XDSM+CMDOWS 2 2 3 2 1 5
inspect and debug 1 1 1 1 1 1

IV create workflow 1 1 1 2 2 2
V execution 7 9 4 51 97 40

total 35 13 9 77 101 48

Table 5.5: Overview of the total time (minutes) required to formulate and create the executable workflow for
an MDAO systems using the manual and automated approach

Sellar SSBJ

stages activity conf. conf. + 2 reconf. conf. conf. + 2 reconf.

I-III formulation manual 9 16 30 48
auto. 27 34 24 32
diff. [%] +200% +113% -20% -33%

IV workflow manual 10 16 30 40
creation auto. 1 3 2 6

diff. [%] -90% -81% -93% -85%

I-IV formulation & manual 19 32 60 88
workflow auto. 28 37 26 38
creation diff. [%] +47% +16% -57% -57%

122

5

not outperform the state of the art. This can be attributed to the formulation phase,
which has a 200% time increase. That is not surprising, since for a small case like the
Sellar problem manual formulation seems to be more appropriate than going through
the formal KADMOS process. In addition, this difference can also partly be attributed to
the fact that the full system of mathematical relations needs to be defined in KADMOS
(since they are needed in the CMDOWS file), which apparently takes more time than
through the Optimus GUI. Workflow creation in the automated approach is much faster
thanks to the CMDOWS parser, however, the execution time of the workflow is increased
significantly by the additional overhead of the multilevel approach (see Fig. 5.4) used for
materialization.

The small Sellar case does already offer an indication of the strength of using the auto-
mated approach. When the additional time for two system reconfigurations is included
(see the second Sellar column in Tab. 5.5), the automated approach caches up: the for-
mulation still takes longer, but the time savings in workflow creation bring the total
difference down from 47% to 16%. In conclusion, the small Sellar case would be done
quicker manually, regarding both system formulation and workflow execution, though
the potential of the automated approach is visible when system reconfigurations are in-
cluded.

In the SSBJ test case the benefits of the automated approach are apparent: both formula-
tion and workflow creation are quicker with the automated approach, even when system
reconfigurations are not included. The automated approach reduces the time spent until
the workflow is ready for execution by 57%. As the SSBJ case represents a more realistic
collaborative MDAO system, though still relatively small, the achieved time reductions
indicate how a design team can benefit from the automated approach. In addition, it is
worth noting that time is spent differently with the new methodology: in KADMOS, there
is more focus on formulating the right problem and reasoning how the system should be
composed, instead of spending valuable minutes on repetitive tasks to manage the sys-
tem formulation (e.g. updating N2 charts or XDSMs) or build workflows (e.g. creating all
the connections between tools). Another noteworthy aspect is that, for the comparison
presented here, the performed system reconfigurations entail a change of architecture,
but one can easily imagine how, in the industrial practice, an MDAO system would re-
quire many different kinds of reconfigurations, such as adjusting a tool’s inputs/outputs,
including a new tool, or changing the optimization problem definition. All such recon-
figurations are supported by the current automated process.

Looking closer at stage IV, the time required to automatically assemble the workflow is
barely influenced by the architecture; only for high-dimensionality problems tackled
with the IDF approach the creation of additional variables could have a relevant im-
pact. In addition, the manual creation times in Tab. 5.3 for the different architectures
rely heavily on the similarity between the architectures, making it possible to clone one
workflow and then edit it; consequently, the implementation of the first architecture is
significantly slower than the customization process. However, this approach has clear
limitations: IDF and MDF have some commonalities, whereas distributed architectures
(not used in this comparative study) are radically different, and their implementation
should be performed starting almost from scratch. Furthermore, larger systems would
feature a large set of variables and couplings that could be non-trivial to adapt from one
architecture to another without creating inconsistencies that would be challenging to
identify and correct. This is a limitation that is not relevant for the automated approach,
where any architecture would be instantiated almost instantly without relying on clones

123

5

of earlier workflows.

In defense of the manual approach, the automated approach does require two main in-
vestments. The first investment is that the tool repository needs to be created using the
CDS approach. In this work the creation (N.B. but not loading and inspecting it in the au-
tomated approach) of this tool repository was neglected, as it was assumed that the same
repository is used for both approaches. However, compliance with the schema is an ad-
ditional task at the disciplinary level, but pays off in the achieved agility at the system
level, as it enables the use of the automation tools KADMOS, CMDOWS, and workflow
materialization in Optimus. The second investment stems from the fact that the design
team has to familiarize itself with these automation tools. Though this might seem a
trivial task, in larger organizations such cultural changes are generally harder to achieve
than expected.

In terms of workflow execution time, the manual approach, which exploits a direct inte-
gration of the disciplinary tools as elements in the top level (see the SSBJ workflow de-
picted in Fig. 5.7), outperforms the multilevel materialization. This significant improve-
ment in execution time is achieved by avoiding the overhead of the Optimus-in-Optimus
construct of the parsed workflows as, in the test cases used, the overhead is relatively
high for the fast-computing disciplines. However, as the complexity of the implemented
disciplines and their run time grow, the Optimus-In-Optimus overhead becomes less
relevant (often negligible) and is justified by the improved visibility of the architecture
granted by the multilevel approach, as well as the ease to re-use pre-assembled dis-
ciplinary sub-workflows inside different architecture workflows, for example when the
MDAO architecture is changed.

5.3.4. DEVELOPMENT PROCESS VALIDATION

The verification of CMDOWS-based workflow materialization in Optimus strengthens
the validation of the overall MDAO development process further. Optimus is the sec-
ond platform in which workflows can be created fully automatically based on the same
CMDOWS files used with the RCE plug-in. Thereby, it confirms the platform-agnostic
nature of the CMDOWS definition. Additionally, the comparative study between the
state-of-the-art and automated approach showed that, as system complexity grows, the
automated formulation and materialization becomes significantly faster than the man-
ual approach, with an estimated time reduction not lower than 50%.

Future work with respect to the Optimus CMDOWS parser will focus on expanding the
list of architectures that can be instantiated. For example, distributed architectures in-
cluding surrogate models (e.g. BLISS-2000) are expected to provide a performance ben-
efit for distributed systems. Other work will focus on further benchmarking the auto-
mated approach with respect to the state of the art, by performing different types of
system reconfigurations (e.g. tool removal/addition, problem reformulation).

5.4. OPENMDAO
OpenMDAO [S6] is an open-source, Python- and script-based platform that was ad-
dressed in §2.5. The main classes of the OpenMDAO package are shown on the left of
Fig. 5.8. Using Python scripts, a user can manually define the executable workflow as an
OpenMDAO Problem instance. The problem object has two main attributes: model and

124

5

driver. The model is instantiated using the System class and represents the multidisci-
plinary system of analyses. The driver is a Driver instance and contains the optimizer
or another design space exploration algorithm. Convergence of cycles in the multidis-
ciplinary system is performed through solvers. These solvers are defined on the system
itself and can also be configured per subsystem, as the System-Group composition in
Fig. 5.8 allows a hierarchical system definition. Note that, conceptually, the set-up of
the executable workflow is similar to the structure used in Optimus: the system of mul-
tidisciplinary analysis is modeled first, convergence is defined in that system, and the
analysis algorithm (e.g. optimizer) is defined separately.

Problem

System

Driver

Group LEGOModel

LEGO
Problem

Nonlinear
Solver

B2kSolver

Component

XML
Component

Discipline
Component

Abstract
Discipline

Subdriver
Component

ClassName

subclass relation

Legend

composition

1

1

1

0...*

1

1

0...*

1

0...*

1

Figure 5.8: UML class diagram of the OpenLEGO package and the relations between the OpenLEGO classes
and the OpenMDAO package

Two extensions of the OpenMDAO platform were required for the work presented in this
dissertation. First of all, the creation of the Problem instance, including its model and
driver, should be automatic, based on the workflow blueprint defined in the CMDOWS
file. Secondly, distributed architectures should also be supported. The set-up of Open-
MDAO does not support the inclusion of multiple drivers in the same Problem instance,
which is a prerequisite for distributed architectures. For these purposes, a new Python
package was developed called OpenLEGO (Open-source Link between AGILE and Open-
MDAO) [S25]. Hence, OpenLEGO is the CMDOWS parser developed for the OpenMDAO
platform.

5.4.1. MATERIALIZATION APPROACH: OPENLEGO

The UML class diagram of OpenLEGO including the relation of the OpenLEGO classes
to OpenMDAO’s classes is shown in Fig. 5.8. The development of OpenLEGO was ini-
tialized by De Vries [105]. In his work, De Vries focused on the first extension for Open-
MDAO: the automatic instantiation of the model from a CMDOWS file. To achieve this,
four classes were created in OpenLEGO: LEGOModel, XMLComponent, DisciplineCom-
ponent, and AbstractDiscipline. The latter three will be discussed first.

125

5

One of the key capabilities of OpenLEGO is the ability to integrate disciplinary tools
from the repository as a component in the OpenMDAO model. In the RCE and Opti-
mus parsers, this was achieved by requiring the user to either integrate these tools as
local components in the platform or by establishing a remote execution through Brics.
In OpenMDAO a similar requirement could be defined, however, the package goes one
step further and provides a more flexible and automatic tool integration. To achieve
this flexibility, three separate classes are used for tool integration/execution, namely
AbstractDiscipline, XMLComponent, and DisciplineComponent. The creation of
these classes is motivated by requiring a strict separation between a tool’s definition in
the formulation phase and the tool’s integration in an executable workflow in the execu-
tion phase. Hence, we want the tool definition to be fully independent of the platform
selected in the execution phase. The implemented approach achieving this is visualized
in Fig. 5.9.

CMDOWS
�le

Tool
repository

Abstract
Discipline

Discipline
Component

LEGO
Model

XML
Component

Component Group

serves as
input of

is base
class for

is base
class for

serve as
components for

is base
class for

contains
tools as

provides
execution
methods for

Figure 5.9: The implemented strategy in OpenLEGO to bridge the gap between the formulation phase (with
KADMOS and CMDOWS) and the execution phase (with OpenMDAO). (adapted from [105])

In the formulation phase the disciplinary tool needs to be integrated as an Abstract-
Discipline instance. This class is independent of OpenMDAO and provides a tem-
plate to integrate a disciplinary tool as a Python class. The integration is based on the
CDS approach, meaning that tools are assumed to have a single XML file as I/O. To
enable the execution of XML-based components in OpenMDAO, the Component class
was extended with XMLComponent. This class only depends on OpenMDAO and could
also be used in OpenMDAO as such. Finally, the DisciplineComponent merges the
tool definition from the tool repository and the XMLComponent class. The relation be-
tween the three classes is also shown in Fig. 5.8, where Disciplinecomponent is a sub-
class of XMLComponent and automatically incorporates the relevant methods from the
AbstractDiscipline to execute the tool.* In addition to XML-based tool execution, the
AbstractDiscipline also supports the definition of analytic derivatives for the com-
ponents. If the computation of these partial derivatives is supported by a tool, Open-

*In the previous sections, the disciplinary tools used were actually also Python subclasses of OpenLEGO’s
AbstractDiscipline. Hence, this construct streamlined the execution of the same tool in three different
PIDO platforms.

126

5

LEGO will notice and automatically configure the tool accordingly in OpenMDAO. For
more details on this aspect of OpenLEGO, see [105].

With the integration of disciplinary tools as OpenMDAO components covered, the next
step is to automatically instantiate the full OpenMDAO model based on the CMDOWS
file. This automated process is enabled by the LEGOModel class. As shown in Fig. 5.8,
LEGOModel is a subclass of OpenMDAO’s Group class. A LEGOModel instance requires
two inputs: the location of the CMDOWS file and the location of the tool repository
containing the Python files of the design competences. The OpenMDAO model is then
automatically constructed based on the information stored in the CMDOWS file. This
construction includes the following steps in the setup method of the class:

1. Add coordinator (IndepVarComp in OpenMDAO) for system-level inputs.
2. Add superdriver components (covered later in this section) .
3. Configure system-level converger for BLISS-2000 (covered later in this section)
4. Add all analysis and surrogate model components depending on KADMOS cate-

gorization (see §3.4) and type:
(a) add design competences for uncoupled and post-coupling components;
(b) add mathematical functions for uncoupled and post-coupling components;
(c) add surrogate model components;
(d) add coupled components (design competences and mathematical functions)

and configure the solver for this group (e.g. Gauss-Seidel, Jacobi).
5. Add subdriver components (covered later in this section).
6. Set the order of the different components.
7. Define the design variables.
8. Define the constraints.
9. Define the objective.

After the set-up of the model is completed, the LEGOModel object still acts as a regular
model from OpenMDAO. This means that all OpenMDAO methods can also be used for
the OpenLEGO models.

Apart from the definition of the model, the CMDOWS file also stores information on the
algorithms to be used in the MDAO solution strategy. These algorithms should be set
as a Driver on the Problem instance, as depicted in Fig. 5.8. The materialization of
the Problem instance is performed by the LEGOProblem class. In this class, the model
is instantiated using the previously described LEGOModel and the driver is configured
automatically based on the information stored in the CMDOWS file.

This first extension of OpenMDAO with OpenLEGO enables the materialization of ex-
ecutable workflows for all monolithic architectures. Fig. 5.10 visualizes the classes in-
volved in the materialization of such a monolithic solution strategy. The XDSM in the
background of this figure matches the XDSM that was defined by KADMOS in §§3.4.3
and §§3.4.4, see Fig. 3.10c. Note how the analysis tools in the system (e.g. ABC, H, D[1])
are either implemented as instances of the ExecComp or the DisciplineComponent
classes, respectively for mathematical functions and design competences listed in the
CMDOWS file.

The second extension, support for the execution of distributed architectures, required
the addition of two more classes in OpenLEGO: B2kSolver and SubdriverCom-
ponent. The B2kSolver (B2k is a shorthanded notation for the BLISS-2000 abbrevia-
tion) implements the distributed system converger component, see the third compo-

127

5

LEGO
Problem

LEGOModel

Driver Nonlinear
BlockGS

Indep
VarComp

ExecComp

Discipline
Component

Group

ExecComp

ExecComp

Figure 5.10: Overview of the OpenMDAO and OpenLEGO classes involved in the materialization of a
monolithic solution strategy (MDF with Gauss-Seidel convergence) for the Sellar problem solution strategy

that was depicted in Fig. 3.10c

nent on the diagonal of the XDSM in Fig. 3.26a. This solver contains the convergence
logic of the BLISS-2000 architecture (addressed in §2.4) and performs two main tasks:

• adjust design variable bounds after each system-level optimization to reduce the
design space;

• assess system convergence based on the objective value returned by the system-
level optimization.

The solver has been written as a subclass of the NonlinearBlockGS solver from Open-
MDAO, so that the sequential execution of model components is replicated from that
solver in combination with a completely different convergence check and the adjust-
ment of the design variable bounds for all optimizers and DOEs present in the model.
The solver code was ported to Python based on the BLISS-2000 implementation devel-
oped in MATLAB by Agte [106].

Finally, the SubdriverComponent class represents the last key development to support
distributed architectures with OpenLEGO. When placed in an OpenMDAO model, this
component acts as an explicit function; hence, it simply provides output values based on
provided inputs. However, inside the component a LEGOProblem including LEGOModel
are instantiated and when the component runs, it will execute a full model and driver.
Thanks to this construct, a system with multiple, nested, optimizers and DOEs can be
established and executed, thereby supporting distributed architectures.

The different classes of the OpenLEGO package are also aware of this nested structure
for distributed architectures and correctly connect the different models to pass data
around. When nested models require input values, these always have to be passed down
from the highest level. For this purpose, a superdriver component is instantiated in the
LEGOModel, see step 2 in the construction steps of the model.

The system hierarchy for the OpenLEGO model is determined based on the process
graph that is stored in the CMDOWS file. If, apart from the main model driver, an-

128

5

other driver is encountered in this process hierarchy, then this driver is instantiated as a
SubdriverComponent and the components within that subdriver’s process are instan-
tiated in a separate LEGOModel instance. This LEGOModel is constructed based on the
same CMDOWS file, but only includes components that are part of the process hierar-
chy beneath that particular subdriver’s UID. Thus, the set-up method recursively builds
subdriver components until all drivers from the CMDOWS process hierarchy have been
modeled.

LEGO
Problem

LEGOModel

Discipline
Component

Subdriver
Component

Discipline
Component

LEGO
Problem

LEGOModel

DOEDriver

Subdriver
Component

B2kSolver

3

Discipline
Component

Figure 5.11: Overview of the OpenMDAO and OpenLEGO classes involved in the materialization of a
distributed MDO architecture (BLISS-2000) for the wing design problem that was depicted in Fig. 3.26

Fig. 5.11 shows how OpenLEGO would construct the hierarchical process of the BLISS-
2000 solution strategy that was formulated in the wing design case study in §3.7. The
XDSM in the top of the figure is the main level in the process hierarchy. At this level the
model contains three subdrivers, one for the system-level optimization and two for the
disciplinary DOEs. This model also contains an instance of the B2kSolver. At the bot-
tom of the figure an expanded XDSM for one of the disciplinary DOEs is shown. Here,
the subdriver contains its own model and driver to construct a nested LEGOProblem in-
stance. Each experiment from the DOE block then also needs to be optimized: hence,
the DOE subdriver nests another SubdriverComponent instance to perform the disci-

129

5

plinary optimization. In total, the full system in this example contains six different mod-
els and five drivers. By virtue of the second extension of OpenMDAO by OpenLEGO, a
CMDOWS file describing such a large and complex system definition can be automat-
ically created. In the upcoming section these workflows are verified based on two test
cases.

5.4.2. VERIFICATION OF MATERIALIZED WORKFLOWS

As for RCE and Optimus, the Sellar problem and SSBJ test cases are used to verify the
OpenMDAO workflows. The full range of workflows that can be formulated with KAD-
MOS, from single tool execution in a test run to distributed architectures, was tested and
verified. The tested architectures are listed in the first column of Tab. 5.6 (Sellar) and
Tab. 5.7 (SSBJ). With the Sellar problem, the tools were integrated both as a system of
mathematical functions and a system of design competences including analytic deriva-
tives. This enabled a comparison between different tool integration methods for the
same test case.

MONOLITHIC ARCHITECTURES

The profiling data for the Sellar case is shown in Tab. 5.6. The first five architectures in
the table do not involve any optimization. Results of these workflows are in line with the
expectations. Looking at the execution times, it is clear that the implementation of tools
as mathematical functions has a positive impact on the run time. This is not surpris-
ing, as design competences require the intermediate reading and writing of XML files to
pass data around, while the mathematical functions pass their data directly within the
OpenMDAO model. The number of function calls for each tool is the same for the first
five architectures, since these architectures do not require any derivative values to run
the workflow. Larger differences between the tool integration approaches become ap-
parent for the monolithic optimization strategies. The history of the objective for these
architectures is shown in Fig. 5.12a. The optimization results are in line with the the-
oretical values, which is also clear from the RMSE (Root-Mean-Square Error) columns
(see Eq. (5.1)) in the table. As derivative values are required for the optimizer (the SQP
algorithm is used in all the test cases), the design-competence-based systems now have
less function calls, since the derivative values are provided through analytic expression.

a) monolithic architectures b) collaborative optimization

Figure 5.12: Objective value history (denormalized) for the Sellar problem (with design competences) for
different optimization architectures

130

5

Ta
b

le
5.

6:
P

ro
fi

li
n

g
d

at
a

o
ft

h
e

Se
lla

r
ve

ri
fi

ca
ti

o
n

w
o

rk
fl

ow
s

w
it

h
O

p
en

LE
G

O
.D

at
a

w
it

h
se

p
ar

at
ed

w
it

h
a

/-
sy

m
b

o
li

n
d

ic
at

es
d

if
fe

re
n

ce
s

b
et

w
ee

n
w

o
rk

fl
ow

s
u

si
n

g
m

at
h

em
at

ic
al

re
la

ti
o

n
s

/
d

es
ig

n
co

m
p

et
en

ce
s.

ar
ch

it
ec

tu
re

it
er

s.
ex

ec
u

ti
o

n
ti

m
e

(s
)

fu
n

ct
io

n
ca

lls
R

M
SE

D
[1

]
D

[2
]

F
d

es
.v

ar
s

co
u

p
li

n
gs

o
b

je
ct

iv
e

Te
st

ru
n

-
0.

12
/

0.
11

1
1

1
-

-
-

M
D

A
(G

S)
6*

0.
10

/
0.

16
6

6
1

-
4.

20
E

-0
8

-
M

D
A

(J
)

19
*

0.
12

/
0.

36
19

19
1

-
1.

67
E

-0
6

-
D

O
E

(G
S)

-
0.

49
/

0.
98

26
26

4
-

-
-

D
O

E
(J

)
-

0.
15

/
0.

90
84

84
4

-
-

-
M

D
F

(G
S)

7
0.

32
/

0.
69

57
/

32
52

/
32

27
/

7
2.

76
E

-0
9

6.
28

E
-0

9
4.

76
E

-0
9

M
D

F
(J

)
17

0.
52

/
1.

56
13

0
/

10
5

12
5

/
10

5
37

/
17

2.
67

E
-0

7
6.

01
E

-0
7

8.
72

E
-0

7
ID

F
7

/
0.

34
/

32
/

27
/

27
/

2.
00

E
-0

9
/

8.
84

E
-1

5
/

8.
36

E
-0

9
/

6
0.

49
6

6
6

1.
22

E
-0

7
1.

50
E

-0
7

1.
32

E
-0

8
C

O
(t

o
l1

e-
1)

43
/

17
.5

8
/

60
61

/
68

72
/

15
3

/
2.

73
E

-0
1

/
7.

06
E

-0
2

/
6.

03
E

-0
1

/
35

37
.9

3
88

3
14

06
35

9.
01

E
-0

3
5.

34
E

-0
2

9.
20

E
-0

2
C

O
(t

o
l1

e-
2)

71
/

29
.8

6
/

98
14

/
12

42
3

/
24

1
/

1.
32

E
-0

3
/

4.
97

E
-0

3
/

8.
72

E
-0

3
/

46
53

.6
5

14
75

18
40

46
5.

51
E

-0
2

8.
06

E
-0

3
1.

10
E

-0
2

C
O

(t
o

l1
e-

3)
92

/
37

.4
9

/
12

16
3

/
15

27
2

/
29

7
/

1.
47

E
-0

3
/

2.
78

E
-0

3
/

3.
35

E
-0

3
/

61
84

.4
2

23
70

28
25

61
1.

93
E

-0
3

1.
34

E
-0

3
7.

12
E

-0
4

*
T

h
es

e
ar

e
th

e
n

u
m

b
er

o
f

it
er

at
io

n
s

o
f

th
e

so
lv

er
,o

th
er

en
tr

ie
s

in
th

is
co

lu
m

n
in

d
ic

at
e

th
e

n
u

m
b

er
o

f
it

er
at

io
n

s
o

f
th

e
sy

st
em

o
p

ti
-

m
iz

er

131

5

The profiling data for the same monolithic architectures is shown in Tab. 5.7 for the SSBJ
case. This case is a mix of mathematical functions and design competences. Again, the
workflow results are fully in line with the expected values, thereby verifying the workflow
materialization by OpenLEGO. The history of the objective for the monolithic architec-
tures is shown in Fig. 5.13a.

DISTRIBUTED ARCHITECTURES

The second extension of OpenLEGO can only be validated using distributed architec-
tures. The CO and BLISS-2000 architectures are used for this purpose. The CO architec-
ture is discussed in more detail for the Sellar problem. The BLISS-2000 architecture can
only be implemented on the SSBJ case, since the Sellar system does not have the right
characteristics to use this architecture: it lacks local design variables for each discipline.

Imposing the CO architecture on the Sellar system results in the solution strategy shown
in Fig. 3.11. The objective value history for the system-level optimizer is shown in Fig.
5.12b. A known issue of the architecture is the slow convergence of the optimizer [14].
The tolerance setting of the optimizer can be relaxed to reduce the required iterations,
however, this has a negative impact on the precision of the solution. This trade-off be-
tween precision and execution time is clearly visible in the last three rows of Tab. 5.6,
showing the CO workflow results for three different tolerance settings. As the tolerance
becomes stricter, the found optimum matches more closely with the theoretical value,
but the wall clock time and number of function calls increases dramatically.

The XDSM for CO with the SSBJ test case is shown in Fig. A.2. A tolerance of 1 · 10−2

was selected to run this strategy, as it seems to be a good trade-off between precision
and convergence in the Sellar test case. The objective history is plotted in Fig. 5.13b.
The verification of the CO strategy is focused on obtaining the correct results with ma-
terialized workflows, regardless of their performance. Hence, the implementation could
be further improved, but this was considered out of the current scope. For example,
the system-level optimizer could obtain the derivatives of each disciplinary optimiza-
tion SubdriverComponent using the Lagrangian of the sub-level optimizer at the found
optimum. Alternatively, variations on the CO architecture from literature could also be
used to improve the strategy.

BLISS-2000 is the final and most complex distributed architecture that is validated in
this chapter. The BLISS-2000 solution strategy for the SSBJ case is shown in Fig. A.3. The
objective history for three workflow executions is shown in Fig. 5.13c. Three runs are
shown, as the architecture contains an element of randomness. This randomness orig-
inates from the range of experiments performed by the DOE block to run disciplinary
design optimizations. The DOE driver uses a latin hypercube sampling method that gen-
erates a randomly distributed collection of design points each time each time a surrogate
model has to be constructed. In addition, the B2kSolver has many options on how the
design space should be adjusted based on the found optimum by the system-level opti-
mizer. For reference, Fig. 5.14 shows how the bounds of six design variables are adjusted
each iteration for the first run plotted in Fig. 5.13c.

Of the three runs shown in Fig. 5.13c, only the first run reaches the same optimum as the
monolithic architectures. In this run, the system-level optimizer is able to find a point
close to the theoretical optimum in the second iteration. This shrinks the design space
(shown in Fig. 5.14) in the correct direction, such that the global optimum is found at

132

5

Table 5.7: Profiling data of the SSBJ verification workflows with OpenLEGO. (Struc. = Structural analysis, Aero.
= Aerodynamic analysis, Prop. = Propulsion analysis, Perf = Performance analysis).

architecture iters.
exec.

time (s)
function calls RMSE

Struc. Aero. Prop. Perf. des. vars objective

Test run - 0.29 1 1 1 1 - -
MDA (GS) 6* 0.36 6 6 6 1 - -
MDA (J) 21* 0.75 21 21 21 1 - -
DOE (GS) - 2.78 99 99 99 10 - -
DOE (J) - 9.24 370 370 370 10 - -
MDF (GS) 11 4.14 78 78 78 11 1.08E-09 8.70E-09
MDF (J) 10 8.36 244 244 244 10 1.50E-08 8.85E-09
IDF 12 2.14 12 12 12 12 1.11E-09 8.74E-09
CO (tol 1e-2) 61 631.31 9362 9843 6035 466 2.82E+01 8.11E-02
BLISS-2000 (#1) 13 802.12 9926 8932 17380 4418 1.68E-01 4.08E+01
BLISS-2000 (#2) 22 1318.37 15077 17915 24004 1833 3.91E+01 3.38E+02
BLISS-2000 (#3) 22 1469.04 11735 18315 35969 8693 4.60E+00 4.40E+02

* These are the number of iterations of the solver, other entries in this column indicate the number of itera-
tions of the system optimizer

a) monolithic architectures b) collaborative optimization

c) BLISS-2000

Figure 5.13: Objective value history (denormalized) for the SSBJ case for different optimization architectures
with design competences

133

5

the end. In the other two runs, the optimizer gets close to the global optimum, how-
ever, the design space for the design variables is already reduced so much by the fifth
iteration, that it is difficult to reach the global optimum. Compared to the monolithic
architectures, the BLISS-2000 runs have a significant RMSE for the design variables and
objectives, see the last two columns of Tab. 5.7.

As for the CO architecture, further research into the implementation could be performed
to improve its robustness. Based on the current results, such an improvement effort
should initially be focused on the design space adjustment method in the B2kSolver
and the building of better surrogate models for the system-level optimization cycle (at
the moment, a response surface model is used for all disciplines). However, the aim in
this section was not to present the most optimal distributed architectures, but to demon-
strate and verify the materialization of a very complex solution strategy by OpenLEGO,
based on a platform-agnostic strategy formulation (KADMOS) that is stored in a neutral
data format (CMDOWS).

BLISS-2000 (#1)

a) thickness-to-chord ratio

BLISS-2000 (#1)

b) flight altitude

BLISS-2000 (#1)

c) Mach number

BLISS-2000 (#1)

d) aspect ratio

BLISS-2000 (#1)

e) sweep angle

BLISS-2000 (#1)

f) wing area

Figure 5.14: Design variable values and their bounds for each system optimization iteration for the
BLISS-2000 (#1) architecture

5.4.3. DEVELOPMENT PROCESS VALIDATION

This section has demonstrated that executable workflows for a wide range of MDAO
solution strategies can be built in OpenLEGO. Workflow materialization was validated
using two test cases. With three platforms able to parse CMDOWS files the bridging
of the formulation-execution gap is firmly established. In addition, of the three PIDO

134

5

platforms, OpenLEGO is the only platform that is able to materialize workflows for dis-
tributed architectures. This is a significant step regarding the validation of the preceding
developments in the process, as it shows that the platform-agnostic, graph-based formu-
lation of KADMOS can be successfully implemented as an executable workflow using the
CMDOWS format, even for the complex scheme employed by a distributed architecture
like BLISS-2000.

5.5. PLATFORM COMPARISON

The automatic creation of executable workflows based on a single XML file has been de-
scribed and validated for three different PIDO platforms in this section. Looking at the
profiling data in the different tables (5.1-5.7), the workflows in OpenMDAO clearly out-
perform the other two platforms. This can partly be attributed to the use of analytical
derivatives for the design competences, but another strong point of OpenMDAO is its
efficient implementation of all model components through the DisciplineComponent
construct, including a very efficient class to pass data between XML files with the XML-
Component class. In RCE and Optimus on the other hand, tools have to be integrated in
the platform separately, and XML data is passed around using additional components.
However, this separated tool integration can also be considered an advantage of these
platforms, as it enables the integration of a heterogeneous tool repository (where each
tool is executed within their own programming environment or a tool can be a subwork-
flow integrated in a different PIDO platform) using dedicated tool integration modules,
whereas the OpenMDAO workflow requires each tool to be defined through the Python-
based AbstractDiscipline construct.

Despite its performance handicap, the workflows in RCE and Optimus do come with
two other advantages. First, the workflows are presented in the GUI of the platform and
can still be adjusted or fine-tuned easily based on the user’s preferences. This is more
difficult with a materialized OpenMDAO workflow, as OpenLEGO provides the Python
object to be executed. This object can be visualized with different inspection methods
from OpenMDAO (e.g. to create an N2 chart of the model), but can only be fine-tuned
through commands in a script. Hence, the RCE and Optimus workflows are more user-
friendly after materialization. Second, RCE and Optimus support the collaborative ex-
ecution protocol Brics from the AGILE project, which enables the execution of remote
components. Getting this capability in OpenMDAO would be a matter of developing a
BricsComponent class in OpenLEGO. This component does not exist, as the OpenLEGO
package was developed at a later stage and was never planned to be used by the design
teams in the AGILE project that require Brics to execute remote tools.

The end of this chapter marks the end of the second part of this dissertation, in which the
main methodological and software-related developments have been discussed, verified,
and validated. The verification and validation has shown that the formulation phase is
successfully supported by the KADMOS-CMDOWS combination and enables the bridg-
ing of the formulation-execution gap in three different PIDO platforms. This last func-
tionality alone is already sufficient to demonstrate the key role KADMOS and CMDOWS
play in formulating, manipulating, storing and exchanging MDAO systems to reduce the
set-up time of such systems. The next part will go a step further and discuss the appli-
cation of the developments in two distinct MDAO frameworks to assess their impact on
the development process in realistic, collaborative MDAO cases.

135

III
FRAMEWORK INTEGRATIONS

137

6
INTEGRATION OF

DEVELOPED METHODOLOGY IN

THIRD-GENERATION

MDAO FRAMEWORK

T HE developments discussed so far in this dissertation were carried out in the con-
text of the AGILE project. In AGILE, a consortium of nineteen partners has worked

together to develop a third-generation MDAO framework, as was discussed in §§2.7.2.
The project developments of over three years have led to the establishment of the AGILE
paradigm: a model to perform MDAO collaboratively accompanied by a new framework
that merges a variety of solutions (also referred to as ‘technologies’) to support design au-
tomation. KADMOS (Chapter 3), CMDOWS (Chapter 4), and the CMDOWS parsers for
different PIDO platforms (Chapter 5) are three such solutions. With a variety of MDAO
support technologies available, a key challenge is to bring them all together in a single
framework to provide a comprehensive environment for a heterogeneous design team to
perform MDAO collaboratively. This chapter aims to show how (a subset of) the AGILE
technologies have been coupled together to form a coherent unity — called the knowl-
edge architecture — and to assess this integration in multiple collaborative MDAO cam-
paigns with a focus on the developments presented in the previous part of this disserta-
tion.

The knowledge architecture will be discussed in §6.1: first as a generic architecture for
MDAO, and then followed by the mapping and implementation of the AGILE technolo-
gies based on this generic architecture. The use of the AGILE framework in a collabora-
tive design task is presented through a demonstrator in §6.2, in which the wing-engine
integration of a conventional airliner is designed using the framework. Four other col-
laborative designs, concerning the MDAO of unconventional aircraft configurations, are

The contents of this chapter have been adapted from [107] and [108]. As these publications cover multiple AG-
ILE technologies from different partners, the discussion in this chapter has been limited to the developments
presented in Part II of this dissertation.

139

6

summarized in §6.3. These design cases are used to assess the framework and its tech-
nologies in §6.4 based on a questionnaire that was completed at the end of the MDAO
campaigns on the four novel aircraft concepts.

6.1. KNOWLEDGE ARCHITECTURE

A third-generation MDAO framework was developed in the AGILE project (introduced
in §§2.7.2), of which this chapter presents key contributions. AGILE’s goal was to ex-
tend the current set of applications, strategies and data schemas to enable distributing
all tasks involved in the formulation and operation of an MDAO system, thereby offer-
ing a truly collaborative environment for disciplinary experts, system architects and end
users. The two cornerstones of the AGILE paradigm are the Knowledge Architecture (KA)
and the collaborative architecture, as depicted in Fig. 2.17. The KA is the main focus of
this chapter, as it contains elements that were presented in the previous part of this dis-
sertation. In this section, a description of the KA as a domain-agnostic methodology to
architect collaborative and distributed MDAO systems is discussed first. Then, its spe-
cific implementation as a framework to support the AGILE aircraft design teams is pre-
sented. The coverage of the MDAO development process by the KA (and hence the topics
presented in this chapter) is shown in Fig. 6.1. The KA elements discussed in this chapter
cover the process up to and including the materialization of the executable workflows,
but do not consider their actual execution and results, as this is part of AGILE’s other cor-
nerstone (the collaborative architecture) that is out of scope of this dissertation’s devel-
opments. Note that the MDAO solution strategy and executable workflow both fall under
the generic term ‘automated design process’, which will be used repeatedly throughout
this chapter.

Framework integrations

Tool
repository

MDAO
problem

MDAO solution
strategy

Executable
work�ow

MDAOptimal
design

= stages of the process
 discussed in this chapter

automated design process

design team’s
analysis triggers

system recon�-
guration

Figure 6.1: The five different stages an MDAO system can have within an MDAO framework and the stages of
the AGILE framework covered in this chapter

6.1.1. METHODOLOGY

Fig. 6.2 provides a schematic of the knowledge architecture. The KA features a hierar-
chical four-layer structure. In the top layer development process all the tasks required to
define, monitor and manage an MDAO system are compiled into one business process.
Hence, this development process layer serves as ‘the cockpit’ of the KA from which lower
layers are controlled and all other applications are used ‘under the hood’. The interme-
diate layer automated design provides the means to formalize the computational archi-
tecture of the automated design system. The bottom layer design competences hosts the
actual synthesis and analysis tools contributed by the various discipline experts involved

140

6

in the collaborative design process. A fourth transverse layer data schemas provides the
other three with various schemas to support data exchange between the different com-
ponents at each level. Interfaces guarantee cohesion between the layers, as clarified in
the forthcoming subsections.

Development process Data schemas

Automated
design

Design competences

executionformulation

Step I Step II Step III Step IV Step V

recon�gure

con-
�gure project

schema

work�ow
schema

product
schema

inexecutable executable

or or or ...discipline optimization
method

surrogate
model

Layer contains:

- business process
- manual tasks
- automated tasks

Layer contains:

- work�ow blueprint
- collaborative work�ow
- distributed network
- graph-based analysis

Layer contains:

- repository of design
 competences
- web services

Figure 6.2: The AGILE Knowledge Architecture (KA) to support automated design in large, heterogeneous
teams of experts

In the spirit of supporting the collaborative work of heterogeneous teams of experts, five
different agents have been defined within the AGILE paradigm. The identification of
these agents, with their specific needs, competence and responsibility in the various uti-
lization phases of the MDAO framework is one of the key aspects of the paradigm.

Customer: The target user/beneficiary of the MDAO system to be developed within the
framework. The customer is responsible for specifying the top-level requirements
for the product to be designed/analyzed/ optimized (including performance indi-
cators to be maximized, constraints to be respected, etc.), as well as key limitations
on its development process, for example the expected scope and lead time. The
customer is also responsible for providing feedback on the results produced by
the developed MDAO system and, if required, for revising the initial requirements
and scope.

Architect: This is the agent responsible to define a suitable automated design system
architecture to fulfill the customer’s needs. Thus the architect is responsible to
translate the MDAO problem defined by the customer into a fully formalized com-
putational architecture, containing the necessary design competences.

