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Abstract

The goal of regression and classification methods in supervised learning is to minimize the
empirical risk, that is, the expectation of some loss function quantifying the prediction
error under the empirical distribution. When facing scarce training data, overfitting is
typically mitigated by adding regularization terms to the objective that penalize hypothesis
complexity. In this paper we introduce new regularization techniques using ideas from
distributionally robust optimization, and we give new probabilistic interpretations to existing
techniques. Specifically, we propose to minimize the worst-case expected loss, where the
worst case is taken over the ball of all (continuous or discrete) distributions that have a
bounded transportation distance from the (discrete) empirical distribution. By choosing the
radius of this ball judiciously, we can guarantee that the worst-case expected loss provides
an upper confidence bound on the loss on test data, thus offering new generalization bounds.
We prove that the resulting regularized learning problems are tractable and can be tractably
kernelized for many popular loss functions. The proposed approach to regluarization is also
extended to neural networks. We validate our theoretical out-of-sample guarantees through
simulated and empirical experiments.

Keywords: Distributionally robust optimization, optimal transport, Wasserstein distance,
robust optimization, regularization

1. Introduction

The fields of machine learning and optimization are closely intertwined. On the one hand,
optimization algorithms are routinely used for the solution of classical machine learning
problems. Conversely, recent advances in optimization under uncertainty have inspired many
new machine learning models.

From a conceptual point of view, many statistical learning tasks give naturally rise to
stochastic optimization problems. Indeed, they aim to find an estimator from within a
prescribed hypothesis space that minimizes the expected value of some loss function. The
loss function quantifies the estimator’s ability to correctly predict random outputs (i.e.,
dependent variables or labels) from random inputs (i.e., independent variables or features).
Unfortunately, such stochastic optimization problems cannot be solved exactly because the
input-output distribution, which is needed to evaluate the expected loss in the objective
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function, is not accessible and only indirectly observable through finitely many training
samples. Approximating the expected loss with the empirical loss, that is, the average loss
across all training samples, yields fragile estimators that are sensitive to perturbations in
the data and suffer from overfitting.

Regularization is the standard remedy to combat overfitting. Regularized learning models
minimize the sum of the empirical loss and a penalty for hypothesis complexity, which
is typically chosen as a norm of the hypothesis. There is ample empirical evidence that
regularization reduces a model’s generalization error. Statistical learning theory reasons
that regularization implicitly restricts the hypothesis space, thereby controlling the gap
between the training error and the testing error, see, e.g., Bartlett and Mendelson (2002).
However, alternative explanations for the practical success of regularization are possible. In
particular, ideas from modern robust optimization (Ben-Tal et al. (2009)) recently led to a
fresh perspective on regularization.

Robust regression and classification models seek estimators that are immunized against
adversarial perturbations in the training data. They have received considerable attention
since the seminal treatise on robust least-squares regression by El Ghaoui and Lebret (1997),
who seem to be the first authors to discover an intimate connection between robustification
and regularization. Specifically, they show that minimizing the worst-case residual error
with respect to all perturbations in a Frobenius norm-uncertainty set is equivalent to a
Tikhonov regularization procedure. Xu et al. (2010) disclose a similar equivalence between
robust least-squares regression with a feature-wise independent uncertainty set and the
celebrated Lasso (least absolute shrinkage and selection operator) algorithm. Leveraging this
new robustness interpretation, they extend Lasso to a wider class of regularization schemes
tailored to regression problems with disturbances that are coupled across features. In the
context of classification, Xu et al. (2009) provide a linkage between robustification over
non-box-typed uncertainty sets and the standard regularization scheme of support vector
machines. A comprehensive characterization of the conditions under which robustification and
regularization are equivalent has recently been compiled by Bertsimas and Copenhaver (2017).

New learning models have also been inspired by recent advances in the emerging field
of distributionally robust optimization, which bridges the gap between the conservatism of
robust optimization and the specificity of stochastic programming. Distributionally robust
optimization seeks to minimize a worst-case expected loss, where the worst case is taken with
respect to all distributions in an ambiguity set, that is, a family of distributions consistent
with the given prior information on the uncertainty, see, e.g., Calafiore and El Ghaoui (2006),
Delage and Ye (2010), Goh and Sim (2010), Wiesemann et al. (2014) and the references
therein. Ambiguity sets are often characterized through generalized moment conditions. For
instance, Lanckriet et al. (2002a) propose a distributionally robust minimax probability
machine for binary classification, where both classes are encoded by the first and second
moments of their features, and the goal is to find a linear classifier that minimizes the worst-
case misclassification error in view of all possible input distributions consistent with the given
moment information. By construction, this approach forces the worst-case accuracies of both
classes to be equal. Huang et al. (2004) propose a generalization of the minimax probability
machine that allows for uneven worst-case classification accuracies. Lanckriet et al. (2002b)
extend the minimax probability machine to account for estimation errors in the mean vectors
and covariance matrices. Strohmann and Grudic (2003) and Bhattacharyya (2004) develop
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minimax probability machines for regression and feature selection, respectively. Shivaswamy
et al. (2006) study linear classification problems trained with incomplete and noisy features,
where each training sample is modeled by an ambiguous distribution with known first and
second-order moments. The authors propose to address such classification problems with
a distributionally robust soft margin support vector machine and then prove that it is
equivalent to a classical robust support vector machine with a feature-wise uncertainty set.
Farnia and Tse (2016) investigate distributionally robust learning models with moment
ambiguity sets that restrict the marginal of the features to the empirical marginal. The
authors highlight similarities and differences to classical regression models.

Ambiguity sets containing all distributions that share certain low-order moments are
computationally attractive but fail to converge to a singleton when the number N of training
samples tends to infinity. Thus, they preclude any asymptotic consistency results. A possible
remedy is to design spherical ambiguity sets with respect to some probability distance
functions and to drive their radii to zero as N grows. Examples include the φ-divergence
ambiguity sets proposed by Ben-Tal et al. (2013) or the Wasserstein ambiguity sets studied
by Mohajerin Esfahani and Kuhn (2018) and Zhao and Guan (2018). Blanchet and Murthy
(2019) and Gao and Kleywegt (2016) consider generalized Wasserstein ambiguity sets defined
over Polish spaces.

In this paper we investigate distributionally robust learning models with Wasserstein
ambiguity sets. The Wasserstein distance between two distributions is defined as the
minimum cost of transporting one distribution to the other, where the cost of moving a unit
point mass is determined by the ground metric on the space of uncertainty realizations. In
computer science the Wasserstein distance is therefore sometimes aptly termed the ‘earth
mover’s distance’ (Rubner et al. (2000)). Following Mohajerin Esfahani and Kuhn (2018),
we define Wasserstein ambiguity sets as balls with respect to the Wasserstein distance that
are centered at the empirical distribution on the training samples. These ambiguity sets
contain all (continuous or discrete) distributions that can be converted to the (discrete)
empirical distribution at bounded transportation cost.

Wasserstein distances are widely used in machine learning to compare histograms. For
example, Rubner et al. (2000) use the Wasserstein distance as a metric for image retrieval
with a focus on applications to color and texture. Cuturi (2013) and Benamou et al. (2015)
propose fast iterative algorithms to compute a regularized Wasserstein distance between two
high-dimensional discrete distributions for image classification tasks. Moreover, Cuturi and
Doucet (2014) develop first-order algorithms to compute the Wasserstein barycenter between
several empirical probability distributions, which has applications in clustering. Arjovsky
et al. (2017) utilize the Wasserstein distance to measure the distance between the data
distribution and the model distribution in generative adversarial networks. Furthermore,
Frogner et al. (2015) propose a learning algorithm based on the Wasserstein distance to
predict multi-label outputs.

Distributionally robust optimization models with Wasserstein ambiguity sets were intro-
duced to the realm of supervised learning by Shafieezadeh-Abadeh et al. (2015), who show
that distributionally robust logistic regression problems admit a tractable reformulation and
encapsulate the classical as well as the popular regularized logistic regression problems as
special cases. When the Wasserstein ball is restricted to distributions on a compact set,
the problem becomes intractable but can still be addressed with an efficient decomposition
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algorithm due to Luo and Mehrotra (2019). Support vector machine models with distribu-
tionally robust chance constraints over Wasserstein ambiguity sets are studied by Lee and
Mehrotra (2015). These models are equivalent to hard semi-infinite programs and can be
solved approximately with a cutting plane algorithm.

Wasserstein ambiguity sets are popular for their attractive statistical properties. For
example, Fournier and Guillin (2015) prove that the empirical distribution on N training
samples converges in Wasserstein distance to the true distribution at rate O(N−1/(n+1)),
where n denotes the feature dimension. This implies that properly scaled Wasserstein
balls constitute natural confidence regions for the data-generating distribution. The worst-
case expected prediction loss over all distributions in a Wasserstein ball thus provides an
upper confidence bound on the expected loss under the unknown true distribution; see
Mohajerin Esfahani and Kuhn (2018). Blanchet et al. (2016) show, however, that radii of
the order O(N−1/2) are asymptotically optimal even though the corresponding Wasserstein
balls are too small to contain the true distribution with constant confidence. For Wasserstein
distances of type two (where the transportation cost equals the squared ground metric)
Blanchet et al. (2017) develop a systematic methodology for selecting the ground metric.
Generalization bounds for the worst-case prediction loss with respect to a Wasserstein ball
centered at the true distribution are derived by Lee and Raginsky (2018) in order to address
emerging challenges in domain adaptation problems, where the distributions of the training
and test samples can differ.

This paper extends the results by Shafieezadeh-Abadeh et al. (2015) on distribution-
ally robust logistic regression along several dimensions. Our main contributions can be
summarized as follows:

• Tractability: We propose data-driven distributionally robust regression and clas-
sification models that hedge against all input-output distributions in a Wasserstein
ball. We demonstrate that the emerging semi-infinite optimization problems admit
equivalent reformulations as tractable convex programs for many commonly used loss
functions and for spaces of linear hypotheses. We also show that lifted variants of
these new learning models are kernelizable and thus offer an efficient procedure for
optimizing over all nonlinear hypotheses in a reproducible kernel Hilbert space. Finally,
we study distributionally robust learning models over families of feed-forward neural
networks. We show that these models can be approximated by regularized empirical
loss minimization problems with a convex regularization term and can be addressed
with a stochastic proximal gradient descent algorithm.

• Probabilistic Interpretation of Existing Regularization Techniques: We show
that the classical regularized learning models emerge as special cases of our framework
when the cost of moving probability mass along the output space tends to infinity.
In this case, the regularization function and its regularization weight are determined
by the transportation cost on the input space and the radius of the Wasserstein ball
underlying the distributionally robust optimization model, respectively.

• Generalization Bounds: We demonstrate that the proposed distributionally robust
learning models enjoy new generalization bounds that can be obtained under minimal
assumptions. In particular, they do not rely on any notions of hypothesis complexity
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and may therefore even extend to hypothesis spaces with infinite VC-dimensions. A
näıve generalization bound is obtained by leveraging modern measure concentration
results, which imply that Wasserstein balls constitute confidence sets for the unknown
data-generating distribution. Unfortunately, this generalization bound suffers from a
curse of dimensionality and converges slowly for high input dimensions. By imposing
bounds on the hypothesis space, however, we can derive an improved generalization
bound, which essentially follows a dimension-independent square root law reminiscent
of the central limit theorem.

• Relation to Robust Optimization: In classical robust regression and classification
the training samples are viewed as uncertain variables that range over a joint uncertainty
set, and the best hypothesis is found by minimizing the worst-case loss over this set.
We prove that the classical robust and new distributionally robust learning models are
equivalent if the data satisfies a dispersion condition (for regression) or a separability
condition (for classification). While there is no efficient algorithm for solving the robust
learning models in the absence of this condition, the distributionally robust models
are efficiently solvable irrespective of the underlying training datasets.

• Confidence Intervals for Error and Risk: Using distributionally robust optimiza-
tion techniques based on the Wasserstein ball, we develop two tractable linear programs
whose optimal values provide a confidence interval for the absolute prediction error of
any fixed regressor or the misclassification risk of any fixed classifier.

• Worst-Case Distributions: We formulate tractable convex programs that enable
us to efficiently compute a worst-case distribution in the Wasserstein ball for any fixed
hypothesis. This worst-case distribution can be useful for stress tests or contamination
experiments.

The rest of the paper develops as follows. Section 2 introduces our new distributionally
robust learning models. Section 3 provides finite convex reformulations for learning problems
over linear and nonlinear hypothesis spaces and describes efficient procedures for constructing
worst-case distributions. Moreover, it compares the new distributionally robust method
against existing robust optimization and regularization approaches. Section 4 develops
new generalization bounds, while Section 5 addresses error and risk estimation. Numerical
experiments are reported in Section 6. All proofs are relegated to the appendix.

1.1. Notation

Throughout this paper, we adopt the conventions of extended arithmetics, whereby ∞ · 0 =
0 · ∞ = 0/0 = 0 and ∞−∞ = −∞ +∞ = 1/0 = ∞. The inner product of two vectors
x,x′ ∈ Rn is denoted by 〈x,x′〉, and for any norm ‖ · ‖ on Rn, we use ‖ · ‖∗ to denote its
dual norm defined through ‖x‖∗ = sup {〈x,x′〉 : ‖x′‖ ≤ 1}. The conjugate of an extended
real-valued function f(x) on Rn is defined as f∗(x) = supx′〈x,x′〉 − f(x′). The indicator
function of a set X ⊆ Rn is defined as δX(x) = 0 if x ∈ X; = ∞ otherwise. Its conjugate
SX(x) = sup{〈x′,x〉 : x′ ∈ X} is termed the support function of X. The characteristic
function of X is defined through 1X(x) = 1 if x ∈ X; = 0 otherwise. For a proper cone
C ⊆ Rn the relation x �C x′ indicates that x − x′ ∈ C. The cone dual to C is defined as
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C∗ = {x′ : 〈x′,x〉 ≥ 0∀x ∈ C}. The Lipschitz modulus of a function L : X→ R is denoted
by lip(L) = supx,x′∈X{|L(x)− L(x′)|/‖x− x′‖ : x 6= x′}. If P is a distribution on a set Ξ,

then PN denotes the N -fold product of P on the Cartesian product ΞN . For N ∈ N we define
[N ] = {1, . . . , N}. A list of commonly used notations is provided in the following table.

X input space Y output space

` loss function L univariate loss function

H hypothesis space K kernel matrix

f∗ conjugate of f lip(f) Lipschitz modulus of f

C∗ dual cone of C ‖ · ‖∗ dual norm of ‖ · ‖
SX support function of X δX indicator function of X
1X characteristic function of X [N ] {1, . . . , N}

2. Problem Statement

We first introduce the basic terminology and then describe our new perspective on regular-
ization.

2.1. Classical Statistical Learning

The goal of supervised learning is to infer an unknown target function f : X → Y from
limited data. The target function maps any input x ∈ X (e.g., information on the frequency
of certain keywords in an email) to some output y ∈ Y (e.g., a label +1 (−1) if the email is
likely (unlikely) to be a spam message). If the true target function was accessible, it could be
used as a means to reliably predict outputs from inputs (e.g., it could be used to recognize
spam messages in an automated fashion). In a supervised learning framework, however,
one has only access to finitely many input-output examples (x̂i, ŷi) for i = 1, . . . , N (e.g., a
database of emails which have been classified by a human as legitimate or as spam messages).
We will henceforth refer to these examples as the training data or the in-sample data. It
is assumed that the training samples are mutually independent and follow an unknown
distribution P on X× Y.

The supervised learning problems are commonly subdivided into regression problems,
where the output y is continuous and Y = R, and classification problems, where y is
categorical and Y = {+1,−1}. As the space of all functions from X to Y is typically vast, it
may be very difficult to learn the target function from finitely many training samples. Thus,
it is convenient to restrict the search space to a structured family of candidate functions
H ⊆ RX such as the space of all linear functions, some reproducible kernel Hilbert space or
the family of all feed-forward neural networks with a fixed number of layers. We henceforth
refer to each candidate function h ∈ H as a hypothesis and to H as the hypothesis space.

A learning algorithm is a method for finding a hypothesis h ∈ H that faithfully replicates
the unknown target function f . Specifically, in regression we seek to approximate f with a
hypothesis h, and in classification we seek to approximate f with a thresholded hypothesis
sign(h). Many learning algorithms achieve this goal by minimizing the in-sample error, that
is, the empirical average of a loss function ` : R × Y → R+ that estimates the mismatch
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between the output predicted by h(x) and the actual output y for a particular input-output
pair (x, y). Any such algorithm solves a minimization problem of the form

inf
h∈H

{
1

N

N∑
i=1

`(h(x̂i), ŷi) = EP̂N [`(h(x), y)]

}
, (1)

where P̂N = 1
N

∑N
i=1 δ(x̂i,ŷi) denotes the empirical distribution, that is, the uniform distri-

bution on the training data. For different choices of the the loss function `, the generic
supervised learning problem (1) reduces to different popular regression and classification
problems from the literature.

Examples of Regression Models

For ease of exposition, we focus here on learning models with X ⊆ Rn and Y ⊆ R, where
H is set to the space of all linear hypotheses h(x) = 〈w,x〉 with w ∈ Rn. Thus, there is a
one-to-one correspondence between hypotheses and weight vectors w. Moreover, we focus
on loss functions of the form `(h(x), y) = L(h(x)− y) = L(〈w,x〉)− y) that are generated
by a univariate loss function L.

1. A rich class of robust regression problems is obtained from (1) if ` is generated by the
Huber loss function with robustness parameter δ > 0, which is defined as L(z) = 1

2z
2 if

|z| ≤ δ; = δ(|z| − 1
2δ) otherwise. Note that the Huber loss function is both convex and

smooth and reduces to the squared loss L(z) = 1
2z

2 for δ ↑ ∞, which is routinely used
in ordinary least squares regression. Problem (1) with squared loss seeks a hypothesis
w under which 〈w,x〉 approximates the mean of y conditional on x. The Huber loss
function for finite δ favors similar hypotheses but is less sensitive to outliers.

2. The support vector regression problem (Smola and Schölkopf, 2004) emerges as a special
case of (1) if ` is generated by the ε-insensitive loss function L(z) = max{0, |z| − ε}
with ε ≥ 0. In this setting, a training sample (x̂i, ŷi) is penalized in (1) only if the
output 〈w, x̂i〉 predicted by hypothesis w differs from the true output ŷi by more than
ε. Support vector regression thus seeks hypotheses w under which all training samples
reside within a slab of width 2ε centered around the hyperplane {(x, y) : 〈w,x〉 = y}.

3. The quantile regression problem (Koenker, 2005) is obtained from (1) if ` is generated
by the pinball loss function L(z) = max{−τz, (1− τ)z} defined for τ ∈ [0, 1]. Quantile
regression seeks hypotheses that approximate the τ × 100%-quantile of the output
conditional on the input. More precisely, it seeks hypotheses w for which τ × 100% of
all training samples lie in the halfspace {(x, y) : 〈w,x〉 ≥ y}.

Examples of Classification Models

We focus here on linear learning models with X ⊆ Rn and Y = {+1,−1}, where H is again
identified with the space of all linear hypotheses h(x) = 〈w,x〉 with w ∈ Rn. Moreover,
we focus on loss functions of the form `(x, y) = L(yh(x)) = L(y〈w,x〉) generated by a
univariate loss function L.
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1. The support vector machine problem (Cortes and Vapnik, 1995) is obtained from (1)
if ` is generated by the hinge loss function L(z) = max{0, 1− z}, which is large if z is
small. Thus, a training sample (x̂i, ŷi) is penalized in (1) if the output sign(〈w, x̂i〉)
predicted by hypothesis w and the true output ŷi have opposite signs. More precisely,
support vector machines seek hypotheses w under which the inputs of all training
samples with output +1 reside in the halfspace {x : 〈w,x〉 ≥ 1}, while the inputs of
training samples with output −1 are confined to {x : 〈w,x〉 ≤ −1}.

2. An alternative support vector machine problem is obtained from (1) if ` is generated by
the smooth hinge loss function, which is defined as L(z) = 1

2 − z if z ≤ 0; = 1
2(1− z)2

if 0 < z < 1; = 0 otherwise. The smooth hinge loss inherits many properties of the
ordinary hinge loss but has a continuous derivative. Thus, it may be amenable to
faster optimization algorithms.

3. The logistic regression problem (Hosmer et al., 2013) emerges as a special case of
(1) if ` is generated by the logloss function L(z) = log(1 + e−z), which is large if z
is small—similar to the hinge loss function. In this case the objective function of
(1) can be viewed as the log-likelihood function corresponding to the logistic model
P(y = 1|x) = [1 + exp(−〈w,x〉)]−1 for the conditional probability of y = 1 given x.
Thus, logistic regression allows us to learn the conditional distribution of y given x.

Remark 1 (Convex approximation) Note that the hinge loss and the logloss functions
represent convex approximations for the (discontinuous) one-zero loss defined through L(z) = 1
if z ≤ 0; = 0 otherwise.

In practice there may be many hypotheses that are compatible with the given training
data and thus achieve a small empirical loss in (1). Any such hypothesis would accurately
predict outputs from inputs within the training dataset (Defourny, 2010). However, due to
overfitting, these hypotheses might constitute poor predictors beyond the training dataset,
that is, on inputs that have not yet been recorded in the database. Mathematically, even if

the in-sample error EP̂N [`(〈w,x〉, y)] of a given hypothesis w is small, the out-of-sample
error EP[`(〈w,x〉, y)] with respect to the unknown true input-output distribution P may
be large.

