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Abstract
Agile Earth observation satellite (AEOS) scheduling is com-
plex, due to long visible time windows and time-dependent
transitions between observations. We introduce a generic ap-
proach suited for scheduling problems characterised by time-
dependency and/or sequence-dependency. Our approach is a
novel hybridization of adaptive large neighbourhood search
(ALNS) and tabu search. We further introduce partial se-
quence dominance and insertion position ordering operators
to the ALNS. Extensive computational results on a real-world
multi-orbit AEOS observation scheduling benchmark show
that the hybrid ALNS robustly outperforms an improved
mixed integer programming model and two recent state-of-
the-art metaheuristic methods. The proposed method increas-
es solution quality by more than 10% and reduces calculation
time by more than 70% on average.

Introduction
Agile Earth observation satellites (AEOSs) are a new gen-
eration of orbital imaging platforms, possessing three de-
grees of freedom (roll, pitch, yaw), which enables them to
observe targets on the Earth’s surface before/after an upright
pass and next to/along the path (Maillard 2015). This agility
greatly enhances the observing abilities of AEOSs.

Scheduling the operation of AEOSs is complex due to
long visible time windows (VTWs), and time-dependent
transitions. During the VTW the target is visible for the
satellite. AEOS VTWs are much longer than the neces-
sary imaging time; target imaging can start anywhere with-
in its VTW. During the transition time, the satellite adjust-
s its observing angle between two adjacent observations.
This transition time is not only sequence-dependent, but also
time-dependent because it depends on the observing angles,
which differ for different observation start times. In addition,
the observation start time also influences the image quality.
The best image quality can be acquired when the satellite is
at the nadir, i.e., the middle of the VTW. AEOS scheduling is
an NP-hard combinatorial optimization problem (Lemaı̂tre
et al. 2002).

Research on the offline AEOS scheduling problem can be
divided into the Maximum Shot Orbit Sequencing Problem
(MSOP) and the Maximum Shot Sequencing Problem (M-
SP) (Lemaı̂tre et al. 2002). MSOP aims to select the images
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with maximum total priority from a single orbit of one satel-
lite and determine the observing sequence and the observing
times without violating constraints. MSP is more complex
and realistic. In addition to selecting the image-taking tasks,
we must also decide which VTWs are chosen out of sever-
al consecutive orbits. These two decisions are dynamically
coupled rather than procedurally separated.

Due to the complexity of the MSP, there exist few exact
algorithms. Bianchessi et al. (2007) propose a column gener-
ation method to solve a linear programming (LP) relaxation
of the problem. Wang et al. (2011) propose a mixed inte-
ger programming (MIP) model, where the continuous obser-
vation angle is discretized as only three angles. As a result
of this approximation, the solution space is reduced and the
transition time can be pre-computed. Both methods can only
be used in small-size instances. Besides exact algorithms, a
variety of metaheuristics and heuristics have been applied to
MSP, including tabu search (Lin et al. 2005; Bianchessi et
al. 2007), simulated annealing (Dilkina and Havens 2005;
Li, Xu, and Wang 2007), genetic algorithms (Wolfe and
Sorensen 2000; Li, Xu, and Wang 2007), hybrid differen-
tial evolutionary algorithms (Li et al. 2017) and priority-
based constructive algorithms (Wolfe and Sorensen 2000;
Wang et al. 2011; Xu et al. 2016). However, all the above
works neglect the transition time, fix it as a constant value,
or simplify it as a sequence-dependent time.

The only works on MSP with time-dependent transition
time to date are by Geng et al. (2016) and Liu et al. (2017).
Geng et al. (2016) propose a genetic algorithm and only
briefly treat the time-dependency. They also ignore the con-
straints of image quality, onboard memory and onboard en-
ergy. Liu et al. (2017) first define a mathematical model that
is non-linear due to the time-dependent constraints. Then, in
order to use LP, the authors linearize and simplify the M-
SP into two separate subproblems: all feasible VTW com-
binations are enumerated, then, for each combination, LP is
used to obtain the optimal schedule. The transition time is
fixed as a constant, a major approximation, but even so the
approach could not solve instances involving more than 12
tasks. Therefore, the authors propose a metaheuristic based
on adaptive large neighbourhood search (ALNS) combined
with a fast task insertion heuristic. The angles in VTWs are
pre-computed and cached. The ALNS method performs well
for small-size instances, while when the problem instance
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grows in size, the solution quality deteriorates and the com-
putation time grows.