Integrator: This is the agent responsible to convert the MDAO system formulation pro-
vided by the architect, into an executable computational workflow to be deployed
across the distributed computational infrastructure. Thus, this agent is the techni-
cal manager responsible for encoding the neutral MDAO system formulation into
the PIDO platform of choice and for testing the obtained executable. The inte-
grator is also responsible for the integration of design competences within the KA
(hence for coupling inputs and outputs of the various design competences), which
is actually the first step towards the setup of any system.

Competence specialist: Typically multiple such agents are involved, each one respon-

141

6

sible for the functionality, availability and usability of one or more of the design
competences to be integrated in the system, such as design synthesis tools, disci-
plinary analysis tools and optimization services.

Collaborative engineer: Responsible throughout the project phases for providing tech-
nical support for the integration of design competences. In the formulation phase,
the collaborative engineer supports the competence specialist in making their de-
sign competence compliant to the requirements for integration. Also, this agent
provides solutions to make competences accessible and executable in the MDAO
workflow. This includes the secure integration of design competences from differ-
ent networks. In addition, the collaborative engineer is the solution provider for
the intellectual property protection and data transfer security.

The specific roles of the various agents in the KA layers are discussed in more detail in the
forthcoming sections and examples are provided with the demonstrator in §6.2. The four
layers of the KA with their relative interfaces will be discussed in the next subsections.

DEVELOPMENT PROCESS LAYER

The development process layer can be seen as the cockpit or decision room where the
setup and execution of a new multidisciplinary design problem take place. A business-
type process is defined here to allow all the aforementioned agents to collaborate and
interact during the two main phases of the MDAO system development: formulation
and execution. The business process is named the AGILE development process and is
organized in five main steps, which are illustrated in Fig. 6.3 and listed below:

step I: Define design case and requirements. Information and requirements are col-
lected concerning the product to design/analyze/optimize, the MDAO system to
be developed and the available design competences (tools and experts) from the
design competences layer.

step II: Specify complete and consistent product model and design competences. The
consistency of the collected information is verified and validated. The design com-
petences are linked to the common product model from the data schemas layer
and the connections are verified.

step III: Formulate design optimization problem and solution strategy. This is the for-
mal link to the automated design layer, where the automated design process is
formalized based on the requirements and design competences identified in the
preceding steps.

step IV: Implement and verify collaborative workflow. The common workflow schema
from the data schemas layer is used to enable the translation of the formulated (in-
executable) automated design process into an executable workflow for the PIDO
platform of choice, see Chapter 5.

step V: Execute collaborative workflow, select design solution(s) and/or go back to an
earlier step for reconfiguration. This is the final phase of the development pro-
cess, where results are generated and, in case, a reconfiguration of the develop-
ment process is triggered in light of the obtained insights.

Note that the five-step AGILE development process is not the same as the MDAO devel-
opment process that was introduced in Fig. 1.3. The AGILE process represents a broader
collaborative business process that contains the MDAO system development as a sub-
process to (re)configure the MDAO system. The relation between these two processes
will be clarified further later in this chapter, as is shown in Fig. 6.6. Throughout this

142

6

Description Applications
Main agents

Step I

Step II

Step III

Step IV

Step V

De�ne design case
and requirements

Specify complete
and consistent
product model and
design competences

Formulate design
optimization
problem and
solution strategy

Implement and
verify collaborative
work�ow

Execute collabora-
tive work�ow, select
design solution(s)
and/or go back to an
earlier step for
recon�guration

C: Customer, A: Architect, I: Integrator,
CS: Competence Specialist,
CE: Collaborative Engineer

AGILE
development
process steps

C A CS

A I CS CE

A I

A I CE

C A CS

Figure 6.3: Five-step AGILE development process, the involved agents in each step, and the applications
supporting that step in the AGILE development framework implementation

chapter, the blocks of the MDAO development process are consistently referred to as
‘stages’, while the blocks of the business process are called ‘steps’.

AUTOMATED DESIGN LAYER

As illustrated in Fig. 6.2, two instances of the automated design process reside in this
layer: the inexecutable formulation of the automated design process defined in step III
of the development process and the executable collaborative workflow that is material-
ized in step IV. This is in line with the formulation-execution distinction used throughout
this dissertation. The non-executable formulation (Fig. 6.2, left) represents the blueprint
of the automated design process and can be generated by KADMOS (Chapter 3). In
the MDAO community, a widely used visualization standard for this formulation is the
XDSM, which was introduced in §2.2, see also Fig. 2.5c. Based on the automated design
process blueprint, the executable counterpart (Fig. 6.2, right) is automatically generated
using CMDOWS (Chapter 4) and a PIDO platform, such as Optimus, RCE, or OpenMDAO
(Chapter 5). This automated link between formulation and execution is a key feature of
the KA and enabled by the work presented in this dissertation. Without this link the for-
mulation performed in steps I-III would be disconnected from the execution in step V,
meaning that any reconfiguration of the automated design process would require man-
ual adjustments of the executable workflows.

143

6

DESIGN COMPETENCES LAYER

The design competences layer of the KA includes the actual design and analysis tools
contributed by the various competence specialists. In order to take part in this layer,
hence to become available to the other layers, all design competences must comply with
the following guidelines:

• All design competences should make use of the shared product schema defined
in the data schemas layer to extract all the necessary inputs and to store all their
outputs. This requires the adopted shared product schema to be sufficiently com-
prehensive or extensible to allow all design competences to exchange all relevant
data with it.

• Competence specialists are expected to wrap the shared product schema around
their tools with support from the collaborative engineer. Thus, the service pro-
vided by a competence team should use and produce data with respect to the
shared product schema.

• Competence specialists are expected to provide their tools together with a stan-
dard set of information, such as service description, availability, remote access
details and fidelity level. These tool metadata are necessary information for the
system integrator who, in step IV, plugs the given design competence in the com-
putational workflow.

At the same time, competence specialist are granted the following rights:

• bring in their tools of choice, either commercial or self developed;
• bring in also workflows of tools, (pre-)assembled using any integration system of

their choice;
• keep their tools running on their own systems/networks and only expose them as

a fully controlled web service to protect their intellectual property.

In step II of the AGILE development process all the design competences contributed by
the competence specialists are stored in a virtual repository.

DATA SCHEMAS LAYER

Data schemas are used in all layers of the KA, see Fig. 6.2. The project schema used in
the development process layer is outside the scope. The other two schemas have already
been discussed in detail in previous chapters. The use of such schemas is based on the
‘common model integration’ approach which enables the efficient integration of differ-
ent components with a minimal number of interface links, as illustrated for the product
schema in Fig. 2.1 and for the workflow schema in Fig. 4.2. The product schema is used
by design competences to read and write I/O files. The fixed CDS approach discussed
in §§2.1.2 is adopted in the KA, where CPACS is the schema of choice in the aircraft de-
sign domain. The workflow schema is used in the automated design layer to store the
definition of the collaborative system, such that all applications can use and produce
information regarding that system. A schema to store MDAO systems (CMDOWS) has
been developed in this research and was presented in Chapter 4.

While the use of data schemas at the different layers of the KA matches well with the
heterogeneity of teams, products, and workflows, it can also be seen (and experienced)
as a constraint that is put on the other KA layers. This is the paradox of standardiza-
tion: while the data schemas help the integrator tremendously in his task, individual

144

6

competence specialists might feel they are loosing some freedom in defining their own
competence, since any data that needs to be exchanged between members of the hetero-
geneous teams will have to meet schema definitions. However, schema compliance was
found to be crucial for enabling the definition and execution of collaborative workflows
in large teams and therefore in the AGILE paradigm its benefits are assumed to outweigh
the burden. To lighten the burden of schema compliance, every data schema that is
used is accompanied by an ecosystem of tools, such as a schema operations library, as
was discussed in §§2.1.2 for CPACS.

LAYER INTERFACES

The interfaces between the three horizontal layers in Fig. 6.2 are discussed here to clarify
their relation.

Development process / automated design interface The interface between the devel-
opment process and automated design layer is indicated in Fig. 6.2 using dashed lines.
This interface needs to be bidirectional. In downward direction (development process
→ automated design) the development process tasks can control the automated design
process by changing settings (e.g. a change in design requirements or a tool replace-
ment). In upward direction (automated design → development process) the specifica-
tion of the automated design process needs to be brought to the development process
layer, to give the agents operating in that layer the opportunity to inspect, validate and
discuss the automatically generated MDAO solution strategies.

Automated design / design competences interface The bidirectional interface between
the automated design and design competences layers is also shown in Fig. 6.2 using
dashed lines. In downward direction (automated design → design competences) the
automated design process should be able to call the different design competences. To re-
spect the competence domain of the discipline specialist, the automated design process
should only be allowed to ask for the execution of a design competence, while leaving
the actual execution and feedback up to the competence specialist. This interface will
prevent the automated design process to demand the execution of a design competence
in ways that are outside the ‘comfort zone’ of the design competence team.

The upward direction in this interface (design competences → automated design) en-
tails that the full definition of all design competences is made available to the auto-
mated design layer. This repository of design competences should contain the product
schema, the information used and produced by each design competence with respect to
this schema, and metadata on the design competence that might be relevant for the au-
tomated design process definition (e.g. how to call, average execution time, fidelity level,
accuracy).

Within the AGILE paradigm it is of key importance to make this interface robust in order
to ‘get things right’, since the automated design process that is created will be large and
complex, and it is difficult to find any mistakes or inconsistencies that it might contain.
To handle the size and complexity of the automated design process a system needs to
be available that can represent the repository of coupled design competences, such that
this representation can be used to inspect the repository, and can also be manipulated to

145

6

formulate the MDAO problem and solution strategy stages of the system. The framework
applications developed in AGILE to support these tasks will be discussed in §§6.1.2.

6.1.2. IMPLEMENTATION: AGILE DEVELOPMENT FRAMEWORK

The Knowledge Architecture described in the previous section represents one of the fun-
damental concepts of the AGILE paradigm. This paradigm provides the abstract formal-
ization of a generic methodology to develop MDAO systems, independently of the appli-
cation field. Within the AGILE project, such methodology has been specifically imple-
mented to develop a dedicated MDAO framework for aircraft design, the so-called AGILE
Development Framework (ADF), which is the topic of this section. The ADF, whose ar-
chitecture is visualized in Fig. 6.4, is built on top of the following technology enablers
and data schemas, all developed or extended during the course of the AGILE project (the
institute/company that developed the item is indicated between parentheses):

CPACS product schema [S7] (DLR): open-source, de-facto standard data schema for
conceptual and preliminary aircraft design, covered in §§2.1.2.

CMDOWS workflow schema [S24] (DUT): a proposed new, open-source standard
schema to store and exchange MDAO systems, discussed in Chapter 4.

KE-chain [S26] (KE-works): a commercial, web-based platform providing the develop-
ment process environment. KE-chain will be briefly introduced in this section, as
it is tightly coupled in the ADF with this disseration’s developments.

KADMOS [S19] (DUT): an open-source, graph-based package used to enable the con-
figuration, formalization and manipulation of MDAO systems, described in Chap-
ter 3.

VISTOMS [S11] (RWTH Aachen University): a web-based package to enable the visual-
ization and inspection of large MDAO systems, discussed by Aigner et al. [39] and
also briefly introduced in this section.

Surrogate Model Repository (SMR) [S27] (NLR): a web-based interface and database to
store and execute surrogate models.

RCE [S3] (DLR): a PIDO platform (introduced in §§2.5.1) for which a CMDOWS-parsing
capability has been developed, as discussed in §5.2.

Optimus [S2] (Noesis Solutions): a second PIDO platform (introduced in §§2.5.2) for
which a CMDOWS-parsing capability has been developed, as discussed in §5.3.

The full description and discussion of the ADF is presented in [107]. Fig. 6.4 provides an
overview of the ADF by mapping the AGILE technologies on the generic KA depicted in
Fig. 6.2. In this chapter, the scope of the framework’s description and assessment is lim-
ited to this dissertation’s developments (KADMOS, CMDOWS, and CMDOWS parsers)
and their relation to the technologies listed above. Note that all those technologies, ex-
cept for CPACS, are not domain specific, and thus endow the AGILE paradigm with the
necessary neutrality to allow its application to different engineering areas.

BRIEF INTRODUCTION TO KE-CHAIN

KE-chain [S26] is a web-based collaborative environment, developed by KE-works to
support the integration of collaborative and hybrid processes, thus combining business-
type processes that require manual input and user interaction with fully automated en-
gineering simulation workflows. The environment provides access to a single project
for multiple end users through a user-based authentication system, offers functional-

146

6

Development process Data schemas

Automated design

Design competences

executionformulation

Step I Step II Step III Step IV Step V

or ordiscipline optimization
method

surrogate
model

supported by:

Figure 6.4: Overview of the AGILE Development Framework (ADF)

ity to facilitate the management of project data, the integration of automation solutions
within the business process, and monitoring of progress. KE-chain is used to implement
the KA’s development process layer (Fig. 6.2). Through its web-based GUI (see screen-
shots in Fig. 6.8 and Fig. 6.10), KE-chain provides control over the setup of the MDAO
system by acting as a user-friendly interface for KADMOS, based on the five-step ap-
proach shown in Fig. 6.3. The platform relies on CMDOWS to store and exchange the
system’s definition with the users and between framework applications. In other words,
KE-chain provides the ADF cockpit, where the users interactively define all the aspects
related to the MDAO system and project and constantly monitor both the development
progress and the operation of the system.

BRIEF INTRODUCTION TO VISTOMS

The number of design competences and, more importantly, the typical amount of ex-
changed data within a collaborative MDAO system can be so large that is nearly impos-
sible to comprehend all underlying, relevant information at a glance. As a consequence,
keeping oversight and control (hence trust) on the overall system and the ability to in-
spect and debug it, is an extremely challenging job for the integrator. Rendering the
relevant information in a human-intelligible way, by means of effective visualizations is
of paramount importance. VISTOMS is a web-based visualization package that is able to
translate a formulated system by KADMOS, as stored in a CMDOWS file, into dynamic,
interactive and human-readable plots and diagrams, in a web-based interface.

The position of VISTOMS in steps II and III of the ADF is depicted in Fig. 6.6. In VISTOMS,
visualization techniques such as XDSMs [37, 109], Sankey diagrams [110–112] and hier-
archical edge bundles [113, 114] are utilized to provide interactive visualizations of the
system. For example, large and complex XDSMs can be expanded or collapsed in order
to focus on certain aspects of the system. Couplings between services or variable inter-
dependencies can be analyzed in human-readable diagrams, in which it is possible to
dynamically reveal or hide detailed information. This enables insight into information

147

6

that can either not be visualized at all, or is too confusing to comprehend when visu-
alized all at once. Thus, VISTOMS can be used as an effective debugging environment,
in which architects and integrators are able to examine the created solution strategies
(stored as CMDOWS instances), review the steps of the product development process
and detect possible issues. Several examples of produced visualizations of KADMOS
graphs can be found in the next section where the ADF is demonstrated. The package is
more elaborately discussed by Aigner et al. [39].

CMDOWS IN THE AGILE DEVELOPMENT FRAMEWORK

CMDOWS has been discussed in detail in Chapter 4. In §§4.1.1 of that chapter, different
framework application categories were introduced and described:

• tool repository
• MDAO formulation system
• visualization package
• business process management tool
• schema operations library

Fig. 6.5 provides an overview of how the different ADF application fall within those cat-
egories. At least one application is available for each of the six categories in the frame-
work, with some applications fulfilling multiple roles. For example, KE-chain acts as
the business process management application, but also supports the creation of a tool
repository. KADMOS even falls within three categories: the package primarily acts as
the MDAO system formulation application, but it can also provide basic visualizations
restricted to PDF files and graphs (as opposed to the advanced, dynamic visualizations
provided by VISTOMS), and the package acts as the schema operations library for CM-
DOWS files by providing a collection of schema-specific methods to easily read and write
schema-based files.

 export �le of
 repository

import
�le

 export �le of MDAO
problem and solution strategy

parse
�le with
MDAO solu-
tion strategyread / write

�le

 visualize
 �le contents

adjust �le contents
 (GUI)

import
�le

Tool repository

Visualization
package

Collaborative
workflow

Business process
management

MDAO system
formulation

Schema
operations library

enrich
�le

& others

Figure 6.5: The established links between CMDOWS and the AGILE MDAO framework applications

In the ADF, CMDOWS serves as a dynamic storage schema where CMDOWS instances

148

6

contain the evolving definition of the MDAO system during its development process,
as was also illustrated for a small illustrative example in §4.4. In particular, CMDOWS
instances are generated from step II to step IV, as illustrated in Fig. 6.6. At each (sub-)
step in that figure, the CMDOWS file can be accessed by VISTOMS (§§6.1.2) to generate
convenient visualizations of the MDAO system throughout its progressive development.
This will offer all ADF stakeholders the possibility to inspect and maintain oversight of
systems of any complexity.

KADMOS IN THE AGILE DEVELOPMENT FRAMEWORK

KADMOS was covered in Chapter 3. In the ADF, KADMOS supports the team with three
main tasks:

• Create: Enabling the specification of large, complex MDAO systems by means of
graphs, starting from the definition of the design competence repository, to the
formulation of the problem, and concluding with the complete solution strategy,
corresponding to the first three stages in Fig. 6.1, respectively.

• Inspect & debug: Enabling different experts (i.e. competence specialists, integra-
tors) to inspect sections of the system that are relevant to them, in order to validate
it, thereby increasing the level of trust in the system. In addition, KADMOS pro-
vides automated validation functions to assist the team in validating the specified
system based on strict conditions on the graph construct (e.g. all design compe-
tences should have at least one output, all nodes should be connected, etc.).

• Manipulate: Automatically manipulating the generated MDAO system specifica-
tion using graph-based analysis and dedicated algorithms. These computerized
manipulations, apart from providing drastic time reductions, also reduce the chance
of errors and inconsistencies in the system by eliminating repetitive error-prone
human tasks.

The use of KADMOS within the ADF is depicted in Fig. 6.6. The relation between the
steps of the AGILE development process and the stages of the MDAO system used within
these steps is shown in the top and bottom of the overview. The MDAO development
process commences at step II of the AGILE process, where KE-chain and the SMR are
used to define the repository of design competences and pass that information to KAD-
MOS through a CMDOWS file. A custom-built KE-chain interface is used to transform
the MDAO system from tool repository to MDAO solution strategy. At each transforma-
tion step, intermediate stages of the system are stored as CMDOWS file and inspected
with VISTOMS.

Hence, KADMOS is not used through Python scripts in the ADF, but is executed through
the user interface provided by KE-chain. Thereby, in Fig. 6.2, KADMOS provides the
upward design competences/automated design interface for formal workflow specifi-
cation. In other words, whereas KE-chain provides the ADF cockpit, KADMOS is the en-
gine running under the hood regarding MDAO system formulation. The graphs created
and manipulated by KADMOS use or affect all layers of the KA. The creation and ma-
nipulation of the graphs by KADMOS are a matter of seconds for the majority of cases,
with a maximum evaluation time of up to one minute for very large systems in combina-
tion with the most complex manipulations the package can perform. Where there would
normally be a gap between the specification of the automated design process to be exe-
cuted and the actual executable collaborative workflow, KADMOS and CMDOWS enable

149

6

Step I Step III Step IV Step VStep II

III.1: import
CMDOWS and

build repo
graph

II: specify
product model

and design
competences

III.2/3: Trim and
enrich repo

graph for
MDAO problem

III.4:
Impose MDAO
architecture on
problem graph

IV: Parse as
collaborative

work�ow

+
data �ow (MDG)

process �ow (MPG)

problem graph (FPG)repository graph (RCG)

visualizations with

corresponding stages
MDAO development process

AGILE development process

-compa-
tible database

visualizations with visualizations with

supported by:

supported by:

Tool
repository

MDAO
problem

MDAO solution
strategy

Executable
work�ow

supported by:

G[1] G[2]
F

D[1] D[2]

A

B

C

E

a b

c

z2
z1

x1

f g1 g2

y1

y2

H

x0

G
[1,2]

F

ABCa
c

z2
z1

x1

f g1 g2

H
x0

D[1] D[2]
y1

y2

G
[1,2]

F

D[1]

D[2]

ABC
a

c
z2

z1
x1

f
g1

g2

y1

y2

COOR

OPT

CONV

x00 z10 z20
y2c0

x0*

z1*

z2*

g1*g2* f*

y2*

y2cH

x0

G[1,2]
{8}

F
{8}

D[1]
{5}

D[2]
{6}

ABC
{1}

COOR
{0,10}

OPT
{2,9}

CONV
{4,7}

1

2

3

4

6

7

8
8

9

9

10

H
{3}

5

Figure 6.6: Top-level overview of KADMOS and CMDOWS, and their relation to other framework applications
and the five-step AGILE development process (all visualizations are based on the Sellar problem [86])

150

6

a design team to go, in an agile way, from a repository of design competences to a fully
configured workflow in Optimus or RCE, as depicted in the last column of Fig. 6.6.

6.2. FRAMEWORK DEMONSTRATOR: AIRLINER

The demonstrator of the ADF is based on the work performed in the second design cam-
paign of the AGILE project, see Fig. 2.18. This campaign targeted the conceptual and pre-
liminary design of a medium-range twin-engine jet airliner, which is depicted in Fig. 6.7.
A heterogeneous collection of CPACS-compliant design competences has been used to
set up a distributed automated design process. This section focuses on the first three
steps of the AGILE development process (Fig. 6.3) to demonstrate how this dissertation’s
developments come into play in the ADF for MDAO system formulation in a realistic
design case. The last two steps concern execution of that system and will only address
workflow materialization, remaining execution details can be found in [115]. For each
step, the following information will be provided: description of the main function, asso-
ciated deliverable, deployed framework applications, and main agents involved.

Figure 6.7: Impression of the medium-range
twin-engine jet airliner under consideration for the

demonstrator

Table 6.1: Top-level aircraft requirements

requirement value unit

entry into service 2020 -
range 3500 km
design payload 9180 kg
max. payload 11500 kg
PAX (@ 102kg) 90 -
MLM (%MTOM) 90% -
long-range cruise Mach 0.78 -
initial climb altitude 11000 m
max. operating altitude 12500 m
residual climb rate 91 m/min
TOFL (ISA, SL, MTOM) 1500 m
Vref (ISA, SL, MLM) <130 kts
dive Mach number 0.89 -
fuel reserves 5% -

6.2.1. STEP I: DEFINE DESIGN CASE AND REQUIREMENTS

Function: The design (and optimization) case is identified and the requirements, both
for the system to be developed and the development process itself, are defined and man-
aged. This step includes also the definition of all the design competences contributed by
the various discipline specialists in the team and the identification of special variables
relevant to the design task at hand.

Agents: customer, architect, competence specialists

KA applications: KE-chain

Deliverable: A description of the design case stored, editable, and inspectable in KE-
chain.

151

6

Table 6.2: Design competences used in the demonstrator. All competences have intellectual property
restrictions and can therefore not be made available on one server environment that is shared with other

partners. (DE=Germany, IT=Italy, RU=Russian Federation)

competence name description tool provider

Aircraft Synthesis Aircraft initialization & overall
aircraft synthesis

DLR Hamburg, DE

Morphing Aircraft geometry morphing DLR Hamburg, DE
Aerodynamics Calculation of aerodynamic

performance map
DLR Hamburg, DE

Structural Mass Analysis of structural masses DLR Hamburg, DE
On-Board Systems
Design

Design and analysis of on-board
system architecture

PoliTo, Turin, IT

Engine Detailed engine design &
performance map calculation

CIAM, Moscow, RU

Nacelle Design Aero
Integration

Design & integration of engine
nacelles. Aerodynamic analysis of
nacelles.

TsAGI, Zhukovsky, RU

Mission Simulation Performance analysis of aircraft
flight mission

DLR Hamburg, DE

Mass Budget Update of mass breakdown for
consistency of data set

DLR Hamburg, DE

Cost Analysis Calculation of non-recurring,
recurring & operational costs

RWTH Aachen, DE

Emission Analysis Calculation of exhaust emissions &
climate metrics

RWTH Aachen, DE

6.2.2. STEP II: SPECIFY PRODUCT MODEL AND DESIGN COMPETENCES

Function: The purpose of the second step is to define a complete, consistent and com-
pliant repository of design competences. Therefore, the variables and competences gath-
ered in the first step are assembled to obtain a CMDOWS file with the repository defini-
tion. The assembly of the variables and competences is based on the product schema
CPACS. Hence, the definition of the design competences with respect to that schema
plays an important role in this step. Furthermore, special variables such as design vari-
ables and objective/constraints listed in step I have to be mapped to the corresponding
elements in CPACS.

Agents: architect, integrator, competence specialists, collaborative engineer

KA applications: KE-chain, SMR, VISTOMS, KADMOS

Deliverable: A CMDOWS file containing a complete and consistent repository of design
competences which are compliant with CPACS.

Substeps: Four substeps have been identified, namely:

step II.1 Assemble CPACS base file
First, a so-called ‘base file’ is instantiated by the integrator. The base file is a CPACS
file that contains the definition of the aircraft geometry under consideration and
the elements from the schema that are expected to be used to store analysis re-
sults (e.g. aerodynamic coefficients, weights). This file is created to assure that all
competence specialists use and produce data with respect to the expected XML
elements of the full CPACS.

152

6

step II.2 Import CPACS-ized competences
The competence specialists should develop (or check existing) CPACS-compliant
design competences using the base file and provide the integrator with one CPACS
input and one CPACS output file for each design competence. In this task, they are
supported by the collaborative engineer. Alternatively, CPACS-sized competences
can also be imported from the SMR. Based on these files, a CMDOWS file is cre-
ated to enable other framework applications to access the definition of the tool
repository.

step II.3 Inspect repository
The architect can now, through a VISTOMS instance, inspect the design compe-
tence repository in consultation with the competence specialists. This step is used
to fix inconsistencies in the base file (step II.1) or solve connectivity issues between
competences based on the I/O files (step II.2).

step II.4 Append additional information
Finally, the competence specialist specifies the competence execution method
and availability (i.e. as a local tool that can be installed and run locally or a remote
service that needs to be called through a service-oriented architecture). This final
step is meant to prepare all information required for execution and inspection of
the MDAO solution strategy in steps IV and V and it is added to the CMDOWS file
once it becomes relevant in step IV.

USE OF KADMOS AND CMDOWS BY KE-CHAIN IN STEP II

In step II.2, the integrator is supported by an engineering service that parses the up-
loaded CPACS files using a KADMOS import function to construct an initial MDAO sys-
tem stored as a CMDOWS file. The KE-chain interface used for this is depicted in Fig. 6.8.
Hence, KE-chain acts as a user-friendly front end to define the RCG, something which
otherwise should be performed through a script. KE-chain also provides an interface to
the integrator in which versions of the generated CMDOWS files can be managed, and
the connectivity of the different design competences can be inspected in more detail in
step II.3 through the integration of VISTOMS, described in more detail in the next para-
graph.

USE OF KADMOS GRAPH-BASED FORMULATION BY VISTOMS IN STEP II

In this early stage of the problem formulation the MDAO system is represented by the
RCG, i.e. the graph containing the design competences, product model elements, and
the links between them. This graph contains thousands of nodes and is challenging to
visualize as such. The VISTOMS package takes advantage of the structured, graph-based
representation of the MDAO system to construct its dynamic visualization. A part of
the repository graph for the presented design case is shown in Fig. 6.9 using the XDSM
visualization mode of VISTOMS.

Note that the actual RCG for the presented example is significantly larger than the extract
shown in the figure. The red overlay boxes (not present in the actual VISTOMS package)
have been added in the figure to emphasize some of its visualization capabilities. One
of them is the option to detect element collisions, i.e. elements which are written by
multiple design competences simultaneously. Overlay frames 1 and 2 in Fig. 6.9 display
for instance a so-called collided circular coupling of the main wing. This occurs due to
the fact that two competences (AircraftSynthesis and Morphing) both modify the wing

153

6

list based on
competences
de�ned in step I

tabular interface
to upload tool
input and output
�les

button to load
the table as a
 �le with

Figure 6.8: Screenshot of the KE-chain web-based interface for step II.2

AircraftSynthesis

NacelledesignAeroIntegration

Morphing

Onboardsystemdesign

StructuralMass

1337 conn.1337 conn.

1337 conn.

1345 conn.

1337 conn.

39 conn.

1337 conn.

1341 conn.

2 conn.

1

2

right click

Show usage of node in
XDSM

Figure 6.9: Repository connectivity graph of the presented design case as VISTOMS XDSM view including
data tree

154

6

geometry. These kinds of collisions have to be resolved (or at least noticed) by the inte-
grator in order to keep the underlying product model (CPACS file) consistent, which can
be done with KADMOS in the subsequent step of the development process.

The dynamic visualization capabilities combining different visualization elements such
as XDSMs for the general layout, hierarchical tree views for the data model (including
different parameter categorizations), and the capability to highlight certain points of at-
tention in the MDAO problem, together enable an efficient and effective visualization
of all the information stored in an MDAO system that would normally be implicit and
almost impossible to access. These visualizations can be created thanks to the graph-
based formulation of these systems offered by KADMOS and visualized in a meaningful
way to the different members of the design team based on the description of MDAO sys-
tems worked out in Chapter 3.

6.2.3. STEP III: FORMULATE DESIGN PROBLEM AND SOLUTION STRATEGY

Function: The goal of this step is to go from a repository of design competences to an au-
tomated design process formulation (MDAO solution strategy) of the collaborative work-
flow to be executed in step IV.

Agents: architect, integrator

KA applications: KADMOS (accessed via KE-chain interface), VISTOMS

Deliverable: A CMDOWS file, with visualizations, containing the full specification of the
automated design process.

Substeps (see also Fig. 6.6): All substeps are performed by the architect unless indicated
otherwise:

step III.1 Construct RCG and order tools
First the RCG is constructed in KADMOS using the CMDOWS file from step II. This
is simply a translation of the XML-based CMDOWS format to the KADMOS native
graph format. In addition, the order of the functions on the diagonal can be de-
termined automatically (using the sequencing method described in §§3.5.3) or set
manually.

step III.2 Start FPG by manipulating design competences
The RCG needs to be manipulated in order to arrive at the problem graph. In this
first substep, the KE-chain interface focuses on the functions in the graph to allow
the user to remove and/or merge them as required.

step III.3 Finish FPG by assigning variable roles
The problem graph specification is finalized by focusing on the variables and as-
signing certain CPACS elements a special role in the MDAO problem, such as de-
sign variables, objective values and constraint values.

step III.4 Impose MDAO architecture
In this demonstrator a DOE architecture is chosen*, see Fig. 6.11 and Fig. 6.12. The
formal mathematical definition of the problem being solved in this demonstrator

*N.B. The results of the DOE will provide the design team with an indication of the most influential variables,
based on which a surrogate model could be constructed to perform an optimization, however, these addi-
tional reconfigurations are discussed more elaborately in other AGILE design case papers and considered out
of scope for the work presented here.

155

6

is:

determine: DOC, recurring cost, ATR and fuel mass

with respect to: AR,Λ,S

with: 9.00 ≤ AR ≤ 11.0

25.0◦ ≤Λ≤ 31.0◦

75m ≤ S ≤ 110m

based on: a latin hypercube sampling method

Using the problem graph, KADMOS imposes the DOE architecture and stores the
obtained MDG and MPG in a single CMDOWS file. The solution strategy is checked
by the integrator.

USE OF KADMOS IN STEP III OF THE DEMONSTRATOR

The CMDOWS file from step II contains eleven design competences (Tab. 6.2) involving
around 3700 unique elements from CPACS as in- and outputs. The RCG that is con-
structed by KADMOS in step III.1 is primarily useful to build visualizations with VIS-
TOMS and to order the design competences in a convenient way, as was discussed in
§§3.5.3 on sequencing algorithms. Furthermore, KADMOS categorizes all the CPACS
elements (e.g. inputs, outputs, couplings, collisions, etc.) based on the number of con-
nections and the design team can use these categorizations for closer inspection in the
VISTOMS visualization of the design competence repository, as was mentioned already
in §§6.2.2. For example, in the demonstrator the CPACS data element pointing to the
Maximum Take-Off Mass (MTOM) is a collision, as it is both an output of the Aircraft-
Synthesis and the MassBudget design competences. It is then up to the design team to
decide which design competence is meant to provide this value. In this case the Mass-
Budget tool was set to provide the MTOM value; however, the less accurate value pro-
duced by AircraftSynthesis could be used as initial guess for MTOM, if MassBudget is
part of a convergence loop with MTOM as feedback variable.

In step III.2 remaining issues on the data connections are solved. One such issue is visi-
ble in Fig. 6.9, where the wing geometry (1337 connections, hence 1337 CPACS elements
are used to define the aircraft geometry and coupled as indicated in the figure) is out-
put of both AircraftSynthesis and the Morphing design competences, and many design
competences, including the Morphing tool itself, are using the same geometry as input.
This is not a case of redundant design competences playing the same role of geometry
provider. In this case, a first instance of the wing geometry should be given to the Morph-
ing tool by the AircraftSynthesis tool. Then the Morphing tool should adjust this geome-
try and provide a second instance of the wing geometry, to be used by all the other tools
that need geometry as input. KADMOS configures this data flow by creating instances. A
first instance of the wing geometry is created by AircraftSynthesis and provided as input
to Morphing. In its turn, Morphing creates a second instance of the wing geometry to be
used by the following design competences. These two geometry data instances are also
visible in Fig. 6.11 and 6.12 where the wing definition is included in the data connection
blocks with 1337 connections.

In step III.3 KADMOS assigns the special roles to selected elements, according to the ar-
chitecture selected by the architect. The architect is able to assign element roles through
the interface in KE-chain as is shown in Fig. 6.10. In case of the demonstrator DOE, wing

156

6

area, aspect ratio, and sweep have been assigned the role of design variables. These
are top-level wing variables that can be set by the Morphing tool (see Fig. 6.11). All the
other variables the design team wants to keep track of in the overall process, are as-
signed the role of ‘quantities of interest’. These quantities could later become the objec-
tive and constraints of an optimization process. The quantities of interest selected for
the demonstrator were: Direct Operating Cost (DOC) and recurring cost from CostAnal-
ysis, Average Temperature Response (ATR) from EmissionAnalysis, and fuel mass from
MissionSimulation.

Finally, the DOE architecture is imposed on the problem graph in step III.4. The resulting
XDSM is shown in Fig. 6.11 and Fig. 6.12. Two main blocks are added on the diagonal:
the DOE regulator and a converger. The DOE regulator provides the design points to
be analyzed and collects the quantities of interest of the converged design. Inside the
DOE cycle, every experiment provided by the DOE is converged based on the feedback
variables MTOM, total lift and drag coefficients (C f ,x and C f ,z) of the aircraft. The spec-
ification of this automated design process is the final result in step III that is stored in a
CMDOWS file and visualized using VISTOMS, Fig. 6.11 and Fig. 6.12.

INSPECTION OF FORMULATED SOLUTION STRATEGY BY KADMOS IN STEP III

The various CMDOWS files used to store the evolving definition of the MDAO system,
from RCG, to FPG and finally the combination of MDG and MPG, can all be visualized
in a single VISTOMS web-based instance. In Fig. 6.11 the CMDOWS file containing the
DOE solution strategy for the demonstrator system is depicted using a dynamic XDSM.

Fig. 6.11 shows how the competences have been organized by KADMOS in a meaning-
ful order, compared with the unorganized RCG from step II (Fig. 6.9). The wing design
variables selected for demonstrator DOE are provided to the workflow by the DOE block
(Fig. 6.11, overlay frame 1) and then translated into a full parametric CPACS geometry
by the Morphing competence. Subsequently, the wing geometry is processed to the
downstream competences such as Aerodynamics and CostAnalysis. Here, it can be ob-
served how the AircraftSynthesis competence only provides an initialized aircraft geom-
etry, while the Morphing competence adjusts this geometry according to the given DOE
inputs. The four main quantities of interest of the performed DOE can be examined in
overlay frame 3, namely total recurring costs, fuel mass of the specified flight mission,
ATR, and DOC.

In Fig. 6.12 a closer insight to the design competence operating inside the convergence
loop is given, where the three previously mentioned convergence variables MTOM, C f ,x

and C f ,z are displayed. The MTOM convergence is a typical iteration procedure in air-
craft design, whereas the iteration of the aerodynamic coefficients is added to account
for the adjustment of these coefficients by the nacelle design and integration design
competence (NacelledesignAeroIntegration).

6.2.4. STEPS IV AND V

The CMDOWS file from step III is used here to bridge the gap between formulation and
execution by automatically translating the neutrally stored solution strategy into an ex-
ecutable workflow for a PIDO platform of choice, see Fig. 6.13. The implementation
details of step IV (workflow materialization) have been covered in Chapter 5 of this dis-
sertation. After execution in the PIDO platform, the architect comes back to the KE-

157

6

Figure 6.10: KE-chain provides an interface for KADMOS to the architect in step III.3 to assign special roles to
CPACS elements. This example shows that the architect edits design variable wing aspect ratio (middle frame)
and selects its corresponding CPACS element through a search dialog (bottom frame) that filters through the

entire set of 4371 elements.

158

6

0, 16: Coordinator

1: AircraftSynthesis

2, 15-3: DOE

3: Morphing

4: Aerodynamics

5, 12-6: Converger

3 inp.

1337 conn.

3 conn.4 outp.

3 inp.

1337 conn.

1 conn.

2 conn.

10 inp.

13: CostAnalysis

14: EmissionAnalysis

11 conn.

2 conn.

8 conn.

6 conn.

150 inp.

1 conn.

2 conn.

4 conn.

1 conn.

1337 conn.

1 conn.

4 conn.

664 inp.