Regularization is the standard remedy to combat overfitting. Instead of näıvely minimiz-
ing the in-sample error as is done in (1), it may thus be advisable to solve the regularized
learning problem

inf
w
EP̂N [`(〈w,x〉, y)] + cΩ(w), (2)

which minimizes the sum of the emiprial average loss and a penalty for hpothesis complexity,
which consists of a regularization function Ω(w) and its associated regularization weight
c. Tikhonov regularization (Tikhonov et al., 1977), for example, corresponds to the choice
Ω(w) = ‖Γw‖22 for some Tikhonov matrix Γ ∈ Rn×n. Setting Γ to the identity matrix gives
rise to standard L2-regularization. Similarly, Lasso (least absolute shrinkage and selection
operator) regularization or L1-regularization (Tibshirani, 1996) is obtained by setting
Ω(w) = ‖w‖1. Lasso regularization has gained popularity because it favors parsimonious
interpretable hypotheses.
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Most popular regualization methods admit probabilistic interpretations. However, these
interpretations typically rely on prior distributional assumptions that remain to some extent
arbitrary (e.g., L2- and L1-regularization can be justified if w is governed by a Gaussian
or Laplacian prior distribution, respectively (Tibshirani, 1996)). Thus, in spite of their
many desirable theoretical properties, there is a consensus that “most of the (regularization)
methods used successfully in practice are heuristic methods” (Abu-Mostafa et al., 2012).

2.2. A New Perspective on Regularization

When linear hypotheses are used, problem (1) minimizes the in-sample error EP̂N [`(〈w,x〉, y)].
However, a hypothesis w enjoying a low in-sample error may still suffer from a high out-of-
sample error EP[`(〈w,x〉, y)] due to overfitting. This is unfortunate as we seek hypotheses
that offer high prediction accuracy on future data, meaning that the out-of-sample error
is the actual quantity of interest. An ideal learning model would therefore minimize the
out-of-sample error. This is impossible, however, for the following reasons:

• The true input-output distribution P is unknown and only indirectly observable
through the N training samples. Thus, we lack essential information to compute the
out-of-sample error.

• Even if the distribution P was known, computing the out-of-sample error would
typically be hard due to the intractability of high-dimensional integration; see, e.g.,
(Hanasusanto et al., 2016, Corollary 1).

The regularized loss EP̂N [`(〈w,x〉, y)] + cΩ(w) used in (2), which consists of the in-sample
error and an overfitting penalty, can be viewed as an in-sample estimate of the out-of-sample
error. Yet, problem (2) remains difficult to justify rigorously. Therefore, we advocate here a
more principled approach to regularization. Specifically, we propose to take into account
the expected loss of hypothesis w under every distribution Q that is close to the empirical
distribution P̂N , that is, every Q that could have generated the training data with high
confidence. To this end, we first introduce a distance measure for distributions. For ease of
notation, we henceforth denote the input-output pair (x, y) by ξ, and we set Ξ = X× Y.

Definition 2 (Wasserstein metric) The Wasserstein distance between two distributions
Q and Q′ supported on Ξ is defined as

W (Q,Q′) := inf
Π

{∫
Ξ2

d(ξ, ξ′) Π(dξ,dξ′) :
Π is a joint distribution of ξ and ξ′

with marginals Q and Q′, respectively

}
,

where d is a metric on Ξ.

By definition, W (Q,Q′) represents the solution of an infinite-dimensional transportation
problem, that is, it corresponds to the minimal cost for moving the distribution Q to Q′, where
the cost for moving a unit probability mass from ξ to ξ′ is given by the transportation distance
d(ξ, ξ′). Due to this interpretation, the metric d is often referred to as the transportation
cost (Villani, 2008) or ground metric (Cuturi and Avis, 2014), while the Wasserstein metric
is sometimes termed the mass transportation distance or earth mover’s distance (Rubner
et al., 2000).
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Consider now the Wasserstein ball of radius ρ ≥ 0 around the empirical distribution P̂N ,

Bρ(P̂N ) =
{
Q : Q(Ξ) = 1, W (Q, P̂N ) ≤ ρ

}
, (3)

which contains all input-output distributions Q supported on Ξ whose Wasserstein distance
from P̂N does not exceed ρ. This means that Q can be transported to P̂N (or vice versa) at a
cost of at most ρ. The hope is that a large enough Wasserstein ball will contain distributions
that are representative of the unknown true input-output distribution P, such that the
worst-case expectation sup

Q∈Bρ(P̂N )
EQ[`(〈w,x〉, y)] can serve as an upper confidence bound

on the out-of-sample error EP[`(〈w,x〉, y)]. This motivates us to introduce a new regularized
learning model, which minimizes precisely this worst-case expectation.

inf
w

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] (4)

Problem (4) represents a distributionally robust convex program of the type considered
in (Mohajerin Esfahani and Kuhn, 2018). Note that if `(〈w,x〉, y) is convex in w for every
fixed (x, y), i.e., if ` is convex in its first argument, then the objective function of (4) is
convex because convexity is preserved under integration and maximization. Note also that
if ρ is set to zero, then (4) collapses to the unregularized in-sample error minimization
problem (1).

Remark 3 (Support information) The uncertainty set Ξ captures prior information on
the range of the inputs and outputs. In image processing, for example, pixel intensities range
over a known interval. Similarly, in diagnostic medicine, physiological parameters such as
blood glucose or cholesterol concentrations are restricted to be non-negative. Sometimes it is
also useful to construct Ξ as a confidence set that covers the support of P with a prescribed
probability. Such confidence sets are often constructed as ellipsoids, as intersections of
different norm balls (Ben-Tal et al., 2009; Delage and Ye, 2010) or as sublevel sets of kernel
expansions (Schölkopf et al., 2001).

In the remainder we establish that the distributionally robust learning problem (4) has
several desirable properties. (i) Problem (4) is computationally tractable under standard
assumptions about the loss function `, the input-output space Ξ and the transportation
metric d. For specific choices of d it even reduces to a regularized learning problem of the
form (2). (ii) For all univariate loss functions reviewed in Section 2.1, a tight conservative
approximation of (4) is kernelizable, that is, it can be solved implicitly over high-dimensional
spaces of nonlinear hypotheses at the same computational cost required for linear hypothesis
spaces. (iii) Leveraging modern measure concentration results, the optimal value of (4) can
be shown to provide an upper confidence bound on the out-of-sample error. This obviates
the need to mobilize the full machinery of VC theory and, in particular, to estimate the
VC dimension of the hypothesis space in order to establish generalization bounds. (iv) If
the number of training samples tends to infinity while the Wasserstein ball shrinks at an
appropriate rate, then problem (4) asymptotically recovers the ex post optimal hypothesis
that attains the minimal out-of-sample error.

10
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3. Tractable Reformulations

In this section we demonstrate that the distributionally robust learning problem (4) over
linear hypotheses is amenable to efficient computational solution procedures. We also discuss
generalizations to nonlinear hypothesis classes such as reproducing kernel Hilbert spaces
and families of feed-forward neural networks.

3.1. Distributionally Robust Linear Regression

Throughout this section we focus on linear regression problems, where `(〈w,x〉, y) =
L(〈w,x〉 − y) for some convex univariate loss function L. We also assume that X and Y are
both convex and closed and that the transportation metric d is induced by a norm ‖ · ‖ on
the input-output space Rn+1. In this setting, the distributionally robust regression problem
(4) admits an equivalent reformulation as a finite convex optimization problem if either
(i) the univariate loss function L is piecewise affine or (ii) Ξ = Rn+1 and L is Lipschitz
continuous (but not necessarily piecewise affine).

Theorem 4 (Distributionally robust linear regression) The following statements hold.

(i) If L(z) = maxj≤J{ajz + bj}, then (4) is equivalent to
inf
w,λ,si
pij ,uij

λρ+
1

N

N∑
i=1

si

s.t. SΞ(ajw − pij ,−aj − uij) + bj + 〈pij , x̂i〉+ uij ŷi ≤ si i ∈ [N ], j ∈ [J ]
‖(pij , uij)‖∗ ≤ λ i ∈ [N ], j ∈ [J ],

(5)

where SΞ denotes the support function of Ξ.

(ii) If Ξ = Rn+1 and L(z) is Lipschitz continuous, then (4) is equivalent to

inf
w

1

N

N∑
i=1

L(〈w, x̂i〉 − ŷi) + ρ lip(L) ‖(w,−1)‖∗. (6)

In the following, we exemplify Theorem 4 for the Huber, ε-insensitive and pinball loss
functions under the assumption that the uncertainty set Ξ admits the conic representation

Ξ = {(x, y) ∈ Rn+1 : C1x+ c2y �C d} (7)

for some matrix C1, vectors c2 and d and proper convex cone C of appropriate dimensions.
We also assume that Ξ admits a Slater point (xS, yS) ∈ Rn+1 with C1xS + c2yS ≺C d.

Corollary 5 (Robust regression) If L represents the Huber loss function with threshold
δ ≥ 0 and Ξ = Rn+1, then (4) is equivalent to

inf
w,zi

1

N

N∑
i=1

1

2
z2
i + δ|〈w, x̂i〉 − ŷi − zi|+ ρ δ ‖(w,−1)‖∗. (8)

11
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Corollary 6 (Support vector regression) If L represents the ε-insensitive loss function
for some ε ≥ 0 and Ξ is of the form (7), then (4) is equivalent to

inf
w,λ,si
p+
i ,p
−
i

λρ+
1

N

N∑
i=1

si

s.t. ŷi − 〈w, x̂i〉 − ε+ 〈p+
i ,d−C1x̂i − c2ŷi〉 ≤ si i ∈ [N ]

〈w, x̂i〉 − ŷi − ε+ 〈p−i ,d−C1x̂i − c2ŷi〉 ≤ si i ∈ [N ]∥∥(C>1 p+
i +w, c>2 p

+
i − 1

)∥∥
∗ ≤ λ i ∈ [N ]∥∥(C>1 p−i −w, c>2 p−i + 1

)∥∥
∗ ≤ λ i ∈ [N ]

p+
i ,p

−
i ∈ C∗ i ∈ [N ]

si ≥ 0 i ∈ [N ].

(9)

Corollary 7 (Quantile regression) If L represents the pinball loss function for some
τ ∈ [0, 1] and Ξ is of the form (7), then (4) is equivalent to

inf
w,λ,si
p+
i ,p
−
i

λρ+
1

N

N∑
i=1

si

s.t. τ (ŷi − 〈w, x̂i〉) + 〈p+
i ,d−C1x̂i − c2ŷi〉 ≤ si i ∈ [N ]

(1− τ) (〈w, x̂i〉 − ŷi) + 〈p−i ,d−C1x̂i − c2ŷi〉 ≤ si i ∈ [N ]∥∥(C>1 p+
i + τw, c>2 p

+
i − τ

)∥∥
∗ ≤ λ i ∈ [N ]∥∥(C>1 p−i − (1− τ)w, c>2 p

−
i + 1− τ

)∥∥
∗ ≤ λ i ∈ [N ]

p+
i ,p

−
i ∈ C∗ i ∈ [N ]

si ≥ 0 i ∈ [N ].

(10)

Remark 8 (Relation to classical regularization) Assume now that the mass trans-
portation costs are additively separable with respect to inputs and outputs, that is,

d((x1, y1), (x2, y2)) = ‖x1 − x2‖+ κ|y1 − y2| (11)

for some κ > 0.1 Note that κ captures the costs of moving probability mass along the output
space. For κ = ∞ all distributions in the Wasserstein ball Bρ(P̂N ) are thus obtained by

reshaping P̂N only along the input space. It is easy to verify that for κ =∞ and Ξ = Rn+1

the learning models portrayed in Corollaries 5-7 all simplify to

inf
w

1

N

N∑
i=1

L(〈w, x̂i〉 − ŷi) + c‖w‖∗, (12)

where c = ρδ for robust regression with Huber loss, c = ρ for support vector regression with
ε-insensitive loss and c = max{τ, 1 − τ} ρ for quantile regression with pinball loss. Thus,
(12) is easily identified as an instance of the classical regularized learning problem (2), where
the dual norm term ‖w‖∗ plays the role of the regularization function, while c represents

1. By slight abuse of notation, the symbol ‖ · ‖ now denotes a norm on Rn.
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the usual regularization weight. By definition of the dual norm, the penalty ‖w‖∗ assigned
to a hypothesis w is maximal (minimal) if the cost of moving probability mass along w
is minimal (maximal). We emphasize that if κ = ∞, then the marginal distribution of y
corresponding to every Q ∈ Bρ(P̂N ) coincides with the empirical distribution 1

N

∑N
i=1 δŷi.

Thus, classical regularization methods, which correspond to κ = ∞, are explained by a
counterintuitive probabilistic model, which pretends that any training sample must have an
output that has already been recordeded in the training dataset. In other words, classical
regularization implicitly assumes that there is no uncertainty in the outputs. More intuitively
appealing regularization schemes are obtained for finite values of κ.

To establish a connection between distributionally robust and classical robust regression
as discussed in (El Ghaoui and Lebret, 1997; Xu et al., 2010), we further investigate the
worst-case expected loss of a fixed linear hypothesis w.

sup
Q∈Bρ(P̂N )

EQ[L(〈w,x〉 − y)] (13)

Theorem 9 (Extremal distributions in linear regression) The following statements
hold.

(i) If L(z) = maxj≤J{ajz + bj}, then the worst-case expectation (13) coincides with

sup
αij ,qij ,vij

1

N

N∑
i=1

J∑
j=1

αij
(
aj(〈w, x̂i〉 − ŷi) + bj

)
+ aj(〈w, qij〉 − vij)

s.t.
1

N

N∑
i=1

J∑
j=1

‖(qij , vij)‖ ≤ ρ

J∑
j=1

αij = 1 i ∈ [N ]

(x̂i + qij/αij , ŷi + vij/αij) ∈ Ξ i ∈ [N ], j ∈ [J ]
αij ≥ 0 i ∈ [N ], j ∈ [J ]

(14)

for any fixed hypothesis w. Moreover, if (α?ij , q
?
ij , v

?
ij) maximizes (14), then the discrete

distribution

Q∗ =
1

N

N∑
i=1

J∑
j=1

α?ij δ(x̂i+q?ij/α
?
ij , ŷi+v

?
ij/α

?
ij)
,

represents a maximizer for (13).

(ii) If Ξ = Rn+1 and L(z) is Lipschitz continuous, then the discrete distributions

Qγ =
1

N

N∑
i=2

δ(x̂i, ŷi) +
1− γ
N

δ(x̂1, ŷ1) +
γ

N
δ

(x̂1+ ρN
γ
x?,ŷ1+ ρN

γ
y?)

for γ ∈ (0, 1],

where (x?, y?) solves max‖(x,y)‖≤1〈w,x〉 − y, are feasible and asymptotically optimal
in (13) for γ ↓ 0.
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Recall that 0/0 = 0 and 1/0 = ∞ by our conventions of extended arithmetic. Thus, any
solution feasible in (14) with αij = 0 must satisfy qij = 0 and vij = 0 because otherwise
(x̂i + qij/αij , ŷi + vij/αij) /∈ Ξ.

Theorem 9 shows how one can use convex optimization to construct a sequence of
distributions that are asymptotically optimal in (13). Next, we argue that the worst-
case expected cost (13) is equivalent to a (robust) worst-case cost over a suitably defined
uncertainty set if the following assumption holds.

Assumption 10 (Minimal dispersion) For every w ∈ Rn there is a training sample
(x̂k, ŷk) for some k ≤ N such that the derivative L′ exists at 〈w, x̂k〉 − ŷk and satisfies
|L′(〈w, x̂k〉 − ŷk)| = lip(L).

Remark 11 (Minimal dispersion) Assumption 10 is reminiscent of the non-separability
condition in (Xu et al., 2009, Theorem 3), which is necessary to prove the equivalence
of robust and regularized support vector machines. In the regression context studied here,
Assumption 10 ensures that, for every w, there exists a training sample that activates the
largest absolute slope of L.

For instance, in support vector regression, it means that for every w there exists a
data point outside of the slab of width 2ε/‖(w,−1)‖2 centered around the hyperplane Hw =
{(x, y) ∈ Rn×R : 〈w,x〉−y = 0} (i.e., the empirical ε-insensitive loss is not zero). Similarly,
in robust regression with the Huber loss function, Assumption 10 stipulates that for every
w there exists a data point outside of the slab of width 2δ/‖(w,−1)‖2 centered around Hw.
However, quantile regression with τ 6= 0.5 fails to satisfy Assumption 10. Indeed, for any
training dataset there always exists some w such that all data points reside on the side of
Hw where the pinball loss function is less steep.

Theorem 12 (Robust regression) If Ξ = Rn+1 and the loss function L(z) is Lipschitz
continuous, then the worst-case expected loss (13) provides an upper bound on the (robust)
worst-case loss 

sup
∆xi,∆yi

1

N

N∑
i=1

[L(〈w, x̂i + ∆xi〉 − ŷi −∆yi)]

s.t.
1

N

N∑
i=1

‖(∆xi,∆yi)‖ ≤ ρ.
(15)

Moreover, if Assumption 10 holds, then (13) and (15) are equal.

Remark 13 (Tractability of robust regression) Assume that Ξ = Rn+1, while L and
‖ · ‖ both admit a tractable conic representation. By Theorem 4, the worst-case expected
loss (13) can then be computed in polynomial time by solving a tractable convex program.
Theorem 12 thus implies that the worst-case loss (28) can also be computed in polynomial
time if Assumption 10 holds. To our best knowledge, there exists no generic efficient method
for computing (28) if Assumption 10 fails to hold and L is not piecewise affine. This
reinforces our belief that a distributionally robust approach to regression is more natural.
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3.2. Distributionally Robust Linear Classification

Throughout this section we focus on linear classification problems, where `(〈w,x〉, y) =
L(y〈w,x〉) for some convex univariate loss function L. We also assume that X is both convex
and closed and that Y = {+1,−1}. Moreover, we assume that the transportation metric d
is defined via

d((x, y), (x′, y′)) = ‖x− x′‖+ κ1{y 6=y′}, (16)

where ‖·‖ represents a norm on the input space Rn, and κ > 0 quantifies the cost of switching
a label. In this setting, the distributionally robust classification problem (4) admits an
equivalent reformulation as a finite convex optimization problem if either (i) the univariate
loss function L is piecewise affine or (ii) X = Rn and L is Lipschitz continuous (but not
necessarily piecewise affine).

Theorem 14 (Distributionally robust linear classification) The following statements
hold.

(i) If L(z) = maxj∈J{ajz + bj}, then (4) is equivalent to

inf
w,λ,si
p+
ij ,p
−
ij

λρ+
1

N

N∑
i=1

si

s.t. SX(aj ŷiw − p+
ij) + bj + 〈p+

ij , x̂i〉 ≤ si i ∈ [N ], j ∈ [J ]

SX(−aj ŷiw − p−ij) + bj + 〈p−ij , x̂i〉 − κλ ≤ si i ∈ [N ], j ∈ [J ]

‖p+
ij‖∗ ≤ λ, ‖p

−
ij‖∗ ≤ λ i ∈ [N ], j ∈ [J ],

(17)

where SX denotes the support function of X.

(ii) If X = Rn and L is Lipschitz continuous, then (4) is equivalent to
inf
w,λ,si

λρ+
1

N

N∑
i=1

si

s.t. L(ŷi〈w, x̂i〉) ≤ si i ∈ [N ]
L(−ŷi〈w, x̂i〉)− κλ ≤ si i ∈ [N ]
lip(L)‖w‖∗ ≤ λ.

(18)

In the following, we exemplify Theorem 14 for the hinge loss, logloss and smoothed hinge
loss functions under the assumption that the input space X admits the conic representation

X = {x ∈ Rn : Cx �C d} (19)

for some matrix C, vector d and proper convex cone C of appropriate dimensions. We also
assume that X admits a Slater point xS ∈ Rn with CxS ≺C d.
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Corollary 15 (Support vector machine) If L represents the hinge loss function and X
is of the form (19), then (4) is equivalent to

inf
w,λ

si,p
+
i ,p
−
i

λρ+
1

N

N∑
i=1

si

s.t. 1− ŷi (〈w, x̂i〉) + 〈p+
i ,d−Cx̂i〉 ≤ si i ∈ [N ]

1 + ŷi (〈w, x̂i〉) + 〈p−i ,d−Cx̂i〉 − κλ ≤ si i ∈ [N ]

‖C>p+
i + ŷiw‖∗ ≤ λ, ‖C>p−i − ŷiw‖∗ ≤ λ i ∈ [N ]

si ≥ 0, p+
i ,p

−
i ∈ C∗ i ∈ [N ].

(20)

Corollary 16 (Support vector machine with smooth hinge loss) If L represents the
smooth hinge loss function and X = Rn, then (4) is equivalent to

min
w,λ,si

z+
i ,z
−
i ,t

+
i ,t
−
i

λρ+
1

N

N∑
i=1

si

s.t. 1
2(z+

i − ŷi〈w, x̂i〉)2 + t+i ≤ si i ∈ [N ]
1
2(z−i + ŷi〈w, x̂i〉)2 + t−i − κλ ≤ si i ∈ [N ]
1− z+

i ≤ t
+
i , 1− z−i ≤ t

−
i i ∈ [N ]

t+i , t
−
i ≥ 0 i ∈ [N ]

‖w‖∗ ≤ λ.

(21)

Corollary 17 (Logistic regression) If L represents the logloss function and X = Rn,
then (4) is equivalent to

min
w,λ,si

λρ+
1

N

N∑
i=1

si

s.t. log
(

1 + exp
(
− ŷi〈w, x̂i〉

))
≤ si i ∈ [N ]

log
(

1 + exp
(
ŷi〈w, x̂i〉

))
− κλ ≤ si i ∈ [N ]

‖w‖∗ ≤ λ.