In this paper, we investigate the time-dependent multi-
orbit AEOS observation scheduling problem. The major
contributions of this paper are summarized as follows:

1. For the first time, a complete MIP model is defined. Com-
pared with the two-stage mixed integer linear program-
ming (MILP) model in Liu et al. (2017), our model avoids
enumerating all VTW combinations. The time-dependent
onboard energy constraints are also considered. The new
MIP model scales better and is more realistic.

2. An improved ALNS is hybridized with tabu search. Our
novel hybrid approach provides results with higher quali-
ty and robustness and consumes less time compared with
state of the art. The tabu mechanism helps the ALNS to
avoid searching recently visited solutions.

3. A partial sequence dominance heuristic is proposed,
which can help to collect and use the in-process infor-
mation that is neglected in standard ALNS. It greatly im-
proves the performance of ALNS, especially when the
problem instance grows in size.

4. A position ordering heuristic is included in the task in-
sertion algorithm. This strategy explores more insertion
positions following an ascending order of possible transi-
tion times to save time and energy resources and increase
the possibility of successful insertion.

Problem Description
The time-dependent multi-orbit AEOS observation schedul-
ing problem aims to select a number of tasks from sever-
al consecutive orbits and determine the observing sequence
and the observing times without violating technical con-
straints. We define a task ti as one image or target to observe
from the users’ task list T . Each task corresponds to a small
area on the Earth’s surface that can be observed in one pass.

We account for but simplify the onboard memory and en-
ergy constraints. We assume that the memory and energy
used during each orbit cannot exceed an upper bound to sim-
ulate these orbit-renewable resources.

We firstly introduce notation and provides an angle-fitting
method to represent the time-dependent transition time in
the MIP model. Then we define the MIP model itself.

Time-dependent transition time
According to Liu et al. (2017), the image quality qi of task
ti must be higher than its required minimum image quality
ci. The image quality is a function of uij , the observation
start time in the j

th VTW wij of ti, and can be calculated
according to the following equation:

qi = 10� 9
|uij+vij

2 � w
⇤
ij |

lij
2 � di

2

= 10� 9
|2uij + di � 2w⇤

ij |
lij � di

(1)
where vij is the observation end time of ti in wij , di is the
observation duration, vij = uij +di, lij is the length of wij ,
and w

⇤
ij is the nadir time of wij .

In Liu et al. (2017), the quality of an image was treated as
a constraint, requiring the image quality to be higher than a
user-specified minimum value. In our paper, we use Eq. (1)
to prune parts of the VTWs to reduce the solution space and
increase the accuracy of angle fitting, which enables us to
build our MIP model.

According to (1) and qi � ci, the feasible interval of ob-
servation start time is within the original VTW, represented
by b

⇤
ij and e

⇤
ij :

b⇤ij = max

✓
(lij � di)(ci � 10)

18
+ w⇤

ij �
di
2
, bij

◆
(2)

e⇤ij = min

✓
(lij � di)(10� ci)

18
+ w⇤

ij �
di
2
, eij � di

◆
(3)

The exact VTWs and the observing angle sequences for
tasks are computed before solving the actual scheduling
problem. This pre-processing phase takes the satellite’s po-
sition, the task’s position as well as the Earth’s rotation and
produces VTWs and time-dependent functions of the roll,
pitch and yaw angles for every VTW. Although these func-
tions are non-linear, the change of angles can be approxi-
mated quite well with a linear function between b

⇤
ij and e

⇤
ij

(e.g., on average over 200 tasks, the duration of a VTW is
over 300s, while the transition time error is less than 0.5s).

Mixed integer programming model
Objective function The importance of one task ti is eval-
uated by its priority gi 2 [1, 10]. The objective we consider
is to maximize the total priority of all the scheduled tasks:

Maximize
X|T |

i=1

X|Wi|

j=1
xijgi (4)

where Wi is the VTW set of ti and xij is a binary decision
variable equal to 1 if and only if wij is chosen to observe ti.
Another key decision variable is uij , determining the obser-
vation start time for ti in wij .

Constraints Constraints (5) are the uniqueness con-
straints, meaning that each task is observed once at most.