3 conn.

2 conn.

10 conn.

4 conn.

1 conn.

1 conn.

2 conn.

1

2

3

right click

3 inp.

Show variable tree...

Figure 6.11: Extract of the KADMOS data and process graphs for the presented design case as VISTOMS XDSM
view

159

6

5, 12-6: Converger

6: StructuralMass

7: Onboardsystemdesign

8: Engine

9: NacelledesignAeroIntegration

10: MissionSimulation

11: MassBudget

17 inp.

8 conn.

3 conn.

6 conn.

6 conn.

1 conn.

60 inp.

2 conn.

3 conn.

3 conn.

2 conn.

1 conn.

1 conn.

2 conn.

2 conn.

51 inp.

1 conn.

16 conn.

24 conn.

338 conn.

48 conn.

4 inp.

1337 conn.

48 inp.

1 conn.

7 conn.

1337 conn.

39 conn.

131 inp.

3 conn.

3 conn.

1337 conn.

121 conn.

1

2

Figure 6.12: VISTOMS generated XDSM showing details of the DOE system convergence loop

chain platform to upload the results and use the platform’s post-processing engineering
services to support the result discussion with the design team. One such engineering
service is the integration of the ID8 [S28] visualization platform.

In a realistic design case, the found design solutions in the DOE will probably trigger an
iteration which goes back to one of the earlier steps in the development process. Ad-
ditional requirements might be acquired (step I), additional tools might need to be in-
tegrated (step II), or the collaborative workflow might need to be reconfigured using a
different MDAO architecture (step III). Since all steps are integrated within the top-level
development process environment KE-chain, the process that has been set up in the de-
velopment process environment acts as a custom-made ‘AGILE framework app’ that can
be used to collaboratively reconfigure the project.

With the ADF fully configured, tested, and demonstrated in the second AGILE design
campaign (see Fig. 2.18), the third and final design campaign was used to assess the
framework and its individual components in four design cases concerning unconven-
tional aircraft. These cases will be described in the upcoming section, followed by a
critical assessment of the developments presented in Part II of this dissertation.

6.3. FRAMEWORK ASSESSMENT: AIRCRAFT DESIGN CASES

In the final year of the AGILE project, a series of collaborative aircraft design cases (ad-
dressed in the project as design tasks) was performed, with the main goal of testing the
AGILE Development Framework (ADF) and to evaluate the performance of the novel ap-
plications to support the automated development process described in this chapter and

160

6

a) RCE

b) Optimus

Figure 6.13: Screenshots of executable workflow instances for two different PIDO platforms. Both workflows
are based on the same CMDOWS file that were provided by KADMOS in step III.4 and extended in step IV.

161

6

in Part II of this dissertation. In the next section, three key components of the framework
are assessed:

• MDAO system storage with CMDOWS;
• MDAO system formulation with KADMOS;
• workflow materialization in RCE and Optimus.

These components* and their role in the ADF are visualized in Fig. 6.6 and were elab-
orately described for the demonstrator case in §6.2. In this chapter, four AGILE design
tasks related to unconventional aircraft configurations are used to test the developed
approach.

6.3.1. DESIGN CASE DESCRIPTIONS

The four collaborative design tasks are briefly introduced here to highlight their collabo-
rative set-up, main objective, and challenges. The results of using the ADF to formulate
MDAO solution strategies in these different design cases will be summarized in §§6.3.2.

STRUT-BRACED WING (SBW)

design team DLR (task leader) with eight partners all based at different locations in five
different countries

design task objective The emphasis in this task is on the integration of the wing-strut
system. The combination of structural and aerodynamic analysis is of key impor-
tance. To start, the operational requirements are kept constant while the geomet-
rical parameters of the wing-strut system (e.g. aspect ratio, span wise position of
the wing-strut connection and struts’ thickness-to-chord ratio) will be set as de-
sign variables for a DOE study. Then, also changes on the aircraft operational
specifications (e.g. cruise Mach number and altitude) will be investigated. The
Strut-Braced Wing (SBW) configuration will be optimized to minimize DOC, cash
operating cost, life cycle cost, mission fuel, and/or other composite functions.

(re)configuration challenges A large and heterogeneous set of design and analysis tools
(e.g. flight dynamics, on-board systems, aerodynamics, structures, costs) from
many different partners must be integrated in different collaborative workflows.
Severe reconfigurations are envisioned to move from the DOE studies based on
configuration parameters, to the design studies with varying operational require-
ments, and finally to the setup of an optimization process to minimize one of the
cost metrics.

BOX-WING AIRCRAFT (BWA)

design team ONERA (task leader) with seven partners all based at different locations in
six different countries

design task objective The design scope for this configuration includes both mission pa-
rameters and aircraft design parameters. The objective is to first identify the best
Box-Wing Aircraft (BWA) configurations for a wide range of missions parameters,

*Other components of the framework have also been assessed, but are omitted here as they are out of scope of
this dissertation. Details can be found in [108].

162

6

then to select the type of mission giving the BWA superiority with respect to con-
ventional aircraft designs. The main objective of the optimization will be min-
imization of DOC. The broad multidisciplinary focus for this configuration in-
cludes aerodynamic characterization including control surface behaviour and high-
lift capabilities; the structural design of the wings and fuselage including the aeroe-
lastic effects; more electric on-board system architecture; stability and control,
and flying qualities including the definition of a dedicated flight control system.

(re)configuration challenges An extensive heterogeneous set of design and analysis tools
from many different partners must be integrated in a design workflow, with a step-
wise approach. Different levels of fidelity will be required, ranging from fast semi-
empirical methods up to high-fidelity CFD- and FEM-based analysis to assess the
aeroelastic behaviour of the airframe and the performance of the novel system of
control surfaces distributed over the boxed wing.

BLENDED-WING BODY (BWB) NOVEL PROPULSION/AIRFRAME INTEGRATION

design team CFSE (task leader) with eight partners all based at different locations in five
different countries

design task objective The objective for this novel configuration is to minimize the fuel
consumption for a maximum range constraint at maximum payload, focusing on
the embedded engines integration aspects, based on Boundary Layer Ingestion
(BLI). The definition of the number and location of the engines, the design of the
air intakes for active BLI control and the aerodynamic characterization of the full
Blended-Wing Body (BWB) configuration are the main aspects of this optimization
study.

(re)configuration challenges Heterogeneous set of high-fidelity design and analysis tools
(e.g. aerodynamics, on-board systems for BLI control, engine integration) from
different partners should be integrated in a collaborative workflow. Due to the
use of tools that are not fully CPACS-compatible (mainly the high-fidelity aerody-
namic tools requiring accurate CAD files as input), the automated integration and
execution of the workflow is expected to be particularly challenging.

TURBOPROP AIRCRAFT (TPA)

design team UNINA (task leader) with nine partners all based at different locations in
six different countries

design task objective This Turbo-Prop Aircraft (TPA) task aims at comparing a novel
turboprop configuration with fuselage-mounted engines with a more conventional
wing-podded version. The main focus of the task concerns the minimization of
DOC, while including noise constraints in accordance with regulations. Main de-
sign variables will be the geometry of the wing for the two configurations: wing
area, wing span, wing thickness ratio and wing taper ratio. A key constraint is the
wing sweep angle which must be kept minimum in view of exploiting the drag re-
duction of natural laminar flow wings.

(re)configuration challenges As for the other design tasks, the integration of a hetero-
geneous set of design and analysis tools from many different partners makes for
the main challenge. In this case, the need to execute two optimization studies on
two aircraft configurations will put extra constraints on the overall computational
performance.

163

6

6.3.2. SUMMARIZED RESULTS

The design teams working on the four design tasks have used the ADF to formulate work-
flows of increasing complexity, based on their own task objectives. The detailed process
of using the ADF has been described for the demonstrator in §6.2. A top-level overview
of the results generated by following the AGILE development process is summarized in
Fig. 6.14 and Fig. 6.15. Each XDSM in these figures represents a CMDOWS file generated
by KADMOS, containing the formulation of a solution strategy that was obtained using
the ADF. Finally, the CMDOWS files were parsed in RCE or Optimus to materialize exe-
cutable workflows. Such automatically generated workflows were shown in Fig. 6.13 for
the demonstrator.

First, all design tasks configured a simple MDA to test the different tools and converge a
single design point, see second row in Fig. 6.14 and Fig. 6.15. Subsequently, DOEs were
configured to explore the design space, using the previously tested MDA, third row in the
snapshot figures. In some cases, DOEs have been set up in view of generating surrogate
models for use in later optimization runs. Finally, MDO architectures, such as MDF and
IDF, were formulated to run actual optimizations, the XDSM snapshots are depicted in
the last row of Fig. 6.14 and Fig. 6.15.

6.4. ASSESSMENT RESULTS

After the formulation and materialization of the different workflows, feedback was gath-
ered from the AGILE consortium partners on the different components of the developed
framework through an online survey. In this survey, users were asked to share their expe-
rience using the ADF and to indicate the strengths, limitations, opportunities and risks
for each component, as well as for the framework as a whole. About thirty AGILE part-
ners have provided their feedback. These partners played different roles within the de-
sign tasks, had different levels of experience in using the framework, and worked from
different perspectives being based at one of the three aircraft manufacturers, three re-
search institutes, four universities and four software solution and engineering service
providers involved in the project. The feedback from the survey on the three framework
components original to this dissertation will be elaborately discussed in the next sub-
sections.

6.4.1. MDAO SYSTEM STORAGE WITH CMDOWS

The assessment of CMDOWS as a central data schema at the core of a third-generation
MDAO framework has been postponed to this moment. The schema’s ability to support
the materialization of executable workflows has been verified and validated in the previ-
ous chapter. However, it is in the ADF that the full schema was put to the test regarding
the information exchange it is supposed to enable between a range of framework appli-
cations (see Fig. 6.5) to efficiently build and extend a third-generation framework, and
perform multiple, collaborative MDAO projects with it. Therefore, the CMDOWS assess-
ment presented here is split in two parts: requirements-based assessment and survey-
based assessment.

164

6

strut-braced wing
(SBW) aircraft

MDA

DOE

MDO

box-wing aircraft
(BWA)

design tasks

Figure 6.14: Snapshots of the XDSMs of the formulated workflows for the SBW and BWA design tasks. Each
XDSM corresponds to a CMDOWS file containing the neutral definition of the solution strategy.

165

6

Blended-wing
body (BWB)

MDA

DOE

MDO

Turboprop aircraft
(TPA)

Design tasks

Figure 6.15: Snapshots of the XDSMs of the formulated workflows for the BWB and TPA design tasks. Each
XDSM corresponds to a CMDOWS file containing the neutral definition of the solution strategy.

166

6

REQUIREMENTS-BASED ASSESSMENT

The functional requirements for CMDOWS, which were listed and described in §4.2, are
repeated here:

I Machine-interpretable
II Human-readable

III Neutral
IV Validation
V Adaptable

VI Balance of redundant information
VII Support all MDAO system stages

VIII Support all MDAO framework categories
IX Support disciplinary tool heterogeneity

The solution strategies shown in Fig. 6.14 and Fig. 6.15 clearly shows that the schema
satisfies the tool heterogeneity requirement (req-IX). Three types of tools are integrated
in one top-level collaborative workflow. The first type is the local tool. Tools of this type
have been integrated directly in Optimus and RCE and can be executed from the same
system as the MDAO workflow. However, many of the tools in the solution strategies
are owned by other partners and need to be executed remotely because of intellectual
property restrictions. Hence, this second type of tool cannot be distributed to be exe-
cuted locally. These tools are stored as remote tools in the CMDOWS files, so that the
materialized workflows will contain Brics components (discussed in §§5.2.1) to run the
actual tool on another server domain. Finally, simple mathematical functions, usually
describing objective and constraint equations are also stored using the schema.

The development of the ADF has shown the compliance level of the current schema.
The XML CMDOWS instances support both human-readability (req-II) and machine-
interpretability (req-I). This human-readability is also proven by the fact that many de-
velopers of AGILE framework applications have been able to connect to CMDOWS in
a short time. The neutrality of the schema (req-III) has been maintained, even when
adding new elements to support the links with the AGILE framework applications. Hence,
there are no traces of application-specific elements like KADMOS, KE-Chain, Optimus,
etc. Moreover, the core structure of CMDOWS still allows adjustments (req-V), as the
schema was extended step by step to link different applications and more adjustments
can be made to meet future demands.

A key future improvement that was found concerns the redundancy of the content of the
schema (req-VI). Throughout its development, initial CMDOWS versions were always
very lean in the information stored in a CMDOWS file. Some of the application links
demanded that certain information is stored explicitly in the schema, even though this
information can be interpreted from the information already stored. In future develop-
ments, the links with applications should be checked for this type of information and
per case it should be decided whether to explicitly add the information in the schema.

The demonstrator (§6.2) and the four unconventional aircraft cases (§6.3) have shown
that three MDAO system stages (req-VII) are supported, including the bridge to the fourth
stage in execution phase by workflow materialization. At the moment, the links be-
tween framework applications and CMDOWS are not always bidirectional (req-VIII), see
Fig. 6.5, but all primary links (as explained in Fig. 4.4) have been established for the six
application categories. In future work, applications will be extended and the secondary

167

6

links will also be developed to enhance the capabilities of the ADF.

SURVEY-BASED ASSESSMENT

Survey respondents indicated that CMDOWS has thoroughly demonstrated its capabil-
ity to act as a data standard to integrate the heterogeneous collection of applications
developed and deployed in AGILE, such as KE-chain, KADMOS and VISTOMS. Within
the four design tasks, no major issues or limitations were encountered concerning the
schema. A minor issue found, was the size of the files, which increase significantly for
design tasks involving large systems (>100MB for a single XML file) and a lot of CPACS
elements (>4000).

Proof of the increased agility offered by the adoption of CMDOWS was provided when,
in the later development stage of AGILE, new applications needed to be integrated in the
framework, such as the SMR and OpenMDAO. The integration of the SMR in the frame-
work involved links to KE-chain, KADMOS and VISTOMS. This was achieved in a short
time using CMDOWS-based links between the applications, without requiring signifi-
cant changes or adjustments of any of the involved applications. Similarly, the OpenM-
DAO platform was conveniently linked to the broader framework through a newly devel-
oped Python package OpenLEGO, which was discussed in §5.4.

Another form of increased agility came forward in the way CMDOWS provides a conve-
nient format to store the full MDAO system definition at any moment in the project’s de-
velopment process. The different stages of the system are easily stored and versioned for
future reference. This allowed system integrators to quickly try out system (re)configura-
tions and go back to earlier version, if required. In this sense, the format facilitates ver-
sion control and management of a large and complex system.

Limitations of the schema mainly stem from its relatively low level of maturity. Contrar-
ily to CPACS, CMDOWS was developed from scratch within the AGILE project and has
therefore (at the time of the survey) only been tested and applied using AGILE design
tasks. Therefore, new design tasks might still bring forth new requirements not consid-
ered at the time the schema was conceived. Based on feedback received in the survey, it
is suggested to extend the schema in the following directions:

• support a wider range of methods to execute disciplinary tools (e.g. command line
execution on different operating systems);

• improve the implementation of surrogate models (e.g. their relation with the origi-
nal tools used to built them, more advanced definitions to store different surrogate
model types);

• include support for a wider variety of workflows: now only MDAO architecture-
based workflow types provided by KADMOS are supported;

• add measures to reduce the file size;
• extend the documentation available in the schema repository.

As a side note, although the AGILE framework strongly benefits from the adoption of
CMDOWS, a number of criteria should be considered to evaluate its convenience in a
generic MDAO study case:

• size of the MDAO system under consideration
• heterogeneity and distribution of the team
• heterogeneity of the MDAO framework

168

6

• maturity of the existing MDAO framework with respect to using CMDOWS

When dealing with large (in terms of number of involved tools and coupling parameters)
MDAO systems, design teams will benefit greatly from adopting CMDOWS to quickly set
up a coherent tool repository and use that repository to formulate the problem and solu-
tion strategy. Similarly, a heterogeneous and distributed team (many specialists with dif-
ferent backgrounds working at different locations) will benefit from CMDOWS to serve
as a common language to streamline the definition and use of systems of any size. The
heterogeneity of the framework, as indicated in Fig. 6.5, has been the main motivation
for developing CMDOWS and is also the strongest indication for its effective use. There is
a general skepticism in the development and adoption of monolithic, holistic solutions
that can cover all the aspects of performing MDAO projects collaboratively, e.g. system
definition, visualization, problem formulation, reconfiguration and execution. Such so-
lutions, whenever available, become obsolete quickly and are typically inflexible. A sim-
ple but comprehensive standard format as CMDOWS, on the other hand, allows the (re-)
integration of many different applications, both commercial and in-house developed,
thus providing maximum flexibility, scalability and adaptability.

Finally, it is worth noting that not all people involved in a project necessarily need to
familiarize with CMDOWS, as this depends on the level of maturity of the MDAO frame-
work. In a mature framework all applications will already use and produce CMDOWS
files (see Fig. 4.4) and most people involved simply use these applications to perform
their tasks. Only people involved in developing and maintaining the applications will
have to invest time for familiarization. Based on experience in the AGILE project, this
familiarization time is limited to 2-3 days with some additional time required to under-
stand the basic concepts of MDAO and XML. The AGILE project has proven that CM-
DOWS interfaces can be easily developed, including parsers for a heterogeneous set of
PIDO platforms (RCE, Optimus). Once the interfaces are in place, the presence of CM-
DOWS is transparent to the user, who does not require any direct manipulation nor fa-
miliarization with the format itself.

6.4.2. MDAO SYSTEM FORMULATION WITH KADMOS

As depicted in Fig. 6.14 and Fig. 6.15, KADMOS has successfully played its role as formu-
lation platform for MDAO systems, from tool repository to solution strategy, for a variety
of aircraft configurations and heterogeneous design teams. The first step where KAD-
MOS comes into play (step II) is also one of the most appreciated capabilities of the plat-
form by AGILE users: to import the I/Os of a set of CPACS-compatible tools and inspect
the couplings between them. In combination with the visualization by VISTOMS, this
enables the design team to correctly connect their disciplinary analyses through CPACS,
especially when many elements (>4000) from CPACS are involved. Also in the subse-
quent steps of the problem and solution strategy formulation, KADMOS was found to be
a valuable component to the framework, acting as the ‘engine’ behind the cockpit that
was provided by KE-chain in the formulation phase of the five-step approach.

The strong link between KADMOS and CMDOWS has also given KADMOS the secondary
role as a library of functions to handle CMDOWS files, since KADMOS is able to trans-
form the CMDOWS file to a meaningful graph construct. This role of KADMOS is exten-
sively used within KE-chain and VISTOMS to read and edit CMDOWS files. In conclu-
sion, the integrators of the design tasks experienced that KADMOS makes the task of for-
mulating heterogeneous, distributed systems in a collaborative environment much less

169

6

cumbersome, with an estimated time reduction of 49%. Three main limitations were
identified with having KADMOS as the system formulator in the framework.

NO USER FRIENDLY INTERFACE / GRAPH INTERACTION

KADMOS is a Python package and does not have its own GUI. In the ADF a user inter-
face was built in KE-chain, where four different forms are used to progress the system
definition from tool repository to solution strategy in step III. Based on the form input
provided by the user, different KADMOS system manipulation methods were executed
‘behind the scenes’. However, this way of implementing a KADMOS user interface was
found to be too inflexible for some of the peculiarities encountered in the design tasks.
This was solved temporarily by enabling the inclusion of custom KADMOS scripts on
the platform, even though such scripts dramatically lower the user friendliness of the
interface. Instead of the form-based manipulation of the graphs currently supported by
KE-chain, the user interface should interact more directly with the graph objects and
provide a workbench to ‘craft’ the graphs directly into the desired form.

The envisioned way forward to achieve this type of interface is to further develop VIS-
TOMS as a full-fledged GUI for KADMOS. This development was started after the survey
and released as an open-access website called the ‘MDAO system interface’*. Another
suggestion in the survey was to include a debugging mode in this interface to visualize
the results of graph analyses performed by KADMOS. These results can then be rendered
in VISTOMS to highlight issues with the MDAO system. Such analyses would include
typical problems for MDAO systems, such as multiple tools writing the same CPACS ele-
ment (collision), or tools without any I/O connections.

INFLEXIBILITY OF IMPOSING ARCHITECTURES

To enable the high level of automation in the formulation phase, a certain inflexibility
was implemented in the way KADMOS imposes architectures on MDAO problems. The
current approach permits a strict boundary between the problem and the solution strat-
egy, where different architectures (e.g. MDF, IDF) can be used to get different strategies
for solving the same problem. This approach results in a low number of settings to be
provided by the user, but at the same time it is difficult to set up a more custom-built
approach. This issue will be further discussed in Chapter 8.

Related to additional strategies, another strong wish in the survey was to include addi-
tional intelligent analysis of the tool repository. For example, KADMOS could suggest the
selection of tools balancing fidelity level and execution time, or the best way to cluster a
set of tools to build a surrogate model first, and then execute an optimization using that
model. This is another topic that will be covered in Chapter 8.

EXPECTED RIGIDNESS OF TOOL I/OS (ON PROJECT AND CONFIGURATION LEVEL)

A final, rather detailed, limitation touches upon the core of the AGILE paradigm: the
use of a fixed schema (i.e. CPACS) for tool integration in combination with the tool I/O
definition required by KADMOS. This limitation is visually explained in Fig. 6.16 and
has to do with the fact that, to be able to support formulation, KADMOS has to be very
strict in the description of a tool’s I/Os, to make sure they are mapped correctly. Hence,

*available at: mdo-system-interface.agile-project.eu, accessed June 11, 2019

170

mdo-system-interface.agile-project.eu

6

KADMOS demands that the I/O definition includes the precise definition and number
of certain CPACS elements, while CPACS-compatible tools can usually handle a larger
variety in the I/O files and can still be executed. For example, consider that all spars
of the main wing are input of a tool. In case two spars are defined in the CPACS file,
KADMOS needs to get the following input element definitions, see also the first row of
Fig. 6.16:

element 1: /cpacs/vehicles/model/aircraft[@uID=“Boeing-747”]/
wings/wing[@uID=“main_wing”]/spars/spar[1]

element 2: /cpacs/vehicles/model/aircraft[@uID=“Boeing-747”]/
wings/wing[@uID=“main_wing”]/spars/spar[2]

Hence, the input definition specifically states that the aircraft is the Boeing-747, the wing
has to be the main wing and then the first and second spar elements are used. The input
definition has to be very specific, since the CPACS file might contain other aircraft and/or
other wings (i.e. horizontal and vertical tails) for the Boeing-747, and their spars might
then be coupled illegally to other tools.

current approach
tool
I/O

�les
projects envisioned approach

Tool specialists manually list:

o /cpacs/.../aircraft[@uID=”Boeing-747”]/.../spar[1]
o /cpacs/.../aircraft[@uID=”Boeing-747”]/.../spar[2]

based on a shared project-wide
CPACS-based product model:

Project 1A:
Boeing-747
two-spar
con�guration

Project 1B:
Boeing-747
three-spar
con�guration

Project 2:
Airbus-A380
three-spar
con�guration

Design task integrator
provides:

+

+

+

=

Design task integrator
provides:

Tool specialists
provide:

Design task integrator
provides:

Tool specialists manually list:

o /cpacs/.../aircraft[@uID=”Boeing-747”]/.../spar[1]
o /cpacs/.../aircraft[@uID=”Boeing-747”]/.../spar[2]
o /cpacs/.../aircraft[@uID=”Boeing-747”]/.../spar[3]

based on a reconfigured
product model:

“all spars of
 the main wing”

Tool specialists manually list:

o /cpacs/.../aircraft[@uID=”Airbus-A380”]/.../spar[1]
o /cpacs/.../aircraft[@uID=”Airbus-A380”]/.../spar[2]
o /cpacs/.../aircraft[@uID=”Airbus-A380”]/.../spar[3]

based on a shared
Airbus-A380 product model:

shared project-wide
CPACS-based product
model of a Boeing-747

recon�gured
product model abstract

tool I/O
de�nitions

shared Airbus-A380
product model

=

mapping
CPACS �le

Legend

=

?

Figure 6.16: Visual explanation of the current approach for defining tool I/O files (left) and the envisioned
approach (right) for a more flexible definition using a baseline file mapping

Unfortunately, because of this required strictness, I/O issues arise at two levels: geomet-
rical reconfiguration and project-to-project sharing. With the strict I/O definition, it is
not possible to change the number of spars inside KADMOS without explicitly chang-
ing the input file. Hence, if the geometrical configuration (number of spars) changes in
the workflow based on some variable, then this might lead to inconsistencies and er-
rors, see second row in Fig. 6.16. In addition, also between projects tool I/Os can only
be shared if the exact same aircraft (i.e. Boeing-747) is used in the other project as il-
lustrated in the last row of Fig. 6.16. Of course, the UIDs could be replaced, but the
essential point here is that a more abstract I/O definition would be required for a more
flexible formulation process, such that tool I/Os are defined strictly enough for KAD-
MOS to establish valid couplings, while at the same time geometrical reconfigurations
or project-to-project sharing are handled automatically. Practically, this would mean
that the earlier spar input definition would not be explicit CPACS elements, but some-

171

6

thing along the line of: all spars of the main wing of the aircraft. Thus there needs to be
a mapping of abstract I/O definitions to specific elements of the CPACS-based product
model used in a project. The product model is then a single file that has to be adjusted,
instead of having to adjust the full collection of I/O files.

Hence, to improve the use of tool definitions between projects and with geometrical re-
configurations, a semantic enrichment layer is required on top of the common schema.
This layer would allow a tool I/O definition that is independent of the design task and en-
able the automatic population of I/O files for a specific task using a mapping approach
with the product model. This envisioned approach is visualized in the last column of
Fig. 6.16.

6.4.3. WORKFLOW MATERIALIZATION IN RCE AND OPTIMUS

All the CMDOWS files of the formulations shown in Fig. 6.14 and Fig. 6.15 have been
successfully parsed as executable workflows in RCE or Optimus. One example from the
demonstrator design task was shown in Fig. 6.13 and annotated workflows were dis-
cussed in Chapter 5, see Fig. 5.2 and Fig. 5.5. Being one of the latest AGILE outcomes,
CMDOWS parsing is the least mature component of the framework. The two most criti-
cal issues, as emerged from the survey, are discussed below.

LARGE OVERHEAD DUE TO DATA HANDLING

Experienced PIDO platform users noticed long execution times for relatively straightfor-
ward workflows. This is because the CPACS-based tool integration in the AGILE paradigm
has major implications on the data handling in the workflows, as was discussed in Chap-
ter 5. Not all elements in RCE and Optimus were originally built to handle XML files, and
therefore XML readers and writers are required to integrate them in the workflow, see
for example the optimizer and converger elements in Fig. 5.2 and Fig. 5.5. Similar data
handling has to be done when two tools are executed in parallel and their CPACS output
files need to be merged. This continuous data translation adds a large overhead to the
execution time of the workflow.

LAZY DATA HANDLING APPROACH LEADS TO INCONSISTENT CPACS FILES

Specific for RCE, in order to reduce the overhead discussed above, a ‘lazy data handling’
approach is implemented, which means that CPACS-compatible tools are assumed to
read a CPACS file and then append their results to the same file. This way, in a sequential
execution of CPACS-compatible tools, the files can be passed directly without data han-
dling overhead. However, when tools are executed in parallel then their results need to
be merged as one CPACS file if the next tool requires results from both tools, as is the case
for the two tools in the lower right corner of the RCE workflow depicted in Fig. 5.2. Since
data of more upstream tools have been added to the CPACS files of the parallel tools and
were forwarded indirectly based on the lazy data handling, the correct merging of the
files is not always evident. There is the risk that a value was updated by a tool further
upstream of one parallel tool, that might be ignored if the merging of the files takes the
old value from the other parallel tool.

These data handling issues could be resolved by implementing a stricter data handling
for parsed workflows, though such data handling will also have a negative impact on the

172

6

already large overhead involved. KADMOS is aware of the exact I/Os of each tool and
stores this information in the CMDOWS file. Therefore, the information could be used
in the workflows for data handling, among others to assure the consistency of the CPACS
files being generated and merged. At the same time, the data handling should be less
strict when possible to reduce overhead. Thus, the parsing method should be a trade-off
between strict data handling for CPACS consistency and overhead reduction.

An average time reduction of 33% was estimated by the expert users of RCE and Optimus
in the survey. Although the CMDOWS standard has already been adopted by a wider va-
riety of framework applications, its original development goal was to enable the creation
of executable workflows from a neutral workflow definition. This position of CMDOWS
could be further strengthened if more commercial PIDO platforms would adopt this,
thus creating a virtuous snowball effect leading to a wider adoption of the schema, and
possibly to the upgrade of CMDOWS as official standard. Feedback from the commer-
cial PIDO tool provider in AGILE is very positive and they consider this approach the way
forward to improve their capability to support MDAO expert customers with customized
deployments of their workflow management system.

6.4.4. COMPLETE AGILE DEVELOPMENT FRAMEWORK

The complete framework was positively reviewed in the survey and AGILE partners es-
timated that a 39% time reduction for setting up collaborative MDAO system could be
achieved. A trend found in the survey feedback was that technically the framework is
performing well, but to grasp, use and appreciate it still requires effort. This confirms
the idea that the third-generation framework is the technical implementation of a truly
novel paradigm to perform MDAO, as such it takes a mind shift and some time to get
acquainted. As the current version of the framework is technically sound (with only mi-
nor bugs and issues to be solved for the different components), it would make sense to
reduce the effort for embracing the AGILE paradigm by consolidating the different com-
ponents and making GUIs more intuitive, informative and structured.

Conceptually, the ADF connects two very distinct phases of developing a collaborative
system: formulation and execution. A crucial limitation found in AGILE, caused by the
use of a fixed central data schema (i.e. CPACS), is that a very strict definition of tool I/Os
is necessary for a specific design task in the formulation phase, while tool execution
should preferably be based on less strict I/Os so that tools can handle a variety of CPACS
files and thereby be used simultaneously in different design tasks. This formulation-
execution discrepancy impacts many applications. As it relates back to the root of the
AGILE paradigm, future developments should focus on how to tackle this discrepancy
starting at the adopted central data schema and its ecosystem.

Another topic, that has not been addressed in this chapter nor in the framework as a
whole, concerns the use of derivatives to speed up gradient-based optimization strate-
gies. Most of the tools available within the AGILE consortium were not able to provide
derivatives and given the fact tool development was not a goal of the project, it was de-
cided not to include the use of derivatives in the framework. Naturally, including this
concept in the framework would impact all components; derivative values need to be
stored in the CPACS files, their role in the multidisciplinary system needs to be stored in
CMDOWS files, handled properly by KADMOS, and finally, executable workflows need to
be parsed that include optimizers using the derivative information. As derivatives offer

173

6

a huge potential for enabling large-scale MDAO, it is considered to be another crucial
topic for future development. With the OpenLEGO implementation discussed in Chap-
ter 5, a first step has been taken in this direction, though the use of derivatives is achieved
‘implicitly’ there through the tool integration and not considered by other applications
(i.e. KADMOS, CMDOWS).

In conclusion, this chapter has presented a cornerstone of the AGILE paradigm: the
knowledge architecture. The AGILE implementation of this architecture as the AGILE
Development Framework has been used as the environment to apply and assess the de-
velopments original to this dissertation in a broader framework with multiple collabo-
rative aircraft design case studies. The AGILE development framework is considered a
first step in the right direction to establish a third-generation framework, as well as an
initial definition of the paradigmatic shift required to perform collaborative, distributed
MDAO accounting for the technical and non-technical hurdles that it may present. This
chapter confirmed the crucial role played by this dissertation’s developments, as they
offer valuable methodological enhancements to the AGILE development process that
resulted in significant time reductions for the (re)configuration of large, complex MDAO
system where a heterogeneous team of experts is responsible for its formulation and ex-
ecution.

174

7
RESTRUCTURING

A STATE-OF-THE-ART

AIRCRAFT DESIGN TOOLBOX

I N Chapters 3 to 5 a fully automated chain was established from MDAO system formu-
lation (in KADMOS) to execution (in multiple PIDO platforms). These developments

were implemented and tested in the AGILE framework in Chapter 6, which showed how
automating the system development process significantly impacts the collaborative de-
sign effort. In this chapter, the same developments are applied in a completely different
context to demonstrate how the same technology demonstrated in AGILE can be used to
improve the scalability and flexibility of existing frameworks. This chapter will present a
novel framework based on the restructuring of the existing aircraft design toolbox ‘The
Initiator’. Thereby, the framework acts as a proof of concept to show that the devel-
opments in this dissertation are also applicable outside the boundaries of the AGILE
paradigm and can improve existing multidisciplinary design tools. Each section in this
chapter covers a single iteration of the MDAO development process shown in Fig. 7.1. Af-
ter a brief introduction of the toolbox in §7.1, the framework is configured and validated
in §7.2. Then, a first reconfiguration is described in §7.3, followed by a final second re-
configuration in §7.4.

Framework integrations

Tool
repository

MDAO
problem

MDAO solution
strategy

Executable
work�ow

MDAOptimal
design

= stages of the process discussed in this chapter

Figure 7.1: Overview of the five MDAO system stages covered in this chapter using the restructured aircraft
design toolbox

175

7

7.1. INTRODUCTION: THE INITIATOR TOOLBOX

The section of Flight Performance and Propulsion at Delft University of Technology car-
ries out research on the design of conventional and unconventional aircraft continu-
ously. As each configuration includes similar steps to synthesize a design to meet top-
level requirements, an aircraft design synthesis tool, called the Initiator, was built to en-
able the fast generation of aircraft baseline designs just starting from a set of Top-level
aircraft requirements (TLARs) and the specification of the design’s configuration (tube-
and-wing, blended-wing body, box-wing, etc.) [91, 116, 117]. The Initiator is a MATLAB-
based [S13], object-oriented framework that combines disciplinary modules to perform
a step-wise design synthesis. Classical textbook sizing and weight estimation methods
[118, 119] are used for the first iteration of the conceptual design loop. After the quasi-
analytical conceptual design, specialized sizing modules can be used to further refine the
design. For example, the fuselage can be designed in detail using the ‘Fuselage Config-
urator’ module, which performs an inside-out approach to determine an initial fuselage
geometry. Similar preliminary sizing modules are available for the sizing of wings, land-
ing gears, engines, etc. In addition, the Initiator includes analyses to check certification
requirements based on Federal Aviation Regulations (FAR) parts 23 and 25. The process
flow for converging a design with the Initiator is shown in Fig. 7.2

Top-Level Requirements Con�guration

Passengers Range Airports

Empirical Database

Preliminary
Sizing

Class II Weight
Estimation

MTOW
converged?Cost estimation

Class I Weight
Estimation d d

yes

VLM

Wing Weight
Estimation

Fuselage
Weight

Estimation

Weights
converged?

Class II.V Weight Estimation
y

Landing Gear
Sizing

Performance
Estimation

KPIs and
Geometry

Aerodynamic
Analysis

(VLM, Parasite
drag, CLmax)

Figure 7.2: Flow diagram of the Initiator toolbox [91]

As its name suggests, the toolbox was developed to be able to quickly synthesize an initial
aircraft design. The best design is selected by building a wing-thrust-loading diagram. A
typical example of such a diagram is shown in Fig. 7.3. In this diagram, a set of design
and certification requirements constrain a design space in which any point could be
selected. The most lower right position is selected to obtain a design with a low thrust
loading (low fuel consumption) and high wing loading (low drag at high speed).

The structure of the Initiator toolbox is shown as a UML diagram in Fig. 7.4a. All classes
in the toolbox inherit from MATLAB’s abstract base class handle. The design process
is executed by an InitiatorController object. This object contains the logic to run
a design synthesis convergence loop. The controller contains all analysis modules (see
Module) and an Aircraft object, in which the geometry, analysis results, and require-
ments are stored. The aircraft object contains different Part definitions, such as wing,
fuselage, engine, and landing gear. Each module gets its input data from the Aircraft
object and writes its results to that object after execution.

176

7

0 2000 4000 6000 8000 10000
0

0. 1

0. 2

0.3

0. 4

0.5

0.6

take−o� wing loading (W/S) [N/m2]

ta
ke

−o
�

th
ru

st
−t

o−
w

ei
gh

t r
at

io
 (T

/W
) [

−]

design space
b

max
 = 80 m

s
L

 = 1440 m

n = 1.3 during cruise, no bu�et
fuel tank volume
(c/V)

FAR 25.111c
 = 1.2 %

(c/V)
FAR 25.119

 = 3.2 %

(c/V)
FAR 25.121a

 = 0 %

(c/V)
FAR 25.121b

 = 2.4 %

(c/V)
FAR 25.121c

 = 1.2 %

(c/V)
FAR 25.121d

 = 2.1 %

s
TO

 = 2180 m

M
cr

 = 0.76

t
climb

 = 10 min to h = 4000 m

design point
Reference Aircraft

Figure 7.3: A typical take-off wing-thrust-loading diagram from the Initiator with the selected design point in
red [91]

InitiatorController

XML�le
settings
results
...

+writeModuleInput()
+runModule()
+getModuleResults()
+resetModule()
...

Legend

composition

inherentence

association

aggregation

class name

properties
methods

package

Aircraft

name
description
type
results
reference
requirements
...

+addPart()
+�ndPart()
+checkAllParts()
...

Part

name
location
...

Module

+run()
...

handle

...

...

DisciplinaryAnalysis

...

...

1 0...*

0...*

a) Original implementation

Module

+run()
...

XMLReader

+setAircraft()
+setParts()
...

XMLWriter

+fromStruct()
...

outputXML

AbstractDiscipline

name
path
...

+execute()
...

Discipline

...

...

MATLAB engine

DisciplinaryAnalysis

...