(22)

Remark 18 (Relation to classical regularization) If X = Rn and the weight parame-
ter κ in the transportation metric (16) is set to infinity, then the learning problems portrayed
in Corollaries 15–17 all simplify to

inf
w

1

N

N∑
i=1

L(ŷi〈w, x̂i〉) + ρ‖w‖∗. (23)

Thus, in analogy to the case of regression, (23) reduces to an instance of the classical
regularized learning problem (2), where the dual norm term ‖w‖∗ plays the role of the
regularization function, while the Wasserstein radius ρ represents the usual regularization
weight. Note that if κ = ∞, then mass transportation along the output space is infinitely
expensive, that is, any distribution Q ∈ Bρ(P̂N ) can smear out the training samples along
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X, but it cannot flip outputs from +1 to −1 or vice versa. Thus, classical regularization
schemes, which are recovered for κ =∞, implicitly assume that output measurements are
exact. As this belief is not tenable in most applications, an approach with κ < ∞ may be
more satisfying. We remark that alternative approaches for learning with noisy labels have
previously been studied by Lawrence and Schölkopf (2001), Natarajan et al. (2013), and
Yang et al. (2012).

Remark 19 (Relation to Tikhonov regularization) The learning problem

inf
w

1

N

N∑
i=1

L(ŷi〈w, x̂i〉) + c‖w‖22 (24)

with Tikhonov regularizer enjoys wide popularity. If L represents the hinge loss, for example,
then (24) reduces to the celebrated soft margin support vector machine problem. However, the
Tikhonov regularizer appearing in (24) is not explained by a distributionally robust learning
problem of the form (4). It is known, however, that (23) with ‖ · ‖∗ = ‖ · ‖2 and (24) are
equivalent in the sense that for every ρ ≥ 0 there exists c ≥ 0 such that the solution of (23)
also solves (24) and vice versa (Xu et al., 2009, Corollary 6).

To establish a connection between distributionally robust and classical robust classification
as discussed in (Xu et al., 2009), we further investigate the worst-case expected loss of a
fixed linear hypothesis w.

sup
Q∈Bρ(P̂N )

EQ[L(y〈w,x〉)] (25)

Theorem 20 (Extremal distributions in linear classification) The following state-
ments hold.

(i) If L(z) = maxj∈J{ajz + bj}, then the worst-case expectation (25) coincides with

sup
α+
ij ,α
−
ij

q+
ij ,q
−
ij

1

N

N∑
i=1

J∑
j=1

(α+
ij − α

−
ij)aj ŷi〈w, x̂i〉+ aj ŷi〈w, q+

ij − q
−
ij〉+

J∑
j=1

bj

s.t.
N∑
i=1

J∑
j=1

‖q+
ij‖+ ‖q−ij‖+ κα−ij ≤ Nρ

J∑
j=1

α+
ij + α−ij = 1 i ∈ [N ]

x̂i + q+
ij/α

+
ij ∈ X, x̂i + q−ij/α

−
ij ∈ X i ∈ [N ], j ∈ [J ]

α+
ij , α

−
ij ≥ 0 i ∈ [N ], j ∈ [J ]

(26)

for any fixed w. Also, if (α+
ij
?
, α−ij

?
, q+
ij
?
, q−ij

?
) maximizes (26), then the discrete

distribution

Q =
1

N

N∑
i=1

J∑
j=1

α+
ij
?
δ(x̂i−q+

ij

?
/α+
ij

?
, ŷi)

+ α−ij
?
δ(x̂i−q−ij

?
/α−ij

?
, −ŷi)

represents a maximizer for (25).
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(ii) If X = Rn, then the worst-case expectation (25) coincides with the optimal value of

sup
αi,θ

lip(L)‖(w)‖∗θ +
1

N

N∑
i=1

(1− αi)L(ŷi〈w, x̂i〉) + αiL(−ŷi〈w, x̂i〉)

s.t. θ +
κ

N

N∑
i=1

αi = ρ− γ

0 ≤ αi ≤ 1 i ∈ [N ]
θ ≥ 0

(27)

for γ = 0. Moreover, if (α?i (γ), θ?(γ)) maximizes (27) for γ > 0, η(γ) = γ/(θ?(γ) +
κ− ρ+ γ + 1) and x? solves maxx{〈w,x〉 : ‖x‖ ≤ 1}, then the discrete distributions

Qγ =
1

N

N∑
i=2

(1− α?i (γ)) δ(x̂i, ŷi) + α?i (γ) δ(x̂i, −ŷi) +
η(γ)

N
δ

(x̂1+
θ?(γ)N
η(γ)

x?, ŷ1)

+
1− η(γ)

N

[
(1− α?1(γ)) δ(x̂1, ŷ1) + α?1(γ) δ(x̂1, −ŷ1)

]
for γ ∈ [0,min{ρ, 1}] are feasible and asymptotically optimal in (25) for γ ↓ 0.

Theorem 20 shows how one can use convex optimization to construct a sequence of
distributions that are asymptotically optimal in (25). Next, we show that the worst-
case expected cost (25) is equivalent to a (robust) worst-case cost over a suitably defined
uncertainty set if the following assumption holds.

Assumption 21 (Non-separability) For every w ∈ Rn there is a training sample (x̂k, ŷk)
for some k ≤ N such that the derivative L′ exists at ŷk〈w, x̂k〉 and satisfies |L′(ŷk〈w, x̂k〉)| =
lip(L).

Remark 22 (Non-separability) Assumption 21 generalizes the non-separability condition
in (Xu et al., 2009, Theorem 3) for the classical and smooth hinge loss functions to more
general Lipschitz continuous losses. Note that, in the case of the hinge loss, Assumption 21
effectively stipulates that for any w there exists a training sample (x̂k, ŷk) with ŷk〈w, x̂k〉 < 1,
implying that the dataset cannot be perfectly separated by any linear hypothesis w. An
equivalent requirement is that the empirical hinge loss is nonzero for every w. Similarly, in
the case of the smooth hinge loss, Assumption 21 ensures that for any w there is a training
sample with ŷk〈w, x̂k〉 < 0, which implies again that the dataset admits no perfect linear
separation. Note, however, that the logloss fails to satisfy Assumption 21 as its steepest slope
is attained at infinity.

Theorem 23 (Robust classification) Suppose that X = Rn, the loss function L is Lips-
chitz continuous and the cost of flipping a label in the transportation metric (16) is set to
κ = ∞. Then, the worst-case expected loss (25) provides an upper bound on the (robust)
worst-case loss 

sup
∆xi

1

N

N∑
i=1

L (ŷi〈w, x̂i + ∆xi〉)

s.t.
1

N

N∑
i=1

‖∆xi‖ ≤ ρ.
(28)
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Moreover, if Assumption 21 holds, then (25) and (28) are equal.

Remark 24 (Tractability of robust classification) Assume that X = Rn, while L and
‖ · ‖ both admit a tractable conic representation. By Theorem 14, the worst-case expected
loss (25) can then be computed in polynomial time by solving a tractable convex program.
Theorem 23 thus implies that the worst-case loss (28) can also be computed in polynomial
time if Assumption 21 holds. This confirms Proposition 4 in (Xu et al., 2009). No efficient
method for computing (28) is know if Assumption 21 fails to hold.

3.3. Nonlinear Hypotheses: Reproducing Kernel Hilbert Spaces

We now generalize the learning models from Sections 3.1 and 3.2 to nonlinear hypotheses
that range over a reproducing kernel Hilbert space (RKHS) H ⊆ RX with inner product 〈·, ·〉H.
By definition, H thus constitutes a complete metric space with respect to the norm ‖ · ‖H
induced by the inner product, and the point evaluation h 7→ h(x) of the functions h ∈ H
represents a continuous linear functional on H for any fixed x ∈ X. The Riesz representation
theorem then implies that for every x ∈ X there exists a unique function Φ(x) ∈ H such that
h(x) = 〈h,Φ(x)〉H for all h ∈ H. We henceforth refer to Φ : X→ H as the feature map and
to k : X× X→ R+ with k(x,x′) = 〈Φ(x),Φ(x′)〉H as the kernel function. By construction,
the kernel function is symmetric and positive definite, that is, the kernel matrix K ∈ RN×N
defined through Kij = k(xi,xj) is positive definite for all N ∈ N and {xi}i≤N ⊆ X.

By the Moore-Aronszajn theorem, any symmetric and positive definite kernel function k
on X induces a unique RKHS H ⊆ RX, which can be represented as

H =

{
h ∈ RX : ∃βi ∈ R, xi ∈ X ∀i ∈ N with h(x) =

∞∑
i=1

βik(xi,x) and

∞∑
i=1

∞∑
j=1

βik(xi,xj)βj <∞

}
,

where the inner product of two arbitrary functions h1, h2 ∈ H with h1(x) =
∑∞

i=1 βik(xi,x)
and h2(x) =

∑∞
j=1 β

′
jk(x′j ,x) is defined as 〈h1, h2〉H =

∑∞
i=1

∑∞
j=1 βik(xi,x

′
j)β
′
j . One may

now use the kernel function to define the feature map Φ through [Φ(x′)](x) = k(x′,x)
for all x,x′ ∈ X. This choice is admissible because it respects the consistency condition
〈Φ(x),Φ(x′)〉H = k(x,x′) for all x,x′ ∈ H, and because it implies the desired reproducing
property 〈f,Φ(x′)〉H =

∑∞
i=1 βik(xi,x

′) = f(x′) for all f ∈ H and x′ ∈ X.

In summary, given a symmetric and positive definite kernel function k, there exists an
associated RKHS H and a feature map Φ with the reproducing property. As we will see
below, however, to optimize over nonlinear hypotheses in H, knowledge of k is sufficient,
and there is no need to construct H and Φ explicitly.

Assume now that we are given any symmetric and positive definite kernel function k,
and construct a distributionally robust learning problem over all nonlinear hypotheses in
the corresponding RKHS H via

Ĵ(ρ) = inf
h∈H

sup
Q∈Bρ(P̂N )

EQ [`(h(x), y)] , (29)
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where the transportation metric is given by the Euclidean norm on X× Y (for regression
problems) or the separable metric (16) with the Euclidean norm on X (for classification
problems). While problem (29) is hard to solve in general due to the nonlinearity of the
hypotheses h ∈ H, it is easy to solve a lifted learning problem where the inputs x ∈ X are
replaced with features xH ∈ H, while each nonlinear hypothesis h ∈ H over the input space
X is identified with a linear hypothesis hH ∈ H over the feature space H through the identity
hH(xH) = 〈h,xH〉H. Thus, the lifted learning problem can be represented as

ĴH(ρ) = inf
h∈H

sup
Q∈Bρ(P̂H

N )

EQ [`(〈h,xH〉H, y)] , (30)

where P̂H
N = 1/N

∑N
i=1 δ(Φ(x̂i),ŷi) on H×Y denotes the pushforward measure of the emprical

distribution P̂N under the feature map Φ induced by k, while Bρ(P̂
H
N ) constitutes the

Wasserstein ball of radius ρ around P̂H
N corresponding to the transportation metric

dH
(
(xH, y), (x′H, y

′)
)

=

{ √
‖xH − x′H‖2H + (y − y′)2 for regression problems,

‖xH − x′H‖H + κ1{y 6=y′} for classification problems.

Even though P̂H
N constitutes the pushforward measure of P̂N under Φ, not every distribution

QH ∈ Bρ(P̂H
N ) can be obtained as the pushforward measure of some Q ∈ Bρ(P̂N ). Thus,

we should not expect (29) to be equivalent to (30). Instead, one can show that under a
judicious transformation of the Wasserstein radius, (30) provides an upper bound on (29)
whenever the kernel function satisfies a calmness condition.

Assumption 25 (Calmness of the kernel) The kernel function k is calm from above,
that is, there exist a concave smooth growth function g : R+ → R+ with g(0) = 0 and
g′(z) ≥ 1 for all z ∈ R+ such that√

k(x1,x1)− 2k(x1,x2) + k(x2,x2) ≤ g(‖x1 − x2‖2) ∀x1,x2 ∈ X.

The calmness condition is non-restrictive. In fact, it is satisfied by most commonly used
kernels.

Example 1 (Growth Functions for Popular Kernels) For most commonly used ker-
nels k on X ⊆ Rn, we can construct an explicit growth function g that certifies the calmness of
k in the sense of Assumption 25. This construction typically relies on elementary estimates.
Derivations are omitted for brevity.

1. Linear kernel: For k(x1,x2) = 〈x1,x2〉, we may set g(z) = z.

2. Gaussian kernel: For k(x1,x2) = e−γ‖x1−x2‖22 with γ > 0, we may set g(z) =
max{

√
2γ, 1}z.

3. Laplacian kernel: For k(x1,x2) = e−γ‖x1−x2‖1 with γ > 0, we may set g(z) =√
2γz
√
n if 0 ≤ z ≤ γ

√
n/2 and g(z) = z + γ

√
n/2 otherwise.
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4. Polynomial kernel: The kernel k(x1,x2) = (γ〈x1,x2〉+ 1)d with γ > 0 and d ∈ N
fails to satisfy the calmness condition if X is unbounded and d > 1, in which case√
k(x1,x1)− 2k(x1,x2) + k(x2,x2) grows superlinearly. If X ⊆ {x ∈ Rn : ‖x‖2 ≤ R}

for some R > 0, however, the polynomial kernel is calm with respect to the growth
function

g(z) =

{
max{ 1

2R

√
2(γR2 + 1)d, 1}z if d is even,

max{ 1
2R

√
2(γR2 + 1)d − 2(1− γR2)d, 1}z if d is odd.

Theorem 26 (Lifted learning problems) If Assumption 25 holds for some growth func-
tion g, then the following statements hold for all Wasserstein radii ρ ≥ 0.

(i) For regression problems we have Ĵ(ρ) ≤ ĴH(
√

2g(ρ)).

(ii) For classification problems we have Ĵ(ρ) ≤ ĴH(g(ρ)).

We now argue that the lifted learning problem (30) can be solved efficiently by lever-
aging the following representer theorem, which generalizes (Schölkopf and Smola, 2001,
Theorem 4.2) to non-separable loss functions.

Theorem 27 (Representer theorem) Assume that we are given a symmetric positive
definite kernel k on X with corresponding RKHS H, a set of training samples (x̂i, ŷi) ∈ X×Y,
i ≤ N , and an arbitrary loss function f : (X×Y×R)N ×R+ → R that is non-decreasing in
its last argument. Then, there exist βi ∈ R, i ≤ N , such that the learning problem

min
h∈H

f((x̂1, ŷ1, h(x̂1)), . . . , (x̂N , ŷN , h(x̂N )), ‖h‖H) (31)

is solved by a hypothesis h? ∈ H representable as h?(x) =
∑N

i=1 βik(x, x̂i).

The subsequent results involve the Kernel matrix K = [Kij ] defined through Kij =
k(x̂i, x̂j), i, j ≤ N . The following theorems demonstrate that the lifted learning problem (30)
admits a kernel representation.

Theorem 28 (Kernelized distributionally robust regression) Suppose that X = Rn,
Y = R and k is a symmetric positive definite kernel on X with associated RKHS H. If
` is generated by a convex and Lipschitz continuous loss function L, that is, `(h(x), y) =
L(h(x)− y), then (30) is equivalent to

min
β∈RN

1

N

N∑
i=1

L
( N∑
j=1

Kijβj − ŷi
)

+ ρ lip(L)‖(K
1
2β, 1)‖2,

and for any of its minimizers β? the hypothesis h?(x) =
∑N

i=1 β
?
i k(x, x̂i) is optimal in (30).

Theorem 29 (Kernelized distributionally robust classification) Suppose that X =
Rn, Y = {+1,−1} and k is a symmetric positive definite kernel on X = Rn with associated
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RKHS H. If ` is generated by a convex and Lipschitz continuous loss function L, that is,
`(h(x), y) = L(yh(x)), then (30) is equivalent to

min
βi,λ,si

λρ+
1

N

N∑
i=1

si

s.t. L
( N∑
j=1

ŷiKijβj

)
≤ si i ∈ [N ]

L
(
−

N∑
j=1

ŷiKijβj

)
− κλ ≤ si i ∈ [N ]

lip(L)‖K
1
2β‖2 ≤ λ,

(32)

and for any of its minimizers β? the hypothesis h?(x) =
∑N

i=1 β
?
i k(x, x̂i) is optimal in (30).

Theorems 28 and 29 show that the lifted learning problem (30) can be solved with similar
computational effort as problem (4), that is, optimizing over a possibly infinite-dimensional
RKHS of nonlinear hypotheses is not substantially harder than optimizing over the space of
linear hypotheses.

Remark 30 (Kernelization in robust regression and classification) Recall from The-
orem 12 that distributionally robust and classical robust linear regression are equivalent if
Ξ = Rn+1 and the training samples are sufficiently dispersed in the sense of Assumption 10.
Similarly, Theorem 23 implies that distributionally robust and classical robust linear classifi-
cation are equivalent if κ =∞ and the training samples are non-separable in the sense of
Assumption 21. One can show that Theorems 12 and 23 naturally extend to nonlinear regres-
sion and classification models over an RKHS induced by some symmetric and positive definite
kernel. Specifically, one can show that some lifted robust learning problem is equivalent to
the lifted distributionally robust learning problem (30) whenever the lifted training samples
(Φ(x̂1), ŷ1), · · · , (Φ(x̂N ), ŷN ) satisfy Assumption 10 (for regression) or 21 (for classification).
Theorems 28 and 29 thus imply that the lifted robust regression and classification problems
can be solved efficiently under mild regularity conditions whenever Assumptions 10 and 21
hold, respectively. Unfortunately, these conditions are often violated for popular kernels. For
example, the lifted samples are always linearly separable under the Gaussian kernel (Xu et al.,
2009, p. 1496). In this case, the lifted robust classification problem can never be reduced to
an efficiently solvable lifted distributionally robust classification problem of the form (30).
In fact, no efficient method for solving the lifted robust classification problem seems to be
known. In contrast, the lifted distributionally robust learning problems are always efficiently
solvable under standard regularity conditions.

3.4. Nonlinear Hypotheses: Neural Networks2

Families of neural networks represent particularly expressive classes of nonlinear hypotheses.
In the following, we characterize a family H of neural networks with M ∈ N layers through
M continuous activation functions σm : Rnm+1 → Rnm+1 and M weight matrices Wm ∈

2. We are grateful to an anonymous referee for encouraging us to write this section.
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Rnm+1×nm , m ∈ [M ]. The weight matrices can encode fully connected or convolutional layers,
for example. If n1 = n and nM+1 = 1, then we may set

H =
{
h ∈ RX : ∃Wm ∈ Rnm+1×nm , m ∈ [M ], h(x) = σM

(
WM · · ·σ2

(
W2σ1(W1x)

)
· · ·
)}

.

Each hypothesis h ∈ H constitutes a neural network and is uniquely determined by the
collection of all weight matrices W[M ] := (W1, . . . ,WM ). In order to emphasize the
dependence on W[M ], we will sometimes use h(x;W[M ]) to denote the hypotheses in H.
Setting x1 = x, the features of the neural network are defined recursively through xm+1 =
σm(zm), where zm = Wmxm, m ∈ [M ]. The features xm, m = 2, . . . ,M , correspond to the
hidden layers of the neural network, while xM+1 determines its output.

Example 2 (Activation functions) The following activation functions are most widely
used.

1. Hyperbolic tangent: [σm(zm)]i = (exp(2[zm]i)− 1)/(exp(2[zm]i) + 1)

2. Sigmoid: [σm(zm)]i = 1/(1 + exp(−[zm]i))

3. Softmax: [σm(zm)]i = exp([zm]i)/
∑nm+1

j=1 exp([zm]j)

4. Rectified linear unit (ReLU): [σm(zm)]i = max{0, [zm]i}

5. Exponential linear unit (ELU): [σm(zm)]i = max{0, [zm]i}+min{0, α(exp([zm]i)−
1)}

The distributionally robust learning model over the hypothesis class H can now be
represented as

inf
h∈H

sup
Q∈Bρ(P̂N )

EQ
[
`
(
h(x), y

)]
= inf
W[M ]

sup
Q∈Bρ(P̂N )

EQ
[
`
(
h(x;W[M ]), y

)]
, (33)

where we use the transportation metrics (11) and (16) for regression and classification
problems, respectively. Moreover, we adopt the standard convention that `(h(x), y) =
L(h(x)− y) for regression problems and `(h(x, y)) = L(yh(x)) for classification problems,
where L is a convex and Lipschitz continuous univariate loss function. In the following we
equip each feature space Rnm with a norm ‖ · ‖, m ∈ [M + 1]. By slight abuse of notation,
we use the same symbol for all norms even though the norms on different feature spaces
may differ. Using the norm on Rnm+1 , we define the Lipschitz modulus of σm as

lip(σm) := sup
z,z′∈Rnm+1

{
‖σ(z)− σ(z′)‖
‖z − z′‖

: z 6= z′
}
.

We are now ready to state the main result of this section, which provides a conservative
upper bound on the distributionally robust learning model (33).
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Theorem 31 (Distributionally robust learning with neural networks) The distri-
butionally robust learning model (33) is bounded above by the regularized empirical loss
minimization problem

inf
W[M ]

1

N

N∑
i=1

`(h(x̂i;W[M ]), ŷi) + ρ lip(L) max

{
M∏
m=1

lip(σm)‖Wm‖,
c

κ

}
, (34)

where c = 1 for regression problems and c = max{1, 2 suph∈H,x∈X |h(x)|} for classification
problems. Moreover, ‖Wm‖ = sup‖xm‖=1 ‖Wmxm‖ is the operator norm induced by the
norms on Rnm and Rnm+1.