X|Wi|

j=1
xij  1 8ti 2 T (5)

Constraints (6) are the manoeuvring constraints: they en-
sure that there is sufficient time between the end time vij

and the start time ukl for the transition time ⌧wijwkl be-
tween tasks ti and tk. These constraints are only enforced
for VTWs that are closer to each other than the maximum
possible transition time ⌧max, and if wij and wkl are select-
ed to observe ti and tk respectively, and ti is the immediate
predecessor of tk, which is encoded by ⇢wijwkl = 1 and
Constraints (7)–(9).

vij + ⌧wijwkl  ukl if ⇢wijwkl = 1
8ti, tk 2 T, i 6= k, wij 2 Wi, wkl 2 Wk,

b
⇤
kl � e

⇤
ij  ⌧max, b

⇤
ij � e

⇤
kl  ⌧max

(6)

|T |X

k=1

|Wk|X

l=1

⇢wijwkl + ⇢wijwe = xij 8wij 2 Wi, ti 2 T (7)
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|T |X

k=1

|Wk|X

l=1

⇢wklwij + ⇢wswij = xij 8wij 2 Wi, ti 2 T (8)

|T |X

i=1

|Wi|X

j=1

⇢wijwe =

|T |X

i=1

|Wi|X

j=1

⇢wswij = 1 (9)

In Constraints (7) and (8), ws and w
e are two dummy

nodes representing the first and the last VTW on the satellite.
These constraints express that if a VTW is selected, there is
a unique selected VTW preceding it, and a unique selected
VTW following it.

Constraints (10) ensure that the observation for each task
lasts for the required duration.

vij = uij + di 8wij 2 Wi, ti 2 T (10)

Constraints (11)–(15) are used to calculate the transition
time between two observations. In Constraints (11), ✓wijwkl

is the total transition angle and a1–a4 are four different tran-
sition angular velocities for different transition angles. In
(12), �tij ,⇡t

ij , 
t
ij are observation roll, pitch and yaw angles

at t, which are calculated by (13)–(15). The parameters a�ij ,
a
⇡
ij , a ij , b�ij , b⇡ij and b

 
ij are the parameters of the functions of

angles and time of the chosen VTW wij , which are comput-
ed in the pre-processing phase of section ‘Time-dependent
transition time’.

⌧wijwkl =

8
><

>:

10 + ✓wijwkl/a1 ✓wijwkl  15
15 + ✓wijwkl/a2 15 < ✓wijwkl  40
20 + ✓wijwkl/a3 40 < ✓wijwkl  90
25 + ✓wijwkl/a4 ✓wijwkl > 90

8ti, tk 2 T, i 6= k, wij 2 Wi, wkl 2 Wk

(11)
✓wijwkl =

���uij

ij � �
ukl
kl

��+
��⇡uij

ij � ⇡
ukl
kl

��+
�� uij

ij �  
ukl
kl

��
8ti, tk 2 T, i 6= k, wij 2 Wi, wkl 2 Wk

(12)
�
t
ij = a

�
ijt+ b

�
ij 8wij 2 Wi, ti 2 T (13)

⇡
t
ij = a

⇡
ijt+ b

⇡
ij 8wij 2 Wi, ti 2 T (14)

 
t
ij = a

 
ijt+ b

 
ij 8wij 2 Wi, ti 2 T (15)

Constraints (16) and (17) are the memory and energy con-
straints, respectively, where ↵M and ↵E are two estimated
values which measure the percentage of total memory M

and energy E available on an orbit, rmij is a binary parame-
ter showing whether wij is on the m

th orbit om of the orbit
set O, and m

o
, p

o
, p

s
, p

a are the consumed memory for ob-
servation per second, the consumed energy for observation
per second, the consumed energy per observation and the
consumed energy for angle transition per degree respective-
ly. The energy constraints are also time-dependent because
the energy for satellite transition depends on the total angles
the satellite rotates. In Constraints (18), ✓⇤wijwkl

is an aux-
iliary variable to calculate the rotation energy. The value of
✓
⇤
wijwkl

is a piecewise linear function influenced by the value
of ⇢wijwkl .