...

InitiatorController

...

...

Aircraft

...

...

Part

...

...

handle

...

...
0...*

1

1

1

1

b) Adapted implementation

Figure 7.4: UML diagrams of the original Initiator implementation and the adapted implementation
developed to establish the new framework.

177

7

Over the years, the Initiator has been used to investigate a variety of aircraft [120–122],
meanwhile expanding the framework to include new analysis modules and aircraft con-
figurations. Unfortunately, the framework’s expansion was not always controlled well,
leading to a collection of modules of varying code quality, some abusing the object-
oriented set-up. For example, not all modules can be executed independently, as they
contain nested dependencies on other analyses that will be called illegally: uncom-
manded by the controller. Such coding practices throughout the toolbox led to a state
of spaghetti code, visualized on the left in Fig. 7.5, that is difficult to read, understand,
and reconfigure. In addition, the controller object itself is geared towards design conver-
gence and is laborious to reconfigure for other MDAO strategies (i.e. optimization), while
the disciplinary modules of the Initiator offer tremendous potential to perform MDAO
studies. Hence, a subset of the Initiator modules could be reused to solve another design
problem. This situation is very similar to the collaborative MDAO context, since we have
a lot of different disciplinary tools with a lot of direct links between them.

entangled ‘spaghetti’ code disentangled repository

restructured Initiatororiginal Initiator

Figure 7.5: Conceptual visualization of the links between disciplinary modules in the current Initiator (left)
and the restructured version (right) presented in this chapter

In this section a prototype of an adapted implementation of Initiator modules is pre-
sented. This reimplementation was developed in collaboration with Bruggeman [87]
and performed to show how an existing multidisciplinary toolbox can benefit from the
methodological and software developments proposed in this dissertation.

7.2. CONFIGURATION: ESTABLISHING AN AGILE INITIATOR

This section presents the first iteration of the development process in Fig. 7.1. In this
iteration the agile system is configured and the restructured framework is verified against
the original Initiator implementation.

7.2.1. STAGE I: TOOL REPOSITORY

Conceptually, the creation of the tool repository requires that all modules conform with
the CDS (Central Data Schema) approach, discussed in §2.1 and shown in Fig. 2.1. Hence,
all modules need to be standalone and are required to read and write their I/O data to
a format that corresponds to a single schema. Practically, the following tasks were per-
formed to achieve this:

• define an XML schema to store module I/O data;
• develop an XML reader and writer to wrap the modules around the schema and

make them independent;

178

7

• select modules from the Initiator and define their I/O files to establish the tool
repository.

Each topic will be briefly discussed in a separate section. An overview of the adapted
implementation is depicted in the UML diagram in Fig. 7.4b.

XML SCHEMA

The original Initiator toolbox al-
ready includes a well-structured
data storage implementation with
the InitiatorController object.
For this proof of concept, this con-
troller’s MATLAB-based data struc-
ture was taken as the basis for a
new XML schema: IPACS (Initia-
tor Parametric Aircraft Configura-
tion Schema). The top-level ele-
ments of this schema are visualized
in Fig. 7.6.
Most elements of IPACS match
one-on-one with the controller’s
data structure. For example,
the parts within the aircraft el-
ement contain the data for the
definition of the Part object in
Fig. 7.4. Two new elements are
introduced that store additional
data: the constraints element
stores the lines in the wing-thrust-
loading diagram (see Fig. 7.3) as
constraint values for optimiza-
tion purposes and, similarly, the
scaledVariables element stores
scaled variables that can be used
as objective by an optimizer.

ipacs

initiator

aircraft

designRequirements

referenceData

missions <...>

parts <...>

wing

fuselage

engine

landingGear

results

massBreakdown

wingThrustLoading

fuelGeometric

massCG

configurationParameters

performanceParameters

aircraftSettings

independentSettings

programSettings

constraints

scaledVariables

Figure 7.6: The IPACS (Initiator Parametric Aircraft
Configuration Schema)

Instead of using the new IPACS, the Initiator modules could also be made compati-
ble with the existing CPACS. This has the major advantage that the Initiator framework
can be combined with other CPACS-compatible tools. Unfortunately, IPACS and CPACS
were found to be so distinct that a major development effort would be required to make
the Initiator’s controller and disciplinary analyses compatible. This effort was consid-
ered out of scope for the current prototype. However, if all modules are made CPACS-
compatible, then each module would be usable as a standalone tool in a CPACS-based
framework. At least the complete Initiator toolbox should be made CPACS-compatible,
which is the approach implemented in the current Initiator.

XML READER AND WRITER

The original toolbox already contained an XML reader and writer module, though devel-
oped for different purposes. These modules were adapted to match IPACS. Hence, the
reader is able to load all data from an IPACS file as an InitiatorController object so

179

7

that the DisciplinaryAnalysis can be run using that controller. After execution of the
disciplinary analysis, the XMLWriter is used to export the controller object as an IPACS
file. In addition to reconfiguring the modules to include the XML reader and writer, any
dependencies on other module executions were replaced as input data to be read from
the XML. This is a key feature, as it establishes the repository structure shown on the
right of Fig. 7.5.

The reader and writer are the same for all disciplines. Hence, the modules are not opti-
mized for the actual I/O data of a specific disciplinary analysis, but simply read the full
IPACS file into the controller object and write the complete controller as an IPACS file at
the end. This suboptimal data processing adds overhead to each discipline run, but was
considered acceptable for a proof of concept that is not necessarily focused on achieving
the shortest execution time.

MODULES AND TOOL REPOSITORY

From the large number of Initiator modules, seven were selected that permit the prelim-
inary design of a tube-and-wing airliner:

Database: collects reference data on aircraft and engines. These data are used by other
disciplines to empirically determine initial values for key parameters.

Empirical OEM: estimates the Operational Empty Mass (OEM) based on data from the
Database module.

Class I Weight Estimation: estimates the mass breakdown, based on the OEM, using
the classical fuel fractions method.

Fuselage Configurator: determines the entire fuselage layout calculating both the inner
(cabin layout) and outer geometry.

Wing Thrust Loading: selects a design point based on requirements that constrain the
design space, see Fig. 7.3.

Geometry Estimation: provides a geometry for the wing, engine and empennage.
Class 2 Weight Estimation: provides a more refined mass breakdown compared to the

class 1 estimation, including component masses and centre of gravity locations.

With the ‘IPACSization’ of the modules completed, the first stage of the MDAO devel-
opment process can be formulated as a graph using KADMOS: Repository Connectivity
Graph (RCG).

The RCG is visualized in Fig. 7.7. The creation of this graph already shows how adopting
the approach presented in this work benefits the user of the Initiator. Instead of having to
comprehend a large, complex toolbox through MATLAB, the modules are systematically
implemented as an MDAO system that can be inspected, debugged, and manipulated to
formulate design problems. In addition, the tools on the diagonal are automatically put
in a sequence with minimal feedback using the sequencing method described in §§3.5.3.
The restructured framework implementation enforces a ‘separation of concerns’; the Ini-
tiator modules now act as independent tools and the controller object has been demoted
to merely act as a data structure, leaving the formulation, inspection, and execution of
workflows up to other specialized applications, such as KADMOS, VISTOMS and Open-
MDAO.

180

7

19 inp. 22 inp. 23 inp. 51 inp. 48 inp. 72 inp. 79 inp.

1 out. Database ref. aircraft data ref. aircraft data ref. aircraft data ref. engine data
ref. aircraft data

ref. engine data

1 out.
Empirical-

OEM
OEM, 1 des. req. 2 des. req. 1 des. req.

11 out.
Class1Weight-

Estimation

MTOM,

2 des. req.

MTOM, MLM,

FFmission,

6 des. req.

MTOM,

3 des. req.

(L/D)cruise,

8 masses,

7 des. req.

48 out.
Fuselage-

Configurator

17 conn.

(fuselage

geometry)

49 conn.

(fuselage

geometry)

4 out.
WingThrust-

Loading
W/S, T/W

W/S, T/W ,

CL,max,land

154 out.
Lwingbox,

xfrontspar

Geometry-

Estimation

80 conn.

(wing + engine

geometry)

140 out. OEM MTOM

MTOM, MLM,

FFmission,

Vfueltank-constraint
MTOM

Class2Weight-

Estimation

Figure 7.7: Repository overview of the updated Initiator framework showing the sequenced RCG created in
KADMOS.

7.2.2. STAGE II: MDAO PROBLEM

The reimplementation of the Initiator was verified and demonstrated by defining a prob-
lem that could also be solved by the original implementation: convergence of an aircraft
design based on the TLARs of an Airbus A320-200 and a required range of 4000 km. In
KADMOS, the MDAO problem to be solved was formulated such that all tools in the
repository (Fig. 7.7) needed to be executed to retrieve the converged MTOM and OEM
values. The formulated FPG is shown in Fig. 7.8.

19 inp. 22 inp. 23 inp. 51 inp. 48 inp. 72 inp. 79 inp.

Database ref. aircraft data ref. aircraft data ref. aircraft data ref. engine data
ref. aircraft data

ref. engine data

Empirical-

OEM
OEM, 1 des. req. 2 des. req. 1 des. req.

Class1Weight-

Estimation

MTOM,

2 des. req.

MTOM, MLM,

FFmission,

6 des. req.

MTOM,

3 des. req.

(L/D)cruise,

8 masses,

7 des. req.

Fuselage-

Configurator

17 conn.

(fuselage

geometry)

49 conn.

(fuselage

geometry)

WingThrust-

Loading
W/S, T/W

W/S, T/W ,

CL,max,land

Lwingbox,

xfrontspar

Geometry-

Estimation

80 conn.

(wing + engine

geometry)

OEM MTOM

MTOM

MLM, FFmission,

Vfueltank-constraint

MTOM
Class2Weight-

Estimation

Figure 7.8: Fundamental Problem Graph (FPG) of the convergence problem with the quantities of interest
highlighted in red.

181

7

7.2.3. STAGE III: MDAO SOLUTION STRATEGY

Three different convergence strategies were imposed on the FPG shown in Fig. 7.8:

1. Gauss-Seidel
2. Gauss-Seidel partitioned in two subsystems
3. Jacobi

Both Gauss-Seidel strategies are visualized with XDSMs in Fig. 7.9 and Fig. 7.10. The par-
titioned strategy makes use of the MDK decomposition method in KADMOS, which was
discussed in §§3.5.4. The partitioning is used here to validate its use in a realistic de-
sign case. The partitioning method divides the coupled tools in two groups and makes
a trade-off between balancing execution time and the number of broken couplings be-
tween the groups.

0, 9:

COOR
1: 19 in. 2: 22 in. 3: 4 in. 4: 23 in. 5: 51 in. 5: 48 in. 6: 72 in. 7: 79 in.

1:

Database
2: 1 conn. 5: 1 conn. 5: 1 conn. 6: 1 conn. 7: 2 conn.

2:

Empirical-

OEM

4: 1 conn. 5: 2 conn. 7: 1 conn.

3, 8→ 4:

CONV
4: OEMc

5: Lcwingbox,

xcfrontspar

5: Vfueltank
-constraintc

4:

Class1-

WeightEstimation
5: 3 conn. 5: 6 conn. 6: 3 conn. 7: 16 conn.

5:

Fuselage-

Configurator
6: 17 conn. 7: 47 conn.

5:

WingThrust-

Loading
6: 2 conn. 7: 3 conn.

9: 14 out.
8: Lwingbox,

xfrontspar

6:

Geometry-

Estimation

7: 80 conn.

9: 6 out.
8: OEM, Vfueltank

-constraint

7:

Class2Weight-

Estimation

Figure 7.9: XDSM of the solution strategy based on the Gauss-Seidel convergence architecture, which has
automatically been formulated by KADMOS.

7.2.4. STAGES IV & V: MATERIALIZATION, EXECUTION, AND RESULTS

The convergence strategy was also executed using the original Initiator toolbox in order
to verify the reimplemented prototype. With the new framework, the formulated strate-
gies are stored as CMDOWS files and the matching workflows materialized in OpenM-
DAO with OpenLEGO (discussed in §5.4).

The execution of the framework with OpenMDAO, requires that each disciplinary anal-
ysis is integrated as a Python-based AbstractDiscipline. Fig. 7.4b visualizes how the
Initiator MATLAB modules are wrapped as Python objects. The key component for this
wrapper is the MATLAB engine package. This package enables the execution of MATLAB
files from Python. Each discipline runs on its own engine. The use of these engines in-
troduces overhead that can only be avoided by rewriting the Initiator modules in Python.

182

7

0, 7:

COOR
1: 19 in. 2: 22 in. 3: 74 in. 4: 72 in. 5: 79 in. 4: 23 in. 5: 51 in. 5: 48 in.

1:

Database
2: 1 conn. 4: 1 conn. 5: 2 conn. 5: 1 conn. 5: 1 conn.

2:

Empirical-

OEM

5: 1 conn. 4: 1 conn. 5: 2 conn.

3, 6→ 4:

CONV

4: 17 conn.

(fuselage

geometry),

MTOMc ,

3 des. req.

W/Sc , T/W c

5: 49 conn.

(fuselage

geometry),

L/Dccruise,

8 masses,

7 des. req.

4: OEMc
5: Lcwingbox,

xcfrontspar

5: Vfueltank
-constraintc

7: 14 out.
6: Lwingbox,

xfrontspar

4:

Geometry-

Estimation

5: 80 conn.

7: 6 out.
6: MTOM, OEM,

Vfueltank-constraint

5:

Class2Weight-

Estimation

7: 16 out.

6: L/Dcruise,

8 masses,

7 des. req.

4:

Class1Weight-

Estimation

5: 3 conn. 5: 6 conn.

7: 51 out.

6: 49 conn.

(fuselage

geometry)

5:

Fuselage-

Configurator

7: 3 out.
6: W/S, T/W ,

CL,max,land

5:

WingThrust-

Loading

Figure 7.10: XDSM of the solution strategy based on the Gauss-Seidel in two partitions architecture, which
has automatically been formulated by KADMOS.

The results for the convergence studies are summarized in Tab. 7.1. The reference strat-
egy on the first row refers to the run performed in the original Initiator. Clearly, all three
formulated strategies result in the same values for MTOM and OEM with negligible er-
rors.

Table 7.1: Results of the convergence studies to validate the reimplementation of the Initiator

strategy iters
MTOM [t]
(error %%%)

OEM [t]
(error %%%)

execution time [s]

actual (1 CPU) estimated (#CPU)

reference 6 81.791 43.897 105 -

Gauss-Seidel 7 81.789 (-0.24) 43.895 (-0.46) 313 298 (1) / 258 (2)
two partitions 9 81.793 (+0.24) 43.898 (+0.23) 620 214 (2)
Jacobi 12 81.795 (+0.49) 43.900 (+0.68) 735 144 (5)

Fig. 7.11 depicts the convergence history for both variables. Looking at the overlap be-
tween the reference and Gauss-Seidel run, it is clear that the original Initiator controller
performs convergence based on the same scheme. The number of iterations differ due to
a subtle difference in the executions: the original implementation converges the MTOM,
while the KADMOS implementation works with the OEM. In addition, the original im-
plementation actually only converges based on the MTOM, while the workflow in Open-
MDAO checks convergence for all feedback variables.

In the last columns of Tab. 7.1 execution times are listed. The prototype framework intro-
duces overhead at several locations, as was pointed out earlier (e.g. XML reading/writing,
MATLAB engine). Consequently, the execution time with the framework is much higher

183

7

a) MTOM b) OEM

Figure 7.11: Convergence history for the four different strategies list in Tab. 7.1

than the original implementation, see the actual execution time column. However, the
agile framework makes it easy to also use alternative convergence schemes that would
benefit from the use of a multiprocessing setup. The last column lists the estimated exe-
cution times when multiple processing units would be used. Unfortunately, the current
prototype does not support multiprocessing in the execution phase due to file handling
issues in OpenMDAO; the package does support multicore processing, but was not built
to include file reading and writing when multicore processing is switched on. However,
the potential of adapting the convergence strategy to a multicore processing environ-
ment is clear from the estimated execution times.

In summary, the configuration of the Initiator toolbox into a novel framework separates
disciplinary analyses from system formulation and execution. This new setup was ver-
ified successfully based on a design convergence comparison. Furthermore, the frame-
work provides the agility to formulate alternative convergence schemes that are not sup-
ported by the original Initiator with the potential of taking advantage of multicore pro-
cessing. With the agile framework properly configured, it can now be used to reconfig-
ure the MDAO system by starting a new iteration of the MDAO development process in
Fig. 7.1.

7.3. RECONFIGURATION: OPTIMIZATION

With the validated design framework in place, it can now be reconfigured to answer new
design questions. Design problems can now be solved using strategies that were not
available in the original Initiator implementation. For example, instead of performing
a convergence study, an optimization can also be formulated and executed. A design
question to be answered can be:

What is the difference between minimizing take-off mass and fuel mass for
the same range, design variables, and constraints?

184

7

Hence, the following two optimization problems are defined:

minimize: MTOM @ R=4000 km (take-off mass at given range)

or: FM @ R=4000 km (fuel mass at given range)

with respect to: 2000.0 ≤W /S ≤ 7000.0 (wing loading in N/m2)

0.0 ≤ T /W ≤ 0.6 (thrust loading)

6.0 ≤ AR ≤ 13.0 (aspect ratio)

subjected to: sL ≤ 1480 m (max. landing distance)

sTO ≤ 1938 m (max. take-off distance)

no buffet @ncr = 1.3 (load factor in cruise)

Mcr ≥ 0.78 (cruise Mach number)

VFT ≥Vfuel (fuel tank volume)

tclimb ≤ 10 min (climb time to 4000 m)

(c/V)FAR-25 (6x) (six climb reqs, see legend Fig. 7.3)

The goal of the optimization is to select the best point in the thrust-wing-loading dia-
gram and find the best aspect ratio for the main wing.

7.3.1. STAGE I: TOOL REPOSITORY

This second iteration of the development process starts at the first stage again. Instead
of using the WingThrustLoading tool to do a prefixed selection of the design point, as
was done in the convergence studies (§7.2), the optimization strategy will require a con-
straint calculation module and will leave the selection of the design point to the opti-
mization algorithm. In total, four tools have to be added to the repository:

• constraint value calculation
• normalized objective value calculation for MTOM
• normalized objective value calculation for fuel mass
• aerodynamics module to estimate induced drag

Here, the power of the current framework in supporting a heterogeneous tool repository
comes forward, as these tools are implemented in three different ways. The constraint
values are calculated with a new MATLAB module. In this module, the constraining lines
from Fig. 7.3 are reformulated as equations where a value larger than zero represents a
constraint violation. The normalized objective values are implemented directly in KAD-
MOS as mathematical relations that scale the actual values by a constant scalar. Finally,
the aerodynamics module is implemented as a Python tool. This module is included to
get a more realistic lift-drag polar estimation that is sensitive to a varying aspect ratio,
based on:

CD =CD0 +
C 2

L

πAR e

The open-source Python wrapper [S29] for the AVL (Athena Vortex Lattice) [S30] pack-
age is used here for the drag estimation. Only induced drag is calculated by AVL, while
parasite and wave drag are kept constant at 200 drag counts in the module. This (over)-
simplification of keeping the other drag components constant could be avoided by add-

185

7

ing additional drag estimation modules to the framework. However, this was consid-
ered out of scope for the current prototype, as the addition of the four aforementioned
modules already demonstrates the extensibility of the current framework.

After adding the XML I/O files of the new tools to the database, KADMOS can be rerun
to update the RCG. The extension of the RCG is visualized in Fig. 7.12.

7 inp. 42 inp. FMref MTOMref

Database ref. aircraft data

Class1Weight-

Estimation
M

MTOM, MLM

FFmission
6 des. req.

FM MTOM

Geometry-

Estimation

23 conn.

(wing geometry)

Class2Weight-

Estimation
CG

MTOM, MLM

FFmission,

Vfueltank-constraint
FM MTOM

WingThrust-

Loading

W/S, T/W ,

CL,max,land

(L/D)max drag polar cruise AVL drag polar cruise

c Constraints

fFM
Objective-

FM

fMTOM
Objective-

MTOM

Figure 7.12: Framework repository extension with four new tools and their couplings with existing tools from
the repository overview in Fig. 7.7.

7.3.2. STAGE II: MDAO PROBLEM

The RCG with the full repository is used to formulate the FPG in KADMOS matching the
optimization problem provided at the beginning of this section. This FPG is shown in
Fig. 7.13.

7.3.3. STAGE III: MDAO SOLUTION STRATEGY

Using the FPG from Fig. 7.13, KADMOS automatically imposes an optimization strategy
on the problem. Fig. 7.14 depicts the MDF architecture with a Gauss-Seidel convergence
scheme approach for the MTOM minimization problem. The fuel mass minimization
problem would result in a similar XDSM as Fig. 7.14, except for using the Objective-FM
mathematical relation from Fig. 7.12 instead of Objective-MTOM.

7.3.4. STAGES IV & V: MATERIALIZATION, EXECUTION, AND RESULTS

Once the strategy has been determined, it is stored as a CMDOWS file and material-
ized in OpenMDAO for execution. The optimization history and results for the MTOM-
minimization case are summarized in Fig. 7.15, Fig. 7.16, and Tab. 7.2. The optimizer
also selects the lower right corner in the thrust-wing-loading diagram, see Fig. 7.15e.
The two active constraints are related to the take-off and landing distance. The final
wing planforms for both minimization cases are shown in Fig. 7.16. The minimization

186

7

19 inp. 22 inp. 22 inp. 51 inp.

(W/S)

(T/W)

AR

71 inp.

(W/S)

(T/W)

80 inp.

7 inp. 1 inp.

(W/S)

(T/W)

AR

42 inp.

Database 1 conn. 1 conn. 1 conn. 2 conn. 1 conn.

Empirical-

OEM
1 conn. 2 conn. 1 conn.

Class1Weight-

Estimation
3 conn. 3 conn. 16 conn. 1 conn. 3 conn.

Fuselage-

Configurator
17 conn. 47 conn.

2 conn.
Geometry-

Estimation
80 conn. 23 conn.

FM OEM
Class2Weight-

Estimation
1 conn. MTOM

MTOM

3 conn

(L/D)max AVL
(L/D)max

3 conn

fMTOM
Objective-

MTOM

c Constraints

Legend

design variable objective constraint quantity of interest

Figure 7.13: FPG of the optimization problem with the quantities of interest highlighted in red.

0, 13:

COOR

1: R,

18 inp.

2: R,

21 inp.
3: (W/S)0,

(T/W)0, AR0
4: 4 inp.

5: R,

21 inp.

6: R,

50 inp.

7: R,

70 inp.

8: R,

79 inp.
9: 7 inp. 11: 1 inp.

11: R,

41 inp.

1:

Database
2: 1 conn. 6: 1 conn. 7: 1 conn. 8: 2 conn. 11: 1 conn.

2:

Empirical-

OEM

5: 1 conn. 6: 2 conn. 8: 1 conn.

13: (W/S)∗,
(T/W)∗, AR∗

3, 12→ 4:

OPT

7: (W/S),

(T/W), AR

8: (W/S),

(T/W)

11: (W/S),

(T/W), AR

4, 10→ 5:

CONV

5: OEMc ,

(L/D)cmax

6: Lcwingbox,

xcfrontspar

5:

Class1Weight-

Estimation

6: 3 conn. 7: 3 conn. 8: 16 conn. 9: 1 conn. 11: 3 conn.

6:

Fuselage-

Configurator
7: 17 conn. 8: 47 conn.

10: Lwingbox,

xfrontspar

7:

Geometry-

Estimation

8: 80 conn. 9: 23 conn.

10: OEM

8:

Class2Weight-

Estimation

9: 1 conn. 11: 1 conn. 11: 4 conn.

13: (L/D)∗max 10: (L/D)max
9:

AVL
11: 4 conn.

13: f ∗MTOM 12: fMTOM

11:

Objective-

MTOM

13: c∗ 12: c
11:

Constraints

Figure 7.14: Automatically instantiated XDSM from KADMOS of the MDF optimization strategy for the
MTOM minimization problem.

187

7

for fuel mass leads to a higher aspect ratio wing of 13.0 (instead of 11.9 for MTOM mini-
mization), which is actually at the variable’s upper bound.

Table 7.2: Results of the optimizations for minimal MTOM or minimal FM

parameter unit min. MTOM min. FM

AR [-] 11.89 13.00
(W/S) [N/m2] 5130 5131
(T/W) [-] 0.258 0.25
MTOM [kg] 81521 81627
FM [kg] 16368 16015
OEM [kg] 44617 45076
(L/D)max [-] 19.20 19.70

7.4. SECOND RECONFIGURATION: ADDITIONAL CONSTRAINT

Both wing planforms in Fig. 7.16 would prevent the ‘optimized’ A320 to use the same
airport gates, for which there is a span limitation of 36 meters. Hence, the optimization
needs to be reconfigured and an additional constraint is required to limit the wingspan.
This is the third and final iteration of the development process in Fig. 7.1 discussed in
this chapter. With a previous optimization under the belt, this reconfiguration can be
performed very quickly by:

stage I: Tool repository: updating the repository by adding the wingspan constraint to
the Constraints module;

stage II: MDAO problem: updating the KADMOS script to include the additional con-
straint in the FPG;

stage III: MDAO solution strategy: rerunning the KADMOS script to obtain the
CMDOWS file;

stage IV: materialization and execution: rerunning the OpenLEGO script to material-
ize a new OpenMDAO workflow and execute it.

These reconfiguration steps can be performed within a coupled of minutes, while with
the original Initiator toolbox this type of reconfiguration would be much more cumber-
some, requiring the adjustment of multiple MATLAB modules to pass the right data to
a new wing span constraint calculation. The results for the MTOM-minimization case
results in the new planform geometry and loading diagram shown in Fig. 7.17. The
wingspan of the main wing is lowered, see Fig. 7.17a, with the optimal wing having a
lower aspect ratio of 8.43 (instead of 11.9). The additional constraint affects the MTOM
negatively, with an increase of 1.3 t to 82.8 t. The loading diagram in Fig. 7.17b shows
how the additional constraint reduced the design space to a single line, where three con-
straints meet: maximum wingspan (bmax), maximum landing (sL) and maximum take-
off distance (sTO). Comparing the loading diagrams in Fig. 7.15e and Fig. 7.17b and con-
sidering the indicated reference aircraft (black dots), the wingspan constraint positions
the final design closer to existing airliners from the Initiator’s Database module, as is to
be expected.

In conclusion, this chapter has presented the restructuring of an existing aircraft design
toolkit to establish a more scalable and flexible framework and introduce MDAO capa-
bilities. This chapter has also demonstrated and validated the generic applicability of

188

7

a) design variables (min. MTOM) b) objective and other QOIs (min. MTOM)

c) constraints (min. MTOM)

design space

sL = 1480 m

n = 1.3 during cruise, no bu�et
fuel tank volume
(c/V)FAR 25.111c = 1.2 %
(c/V)FAR 25.119 = 3.2 %
(c/V)FAR 25.121a = 0 %
(c/V)FAR 25.121b = 2.4 %
(c/V)FAR 25.121c = 1.2 %
(c/V)FAR 25.121d = 2.1 %
sTO = 1938 m

Mcr = 0.78

tclimb = 10 min to h = 4000 m

design point
reference aircraft

Legend

d) legend constraints and diagram

0 2000 4000 6000 8000 10000 12000 14000

take-o� wing loading (W/S) [N/m2]

0

0.1

0.2

0.3

0.4

0.5

0.6

ta
ke

-o
�

th
ru

st
-t

o-
w

ei
gh

t r
at

io
 (T

/W
) [

-]

e) thrust-wing-loading diagram (min. MTOM)

0 2000 4000 6000 8000 10000 12000 14000

take-o� wing loading (W/S) [N/m2]

f) thrust-wing-loading diagram (min. FM)

Figure 7.15: Optimization history and results for the MTOM-minimization and FM-minimization cases

189

7

Figure 7.16: wing planform comparison

a) wing planform comparison

0 2000 4000 6000 8000 10000 12000

take-o� wing loading (W/S) [N/m2]

0

0.1

0.2

0.3

0.4

0.5

0.6

ta
ke

-o
�

th
ru

st
-t

o-
w

ei
gh

t r
at

io
 (T

/W
) [

-] design space
b max = 36 m

s L = 1480 m

n = 1.3 during cruise, no bu�et
fuel tank volume
(c/V)FAR 25.111c = 1.2 %

(c/V)FAR 25.119 = 3.2 %

(c/V)FAR 25.121a = 0 %

(c/V)FAR 25.121b = 2.4 %

(c/V)FAR 25.121c = 1.2 %

(c/V)FAR 25.121d = 2.1 %

s TO = 1938 m

Mcr = 0.78

tclimb = 10 min to h = 4000 m

design point
reference aircraft

Legend

b) thrust-wing-loading diagram

Figure 7.17: Results for the MTOM-minimization case including a constraint on the maximum wingspan

190

7

the proposed methodological approach, since the Initiator toolkit is completely outside
the boundaries of the AGILE project, which originally provided the context for the devel-
opments original to this dissertation.

191

IV
OUTLOOK &

CONCLUSION

193

8
OUTLOOK:

COMPOSITE ARCHITECTURES

AND MDAO BOTS

I N Parts I to III the major technological content of this dissertation has been presented.
This chapter sets the stage for future research by proposing two new concepts: com-

posite architectures and MDAO bots. The former is discussed in §8.1 with a small illus-
trative example based on the aircraft design framework covered in Chapter 7. The latter
concept, which is presented in §8.2, looks at this dissertation’s development from a dif-
ferent angle to provide a conceptual basis for future work.

8.1. COMPOSITE ARCHITECTURES

The optimization runs in the previous chapter demonstrated how a restructured Initiator
framework exploits the novel developments presented in this dissertation. The aircraft
design toolbox was reimplemented as an MDAO system, so that KADMOS can be used to
formulate a variety of strategies to answer design questions, which are subsequently ma-
terialized and executed automatically in OpenMDAO. The questions that were answered
with the available strategies were:

• What would be a synthesized aircraft for given inputs?
• What would be the best aircraft for a given objective, within certain input bounds

(design variables), and meeting certain constraints?

The first question was answered by the convergence studies and the second through
the optimization strategies. Another typical question of a design team could be: How is
the optimal design varying if the top-level requirements are changed? The answer to this
question would require a more complex workflow that would vary one (or multiple) of
the requirement values within a given interval and optimize the design for each value.
Hence, a composite DOE-optimization workflow is required to answer this question.

This composite strategy is illustrated here with a small example. Suppose the design

195

8

team would like to vary the range requirement for the airliner discussed in Chapter 7.
The team wants to assess how a change in this requirement would affect the optimal
aspect ratio and MTOM of this configuration. Such information could be valuable in the
decision-making process on setting the right top-level requirements for a new aircraft
development program. Hence, the design question to be answered is:

What is the sensitivity of the tube-and-wing configuration’s aspect ratio and
MTOM optima to the range requirement?

Translating this question to a problem formulation yields:

minimize: MTOM (max. take-off mass)

for: R = {3.0,3.5,4.0,4.5,5.0} ·103 km (range requirement interval)

with respect to: 2000.0 ≤W /S ≤ 7000.0 (wing loading in N/m2)

0.0 ≤ T /W ≤ 0.6 (thrust loading)

6.0 ≤ AR ≤ 13.0 (aspect ratio)

subjected to: b ≤ 36 m (max. wingspan)

sL ≤ 1480 m (max. landing distance)

sTO ≤ 1938 m (max. take-off distance)

no buffet @ncr = 1.3 (load factor in cruise)

Mcr ≥ 0.78 (cruise Mach number)

VFT ≥Vfuel (fuel tank volume)

tclimb ≤ 10 min (climb time to 4000 m)

(c/V)FAR-25 (6x) (six climb reqs, see legend Fig. 7.3)

The translation of this MDAO problem to a solution strategy has not been automated in
KADMOS yet. Such automation would provide the — now manually defined — strategy
shown in Fig. 8.1. The strategy contains a DOE block to pass different range values that
need to be analyzed, after which the same optimization from Fig. 7.14 is performed for
each range value.

This small illustrative example has been built manually using an OpenLEGO script. Fig.
8.2 plots the results of the sensitivity analysis. With increasing range, more fuel needs
to be stored in the wing and due to the maximum wingspan constraint, the aspect ratio
therefore decreases. As expected, both the Fuel Mass (FM) and the OEM increase with
increasing range, but at different slopes. This type of information is useful to set a good
starting point for multi-point optimization, where an aircraft is optimized for multiple
missions. The example provided here represents a small proof of concept that can easily
be built manually as well. However, a requirements sensitivity analysis scales up quickly
in a realistic design situation: soon a large set of requirements needs to be varied to
assess the configuration’s sensitivity. The DOE block would then not provide all possible
requirement combinations, but will act as a sampling block to provide a limited set of
experiments that covers the requirements space well.

In the everyday design practice, every new design question might require the inclusion of
a new strategy to support the automated MDAO development process from Fig. 7.1. This
was also one of the feedbacks from the AGILE users of KADMOS (discussed in §§6.4.2):
once they recognized the potential of automatically imposing architectures on large,
complex MDAO systems, they soon wanted to define and use their own architectures

196

8

0, 15:

COOR
1: Rs 2: 18 inp. 3: 21 inp.

4: AR0

(W/S)0

(T/W)0
5: 4 inp. 6-10: 127 inp. 12: 1 inp. 12: 41 inp.

15: output

vectors

1, 14→ 2:
DOE

2: R 3: R 6-10: R 12: R

2:

Database
3: 1 conn. 6-10: 2 conn. 12: 1 conn.

3:

Empirical-

OEM

6-10: 2 conn.

14: AR∗

(W/S)∗

(T/W)∗

4, 13→ 5:
OPT

6-10: AR

(W/S)

(T/W)

12: AR

(W/S)

(T/W)

5, 11→ 4:
CONV

6-10: Lcwingbox
xcfrontspar
OEMc

(L/D)cmax

11: Lwingbox
xfrontspar
OEM

(L/D)∗max

6-10:

Class1Weight-

Estimation

– ... –

AVL

12: 1 conn. 12: 11 conn.

14: f ∗MTOM 13: fMTOM

12:

Objective-

MTOM

14: c∗ 13: c
12:

Constraints

Figure 8.1: Manually made XDSM for a composite strategy combining a DOE and optimization layer to
investigate the sensitivity of an optimized design with respect to one of its requirements.

Figure 8.2: Plot of the sensitivity of the aspect ratio, MTOM, OEM, and FM to a change in the required mission
range.

197

8

that could handle the peculiarities of their specific MDAO problem. In many cases, these
architectures required a mix of DOE and optimization blocks, as in the small example
just described.

Another possible composite architecture can be defined based on the approach sug-
gested by Piperni et al. [11], which was already discussed in Chapter 1. Piperni et al.
describe the step-wise approach adopted at Bombardier to perform preliminary aircraft
design using their MDAO framework. This approach contains the following four steps:

1. Perform a DOE to filter out less significant design variables.
2. Create approximation model(s) based on the DOEs of previous step.
3. Perform a surrogate-based optimization using the approximation methods.
4. Perform a full optimization using exact models, starting from the optimum solu-

tion of the previous step and only using the most significant variables.

While each of these steps are already automated individually by the developments pre-
sented in this dissertation, the possibility to include all four steps in one composite ar-
chitecture is not that far away. This would entail a complex architecture that contains
one DOE layer, two optimization layers, and the capability to build surrogate models.

The development of such composite architectures is a matter of extending the frame-
work applications:

• KADMOS needs to support the formulation of the design question as an MDAO
problem in the form of a graph (FPG).

• KADMOS needs to be able to impose the composite solution strategy on the prob-
lem to obtain the data and process graphs (MDG and MPG).

• CMDOWS should support the storage of these strategies.
• OpenLEGO should support the instantiation of the OpenMDAO workflow to be

executed.

The required effort for these four extensions depends on the complexity of the composite
architecture being implemented. For example, the development effort for the strategy in
Fig. 8.1 is relatively small, as it resembles the disciplinary DOE subsystem that is part of
the BLISS-2000 strategy shown in Fig. 5.11. In KADMOS, one would only have to include
a new node attribute to distinguish between design variables for the DOE and the opti-
mization. The imposition algorithm for the solution strategy can be written completely
based on existing methods in the KADMOS package. CMDOWS and OpenLEGO already
support the storage and materialization of this composite strategy as it resembles the
BLISS-2000 strategy, though it differs in some of the details and needs to be checked,
debugged, and tested.

The strategy based on the Bombardier approach will entail more cumbersome develop-
ments for the framework applications. In KADMOS, multiple new attributes might be
required to represent the intended question of the design team as a graph and the com-
plex composite architecture will require new methods to include the creation of surro-
gate models and the automatic of the most significant variables. These new aspects of
the solution strategy also need to be stored properly in CMDOWS, requiring extensions
of the schema. Finally, OpenLEGO needs to be extended to also correctly materialize the
new elements present in the CMDOWS file.

The power of the developed framework applications in this dissertation is that, once a
new strategy has been included to answer a specific design question, then the formu-

198

8

lation, materialization, and execution of the workflow is completely automated. Hence,
each new composite architecture increases the achieved level of automation of the MDAO
development process. Instead of using the small list of classical architectures currently
included in KADMOS, future work should focus on extending the graph-based method-
ology to enable the flexible definition and imposition of composite architectures (and
also other existing MDO architecture, such as ECO and analytical target cascading [14]).
Ultimately, these extensions will lead to an architecture factory environment. This fac-
tory would be a graphical, interactive user interface for integrators to create composite
architectures by dragging, dropping, and merging graph nodes and methods on a draw-
ing board showing the MDAO system under consideration.