Remark 32 (Uniform upper bound on all neural networks) For classification prob-
lems the constant c in (34) represents a uniform upper bound on all neural networks and
may be difficult to evaluate in general. It is easy to estimate c, however, if the last activation
function is itself bounded such as the softmax function, which yields a probability distribution
over the output space. In this case one may simply set c = 2.

The product term
∏M
m=1 lip(σm)‖Wm‖ in (34) represents an upper bound on the Lipschitz

modulus of h(x;W[M ]). We emphasize that computing the exact Lipschitz modulus of a
neural network is NP-hard even if there are only two layers and all activation functions are
of the ReLU type (Scaman and Virmaux, 2018, Theorem 2). In contrast, the upper bound
at hand is easy to compute as all activation functions listed in Example 2 have Lipschitz
modulus 1 with respect to the Euclidean norms on the domain and range spaces (Gouk
et al., 2018; Wiatowski et al., 2016). For more details on how to estimate the Lipschitz
moduli of neural networks we refer to (Gouk et al., 2018; Miyato et al., 2018; Neyshabur
et al., 2018; Szegedy et al., 2013).

Note that even though (34) represents a finite-dimensional optimization problem over
the weight matrices of the neural network, both the empirical prediction loss as well as
the regularization term are non-convex in W[M ], which complicates numerical solution. If
κ =∞, however, one can derive an alternative upper bound on the distributionally robust
learning model (33) with a convex regularization term.

Corollary 33 (Convex regularization term) If κ = ∞, then there is ρ ≥ 0 such that
the distributionally robust learning model (33) is bounded above by the regularized empirical
loss minimization problem

inf
W[M ]

1

N

N∑
i=1

`(h(x̂i;W[M ]), ŷi) + ρ

M∑
m=1

‖Wm‖. (35)

As the empirical prediction loss remains non-convex, it is expedient to address prob-
lem (35) with local optimization methods such as stochastic gradient descent algorithms.
For a comprehensive review of first- and the second-order stochastic gradient algorithms we
refer to (Agarwal et al., 2017) and the references therein. In the numerical experiments we
will use a stochastic proximal gradient descent algorithm that exploits the convexity of the
regularization term and generates iterates W k

[M ] for k ∈ N according to the update rule

W k+1
m = proxηkρ‖Wm‖

(
W k

m − ηk∇Wm`(h(x̂ik ;W k
[M ]), ŷik)

)
∀m ∈ [M ],
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where ηk > 0 is a given step size and ik is drawn randomly from the index set [N ],
see, e.g., Nitanda (2014). Here, the proximal operator associated with a convex function
ϕ : Rnm+1×nm → R is defined through

proxϕ(Wm) := arg min
W ′m

ϕ(W ′
m) +

1

2
‖W ′

m −Wm‖2F ,

where ‖ · ‖F stands for the Frobenius norm. The algorithm is stopped as soon as the
improvement of the objective value falls below a prescribed threshold. As the empirical
prediction loss is non-convex and potentially non-smooth, the algorithm fails to offer any
strong performance guarantees. For the scalability of the algorithm, however, it is essential
that the proximal operator can be evaluated efficiently.

Example 3 (Proximal operator) Suppose that all feature spaces Rnm are equipped with
the p-norm for some p ∈ {1, 2,∞}, which implies that all parameter spaces Rnm+1×nm

are equipped with the corresponding matrix p-norm. In this case the proximal operator of
ϕ(Wm) = η‖Wm‖p for some fixed η > 0 can be evaluated highly efficiently.

1. MACS (p = 1): The matrix 1-norm returns the maximum absolute column sum
(MACS). Evaluating the proximal operator of ϕ(Wm) = η‖Wm‖1 amounts to solving
the minimization problem

proxϕ(Wm) =

 min
W ′m,u

ηu+

nm∑
i=1

‖[W ′
m]:,i − [Wm]:,i‖22

s.t. ‖[W ′
m]:,i‖1 ≤ u i ∈ [nm],

where [Wm]:,i and [W ′
m]:,i represent the i-th columns of Wm and W ′

m, respectively. For
any fixed u, the above problem decomposes into nm projections of the vectors [Wm]:,i,
i ∈ [nm], to the `1-ball of radius u centered at the origin. Each of these projections
can be computed via an efficient sorting algorithm proposed in (Duchi et al., 2008).
Next, we can use any line search method such as the golden-section search algorithm
to optimize over u, thereby solving the full proximal problem.

2. Spectral (p = 2): The matrix 2-norm coincides with the spectral norm, which returns
the maximum singular value. In this case, the proximal problem for ϕ(Wm) = η‖Wm‖2
can be solved analytically via singular value thresholding (Cai et al., 2010, Theorem 2.1),
that is, given the singular value decomposition Wm = USV > with U ∈ Rnm+1×nm+1

orthogonal, S ∈ Rnm+1×nm
+ diagonal and V ∈ Rnm×nm orthogonal, the proximal

operator satisfies

proxϕ(Wm) = proxϕ(USV >) = US̃V >, where S̃ij = max{Sij − η, 0} .

The singular value decomposition can be accelerated using a randomized algorithm
proposed in (Halko et al., 2011).

3. MARS (p = ∞): The matrix ∞-norm returns the maximum absolute row sum
(MARS) and thus satisfies ‖Wm‖∞ = ‖W>

m‖1. Therefore, one can use the iterative
scheme developed for MACS to compute the proximal operator of ϕ(Wm) = η‖Wm‖∞
by simply transposing the weight matrix Wm.
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The convergence behavior of the stochastic proximal gradient descent algorithm can
be further improved by including a momentum term inside the proximal operator, see,
e.g., Loizou and Richtárik (2017).

4. Generalization Bounds

Generalization bounds constitute upper confidence bounds on the out-of-sample error. Tra-
ditionally, generalization bounds are derived by controlling the complexity of the hypothesis
space, which is typically quantified in terms of its VC-dimension or via covering numbers
or Rademacher averages (Shalev-Shwartz and Ben-David, 2014). Strengthened generaliza-
tion bounds for large margin classifiers can be obtained by improving the estimates of the
VC-dimension and the Rademacher average (Shivaswamy and Jebara, 2007, 2010). We will
now demonstrate that distributionally robust learning models of the type (4) or (30) enjoy
simple new generalization bounds that can be obtained under minimal assumptions. In
particular, they do not rely on any notions of hypothesis complexity and may therefore even
extend to hypothesis spaces with infinite VC-dimensions. Our approach is reminiscent of
the generalization theory for robust support vector machines portrayed in (Xu et al., 2009),
which also replaces measures of hypothesis complexity with robustness properties. However,
we derive explicit finite sample guarantees, while (Xu et al., 2009) establishes asymptotic
consistency results. Moreover, we relax some technical conditions used in (Xu et al., 2009)
such as the compactness of the input space X.

The key enabling mechanism of our analysis is a measure concentration property of the
Wasserstein metric, which holds whenever the unknown data-generating distribution has
exponentially decaying tails.

Assumption 34 (Light-tailed distribution) There exist constants a > 1 and A > 0
and a reference point ξ′ ∈ Rn+1 such that EP[exp (d(ξ, ξ′))a)] ≤ A, where d denotes the
usual mass transportation cost.

Theorem 35 (Measure concentration (Fournier and Guillin, 2015, Theorem 2))
If Assumption 34 holds, then we have

PN
{
W (P, P̂N ) ≥ ρ

}
≤
{
c1 exp

(
−c2Nρ

max{n+1,2}) if ρ ≤ 1,
c1 exp

(
−c2Nρ

a
)

if ρ > 1,
(36)

for all N ≥ 1, n 6= 1, and ρ > 0, where the constants c1, c2 > 0 depend only on a, A, d and
n.3

Theorem 35 asserts that the empirical distribution P̂N converges exponentially fast to
the unknown data-generating distribution P, in probability with respect to the Wasserstein
metric, as the sample size N tends to infinity. We can now derive simple generalization
bounds by increasing the Wasserstein radius ρ until the violation probability on the of the
right hand side of (36) drops below a prescribed significance level η ∈ (0, 1]. Specifically,

3. A similar but slightly more complicated inequality also holds for the special case n = 1; see (Fournier and
Guillin, 2015, Theorem 2) for details.
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Theorem 36 borrowed from (Mohajerin Esfahani and Kuhn, 2018, Theorem 3.5) implies that
PN{P ∈ Bρ(P̂N )} ≥ 1− η for any ρ ≥ ρN (η), where

ρN (η) =


(

log(c1/η)

c2N

) 1
max{n+1,2}

if N ≥ log(c1/η)
c2

,(
log(c1/η)

c2N

) 1
a

if N < log(c1/η)
c2

.

(37)

Theorem 36 (Basic generalization bound) If Assumption 34 holds, then

PN
{
EP [`(〈w,x〉, y)] ≤ sup

Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] ∀w ∈ Rn
}
≥ 1− η (38)

for any N ≥ 1, n 6= 1, η ∈ (0, 1] and ρ ≥ ρN (η).

Remark 37 (Discussion of basic generalization bound) The following comments are
in order.

I. Performance guarantees for optimal hypotheses: If Ĵ(ρ) denotes the minimum
and ŵ a minimizer of the distributionally robust learning problem (4), then Theorem 36
implies that

PN
{
EP [`(〈ŵ,x〉, y)] ≤ Ĵ(ρ)

}
≥ 1− η

for any N ≥ 1, n > 1, η ∈ (0, 1] and ρ ≥ ρN (η).

II. Light-tail assumption: Assumption 34 is restrictive but unavoidable for any measure
concentration result of the type described in Theorem 35. It is automatically satisfied
if the input-output pair has bounded support or is known to follow a Gaussian or
exponential distribution, for instance.

III. Asymptotic consistency: It is clear from (37) that for any fixed η ∈ (0, 1], the radius
ρN (η) tends to 0 as N increases. Moreover, Theorem 3.6 in (Mohajerin Esfahani
and Kuhn, 2018) implies that if ηN converges to 0 at a carefully chosen rate (e.g.,
ηN = exp(−

√
N)), then the solution of the distributionally robust learning problem (4)

with Wasserstein radius ρ = ρN (ηN ) converges almost surely to the solution of the
ideal learning problem that minimizes the out-of-sample error under the unknown true
distribution P.

IV. Curse of dimensionality: The Wasserstein radius (37) has two decay regimes. For

small N , ρN (η) decays as N−
1
a , and for large N it is proportional to N−

1
n+1 . We thus

face a curse of dimensionality for large sample sizes. In order to half the Wasserstein
radius, one has to increase N by a factor of 2n. This curse of dimensionality is
fundamental, i.e., the dependence of the measure concentration result in Theorem 35
on the input dimension n cannot be improved for generic distributions P; see (Weed
and Bach, 2019) or (Fournier and Guillin, 2015, Section 1.3). Improvements are only
possible in special cases, e.g., if P is finitely supported.
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V. Extension to nonlinear hypotheses: Theorem 36 directly extends to any distribu-
tionally robust learning problem over an RKHS H induced by some symmetric and
positive definite kernel function k. Specifically, if k is calm in the sense of Assump-
tion 25 with growth function g, then we have

PN
EP[`(h(x), y)] ≤ sup

Q∈Bρ(P̂H
N )

EQ [`(〈h,xH〉H, y)] ∀h ∈ H

 ≥ 1− η (39)

for any N ≥ 1, n 6= 1, η ∈ (0, 1] and ρ ≥ cg(ρN (η)), where c =
√

2 for regression
problems and c = 1 for classification problems. To see this, note that the inclusion
P ∈ Bρ(P̂N ) implies

EP[`(h(x), y)] ≤ sup
Q∈Bρ(P̂N )

EQ [`(h(x), y)] ≤ sup
Q∈Bρ(P̂H

N )

EQ [`(〈h,xH〉H, y)] ∀h ∈ H,

(40)
where the second inequality follows from the proof of Theorem 26. The generalization
bound (39) thus holds because PN{P ∈ Bρ(P̂N )} ≥ 1− η for any ρ ≥ ρN (η). Note that
the rightmost term in (40) can be computed for any finitely generated hypothesis h ∈ H
representable as h(x) =

∑N
i=1 βik(x, x̂i), which follows from Theorems 28 and 29, while

the middle term is hard to compute. We emphasize that the generalization bound (39)
does not rely on any notion of hypothesis complexity and remains valid even if H has
infinite VC-dimension (e.g., if H is generated by the Gaussian kernel).

Theorem 35 provides a confidence set for the unknown probability distribution P, and
Theorem 36 uses this confidence set to construct a uniform generalization bound on the
prediction error under P. The radius of the confidence set for P decreases slowly due to
a curse of dimensionality, but the decay rate is essentially optimal. This does not imply
that the decay rate of the generalization bound (38) is optimal, too. In fact, the worst-case
expected error over a Wasserstein ball of radius ρ can be a (1− η)-confidence bound on the
expected error under P even if the Wasserstein ball fails to contain P with confidence 1− η.
Thus, the measure concentration result of Theorem 35 is too powerful for our purposes and
leads to an over-conservative generalization bound. Below we will show that the curse of
dimensionality in the generalization bound (38) can be broken if we impose the following
restriction on the hypothesis space.

Assumption 38 (Hypothesis space) The space of admissible hypotheses in (4) is re-
stricted to W ⊆ Rn. There exists Ω > 0 with infw∈W ‖(w,−1)‖∗ ≥ Ω if (4) is a regression
problem and infw∈W ‖w‖∗ ≥ Ω if (4) is a classification problem. Similarly, there exists
Ω ≥ 0 with supw,w′∈W ‖w −w′‖∞ ≤ Ω.

Theorem 39 (Improved generalization bound) Suppose that Assumptions 34 and 38
hold, and the function L is Lipschitz continuous. Moreover, assume that Ξ = Rn+1

and Mn = maxi≤n ‖en+1
i ‖∗ if (4) is a regression problem, while Ξ = Rn × {−1, 1} and

Mn = maxi≤n ‖eni ‖∗ if (4) is a classification problem, where eni is the i-th standard
basis vector in Rn. Then, there exist constants c3 ≥ 1, c4 > 0 depending only on
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the light tail constants a and A such that the generalization bound (38) holds for any
N ≥ max

{
(16n/c4)2, 16 log(c3/η)/c4

}
, η ∈ (0, 1] and ρ ≥ ρ′N (η), where

ρ′N (η) =
2Ω√
NΩ

[
MnnA+

√
n log(

√
N) + log(c3/η)

c4

]
.

The improved generalization bound from Theorem 38 does not suffer from a curse of
dimensionality. In fact, in order to half the Wasserstein radius ρ′N (η), it suffices to increase
the sample size N by a factor of 4, irrespective of the input dimension n.

Remark 40 (Discussion of improved generalization bound) The following comments
are in order.

I. Bounds on hypothesis space: Assumption 38 imposes upper and lower bounds
on W. The upper bound enables us to control the difference between the empirical and
the true expected loss uniformly across all admissible hypotheses. This bound is less
restrictive than the uniform bound on the loss function used to derive Rademacher
generalization bounds (see, e.g., (Shalev-Shwartz and Ben-David, 2014, Theorem 26.4)),
which essentially imposes upper bounds both on the hypotheses and the input-output
pairs. The lower bound in Assumption 38 is restrictive for classification problems but
trivially holds for regression problems because ‖(w,−1)‖∗ is uniformly bounded away
from zero for any (dual) norm on Rn+1.

II. Breaking the curse of dimensionality: By leveraging Assumption 38, Theorem 39
reduces the critical Wasserstein radius in the generalization bound (38) from ρN (η) ∝
O([log(η−1)/N ]1/(n+1)), which suffers from a curse of dimensionality, to ρ′N (η) ∝
O([log(η−1)+n log(N))/N ]1/2), which essentially follows a square root law reminiscent
of the central limit theorem.

5. Error and Risk Estimation

Once a hypothesis h(x) has been chosen, it is instructive to derive pessimistic and optimistic
estimates of its out-of-sample prediction error (in the case of regression) or its out-of-sample
risk (in the case of classification). We will argue below that the distributionally robust
optimization techniques developed in this paper also offer new perspectives on error and risk
estimation. For ease of exposition, we ignore any support constraints, that is, we set X = Rn
and Y = R (for regression) or X = Rn and Y = {+1,−1} (for classification). Moreover, we
focus on linear hypotheses of the form h(x) = 〈w,x〉. Note, however, that all results extend
directly to conic representable support sets and to nonlinear hypotheses.

In the context of regression, we aim to estimate the prediction error defined as E(w) =
EP [|y − 〈w,x〉|] or, more precisely, the mean absolute prediction error under the unknown
data-generating distribution P. As usual, we assume that the transportation metric d is
induced by a norm ‖ · ‖ on the input-output space Rn+1.

Theorem 41 (Error bounds in linear regression) The prediction error admits the fol-
lowing estimates.
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(i) The worst-case error Emax(w) = sup
Q∈Bρ(P̂N )

EQ [|y − 〈w,x〉|] is given by

Emax(w) =
1

N

N∑
i=1

|ŷi − 〈w, x̂i〉|+ ρ‖(w,−1)‖∗. (41a)

[(ii) ] The best-case error Emin(w) = inf
Q∈Bρ(P̂N )

EQ [|y − 〈w,x〉|] is given by

Emin(w) = max

{
1

N

N∑
i=1

|ŷi − 〈w, x̂i〉| − ρ‖(w,−1)‖∗, 0

}
(41b)

In the context of classification, we aim to quantify the risk R(w) = P [y 6= sign(〈w,x〉)],
that is, the misclassification probability under the unknown true distribution P. Note that
the risk can equivalently be defined as the expectation of a characteristic function, that is,
R(w) = EP[1{y 6=〈w,x〉}]. As usual, we assume that the transportation metric d is of the
form (16), where κ ≥ 0 is the cost of flipping a label.

Theorem 42 (Risk bounds in linear classification) The risk admits the following es-
timates.

(i) The worst-case risk Rmax(w) = sup
Q∈Bρ(P̂N )

EQ[1{y 6=〈w,x〉}] is given by

Rmax(w) =



min
λ,si
ri,ti

λρ+
1

N

N∑
i=1

si

s.t. 1− riŷi〈w, x̂i〉 ≤ si i ∈ [N ]

1 + tiŷi〈w, x̂i〉 − λκ ≤ si i ∈ [N ]

ri‖w‖∗ ≤ λ, ti‖w‖∗ ≤ λ i ∈ [N ]

ri, ti, si ≥ 0 i ∈ [N ].

(42a)

(ii) The best-case risk Rmin(w) = inf
Q∈Bρ(P̂N )

EQ[1{y 6=〈w,x〉}] is given by

Rmin(w) = 1−



min
λ,si
ri,ti

λρ+
1

N

N∑
i=1

si

s.t. 1 + riŷi〈w, x̂i〉 ≤ si i ∈ [N ]

1− tiŷi〈w, x̂i〉 − λκ ≤ si i ∈ [N ]

ri‖w‖∗ ≤ λ, ti‖w‖∗ ≤ λ i ∈ [N ]

ri, ti, si ≥ 0 i ∈ [N ].

(42b)

We emphasize that, as the hypothesis w is fixed, the error and risk estimation prob-
lems (41) and (42) constitute tractable linear programs that can be solved highly efficiently.
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Remark 43 (Confidence intervals for error and risk) If the Wasserstein radius is set
to ρN (η/2) defined in (37), where η ∈ (0, 1] is a prescribed significance level, then Theorem 36
implies that E(ŵ) ∈ [Emin(ŵ), Emax(ŵ)] and R(ŵ) ∈ [Rmin(ŵ),Rmax(ŵ)] with confidence
1− η for any ŵ ∈ Rn that may even depend on the training data. Theorem 41 implies that
the confidence interval for the true error E(ŵ) can be calculated analytically from (41), while
Theorem 42 implies that the confidence interval for the true risk R(ŵ) can be computed
efficiently by solving the tractable linear programs (42).

Remark 44 (Extension to nonlinear hypotheses) By using the tools of Section 3.3,
Theorems 41 and 42 generalize immediately to nonlinear hypotheses that range over a RKHS.
Specifically, we can formulate lifted error and risk estimation problems where the inputs
x ∈ X are replaced with features xH ∈ H, while each nonlinear hypothesis h ∈ H over the
input space X is identified with a linear hypothesis hH ∈ H over the feature space H through
the identity hH(xH) = 〈h,xH〉H. Tractability is again facilitated by Theorem 27, which allows
us to focus on finitely parameterized hypotheses of the form h(x) =

∑N
i=1 βik(x, x̂i).

6. Numerical Results

We showcase the power of regularization via mass transportation in various applications
based on standard datasets from the literature. All optimization problems are imple-
mented in Python and solved with Gurobi 7.5.1 All experiments are run on an Intel
XEON CPU (3.40GHz), and the corresponding codes are made publicly available at
https://github.com/sorooshafiee/Regularization-via-Transportation.