|T |X

i=1

|Wi|X

j=1

r
m
ij dim

o  ↵
M
M 8om 2 O (16)

|T |P
i=1

|Wi|P
j=1

r
m
ij (xijdip

o + xijp
s +

|T |P
k=1

|Wk|P
l=1

✓
⇤
wijwkl

p
a)  ↵

E
E

8om 2 O

(17)

✓
⇤
wijwkl

=

⇢
✓wijwkl if ⇢wijwkl = 1
0 otherwise

8ti, tk 2 T, i 6= k, wij 2 Wi, wkl 2 Wk

(18)

Constraints (19)–(21) restrict the domains of the vari-
ables. Note that in Constraints (20), the start and end time of
the VTW have been cut according to the quality constraints
in (2) and (3), so there are no additional quality constraints.

xij 2 {0, 1} 8wij 2 Wi, ti 2 T (19)

b
⇤
ij  uij  e

⇤
ij 8wij 2 Wij , ti 2 T (20)

⇢wijwkl 2 {0, 1} 8ti, tl 2 T, i 6= k, wij 2 Wi, wkl 2 Wk

(21)
To the best of our knowledge, this is the first MIP mod-

el proposed for the complete time-dependent multi-orbit
AEOS observation scheduling problem. The angle fitting s-
trategy enables the modelling of the time-dependency. Com-
pared with the two-stage MILP model in Liu et al. (2017),
we avoid enumerating all the VTW combinations and we
consider energy constraints, which are also time-dependent.

This problem is NP-hard, and we observe that the run-
time of the MIP solver does not scale well with larger prob-
lem size. Therefore, in the next section, we propose a meta-
heuristic approach.

Hybrid ALNS Algorithm
ALNS (Pisinger and Ropke 2007; Liu et al. 2017) provides a
flexible framework in which several different operators can
be defined according to the problem characteristics. ALNS
can be adopted to provide solutions for instances with dif-
ferent characteristics. However, we observe two main draw-
backs of ALNS. First, the search efficiency of ALNS can
founder due to re-visiting recent solutions. Second, ALNS
accepts a new solution depending on the quality of the w-
hole solution sequence. However, during the search process,
solutions with some good parts are rejected due to the low
quality of the whole sequence – thus neglecting potentially
valuable in-process information.

Our ALNS approach is based on the work of Liu et
al. (2017). In the following subsections, we first introduce
the standard ALNS framework. Then we introduce three
new main features of our ALNS approach: tabu search hy-
bridization (TS), partial sequence dominance (PSD), and
insertion positions ordering (IPO). The resulting algorith-
m, called ALNS/TPI, is shown as Algorithm 1. In the fifth
subsection we introduce a new definition of conflict degree
(CD) which increases the calculation speed.

ALNS framework
ALNS is less sensitive to the initial solution than general lo-
cal search (Demir, Bektaş, and Laporte 2012), therefore we
use a simple greedy search to construct an initial solution.
We sort the tasks by an ascending order of start times of
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Algorithm 1 Overview of ALNS/TPI
1: Generate an initial solution S by greedy search;
2: repeat
3: Choose destroy, repair operators Di, Ri based on weights;
4: S0  Ri(Di(S));
5: Update tabu attributes of new inserted tasks;
6: Produce compound solution Sc from S and S0;
7: if f(Sc) > f(S0) then
8: S0  Sc;
9: if SA accepts S0 then

10: S  S0;
11: if f(S) > f(S⇤) then
12: S⇤  S;
13: if S⇤ has not improved for many iterations then
14: S  S⇤;
15: Update the weights of operators;
16: until Terminal condition is met;
17: return S⇤.

their VTWs and we attempt to insert each task under all the
constraints stated above.

ALNS updates solutions through destroying and repair-
ing. In the destroying process, some tasks are removed from
the current solution by removal operators. The unscheduled
and removed tasks are then inserted into the destroyed so-
lution in the repairing process by insertion operators. There
are six removal and three insertion operators: removal by
random, min priority (tasks with lower priority are removed
first), max opportunity (tasks with more VTWs are removed
first), max conflict (tasks with higher conflict degree are re-
moved first), cluster 1 (tasks in the orbits with fewest tasks
are removed first) and cluster 2 (tasks in the orbits with the
lowest priority are removed first); insertion by max priority,
min opportunity and min conflict.