8.2. MDAO BOTS

The semi-automated approach established so far in this disseration is summarized in the
top of Fig. 8.3. The main tasks of the involved agents, which were introduced in §§6.1.1
and Fig. 6.3, are also shown in the figure as the used technologies.

Tool
repository

MDAO
problem

MDAO solution
strategy

Executable
work�ow

MDAOptimal
design

�x execution
issue CE

select other
architecture A

adjust problem
de�nition A

I
adjust tool
de�nition CS

interpret
results

store
results

postprocess
results

run
work�ow

provide
input �le

materialize
work�ow

CE

CSI ACS

CSI

impose archi-
tecture on FPG

(MDG+MPG)

store
CMDOWS �le

de�ne work-
�ow blueprint

I

sequence
tools

 select
architec-
 ture

create
FPG

 de�ne
problem

A

I

A

inspect / debug
repository

create
RCG I

CSI

formulation phase execution phase

A

I

I

I CS

store
CMDOWS

�le

impose
architecture

on FPG

MDAO
architecture

input �le

FPG materialize
work�ow

run
work�ow

integration bot
supports

select
toolsA

add
tool CS CE

I II III IV V

bot
input

bot
input

bot
activity

bot
activity

bot
activity

bot
activity

bot
input

MDAO system
stage

Aprocess
recon�guration

activity
CS

I

Legend

process
con�guration

activity

external
input

method
execution

CE

agents technologiesMDAO development process MDAO bot process

architectect process start

process end

integrator

competence
specialist

stage

stage collaborative
engineer

I
IV integrated

bot

Figure 8.3: Relation of the MDAO bots proposed in this section — including the definition of the integration
bot — with the methodology and developments presented in this dissertation.

In the established methodology, system reconfiguration is always assumed to be carried
out by one of the agents using their own judgment to adjust the relevant system stage,
see the green ellipses in Fig. 8.3. Although the presence of the human in the loop is
considered absolutely valuable and should be maintained, also in view of increasing the
acceptance of MDAO in industry, the developed methodology does offer further automa-

199

8

tion opportunities that cannot be ignored. These extra automation opportunities con-
cern rule-based, repetitive and tedious activities that are associated to the core (judging-
deciding) tasks of the human expert. The development process could be further robo-
tized by supporting automated reconfigurations (thus not automated decision-making).

The automatic reconfiguration of the MDAO system would require the computer to in-
terpret the results of previous workflow executions. This interpretation is driven by the
main design question posed by the human agent and performed based on rationale ex-
plicitly defined by the expert. If such a process is implemented, the computer seems
to be able to answer a complex question autonomously. Such interactive computerized
automation is called a bot, which is defined as:

“an autonomous program on a network (especially the Internet) which can
interact with systems or users, especially one designed to behave like a player
in some video games.”*

Well-known examples of bots are game bots, chat bots and mail bots. Here, the bot will
be interacting with the agents of the design team and the MDAO system. Therefore, this
concept is coined the ‘MDAO bot’. Instead of playing a video game, an MDAO bot would
play an ‘MDAO game’. In line with above general definition, the MDAO bot is defined as:

an autonomous program on a network which can interact with an MDAO
system and design team agents, to behave like a human agent that answers
a design question by (re)configuring and executing the MDAO system.

Note that these bots are not meant to replace the human agents and their irreplaceable
judgment, knowledge, and creativity, but rather are meant as ‘robot assistants’ to un-
burden the agent of repetitive, error-prone, and often boring tasks. The combination of
technologies presented in this dissertation (i.e. KADMOS, CMDOWS, workflow materi-
alization in multiple PIDO platforms), already constitutes a first MDAO bot, albeit one
that does not autonomously reconfigure the system. This bot covers the process from
the imposition of the architecture on the FPG with KADMOS up to and including work-
flow execution in a PIDO platform of choice. The main agent assisted by this bot is the
integrator, as the bot automates tasks that were originally performed manually by him or
her. Hence, this bot could be called the ’integration bot’ and is shown in the lower part
of Fig. 8.3.

In the next section, several bots of increasing complexity are proposed to illustrate the
idea and explicate how the ‘MDAO bot’ concept can serve as a road map for future au-
tomation developments.

8.2.1. CONCEPTUAL DEFINITION OF SEVERAL MDAO BOTS

In this section the preliminary definition of four MDAO bots is presented.

DIAGNOSTIC BOT

A design question can be posed in many different ways. For example, a simple question
would be:

Can we run [a list of tools] based on this [input file]?

*definition from: https://en.oxforddictionaries.com/definition/bot, accessed May 25 2019

200

https://en.oxforddictionaries.com/definition/bot

8

This question requires the bot to perform a diagnostic run on a set of tools. Already
with such a straightforward task the bot will help the integrator, competence specialists,
and collaborative engineer in debugging the set of tools and the input file. The process
performed by the bot is illustrated in Fig. 8.4:

1. The bot needs certain information
from different agents to answer the
question. In this case a list of tools
from the repository is provided, an
input file based on the adopted data
schema (i.e. CPACS) containing pa-
rameter values, as well as the design
question.

2. Using the list of tools, the bot can for-
mulate the FPG using KADMOS. This
FPG puts the tools in a convenient or-
der using KADMOS’s sequencing al-
gorithm.

3. The architecture to be imposed is a
‘test run’: all tools need to be executed
in sequence, without involving any it-
erative components such as optimiz-
ers or solvers.

4. With the architecture imposed, the in-
put file should be checked first before
moving on to the execution phase.
The bot checks the following:

a. Are all inputs required to run the
tools present in the input file? If
not, exit process and request in-
tegrator to include missing in-
puts.

b. If expected type (e.g. float, vec-
tor, string) of the inputs is
known, then check it against the
values found in the input file.
If type and value don’t match,
exit the process and request the
competence specialist to update
the problematic input file or the
expected type by the tool.

c. Will all values in the input file be
used? If not, do not exit the pro-
cess (or do, this could be a bot
setting), but warn the integrator
about redundant inputs.

5. If the bot passes the input checks,
then the workflow can be materialized
in the preferred PIDO platform.

IV

data-
base

formulate
FPG

impose
test run

architecture

materialize
work�ow

run
work�ow

store resultreturn result

warn
integrator

return
issue(s)

criti-
cal issues
input �le

?

unused
inputs

?

work�ow
failed

?

design
question

input �le

RCG

tool
list

Y

N

Y

N

Y

N

A

CSI

A

I

1

2

3

c4

5

6

6

6

a

6 b

4 a b

I

III

IV

IV

II

A

Legend

MDAO development stage

step number (see text)
agent
(A: architect, I: integrator,
CS: competence specialist,
CE: collaborative engineer)

I external
input

method
execution

Figure 8.4: Process implementation for the
diagnostic bot

201

8

6. After materialization the workflow is executed, which can have two possible out-
comes:

a. The execution failed. The bot returns the cause of failure and requests the
user to fix it.

b. The execution is successful. The bot returns the results in an output file and
stores diagnostic information (e.g. execution times, derivative values) on tool
and workflow execution in a database.

This basic bot illustrates the ability to mimic behavior of the integrator and collabora-
tive engineer by automating a repetitive and error-prone task: checking the execution
of a set of tools and also check the available input file. If all is well, then the team can
continue, if not, then the bot requests input from the relevant agent (e.g. the integrator
for integration issues, the collaborative engineer for technical issues).

This ‘diagnostic bot’ does not reconfigure the system after execution. However, the bot
could easily be extended to perform more complex tasks that do require such reconfig-
urations. For example, common workflow execution errors might be anticipated and
attempts to fix these errors could be included. This means that the bot will first run an
automated debugging process before requesting help from the agent. The bot will then
have to rematerialize the workflow and rerun it after applying different settings. Hence,
workflow issues are solved automatically without interference from the human agent. In
addition, the bot serves as a central knowledge base where these common issues and
their fixes are stored for future use by other bots and agents.

Instead of adjusting workflow settings (e.g. server settings for web services) to fix errors,
the bot could also change settings to check different computational setups. This type
of diagnosis can be used to find the best settings for future workflows. For example, if a
multicore processor is available, the bot could check workflow execution based on single
and multicore processing setups. The multi-core solution strategies are then automati-
cally determined using the partitioning algorithm in KADMOS. The architect’s question
answered by this bot is then:

What would be the best setup if we can choose between [a list of options] to
run [a list of tools] based on this [input file]?

Another extension of the diagnostic bot could be achieved by including a design space
specification. If key variables of the system would not just have an single input value
defined in the input file, but rather a range or list of values, then the system can be diag-
nosed throughout the design space. The question answered here is:

Can we run [a list of tools] based on this [input file] within the following [de-
sign space]?

This ‘design space diagnostic’ could find issues with tools, if certain combinations of
inputs cause problems. For example, if an aerodynamic tool includes a viscous airfoil
analysis, then this tool will run without issues at low angles of attack, but at higher angles
it will not converge and cause errors.* The diagnostic bot thereby assists the design team
in identifying tool weaknesses within the design space that would cause critical issues in
subsequent, more expensive, workflows, such as an optimization run. Diagnosing a full

*N.B. Alternatively, the tool provider could define input limits for all the tool’s inputs and then this particular
issue could be found before running the tool itself. However, if this input is output from another tool, then it
is not know beforehand if this issue will be relevant, so at least the tools preceding this problematic tool have
to be executed.

202

8

design space will require the inclusion of a sampling algorithm that determines at which
points in space the tools are diagnosed. The diagnostic run is then performed for each
of these points.

SYNTHESIS BOT

A logical next step after a successful diagnosis of
the system, would be to synthesize the system,
answering the following question:

What are the values for these [QOIs]
based on this [input file]?

The synthesis bot will not only run the tools
using the diagnostic bot, but will also converge
(or synthesize) the system if it contains cyclic
dependencies. The automated process executed
by the bot is depicted in Fig. 8.5:

1. The bot determines which tools from the
tool repository are required to get the val-
ues of the QOIs, based on the available val-
ues provided in the input file. This task is
determined using the graph-based, path-
finding algorithm in KADMOS.

2. Based on the tool selection the diagnostic
bot is used to perform a safe first run of the
tools. If this run unveils issues, then the
synthesis bot is stopped prematurely.

3. If the system does not contain any cycles
(no convergence is needed at all) or the in-
put file already specifies a converged sys-
tem, then the synthesis bot is done.

4. If the system still needs to be converged,
a convergence scheme is selected (e.g.
Gauss-Seidel, Jacobi) and the FPG is for-
mulated with KADMOS. This block is the
first decision algorithm, indicated by a
hexagonal block in the bot process dia-
gram.

5. Using the integration bot, the solution
strategy is obtained by imposing the con-
vergence architecture on the FPG, the
workflow is materialized, and executed in
the PIDO platform of choice.

select
tools

store resultreturn result

critical
issues

?

cycles
& not con-

verged
?

work�ow
failed

?

formulate
FPG

select
convergence

scheme

quantities
of interest

Y

N

Y

N

Y

N

return
issue(s)

data-
base

1

3

4

6 a
6 b

design
question A

input �le

CSI
A

RCG I

I II

run
diagnostic

bot

2
II

II

V

V--

III V--run
integration

bot

5

IV
6

A

Legend
MDAO development
stage

step number (see text)
agent
(A: architect, I: integrator,
CS: competence specialist,
CE: collaborative engineer)

I external
input

method
execution

decision
algorithm /

method

integrated
bot

Figure 8.5: Process implementation for the
synthesis bot

6. The execution will have two possible outcomes:
a. Execution failed: synthesis bot returns issue and requests user to fix it.
b. Execution successful: synthesis bot returns the results in an output file and

stores results and profiling data (e.g. execution times, derivative values) on
workflow execution in a database.

203

8

With this bot, the MDAO system is reconfigured once between the diagnostic bot and
the final workflow. As for the diagnostic bot, multiple extension could be included to im-
prove the bot and replace more repetitive human activities: automated error handling,
determination of optimal convergence settings, or checking convergence throughout
the design space.

SURROGATE MODELLING BOT

The previous two bots were focused on running a workflow to diagnose it and obtain
the (synthesized) results. A different type of bot can be defined to automatically build a
surrogate model. The outcome of such a bot is not an output file, but a new tool for the
tool repository. Suppose the architect has the following question:

What would be the best surrogate model for this [quantity of interest] within
this [design space] when we have [amount of time] available and the follow-
ing [fitting methods] and [input file] at our disposal?

This question represents a realistic situation in the industrial context. The architect
prefers to create a surrogate model in a limited amount of time to meet practical project
demands (i.e. a strict deadline). In addition, creation of different surrogate models for
a range of methods is cheap and thus the bot will create multiple surrogate models and
select the one with the highest precision. A possible implementation of this surrogate
modelling bot is worked out in Fig. 8.6:

1. The bot determines the tools necessary to build the surrogate model for the design
space specified. A graph-based, path-finding analysis can obtain the necessary
tools between all design variables and the QOI.

2. The synthesis bot (Fig. 8.5) is used to determine which convergence scheme can
best be used for the subsystem. Internally, the synthesis bot calls the diagnostic
bot (Fig. 8.4), which, among other things, checks the provided input file and pro-
vides the execution times of the tools.

3. If the synthesis bot exits successfully, then three tasks are performed in parallel:
a. The convergence scheme from the synthesis bot is selected.
b. The FPG is formulated in KADMOS.
c. A sampling strategy is determined. This strategy is a combination of sam-

pling method (e.g. latin hypercube, Box-Behnken, full factorial) and their
method-specific settings.

4. The specified DOE architecture is imposed on the FPG with KADMOS and stored
as a CMDOWS file.

5. The bot can now estimate the execution time of the workflow based on the diag-
nostic information collected earlier. If this time estimation is larger than the avail-
able time specified by the integrator, then the sampling method could be adjusted,
or the integrator is informed that there is not enough time available to create a re-
liable surrogate model.

6. If the execution time check is passed, then the CMDOWS file is used to instantiate
the DOE workflow and this workflow is executed.

7. The results for each experiment are stored, including diagnostic and profiling data.
8. If too many experiments failed, then the bot reconfigures and executes an updated

sampling on the system.

204

8

9. Once all workflows are executed, a surro-
gate model can be established for each fit-
ting method that was provided. This fit-
ting should be performed with a subset of
the experiments carried out by the DOE.

10. The subset with unused experiment is
subsequently used to determine the pre-
cision of the trained surrogate models.
Alternatively, the full set of experiments
could be used to train the surrogate and
the determination of the precision could
be skipped or performed based on another
DOE.

11. Finally, the surrogate model with the high-
est precision is stored in the tool reposi-
tory as a new tool.

The described bot implementation illustrates
one possible approach for automating the cre-
ation of a surrogate model. Alternate implemen-
tations could base tool selection on another cri-
teria than the single QOI used in this example,
such as multiple QOIs or by specifying a certain
tool to be modeled completely. Alternatively, in-
stead of a time limit, the architect could also
specify a minimum required precision of the
surrogate model. The sampling method could
then start small, fit models, and gradually in-
crease sample sizes until the models are precise
enough.

OPTIMIZATION BOT

After the diagnostic and synthesis bot, a logical
next step is to also have a bot that supports solv-
ing optimization problems. A straightforward
optimization bot would be a specialized exten-
sion of the integration bot shown in Fig. 8.3:
based on the optimization problem formulated
with KADMOS, a solution strategy can be ob-
tained by imposing an architecture, instantiated
as an executable workflow, and executed to
return the optimal results. Hence, such a bot
answers the question:

What is the best design you can find
in this [design space] if the follow-
ing [objective] needs to be minimized
and these [constraints] have to be
satisfied, provided we use the [MDO
architecture] scheme and have this
[input file] at our disposal?

select
tools

critical
issues

?

enough
time

?

too
many failed

runs?

formulate
FPG

select
convergence

scheme

select
sampling
method

design
space

�tting
methods

Y

N

return
issue(s)

store results

�t
surrogate

models

test
surrogate

models

store best
surrogate

model

data-
base

tool
repo

N
(no other sampling)

N
(try other sampling)

Y

Y

N

run
integration

bot

1

3

4

5

7

8

9

10

11

RCG I

quantities
of interestA

A A

input �le

CSI

design
question A

a b c

6

run
synthesis

bot

2

I II

II

III V--

III IV

V

--

IV
6

A

Legend
MDAO development
stage

step number (see text)
agent
(A: architect, I: integrator,
CS: competence specialist,
CE: collaborative engineer)

I external
input

method
execution

decision
algorithm /

method

integrated
bot

Figure 8.6: Process implementation for the
surrogate modelling bot

205

8

select
tools

critical
issues

?

select
convergence

scheme
update

input �le

MDO
architecture

objective
& constraints

Y

N

store resultreturn result

work�ow
failed

?

Y

N

return
issue(s)

data-
base

run
integration

bot

formulate
FPG

design
space

RCG I

A

input �le

CSI

design
question A

A

A

IV
6

A

Legend
MDAO development
stage

step number (see text)
agent
(A: architect, I: integrator,
CS: competence specialist,
CE: collaborative engineer)

I external
input

method
execution

decision
algorithm /

method

integrated
bot

III V--run
synthesis

bot

III IV

V

--

I II

II

a) basic optimization bot

select
tools

critical
issues

?

select
convergence

scheme

select MDO
architecture

update
input �le

Y

N

store result

return result

work�ow
failed

?

vio-
lated con-

straints
?

time
left

?

any
optimum

?

Y

Y

Y

N

return
issue(s)

select other
starting point

data-
base

N

N

Y

N

run
integration

bot

formulate
FPG

objective
& constraints

design
space

RCG I

A

input �le

CSI

design
question A

A

2

a b c

3

4

5

6

7

III V--
run

synthesis
bot

1
I II

II

III IV--

V

b) advanced optimization bot

Figure 8.7: Process implementation for two optimization bots.

206

8

The process for the basic optimization bot is shown in Fig. 8.7a. The strength of the basic
bot is that it can be extended to automate common integrator tasks by reconfiguring the
MDAO system, such as:

• determining the right settings for solution strategy imposition and workflow exe-
cution (e.g. MDO architecture, optimization algorithm, tolerances);

• attempting to circumvent common issues encountered with running optimization
algorithms (e.g. starting point with violated constraints, presence of local optima
in the design space);

• taking advantage of available time (i.e. overnight executions) and/or computa-
tional facilities (i.e. multicore processing).

An advanced optimization bot is shown in Fig. 8.7b to illustrate some of these extensions.
This bot answers the following question:

What is the best design you can find within [amount of time] in this [design
space] if the following [objective] needs to be minimized, these [constraints]
have to be satisfied, and with this [input file] at our disposal?

Contrary to the basic bot, this bot automatically sets the MDO architecture. Additionally,
the process includes approaches to fix violated constraints, check for local optima, and
exploits the full available time. It operates as followed:

1. The tools from the repository required to perform the optimization are determined
and the synthesis bot is executed.

2. If the synthesis bot returns a positive result, then three tasks are performed:
a. The preferred convergence scheme is set based on the synthesis bot.
b. The FPG is formulated using KADMOS.
c. The input file is updated to start the optimization with a converged design.

3. Next, the bot determines the most promising architecture for the problem graph
that was defined. How this task can be performed will be discussed in §§8.2.2.

4. Using the integration bot, the architecture is imposed on the FPG and the materi-
alized workflow executed.

5. If the optimization fails, then the result is further analyzed: if the optimization
algorithm was not able to find a point that satisfies all constraints (e.g. if the start-
ing point includes constraint violations many optimization algorithms can have
trouble reaching a valid design point), then the system will first be reconfigured to
try and find a valid starting point. This is done by reformulating the FPG to first
minimize constraint violations instead of the actual objective and by selecting an
alternative point in the design space.

6. If the optimization failed, but not because of violated constraint, or if enough time
is still left for another optimization run, then a new point in the design space is
selected and the optimization is restarted. These additional runs are used to as-
sess whether another optimum would be found from a different starting position.
Hence, the bot checks whether a global or local optimum has been found.

7. If the bot is out of time, then the best design is returned or the architect is informed
of the bot’s inability to find a valid optimum.

Of course, this bot can be further extended in many directions. Failure of the optimiza-
tion can have many other causes than constraint violations and the bot could include a
range of algorithms to attempt fixes.

207

8

Finally, the surrogate modelling bot (Fig. 8.6) can
also be included in the optimization bot to sup-
port a surrogate-based optimization approach.
If this bot is included in the optimization bot,
then the process of first building the surrogate
model and then setting up and running the op-
timization using the surrogate instead of the ac-
tual tool can be fully automated. The addition
of the surrogate bot is depicted in Fig. 8.8. The
decision to replace tools for surrogate models
could be a setting provided by the architect or a
decision of the bot based on the profiling data of
each tool and the available optimization time. If
the system includes a tool with a long execution
time and a small number of outputs, then it is
a good candidate to be modelled as a surrogate
first.
With the MDAO bot concept, the complex task of
performing a surrogate-based optimization can
be fully automated by combining different bots
and decision-making algorithms in one process.
All previously defined bots are used in this com-
plex automated design process. The bots take
advantage of a range of automation develop-
ments, such as KADMOS, CMDOWS, and Open-
LEGO, to perform their tasks. A key aspect of the
bot is that it should be able to make certain deci-
sions autonomously. The bot’s decision-making
represents choices that are usually based on hu-
man judgment. The next section will outline
how certain judgments can be automated.

select
tools

critical
issues

?

formulate
FPG

select
convergence

scheme
update

input �le

surro-
gate candi-

dates
?

Y

Y

N

N

same as advanced optimization bot after this line

objective
& constraints

design
space A

input �le

CSI

design
question A

A

RCG I

IV
6

A

Legend
MDAO development
stage

step number (see text)
agent
(A: architect, I: integrator,
CS: competence specialist,
CE: collaborative engineer)

I external
input

method
execution

decision
algorithm /

method

integrated
bot

I II

III

II

V-- run
synthesis

bot

run surro-
gate model-

ling bot

Figure 8.8: Inclusion of the surrogate
modelling bot in the optimization bot to
automate surrogate-based optimization

8.2.2. BOT AUTOMATIC SELECTION APPROACHES

The hexagonal blocks in the bot processes represent automatic decision algorithms or
methods. Hence, at these blocks the bot has to make a decision autonomously concern-
ing, for example, the MDAO architecture, sampling strategy, or convergence scheme to
be selected. Traditionally, these kind of decisions are made based on human judgment
(and they can still be if the bot is set up to have these decisions as input), but if the
decisions have the potential to be automatic, then two basic approaches are available
to make a selection: rule-based or machine learning. The value of automatic decision-
making is significant, especially in view of lowering the accessibility level of MDAO in
industry.

With a rule-based approach, the decision algorithm contains a combination of if-state-
ments (hence, rules) to make a decision. For example, the selection of a sampling strat-
egy in the surrogate modelling bot could be based on the number of design variables and
a rule of thumb on how many samples per design variable are required (usually around
ten). If the number of design variables is small, then a full factorial sampling strategy

208

8

can be selected to fully cover the whole design space. However, the number of experi-
ments with full factorial sampling quickly gets out of hand with an increasing number of
variables. Hence, after a certain threshold, the strategy would switch to latin hypercube
sampling and the number of variables is simply set to ten times the number of design
variables.

Rule-based decision making works well if clear rules can be prescribed based on logic
or experience (i.e. rules of thumb). For example, this rule-based approach was imple-
mented by Hoogreef [26] in his InFoRMA system to propose MDO architectures. How-
ever, for some decisions it is impossible to define such rules at all. Concerning the selec-
tion of MDAO architectures, studies from literature demonstrate there are many charac-
teristics of the MDAO problem to be taken into account, as well as the computational in-
frastructure that is used, to be able to propose the most convenient MDAO architecture
or optimization algorithm to be used for a certain criteria (e.g. speed, accuracy, global
optimum). In those cases, a machine learning approach might be more practical. A
prerequisite for these algorithms is the availability of a large training dataset. The high
level of automation and standardization achieved in the methodology presented in this
thesis, lends itself well to create a big, well-structured dataset:

• The tool repository, problem definition and blueprint of the workflow are each
stored in a standardized file with CMDOWS.

• Results of the workflow execution are stored in its schema-based format, such as
CPACS (§2.1) or IPACS (Fig. 7.6).

• Finally, workflow profiling data (e.g. total execution time, number of function calls)
should also be stored in a well-structured format. This format still has to be de-
fined or could be an extension of CMDOWS as it is closely related to the solution
strategy definition.

The three data types above are stored in a single database for each workflow execution. If
enough data is available, a machine learning algorithm can be trained to relate features
of the problem and tool definition (e.g. number of tools, number of feedback variables,
availability of derivatives, number of cores available) to a decision option, such as the
MDAO architecture, convergence scheme, or optimization algorithm to be selected.

A key issue with the machine learning approach is the so-called ‘cold start problem’;
if the database does not contain enough data, then the decision algorithm cannot be
trained (well). Fortunately, the MDAO bot concept can be used to prevent this issue.
This would spark the creation of ‘training data generation bots’. Within the design frame-
work of the team, these bots will execute hundreds of MDAO workflows based on prede-
fined scalable MDAO systems [88, 123] to populate the database. Once the database has
obtained the critical size, it will be further extended by all subsequent MDAO bot execu-
tions, thereby continuously enriching the training database and improving the decision-
making algorithm automatically through framework usage.

8.2.3. MDAO BOT FACTORY

The bot processes depicted in Figs. 8.4 to 8.8 describe an automated interaction with
an MDAO system that benefits from earlier automation developments (i.e. KADMOS,
CMDOWS, workflow materialization) in the formulation and execution phases. The dif-
ferent bots collaborate with other bots within their process and share similar decision-
making, analysis, and storage tasks. In addition, small reconfigurations of the processes

209

8

could be implemented to expand the set of design questions that can be answered auto-
matically. Hence, the MDAO bot concept calls for the creation of a new framework ap-
plication: the MDAO bot factory. This application enables the creation of bot processes
by providing a modularized environment to easily integrate task components from dif-
ferent framework applications in one process. A mock-up of this application is shown in
Fig. 8.9.

MDAO bot factory
components

inputs

bots

decision algorithms

drawing board

select
tools

run
...

bot

design
question

input �le

...

RCG

...

connectors

Figure 8.9: Mock-up of the MDAO bot factory application

The MDAO bot factory shares fea-
tures with the PIDO platforms dis-
cussed in §2.5: it is an environment
that can be used to formalize a pro-
cess, albeit at a different level of ab-
straction and complexity: whereas the
PIDO platform supports the execu-
tion of multidisciplinary workflows, the
MDAO bot factory enables the cre-
ation of a higher-level process that in-
cludes the PIDO platform workflows
and their reconfiguration. Fig. 8.10
shows the position of the MDAO bots in
the knowledge architecture from Chap-
ter 6. The bots are built on top of the
developments used and presented in
this dissertation to support and auto-
mate collaborative MDAO. The lower-
level developments have automated
the foundation of the MDAO process,

Development process Data schemas

Automated design

Design competences

Figure 8.10: The position of the MDAO bots in the
knowledge architecture from Fig. 6.4

thereby laying the groundwork for the creation of MDAO bots in future research. Within
the AGILE Development Framework (ADF), the bots would become automatic tasks in
the top business process layer fully automating the use of the layers below for a specific
task. Thus, the bots could be implemented as ‘widgets’ in KE-chain to be used as au-
tomatic tasks in the collaborative platform. Finally, the use of bots might require the
creation of a new agent role in the framework, that of the ‘bot developer’. This agent will

210

8

create and maintain MDAO bots in close collaboration with other agents based on their
needs for automation in the industrial practice.

This chapter has presented the outlook on future automation developments for the
MDAO development process by introducing two novel concepts: composite architec-
tures and MDAO bots. Both concepts serve as a road map for the continuation of the
work presented in this dissertation. Their actual development is left to researchers par-
ticipating in future collaborative MDAO projects.

211

9
CONCLUSIONS AND

RECOMMENDATIONS

This dissertation presented a novel methodological approach to realize agile MDAO sys-
tems. At the base of this methodology lies the five-stage MDAO development process
and the division of that process into a formulation and execution phase, see Fig. 9.1. The
developed implementation significantly lowered two hurdles frustrating the application
of MDAO-based collaborative design processes in teams of heterogeneous experts:

configuration hurdle the set-up of the first executable workflow takes too long — namely
60-80% of the available project time — in collaborative projects in which a large
team of heterogeneous experts needs to operate a large, complex MDAO system;

reconfiguration hurdle once the executable system has been established, it lacks agility
and cannot be reconfigured easily to address ‘what if scenarios’ or answer new
questions arising from the insights obtained from executions of previously config-
ured systems.

The step from formulation to execution phase is a particularly challenging step in the
MDAO development process. The gap between these two phases is called the ‘imple-
mentation gap’ and highlights the detachment between these two phases in state-of-the-
art design processes and the tremendous effort required to create executable workflows.

Tool
repository

MDAO
problem

MDAO solution
strategy

Executable
work�ow

MDAOptimal
design

triggers
iteration

provides
tools to
analyze

is solved
according to

executed
using an

results
in an

formulation phase execution phase

Figure 9.1: The five main stages of an MDAO system within a typical MDAO-based project and their relation

In the collaborative MDAO project AGILE, which provided the context for the develop-
ments original to this dissertation, a novel third-generation framework was created to
tackle the posed (re)configuration challenges. The following needs were identified for
this framework in Chapter 2, based on the examination of the state-of-the-art in MDAO-
based design:

213

9

• The composition of MDAO systems using a fixed central data schema approach
(i.e. CPACS) was selected as the most convenient method for collaborative MDAO.
This approach calls for a dedicated platform to provide oversight and the ability to
continuously check and adjust the composed system.

• Graph-based approaches to represent MDAO systems provide a solid conceptual
basis, but require a rigorous revision and extensions to be useful in a third-
generation framework.

• The third-generation framework requires a methodology (and prototype imple-
mentation) to handle the MDAO system at all stages of the development process
shown in Fig. 9.1 — tool repository, MDAO problem, MDAO solution strategy, ex-
ecutable workflow, and MDAOptimal design — and needs to support all manipu-
lations required to transform it.

• Both monolithic and distributed architecture types need to be supported through-
out the development process.

• The formulated MDAO solution strategy needs to be PIDO platform-agnostic and
the creation of the executable workflow has to be automated to bridge the imple-
mentation gap.

Ultimately, the novel developments in this dissertation needed to enable a novel frame-
work generation that lowers the aforementioned configuration and reconfiguration hur-
dles. The MDAO systems in this framework, which can be configured quickly and remain
reconfigurable easily, are referred to as agile MDAO systems.

9.1. DEVELOPMENTS AND ACHIEVEMENTS

Three major developments were presented in Part II that represent three fundamental
contributions to the establishment of the third-generation AGILE framework. In a nut-
shell, those developments are:

Graph-based methodological approach to formalize MDAO systems A graph-theoretic
definition for MDAO systems was presented in Chapter 3. This definition includes
all features required to formulate and manipulate the system concerning the three
stages in the formulation phase (see Fig. 9.1) and includes two new graph-based
concepts, namely instances and circularity index, necessary to handle the pecu-
liarities of large and complex systems. Each stage is defined using graphs that need
to meet strict graph-theoretic conditions: RCG (Repository Connectivity Graph),
FPG (Fundamental Problem Graph), MDG (MDAO Data Graph), and MPG (MDAO
Process Graph). The transformation between the first three stages is supported
by automated methods to sequence and partition the problem graph, and finally
impose the requested MDAO architecture. This results in the MDAO solution strat-
egy, which serves as the blueprint of the executable workflow. The methodological
approach was implemented as an open-source Python package called KADMOS.

Data standard to store and exchange formulated MDAO systems The graph-based for-
mulations of the system need to be stored in a neutral format that is accessible to
design team members and a range of framework applications (e.g. PIDO platform,
business process management, visualization package). This data format was es-
tablished in Chapter 4 and is called CMDOWS. CMDOWS is an XML-based schema
and is used to store the system, so that its definition can be shared (and enriched)
by the various applications involved in a third-generation MDAO framework. The
schema is application- and product-agnostic, meaning that it does not contain

214

9

any information specific to the framework applications themselves nor to the type
of product (e.g. aircraft, wind turbine, car) being designed. Therefore, the schema
can be used for any future framework. CMDOWS has a massive positive impact on
framework structure: direct links between applications are no longer required (or
even allowed), as all data passes through the centralized schema, see Fig. 9.2.

Workflow materialization Storing the workflow blueprint as a CMDOWS file constitutes
the first half of the brand-new bridge that spans the implementation gap between
system formulation and execution. The second half of this bridge was presented
in Chapter 5. CMDOWS parsing capabilities were developed for three PIDO plat-
forms: RCE, Optimus, and OpenMDAO. Each platform is able to materialize (i.e.
automatically generate) the executable workflow formulated with KADMOS.
Hence, this final development closes the crucial implementation gap in the MDAO
development process and enables agile MDAO.

Tool
repository

Visualization
package

Collabora-
tive

workflow

Business
process

management
MDAO
system

formulation

a) no Central Data Schema

central
data

schema

Tool
repository

Visualization
package

Collabora-
tive

workflow

Business
process

management
MDAO
system

formulation

Schema
operations

library

b) with Central Data Schema

Figure 9.2: Schematic overview of framework integration with and without a central data schema approach.

Verification and validation studies accompanying the developments in Part II highlighted
the following achievements:

• The case study in Chapter 3 demonstrated that the graph-based methodology can
be successfully applied on an MDAO system of industrial complexity that was
created to perform aerostructural MDAO of a wing. The study showed that the
methodology is able to cover the full formulation phase, handles a system’s intri-
cacies at the different stages, and is able to identify and fix typical issues of such
systems though the new graph-based concepts (i.e. instances, circularity index).

• Two verification studies (Sellar problem and SSBJ test case) presented for all three
PIDO platforms in Chapter 5 demonstrated how CMDOWS succeeds to be a plat-
form-agnostic data standard from which workflows can be materialized and exe-
cuted. Indirectly, these studies also validated the graph-based formalization from
Chapter 3 by confirming its ability to formulate a clear, neutral MDAO solution
strategy for a range of architectures (MDA, DOE, and MDO).

• The developed automated approach from Part II was also compared to the state-
of-the-art manual approach for the two verification cases. This comparative study
was performed using the Optimus platform for execution. The study showed the
potential of the developed automation, with a 57% time reduction to configure
and reconfigure the system in the SSBJ case.

• Finally, workflow materialization in OpenMDAO (with the OpenLEGO package)

215

9

was extended to also enable the generation of workflows based on the distributed
architectures CO and BLISS-2000. This proved the support KADMOS and CM-
DOWS provide to formulate and store these complex architectures.

Although the achievements above already provide clear indications of the benefits of
the developed methodology, the cases were performed in a small, non-collaborative test
environment. Moreover, the tests focused on the developments themselves and were
not placed in the context of the full third-generation MDAO framework.

9.2. FRAMEWORK INTEGRATIONS

The developments described in the previous section can only be fully validated and ap-
preciated if they are applied in a broader collaborative MDAO framework and tested ac-
cordingly. This point was addressed in the two chapters in Part III.

9.2.1. AGILE DEVELOPMENT FRAMEWORK

Chapter 6 covered the application and assessment of this dissertation’s developments
in the AGILE Development Framework (ADF). This third-generation framework benefits
from the advancements original to this thesis in the following ways:

• The methodology proposed here was expanded in collaboration with the AGILE
project partners to establish the ‘knowledge architecture’: a coherent and com-
prehensive formalization of the collaborative MDAO process. This architecture
was used as a skeleton to develop the AGILE development framework, which is
visualized in Fig. 9.3.

• KADMOS is a key application in the ADF that acts as ‘engine under the hood’ for
many capabilities offered to the design team in the framework, such as establish-
ing a coupled tool repository, automatically sequencing the tools in that reposi-
tory, defining the design problem to be solved, and obtaining the solution strategy.

• The graph-based definition developed in Chapter 3 also impacted other applica-
tions, as it offered a well-structured method to describe the MDAO system that
is both useful and intuitive for the design team to work with. For example, the
graph-based formalization is used in the visualization package VISTOMS as it of-
fers a structure to present the system in a visually meaningful way to the different
members of the design team.

• The concept of using a central data standard to store the system’s definition, which
was worked out in Chapter 4, is one of the most successful and distinctive features
of the ADF. CMDOWS gained a key position in the framework by acting as the hub
through which a wide range of framework applications were connected, as visu-
alized in Fig. 9.4. In addition, the format makes handling the MDAO system defi-
nition so straightforward that it significantly increased the design team’s flexibility
to try out different versions of the system before making any final decisions.

• The workflow materialization in RCE and Optimus was also implemented in the
framework. The possibility to translate the neutral formulation from KADMOS
into a fully executable workflow, effectively streamlined the formulation and ex-
ecution phases of the MDAO development process. Large, complex, distributed
executable workflows can now be created with the push of a button, removing the
cumbersome and error-prone task of manual workflow creation in a PIDO plat-

216

9

form.

Development process Data schemas

Automated design

Design competences

executionformulation

Step I Step II Step III Step IV Step V

or ordiscipline optimization
method

surrogate
model

supported by:

Figure 9.3: Overview of the AGILE Development Framework (ADF)

 export �le of
 repository

import
�le

 export �le of MDAO
problem and solution strategy

parse
�le with
MDAO solu-
tion strategyread / write

�le

 visualize
 �le contents

adjust �le contents
 (GUI)

import
�le

Tool repository

Visualization
package

Collaborative
workflow

Business process
management

MDAO system
formulation

Schema
operations library

enrich
�le

& others

Figure 9.4: The established links between CMDOWS and the AGILE MDAO framework applications

The third-generation AGILE framework was used in different design projects, first as a
demonstrator using conventional configurations and later for assessment with four un-
conventional configurations. Each project required multiple partners to collaborate and
share their tools and expertise. After the projects concerning unconventional configura-
tions were finished, a survey was conducted to critically assess the use of the developed
framework and obtain estimations on the achieved time reductions. This survey showed
that, overall, AGILE users consider the framework to be a success (their recommenda-
tions for improvement will be listed in the next section) and realizes the following time
savings:

217

9

• The use of KADMOS leads to a 49% time reduction in configuring and reconfigur-
ing the MDAO system in the formulation phase.