6.1. Regularization with Pre-selected Parameters

We first assess how the out-of-sample performance of a distributionally robust support vector
machine (DRSVM) is impacted by the choice of the Wasserstein radius ρ, the cost κ of
flipping a label, and the kernel function k. To this end, we solve three binary classification
problems from the MNIST database (LeCun et al., 1998) targeted at distinguishing pairs of
similar handwritten digits (1-vs-7, 3-vs-8, 4-vs-9). In the first experiment we optimize over
linear hypotheses and use the separable transporation metric (16) involving the ∞-norm
on the input space. All results are averaged over 100 independent trials. In each trial,
we randomly select 500 images to train the DRSVM model (20) and use the remaining
images for testing. The correct classification rate (CCR) on the test data, averaged across
all 100 trials, is visualized in Figure 1 as a function of the Wasserstein radius ρ for each
κ ∈ {0.1, 0.25, 0.5, 0.75,∞}. The best out-of-sample CCR is obtained for κ = 0.25 uniformly
across all Wasserstein radii, and performance deteriorates significantly when κ is reduced or
increased. Recall from Remark 18 that, as κ tends to infinity, the DRSVM reduces to the
classical regularized support vector machine (RSVM) with 1-norm regularizer. Thus, the
results of Figure 1 indicate that regularization via mass transportation may be preferable
to classical regularization in terms of the maximum achievable out-of-sample CCR. More
specifically, we observe that the out-of-sample CCR of the best DRSVM (κ = 0.25) displays
a slightly higher and significantly wider plateau around the optimal regularization parameter
ρ than the classical RSVM (κ = ∞). This suggests that the regularization parameter in
DRSVMs may be easier to calibrate from data than in RSVMs, a conjecture that will be put
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Table 1: Average out-of-sample CCR scores of the DRSVM with learned parameters.

Polynomial Laplacian Gaussian

RSVM DRSVM RSVM DRSVM RSVM DRSVM

1-vs-7 98.9± 0.2 99.1± 0.2 98.3± 0.5 98.5± 0.4 99.1± 0.2 99.2± 0.2

3-vs-8 95.2± 0.4 97.0± 0.4 96.5± 0.4 96.8± 0.4 97.0± 0.3 97.2± 0.3

4-vs-9 95.0± 0.4 96.5± 0.4 95.8± 0.6 96.0± 0.6 96.8± 0.4 96.9± 0.4

to scrutiny in Section 6.2. Finally, Figure 1 reveals that the standard (unregularized) support
vector machine (SVM), which can be viewed as a special case of the DRSVM with ρ = 0, is
dominated by the RSVMs and DRSVMs across a wide range of regularization parameters.4

Note that the SVM problem (20) with ρ = 0 reduces to a linear program and may thus
suffer from multiple optimal solutions. This explains why the limiting out-of-sample CCR
for ρ ↓ 0 changes with κ.

6.2. Regularization with Learned Parameters

It is easy to read off the best regularization parameters ρ and κ from the charts in Figure 1.
As these charts are constructed from more than 12,000 test samples, however, they are not
accessible in the training phase. In practice, ρ and κ must be calibrated from the training
data alone. This motivates us to revisit the three classification problems from Section 6.1
using a fully data-driven procedure, where all free model parameters are calibrated via
5-fold cross validation; see, e.g., (Abu-Mostafa et al., 2012, § 4.3.3). Moreover, to evaluate
the benefits of kernelization, we now solve a generalized DRSVM model of the form (32),
which implicitly optimizes over all nonlinear hypotheses in some RKHS. As explained in
Section 3.3, kernelization necessitates the use of the separable transportation metric (16)
with the Euclidean norm on the input space.

All free parameters of the resulting DRSVM model are restricted to finite search grids
in order to ease the computational burden of cross validation. Specifically, we select
the Wasserstein radius ρ from within {b · 10e : b ∈ {1, 5}, e ∈ {1, 2, 3, 4}} and the label
flipping cost κ from within {0.1, 0.25, 0.5, 0.75,∞}. Moreover, we select the degree d of
the polynomial kernel from within {1, 2, 3, 4, 5} and the peakedness parameter γ of the
Laplacian and Gaussian kernels from within { 1

100 ,
1
81 ,

1
64 ,

1
49 ,

1
36 ,

1
25}. Otherwise, we use the

same experimental setup as in Section 6.1. Table 1 reports the averages and standard
deviations of the CCR scores on the test data based on 100 independent trials. We observe
that the DRSVM (ρ, κ, d, and γ learned by cross validation) outperforms the RSVM (ρ,
d and γ learned by cross validation, κ =∞) consistently across all tested kernel functions
(Polynomial, Laplacian, Gaussian). Note that the DRSVM with polynomial kernel subsumes
the non-kernelized DRSVM (20) as a special case because the polynomial kernel with d = 1
coincides with the linear kernel.

4. By slight abuse of notation, we use the acronym ‘SVM’ to refer to the unregularized empirical hinge loss
minimization problem even though the traditional formulations of the support vector machine involve a
Tikhonov regularization term.
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Figure 1: Average out-of-sample CCR scores of the DRSVM with pre-selected parameters.

In the third experiment, we assess the out-of-sample performance of the DRSVM (20)
for different transportation metrics on 10 standard datasets from the UCI repository (Bache
and Lichman, 2013). Specifically, we use different variants of the separable transportation
metric (16), where distances in the input space are measured via a p-norm with p ∈ {1, 2,∞}.
We focus exclusively on linear hypotheses because the kernelization techniques described
in Section 3.3 are only available for p = 2. The DRSVM is compared against the standard
(unregularized) SVM and the RSVM with q-norm regularizer (1

p + 1
q = 1). All results are

averaged across 100 independent trials. In each trial, we randomly select 75% of the data
for training and the remaining 25% for testing. The training dataset is first standardized to
zero mean and unit variance along each coordinate axis. The Wasserstein radius ρ and the
label flipping cost κ in the DRSVM as well as the regularization weight ρ in the RSVM are
estimated via stratified 5-fold cross validation.

Classifier performance is now quantified in terms of the receiver operating characteristic
(ROC) curve, which plots the true positive rate (percentage of correctly classified test samples
with true label y = 1) against the false positive rate (percentage of incorrectly classified
test samples with true label y = −1) by sweeping the discrimination threshold. Specifically,
we use the area under the ROC curve (AUC) as a measure of classifier performance. AUC
does not bias on the size of the test data and is a more appropriate performance measure
than CCR in the presence of an unbalanced label distribution in the training data. We
emphasize that most of the considered datasets are indeed imbalanced, and thus a high
CCR score would not necessarily provide evidence of superior classifier performance. The
averages and standard deviations of the AUC scores based on 100 trials are reported in
Table 2. The results suggest that the DRSVM outperforms the RSVM in terms of AUC for
all norms by about the same amount by which the RSVM outperforms the classical hinge
loss minimization, consistently across all datasets.

6.3. Multi-Label Classification

The aim of object recognition is to discover instances of particular object classes in digital
images. We now describe an object recognition experiment based on the PASCAL VOC
2007 dataset Everingham et al. (2010) consisting of 9,963 images, which are pre-partitioned
into 25% for training, 25% for validation and 50% for testing. Each image is annotated
with 20 binary labels corresponding to 20 given object categories (the n-th label is set to
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Table 2: Average out-of-sample AUC scores of the SVM, RSVM and DRSVM.

p =∞ / q = 1 p = 2 / q = 2 p = 1 / q =∞
SVM RSVM DRSVM RSVM DRSVM RSVM DRSVM

Australian 91.6± 3.0 91.5± 3.2 92.0± 2.5 92.0± 2.2 92.3± 2.0 91.9± 2.8 92.2± 2.4

Blood transfusion 73.7± 3.8 73.8± 3.8 75.5± 3.8 74.9± 3.5 75.5± 3.7 75.4± 3.4 75.4± 3.7

Climate model 93.8± 3.9 94.4± 4.0 94.3± 4.0 94.3± 3.8 94.0± 4.0 93.6± 3.9 93.9± 4.0

Cylinder 72.0± 3.7 71.2± 4.0 72.1± 4.1 71.3± 4.0 71.8± 3.8 71.5± 3.8 72.2± 3.7

Heart 90.4± 2.7 90.1± 2.7 90.3± 2.7 90.6± 2.6 90.9± 2.5 90.5± 2.6 90.7± 2.6

Ionosphere 85.0± 4.9 89.7± 4.5 89.2± 4.3 90.4± 3.7 89.9± 3.9 86.0± 4.9 87.2± 4.8

Liver disorders 60.5± 0.0 61.1± 0.7 61.7± 0.7 61.2± 0.3 61.7± 0.5 61.1± 0.4 61.8± 0.5

QSAR 90.5± 1.5 90.5± 1.6 91.0± 1.6 90.5± 1.5 91.2± 1.5 90.6± 1.5 91.1± 1.6

Splice 92.1± 0.0 93.0± 0.4 93.1± 0.1 92.5± 0.1 92.6± 0.1 92.0± 0.1 92.5± 0.1

Thoracic surgery 61.7± 7.1 61.5± 6.5 64.6± 6.6 64.4± 6.4 64.3± 7.0 64.0± 6.3 64.6± 6.3

+1 if the image contains the n-th object and to −1 otherwise). A multi-label classifier is a
function that predicts all labels of an unlabelled input image. The ability of a classifier to
detect objects belonging to any fixed category is measured by the average precision (AP),
which is defined in Everingham et al. (2010) as (a proxy for) the area under the classifier’s
precision-recall curve. The overall performance of a classifier is quantified by the mean
average precision (mAP), that is, the arithmetic mean of the AP scores across all object
categories.

In the first scenario, we train a separate binary RSVM and DRSVM classifier for each of
the 20 object categories. This classifier predicts whether an object of the respective category
appears in the input image. At the beginning we preprocess the entire dataset by resizing each
image to 256× 256 pixels and extracting the central patch of 244× 244 pixels. As shown in
(Chatfield et al., 2014; Donahue et al., 2014; Zeiler and Fergus, 2014), the features generated
by the penultimate layer of a deep convolutional neural network trained on a large image
dataset provide a powerful image descriptor. Using the ALEXNET neural network trained
on the ImageNet dataset (Krizhevsky et al., 2012), we can thus compress each (preprocessed)
image of the PASCAL VOC 2007 dataset into 1,000 meaningful features. We normalize these
feature vectors to lie on the unit sphere. When training the RSVM and DRSVM classifiers, we
can thus work with these feature vectors instead of the corresponding images. Moreover, we
restrict attention to linear hypotheses and assume that transportation distances in the input-
output space are measured by the separable metric (16) with the Euclidean norm on the input
space. We tune the Wasserstein radius ρ ∈ {b · 10e : b ∈ {1, . . . , 9}, e ∈ {−2,−3,−4}} and
the label flipping cost κ ∈ {0.1, 0.2, . . . , 1,∞} via the holdout method using the validation
data. As usual, we fix κ =∞ for RSVM. Table 3 reports the AP scores of the RSVM and
DRSVM models for each object category. The ensemble of all 20 binary RSVM or DRSVM
classifiers, respectively, can be viewed as a näıve multi-label classifier that predicts all labels
of an image. As DRSVM outperforms RSVM on an object-by-object basis, it also wins in
terms of mAP.

In the second scenario, we construct a proper multi-label classifier by fine-tuning the
last layer of the pre-trained ALEXNET network. To this end, we replace the original M -th
layer of the network with a new fully connected layer characterized by a parameter matrix
WM ∈ R20×1000, and we set σM to the Sigmoid activation function. The resulting classifer
outputs for each of the 20 object categories a probability that an object from the respective
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category appears in the input image. The quality of a classifier (which is encoded by
WM ) is measured by the cross-entropy loss function, which naturally generalizes the logloss
to multiple labels. The resulting empirical loss minimization problem is enhanced with a
regularization term proportional to ‖WM‖1,1 (Lasso), ‖WM‖2F (Tikhonov), ‖WM‖1 (MACS),
‖WM‖2 (Spectral) or ‖WM‖∞ (MARS). By using similar arguments as in Section 3.4, one
can show that the empirical cross-entropy with MACS, Spectral or MARS regularization term
overestimates the worst-case expected cross-entropy over all distributions of (xM ,xM+1) in
a Wasserstein ball provided that the transportation cost is given by

d((xM ,xM+1), (x′M ,x
′
M+1)) = ‖xM − x′M‖p + κ1{xM+1 6=x′M+1}

for κ =∞, whenever p = 1, p = 2 or p =∞, respectively. Thus, the MACS, Spectral and
MARS regularization terms admit a distributionally robust interpretation.

We use the stochastic proximal gradient descent algorithm of Section 3.4 to tune WM ,
including an additional momentum term with weight 0.9. As in (Krizhevsky et al., 2012),
we split the training phase into 100 epochs, each corresponding to a complete pass through
the training dataset in a random order. As the ALEXNET requires input images of size
244× 244, in each iteration we extract a random patch of 244× 244 pixels from the current
image and flip it horizontally at random. This procedure effectively augments the training
dataset. The initial step size is set to 10−3 and then reduced by a factor of 10 after every
7 epochs. The algorithm terminates after 100 epochs. We preprocess the images in the
validation and test datasets as in Scenario 1 and tune the regularization weights via the
holdout method using the validation data. Table 3 reports the AP and mAP scores of the
different classifiers that were tested. These results suggest that fine-tuning the last layer
of a pre-trained neural network may improve classifier performance. We observe that the
spectral norm regularizer, which has a distributionally robust interpretation, consistently
outperforms almost all other methods. For further details on the experimental setup (such
as the exact search grids for all hyperparameters) we refer to the code publicized on Github.

6.4. Generalization Bounds

The next experiment estimates the scaling behavior of the smallest Wasserstein radius
that verifies the generalization bound (38) for the synthetic threenorm classification prob-
lem (Breiman, 1996). The experiment involves 1,000 simulation trials. In each trial we
generate N training samples for some N ∈ {10, . . . , 90} ∪ {100, . . . , 1,000} as well as 105

test samples. Each sample (x, y) ∈ R20 × {−1, 1} is constructed as follows. The label y is
drawn uniformly from {−1, 1}. If y = −1, then x is drawn from a standard multivariate
normal distribution shifted by (c, . . . , c) or (−c, . . . ,−c) with equal probabilities, where
c = 2/

√
20. If ŷ = 1, on the other hand, then x is drawn from a standard multivariate

normal distribution shifted by (c,−c,+c, . . . ,−c).
We now describe three different approaches to choose the Wasserstein radius ρ in

the DRSVM (20) with transportation cost (16), where κ = ∞ and ‖ · ‖ represents the
∞-norm on the input space. Throughout the experiment we use P = {b · 10−e : b ∈
{1, . . . , 10}, e ∈ {1, . . . , 5}} as the search space for ρ. Approach 1 (‘cross validation’)
calibrates the Wasserstein radius as before via 5-fold cross validation based solely on the
N training samples. This approach reflects what would typically be done in practice.
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Table 3: AP scores of different multi-label classifiers.

Scenario 1 Scenario 2

RSVM DRSVM Lasso Tikhonov MACS Spectral MARS

84.80 84.85 85.50 84.26 84.35 83.89 85.53

78.54 78.49 76.18 76.55 76.37 75.67 76.22

82.19 82.19 83.37 83.11 83.52 84.19 83.08

79.55 79.56 77.65 78.04 77.70 78.92 77.53

37.52 37.98 38.10 39.73 39.53 38.75 38.10

72.05 72.03 70.05 69.43 69.17 70.28 69.77

83.08 83.12 83.10 83.67 83.50 82.92 83.17

80.60 80.56 79.87 79.86 80.07 79.85 79.82

54.64 54.64 54.40 54.76 53.94 54.72 54.55

47.82 53.13 52.06 52.10 51.62 55.54 51.19

54.26 58.88 63.41 65.23 65.15 66.79 62.95

75.81 75.81 76.92 77.39 77.26 76.54 76.97

82.74 82.72 82.17 81.89 81.6 80.81 81.9

72.69 72.88 74.70 75.41 74.76 76.48 74.31

90.36 90.36 90.07 90.30 90.22 90.35 90.09

50.22 51.90 50.20 50.18 50.27 51.39 50.20

60.75 63.57 71.78 71.3 70.39 71.64 71.40

56.85 56.98 52.15 54.36 54.65 55.12 51.94

85.09 85.03 84.89 84.55 84.41 85.43 84.96

69.02 69.08 64.73 65.85 65.63 64.26 64.48

mAP 69.92 70.69 70.56 70.90 70.71 71.20 70.40

Approaches 2 and 3 both solve (20) based on the empirical distribution induced by the N
training samples and select the Wasserstein radius using the 105 test samples. Specifically,
approach 2 (‘optimal’) chooses the Wasserstain radius that leads to the lowest test error,
while approach 3 (‘generalization bound’) selects the smallest Wasserstein radius for which
the optimal value of (20) exceeds the expected loss on the test samples in at least 95% of all
trials, that is, it approximates the smallest Wasserstein radius that verifies the generalization
bound (38) for η = 5%. As the test samples are not available in the training phase, the
last two approaches are not implementable in practice, and we merely study them to gain
insights. Figure 2(a) visualizes all resulting Wasserstein radii as a function of N . Note
that the radii obtained with the first two approaches are uncertain as they depend on a
particular choice of the training samples. Figure 2(a) thus only shows their averages across
all simulation trials. In contrast, the radii obtained with the third approach depend on the
training sample sets of all 1,000 trials and are thus essentially deterministic.

We observe that the Wasserstein radii of all three approaches decay approximately as
1/
√
N , which is in line with the theoretical generalization bound of Theorem 39. We expect
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Figure 2: Results of the threenorm classification problem.

this decay rate to be optimal because any faster decay would be in conflict with the central
limit theorem. Note also that our results empirically confirm Theorem 39 even though we
did not impose any restrictions on W as dictated by Assumption 38. This suggests that
Theorem 39 might remain valid under weaker conditions.

In the experiment underlying Figure 2(b), we first fix ŵ to an optimal solution of (20)
for ρ = 0.1 and N = 100. Figure 2(b) shows the true risk R(ŵ) and its confidence bounds
given by Theorem 42. As expected, for ρ = 0 the upper and lower bounds coincide with
the empirical risk on the training data, which is a lower bound for the true risk on the test
data due to over-fitting effects. As ρ increases, the confidence interval between the bounds
widens and eventually covers the true risk. For instance, at ρ ≈ 0.009 the confidence interval
is given by [0.008, 0.162] and contains the true risk with probability 1− η = 95%.

6.5. Worst-Case Distributions

Consider again the 3-vs-8 classification problems from the MNIST database (LeCun et al.,
1998) and fix w? to an optimal solution of the empirical hinge loss minimization problem.
The goal of the last experiment is to evaluate the worst-case hinge loss of w? for different
Wasserstein radii ρ ∈ {0, 0.01, 0.05, 0.1, 0.5, 1} and label flipping costs κ ∈ {0,∞} and to
investigate the corresponding worst-case distributions, which are computable by virtue of
Theorem 20(i). As each input constitutes a vector of pixels intensities between zero and one,
we impose support constraints of the form Cx ≤ d with C = [I,−I]> and d = [1>,0>]>.

For illustrative purposes we only use the N = 10 first datapoints in the MNIST dataset
as training samples. Each training sample x̂i corresponds to four discretization points
(x̂i + q+?

ij/α
+
ij
?

and x̂i + q−
?
ij/α

−
ij
?

for j = 1, 2) in the worst-case distribution obtained
from (26). We observe that for every i exactly one out of these four points has probability
1
N , while all others have probability 0. Figure 3 depicts only those 10 discretization points
that have nonzero probability for a fixed ρ and κ. As expected, the perturbations of the
training samples are more severe for larger Wasserstein radii. For κ = ∞ these scenarios
must have the same labels as the corresponding training samples. For κ = 0, on the other
hand, the labels can be flipped at no cost (flipped labels are indicated by red frames). Each
scenario group shown in Figure 3 can thus be viewed as a worst-case training dataset for
the corresponding Wasserstein radius and label flipping cost.
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(a) κ =∞ (b) κ = 0

Figure 3: Discretization points (input images) of the worst-case distribution for different ρ
and κ. Red frames indicate that the corresponding labels are flipped under the
worst-case distribution.
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Appendix: Proofs

A.1. Proofs of Section 3

The proof of Theorem 4 requires three preparatory Lemmas. The first lemma is adapted
from (Mohajerin Esfahani and Kuhn, 2018) and asserts that the worst-case expectation over
a Wasserstein ball can be re-expressed as a classical robust optimization problem.

Lemma 45 (Robust reformulation) Set ξ̂i = (x̂i, ŷi) for all i ≤ N . For any measurable
integrand I(ξ) that is bounded above by a Lipschitz continuous function we have

sup
Q∈Bρ(P̂N )

EQ [I(ξ)] = inf
λ≥0

λρ+
1

N

N∑
i=1

sup
ξ∈Ξ

I(ξ)− λd(ξ, ξ̂i). (A.1)

Proof By the definition of the Wasserstein ball we have

sup
Q∈Bρ(P̂N )

EQ [I(ξ)] =



sup
Π

∫
Ξ2

I(ξ) Π(dξ,dξ′)

s.t. Π is a joint distribution of ξ

and ξ′ with marginals Q and P̂N∫
Ξ2

d
(
ξ, ξ′

)
Π(dξ, dξ′) ≤ ρ
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=



sup
Qi

1

N

N∑
i=1

∫
Ξ
I(ξ)Qi(dξ)

s.t.

∫
Ξ
Qi(dξ) = 1 i ∈ [N ]

1

N

N∑
i=1

∫
Ξ
d(ξ, ξ̂i)Q

i(dξ) ≤ ρ.

Note that the integral of I(ξ) exists under every Q ∈ Bρ(P̂N ) because I(ξ) admits a Lipschitz
continuous majorant. The last equality in the above expression holds because the marginal
distribution of ξ′ is the uniform distribution on the training samples, which implies that
Π is completely determined by the conditional distributions Qi of ξ given ξ′ = ξ̂i, that is,
Π(dξ,dξ′) = 1

N

∑N
i=1 δξ̂i(dξ

′)Qi(dξ). The resulting generalized moment problem over the

normalized measures Qi admits the semi-infinite dual

sup
Q∈Bρ(P̂N )

EQ [I(ξ)] =


inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
ξ∈Ξ

I(ξ)− λd(ξ, ξ̂i) ≤ si i ∈ [N ]

λ ≥ 0.