At each iteration, a pair of removal and insertion opera-
tors is selected according to their weights. The weights are
updated adaptively according to the performance of opera-
tors in the previous iterations. A simulated annealing (SA)
criterion is used to control the acceptance of new solutions.

Tabu search
Žulj, Kramer, and Schneider (2018) propose a method hy-
bridizing ALNS with TS, and apply it to the order-batching
problem. Their method combines the diversification capa-
bilities of ALNS and the intensification capabilities of TS.
It uses ALNS to search for better solutions and, if a cer-
tain number of ALNS iterations have passed, TS is used.
Thus ALNS and TS are alternated in a two-stage manner.
But since ALNS and TS are used in separate stages, this hy-
bridization does not change the short-term cycling nature of
ALNS.

In contrast, we propose a tight integration of ALNS with
TS. We declare a removal tabu attribute for each task. When-
ever one task is inserted into the current solution, the re-
moval of this task is forbidden for

p
|T |/2 iterations. We

use this strategy to prevent the algorithm re-visiting recen-
t evaluated solutions. We compare the two ALNS–TS hy-
bridizations in the experiments below.

Figure 1: An example of partial sequence dominance

Partial sequence dominance
Due to the time-dependency and sequence-dependency, the
quality of a solution is influenced significantly by its partial
sequences. Inspired by genetic algorithms, we propose the
PSD heuristic. When a new solution is produced, we com-
pare a small part of it with the corresponding part of the
current solution. In this paper we use the orbit as the smal-
l part. Figure 1 shows one example. In standard ALNS, the
new solution is given up. However, Orbit 1 and Orbit 2 of the
new solution are better than the current solution. So accord-
ing to PSD, we keep Orbit 1 and Orbit 2 of the new solution
and Orbit 3 of the current solution, and we get the compound
solution, which is better than the current solution.

This paper studies a multi-orbit scheduling problem,
which means one task might have multiple VTWs on differ-
ent orbits. Therefore the compound solution might violate
the uniqueness constraints (5). When a compound solution
is produced, the feasibility is checked and the tasks that vi-
olate Constraints (5) are removed. If the repaired compound
solution is better than the new solution, it is accepted. We
note that for a MSOP problem, this check can be omitted.

Insertion positions ordering
In Liu et al. (2017), two strategies to select the observation
start time are used: the earliest start time insertion and the
middle start time insertion. According to their experiments,
the middle start time insertion strategy works better. How-
ever, both of them waste too many insertion opportunities.

We propose an insertion position ordering (IPO) strategy
to insert tasks. For every candidate task, we calculate all pos-
sible insertion positions. Due to the time-dependency and
sequence-dependency, the difference of transition times in d-
ifferent insertion positions can be large. To increase the pos-
sibility of successful insertion without increasing the com-
putation time too much, we calculate the possible transition
time for each position and insert the task into the position-
s following an ascending order of possible transition times.
The rationale is that time is a valuable resource, especially
when we consider energy constraints, and it is better to use
time for observation instead of transitioning.

Note because we cannot know the observation start time
until we insert the task into the solution sequence, we cannot
know the exact transition time. Therefore, we use the angles
at the middle of the VTWs to compute an approximate tran-
sition time. This value is used to rank the possible positions.
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Conflict degree
In Liu et al. (2017), the heuristic conflict degree (CD) is
defined as ‘the time that one VTW is overlapped with oth-
er scheduled tasks’. Since the solution is changed in every
ALNS iteration, CD must be updated in each iteration. In
order to reduce the computation time, we instead define CD
as ‘the time that one VTW is overlapped with any other
VTWs’. This calculation can be done in the pre-processing
phase. We show the quality of solutions is barely affected
and the computation time is significantly decreased.

Empirical Results
The aim of the experiments is to assess the effectiveness
of the proposed ALNS/TPI hybrid algorithm. Experiments
were conducted using Intel Core i5 3.20GHz CPU running
Windows 7 with 8GB memory. A time limit of 3600s is used.
IBM ILOG CPLEX version 12.8 is used for MIP solving.
The results for metaheuristics are the average of 20 runs.

The generation of the problem instances follows the con-
figuration from Liu et al. (2017) except for the required min-
imum quality. In previous work, the required minimum qual-
ity ci is set at 0 and this makes the quality constraints use-
less. Therefore in this paper we set it as a uniform random
integer in [5, 10] (hence, solution quality for the same-size
instance in our experiments is lower than the one in Liu et
al. (2017)).