• The use of CMDOWS and workflow materialization leads to a 33% time reduction
in obtaining the executable workflow.

• Using the full ADF, of which the developments original to this dissertation are key
components, results in a 39% time reduction to configure and reconfigure MDAO
systems.

Hence, in the AGILE context in which this research was performed, the developments
presented in this dissertation had a significant positive impact and proved to lower the
configuration and reconfiguration hurdles frustrating the use of MDAO in an collabora-
tive setting.

9.2.2. RESTRUCTURED AIRCRAFT DESIGN TOOLBOX

This dissertation’s methodology was also applied in a different context, in order to as-
sess the general applicability of the work outside its original development boundaries in
AGILE. In Chapter 7 the Initiator aircraft design toolbox was restructured to match the
methodological approach to multidisciplinary design and establish a new third-genera-
tion framework. This restructuring entailed the following:

• the entangled MATLAB-based code was restructured to create modules following
the fixed data schema approach;

• workflow capabilities of the original toolbox were disabled in favor of transferring
these responsibilities to specialized applications: KADMOS for formulation and
the selected PIDO platform OpenMDAO for execution;

• the original collection of MATLAB-based modules from the toolbox was extended
with a heterogeneous set of tools (i.e. Python-based and mathematical relations)
to demonstrate the extensibility of a third-generation framework and allow the
analysis of new design problems.

After this restructuring, the framework was used in the ‘agile way’, and the following con-
clusions are drawn:

• The developed methodological approach remains valuable outside the bound-
aries of the AGILE paradigm.

• The approach disentangles a state-of-the-art design toolbox by imposing a sepa-
ration of concerns:

– disciplinary analysis (or framework modules) become standalone compo-
nents by enforcing the central data schema approach;

– a dedicated visualization package (VISTOMS) takes care of visualizing the
toolbox’s structure and dependencies;

– formulation of design problem and solution strategy are performed by the
KADMOS package;

– execution of workflows is performed by the specialized OpenMDAO package
and, thanks to CMDOWS, can actually be carried out by a PIDO platform of
choice.

• The approach unveils new opportunities for using the disciplinary modules of the
toolbox, to configure also design space exploration and optimization strategies
that were originally not available.

• The approach supports reconfigurations of the MDAO system that were nonexis-

218

9

tent in the original toolbox, such as multicore processing, and would otherwise
require rigorous adjustments of the entangled toolbox that are difficult to imple-
ment.

In conclusion, the framework integrations in Part III confirmed that the research goal
defined in the introduction has been achieved.

to develop, implement, and assess a new methodology, specifically address-
ing the collaborative aspects of performing MDAO, that enables formalized
MDAO systems in all stages of the formulation phase, such to lower the con-
figuration and reconfiguration hurdles.

What remains are several recommendations to further improve and extend the method-
ological approach. Additionally, an outlook for future work was presented in Chapter 8.

9.3. RECOMMENDATIONS AND OUTLOOK

The following major recommendations have been collected throughout this dissertation
to further enhance the established MDAO development process presented in this work:

• The graph-based representation of MDAO systems can be further exploited by de-
veloping additional analysis and manipulation methods. Suggestions from AGILE
users included a method for automatic tool selection from the repository, where
the selection is based on given criteria such as tool fidelity levels, runtime, or tool
availability (when provided as web services). Another example is the automatic de-
termination of which tools should be ‘surrogate modeled’ for a specific workflow,
including the required graph manipulation to formulate such a surrogate-based
optimization approach.

• The fixed central data schema is a powerful concept to couple disciplinary tools in
a single system and constitutes a core assumption for system composition in this
work. However, by closing the implementation gap a discrepancy between the I/O
definitions required in the formulation and execution phases was uncovered, as
was explained in Fig. 6.16. Future developments should investigate this discrep-
ancy more closely. The recommended step forward is to add a ‘semantic enrich-
ment layer’ to the schema definition so that disciplinary experts can use this to
define their tool’s I/O, as alternative to the current practice of providing an XML
input and output files for each individual project.

• The list of architectures that can be imposed on MDAO problems should be ex-
tended and ‘composite architectures’ (see Fig. 8.1 for a DOE-MDO example) should
be defined and implemented. Both these aspects call for a flexible way of defining
additional architectures. Graph manipulation methods in KADMOS can already
be easily reused to create new architecture imposition methods. The creation of
such new architectures should be supported by a dedicated ‘architecture factory’
application that enables a modular approach to defining new (composite) archi-
tectures.

• The performance of the materialized workflows in all three PIDO platforms should
be improved. Initial developments were focused on generating robust, executable
workflows, but cannot compete with their manually created counterparts due to
the introduced overhead. This overhead mainly stems from the required XML file
handling. There is still a lot of room in the materialization methods to reduce this
overhead.

219

• Solution strategies that take advantage of multicore processing can be defined in
KADMOS and stored as a CMDOWS file, however, none of the PIDO platforms were
able to run materialized workflows using multicore processing for execution. This
is another recommended improvement for the materialization methods.

• Finally, a topic almost completely ignored in this work (a minor exception be-
ing workflow materialization in OpenLEGO), is the use of analytical derivatives
to improve the performance of gradient-based optimization strategies. Analytical
derivatives were considered out of scope, as the two frameworks used in Part III did
not contain any modules that could provide them. Nevertheless, there is huge po-
tential in including analytical derivatives in the formulation phase. Simply put, an-
alytical derivatives are just additional outputs of a tool, but (re)configuring MDAO
systems including this additional aspect poses another major challenge in the fu-
ture application of MDAO in industry. KADMOS can be extended to tackle this
challenge, by introducing a new module that analyses and interprets ‘derivative
connectivity’ in a new graph, similar to the already defined Repository Connectiv-
ity Graph (RCG), to assist the team in correctly configuring a derivative-enabled
system.

In addition to these recommendations, Chapter 8 provided an outlook on future research
by proposing a new concept to be developed: MDAO bots. This dissertation can be seen
as the development of the first MDAO bot, since it supports a semi-automated devel-
opment process for MDAO systems. Future research can be positioned in the context
of establishing increasingly advanced MDAO bots that take over repetitive, error-prone
human tasks to further lower hurdles encountered when using MDAO in a collabora-
tive environment involving a large, heterogeneous team of experts. Ultimately, MDAO
bots can be developed that automatically (re)configure large, complex MDAO systems
in close collaboration with engineers who provide their irreplaceable judgment, knowl-
edge, and creativity.

220

REFERENCES

[1] Belie, R., “Non-technical barriers to multidisciplinary optimisation in the
aerospace industry,” 9th AIAA/ISSMO Symposium of Multidisciplinary Analysis and
Optimisation, 2002, pp. 4–6.

[2] Agte, J., De Weck, O., Sobieszczanski-Sobieski, J., Arendsen, P., Morris, A., and
Spieck, M., “MDO: assessment and direction for advancement - an opinion of one
international group,” Structural and Multidisciplinary Optimization, Vol. 40, No. 1-
6, 2010, pp. 17–33.

[3] Flager, F., and Haymaker, J., “A comparison of multidisciplinary design, analysis
and optimization processes in the building construction and aerospace industries,”
24th international conference on information technology in construction, 2007, pp.
625–630.

[4] Gero, J., and Maher, M., Modeling creativity and knowledge-based creative design,
Psychology Press, 1993.

[5] Schmit, L. A., “Structural Design by Systematic Synthesis,” 2nd Conference on Elec-
tronic Computation, American Society of Civil Engineers, New York, 1960, pp. 105–
132.

[6] Schmit, L. A., “Structural synthesis—precursor and catalyst. Recent experiences in
multidisciplinary analysis and optimization,” Tech. Rep. CP-2337, NASA, 1984.

[7] Haftka, R. T., “Automated procedure for design of wing structures to satisfy strength
and flutter requirements,” Tech. Rep. TN-D-7264, NASA Langley Research Center,
Hampton, VA, 1973.

[8] Haftka, R. T., and Shore, C. P., “Approximation methods for combined ther-
mal/structural design,” Tech. Rep. TP-1428, NASA, June 1979.

[9] Bowcutt, K. G., “A perspective on the future of aerospace vehicle design,” 12th AIAA
International Space Planes and Hypersonic Systems and Technologies, Norfolk, VA,
AIAA Paper, 2003.

[10] Vandenbrande, J. H., Grandine, T. A., and Hogan, T., “The search for the per-
fect body: Shape control for multidisciplinary design optimization,” 44th AIAA
Aerospace Science Meeting and Exhibit, Reno, NV, 2006.

[11] Piperni, P., DeBlois, A., and Henderson, R., “Development of a multilevel
multidisciplinary-optimization capability for an industrial environment,” AIAA
journal, Vol. 51, No. 10, 2013, pp. 2335–2352.

[12] Shahpar, S., “Challenges to overcome for routine usage of automatic optimisation
in the propulsion industry,” Aeronautical Journal, Vol. 115, No. 1172, 2011, p. 615.

221

[13] Simpson, T. W., and Martins, J. R. R. A., “Multidisciplinary design optimization
for complex engineered systems: report from a national science foundation work-
shop,” Journal of Mechanical Design, Vol. 133, No. 10, 2011, p. 101002.

[14] Martins, J. R. R. A., and Lambe, A. B., “Multidisciplinary Design Optimization: A
Survey of Architectures,” AIAA Journal, Vol. 51, No. 9, 2013, pp. 2049–2075. doi:
10.2514/1.J051895, URL http://dx.doi.org/10.2514/1.J051895.

[15] Pate, D. J., Gray, J., and German, B. J., “A graph theoretic approach to problem for-
mulation for multidisciplinary design analysis and optimization,” Structural and
Multidisciplinary Optimization, Vol. 49, No. 5, 2014, pp. 743–760.

[16] Ciampa, P. D., and Nagel, B., “Towards the 3rd generation MDO collaboration envi-
ronment,” 30th Congress of the International Council of the Aeronautical Sciences,
2016.

[17] Gallard, F., Vanaret, C., Guénot, D., Gachelin, V., Lafage, R., Pauwels, B., Barjhoux, P.-
J., and Gazaix, A., “GEMS: A Python Library for Automation of Multidisciplinary De-
sign Optimization Process Generation,” 2018 AIAA/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference, 2018, p. 0657.

[18] Ciampa, P. D., and Nagel, B., “The AGILE Paradigm: the next generation of collab-
orative MDO,” 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Con-
ference, 2017.

[19] Tosserams, S., Hofkamp, A., Etman, L., and Rooda, J., “A specification language for
problem partitioning in decomposition-based design optimization,” Structural and
Multidisciplinary Optimization, Vol. 42, No. 5, 2010, pp. 707–723.

[20] Martins, J. R. R. A., and Marriage, C., “An object-oriented framework for multidisci-
plinary design optimization,” 3rd AIAA multidisciplinary design optimization spe-
cialist conference. Waikiki, Hawaii, USA, 2007.

[21] Gray, J., Moore, K. T., and Naylor, B. A., “OpenMDAO: An open source framework for
multidisciplinary analysis and optimization,” 13th AIAA/ISSMO Multidisciplinary
Analysis Optimization Conference, Vol. 5, 2010.

[22] Gray, J., Moore, K. T., Hearn, T. A., and Naylor, B. A., “A standard platform for testing
and comparison of MDAO architectures,” 8th AIAA multidisciplinary design opti-
mization specialist conference (MDO), Honolulu, 2012, pp. 1586–1611.

[23] Gray, J. S., Hwang, J. T., Martins, J. R., Moore, K. T., and Naylor, B. A., “OpenMDAO:
An open-source framework for multidisciplinary design, analysis, and optimiza-
tion,” Structural and Multidisciplinary Optimization, 2019, pp. 1–30.

[24] Alexandrov, N. M., and Lewis, R. M., “Reconfigurability in MDO problem synthesis,
part 1,” Proceedings of the 10th AIAA/ISSMO multidisciplinary analysis and opti-
mization conference, AIAA paper, Vol. 4307, 2004.

[25] Alexandrov, N. M., and Lewis, R. M., “Reconfigurability in MDO problem synthesis,
part 2,” Proceedings of the 10th AIAA/ISSMO multidisciplinary analysis and opti-
mization conference, AIAA paper, Vol. 4307, 2004.

222

http://dx.doi.org/10.2514/1.J051895

[26] Hoogreef, M. F. M., “Advise, Formalize and Integrate MDO Architectures - A
Methodology and Implementation,” Ph.D. thesis, Delft University of Technology,
2017.

[27] Nagel, B., Böhnke, D., Gollnick, V., Schmollgruber, P., Rizzi, A., La Rocca, G., and
Alonso, J. J., “Communication in aircraft design: Can we establish a common lan-
guage?” 28th International Congress Of The Aeronautical Sciences, Brisbane, 2012.

[28] Jepsen, J., CPACS documentation (version 2.3.1), DLR, 2018.

[29] Görtz, S., Ilic, C., Schuster, A., Jepsen, J., Leitner, M., Schulze, M., Scherer, J., Petsch,
M., Becker, R., and Zur10, S., “Multi-Level MDO of a Long-Range Transport Air-
craft Using a Distributed Analysis Framework,” 18th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, 2017, p. 4326.

[30] Moerland, E., Becker, R.-G., and Nagel, B., “Collaborative understanding of dis-
ciplinary correlations using a low-fidelity physics-based aerospace toolkit,” CEAS
Aeronautical Journal, Vol. 6, No. 3, 2015, pp. 441–454.

[31] Lefebvre, T., Bartoli, N., Dubreuil, S., Panzeri, M., Lombardi, R., Della Vecchia,
P., Nicolosi, F., Ciampa, P. D., Anisimov, K., and Savelyev, A., “Methodological en-
hancements in MDO process investigated in the AGILE European project,” 18th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2017.

[32] Moerland, E., Pfeiffer, T., Böhnke, D., Jepsen, J., Freund, S., Liersch, C., Chiozzotto,
G. P., Klein, C., Scherer, J., and Hasan, Y. J., “On the Design of a Strut-Braced Wing
Configuration in a Collaborative Design Environment,” 18th AIAA\ISSMO Multidis-
ciplinary Analysis and Optimization Conference, 2017.

[33] Dykes, K., Rethore, P., Zahle, F., and Merz, K., “IEA Wind Task 37 Final Proposal Wind
Energy Systems Engineering: Integrated RD&D,” Tech. rep., Tech. rep. International
Energy Agency, 2015.

[34] Lano, R., “The N2 chart,” Tech. rep., TRW Software Series, Redondo Beach, CA, 1977.

[35] Steward, D. V., “The design structure system: a method for managing the design of
complex systems,” Engineering Management, IEEE Transactions on, , No. 3, 1981,
pp. 71–74.

[36] Wagner, T. C., and Papalambros, P. Y., “General framework for decomposition anal-
ysis in optimal design,” ASME Design Engineering, Vol. 65-2, 1993, pp. 315–325.

[37] Lambe, A. B., and Martins, J. R. R. A., “Extensions to the design structure matrix for
the description of multidisciplinary design, analysis, and optimization processes,”
Structural and Multidisciplinary Optimization, Vol. 46, No. 2, 2012, pp. 273–284.

[38] Gazaix, A., Gallard, F., Gachelin, V., Druot, T., Grihon, S., Ambert, V., Guénot, D.,
Lafage, R., Vanaret, C., Pauwels, B., et al., “Towards the Industrialization of New
MDO Methodologies and Tools for Aircraft Design,” 18th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, 2017, p. 3149.

[39] Aigner, B., van Gent, I., La Rocca, G., Stumpf, E., and Veldhuis, L. L. M., “Graph-
based algorithms and data-driven documents for formulation and visualization of
large MDO systems,” CEAS Aeronautical Journal, Vol. 9, No. 4, 2018, pp. 695 – 709.

223

[40] Etman, L., Kokkolaras, M., Hofkamp, A., Papalambros, P. Y., and Rooda, J., “Coordi-
nation specification in distributed optimal design of multilevel systems using the χ
language,” Structural and Multidisciplinary Optimization, Vol. 29, No. 3, 2005, pp.
198–212.

[41] Berners-Lee, T., Hendler, J., Lassila, O., et al., “The semantic web,” Scientific ameri-
can, Vol. 284, No. 5, 2001, pp. 28–37.

[42] Rogers, J., “DEMAID/GAA - Enhanced Design Manager’s Aid for Intelligent Decom-
position (Genetic Algorithms),” 6th AIAA/USAF/NASA/ISSMO Symposium on Multi-
disciplinary Analysis and Optimization, Sept, 1996, pp. 4–6.

[43] Guenov, M. D., and Barker, S. G., “Application of axiomatic design and design struc-
ture matrix to the decomposition of engineering systems,” Systems engineering,
Vol. 8, No. 1, 2005, pp. 29–40.

[44] Wilschut, T., Etman, P. L., Rooda, J. J., and Adan, I., “Multi-Level Flow-Based Markov
Clustering for Design Structure Matrices,” Journal of Mechanical Design, 2017.

[45] Michelena, N. F., and Papalambros, P. Y., “A hypergraph framework for optimal
model-based decomposition of design problems,” Computational optimization
and applications, Vol. 8, No. 2, 1997, pp. 173–196.

[46] Allison, J., Kokkolaras, M., and Papalambros, P., “Optimal partitioning and coordi-
nation decisions in decomposition-based design optimization,” Journal of Mechan-
ical Design, Vol. 131, No. 8, 2009, p. 081008.

[47] Braun, R. D., “Collaborative optimization: an architecture for large-scale dis-
tributed design,” Ph.D. thesis, Stanford University, 1996.

[48] Sobieski, J., Agte, J. S., and Sandusky, R. R., “Bilevel integrated system synthesis,”
AIAA journal, Vol. 38, No. 1, 2000, pp. 164–172.

[49] Sobieski, J., “Optimization by decomposition: a step from hierarchic to non-
hierarchic systems,” Tech. Rep. TR-CP-3031, NASA Langley Research Center,
September 1988.

[50] Lu, Z., and Martins, J. R. R. A., “Graph partitioning-based coordination methods for
large-scale multidisciplinary design optimization problems,” 14th ISSMO multidis-
ciplinary analysis optimization conference, 2012, pp. 1–13.

[51] Gray, J., Hearn, T. A., Moore, K. T., Hwang, J. T., Martins, J. R. R. A., and Ning, A.,
“Automatic Evaluation of Multidisciplinary Derivatives Using a Graph-Based Prob-
lem Formulation in OpenMDAO,” 15th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, Atlanta, GA, 2014.

[52] Ciampa, P. D., Baalbergen, E. H., and Lombardi, R., “A Collaborative Architecture
supporting AGILE Design of Complex Aeronautics Products,” 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, 2017.

[53] Hoogreef, M., and La Rocca, G., “An MDO advisory system supported by
knowledge-based technologies,” 16th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, Dallas, Texas, 22-26 June 2015; AIAA 2015-2945, Ameri-
can Institute of Aeronautics and Astronautics (AIAA), 2015.

224

[54] Sobieski, J., Altus, T. D., Phillips, M., and Sandusky, R., “Bilevel integrated system
synthesis for concurrent and distributed processing,” AIAA journal, Vol. 41, No. 10,
2003, pp. 1996–2003.

[55] Seider, D., Fischer, P. M., Litz, M., Schreiber, A., and Gerndt, A., “Open source soft-
ware framework for applications in aeronautics and space,” 2012 IEEE Aerospace
Conference, 2012.

[56] Zur, S., and Tröltzsch, A., “Optimization of the DLR Space Liner inside the integra-
tion environment RCE,” Engineering Optimization, Vol. 1, 2014, pp. 757–761.

[57] Tröltzsch, A., Siggel, M., Kopp, A., and Schwanekamp, T., “Multidisciplinary Analysis
of the DLR SpaceLiner Concept by different Optimization Techniques,” 11th World
Congress on Computational Mechanics (WCCM XI), 2014.

[58] Kroll, N., Abu-Zurayk, M., Dimitrov, D., Franz, T., Führer, T., Gerhold, T., Görtz, S.,
Heinrich, R., Ilic, C., Jepsen, J., et al., “DLR project Digital-X: towards virtual air-
craft design and flight testing based on high-fidelity methods,” CEAS Aeronautical
Journal, Vol. 7, No. 1, 2016, pp. 3–27.

[59] Moerland, E., Deinert, S., Daoud, F., Dornwald, J., and Nagel, B., “Collaborative air-
craft design using an integrated and distributed multidisciplinary product develop-
ment process,” 30th Congress of the international council for aeronautical sciences,
2016.

[60] Adams, B. M., Bauman, L. E., Bohnhoff, W. J., Dalbey, K. R., Ebeida, M. S., Eddy,
J. P., Eldred, M. S., Hough, P. D., Hu, K. T., Jakeman, J. D., Stephens, J. A., Swiler,
L. P., Vigil, D. M., and Wildey, T. M., “SAND2014-4633: Dakota, A Multilevel Parallel
Object-Oriented Framework for Design Optimization, Parameter Estimation, Un-
certainty Quantification, and Sensitivity Analysis: Version 6.0 User’s Manual,” Tech.
rep., Sandia National Laboraties, 2015.

[61] Augustinus, R., “Supporting MDO through dynamic workflow (re)generation,” Mas-
ter’s thesis, TU Delft, 2016.

[62] Liu, K. J., Zhao, H. L., and Xu, C., “MDO of Anti-creeper on High speed train Using
Optimus,” Applied Mechanics and Materials, Vol. 130, Trans Tech Publ, 2012, pp.
3128–3132.

[63] Koch, P., Wujek, B., and Golovidov, O., “A multi-stage, parallel implementation of
probabilistic design optimization in an MDO framework,” 8th Symposium on Mul-
tidisciplinary Analysis and Optimization, 2000, p. 4805.

[64] Shen, X., and Hu, W., “Multidisciplinary Design Optimization Research of overall
Aero-engine based on Flow Path,” 17th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 2016, p. 3366.

[65] Tfaily, A., and Kokkolaras, M., “Integrating Air Systems in Aircraft Multidisciplinary
Design Optimization,” 2018 Multidisciplinary Analysis and Optimization Confer-
ence, 2018, p. 3742.

[66] Garcia, J., Brown, J., Kinney, D., Bowles, J., Jiang, X., Dupzyk, I., Huynh, L., and Lau,
E., “Co-Optimization of Mid Lift to Drag Vehicle Concepts for Mars Atmospheric
Entry,” 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2010.
doi:10.2514/6.2010-5052, URL http://dx.doi.org/10.2514/6.2010-5052.

225

http://dx.doi.org/10.2514/6.2010-5052

[67] Miano, C., “Using Optimization to Exploit a Composable Satellite Product Line
Architecture,” AIAA SPACE 2015 Conference and Exposition, 2015. doi:10.2514/6.
2015-4618, URL http://dx.doi.org/10.2514/6.2015-4618.

[68] Cramer, E., Gablonsky, J., Lurati, L., Sellers, P., and Simonis, J., “Practical Experience
with a Multi-Objective Model-Management Framework Optimization Method,”
12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and
14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2012.
doi:10.2514/6.2012-5603, URL http://dx.doi.org/10.2514/6.2012-5603.

[69] Hwang, J. T., and Martins, J. R., “A computational architecture for coupling hetero-
geneous numerical models and computing coupled derivatives,” ACM Transactions
on Mathematical Software (TOMS), Vol. 44, No. 4, 2018, p. 37.

[70] Martins, J., and Hwang, J., “Review and unification of methods for computing
derivatives of multidisciplinary computational models,” AIAA journal, Vol. 51,
No. 11, 2013, pp. 2582–2599.

[71] Hwang, J. T., Lee, D. Y., Cutler, J. W., and Martins, J. R., “Large-scale multidisciplinary
optimization of a small satellite’s design and operation,” Journal of Spacecraft and
Rockets, Vol. 51, No. 5, 2014, pp. 1648–1663.

[72] Chung, H., Hwang, J. T., Gray, J. S., and Kim, H. A., “Implementation of topology op-
timization using openMDAO,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, 2018, p. 0653.

[73] Gray, J. S., and Martins, J. R. R. A., “Coupled aeropropulsive design optimisation of
a boundary-layer ingestion propulsor,” The Aeronautical Journal, 2018, pp. 1–17.
doi:10.1017/aer.2018.120, URL http://dx.doi.org/10.1017/aer.2018.120.

[74] van der Elst, S., Moerland, E., Lugtenburg, J., Hootsman, L. M., Deinert, S., Motzer,
M., and Fernandez, C., “D2.3: Industrial service-oriented process methodology,”
Tech. rep., IDEaliSM project, 2017.

[75] Moerland, E., d’Ippolito, R., Panzeri, M., Raju Kulkarni, A., Hoogreef, M. F. M.,
Eheim, M., Bengtsson, K., Haenisch, J., Deinert, S., van den Berg, T., Fernandez,
C., van der Elst, S., and Hendrich, T., “D3.2.2: Advanced Integration Framework -
update,” Tech. rep., IDEaliSM project, March 2017.

[76] La Rocca, G., “Knowledge based engineering techniques to support aircraft design
and optimization,” Ph.D. thesis, Delft University of Technology, 2011.

[77] van Lugtenburg, J., van den Berg, T., Hootsman, L. M., Fernandez, C., Raju Kulkarni,
A., Stoeckl, F., Motzer, M., Eheim, M., Tamm, C., and Deinert, S., “D3.2.2: Use-case
specification - final,” Tech. rep., IDEaliSM project, March 2017.

[78] Kroo, I., and Manning, V., “Collaborative optimization: status and directions,”
8th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
2000.

[79] Dener, A., Meng, P., Hicken, J., Kennedy, G. J., Hwang, J., and Gray, J.,
“Kona: A Parallel Optimization Library for Engineering-Design Problems,” 57th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
2016, p. 1422.

226

http://dx.doi.org/10.2514/6.2015-4618
http://dx.doi.org/10.2514/6.2012-5603
http://dx.doi.org/10.1017/aer.2018.120

[80] Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Bons, N., Martins, J., Bouhlel, M.,
and Morlier, J., “An adaptive optimization strategy based on mixture of experts for
wing aerodynamic design optimization,” 18th AIAA/ISSMO Multidisciplinary Anal-
ysis and Optimization Conference, 2017, p. 4433.

[81] Heydari Beni, E., Lagaisse, B., and Joosen, W., “Adaptive and reflective middleware
for the cloudification of simulation & optimization workflows,” ARM 2017 - 16th
Workshop on Adaptive and Reflective Middleware, 2017.

[82] van Gent, I., and La Rocca, G., “Formulation and integration of MDAO systems for
collaborative design: A graph-based methodological approach,” Aerospace Science
and Technology, Vol. 90, 2019, pp. 410 – 433. doi:https://doi.org/10.1016/j.ast.2019.
04.039, URL https://doi.org/10.1016/j.ast.2019.04.039.

[83] Diestel, R., “Graph theory,” Graduate Texts in Mathematics, Vol. 173, 2010.

[84] Smith, D., Eggen, M., and St. Andre, R., A transition to advanced mathematics, Nel-
son Education, 2014.

[85] Hagberg, A. A., Schult, D. A., and Swart, P. J., “Exploring network structure, dynam-
ics, and function using NetworkX,” 7th Python in Science Conference (SciPy2008),
Pasadena, CA USA, 2008, pp. 11–15.

[86] Sellar, R. S., Batill, S. M., and Renaud, J. E., “Response surface based, concurrent
subspace optimization for multidisciplinary system design,” AIAA paper, Vol. 714,
1996, p. 1996.

[87] Bruggeman, A.-L., “Automated Execution Process Formulation using Sequencing
and Decomposition Algorithms for Collaborative MDAO,” Master’s thesis, Delft
University of Technology, 2019.

[88] Zhang, D., Song, B., Wang, P., and He, Y., “Performance Evaluation of MDO Archi-
tectures within a Variable Complexity Problem,” Mathematical Problems in Engi-
neering, Vol. 2017, 2017.

[89] Karypis, G., and Kumar, V., “A fast and high quality multilevel scheme for partition-
ing irregular graphs,” SIAM Journal on scientific Computing, Vol. 20, No. 1, 1999, pp.
359–392.

[90] Sobieski, J., Agte, J. S., and Sandusky, R. R., “Bi-Level Integrated System Synthesis,”
Tech. Rep. TM-1998-208715, NASA Langley Research Center, August 1998.

[91] Elmendorp, R., Vos, R., and La Rocca, G., “A conceptual design and analysis method
for conventional and unconventional airplanes,” ICAS 2014: Proceedings of the 29th
Congress of the International Council of the Aeronautical Sciences, St. Petersburg,
Russia, 7-12 September 2014, International Council of Aeronautical Sciences, 2014.

[92] Mariens, J., Elham, A., and van Tooren, M. J. L., “Quasi-Three-Dimensional Aerody-
namic Solver for Multidisciplinary Design Optimization of Lifting Surfaces,” Journal
of Aircraft, Vol. 51, No. 2, 2014, pp. 547–558.

[93] Elham, A., “Adjoint quasi-three-dimensional aerodynamic solver for multi-fidelity
wing aerodynamic shape optimization,” Aerospace Science and Technology, Vol. 41,
2015, pp. 241–249.

227

https://doi.org/10.1016/j.ast.2019.04.039

[94] Pfeiffer, T., Nagel, B., Böhnke, D., Rizzi, A., and Voskuijl, M., “Implementation of a
heterogeneous, variable-fidelity framework for flight mechanics analysis in prelim-
inary aircraft design,” 60. Deutscher Luft- und Raumfahrtkongress, 2011.

[95] Macquart, T., Werter, N., and De Breuker, R., “Aeroelastic Tailoring of Blended Com-
posite Structures using Lamination Parameters,” 57th AIAA/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference, 2016, p. 1966.

[96] van Gent, I., La Rocca, G., and Hoogreef, M. F. M., “CMDOWS: A Proposed New
Standard to Store and Exchange MDO Systems,” CEAS Aeronautical Journal, Vol. 9,
No. 4, 2018, pp. 607 – 627.

[97] Raju Kulkarni, A., Hoogreef, M. F. M., and La Rocca, G., “Combining semantic web
technologies and KBE to solve industrial MDO problems,” 18th AIAA/ISSMO Multi-
disciplinary Analysis and Optimization Conference, 2017.

[98] Gondhalekar, A. C., Guenov, M. D., Wenzel, H., Balachandran, L. K., and Nunez,
M., “Neutral Description and Exchange of Design Computational Workflows,” 18th
International Conference on Engineering Design, 2011.

[99] Kesseler, E., and Guenov, M. D., Advances in collaborative civil aeronautical multi-
disciplinary design optimization, American Institute of Aeronautics and Astronau-
tics, 2010.

[100] Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Elmqvist, H., Junghanns, A., Mauß,
J., Monteiro, M., Neidhold, T., Neumerkel, D., et al., “The functional mockup inter-
face for tool independent exchange of simulation models,” 8th International Mod-
elica Conference, 2011, pp. 105–114.

[101] Grosskopf, A., Decker, G., and Weske, M., The process: business process modeling
using BPMN, Meghan Kiffer Press, 2009.

[102] Lombardi, R., van Gent, I., and La Rocca, G., “Reconfigurable Formulation and
Implementation of MDAO Systems,” NAFEMS World Congress, 2019.

[103] Baalbergen, E., Kos, J., Louriou, C., Campguilhem, C., and Barron, J., “Streamlining
cross-organisation product design in aeronautics,” Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 231, No. 12,
2017, pp. 2192–2202.

[104] “Noesis Solutions, Optimus Rev 10.19 - User’s Manual (available on request),” ,
2017.

[105] de Vries, D., “Towards the Industrialization of MDAO,” Master’s thesis, Delft Uni-
versity of Technology, 2017.

[106] Agte, J. S., User’s Guide for the MATLAB Implementation of BLISS, DLR, 2005.

[107] van Gent, I., Aigner, B., Beijer, B., Jepsen, J., and La Rocca, G., “Knowledge archi-
tecture supporting the next generation of MDO in the AGILE paradigm,” Progress in
Aerospace Sciences (accepted for publication), 2018.

[108] van Gent, I., Aigner, B., Beijer, B., and La Rocca, G., “A critical look at de-
sign automation solutions for collaborative MDO in the AGILE Paradigm,” 19th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2018.

228

[109] Lafage, R., “XDSMjs package - XDSM diagram generator written in javascript,”
https://github.com/OneraHub/XDSMjs, 2016. URL https://github.com/
OneraHub/XDSMjs.

[110] Sankey, H. R., “The Thermal Efficiency of Steam Engines,” Minutes of the Proceed-
ings of the Institution of Civil Engineers, 1896, pp. 182–212. doi:10.1680/imotp.1896.
19564.

[111] Schmidt, M., Der Einsatz von Sankey-Diagrammen im Stoffstrommanagement,
Beiträge der Hochschule Pforzheim, Hochsch. Pforzheim, 2006. URL https://
books.google.de/books?id=zhBbMgAACAAJ.

[112] Atkinson, N., “bihisankey.js package - BiDirectional Hierarchical Sankey Dia-
gram,” https://github.com/Neilos/bihisankey, 2015. URL https://github.com/
Neilos/bihisankey.

[113] Holten, D., “Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data,” IEEE Transactions on Visualization and Computer Graphics,
Vol. 12, No. 5, 2006, pp. 741–748.

[114] Bostock, M., “D3.js website,” https://d3js.org/, 2015. URL https://d3js.org/.

[115] Moerland, E., Ciampa, P. D., Zur, S., Baalbergen, E. H., Noskov, N., D’Ippolito, R.,
and Lombardi, R., “Collaborative Architecture supporting the next generation of
MDO within the AGILE paradigm,” Progress in Aerospace Sciences (submitted), 2019.

[116] La Rocca, G., Langen, T., and Brouwers, Y., “The design and engineering engine.
Towards a modular system for collaborative aircraft design,” 28th Congress of the
International Council of the Aeronautical Sciences, 2012.

[117] Dommelen, J. v., and Vos, R., “Conceptual design and analysis of blended-wing-
body aircraft,” Proceedings of the Institution of Mechanical Engineers, Part G: Jour-
nal of Aerospace Engineering, Vol. 228, No. 13, 2014, pp. 2452–2474.

[118] Torenbeek, E., Synthesis of Subsonic Airplane Design, Delft University Press, 1982.

[119] Raymer, D., Aircraft Design: A Conceptual Approach, American Institute of Aero-
nautics and Astronautics, Inc., 2012.

[120] Brown, M., and Vos, R., “Conceptual design and evaluation of blended-wing body
aircraft,” 2018 AIAA Aerospace Sciences Meeting, 2018, p. 0522.

[121] Vos, R., and Hoogreef, M. F., “System-level assessment of tail-mounted propellers
for regional aircraft,” Proceedings of the 31st Congress of the International Council of
Aeronautical Sciences, 2018.

[122] Schouten, T., Hoogreef, M., and Vos, R., “Effect of Propeller Installation on Perfor-
mance Indicators of Regional Turboprop Aircraft,” AIAA Scitech 2019 Forum, 2019,
p. 1306.

[123] Vanaret, C., Gallard, F., and Martins, J., “On the Consequences of the" No Free
Lunch" Theorem for Optimization on the Choice of an Appropriate MDO Archi-
tecture,” 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
2017, p. 3148.

229

https://github.com/OneraHub/XDSMjs
https://github.com/OneraHub/XDSMjs
https://books.google.de/books?id=zhBbMgAACAAJ
https://books.google.de/books?id=zhBbMgAACAAJ
https://github.com/Neilos/bihisankey
https://github.com/Neilos/bihisankey
https://d3js.org/

SOFTWARE REFERENCES

[S1] Phoenix Integration. ModelCenter®. Commercial software, Jan 2019. URL https:
//www.phoenix-int.com/product/modelcenter-integrate. last checked:
21.01.2019.

[S2] Noesis Solutions N.V. Optimus. Commercial software, Jan 2019. URL
https://www.noesissolutions.com/our-products/optimus. last checked:
21.01.2019.

[S3] DLR - German Aerospace Center. Remote Component Environment (RCE). Open-
source (Eclipse Public License 1.0) download available on website, Jan 2019. URL
http://rcenvironment.de/. last checked: 21.01.2019.

[S4] Microsoft. Excel. Commercial software, Feb 2019. URL https://products.
office.com/en/excel. last checked: 08.02.2019.

[S5] Microsoft. Visio. Commercial software, Feb 2019. URL https://products.
office.com/en/visio/flowchart-software. last checked: 11.02.2019.

[S6] NASA Glenn Research Center. OpenMDAO. Open-source (Apache License 2.0)
GitHub repository, Jan 2019. URL https://github.com/OpenMDAO/OpenMDAO.
last checked: 21.01.2019.

[S7] DLR - German Aerospace Center. Common Parametric Aircraft Configuration
Schema. Open-source (Apache License 2.0) GitHub repository, Jan 2019. URL
https://github.com/DLR-LY/CPACS. last checked: 21.01.2019.

[S8] DLR - German Aerospace Center. Fast and simple XML interface library. Open-
source (Apache License 2.0) GitHub repository, Jan 2019. URL https://github.
com/DLR-SC/tixi. last checked: 21.01.2019.

[S9] DLR - German Aerospace Center. The TiGL Geometry Library to process aircraft
geometries in pre-design. Open-source (Apache License 2.0) GitHub repository,
Jan 2019. URL https://github.com/DLR-SC/tigl. last checked: 21.01.2019.