Strong duality holds for any ρ > 0 due to (Shapiro, 2001, Proposition 3.4). The claim then
follows by eliminating si.

Lemma 46 For any a ∈ R, β, ζ̂ ∈ Rd, γ ∈ R+ and ζ ∈ Z, where Z ⊆ Rd is a closed convex
set, we have

sup
ζ∈Z

a〈β, ζ〉 − γ‖ζ − ζ̂‖ =

{
inf
p

SZ(aβ − p) + 〈p, ζ̂〉

s.t. ‖p‖∗ ≤ γ.

Proof We have

sup
ζ∈Z

a〈β, ζ〉 − γ‖ζ − ζ̂‖ = sup
ζ∈Z

inf
‖p‖∗≤γ

a〈β, ζ〉 − 〈p, ζ − ζ̂〉

= inf
‖p‖∗≤γ

sup
ζ∈Z

a〈β, ζ〉 − 〈p, ζ − ζ̂〉

= inf
‖p‖∗≤γ

sup
ζ∈Rd

〈aβ − p, ζ〉 − δZ(ζ) + 〈p, ζ̂〉

= inf
‖p‖∗≤γ

SZ(aβ − p) + 〈p, ζ̂〉,

where the first equality follows from the definition of the dual norm, the second equality
holds due to the minimax theorem (Bertsekas, 2009, Proposition 5.5.4), and the last equality
holds because the support function SZ is the conjugate of the indicator function δZ . Thus,
the claim follows.
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Lemma 47 If L(z) is a convex and Lipschitz continuous loss function, β, ζ̂ ∈ Rd and γ > 0,
then

sup
ζ∈Rd

L(〈β, ζ〉)− γ‖ζ − ζ̂‖ =

{
L(〈β, ζ̂〉) if lip(L)‖β‖∗ ≤ γ

+∞ otherwise.

Proof Note that L(〈β, ζ〉)− γ‖ζ − ζ̂‖ constitutes a difference of convex functions and may
thus be neither convex nor concave in ζ. In order to maximize this function, we re-write
I(ζ) = L(〈β, ζ〉) as an upper envelope of infinitely many affine functions. To this end, we
express the conjugate of I(ζ) as

I∗(z) = sup
ζ
〈z, ζ〉 − L(〈β, ζ〉) = sup

t, ζ
{〈z, ζ〉 − L(t) : t = 〈β, ζ〉} = inf

θ
{L∗(θ) : θβ = z} ,

where the last equality follows from strong Lagrangian duality, which holds because Slater’s
constraint qualification is trivially satisfied in the absence of inequality constraints (Bertsekas,
2009, Proposition 5.3.1). Defining Θ = {θ ∈ R : L∗(θ) < ∞} as the effective domain of
L∗(θ), we may then replace θ ∈ R with θ ∈ Θ in the last expression. As I(ζ) is convex and
continuous, it coincides with its bi-conjugate, that is,

I(ζ) = I∗∗(ζ) = sup
z
〈z, ζ〉 − I∗(z) = sup

θ∈Θ
〈θβ, ζ〉 − L∗(θ).

In other words, we have represented I(ζ) as the upper envelope of infinitely many linear
functions. Using this representation, we obtain

sup
ζ

I(ζ)− γ‖ζ − ζ̂‖ = sup
ζ

I∗∗(ζ)− γ‖ζ − ζ̂‖

= sup
ζ

sup
θ∈Θ

〈θβ, ζ〉 − L∗(θ)− γ‖ζ − ζ̂‖

= sup
θ∈Θ

sup
ζ

inf
‖p‖∗≤γ

θ〈β, ζ〉 − L∗(θ)− 〈p, ζ − ζ̂〉

= sup
θ∈Θ

inf
‖p‖∗≤γ

sup
ζ
〈θβ − p, ζ〉 − L∗(θ) + 〈p, ζ̂〉,

where the last equality holds due to (Bertsekas, 2009, Proposition 5.5.4). Evaluating the
maximization over ζ yields

sup
ζ

I(ζ)− γ‖ζ − ζ̂‖ = sup
θ∈Θ

inf
‖p‖∗≤γ

{
〈p, ζ̂〉 − L∗(θ) if p = θβ

+∞ otherwise

= sup
θ∈Θ

{
〈θβ, ζ̂〉 − L∗(θ) if ‖θβ‖∗ ≤ γ

+∞ otherwise

=

{
sup
θ∈Θ

θ〈β, ζ̂〉 − L∗(θ) if sup
θ∈Θ

‖θβ‖∗ ≤ γ

+∞ otherwise

=

{
L(〈β, ζ̂〉) if sup

θ∈Θ
|θ| · ‖β‖∗ ≤ γ

+∞ otherwise.
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Thus, the claim follows by noting that supθ{|θ| : L∗(θ) < ∞} represents the Lipschitz
modulus of L.

Proof of Theorem 4 To prove assertion (i), we apply Lemma 45 to the integrand f(x, y) =
L(〈w,x〉 − y) with L(z) = maxj≤J{ajz + bj} to obtain

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)]

= inf
λ≥0

λρ+
1

N

N∑
i=1

sup
(x,y)∈Ξ

L(〈w,x〉 − y)− λ‖(x, y)− (x̂i, ŷi)‖

= inf
λ≥0

λρ+
1

N

N∑
i=1

max
j∈[J ]

sup
(x,y)∈Ξ

aj(〈w,x〉 − y) + bj − λ‖(x, y)− (x̂i, ŷi)‖

=

 inf
λ,pij ,uij

λρ+

N∑
i=1

max
j≤J

SΞ(ajw − pij ,−aj − uij) + 〈pij , x̂i〉+ uij ŷi + bj

s.t. ‖(pij , uij)‖∗ ≤ λ i ∈ [N ], j ∈ [J ],

where the last equality follows from Lemma 46. The claim now follows by introducing
auxiliary epigraphical variables si for the max-terms in the objective function and by
including w as a decision variable.

To prove assertion (ii), we apply Lemma 45 to the integrand f(x, y) = L(〈w,x〉 − y),
where L is a Lipschitz continuous convex loss function. Thus we find

sup
Q∈Bρ(P̂N )

EQ [`w(x, y)] = inf
λ≥0

λρ+
N∑
i=1

sup
x,y

L(〈w,x〉 − y)− λ‖(x, y)− (x̂i, ŷi)‖

=

 inf
λ

λρ+
1

N

N∑
i=1

L(〈w, x̂i〉 − ŷi)

s.t. lip(L)|θ| · ‖(w,−1)‖∗ ≤ λ,

where the last equality uses Lemma 47. Next, we eliminate λ and include w as a decision
variable.

Proof of Corollary 5 Note that the Huber loss function L(z) coincides with the inf-
convolution of 1

2z
2 and δ|z| and can thus be expressed as L(z) = minz1

1
2z

2
1 + δ|z − z1|.

Moreover, the Lipschitz modulus of the Huber loss function is δ. The rest of the proof
follows from Theorem 4(ii).

Proof of Corollary 6 Notice that the ε-insensitive loss function is a piecewise linear
function with J = 3 pieces, see Section 2.1. By strong conic duality, the support function of
Ξ = {(x, y) ∈ Rn+1 : C1x+ c2y �C d} can be re-expressed as

SΞ(z1, z2) = sup
x,y
{〈z1,x〉+ z2y : C1x+ c2y �C d} = inf

q∈C∗

{
〈q,d〉 : C>1 q = z1, c

>
2 q = z2

}
.
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Strong duality holds because Ξ admits a Slater point. The rest of proof follows from
Theorem 4(i).

Proof of Corollary 7 The pinball loss function is a piecewise linear function with J = 2
pieces, see Section 2.1. The rest of proof follows from the dual representation of the support
function SΞ(z1, z2), which is known from the proof of Corollary 6, and from Theorem 4(i).

The proof of Theorem 9 is based on the following preparatory lemma.

Lemma 48 If Z ⊆ Rd is a non-empty convex closed set, ζ̂ ∈ Z, β ∈ Rd and α, γ ≥ 0, then
we have

inf
p

αSZ(β − p) + α〈p, ζ̂〉+ γ‖p‖∗ =

 sup
‖q‖≤γ

α〈β, ζ̂〉+ 〈β, q〉

s.t. ζ̂ + q/α ∈ Z.

Proof If α = 0, then the optimal values of both opimization problems vanish due to our
conventions of extended arithmetic, and thus the claim trivially holds. If α > 0, however,
we have

inf
p

αSZ(β − p) + α〈p, ζ̂〉+ γ‖p‖∗ = inf
p

sup
‖q‖≤γ

αSZ(β − p) + α〈p, ζ̂〉+ 〈p, q〉

= sup
‖q‖≤γ

inf
p

αSZ(β − p) + 〈p, αζ̂ + q〉

= sup
‖q‖≤γ

inf
z

αSZ(z) + 〈β − z, αζ̂ + q〉

= sup
‖q‖≤γ

α〈β, ζ̂〉+ 〈β, q〉 − α
(

sup
z
〈z, ζ̂ + q/α〉 − SZ(z)

)
= sup
‖q‖≤γ

α〈β, ζ̂〉+ 〈β, q〉 − αδZ(ζ̂ + q/α),

where the first equality follows from the definition of the dual norm, the second equality
exploits (Bertsekas, 2009, Proposition 5.5.4), and the last equality holds because, for any
convex closed set, the indicator function is the conjugate of the support function.

Proof of Theorem 9 We first prove assertion (i). By Theorem 4(i), the worst-case
expectation problem (13) constitutes a restriction of (5) where w is fixed, and thus it
coincides with the minimax problem

inf
λ,si
pij ,uij

sup
αij≥0,γij≥0

λρ+
1

N

N∑
i=1

si +
N∑
i=1

J∑
j=1

γij
(
‖(pij , uij)‖∗ − λ

)
+

N∑
i=1

J∑
j=1

αij
(
SΞ(−ajw − pij , aj − uij) + bj + 〈pij , x̂i〉+ uij ŷi − si

)
.

The minimization and the maximization may be interchanged by strong duality, which holds
because the convex program (5) satisfies Slater’s constraint qualification for every fixed
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w (Bertsekas, 2009, Proposition 5.3.1). Indeed, note that SΞ is proper, convex and lower
semi-continuous and appears in constraints that are always satisfiable because they involve
a free decision variable. Thus, the above minimax problem is equivalent to



sup
αij ,γij

inf
pij ,uij

N∑
i=1

J∑
j=1

αij
(
SΞ(ajw − pij , aj − uij) + bj + 〈pij , x̂i〉+ uij ŷi

)
+

N∑
i=1

J∑
j=1

γij‖pij‖∗

s.t.
N∑
i=1

J∑
j=1

γij = ρ

J∑
j=1

αij =
1

N
i ∈ [N ]

αij , γij ≥ 0 i ∈ [N ], j ∈ [J ].

By Lemma 48, which applies because (x̂i, ŷi) ∈ Ξ for all i ≤ N , the above dual problem
simplifies to



sup
αij ,γij
qij ,vij

N∑
i=1

J∑
j=1

αij
(
aj(〈w, x̂i〉 − ŷi) + bj

)
+ aj(〈w, qij〉 − vij)

s.t.
N∑
i=1

J∑
j=1

γij = ρ

J∑
j=1

αij =
1

N
i ∈ [N ]

‖(qij , vij)‖ ≤ γij i ∈ [N ], j ∈ [J ]
(x̂i − qij/αij , ŷi − vij/αij) ∈ Ξ i ∈ [N ], j ∈ [J ]
αij , γij ≥ 0 i ∈ [N ], j ∈ [J ].

Problem (14) is now obtained by eliminating the variables γij and by substituting αij , qij ,
and vij with αij/N , qij/N , and vij/N , respectively.

As for assertion (ii), we first show that the discrete distribution Qγ belongs to the

Wasserstein ball Bρ(P̂N ) for all γ ∈ (0, 1]. Indeed, the Wasserstein distance between Qγ and

P̂N amounts to

d(Qγ , P̂N ) ≤ γ

N

∥∥∥∥(x̂1 +
ρN

γ
x?, ŷ1 +

ρN

γ
y?
)
− (x̂1, ŷ1)

∥∥∥∥ = ρ‖(x?, y?)‖ ≤ ρ,

where the first inequality holds because the Wasserstein distance coincides with the optimal
mass transportation cost, and the last inequality holds because the norm of (x?, y?) is at
most 1 by construction. Thus, Qγ ∈ Bρ(P̂N ) for all γ ∈ (0, 1]. Denoting the optimal value

43



Shafieezadeh-Abadeh and Kuhn and Mohajerin Esfahani

of (13) by J?(w) and using `w(x, y) as a shorthand for L(〈w,x〉 − y), we find

J?(w) ≥ EQγ [`w(x, y)]

= 1
N

N∑
i=1

`w(x̂i, ŷi)− γ
N `w(x̂1, ŷ1) + γ

N `w(x̂1 + ρN
γ x

?, ŷ1 + ρN
γ y

?)

≥ 1
N

N∑
i=1

`w(x̂i, ŷi)− γ
N `w(x̂1, ŷ1) + γ

N

(
〈(x, y), (x̂1 + ρN

γ x
?, ŷ1 + ρN

γ y
?)〉

−`∗w(x, y)
)
∀(x, y) ∈ Rn+1,

where the last estimate follows from Fenchel’s inequality. Setting (x, y) = lip(L)(w,−1) we
thus have

J?(w) ≥ lim
γ→0+

1

N

N∑
i=1

`w(x̂i, ŷi)−
γ

N
`w(x̂1, ŷ1) +

γ

N
lip(L)(〈w, x̂1〉 − ŷ1)

+ ρ lip(L)‖(w,−1)‖∗ −
γ

N
`∗w(lip(L)(w,−1))

=
1

N

N∑
i=1

`w(x̂i, ŷi) + ρ lip(L)‖(w,−1)‖∗ = J?(w),

where the equality follows from Theorem 4(ii). The above reasoning implies that

lim
γ→0+

EQγ [`w(x, y)] = J?(w),

and thus the claim follows.

Proof of Theorem 12 Assume first that the loss function L is convex piecewise linear,
that is, L(z) = maxj∈J{ajz + bj}. As Ξ ∈ Rn+1, Theorem 9(i) implies that the worst-case
expectation (13) is given by

sup
αij ,qij ,vij

1

N

N∑
i=1

J∑
j=1

αij

[
aj(〈w, x̂i〉 − ŷi) + bj

]
+ aj(〈w, qij〉 − vij)

s.t.
1

N

N∑
i=1

J∑
j=1

‖(qij , vij)‖ ≤ ρ

J∑
j=1

αij = 1 i ∈ [N ]

αij ≥ 0 i ∈ [N ], j ∈ [J ]

≥



sup
αij ,∆xij ,∆yij

1

N

N∑
i=1

J∑
j=1

αij [aj(〈w, x̂i + ∆xij〉 − ŷi −∆yij) + bj ]

s.t.
1

N

N∑
i=1

J∑
j=1

αij‖(∆xij ,∆yij)‖ ≤ ρ

J∑
j=1

αij = 1 i ∈ [N ]

αij ≥ 0 i ∈ [N ], j ∈ [J ]
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≥



sup
αij ,∆xi,∆yi

1

N

N∑
i=1

J∑
j=1

αij [aj(〈w, x̂i + ∆xi〉 − ŷi −∆yi) + bj ]

s.t.
1

N

N∑
i=1

J∑
j=1

αij‖(∆xi,∆yi)‖ ≤ ρ

J∑
j=1

αij = 1 i ∈ [N ]

αij ≥ 0 i ∈ [N ], j ∈ [J ].

The first inequality holds because for any feasible solution {αij ,∆xij ,∆yij} to the second
optimization problem, the solution {αij , qij , vij} with qij = αij∆xij and vij = αij∆yij is
feasible in the first problem and attains the same objective value (conversely, note that the
first problem admits feasible solutions with αij = 0 and qij 6= 0 that have no counterpart
in the second problem). The second inequality follows from the restriction that ∆xij and
∆yij must be independent of j. It is easy to verify that the last optimization problem in the
above expression is equivalent to (15) because (αi1, . . . , αiJ) ranges over a simplex for every
i ≤ N , and thus (15) provides a lower bound on (13).

Suppose now that Assumption 10 holds, and note that the worst-case loss (15) can be
expressed as

sup
∆xi,∆yi

1

N

N∑
i=1

max
j≤J

[aj(〈w, x̂i + ∆xi〉 − ŷi −∆yi) + bj ]

s.t.
1

N

N∑
i=1

‖(∆xi,∆yi)‖ ≤ ρ

≥


sup

∆x,∆y

1

N

∑
i 6=k

max
j≤J

[aj(〈w, x̂i〉 − ŷi) + bj ]+
1

N
max
j≤J

[aj(〈w, x̂k + ∆x〉 − ŷk −∆y) + bj ]

s.t.
1

N
‖(∆x,∆y)‖ ≤ ρ.

The above inequality follows from setting ∆xi = 0 and ∆yi = 0 for all i 6= k, where (x̂k, ŷk)
is a training sample satisfying |L′(〈w, x̂k〉− ŷk)| = lip(L), which exists due to Assumption 10.
The last expression equals

=
1

N

∑
i 6=k

max
j≤J

[aj(〈w, x̂i〉 − ŷi) + bj ] + max
j≤J


sup

∆x,∆y

1

N
[aj(〈w, x̂k〉 − ŷk) + bj ]

+
1

N
[aj(〈w,∆x〉 −∆y)]

s.t.
1

N
‖(∆x,∆y)‖ ≤ ρ

=
1

N

∑
i 6=k

max
j≤J

[aj(〈w, x̂i〉 − ŷi) + bj ] +
1

N
max
j≤J

[
aj(〈w, x̂k〉 − ŷk) + bj + ρN‖(w,−1)‖∗|aj |

]
=

1

N

∑
i 6=k

max
j≤J

[aj(〈w, x̂i〉 − ŷi) + bj ] +
1

N
max
j≤J

[aj(〈w, x̂k〉 − ŷk) + bj ] + max
j≤J

ρ‖(w,−1)‖∗|aj |
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=
1

N

N∑
i=1

L(〈w, x̂i〉 − ŷi) + max
j≤J

ρ‖(w,−1)‖∗|aj |,

where the penultimate equality holds because 〈w, x̂k〉 − ŷk resides on the steepest linear
piece of the loss function L by virtue of Assumption 10. The claim then follows from
Theorem 4(ii) because lip(L) = maxj≤J |aj |. Note that generic convex Lipschitz continuous
loss functions can be uniformly approximated as closely as desired with convex piecewise
linear functions. Thus, the above argument extends directly to generic convex Lipschitz
continuous loss functions. Details are omitted for brevity.

Proof of Theorem 14 To prove assertion (i), we apply Lemma 45 to problem (4) with
the transportation distance (16), where ξ = (x, y) and Ξ = X× {−1,+1}. Thus, we obtain

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)]

=


inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
(x,y)∈Ξ

L(y〈w,x〉)− λ
(
‖x− x̂i‖+ κ

2 |y − ŷi|
)
≤ si i ∈ [N ]

λ ≥ 0.

=



inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
x∈X

L(ŷi〈w,x〉)− λ‖x− x̂i‖ ≤ si i ∈ [N ]

sup
x∈X

L(−ŷi〈w,x〉)− λ‖x− x̂i‖ − κλ ≤ si i ∈ [N ]

λ ≥ 0

=



inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
x∈X

aj ŷi〈w,x〉+ bj − λ‖x− x̂i‖ ≤ si i ∈ [N ], j ∈ [J ]

sup
x∈X

− aj ŷi〈w,x〉+ bj − λ‖x− x̂i‖ − κλ ≤ si i ∈ [N ], j ∈ [J ]

λ ≥ 0,

where the second equality holds because, for every i, y can be either equal to ŷi or to −ŷi.
Reformulating the constraints using Lemma 46 and including w as a decision variable then
yields (17).
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When X = Rn and L is Lipschitz continuous, we can use similar arguments as above to
prove that

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] =



inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
x∈Rn

L(ŷi〈w,x〉)− λ‖x− x̂i‖ ≤ si i ∈ [N ]

sup
x∈Rn

L(−ŷi〈w,x〉)− λ‖x− x̂i‖ − κλ ≤ si i ∈ [N ]

λ ≥ 0.

Applying Lemma 47 to the subordinate maximization problems in the constraints yields

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] =


inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. L(ŷi〈w, x̂i〉) ≤ si i ∈ [N ], j ∈ [J ]
L(−ŷi〈w, x̂i〉)− κλ ≤ si i ∈ [N ], j ∈ [J ]
sup
θ∈Θ

|θ| · ‖w‖∗ ≤ λ.

Thus, assertion (ii) follows by recalling that lip(L) = supθ{|θ| : L∗(θ) < ∞} = supθ∈Θ |θ|
and by including w as a decision variable.

Proof of Corollary 15 Notice that the hinge loss function is piecewise linear with J = 2
pieces, see Section 2.1. Moreover, by strong conic duality the support function of X can be
re-expressed as

SX(z) = sup
x
{〈z,x〉 : Cx �C d} = inf

q∈C∗

{
〈q,d〉 : C>q = z

}
.

Strong duality holds because X admits a Slater point. The proof thus follows from Theo-
rem 14(i).

Proof of Corollary 16 The smooth hinge loss L(z) coincides with the inf-convolution of
1
2z

2 and max{0, 1− z} and can thus be expressed as L(z) = minz1
1
2z

2
1 + max{0, 1− z − z1}.

Moreover, the Lipschitz modulus of the smooth hinge loss function is 1. The proof thus
follows from Theorem 14(ii).

Proof of Corollary 17 Notice that the logloss function is convex and has Lipschitz modu-
lus 1, see Section 2.1. The rest of proof follows from Theorem 14(ii). For more details see
(Shafieezadeh-Abadeh et al., 2015).

Proof of Theorem 20 We first prove assertion (i). By Theorem 14(i), the worst-case
expectation problem (25) constitutes a restriction of (17) where w is fixed, and thus it is
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equivalent to the minimax problem

inf
λ,si
p+
ij ,p
−
ij

sup
α+
ij≥0,γ+

ij≥0

α−ij≥0,γ−ij≥0

λρ+
1

N

N∑
i=1

si +

N∑
i=1

J∑
j=1

α+
ij

(
SX(aj ŷiw − p+

ij) + bj + 〈p+
ij , x̂i〉 − si

)

+

N∑
i=1

J∑
j=1

α−ij
(
SX(−aj ŷiw − p−ij) + bj + 〈p−ij , x̂i〉 − κλ− si

)
+

N∑
i=1

J∑
j=1

γ+
ij

(
‖p+

ij‖∗ − λ
)

+
N∑
i=1

J∑
j=1

γ−ij
(
‖p−ij‖∗ − λ

)
.

The minimization and the maximization may be interchanged by strong Lagrangian duality,
which holds because the convex program (17) satisfies Slater’s constraint qualification for
any fixed w (Bertsekas, 2009, Proposition 5.3.1). Indeed, note that SX is proper, convex
and lower semi-continuous and appears in constraints that are always satisfiable because
they involve a free decision variable. Thus, problem (25) is equivalent to

sup
α+
ij ,γ

+
ij

α−ij ,γ
−
ij

inf
p+
ij ,p
−
ij

N∑
i=1

J∑
j=1

α+
ij

(
SX(aj ŷiw − p+

ij) + bj + 〈p+
ij , x̂i〉

)
+ γ+

ij‖p
+
ij‖∗

+
N∑
i=1

J∑
j=1

α−ij
(
SX(−aj ŷiw − p−ij) + bj + 〈p−ij , x̂i〉

)
+ γ−ij‖p

−
ij‖∗

s.t.
N∑
i=1

J∑
j=1

γ+
ij + γ−ij + κα−ij = ρ

J∑
j=1

α+
ij + α−ij =

1

N
i ∈ [N ]

α+
ij , α

−
ij , γ

+
ij , γ

−
ij ≥ 0 i ∈ [N ], j ∈ [J ].

By Lemma 48, the above dual problem simplifies to

sup
α+
ij ,γ

+
ij ,q

+
ij

α−ij ,γ
−
ij ,q
−
ij

N∑
i=1

J∑
j=1

(α+
ij − α

−
ij)aj ŷi〈w, x̂i〉+ aj ŷi〈w, q+

ij − q
−
ij〉+

J∑
j=1

bj

s.t.
N∑
i=1

J∑
j=1

γ+
ij + γ−ij + κα−ij = ρ

J∑
j=1

α+
ij + α−ij =

1

N
i ∈ [N ]

‖q+
ij‖ ≤ γ

+
ij , ‖q−ij‖ ≤ γ

−
ij i ∈ [N ], j ∈ [J ]

x̂i + q+
ij/α

+
ij ∈ X, x̂i + q−ij/α

−
ij ∈ X i ∈ [N ], j ∈ [J ]

α+
ij , α

−
ij , γ

+
ij , γ

−
ij ≥ 0 i ∈ [N ], j ∈ [J ].
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Problem (26) is now obtained by eliminating γ+
ij and γ−ij and by substituting α+

ij , α
−
ij , q

+
ij ,

and q−ij with α+
ij/N , α−ij/N , q+

ij/N , and q−ij/N , respectively.

As for assertion (ii), we use L+
i and L−i to abbreviate L(ŷi〈w, x̂i〉) and L(−ŷi〈w, x̂i〉),

respectively. By Theorem 14(ii), we have

sup
Q∈Bρ(P̂N )

EQ[L(y〈w,x〉)] =


inf
w,λ,si

λρ+
1

N

N∑
i=1

si

s.t. L+
i ≤ si i ∈ [N ]

L−i − κλ ≤ si i ∈ [N ]
lip(L)‖(w)‖∗ ≤ λ

=



sup
α+
i ,α
−
i ,θ

lip(L)‖(w)‖∗θ +
N∑
i=1

α+
i L

+
i + α−i L

−
i

s.t. α+
i + α−i = 1

N i ∈ [N ]

θ + κ
N∑
i=1

α−i = ρ

α+
i ≥ 0, α−i ≥ 0 i ∈ [N ]
θ ≥ 0,

where the second equality follows from strong linear programming duality, which holds
because the primal problem is manifestly feasible. Eliminating the first constraint and
replacing α−i with αi/N and α+

i with (1− αi)/N allows us to reformulate the dual linear
program as 

sup
αi,θ

lip(L)(w)‖∗θ +
1

N

N∑
i=1

(1− αi)L+
i + αiL

−
i

s.t. θ +
κ

N

N∑
i=1

αi = ρ

0 ≤ αi ≤ 1 i ∈ [N ]
θ ≥ 0.

Thus, the worst-case expectation (25) coincides with the optimal value of (27) for γ = 0.
Next let (α?i (γ), θ?(γ)) be an optimal solution of (27) for γ ≥ 0, and define Qγ as in the
theorem statement. Note that (27) is infeasible for γ > ρ. Moreover, note that the atoms
of Qγ have non-negative probabilities if η(γ) ∈ [0, 1], which holds whenever γ ∈ [0, 1]. We
thus focus on parameter values γ ∈ [0,min{ρ, 1}]. By construction, the Wasserstein distance
between Qγ and the empirical distribution satisfies

d(Qγ , P̂N ) ≤ κ
N

N∑
i=1

α?i (γ)− η(γ)κ
N α?1(γ) + η(γ)

N d
(
(x̂1 + θ?(γ)N

η(γ) x
?, ŷ1)− (x̂1, ŷ1)

)
≤ ρ− γ − θ?(γ) + θ?(γ)‖x?‖ ≤ ρ,

where the first inequality holds because the Wasserstein distance is defined as the minimum
cost of moving Qγ to P̂N , the second inequality follows from the feasibility of (α?i (γ), θ?(γ))
in (27) and the non-negativity of η(γ), and the last inequality holds because ‖x?‖ ≤ 1,
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θ?(γ) ≥ 0 and γ ≥ 0. Thus, Qγ ∈ Bρ(P̂N ) for all γ ∈ [0,min{ρ, 1}]. Denoting the optimal
value of (25) by J?(w), we find

J?(w) ≥ EQγ [L(y〈w,x〉)]

= 1
N

( N∑
i=1

(1− α?i (γ))L+
i + α?i (γ)L−i

)
− η(γ)

N

(
(1− α?1(γ))L+

1 + α?1(γ)L−1
)

+η(γ)
N L

(
ŷ1〈w, x̂1 + θ?(γ)N

η(γ) x
?〉
)

≥ 1
N

( N∑
i=1

(1− α?i (γ))L+
i + α?i (γ)L−i

)
− η(γ)

N

(
(1− α?1(γ))L+

1 + α?1(γ)L−1
)

+η(γ)
N

(
〈x, x̂1 + θ∗(γ)N

η(γ) x
?〉 − L∗(ŷ1〈w,x〉)

)
∀x ∈ Rn,

where the last estimate follows from Fenchel’s inequality. Setting x = lip(L)w and driving
γ to zero yields

J?(w) ≥ lim
γ→0+

1
N

( N∑
i=1

(1− α?i (γ))L+
i + α?i (γ)L−i

)
− η(γ)

N

(
(1− α?1(γ))L+

1 + α?1(γ)L−1
)

+η(γ)
N

(
lip(L)〈w, x̂1〉 − L∗(ŷ1 lip(L)〈w,w〉)

)
+ lip(L)‖w‖∗ · θ?(γ)

= lim
γ→0+

1
N

( N∑
i=1

(1− α?i (γ))L+
i + α?i (γ)L−i

)
+ lip(L)‖w‖∗ · θ?(γ) = J?(w),

where the first equality follows from the observation that η(γ) ∈ [0, γ], which implies that
η(γ) converges to zero as γ tends to zero. The second equality holds because the optimal
value of (27) is concave and non-increasing and—a fortiori—continuous in γ ∈ [0,min{ρ, 1}]
and because J?(w) coincides with the optimal value of (27) when γ = 0. The above reasoning
implies that limγ→0+ EQγ [L(y〈w,x〉)] = J?(w), and thus the claim follows.

Proof of Theorem 23 Assume first that the loss function L is convex piecewise linear,
that is, L(z) = maxj∈J{ajz + bj}. As X = Rn and κ =∞, Theorem 20(i) implies that (25)
can be expressed as



sup
α+
ij ,q

+
ij

1

N

N∑
i=1

J∑
j=1

α+
ijaj ŷi〈w, x̂i〉+ aj ŷi〈w, q+

ij〉+

J∑
j=1

bj

s.t.
N∑
i=1

J∑
j=1

‖q+
ij‖ ≤ Nρ

J∑
j=1

α+
ij = 1 i ∈ [N ]

α+
ij ≥ 0 i ∈ [N ], j ∈ [J ]
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≥



sup
αij ,∆xij

1

N

N∑
i=1

J∑
j=1

αijaj ŷi〈w, x̂i + ∆xij〉+
J∑
j=1

bj

s.t.

N∑
i=1

J∑
j=1

αij‖∆xij‖ ≤ Nρ

J∑
j=1

αij = 1 i ∈ [N ]

αij ≥ 0 i ∈ [N ], j ∈ [J ]

≥



sup
αij ,∆xi

1

N

N∑
i=1

J∑
j=1

αijaj ŷi〈w, x̂i + ∆xi〉+

J∑
j=1

bj

s.t.
N∑
i=1

J∑
j=1

αij‖∆xi‖ ≤ Nρ

J∑
j=1

αij = 1 i ∈ [N ]

αij ≥ 0 i ∈ [N ], j ∈ [J ].

The first optimization problem constitutes a special case of (26). Indeed, as κ = ∞, the
first constraint in (26) implies that α−ij = 0, which in turn implies via the fourth constraint

and our conventions of extended arithmetics that q−ij = 0. The first inequality in the above
expression holds because for any feasible solution {αij ,∆xij} to the second problem, the
solution {α+

ij , q
+
ij} with q+

ij = α+
ij∆xij and αij = α+

ij for all i ≤ N and j ≤ J is feasible in
the first problem and attains the same objective value. The second inequality in the above
expression follows from the restriction that ∆xij must be independent of j. It is easy to
verify that the last optimization problem is equivalent to (28) because (αi1, . . . , αiJ) ranges
over a simplex for every i ≤ N , and thus (28) provides a lower bound on (25).

Suppose now that Assumption 21 holds, and note that (28) can be expressed as
sup

∆xi,∆yi

1

N

N∑
i=1

max
j≤J

[aj ŷi〈w, x̂i + ∆xi〉+ bj ]

s.t.
1

N

N∑
i=1

‖∆xi‖ ≤ ρ

≥


sup

∆x,∆y

1

N

∑
i 6=k

max
j≤J

[aj ŷi〈w, x̂i〉+ bj ] +
1

N
max
j≤J

[aj ŷk〈w, x̂k + ∆x〉+ bj ]

s.t.
1

N
‖∆x‖ ≤ ρ.

The above inequality follows from setting ∆xi = 0 and ∆yi = 0 for all i 6= k, where (x̂k, ŷk)
is a training sample satisfying |L′(ŷk〈w, x̂k〉)| = lip(L), which exists due to Assumption 21.
The last expression equals

1

N

∑
i 6=k

max
j≤J

[aj ŷi〈w, x̂i〉+ bj ] + max
j≤J


sup

∆x,∆y

1

N
[aj ŷk〈w, x̂k〉+ bj ] +

1

N
[aj ŷk〈w,∆x〉]

s.t.
1

N
‖(∆x,∆y)‖ ≤ ρ
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=
1

N

∑
i 6=k

max
j≤J

[aj ŷi〈w, x̂i〉+ bj ] +
1

N
max
j≤J

[
aj ŷi〈w, x̂k〉+ bj + ρN‖w‖∗|aj |

]
=

1

N

∑
i 6=k

max
j≤J

[aj ŷi〈w, x̂i〉+ bj ] +
1

N
max
j≤J

[aj ŷk〈w, x̂k〉+ bj ] + max
j≤J

ρ‖w‖∗|aj |

=
1

N

N∑
i=1

L(ŷi〈w, x̂i〉) + max
j≤J

ρ‖w‖∗|aj |,

where the penultimate equality holds because ŷk〈w, x̂k〉 resides on the steepest linear piece of
the loss function L by virtue of Assumption 21. The claim then follows from Theorem 14(ii)
because lip(L) = maxj≤J |aj |. Note that generic convex Lipschitz continuous loss functions
can be uniformly approximated as closely as desired with convex piecewise linear functions.
Thus, the above arguments extend directly to generic convex Lipschitz continuous loss
functions. Details are omitted for brevity.

Proof of Theorem 26 By the definition of the feature map Φ corresponding to the kernel
k, we have

‖Φ(x1)− Φ(x2)‖H =
√
〈Φ(x1),Φ(x1)〉H − 2〈Φ(x1),Φ(x2)〉H + 〈Φ(x2),Φ(x2)〉H

=
√
k(x1,x1)− 2k(x1,x2) + k(x2,x2) ≤ g(‖x1 − x2‖2)

(A.3)

for all x1,x2 ∈ X, where the inequality follows from Assumption 25. As for assertion (i),
we may use similar argument as in the proof of Lemma 45 to reformulate the worst-case
expectation in (29) as

sup
Q∈Bρ(P̂N )

EQ [`(h(x), y)] (A.4)

=


sup
Qi

1

N

N∑
i=1

∫
X×Y

`(h(x), y)Qi(dx,dy)

s.t.
1

N

N∑
i=1

∫
X×Y

d
(
(x, y), (x̂i, ŷi)

)
Qi(dx,dy) ≤ ρ∫

X×YQ
i(dx, dy) = 1 i ∈ [N ]

=


sup
Qi

1

N

N∑
i=1

∫
X×Y

`(h(x), y)Qi(dx,dy)

s.t. g

(
1

N

N∑
i=1

∫
X×Y

√
2d
(
(x, y), (x̂i, ŷi)

)
Qi(dx, dy)

)
≤ g(
√

2ρ)∫
X×YQ

i(dx, dy) = 1 i ∈ [N ]

≤


sup
Qi

1

N

N∑
i=1

∫
X×Y

`(h(x), y)Qi(dx,dy)

s.t.
1

N

N∑
i=1

∫
X×Y

g
(√

2d
(
(x, y), (x̂i, ŷi)

))
Qi(dx, dy) ≤ g(

√
2ρ)∫

X×YQ
i(dx, dy) = 1 i ∈ [N ],

(A.5)
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where the second equality holds because g is strictly monotonically increasing, and the
inequality follows from Jensen inequality, which applies because g is concave. By the
definition of the transportation metric on H× Y for regression problems, we then find

g
(√

2d
(
(x, y), (x̂i, ŷi)

))
= g
(√

2‖x− x̂i‖22 + 2(y − ŷi)2
)

≥ g(‖x− x̂i‖2 + |y − ŷi|)
≥ g(‖x− x̂i‖2) + |y − ŷi|
≥ ‖Φ(x)− Φ(x̂i)‖H + |y − ŷi|

≥
√
‖Φ(x)− Φ(x̂i)‖2H + (y − ŷi)2

= dH
(
(Φ(x), y), (Φ(x̂i), ŷi)

)
,

(A.6)

where the first inequality holds because 2a2 + 2b2 ≥ (a + b)2 for all a, b ≥ 0 and because
g is strictly monotonically increasing, the second inequality exploits the assumption that
g′(z) ≥ 1 for all z ≥ 0, the third inequality follows form (A.3), and the last equality holds
because a2 + b2 ≤ (a+ b)2 for all a, b ≥ 0. Substituting the above estimate into (A.5) and
using the reproducing property h(x) = 〈h,Φ(x)〉H yields

sup
Q∈Bρ(P̂N )

EQ [`(h(x), y)]

≤


sup
Qi

1

N

N∑
i=1

∫
X×Y

`(〈h,Φ(x)〉H, y)Qi(dx, dy)

s.t.
1

N

N∑
i=1

∫
X×Y

dH

((
Φ(x), y),

(
Φ(x̂i), ŷi)

)
Qi(dx,dy) ≤ g(

√
2ρ)∫

X×YQ
i(dx, dy) = 1 i ∈ [N ]

≤


sup
Qi

1

N

N∑
i=1

∫
H×Y

`(xH, y)Qi(dxH,dy)

s.t.
1

N

N∑
i=1

∫
H×Y

dH

((
xH, y),

(
Φ(x̂i), ŷi)

)
Qi(dxH, dy) ≤ g(

√
2ρ)∫

H×YQ
i(dxH, dy) = 1 i ∈ [N ]

= sup
Q∈Bg(√2ρ)(P̂

H
N )

EQ [`(xH, y)] ,

where the second inequality follows from relaxing the implicit condition that the random
variable xH must be supported on {Φ(x) : x ∈ X} ⊆ H. This completes the proof of
assertion (i) for regression problems.

The proof of assertion (ii) parallels that of assertion (i) with obvious modifications. Due
to the different transportation metric for classification problems, however, the estimate (A.6)
changes to

g
(
d
(
(x, y), (x̂i, ŷi)

))
= g (‖x− x̂i‖2 + κ|y − ŷi|)
≥ g (‖x− x̂i‖2) + κ|y − ŷi|
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≥ ‖Φ(x)− Φ(x̂i)‖H + κ|y − ŷi| = dH
(
(Φ(x), y), (Φ(x̂i), ŷi)

)
,

where the first inequality exploits the assumption that g′(z) ≥ 1 for all z ≥ 0, and the second
inequality follows form (A.3). Further details are omitted for brevity.

Proof of Theorem 27 The proof follows immediately from (Schölkopf and Smola, 2001,
Theorem 4.2), which applies to loss functions representable as a sum of an empirical loss
depending on (x̂i, ŷi, h(x̂i)), i ≤ N , and a regularization term that is strictly monotonically
increasing in ‖h‖H. However, the additive separability is not needed for the proof. We
remark that the optimal solution of (31) is unique if f is striclty increasing in ‖h‖H. If f is
only non-decreasing in ‖h‖H, on the other hand, uniqueness may be lost. Details are omitted
for brevity.

Proof of Theorem 28 Using similar arguments as in the proof of Theorem 4(ii) and
observing that any Hilbert norm is self-dual, one can show that

inf
h∈H

sup
Q∈Bρ(P̂H

N )

EQ [L(〈h,xH〉H − y)] = min
h∈H

1

N

N∑
i=1

L(h(x̂i)− ŷi) + ρ lip(L)
√
‖h‖2H + 1.

By the representer theorem, which applies because the objective function of the above
optimization problem is non-decreasing in ‖h‖H, we may restrict the feasible set from H
to the subset of all linearly parametrized hypotheses of the form h(x) =

∑N
j=1 βjk(x, x̂j)

for some β ∈ RN without sacrificing optimality. The claim then follows by observing that
h(x̂i) =

∑N
j=1 Kijβj and ‖h‖22 = 〈β,Kβ〉.

Proof of Theorem 29 Using similar arguments as in the proof of Theorem 14(ii) and
observing that any Hilbert norm is self-dual, one can show that

inf
h∈H

sup
Q∈Bρ(P̂H

N )

EQ [L(y〈h,xH〉H)] =


min
h,λ,si

λρ+
1

N

N∑
i=1

si

s.t. L(ŷih(x̂i)) ≤ si i ∈ [N ]
L(−ŷih(x̂i))− κλ ≤ si i ∈ [N ]
lip(L)‖h‖H ≤ λ,

see (Gao and Kleywegt, 2016, Theorem 1) for a full proof. By the representer theorem,
which applies because the loss function

f((x̂1, ŷ1, h(x̂1)), . . . , (x̂N , ŷN , h(x̂N )), ‖h‖H)

=


min
λ

λρ+
1

N

N∑
i=1

max{L(ŷih(x̂i)), L(−ŷih(x̂i))− κλ}

s.t. λ ≥ lip(L)‖h‖H

is non-decreasing in ‖h‖H, we may restrict attention to all linearly parametrized hypotheses
of the form h(x) =

∑N
j=1 βjk(x, x̂j) for some β ∈ RN without sacrificing optimality. Thus,
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the claim follows.

Proof of Theorem 31 For regression problems, the worst-case expected prediction loss
satisfies

sup
Q∈Bρ(P̂N )

EQ [`(h(x), y)]

= inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(h(x)− y)− λ(‖x− x̂i‖+ κ|y − ŷi|)

≤ inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(h(x̂i)− ŷi) + lip(L)(|h(x)− y − h(x̂i) + ŷi|)

− λ(‖x− x̂i‖+ κ|y − ŷi|)

≤ inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(h(x̂i)− ŷi) + lip(L) lip(h)‖x− x̂i‖+ lip(L)|y − ŷi|

− λ(‖x− x̂i‖+ κ|y − ŷi|)

≤ 1

N

N∑
i=1

`(h(x̂i), ŷi) + ρ lip(L) max {lip(h), 1/κ} ,

where the equality holds due to Lemma 45, while the first and the second inequalities
follow from the Lipschitz continuity of L and h, respectively. The last inequality holds by
setting λ = lip(L) max {lip(h), 1/κ}. Note that lip(ϕ(ψ)) ≤ lip(ϕ) lip(ψ) for any functions ϕ
and ψ defined on appropriate normed spaces; see for example (Rockafellar and Wets, 2009,
Exercise 9.8). Thus, the Lipschitz modulus of h can be estimated in terms of the Lipschitz
moduli of the activation functions σm and the operator norms of the weight matrices WM ,
which coincide with the Lipschitz moduli of the corresponding linear mappings. Formally,
we have lip(h) ≤

∏M
m=1 lip(σm)‖Wm‖. Substituting this estimate into the last line of the

above display equation yields the postulated upper bound on the worst-case expectation for
regression problems.