[S10] ONERA - The French Aerospace Lab. XDSM generator written in javascript. Open-
source (Apache License 2.0) GitHub repository, Dec 2018. URL https://github.
com/OneraHub/XDSMjs. last checked: 21.01.2019.

[S11] Benedikt Aigner. VISualization TOol for MDAO Systems. Online tool, Dec 2018.
URL http://mdo-system-interface.agile-project.eu/. last checked:
21.01.2019.

[S12] IRT Saint Exupéry. GEMS. Proprietary software, Feb 2019.

[S13] The MathWorks, Inc. MATLAB. Commercial software, Jan 2019. URL https:
//nl.mathworks.com. last checked: 23.01.2019.

231

https://www.phoenix-int.com/product/modelcenter-integrate
https://www.phoenix-int.com/product/modelcenter-integrate
https://www.noesissolutions.com/our-products/optimus
http://rcenvironment.de/
https://products.office.com/en/excel
https://products.office.com/en/excel
https://products.office.com/en/visio/flowchart-software
https://products.office.com/en/visio/flowchart-software
https://github.com/OpenMDAO/OpenMDAO
https://github.com/DLR-LY/CPACS
https://github.com/DLR-SC/tixi
https://github.com/DLR-SC/tixi
https://github.com/DLR-SC/tigl
https://github.com/OneraHub/XDSMjs
https://github.com/OneraHub/XDSMjs
http://mdo-system-interface.agile-project.eu/
https://nl.mathworks.com
https://nl.mathworks.com

[S14] Dassault Systèmes. Isight. Commercial software, Jan 2019. URL
https://www.3ds.com/products-services/simulia/products/
isight-simulia-execution-engine. last checked: 31.01.2019.

[S15] Siemens. HEEDS. Commercial software, May 2019. URL https://mdx.plm.
automation.siemens.com/heeds. last checked: 28.05.2019.

[S16] ParaPy B.V. ParaPy. Commercial software, Feb 2019. URL https://www.parapy.
nl. last checked: 08.02.2019.

[S17] IILS mbH. Design Compiler 43®. Commercial software, Feb 2019. URL https:
//www.iils.de/#page-top. last checked: 08.02.2019.

[S18] Dassault Systèmes. CATIA. Commercial software, Feb 2019. URL https://www.
3ds.com/products-services/catia. last checked: 08.02.2019.

[S19] Imco van Gent. KADMOS. Open-source (Apache License 2.0) Bitbucket repository,
May 2019. URL https://bitbucket.org/imcovangent/kadmos. last checked:
31.05.2019.

[S20] MDO lab. pyXDSM. Open-source (Apache License 2.0) GitHub repository, Feb
2019. URL https://github.com/mdolab/pyXDSM. last checked: 28.02.2019.

[S21] S. Dubreuil and R. Lafage. SSBJ-OpenMDAO. Open-source (Apache License
2.0) GitHub repository, Mar 2019. URL https://github.com/OneraHub/
SSBJ-OpenMDAO. last checked: 04.03.2019.

[S22] I. van Gent. SSBJ-KADMOS. Open-source (Apache License 2.0) GitHub reposi-
tory, Mar 2019. URL https://bitbucket.org/imcovangent/ssbjkadmos. last
checked: 04.03.2019.

[S23] World Wide Web Consortium (W3C). eXtensible Markup Language (XML). Open
standard, Mar 2019. URL https://www.w3.org/TR/REC-xml. last checked:
01.03.2019.

[S24] I. van Gent. CMDOWS. Open-source (Apache License 2.0) Bitbucket repository,
May 2019. URL https://bitbucket.org/imcovangent/cmdows. last checked:
31.05.2019.

[S25] D. de Vries and I. van Gent. OpenLEGO. Open-source (Apache License 2.0) GitHub
repository, Apr 2019. URL https://github.com/daniel-de-vries/OpenLEGO.
last checked: 04.04.2019.

[S26] KE-works. KE-chain. Commercial software, March 2019. URL https://www.
ke-chain.com/features. last checked: 07.03.2019.

[S27] NLR. SMR. Commercial software, May 2018. last checked: 01.05.2018.

[S28] Noesis Solutions N.V. id8. Commercial software, Apr 2019. URL https://www.
noesissolutions.com/our-products/id8. last checked: 17.04.2019.

[S29] R. Elemendorp. AVLwrapper - Python interface for AVL. Open-source (GNU Gen-
eral Public License V3) GitHub repository, May 2019. URL https://github.com/
renoelmendorp/AVLWrapper. last checked: 14.05.2019.

232

https://www.3ds.com/products-services/simulia/products/isight-simulia-execution-engine
https://www.3ds.com/products-services/simulia/products/isight-simulia-execution-engine
https://mdx.plm.automation.siemens.com/heeds
https://mdx.plm.automation.siemens.com/heeds
https://www.parapy.nl
https://www.parapy.nl
https://www.iils.de/#page-top
https://www.iils.de/#page-top
https://www.3ds.com/products-services/catia
https://www.3ds.com/products-services/catia
https://bitbucket.org/imcovangent/kadmos
https://github.com/mdolab/pyXDSM
https://github.com/OneraHub/SSBJ-OpenMDAO
https://github.com/OneraHub/SSBJ-OpenMDAO
https://bitbucket.org/imcovangent/ssbjkadmos
https://www.w3.org/TR/REC-xml
https://bitbucket.org/imcovangent/cmdows
https://github.com/daniel-de-vries/OpenLEGO
https://www.ke-chain.com/features
https://www.ke-chain.com/features
https://www.noesissolutions.com/our-products/id8
https://www.noesissolutions.com/our-products/id8
https://github.com/renoelmendorp/AVLWrapper
https://github.com/renoelmendorp/AVLWrapper

[S30] M. Drela and H. Youngren. Athena Vortex Lattice (AVL). Open-access (GNU Gen-
eral Public License V2) download, May 2019. URL http://web.mit.edu/drela/
Public/web/avl/. last checked: 14.05.2019.

233

http://web.mit.edu/drela/Public/web/avl/
http://web.mit.edu/drela/Public/web/avl/

V
APPENDICES

235

A
ADDITIONAL

ARCHITECTURES FOR

THE SSBJ CASE STUDY

This appendix shows the XDSMs for different architectures imposed on the SSBJ op-
timization problem discussed in §3.6. The FPG is shown in Fig. 3.19. The architectures
MDF with a Jacobi convergence scheme and IDF were shown in Fig. 3.20 and Fig. 3.21 re-
spectively. Here, the XDSMs for MDF with a Gauss-Seidel convergence scheme (Fig. A.1),
Collaborative Optimization (Fig. A.2), and BLISS-2000 (Fig. A.3) are provided for refer-
ence.

237

0
,1

0
:

C
O

O
R

1
:
t/
c

0
,
h

0

M
0
,
A
R

0
,

Λ
0

S
0 re

f,
λ

0
,
x

0 se
c

C
0 f
,
T

0

2
:
W
c

0
E

L
c

0
,
E
S
F
c

0

3
:
W

0

W
F
,0

,
N
z

4
:
C
D
,m

in
5

:
W

B
E

8
:
k
R

1
0

:
t/
c
∗

h
∗ ,
M
∗ ,

A
R
∗

Λ
∗ ,
S
∗ re

f,
λ
∗

x
∗ se

c
,
C
∗ f,
T
∗

1
,9
→

2
:

O
P

T

3
:
t/
c

A
R

,
Λ

S
re

f,
λ

x s
e

c

4
:
t/
c

h
,
M

A
R

,
Λ

S
re

f,
C
f

5
:
h

M
,
T

7
:
h

M

2
,6
→

3
:

C
O

N
V

3
:
W
c E

L
c

4
:

E
S

F
c

3
:

S
tr

u
ct

u
re

s

4
:
W
T

Θ

7
:
W
T

W
F

7
:
σ

1
−

5
7

:
Θ

1
0

:
L
∗

6
:
L

4
:

A
er

o
d

yn
a

m
ic

s
5

:
D

7
:

fi
n

7
:

d
p

d
x

1
0

:
E

S
F
∗ ,
W
∗ E

6
:
W
E

,
E

S
F

5
:

P
ro

p
u

ls
io

n
7

:
S

F
C

7
:

E
S

F

T
em

p

D
T

7
:

P
er

fo
rm

a
n

ce
8

:
R

1
0

:
σ̃
∗ 1
−

5
9

:
σ̃

1
−

5
7

:

G
σ

1
0

:
Θ̃
∗

9
:

Θ̃
7

:

G
Θ

1
0

:
˜

d
p

d
x∗

9
:

˜
d

p
d

x
7

:

G
d

p
d

x

1
0

:
˜

E
S

F
∗

˜
T

em
p
∗

D̃
T
∗

9
:

˜
E

S
F

˜
T

em
p

D̃
T

7
:

G
p

ro
p

1
0

:
R̃
∗

9
:
R̃

8
:

F
R

F
ig

u
re

A
.1

:X
D

SM
fo

r
th

e
M

D
F

w
it

h
a

G
au

ss
-S

ei
d

el
co

n
ve

rg
en

ce
sc

h
em

e
ar

ch
it

ec
tu

re

238

0
,7

:

C
O

O
R

1
:
t/
c

0
,
h

0
,
M

0

A
R

0
Λ

0
,
S

0 re
f,
W
c
,0

T

fi
n
c
,0

,
Θ
c
,0

,
E

S
F
c
,0

S
F

C
c
,0

,
W
c
,0

E

W
c
,0

F
,
D
c
,0

,
L
c
,0

2
:
k
L
∼
W
T

3
:
k
R

2
:
t/
c
c
,0

A
R
c
,0

,
Λ
c
,0

S
c
,0

re
f

,
λ

0

x
0 se

c

3
:
W

0

W
F
,0

N
z

4
:

sc
a

le
rs

2
:
t/
c

0
,
h
c
,0

M
c
,0

,
A

R
0

Λ
0
,
S

0 re
f,
C

0 f

3
:
C
D
,m

in
4

:
sc

a
le

rs
2

:
h

0

M
0
,
T

0
3

:
W
B
E

4
:

sc
a

le
rs

7
:
t/
c
∗ ,
h
∗ ,
M
∗

A
R
∗ ,

Λ
∗ ,
S
∗ re

f

W
c
,∗

T
,

fi
n
c
,∗

E
S

F
c
,∗

,
S

F
C
c
,∗

W
c
,∗

E
,
W
c
,∗

F

Θ
c
,∗

,
D
c
,∗

,
L
c
,∗

1
,6
→

2
:

S
ys

-O
P

T

2
:
h

,
M

S
F

C
c

fi
n
c

,
W
c F

W
c T

2
:
L
c

W
T
c

3
:
L
c

W
E
c

4
:
tc

A
R

,
Λ

S
re

f,
Θ
c

W
c F

,
W
c T

3
:

E
S

F
c

Θ
c

,
W
c T

4
:
t/
c

,
h

,
M

A
R

,
Λ

,
S
re
f

D
c

,
L
c

fi
n
c

3
:
D
c

4
:
h

,
M

E
S

F
c

,
W
c E

S
F

C
c

2
:

P
er

fo
rm

a
n

ce
3

:
R

7
:
g̃
∗ L∼
W
T

6
:
g̃
L
∼
W
T

2
:

G
L
∼
W
T

7
:
R̃
∗

6
:
R̃

3
:

F
R

7
:
J
∗

6
:
J

3
: J

7
:
t/
c
c
,∗

,
A

R
c
,∗

Λ
c
,∗

,
S
c
,∗

re
f

,
λ
∗ ,
x
∗ se

c

2
,5
→

3
:

S
u

b
-O

P
T

-0

3
:
t/
c
c

A
R
c

,
Λ
c

S
c re

f,
λ

x s
e

c

4
:
t/
c
c

,
A

R
c

Λ
c

,
S
c re

f

3
:

S
tr

u
ct

u
re

s
4

:
σ

1
−

5
4

:
Θ

4
:

Θ

W
F

,
W
T

7
:
σ̃
∗ 1
−

5
5

:
σ̃

1
−

5
4

:

G
σ

]

7
:

Θ̃
∗

5
:

Θ̃
4

:

G
Θ

3
:

J
∗ 0

5
:
J

0
4

:

J 0

7
:
t/
c
∗ ,
h
c
,∗

,
M
c
,∗

A
R
∗ Λ
∗ S
∗ re

fC
∗ f

2
,5
→

3
:

S
u

b
-O

P
T

-1

3
:
t/
c

,
h
c

,
M
c

A
R

,
Λ

,
S

re
f,
C
f

4
:
t/
c

,
h
c

,
M
c

A
R

,
Λ

,
S

re
f

3
:

A
er

o
d

yn
a

m
ic

s
4

:
d

p
d

x
4

:
D

,
L

fi
n

7
:

˜
d

p
d

x∗
5

:
d

p
d

x
4

:

G
d

p
d

x

3
:

J
∗ 1

5
:
J

1
4

:

J 1

7
:
h
∗

M
∗ ,
T
∗

2
,5
→

3
:

S
u

b
-O

P
T

-2

3
:
h

M
,
T

4
:
h

M

3
:

P
ro

p
u

ls
io

n

4
:

E
S

F

T
em

p

D
T

4
:
W
E

S
F

C

E
S

F

7
:

˜
E

S
F
∗

˜
T

em
p
∗ ,

D̃
T
∗

5
:

˜
E

S
F

˜
T

em
p

,
D̃

T

4
:

G
p

ro
p

3
:

J
∗ 2

5
:
J

2
4

:

J 2

F
ig

u
re

A
.2

:X
D

SM
fo

r
th

e
C

O
ar

ch
it

ec
tu

re

239

0
,1

5
:

C
O

O
R

1
1

:
k
L
∼
W
T

1
2

:
k
R

1
2

:
sc

a
le

rs
(6

)

1
,1

4
→

2
:

S
ys

-C
O

N
V

8
:
t/
c

0
,
h

0
,
M

0
,

A
R

0
,

Λ
0
,
S

0 re
f

D
c
,c
,0

,
E
S
F
c
,0

,
L
c
,0

W
c
,0
E

,
W
c
,c
,0

T
,

Θ
c
,c
,0

w
0 D

,
w

0 E
S
F

,
w

0 L

w
0 W
E

,
w

0 W
T

,
w

0 Θ

1
0

:
t/
c
c
,s

,
A
R
c
,s

Λ
c
,s

,
S
c
,s

re
f

L
c
,s

,
W
c
,s
E

w
s W
T

,
w
s Θ

1
0

:
t/
c
s
,
h
c
,s

,
M
c
,s

A
R
s
,
Λ
s
,
S
s re

f

E
S
F
c
,s

,
W
c
,c
,s

T
,
Θ
c
,c
,s

w
s D

,
w
s L

1
0

:
h
s
,
M
s

D
c
,c
,s

w
s E
S
F

,
w
s W
E

2
:
t/
c
c
,s

,
A
R
c
,s

Λ
c
,s

,
S
c
,s

re
f

L
c
,s

,
W
c
,s
E

w
s Θ

,
w
s W
T

2
:
t/
c
s
,
h
c
,s

,
M
c
,s

A
R
s
,
Λ
s
,
S

re
f

E
S
F
c
,s

,
W
c
,c
,s

T

Θ
c
,c
,s

,
w
s D

,
w
s L

2
:
h
s
,
M
s

D
c
,c
,s

w
s E
S
F

,
w
s W
E

1
5

:
t/
c
∗ ,
h
∗

M
∗ ,

A
R
∗

Λ
∗ ,
S
∗ re

f

1
4

:
t/
c
∗ ,
h
∗ ,
M
∗

A
R
∗ ,

Λ
∗ ,
S
∗ re

f

D
c
,c
,∗

,
E

S
F
c
,∗

,
L
c
,∗

W
c
,∗
E

,
W
c
,c
,∗

T
,

Θ
c
,c
,∗

w
∗ D

,
w
∗ E
S
F

,
w
∗ L

w
∗ W
E

,
w
∗ W
T

,
w
∗ Θ

8
,1

3
→

9
:

S
ys

-O
P

T
9

:
t/
c

1
0

:
t/
c

,
A

R

Λ
,
S

re
f

L
c

,
W
c E

w
W
T

,
w

Θ

1
0

:
t/
c

,
h

,
M

A
R

,
Λ

,
S

re
f

E
S

F
c

,
W
c
,c
T

,
Θ
c
,c

w
D

,
w
L

1
0

:
h

,
M

D
c
,c

w
E
S
F

,
w
W
E

1
1

:
h

,
M

1
1

:
L
c

W
c
,c
T

1
2

:
E

S
F
c

D
c
,c

,
L
c

W
c E

,
W
c
,c
T

Θ
c
,c

9
:

D
p

d
x

1
0

:
d

p
d

x

1
5

:
˜

d
p

d
x∗

1
3

:
˜

d
p

d
x

1
0

:

G
d

p
d

x

1
5

:
x
a se

c

λ
a

1
0

:

S
u

b
-S

M
-0

1
1

:
W
a T

W
a F

1
2

:
W
a T

Θ
a

1
5

:
C
a f

1
0

:

S
u

b
-S

M
-1

1
1

:
fi

n
a

1
2

:
D
a

L
a

1
5

:
T
a

1
0

:

S
u

b
-S

M
-2

1
1

:
S

F
C
a

1
2

:
W
a E

E
S

F
a

1
1

:

P
er

fo
rm

a
n

ce
1

2
:
R

1
5

:
g̃
∗ L∼
W
T

1
3

:
g̃
L
∼
W
T

1
1

:

G
L
∼
W
T

1
5

:
R̃
∗

1
4

:
R̃
∗

1
3

:
R̃

1
2

:

F
R

1
5

:
g
∗ D

,
g
∗ E
S
F

,
g
∗ L

g
∗ W
E

,
g
∗ W
T

,
g
∗ Θ

1
3

:
g
D

,
g
E
S
F

,
g
L

g
W
E

,
g
W
T

,
g

Θ

1
2

:

G
c

1
0

:
x
∗ se

c
,
λ
∗

W
∗ F
,
W
∗ T
,
Θ
∗

2
,7
→

3
:

S
u

b
-D

O
E

-0

1
0

:
C
∗ f

D
∗ ,
L
∗

f
in
∗

2
,7
→

3
:

S
u

b
-D

O
E

-1

1
0

:
E
S
F
∗

S
F
C
∗ ,
W
∗ E

T
∗

2
,7
→

3
:

S
u

b
-D

O
E

-2

a)
Sy

st
em

-l
ev

el
B

LI
SS

-2
00

0
ap

p
ro

ac
h

240

0
,1

5
:

C
O

O
R

3
:

0 se
c

λ
0

4
:
W

0

W
F
,0

,
N
z

5
:

sc
a

le
rs

(2
)

2
,7
→

3
:

S
u

b
-D

O
E

-0

4
:
t/
c
c

,
A
R
c

,
Λ
c

,
S
c re

f

L
c

,
W
c E

5
:
w

Θ

w
W
T

7
:
x
∗ se

c
,
λ
∗

3
,6
→

4
:

S
u

b
-O

P
T

-0
4

:
x s

e
c
,
λ

7
:
W
∗ F
,
W
∗ T

,
Θ
∗

4
:

S
tr

u
ct

u
re

s
5

:
σ

1
−

5
5

:
Θ

5
:
W
T

Θ

6
:
σ̃

1
−

5
5

:

G
σ

6
:

Θ̃
5

:

G
Θ

6
:
f 0

5
:

F
0

b
)

Su
b

-l
ev

el
0

B
LI

SS
-2

00
0

0
,1

5
:

C
O

O
R

3
:
C
0 f

4
:
C
D
,m
in

5
:

sc
a

le
rs

(2
)

2
,7
→

3
:

S
u

b
-D

O
E

-1

4
:
t/
c

,
h
c

,
M
c

,
A

R
,

Λ
,
S
re
f

E
S

F
c

,
W
c
,c
T

,
Θ
c
,c

5
:
w
D

w
L

7
:
C
∗ f

3
,6
→

4
:

S
u

b
-O

P
T

-1
4

:
C
f

7
:
D
∗ ,
L
∗

fi
n
∗

4
:

A
er

o
d

yn
a

m
ic

s

5
:
D

L

6
:
f 1

5
:

F
1

c)
Su

b
-l

ev
el

1
B

LI
SS

-2
00

0

0
,1
5
:

C
O
O
R

3
:
T
0

4
:
W
B
E

5
:
sc
a
le
rs
(2
)

2
,7
→
3
:

S
u
b
-D
O
E
-2

4
:
h

M
,
D
c
,c

5
:
w
E
S
F

w
W
E

7
:
T
∗

3
,6
→
4
:

S
u
b
-O
P
T
-2

4
:
T

7
:
E
S
F
∗

W
∗ E
,
S
F
C
∗

4
:

P
ro
p
u
ls
io
n

5
:
D
T

E
S
F
,
T
e
m
p

5
:
E
S
F

W
E

6
:
D̃
T

˜
E
S
F
,
˜

T
e
m
p

5
:

G
p
ro
p

6
:
f 2

5
:

F
2

d
)

Su
b

-l
ev

el
2

B
LI

SS
-2

00
0

F
ig

u
re

A
.3

:X
D

SM
fo

r
th

e
B

LI
SS

-2
00

0
ar

ch
it

ec
tu

re

241

ACKNOWLEDGMENTS

Although working on a PhD project might seem like a solitary endeavor, I could never
have completed it on my own. I’m indebted to a long list of people in many different
ways for the past years of having fun researching, reading, writing, traveling, presenting,
and so much more.

First of all, I should thank the person that brought the interesting PhD position on MDAO
at my alma mater to my attention: Reinier. Thanks for responding to a request from
a relative stranger four years ago and for being a mentor throughout the process with
helpful advice, brainstorms, and critical remarks over a cup of coffee.

I’m also thankful for my supervisory team: Gianfranco and Leo. First of all for hiring me,
an aerospace engineer who wandered off into the offshore engineering world, and bring-
ing me back in the realms of aerospace research and development. And secondly for
supporting me in my daily work by staying critical of all my output, suggesting new ap-
proaches, and enthusiastically supporting my research on every front. I want to specif-
ically thank Gianfranco for his feedback on all the writing I have done. I believe your
tireless reviewing effort took our publications and this dissertation to a higher level. I’d
like to thank my committee members for the time and effort they took to read my draft
dissertation, provide me with valuable feedback, and initialize fruitful discussions.

My research was financed by the European Union through the AGILE project. Thereby
it was supported by any tax-paying citizen of the union, and I’m grateful to anyone that
is supportive of the EU and has worked (or even fought) to achieve this ridiculously am-
bitious “collaborative framework” that is the European Union. Especially in times like
these, I feel it is important to stress the positive message of opportunities that arise when
we work together and prioritize international collaboration over national interests.

To be a bit more specific, I want to thank all the participants of the AGILE project, which
provided me with such an inspiring and valuable environment to do my research. You
are too many to name individually, so I have to limit myself to mere highlights. Pier,
thank you for being such a great manager of the project and creating an environment
to collaborate so successfully with all participants. Bastiaan and Benedikt, it was a plea-
sure to develop core components of our very own next-generation MDAO framework
with you. Thanks for all the brainstorm, debug, and support sessions we’ve spent to-
gether. My work would not have been what it came to be without your contributions to
the project and your effort and eagerness to bring it all together. I also want to thank the
various participants that so enthusiastically (and maybe naively) took up the challenge
to test my developments within their own platforms and/or design projects and provided
me with valuable feedback: Riccardo, Luca, Pierluigi, Dominique, Aidan, Francesco, Pra-
jwal, Pier, and Thierry, and so many more. Your enthusiasm and patience for the sake of
science has been a humbling and motivating experience for me. While mentioning Luca
and Pierluigi, I also have to thank them and Fabrizio for meeting my dietary require-
ments for the Naples meetings and successfully optimizing the number of Napolitan
pizze, espressi, and babas. Grazie mille!

243

Not only Italy played a key culinary role in my research, France is also worth mention-
ing. Nathalie, thank you for inviting me for an exchange period at ONERA and your trust
in and support of my work. My stay in Toulouse was perfectly timed and allowed me to
have a period of complete focus when I needed it most. Also merci beaucoup Thierry,
for sharing your office and minion army with me, and teaching me valuable French ex-
pressions that one does not encounter in the dictionary. Sylvain and Sebastian, thanks
for making me feel welcome in Toulouse and the surrounding skiing areas. Also, thank
you Joseph for inviting me back to present my work in your MDAO course and allowing
me to once again test the rich multidisciplinary culinary traditions of France.

In my four years as PhD candidate, I’ve also had the pleasure to collaborate with multi-
ple students and supervise some of them during their graduation projects. Andreas was
there when the first lines of code were written for the KADMOS package. Thanks for your
contribution and the nice discussions we had on what KADMOS should and shouldn’t
be. Daniël and Robin have been a huge help during my effort to ‘CPACSize’ the TU Delft
tools. Lukas was a joy to work with and implemented an initial version of CMDOWS like
it was his daily business. Maaike was a tour-de-force in documenting and cleaning the
code bases, which grew out of hand very quickly. And after Daniël was done CPACSizing,
he developed the first version of OpenLEGO and singlehandedly connected a European
and American MDAO research framework. Finally, Anne-Liza took up challenging topics
that risked becoming out-of-scope of my own work and did a fantastic job tackling them.
I’m indebted to all these students and grateful for the rigor and enthusiasm with which
they took up the tasks in front of them.

My period as a PhD candidate would not have been so enjoyable without so many fun
and interesting colleagues. I will never forget my first proper hike during our Salzburg
trip, climbing the Untersberg on espadrilles! Thanks hike masters Tomas, Tom, Nando,
Toni, Salvo, and Reynard for not leaving an unprepared hiker behind. Another amaz-
ing trip took me all the way to India to attend the wedding of my dear friend and of-
fice mate Akshay, a.k.a. “The Diesel Engine”. Thanks Akshay and Spoorti for having us
and showing us what Indian hospitality and weddings are all about. Back at the office,
I’m also indebted to Fabrizio for the occasional much-needed caffeine shot that happily
dripped out of his Nespresso machine, accompanied by an exchange of recommenda-
tions on where to go in Rotterdam and on Sicily. There are many more activities to be
named, such as jazz concerts with Toni, bike rides with Nitish, more group trips abroad,
and of course many many beers that would not have been the same without your com-
pany. Thanks for that Toni, Akshito, Salvo, Tomas, Tom, Nando, Reynard, Andre, Adam,
Tambe-G, Biagio, Sebastian, Marco, Matteo, Maurice, Reno, Sonia, and Lucia.

Despite so much help and support, working on a PhD project still leads to some peri-
ods of stress and frustrations. Luckily there was the weekly A.C. Brancaleone football
match to get rid of these. Here is not the place to comment on whether these emotions
simply evaporated though physical activity, or were merely replaced by the stress and
frustrations on our team’s performance. Let’s just say that it’s a good thing us Brancale-
one players pursued careers in research rather than in professional sports... Regardless,
thanks a million Aquilante, Bastone, Blanco, Guntharius, Scusi, Sinigaglia, d’Arhnem,
Bastiaan, Marcel, Tje, Oliviero, Juan, LeBlanc, Buri, Zeno, and many weekly substitutes
for being such good sports, before and after the many matches we played.

I’m also lucky to have many long-term friends that have supported me along the road.
Vincent, who pursued his own PhD on the other side of the world, was one of the best to

244

discuss common struggles and I’m very grateful we could meet so many times on either
side of the Atlantic to exchange our experiences. Bob has been a constant support at our
base lunch station Il Tartufo. Marcin & Haley, thanks for many wonderful evenings and
trips, and for letting me obtain one of the most honorable titles imaginable by making
me the offer I could never refuse to be the proud godfather of Austin. Sascha & Mar-
ius, thanks for your enthusiasm and so many negronis. Ferdi, being your best man was
one of the highlights of the past four years for me. Marjo & Aart, having you over in
Toulouse was a match made in heaven, even the weather gods strongly agreed on that.
Also thanks to the “Rotterdam Art Crew” (Niek, Riri, The Karlenno’s, Milou) for many
evenings of philosophical considerations, which inspired one of my propositions, and
demonstrating my personal limits through pisco sours (never again!) and old fashioneds.
Riri, thanks for being such a loyal friend and for sharing so many good movies, food, and
cultural trips.

I would not have the person I am today without the support of my family. I would like
to thank my parents for raising me to always pursue the best possible education I could
find, giving me freedom to develop myself, and supporting me throughout the many
years of study I enjoyed before eventually starting my PhD research. I’m also grateful for
having such a fantastic brother and sister, who freed my mind from its PhD walls with the
occasional cultural or sportive activity. And Melvin, also thanks a lot for your practical
advice and help with front-ending the online KADMOS interface. You’ve become a true
programming mastermind.

I also owe a lot to my inlaws, Jos & Lorraine and Hans & Petra. Jos, thanks for the many
inspirational wines and the occasional cigar accompanied with much required and in-
valuable moral support. Also thanks for editing the Dutch translations in this book. Lor-
raine, thanks for your emotional support and for fueling my research endeavor with your
many culinary creations that kept my spirits high (also many thanks for ironing so many
shirts for every meeting and conference I had to attend). I also like to thank Hans for his
invaluable advice on the lay-out of this book. Your cover design perfectly summarizes
my research as an abstract work of art.

Last, but furthest from least, I thank mia bella principessa Nina. If I’d had to fully explain
why, I would need to write another book (and I’m not planning on writing any more
books for a long time). Nina, you have been my pillar of joie-de-vivre, my infinite moral
and emotional support, and I consider myself the luckiest man on the planet to have
shared these past four research years with you by my side.

245

CURRICULUM VITAE

Imco van Gent

20-8-1988 Born in Rotterdam, the Netherlands

RESEARCH AND ENGINEERING

2015–2019 PhD in multidisciplinary design analysis and optimization
Delft University of Technology, Delft, the Netherlands
thesis AGILE MDAO Systems - A Graph-based Methodology to

Enhance Collaborative Multidisciplinary Design
promotor prof. dr. ir. L. L. M. Veldhuis
copromotor dr. ir. G. La Rocca

2013–2015 Project and Lead Engineer
Temporary Works Design B.V., Rotterdam, the Netherlands

EDUCATION

2015–2019 Doctoral Education Program
Delft University of Technology, Delft, the Netherlands

2010–2012 MSc in Aerospace Engineering
Delft University of Technology, Delft, the Netherlands
thesis Cost-Weight Trades for Modular Composite Structures
supervisor prof. dr. C. Kassapoglou

2009–2010 Honours Track in Philosophy of Science
Leiden University, Leiden, the Netherlands

2006–2009 BSc in Aerospace Engineering
Delft University of Technology, Delft, the Netherlands
minor Aerospace System Design and Technology

2000–2006 Pre-University Education
Emmauscollege, Rotterdam, the Netherlands

247

LIST OF PUBLICATIONS

JOURNAL PAPERS

5. van Gent, I., Aigner, B., Beijer, B., Jepsen, J. and La Rocca, G., “Knowledge Architecture Sup-
porting the Next Generation of MDO in the AGILE Paradigm,” Progress in Aerospace Sci-
ences, (accepted for publication).

4. van Gent, I. and La Rocca, G., “Formulation and Integration of MDAO Systems for Collab-
orative Design: A Graph-based Methodological Approach,” Aerospace Science and Technol-
ogy, Vol. 90, pp. 410–433, 2019. doi: 10.1016/j.ast.2019.04.039

3. van Gent, I., La Rocca, G. and Hoogreef, M.F.M., “CMDOWS: A Proposed New Standard to
Store and Exchange MDO systems”, CEAS Aeronautical Journal, Vol. 9, Iss. 4, pp. 607-627,
2018. doi: 10.1007/s13272-018-0307-2

2. Aigner, B., van Gent, I., La Rocca, G., Stumpf, E. and Veldhuis, L.L.M., “Graph-based Algo-
rithms and Data-driven Documents for Formulation and Visualization of Large MDO Sys-
tems”, CEAS Aeronautical Journal, Vol. 9, Iss. 4, pp. 695-709, 2018. doi: 10.1007/s13272-018-
0312-5

1. van Gent, I. and Kassapoglou, C., “Cost-weight Trades for Modular Composite Structures,”

Structural and Multidisciplinary Optimization, Vol. 49, Iss. 6, pp. 931–952, 2014.

doi: 10.1007/s00158-013-1019-1

CONFERENCE PAPERS

10. Ciampa, P.D., Prakasha, P.S., Torrigiani, F., Walther, J., Lefebvre, T., Bartoli, N., Timmermans,
H., Della Vecchia, P., Rajpal, D., van Gent, I., La Rocca, G., Fioriti, M., Cerino, G., Maierl, R.,
Charbonnier, D., Jungo, A., Aigner, B., Anisimov, K., Mirzoyan, A. and Voskuijl, M., “Stream-
lining Cross-organizational Aircraft Development: Results from the AGILE Project.” AIAA
Aviation 2019 Forum, AIAA Paper 2019-3454, June 2019. doi: 10.2514/6.2019-3454

9. Lombardi, R., van Gent, I. and La Rocca, G., “Reconfigurable Formulation and Implemen-
tation of MDAO Systems,” NAFEMS World Congress 2019, June 2019.

8. van Gent, I., Aigner, B., Beijer, B. and La Rocca, G., “A Critical Look at Design Automation
Solutions for Collaborative MDO in the AGILE Paradigm,” 2018 Multidisciplinary Analysis
and Optimization Conference, AIAA Paper 2018-3251, June 2018. doi: 10.2514/6.2018-3251

7. Lefebvre, T., Bartoli, N., Dubreuil, S., Panzeri, M., Lombardi, R., Lammen, W., Zhang, M.,
van Gent, I. and Ciampa, P.D., “A Clustered and Surrogate-based MDA Use Case for MDO
scenarios in AGILE Project,” 2018 Multidisciplinary Analysis and Optimization Conference,
AIAA Paper 2018-3252, June 2018. doi: 10.2514/6.2018-3252

6. Prakasha, P.S., Ciampa, P.D., Della Vecchia, P., Aigner, B. and van Gent, I., “MDO Framework
for University Research Collaboration: AGILE Academy Initiatives & Outcomes,” 2018 Mul-
tidisciplinary Analysis and Optimization Conference, AIAA Paper 2018-3254, June 2018. doi:
10.2514/6.2018-3254

249

5. van Gent, I., La Rocca, G. and Hoogreef, M.F.M., “CMDOWS: A Proposed New Standard To
Store And Exchange MDO Systems,” 6th CEAS Air and Space Conference, CEAS Paper 969,
October 2017.

4. Aigner, B., van Gent, I., La Rocca, G., Stumpf, E. and Veldhuis, L.L.M., “Graph-based Algo-
rithms and Data-driven Documents for Formulation and Visualization of Large MDO Sys-
tems,” 6th CEAS Air and Space Conference, CEAS Paper 173, October 2017.

3. van Gent, I., Lombardi, R., La Rocca, G. and d’Ippolito, R., “A Fully Automated Chain from
MDAO Problem Formulation to Workflow Execution,” EUROGEN 2017, September 2017.

2. van Gent, I., Ciampa, P.D., Aigner, B., Jepsen, J., La Rocca, G. and Schut, J., “Knowledge
Architecture Supporting the Collaborative MDO in the AGILE Paradigm,” 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, AIAA Paper 2017-4139, June 2017.
doi: 10.2514/6.2017-4139

1. van Gent, I., La Rocca, G., Veldhuis, L.L.M., “Composing MDAO Symphonies: Graph-based

Generation and Manipulation of Large Multidisciplinary Systems,” 18th AIAA/ISSMO Mul-

tidisciplinary Analysis and Optimization Conference, AIAA 2017-3663, June 2017.