Similarly, for classification problems we have

sup
Q∈Bρ(P̂N )

EQ [`(h(x), y)]

= inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(yh(x))− λ(‖x− x̂i‖+ κ1{y 6=ŷi})

≤ inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(ŷih(x̂i)) + lip(L)(|yh(x)− ŷih(x̂i)|)− λ(‖x− x̂i‖+ κ1{y 6=ŷi})

≤ inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(ŷih(x̂i)) + lip(L) lip(h) ‖x− x̂i‖1{y=ŷi}
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+ lip(L) |h(x) + h(x̂i)|1{y 6=ŷi} − λ(‖x− x̂i‖+ κ1{y 6=ŷi})

≤ inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(ŷih(x̂i))− λ(‖x− x̂i‖+ κ1{y 6=ŷi})

+ lip(L) max {2c/κ, lip(h)} (‖x− x̂i‖+ κ1{y 6=ŷi}),

where c = suph∈H,x∈X |h(x)| is defined as in the claim. Setting λ = lip(L) max {1/κ, 2c/κ, lip(h)}
and using the estimate lip(h) ≤

∏M
m=1 lip(σm)‖Wm‖ yields the postulated upper bound on

the worst-case expectation for classification problems.

Proof of Corollary 33 Set σ̄ =
∏
m∈[M ] lip(σm). As κ =∞, Theorem 31 implies that the

worst-case expected prediction loss, both for classification and regression problems, satisfies

sup
Q∈Bρ(P̂N )

EQ [`(h(x), y)] ≤ 1

N

N∑
i=1

sup
x∈X
y∈Y

`(h(x̂i), ŷi) + ρ σ̄ lip(L)
M∏
m=1

‖Wm‖

≤ 1

N

N∑
i=1

sup
x∈X
y∈Y

`(h(x̂i), ŷi) + ρ σ̄ lip(L)

(
M∑
m=1

‖Wm‖
M

)M
,

where the second inequality follows from the inequality of arithmetic and geometric means.
By (Everett III, 1963, Theorem 1), if W ?

[M ] is a minimizer of the optimization problem

min
W[M ]

1

N

N∑
i=1

sup
x∈X
y∈Y

`(h(x̂i), ŷi) + ρ σ̄ lip(`)

(
M∑
k=1

‖Wk‖
M

)M
,

then the same W ?
[M ] also minimizes the constrained optimization problem

inf
W[M ]

1

N

N∑
i=1

`(h(x̂i), ŷi)

s.t.

(
M∑
m=1

‖Wm‖
M

)M
≤
(
θ

M

)M
,

for θ =
∑M

m=1 ‖W ?
m‖. Notice that the constraint in the above optimization problem can be

simplified to
∑M

m=1 ‖Wm‖ ≤ θ. Hence, there exists a Lagrange multiplier ρ for the simplified
constraint such that W ?

[M ] is a minimizer of the penalized problem

inf
W[M ]

1

N

N∑
i=1

`(h(x̂i), ŷi) + ρ
M∑
m=1

‖Wm‖.

This observation completes the proof.
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A.2. Proofs of Section 4

The proof of Theorem 39 relies on the following preparatory lemma, which basically asserts
that the sample average of a linearly growing function of ξ has sub-Gaussian tails.

Lemma 49 (Sub-Gaussian tails) If Assumption 34 holds, then there exist constants
c3 ≥ 1 and c4 > 0 that depend only on the light tail constants a and A of P such that

PN
{∣∣EP[f(ξ)]− EP̂N [f(ξ)]

∣∣ ≥ δ} ≤ c3 exp(−c4Nδ
2)

for any N ∈ N, δ ∈ [0, 1] and function f : Ξ→ R with |f(ξ)− f(ξ′)| ≤ d(ξ, ξ′) for all ξ ∈ Ξ
and some reference point ξ′ ∈ Ξ.

Proof Assume that f : Ξ → R is a linear growth function with |f(ξ) − f(ξ′)| ≤ d(ξ, ξ′)
for all ξ ∈ Ξ and some reference point ξ′ ∈ Ξ. Set ξf = f(ξ) and ξ′f = f(ξ′). Thus, the
distribution of the scalar random variable ξf is given by the pushforward measure f∗(P) of
P. By construction, we have

Ef∗(P)
[
exp

(
|ξf − ξ′f |a

)]
= EP

[
exp

(
|f(ξ)− f(ξ′)|a

)]
≤ EP

[
exp

(
d(ξ, ξ′)a

)]
≤ A,

where the first inequality follows form the growth condition of f , while the second inequality
holds because P satisfies Assumption 34. Hence, the distribution f∗(P) satisfies Assump-
tion 34 for n = 0 when distances on R are measured by the absolute value, and it inherits
the light-tail constants a and A from P. By using Theorem 35 for n = 0, we may thus
conclude that there exist constants c3, c4 > 0 with

PN
{
W (f∗(P), f∗(P̂N )) ≥ δ

}
≤ c3 exp

(
−c4Nδ

2
)
∀δ ∈ [0, 1],

where f∗(P̂N ) represents the empirical distribution of ξf , which coincides with the pushfor-

ward measure of P̂N under f . By slight abuse of notation, W stands here for the Wasserstein
distance between univariate distributions, where the absolute value is used as the ground
metric. Note that the above univariate measure concentration result holds for any linear
growth function f with asymptotic growth rate ≤ 1. We emphasize that c3 ≥ 1 because
otherwise the above estimate would fail to hold for δ = 0.

By construction of the Wasserstein distance in Definition 2, we have W (f∗(P), f∗(P̂N )) <
δ if and only if the scalar random variables ξf and ξ′f admit a joint distribution Π with

EΠ[|ξf − ξ′f |] < δ under which ξf and ξ′f have marginals f∗(P) and f∗(P̂N ), respectively.

The inequality W (f∗(P), f∗(P̂N )) < δ thus implies∣∣∣EP[f(ξ)]− EP̂N [f(ξ′)]
∣∣∣ =

∣∣∣Ef∗(P)[ξf ]− Ef∗(P̂N )[ξ′f ]
∣∣∣ ≤ ∣∣EΠ[ξf − ξ′f ]

∣∣ = EΠ
[∣∣ξf − ξ′f ∣∣] < δ.

By contraposition, we then obtain the implication∣∣∣EP[f(ξ)]− EP̂N [f(ξ′)]
∣∣∣ ≥ δ =⇒ W (f∗(P), f∗(P̂N )) ≥ δ,

which leads to the desired inequality

PN
{∣∣EP[f(ξ)]− EP̂N [f(ξ)]

∣∣ ≥ δ} ≤ PN{W (f∗(P), f∗(P̂N )) ≥ δ
}
≤ c3 exp

(
−c4Nδ

2
)
.
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The last inequality holds for all δ ∈ [0, 1] and N ∈ N, irrespective of the linear growth
function f .

Remark 50 (Hoeffding’s inequality) If it is known that P{f ≤ f(ξ) ≤ f} = 1, then
Lemma 49 reduces to Hoeffding’s inequality (Boucheron et al., 2013, Theorem 2.8), in which
case we may set c3 = 2 and c4 = 2/(f − f)2.

Proof of Theorem 39 To avoid cumbersome case distinctions, we prove the theorem only
in the case when (4) is a classification problem. Thus, we assume that Ξ = Rn × {−1, 1}
and that the transportation cost is of the form (16), where ‖ · ‖ denotes a norm on the input
space Rn. The proof for regression problems is similar and only requires minor modifications.
It will be omitted for brevity.

From Theorem 14(ii) we know that

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] = EP̂N [`(〈w,x〉, y)] + ρ lip(L)Ω(w) ∀w ∈W,

where Ω(w) = ‖w‖∗ can be viewed as a regularization function. For every ρ ≥ ρ′N (η) we
thus have

PN
{
EP [`(〈w,x〉, y)] ≤ sup

Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] ∀w ∈W

}

≥ PN
{

0 ≤ min
w∈W

EP̂N [`(〈w,x〉, y)] + ρ′N (η) lip(L)Ω(w)− EP [`(〈w,x〉, y)]

}
= 1− PN

{
min
w∈W

EP̂N [`(〈w,x〉, y)] + ρ′N (η) lip(L)Ω(w)− EP [`(〈w,x〉, y)] < 0

}
. (A.7)

Observe that `(〈w,x〉, y) is Lipschitz continuous in w for every fixed x and y because the
underlying univariate loss function L is Lipschitz continuous by assumption. Specifically, we
have

|`(〈w,x〉, y)− `(〈w′,x〉, y)| ≤ lip(L)|〈w −w′,x〉| ≤ lip(L)‖w −w′‖∞‖x‖1 ∀w,w′ ∈W.

For any ∆ > 0 there exists a finite set W∆ ⊆W with ∆ = supw∈W infw′∈W∆
‖w−w′‖∞ and

whose cardinality satisfies |W∆| < (Ω/∆− 1)n < (Ω/∆)n − 1 where the second inequality
holds because ∆ ≤ Ω by construction. In the following we set ∆ = Ω/

√
N .

As `(〈w,x〉, y) is Lipschitz continuous in w, for every w ∈W there is w′ ∈W∆ with

|`(〈w,x〉, y)| ≥
∣∣`(〈w′,x〉, y)

∣∣− lip(L)∆‖x‖1.

Applying this estimate twice and recalling the assumption that Ω(w) ≥ Ω for all w ∈W,
we may thus conclude that the probability in (A.7) is smaller or equal to

PN
{

min
w∈W

EP̂N [`(〈w,x〉, y)]− EP [`(〈w,x〉, y)] + ρ′N (η) lip(L)Ω < 0

}
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≤ PN
{

min
w∈W∆

EP̂N [`(〈w,x〉, y)]− EP [`(〈w,x〉, y)]− lip(L)∆
(
EP̂N [‖x‖1] + EP [‖x‖1]

)
< −ρ′N (η) lip(L)Ω

}
≤ PN

{
min
w∈W∆

EP̂N [`(〈w,x〉, y)]− EP [`(〈w,x〉, y)]− lip(L)∆
(
EP̂N [‖x‖1]− EP [‖x‖1]

)
< 2 lip(L)∆MnnA− ρ′N (η) lip(L)Ω

}
. (A.8)

The second inequality in the above expression follows from the estimate

Mn = max
i≤n
‖eni ‖∗ = max

i≤n
sup
‖x‖≤1

〈eni ,x〉 = max
i≤n

sup
‖x‖≤1

|xi| = sup
‖x‖≤1

‖x‖∞ ≥ sup
x∈Rn

‖x‖1
n‖x‖

,

which can be paraphrased as ‖x‖1 ≤Mnn‖x‖ for every x ∈ Rn and thus implies

EP[‖x‖1] ≤MnnE
P[‖x‖] ≤MnnE

P[exp(‖x‖a)] ≤MnnE
P[exp

(
d(ξ, ξ′))a

)
] ≤MnnA.

Next, we introduce an auxiliary parameter

δ =
ρ′N (η)Ω−MnA

∆ + Ω
=

2
√
n log(

√
N)/c4 + log(c3/η)/c4

1 +
√
N

,

where the second equality follows from the definition of ρ′N (η) in the theorem statement and
the convention that ∆ = Ω/

√
N . One can prove that δ ∈ [0, 1]. Indeed, the nonnegativity of

δ is immediate because c3 ≥ 1 and c4 > 0. Moreover, we find

δ ≤
2
√
n log(

√
N)/c4

1 +
√
N

+
2
√

log(c3/η)/c4

1 +
√
N

≤ 1,

where the first inequality follows from the observation that
√
x1 + x2 ≤

√
x1 +

√
x2 for all

x1, x2 ≥ 0, while the second inequality holds because log(
√
N) ≤

√
N for all N ∈ N and

N ≥ max
{

(16n/c4)2, 16 log(c3/η)/c4

}
, which implies that both fractions in the middle of

the above expression are smaller ore qual to 1
2 .

Multiplying the definition of δ with − lip(L)(∆ + Ω) yields the identity

− lip(L)∆δ − lip(L)Ωδ = 2 lip(L)∆MnnA− lip(L)ρN (η)Ω,

and thus the probability (A.8) can be bounded above by

PN
{

min
w∈W∆

EP̂N [`(〈w,x〉, y)]− EP [`(〈w,x〉, y)] ≤ − lip(L)Ωδ or

− lip(L)∆
(
EP̂N [‖x‖]− EP [‖x‖]

)
≤ − lip(L)∆δ

}
≤ PN

{
min
w∈W∆

EP̂N
[
`(〈w,x〉, y)

lip(L)Ω

]
− EP

[
`(〈w,x〉, y)

lip(L)Ω

]
≤ −δ

}
(A.9a)
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+ PN
{(

EP̂N [‖x‖]− EP [‖x‖]
)
≥ δ
}
, (A.9b)

where the inequality follows from the subadditivity of probability measures.

For any fixed w ∈W one can show that the function f(ξ) = `(〈w,x〉, y)/(lip(L)Ω) with
ξ = (x, y) satisfies the linear growth condition |f(ξ) − f(ξ′)| ≤ d(ξ, ξ′) for all ξ ∈ Ξ if
ξ′ = (0, 1). Details are omitted for brevity. By the subadditivity of probability measures,
the probability (A.9a) is thus smaller or equal to

∑
w∈W∆

PN
{∣∣∣EP̂N [`(〈w,x〉, y)

lip(L)Ω

]
− EP

[`(〈w,x〉, y)

lip(L)Ω

]∣∣∣ > δ

}
≤ |W∆|c3 exp(−c4Nδ

2),

where the inequality follows from Lemma 49, which applies because δ ∈ [0, 1]. Moreover,
the function f(ξ) = ‖x‖ with ξ = (x, y) trivially satisfies the linear growth condition
|f(ξ)− f(ξ′)| ≤ d(ξ, ξ′) for all ξ ∈ Ξ if ξ′ = (0, 1). By Lemma 49, the probability (A.9b) is
thus smaller or equal to

PN
{∣∣∣EP [‖x‖]− EP̂N [‖x‖]

∣∣∣ > δ
}
≤ c3 exp(−c4Nδ

2).

By combining the above estimates, we may conclude that the probability in (A.7) does not
exceed

(|W∆|+ 1) c3 exp
(
− c4Nδ

2
)

≤
(
Ω/∆

)n
c3 exp

(
−c4N

(
ρ′N (η)Ω− 2∆MnnA

∆ + Ω

)2
)

=N
n
2 c3 exp

−c4N

(
ρ′N (η)Ω

√
N − 2ΩMnnA

Ω(
√
N + 1)

)2


≤N
n
2 c3 exp

−c4N

2Ω
√
n log(

√
N)/c4 + log(c3/η)/c4

2Ω
√
N

2


=N
n
2 c3 exp

(
−n log(

√
N)− log(c3/η)

)
= η,

where the first inequality follows from the definition of δ and the assumption that |W∆| <
(Ω/∆)n − 1, the first equality holds because Ω/∆ =

√
N , and the second inequality holds

due to the definition of ρ′N (η). In summary, we have shown that the probability in (A.7) is
at most η, and thus the claim follows.

A.3. Proofs of Section 5

Proof of Theorem 41 As for assertion (i), note that the absolute value function coincides
with the ε-insensitive loss for ε = 0. Thus, (41a) follows immediately from Corollary 6 by

60



Regularization via Mass Transportation

fixing w and by setting ε = 0 and Ξ = Rn+1. As for assertion (ii), similar arguments as in
the proof of Lemma 45 show that

Emin(w) = sup
λ≥0

− λρ+
1

N

N∑
i=1

inf
x,y
|y − 〈w,x〉|+ λ‖(x, y)− (x̂i, ŷi)‖. (A.10)

The subordinate minimization problem in the first constraint of (A.10) is equivalent to

inf
x,y
|y − 〈w,x〉|+ λ‖(x, y)− (x̂i, ŷi)‖

= inf
x,y

sup
‖(qi,vi)‖∗≤λ

|y − 〈w,x〉|+ 〈qi,x− x̂i〉+ vi(yi − ŷi)

= sup
‖(qi,vi)‖∗≤λ

{
inf
x,y,z

z + 〈qi,x− x̂i〉+ vi(yi − ŷi)

s.t. z ≥ y − 〈w,x〉, z ≥ 〈w,x〉 − y

=


sup

qi,vi,ri,ti

−〈qi, x̂i〉 − ŷivi

s.t. ti + ri = 1, ti − ri = vi
(ri − ti)w = qi, ‖(qi, vi)‖∗ ≤ λ
ri, ti ≥ 0

=


sup
vi

vi(〈w, x̂i〉 − ŷi)

s.t. −1 ≤ vi ≤ 1
vi‖(w,−1)‖∗ ≤ λ, − vi‖(w,−1)‖∗ ≤ λ,

where the second equality holds due to Proposition 5.5.4 in (Bertsekas, 2009), and the
third equality holds due to strong linear programming duality. By substituting the last
optimization problem into (A.10) and replacing vi with −vi, we have

Emin(w) =


sup
vi,λ

−λρ+
1

N

N∑
i=1

vi(ŷi − 〈w, x̂i〉)

s.t. −1 ≤ vi ≤ 1 i ∈ [N ]
vi‖(w,−1)‖∗ ≤ λ i ∈ [N ]
−vi‖(w,−1)‖∗ ≤ λ i ∈ [N ]

=


sup
vi,λ

−λρ+
1

N

N∑
i=1

vi|ŷi − 〈w, x̂i〉|

s.t. 0 ≤ vi ≤ 1 i ∈ [N ]
vi‖(w,−1)‖∗ ≤ λ i ∈ [N ]

=


sup
v,λ

−λρ+
1

N

N∑
i=1

v|ŷi − 〈w, x̂i〉|

s.t. 0 ≤ v ≤ 1
v‖(w,−1)‖∗ ≤ λ

=

 sup
v

v

(
1

N

N∑
i=1

|ŷi − 〈w, x̂i〉| − ρ‖(w,−1)‖∗

)
s.t. 0 ≤ v ≤ 1

61



Shafieezadeh-Abadeh and Kuhn and Mohajerin Esfahani

= max

{
1

N

N∑
i=1

|ŷi − 〈w, x̂i〉| − ρ‖(w,−1)‖∗, 0

}
.

Thus, the claim follows.

Proof of Theorem 42 As for assertion (i), similar arguments as in the proof of Lemma 45
show that

Rmax(w) =



inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
x
1{ŷi 〈w,x〉≤0} − λ‖x̂i − x‖ ≤ si ∀i ≤ N

sup
x
1{−ŷi 〈w,x〉≤0} − λ‖x̂i − x‖ − κλ ≤ si ∀i ≤ N

λ ≥ 0.

(A.11a)

Next, observe that the indicator functions in (A.11a) can be represented as pointwise maxima
of extended real-valued concave functions of the form 1{ŷi 〈w,x〉≤0} = max{I1(x), 0} and
1{ŷi 〈w,x〉≥0} = max{I2(x), 0}, respectively, where

I1(x) =

{
1 ŷi 〈w,x〉 ≤ 0,

−∞ otherwise,
and I2(x) =

{
1 ŷi 〈w,x〉 ≥ 0,

−∞ otherwise.

This allows us to reformulate (A.11a) as

inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
x∈Rn

I1(x)− λ‖x̂i − x‖ ≤ si ∀i ≤ N

sup
x

0− λ‖x̂i − x‖ ≤ si ∀i ≤ N

sup
x

I2(x)− λ‖x̂i − x‖ − κλ ≤ si i ∈ [N ]

sup
x

0− λ‖x̂i − x‖ − κλ ≤ si ∀i ≤ N

λ ≥ 0.

Using the definition of the dual norm and applying the duality theorem (Bertsekas, 2009,
Proposition 5.5.4), we find

Rmax(w) =



inf
λ,si,pi,qi

λρ+
1

N

N∑
i=1

si

s.t. sup
x

I1(x) + 〈pi,x〉 − 〈pi, x̂i〉 ≤ si ∀i ≤ N

sup
x

I2(x) + 〈qi,x〉 − 〈qi, x̂i〉 − κλ ≤ si ∀i ≤ N

si ≥ 0, ‖pi‖∗ ≤ λ, ‖qi‖∗ ≤ λ i ∈ [N ].

(A.11b)

Moreover, by strong linear programming duality we have

sup
x

I1(x) + 〈pi,x〉 = sup
x
{1 + 〈pi,x〉 : ŷi 〈w,x〉 ≤ 0} = inf

ri≥0
{1 : ŷiriw = pi} (A.11c)
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and

sup
x

I2(x) + 〈qi,x〉 = sup
x
{1 + 〈qi,x〉 : ŷi 〈w,x〉 ≥ 0} = inf

ti≥0
{1 : ŷitiw = qi} . (A.11d)

Substituting (A.11c) and (A.11d) into (A.11b) yields (42a). The expression (42b) for the
best-case risk can be proved in a similar fashion. Details are omitted for brevity.
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