250

	Summary
	Samenvatting
	Contents
	Nomenclature
	I Background
	Introduction
	State of the art in MDAO system management
	Composition
	Decentralized data mapping approach
	Centralized data mapping approach
	Comparison and conclusion

	Representation
	Human-readable
	Machine-interpretable

	Manipulation
	Coordination
	Monolithic architectures
	Distributed architecture: Collaborative Optimization
	Distributed architecture: BLISS-2000

	Execution
	RCE
	Optimus
	Isight
	ModelCenter Integrate
	HEEDS
	OpenMDAO
	GEMS

	Framework integration
	FrAECs
	IDEaliSM
	MDA-MDO project
	Bombardier's MDO project

	Towards a new framework generation
	MDAO framework generations
	AGILE project description
	Current limitations and future needs

	II Developments
	Graph-based methodological approach for MDAO system development
	Functional requirements
	Graph syntax and main graph classes
	Node definitions
	Edge definitions
	Main graph class definitions

	MDAO system graph types
	Definition of MDAO system graphs
	Repository connectivity graph
	Fundamental problem graph
	MDAO data graph
	MDAO process graph

	Automated capabilities for graph-based systems
	XDSM visualization of system graphs
	Architecture reconfiguration
	Sequencing algorithms
	Decomposition algorithm

	Validation case study: supersonic business jet
	Stage I: Tool repository
	Stage II: MDO problem
	Stage III: Solution strategies

	Demonstration case study: wing design
	Tool repository
	Initial design point (design convergence study)
	Design space exploration (DOE)
	MDO study

	Discussion
	Impact on collaborative MDAO development process
	Originality

	Proposed standard to store and exchange MDAO system formulations
	Introduction
	Framework applications
	Motivation
	State of the art
	Impact on framework set-up

	Functional requirements
	Definition of the storage standard
	Elements in the information category
	Elements in the nodes category
	Elements in the connections category

	Illustrative example: Sellar problem
	Stage I: Tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy

	Conclusion

	Bridging the gap between MDAO system formulation and execution
	Introduction
	RCE
	Materialization approach
	Verification of materialized workflows
	Development process validation

	Optimus
	Materialization approach
	Verification of materialized workflows
	Comparison manual and automated process
	Development process validation

	OpenMDAO
	Materialization approach: OpenLEGO
	Verification of materialized workflows
	Development process validation

	Platform comparison

	III Framework integrations
	Integration of developed methodology in third-generation MDAO framework
	Knowledge architecture
	Methodology
	Implementation: AGILE development framework

	Framework demonstrator: airliner
	Step I: Define design case and requirements
	Step II: Specify product model and design competences
	Step III: Formulate design problem and solution strategy
	Steps IV and V

	Framework assessment: aircraft design cases
	Design case descriptions
	Summarized results

	Assessment results
	MDAO system storage with CMDOWS
	MDAO system formulation with KADMOS
	Workflow materialization in RCE and Optimus
	Complete AGILE development framework

	Restructuring a state-of-the-art aircraft design toolbox
	Introduction: the Initiator toolbox
	Configuration: establishing an agile Initiator
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Reconfiguration: optimization
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Second reconfiguration: additional constraint

	IV Outlook & conclusion
	Outlook: composite architectures and MDAO bots
	Composite architectures
	MDAO bots
	Conceptual definition of several MDAO bots
	Bot automatic selection approaches
	MDAO bot factory

	Conclusions and Recommendations
	Developments and achievements
	Framework integrations
	AGILE development framework
	Restructured aircraft design toolbox

	Recommendations and outlook

	References
	Software references

	V Appendices
	Additional architectures for the SSBJ case study
	Acknowledgments
	Curriculum Vitae
	List of Publications

	20190915_PhDthesis_finalchapterpages.pdf
	Summary
	Samenvatting
	Contents
	Nomenclature
	I Background
	Introduction
	State of the art in MDAO system management
	Composition
	Decentralized data mapping approach
	Centralized data mapping approach
	Comparison and conclusion

	Representation
	Human-readable
	Machine-interpretable

	Manipulation
	Coordination
	Monolithic architectures
	Distributed architecture: Collaborative Optimization
	Distributed architecture: BLISS-2000

	Execution
	RCE
	Optimus
	Isight
	ModelCenter Integrate
	HEEDS
	OpenMDAO
	GEMS

	Framework integration
	FrAECs
	IDEaliSM
	MDA-MDO project
	Bombardier's MDO project

	Towards a new framework generation
	MDAO framework generations
	AGILE project description
	Current limitations and future needs

	II Developments
	Graph-based methodological approach for MDAO system development
	Functional requirements
	Graph syntax and main graph classes
	Node definitions
	Edge definitions
	Main graph class definitions

	MDAO system graph types
	Definition of MDAO system graphs
	Repository connectivity graph
	Fundamental problem graph
	MDAO data graph
	MDAO process graph

	Automated capabilities for graph-based systems
	XDSM visualization of system graphs
	Architecture reconfiguration
	Sequencing algorithms
	Decomposition algorithm

	Validation case study: supersonic business jet
	Stage I: Tool repository
	Stage II: MDO problem
	Stage III: Solution strategies

	Demonstration case study: wing design
	Tool repository
	Initial design point (design convergence study)
	Design space exploration (DOE)
	MDO study

	Discussion
	Impact on collaborative MDAO development process
	Originality

	Proposed standard to store and exchange MDAO system formulations
	Introduction
	Framework applications
	Motivation
	State of the art
	Impact on framework set-up

	Functional requirements
	Definition of the storage standard
	Elements in the information category
	Elements in the nodes category
	Elements in the connections category

	Illustrative example: Sellar problem
	Stage I: Tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy

	Conclusion

	Bridging the gap between MDAO system formulation and execution
	Introduction
	RCE
	Materialization approach
	Verification of materialized workflows
	Development process validation

	Optimus
	Materialization approach
	Verification of materialized workflows
	Comparison manual and automated process
	Development process validation

	OpenMDAO
	Materialization approach: OpenLEGO
	Verification of materialized workflows
	Development process validation

	Platform comparison

	III Framework integrations
	Integration of developed methodology in third-generation MDAO framework
	Knowledge architecture
	Methodology
	Implementation: AGILE development framework

	Framework demonstrator: airliner
	Step I: Define design case and requirements
	Step II: Specify product model and design competences
	Step III: Formulate design problem and solution strategy
	Steps IV and V

	Framework assessment: aircraft design cases
	Design case descriptions
	Summarized results

	Assessment results
	MDAO system storage with CMDOWS
	MDAO system formulation with KADMOS
	Workflow materialization in RCE and Optimus
	Complete AGILE development framework

	Restructuring a state-of-the-art aircraft design toolbox
	Introduction: the Initiator toolbox
	Configuration: establishing an agile Initiator
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Reconfiguration: optimization
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Second reconfiguration: additional constraint

	IV Outlook & conclusion
	Outlook: composite architectures and MDAO bots
	Composite architectures
	MDAO bots
	Conceptual definition of several MDAO bots
	Bot automatic selection approaches
	MDAO bot factory

	Conclusions and Recommendations
	Developments and achievements
	Framework integrations
	AGILE development framework
	Restructured aircraft design toolbox

	Recommendations and outlook

	References
	Software references

	V Appendices
	Additional architectures for the SSBJ case study
	Acknowledgments
	Curriculum Vitae
	List of Publications

	20190915_PhDthesis_finalchapterpages.pdf
	Summary
	Samenvatting
	Contents
	Nomenclature
	I Background
	Introduction
	State of the art in MDAO system management
	Composition
	Decentralized data mapping approach
	Centralized data mapping approach
	Comparison and conclusion

	Representation
	Human-readable
	Machine-interpretable

	Manipulation
	Coordination
	Monolithic architectures
	Distributed architecture: Collaborative Optimization
	Distributed architecture: BLISS-2000

	Execution
	RCE
	Optimus
	Isight
	ModelCenter Integrate
	HEEDS
	OpenMDAO
	GEMS

	Framework integration
	FrAECs
	IDEaliSM
	MDA-MDO project
	Bombardier's MDO project

	Towards a new framework generation
	MDAO framework generations
	AGILE project description
	Current limitations and future needs

	II Developments
	Graph-based methodological approach for MDAO system development
	Functional requirements
	Graph syntax and main graph classes
	Node definitions
	Edge definitions
	Main graph class definitions

	MDAO system graph types
	Definition of MDAO system graphs
	Repository connectivity graph
	Fundamental problem graph
	MDAO data graph
	MDAO process graph

	Automated capabilities for graph-based systems
	XDSM visualization of system graphs
	Architecture reconfiguration
	Sequencing algorithms
	Decomposition algorithm

	Validation case study: supersonic business jet
	Stage I: Tool repository
	Stage II: MDO problem
	Stage III: Solution strategies

	Demonstration case study: wing design
	Tool repository
	Initial design point (design convergence study)
	Design space exploration (DOE)
	MDO study

	Discussion
	Impact on collaborative MDAO development process
	Originality

	Proposed standard to store and exchange MDAO system formulations
	Introduction
	Framework applications
	Motivation
	State of the art
	Impact on framework set-up

	Functional requirements
	Definition of the storage standard
	Elements in the information category
	Elements in the nodes category
	Elements in the connections category

	Illustrative example: Sellar problem
	Stage I: Tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy

	Conclusion

	Bridging the gap between MDAO system formulation and execution
	Introduction
	RCE
	Materialization approach
	Verification of materialized workflows
	Development process validation

	Optimus
	Materialization approach
	Verification of materialized workflows
	Comparison manual and automated process
	Development process validation

	OpenMDAO
	Materialization approach: OpenLEGO
	Verification of materialized workflows
	Development process validation

	Platform comparison

	III Framework integrations
	Integration of developed methodology in third-generation MDAO framework
	Knowledge architecture
	Methodology
	Implementation: AGILE development framework

	Framework demonstrator: airliner
	Step I: Define design case and requirements
	Step II: Specify product model and design competences
	Step III: Formulate design problem and solution strategy
	Steps IV and V

	Framework assessment: aircraft design cases
	Design case descriptions
	Summarized results

	Assessment results
	MDAO system storage with CMDOWS
	MDAO system formulation with KADMOS
	Workflow materialization in RCE and Optimus
	Complete AGILE development framework

	Restructuring a state-of-the-art aircraft design toolbox
	Introduction: the Initiator toolbox
	Configuration: establishing an agile Initiator
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Reconfiguration: optimization
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Second reconfiguration: additional constraint

	IV Outlook & conclusion
	Outlook: composite architectures and MDAO bots
	Composite architectures
	MDAO bots
	Conceptual definition of several MDAO bots
	Bot automatic selection approaches
	MDAO bot factory

	Conclusions and Recommendations
	Developments and achievements
	Framework integrations
	AGILE development framework
	Restructured aircraft design toolbox

	Recommendations and outlook

	References
	Software references

	V Appendices
	Additional architectures for the SSBJ case study
	Acknowledgments
	Curriculum Vitae
	List of Publications

	20190915_PhDthesis_finalchapterpages.pdf
	Summary
	Samenvatting
	Contents
	Nomenclature
	I Background
	Introduction
	State of the art in MDAO system management
	Composition
	Decentralized data mapping approach
	Centralized data mapping approach
	Comparison and conclusion

	Representation
	Human-readable
	Machine-interpretable

	Manipulation
	Coordination
	Monolithic architectures
	Distributed architecture: Collaborative Optimization
	Distributed architecture: BLISS-2000

	Execution
	RCE
	Optimus
	Isight
	ModelCenter Integrate
	HEEDS
	OpenMDAO
	GEMS

	Framework integration
	FrAECs
	IDEaliSM
	MDA-MDO project
	Bombardier's MDO project

	Towards a new framework generation
	MDAO framework generations
	AGILE project description
	Current limitations and future needs

	II Developments
	Graph-based methodological approach for MDAO system development
	Functional requirements
	Graph syntax and main graph classes
	Node definitions
	Edge definitions
	Main graph class definitions

	MDAO system graph types
	Definition of MDAO system graphs
	Repository connectivity graph
	Fundamental problem graph
	MDAO data graph
	MDAO process graph

	Automated capabilities for graph-based systems
	XDSM visualization of system graphs
	Architecture reconfiguration
	Sequencing algorithms
	Decomposition algorithm

	Validation case study: supersonic business jet
	Stage I: Tool repository
	Stage II: MDO problem
	Stage III: Solution strategies

	Demonstration case study: wing design
	Tool repository
	Initial design point (design convergence study)
	Design space exploration (DOE)
	MDO study

	Discussion
	Impact on collaborative MDAO development process
	Originality

	Proposed standard to store and exchange MDAO system formulations
	Introduction
	Framework applications
	Motivation
	State of the art
	Impact on framework set-up

	Functional requirements
	Definition of the storage standard
	Elements in the information category
	Elements in the nodes category
	Elements in the connections category

	Illustrative example: Sellar problem
	Stage I: Tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy

	Conclusion

	Bridging the gap between MDAO system formulation and execution
	Introduction
	RCE
	Materialization approach
	Verification of materialized workflows
	Development process validation

	Optimus
	Materialization approach
	Verification of materialized workflows
	Comparison manual and automated process
	Development process validation

	OpenMDAO
	Materialization approach: OpenLEGO
	Verification of materialized workflows
	Development process validation

	Platform comparison

	III Framework integrations
	Integration of developed methodology in third-generation MDAO framework
	Knowledge architecture
	Methodology
	Implementation: AGILE development framework

	Framework demonstrator: airliner
	Step I: Define design case and requirements
	Step II: Specify product model and design competences
	Step III: Formulate design problem and solution strategy
	Steps IV and V

	Framework assessment: aircraft design cases
	Design case descriptions
	Summarized results

	Assessment results
	MDAO system storage with CMDOWS
	MDAO system formulation with KADMOS
	Workflow materialization in RCE and Optimus
	Complete AGILE development framework

	Restructuring a state-of-the-art aircraft design toolbox
	Introduction: the Initiator toolbox
	Configuration: establishing an agile Initiator
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Reconfiguration: optimization
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Second reconfiguration: additional constraint

	IV Outlook & conclusion
	Outlook: composite architectures and MDAO bots
	Composite architectures
	MDAO bots
	Conceptual definition of several MDAO bots
	Bot automatic selection approaches
	MDAO bot factory

	Conclusions and Recommendations
	Developments and achievements
	Framework integrations
	AGILE development framework
	Restructured aircraft design toolbox

	Recommendations and outlook

	References
	Software references

	V Appendices
	Additional architectures for the SSBJ case study
	Acknowledgments
	Curriculum Vitae
	List of Publications

	20190915_PhDthesis_finalchapterpages.pdf
	Summary
	Samenvatting
	Contents
	Nomenclature
	I Background
	Introduction
	State of the art in MDAO system management
	Composition
	Decentralized data mapping approach
	Centralized data mapping approach
	Comparison and conclusion

	Representation
	Human-readable
	Machine-interpretable

	Manipulation
	Coordination
	Monolithic architectures
	Distributed architecture: Collaborative Optimization
	Distributed architecture: BLISS-2000

	Execution
	RCE
	Optimus
	Isight
	ModelCenter Integrate
	HEEDS
	OpenMDAO
	GEMS

	Framework integration
	FrAECs
	IDEaliSM
	MDA-MDO project
	Bombardier's MDO project

	Towards a new framework generation
	MDAO framework generations
	AGILE project description
	Current limitations and future needs

	II Developments
	Graph-based methodological approach for MDAO system development
	Functional requirements
	Graph syntax and main graph classes
	Node definitions
	Edge definitions
	Main graph class definitions

	MDAO system graph types
	Definition of MDAO system graphs
	Repository connectivity graph
	Fundamental problem graph
	MDAO data graph
	MDAO process graph

	Automated capabilities for graph-based systems
	XDSM visualization of system graphs
	Architecture reconfiguration
	Sequencing algorithms
	Decomposition algorithm

	Validation case study: supersonic business jet
	Stage I: Tool repository
	Stage II: MDO problem
	Stage III: Solution strategies

	Demonstration case study: wing design
	Tool repository
	Initial design point (design convergence study)
	Design space exploration (DOE)
	MDO study

	Discussion
	Impact on collaborative MDAO development process
	Originality

	Proposed standard to store and exchange MDAO system formulations
	Introduction
	Framework applications
	Motivation
	State of the art
	Impact on framework set-up

	Functional requirements
	Definition of the storage standard
	Elements in the information category
	Elements in the nodes category
	Elements in the connections category

	Illustrative example: Sellar problem
	Stage I: Tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy

	Conclusion

	Bridging the gap between MDAO system formulation and execution
	Introduction
	RCE
	Materialization approach
	Verification of materialized workflows
	Development process validation

	Optimus
	Materialization approach
	Verification of materialized workflows
	Comparison manual and automated process
	Development process validation

	OpenMDAO
	Materialization approach: OpenLEGO
	Verification of materialized workflows
	Development process validation

	Platform comparison

	III Framework integrations
	Integration of developed methodology in third-generation MDAO framework
	Knowledge architecture
	Methodology
	Implementation: AGILE development framework

	Framework demonstrator: airliner
	Step I: Define design case and requirements
	Step II: Specify product model and design competences
	Step III: Formulate design problem and solution strategy
	Steps IV and V

	Framework assessment: aircraft design cases
	Design case descriptions
	Summarized results

	Assessment results
	MDAO system storage with CMDOWS
	MDAO system formulation with KADMOS
	Workflow materialization in RCE and Optimus
	Complete AGILE development framework

	Restructuring a state-of-the-art aircraft design toolbox
	Introduction: the Initiator toolbox
	Configuration: establishing an agile Initiator
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Reconfiguration: optimization
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Second reconfiguration: additional constraint

	IV Outlook & conclusion
	Outlook: composite architectures and MDAO bots
	Composite architectures
	MDAO bots
	Conceptual definition of several MDAO bots
	Bot automatic selection approaches
	MDAO bot factory

	Conclusions and Recommendations
	Developments and achievements
	Framework integrations
	AGILE development framework
	Restructured aircraft design toolbox

	Recommendations and outlook

	References
	Software references

	V Appendices
	Additional architectures for the SSBJ case study
	Acknowledgments
	Curriculum Vitae
	List of Publications

	20190915_PhDthesis_finalchapterpages.pdf
	Summary
	Samenvatting
	Contents
	Nomenclature
	I Background
	Introduction
	State of the art in MDAO system management
	Composition
	Decentralized data mapping approach
	Centralized data mapping approach
	Comparison and conclusion

	Representation
	Human-readable
	Machine-interpretable

	Manipulation
	Coordination
	Monolithic architectures
	Distributed architecture: Collaborative Optimization
	Distributed architecture: BLISS-2000

	Execution
	RCE
	Optimus
	Isight
	ModelCenter Integrate
	HEEDS
	OpenMDAO
	GEMS

	Framework integration
	FrAECs
	IDEaliSM
	MDA-MDO project
	Bombardier's MDO project

	Towards a new framework generation
	MDAO framework generations
	AGILE project description
	Current limitations and future needs

	II Developments
	Graph-based methodological approach for MDAO system development
	Functional requirements
	Graph syntax and main graph classes
	Node definitions
	Edge definitions
	Main graph class definitions

	MDAO system graph types
	Definition of MDAO system graphs
	Repository connectivity graph
	Fundamental problem graph
	MDAO data graph
	MDAO process graph

	Automated capabilities for graph-based systems
	XDSM visualization of system graphs
	Architecture reconfiguration
	Sequencing algorithms
	Decomposition algorithm

	Validation case study: supersonic business jet
	Stage I: Tool repository
	Stage II: MDO problem
	Stage III: Solution strategies

	Demonstration case study: wing design
	Tool repository
	Initial design point (design convergence study)
	Design space exploration (DOE)
	MDO study

	Discussion
	Impact on collaborative MDAO development process
	Originality

	Proposed standard to store and exchange MDAO system formulations
	Introduction
	Framework applications
	Motivation
	State of the art
	Impact on framework set-up

	Functional requirements
	Definition of the storage standard
	Elements in the information category
	Elements in the nodes category
	Elements in the connections category

	Illustrative example: Sellar problem
	Stage I: Tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy

	Conclusion

	Bridging the gap between MDAO system formulation and execution
	Introduction
	RCE
	Materialization approach
	Verification of materialized workflows
	Development process validation

	Optimus
	Materialization approach
	Verification of materialized workflows
	Comparison manual and automated process
	Development process validation

	OpenMDAO
	Materialization approach: OpenLEGO
	Verification of materialized workflows
	Development process validation

	Platform comparison

	III Framework integrations
	Integration of developed methodology in third-generation MDAO framework
	Knowledge architecture
	Methodology
	Implementation: AGILE development framework

	Framework demonstrator: airliner
	Step I: Define design case and requirements
	Step II: Specify product model and design competences
	Step III: Formulate design problem and solution strategy
	Steps IV and V

	Framework assessment: aircraft design cases
	Design case descriptions
	Summarized results

	Assessment results
	MDAO system storage with CMDOWS
	MDAO system formulation with KADMOS
	Workflow materialization in RCE and Optimus
	Complete AGILE development framework

	Restructuring a state-of-the-art aircraft design toolbox
	Introduction: the Initiator toolbox
	Configuration: establishing an agile Initiator
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Reconfiguration: optimization
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Second reconfiguration: additional constraint

	IV Outlook & conclusion
	Outlook: composite architectures and MDAO bots
	Composite architectures
	MDAO bots
	Conceptual definition of several MDAO bots
	Bot automatic selection approaches
	MDAO bot factory

	Conclusions and Recommendations
	Developments and achievements
	Framework integrations
	AGILE development framework
	Restructured aircraft design toolbox

	Recommendations and outlook

	References
	Software references

	V Appendices
	Additional architectures for the SSBJ case study
	Acknowledgments
	Curriculum Vitae
	List of Publications

	20190915_PhDthesis_finalchapterpages.pdf
	Summary
	Samenvatting
	Contents
	Nomenclature
	I Background
	Introduction
	State of the art in MDAO system management
	Composition
	Decentralized data mapping approach
	Centralized data mapping approach
	Comparison and conclusion

	Representation
	Human-readable
	Machine-interpretable

	Manipulation
	Coordination
	Monolithic architectures
	Distributed architecture: Collaborative Optimization
	Distributed architecture: BLISS-2000

	Execution
	RCE
	Optimus
	Isight
	ModelCenter Integrate
	HEEDS
	OpenMDAO
	GEMS

	Framework integration
	FrAECs
	IDEaliSM
	MDA-MDO project
	Bombardier's MDO project

	Towards a new framework generation
	MDAO framework generations
	AGILE project description
	Current limitations and future needs

	II Developments
	Graph-based methodological approach for MDAO system development
	Functional requirements
	Graph syntax and main graph classes
	Node definitions
	Edge definitions
	Main graph class definitions

	MDAO system graph types
	Definition of MDAO system graphs
	Repository connectivity graph
	Fundamental problem graph
	MDAO data graph
	MDAO process graph

	Automated capabilities for graph-based systems
	XDSM visualization of system graphs
	Architecture reconfiguration
	Sequencing algorithms
	Decomposition algorithm

	Validation case study: supersonic business jet
	Stage I: Tool repository
	Stage II: MDO problem
	Stage III: Solution strategies

	Demonstration case study: wing design
	Tool repository
	Initial design point (design convergence study)
	Design space exploration (DOE)
	MDO study

	Discussion
	Impact on collaborative MDAO development process
	Originality

	Proposed standard to store and exchange MDAO system formulations
	Introduction
	Framework applications
	Motivation
	State of the art
	Impact on framework set-up

	Functional requirements
	Definition of the storage standard
	Elements in the information category
	Elements in the nodes category
	Elements in the connections category

	Illustrative example: Sellar problem
	Stage I: Tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy

	Conclusion

	Bridging the gap between MDAO system formulation and execution
	Introduction
	RCE
	Materialization approach
	Verification of materialized workflows
	Development process validation

	Optimus
	Materialization approach
	Verification of materialized workflows
	Comparison manual and automated process
	Development process validation

	OpenMDAO
	Materialization approach: OpenLEGO
	Verification of materialized workflows
	Development process validation

	Platform comparison

	III Framework integrations
	Integration of developed methodology in third-generation MDAO framework
	Knowledge architecture
	Methodology
	Implementation: AGILE development framework

	Framework demonstrator: airliner
	Step I: Define design case and requirements
	Step II: Specify product model and design competences
	Step III: Formulate design problem and solution strategy
	Steps IV and V

	Framework assessment: aircraft design cases
	Design case descriptions
	Summarized results

	Assessment results
	MDAO system storage with CMDOWS
	MDAO system formulation with KADMOS
	Workflow materialization in RCE and Optimus
	Complete AGILE development framework

	Restructuring a state-of-the-art aircraft design toolbox
	Introduction: the Initiator toolbox
	Configuration: establishing an agile Initiator
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Reconfiguration: optimization
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Second reconfiguration: additional constraint

	IV Outlook & conclusion
	Outlook: composite architectures and MDAO bots
	Composite architectures
	MDAO bots
	Conceptual definition of several MDAO bots
	Bot automatic selection approaches
	MDAO bot factory

	Conclusions and Recommendations
	Developments and achievements
	Framework integrations
	AGILE development framework
	Restructured aircraft design toolbox

	Recommendations and outlook

	References
	Software references

	V Appendices
	Additional architectures for the SSBJ case study
	Acknowledgments
	Curriculum Vitae
	List of Publications

	20190915_PhDthesis_finalchapterpages.pdf
	Summary
	Samenvatting
	Contents
	Nomenclature
	I Background
	Introduction
	State of the art in MDAO system management
	Composition
	Decentralized data mapping approach
	Centralized data mapping approach
	Comparison and conclusion

	Representation
	Human-readable
	Machine-interpretable

	Manipulation
	Coordination
	Monolithic architectures
	Distributed architecture: Collaborative Optimization
	Distributed architecture: BLISS-2000

	Execution
	RCE
	Optimus
	Isight
	ModelCenter Integrate
	HEEDS
	OpenMDAO
	GEMS

	Framework integration
	FrAECs
	IDEaliSM
	MDA-MDO project
	Bombardier's MDO project

	Towards a new framework generation
	MDAO framework generations
	AGILE project description
	Current limitations and future needs

	II Developments
	Graph-based methodological approach for MDAO system development
	Functional requirements
	Graph syntax and main graph classes
	Node definitions
	Edge definitions
	Main graph class definitions

	MDAO system graph types
	Definition of MDAO system graphs
	Repository connectivity graph
	Fundamental problem graph
	MDAO data graph
	MDAO process graph

	Automated capabilities for graph-based systems
	XDSM visualization of system graphs
	Architecture reconfiguration
	Sequencing algorithms
	Decomposition algorithm

	Validation case study: supersonic business jet
	Stage I: Tool repository
	Stage II: MDO problem
	Stage III: Solution strategies

	Demonstration case study: wing design
	Tool repository
	Initial design point (design convergence study)
	Design space exploration (DOE)
	MDO study

	Discussion
	Impact on collaborative MDAO development process
	Originality

	Proposed standard to store and exchange MDAO system formulations
	Introduction
	Framework applications
	Motivation
	State of the art
	Impact on framework set-up

	Functional requirements
	Definition of the storage standard
	Elements in the information category
	Elements in the nodes category
	Elements in the connections category

	Illustrative example: Sellar problem
	Stage I: Tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy

	Conclusion

	Bridging the gap between MDAO system formulation and execution
	Introduction
	RCE
	Materialization approach
	Verification of materialized workflows
	Development process validation

	Optimus
	Materialization approach
	Verification of materialized workflows
	Comparison manual and automated process
	Development process validation

	OpenMDAO
	Materialization approach: OpenLEGO
	Verification of materialized workflows
	Development process validation

	Platform comparison

	III Framework integrations
	Integration of developed methodology in third-generation MDAO framework
	Knowledge architecture
	Methodology
	Implementation: AGILE development framework

	Framework demonstrator: airliner
	Step I: Define design case and requirements
	Step II: Specify product model and design competences
	Step III: Formulate design problem and solution strategy
	Steps IV and V

	Framework assessment: aircraft design cases
	Design case descriptions
	Summarized results

	Assessment results
	MDAO system storage with CMDOWS
	MDAO system formulation with KADMOS
	Workflow materialization in RCE and Optimus
	Complete AGILE development framework

	Restructuring a state-of-the-art aircraft design toolbox
	Introduction: the Initiator toolbox
	Configuration: establishing an agile Initiator
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Reconfiguration: optimization
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Second reconfiguration: additional constraint

	IV Outlook & conclusion
	Outlook: composite architectures and MDAO bots
	Composite architectures
	MDAO bots
	Conceptual definition of several MDAO bots
	Bot automatic selection approaches
	MDAO bot factory

	Conclusions and Recommendations
	Developments and achievements
	Framework integrations
	AGILE development framework
	Restructured aircraft design toolbox

	Recommendations and outlook

	References
	Software references

	V Appendices
	Additional architectures for the SSBJ case study
	Acknowledgments
	Curriculum Vitae
	List of Publications

	20190915_PhDthesis_finalchapterpages.pdf
	Summary
	Samenvatting
	Contents
	Nomenclature
	I Background
	Introduction
	State of the art in MDAO system management
	Composition
	Decentralized data mapping approach
	Centralized data mapping approach
	Comparison and conclusion

	Representation
	Human-readable
	Machine-interpretable

	Manipulation
	Coordination
	Monolithic architectures
	Distributed architecture: Collaborative Optimization
	Distributed architecture: BLISS-2000

	Execution
	RCE
	Optimus
	Isight
	ModelCenter Integrate
	HEEDS
	OpenMDAO
	GEMS

	Framework integration
	FrAECs
	IDEaliSM
	MDA-MDO project
	Bombardier's MDO project

	Towards a new framework generation
	MDAO framework generations
	AGILE project description
	Current limitations and future needs

	II Developments
	Graph-based methodological approach for MDAO system development
	Functional requirements
	Graph syntax and main graph classes
	Node definitions
	Edge definitions
	Main graph class definitions

	MDAO system graph types
	Definition of MDAO system graphs
	Repository connectivity graph
	Fundamental problem graph
	MDAO data graph
	MDAO process graph

	Automated capabilities for graph-based systems
	XDSM visualization of system graphs
	Architecture reconfiguration
	Sequencing algorithms
	Decomposition algorithm

	Validation case study: supersonic business jet
	Stage I: Tool repository
	Stage II: MDO problem
	Stage III: Solution strategies

	Demonstration case study: wing design
	Tool repository
	Initial design point (design convergence study)
	Design space exploration (DOE)
	MDO study

	Discussion
	Impact on collaborative MDAO development process
	Originality

	Proposed standard to store and exchange MDAO system formulations
	Introduction
	Framework applications
	Motivation
	State of the art
	Impact on framework set-up

	Functional requirements
	Definition of the storage standard
	Elements in the information category
	Elements in the nodes category
	Elements in the connections category

	Illustrative example: Sellar problem
	Stage I: Tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy

	Conclusion

	Bridging the gap between MDAO system formulation and execution
	Introduction
	RCE
	Materialization approach
	Verification of materialized workflows
	Development process validation

	Optimus
	Materialization approach
	Verification of materialized workflows
	Comparison manual and automated process
	Development process validation

	OpenMDAO
	Materialization approach: OpenLEGO
	Verification of materialized workflows
	Development process validation

	Platform comparison

	III Framework integrations
	Integration of developed methodology in third-generation MDAO framework
	Knowledge architecture
	Methodology
	Implementation: AGILE development framework

	Framework demonstrator: airliner
	Step I: Define design case and requirements
	Step II: Specify product model and design competences
	Step III: Formulate design problem and solution strategy
	Steps IV and V

	Framework assessment: aircraft design cases
	Design case descriptions
	Summarized results

	Assessment results
	MDAO system storage with CMDOWS
	MDAO system formulation with KADMOS
	Workflow materialization in RCE and Optimus
	Complete AGILE development framework

	Restructuring a state-of-the-art aircraft design toolbox
	Introduction: the Initiator toolbox
	Configuration: establishing an agile Initiator
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Reconfiguration: optimization
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Second reconfiguration: additional constraint

	IV Outlook & conclusion
	Outlook: composite architectures and MDAO bots
	Composite architectures
	MDAO bots
	Conceptual definition of several MDAO bots
	Bot automatic selection approaches
	MDAO bot factory

	Conclusions and Recommendations
	Developments and achievements
	Framework integrations
	AGILE development framework
	Restructured aircraft design toolbox

	Recommendations and outlook

	References
	Software references

	V Appendices
	Additional architectures for the SSBJ case study
	Acknowledgments
	Curriculum Vitae
	List of Publications

	20190915_PhDthesis_finalchapterpages.pdf
	Summary
	Samenvatting
	Contents
	Nomenclature
	I Background
	Introduction
	State of the art in MDAO system management
	Composition
	Decentralized data mapping approach
	Centralized data mapping approach
	Comparison and conclusion

	Representation
	Human-readable
	Machine-interpretable

	Manipulation
	Coordination
	Monolithic architectures
	Distributed architecture: Collaborative Optimization
	Distributed architecture: BLISS-2000

	Execution
	RCE
	Optimus
	Isight
	ModelCenter Integrate
	HEEDS
	OpenMDAO
	GEMS

	Framework integration
	FrAECs
	IDEaliSM
	MDA-MDO project
	Bombardier's MDO project

	Towards a new framework generation
	MDAO framework generations
	AGILE project description
	Current limitations and future needs

	II Developments
	Graph-based methodological approach for MDAO system development
	Functional requirements
	Graph syntax and main graph classes
	Node definitions
	Edge definitions
	Main graph class definitions

	MDAO system graph types
	Definition of MDAO system graphs
	Repository connectivity graph
	Fundamental problem graph
	MDAO data graph
	MDAO process graph

	Automated capabilities for graph-based systems
	XDSM visualization of system graphs
	Architecture reconfiguration
	Sequencing algorithms
	Decomposition algorithm

	Validation case study: supersonic business jet
	Stage I: Tool repository
	Stage II: MDO problem
	Stage III: Solution strategies

	Demonstration case study: wing design
	Tool repository
	Initial design point (design convergence study)
	Design space exploration (DOE)
	MDO study

	Discussion
	Impact on collaborative MDAO development process
	Originality

	Proposed standard to store and exchange MDAO system formulations
	Introduction
	Framework applications
	Motivation
	State of the art
	Impact on framework set-up

	Functional requirements
	Definition of the storage standard
	Elements in the information category
	Elements in the nodes category
	Elements in the connections category

	Illustrative example: Sellar problem
	Stage I: Tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy

	Conclusion

	Bridging the gap between MDAO system formulation and execution
	Introduction
	RCE
	Materialization approach
	Verification of materialized workflows
	Development process validation

	Optimus
	Materialization approach
	Verification of materialized workflows
	Comparison manual and automated process
	Development process validation

	OpenMDAO
	Materialization approach: OpenLEGO
	Verification of materialized workflows
	Development process validation

	Platform comparison

	III Framework integrations
	Integration of developed methodology in third-generation MDAO framework
	Knowledge architecture
	Methodology
	Implementation: AGILE development framework

	Framework demonstrator: airliner
	Step I: Define design case and requirements
	Step II: Specify product model and design competences
	Step III: Formulate design problem and solution strategy
	Steps IV and V

	Framework assessment: aircraft design cases
	Design case descriptions
	Summarized results

	Assessment results
	MDAO system storage with CMDOWS
	MDAO system formulation with KADMOS
	Workflow materialization in RCE and Optimus
	Complete AGILE development framework

	Restructuring a state-of-the-art aircraft design toolbox
	Introduction: the Initiator toolbox
	Configuration: establishing an agile Initiator
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Reconfiguration: optimization
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Second reconfiguration: additional constraint

	IV Outlook & conclusion
	Outlook: composite architectures and MDAO bots
	Composite architectures
	MDAO bots
	Conceptual definition of several MDAO bots
	Bot automatic selection approaches
	MDAO bot factory

	Conclusions and Recommendations
	Developments and achievements
	Framework integrations
	AGILE development framework
	Restructured aircraft design toolbox

	Recommendations and outlook

	References
	Software references

	V Appendices
	Additional architectures for the SSBJ case study
	Acknowledgments
	Curriculum Vitae
	List of Publications

	20190915_PhDthesis_finalchapterpages.pdf
	Summary
	Samenvatting
	Contents
	Nomenclature
	I Background
	Introduction
	State of the art in MDAO system management
	Composition
	Decentralized data mapping approach
	Centralized data mapping approach
	Comparison and conclusion

	Representation
	Human-readable
	Machine-interpretable

	Manipulation
	Coordination
	Monolithic architectures
	Distributed architecture: Collaborative Optimization
	Distributed architecture: BLISS-2000

	Execution
	RCE
	Optimus
	Isight
	ModelCenter Integrate
	HEEDS
	OpenMDAO
	GEMS

	Framework integration
	FrAECs
	IDEaliSM
	MDA-MDO project
	Bombardier's MDO project

	Towards a new framework generation
	MDAO framework generations
	AGILE project description
	Current limitations and future needs

	II Developments
	Graph-based methodological approach for MDAO system development
	Functional requirements
	Graph syntax and main graph classes
	Node definitions
	Edge definitions
	Main graph class definitions

	MDAO system graph types
	Definition of MDAO system graphs
	Repository connectivity graph
	Fundamental problem graph
	MDAO data graph
	MDAO process graph

	Automated capabilities for graph-based systems
	XDSM visualization of system graphs
	Architecture reconfiguration
	Sequencing algorithms
	Decomposition algorithm

	Validation case study: supersonic business jet
	Stage I: Tool repository
	Stage II: MDO problem
	Stage III: Solution strategies

	Demonstration case study: wing design
	Tool repository
	Initial design point (design convergence study)
	Design space exploration (DOE)
	MDO study

	Discussion
	Impact on collaborative MDAO development process
	Originality

	Proposed standard to store and exchange MDAO system formulations
	Introduction
	Framework applications
	Motivation
	State of the art
	Impact on framework set-up

	Functional requirements
	Definition of the storage standard
	Elements in the information category
	Elements in the nodes category
	Elements in the connections category

	Illustrative example: Sellar problem
	Stage I: Tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy

	Conclusion

	Bridging the gap between MDAO system formulation and execution
	Introduction
	RCE
	Materialization approach
	Verification of materialized workflows
	Development process validation

	Optimus
	Materialization approach
	Verification of materialized workflows
	Comparison manual and automated process
	Development process validation

	OpenMDAO
	Materialization approach: OpenLEGO
	Verification of materialized workflows
	Development process validation

	Platform comparison

	III Framework integrations
	Integration of developed methodology in third-generation MDAO framework
	Knowledge architecture
	Methodology
	Implementation: AGILE development framework

	Framework demonstrator: airliner
	Step I: Define design case and requirements
	Step II: Specify product model and design competences
	Step III: Formulate design problem and solution strategy
	Steps IV and V

	Framework assessment: aircraft design cases
	Design case descriptions
	Summarized results

	Assessment results
	MDAO system storage with CMDOWS
	MDAO system formulation with KADMOS
	Workflow materialization in RCE and Optimus
	Complete AGILE development framework

	Restructuring a state-of-the-art aircraft design toolbox
	Introduction: the Initiator toolbox
	Configuration: establishing an agile Initiator
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Reconfiguration: optimization
	Stage I: tool repository
	Stage II: MDAO problem
	Stage III: MDAO solution strategy
	Stages IV & V: materialization, execution, and results

	Second reconfiguration: additional constraint

	IV Outlook & conclusion
	Outlook: composite architectures and MDAO bots
	Composite architectures
	MDAO bots
	Conceptual definition of several MDAO bots
	Bot automatic selection approaches
	MDAO bot factory

	Conclusions and Recommendations
	Developments and achievements
	Framework integrations
	AGILE development framework
	Restructured aircraft design toolbox

	Recommendations and outlook

	References
	Software references

	V Appendices
	Additional architectures for the SSBJ case study
	Acknowledgments
	Curriculum Vitae
	List of Publications

	Blank Page