The tasks are generated according to a uniform random
distribution over two geographical regions: China and the
whole world. For the Chinese area distribution mode, fifteen
instances are designed and the number of tasks contained in
these instances changes from 50 to 400, with an increment
step of 25. For the worldwide distribution mode, twelve in-
stances are designed and the number of tasks contained in
these instances changes from 50 to 600, with an increment
step of 50. Other parameters of the problem instances are:
M = 2400, E = 2400, mo = 1, po = 1, ps = 2, pa = 1,
↵
M = 0.6, ↵E = 0.8, a1 = 1.5, a2 = 2, a3 = 2.5, a4 = 3.

Comparison of different algorithms First, we compare
the proposed ALNS/TPI with our improved MIP model and
the metaheuristics in Liu et al. (2017) (‘old ALNS’), and
the coarse ALNS–TS hybrid of Žulj, Kramer, and Schnei-
der (2018) (‘ALNS/TS’). The parameters of the ALNS al-
gorithms are as in Liu et al. (2017): the total iteration time
is 5000 and the simulated annealing parameter is 0.9975. In
ALNS/TS, TS is run for 200 iterations after every 1000 it-
erations of ALNS. In each TS iteration, 10 neighbourhoods
by our removal and insertion operators are examined to find
the best local move. The whole process is run four times, for
12000 neighbourhood moves in total. Recently visited solu-
tions are inserted in a tabu list for

p
|T |/2 iterations. Here,

we implemented two versions of the modified (Žulj, Kramer,
and Schneider 2018) algorithm. The first one is ALNS/TS
for MSP without any further improvements. The second,
called ALNS/TS/PI, has all the improvement features except
the tight TS hybridization.

We compare the solution quality and the CPU time. The
solution quality is the percentage of the total priority of

scheduled tasks (i.e., the objective value) divided by the to-
tal priority of all the tasks in T . Figure 2 shows the com-
parison of the five different algorithms: our ALNS/TPI, old
ALNS, ALNS/TS, ALNS/TS/PI, and our improved MIP. In
Figure 2 left (for Chinese area) and middle (for worldwide),
black solid lines show the solution quality (left axis) and
the blue dash lines show the CPU time (right axis, log s-
cale), showing that the CPU time of the ALNS/TPI increas-
es slowly with the increasing number of tasks. The solution
quality is significantly higher than that of the old ALNS and
ALNS/TS. ALNS/TS/PI uses more time to produce solu-
tions with worse quality, which proves that our integrated
hybridization of ALNS and TS is better than the two-stage
hybridization in Žulj, Kramer, and Schneider (2018) for this
MSP problem. Furthermore, the implementation of our hy-
bridization is easier than ALNS/TS because we only need to
add tabu attributes of tasks to ALNS, while in ALNS/TS, a
new TS search process is included. MIP can find optimal so-
lutions for small-size instances but performs badly when the
instance size gets large. For the three small instances with
optimal solutions by MIP, ALNS/TPI also finds the same op-
timal solution. Among all the methods, old ALNS perform-
s worst, consuming a long time to produce solutions with
the lowest quality. Finally, Figure 2 right shows the anytime
quality of different algorithms for instance 600 W with 600
tasks distributed worldwide. The MIP method fails to give a
solution within the time limit for this large instance.

Second, in order to compare the improved MIP model
with the two-stage MILP model in Liu et al. (2017), we fix
the transition time of our model as 20s and remove the ener-
gy constraints (‘MIP(20s)’).

Figure 3 (top) shows the number of instances solved with-
in 600s by different methods. The proposed ALNS/TPI, as
well as ALNS/TS and ALNS/TS/PI can solve all the prob-
lem instances. The old ALNS, however, fails to solve three
worldwide instances. MIP(20s) and the improved MIP can
only solve small-size instances. If we set the time limit as
3600s (in Figure 3 (bottom)), the old ALNS and MIP(20s)
can solve all the instances. The improved MIP can solve
eight more instances. Unfortunately, the two-stage MILP
model in Liu et al. (2017) fails to solve all the problem in-
stances because of memory overflow. It cannot enumerate all
the combinations of VTWs even for our smallest instance:
the model can only solve problem with at most 12 tasks.

Comparison of different features of ALNS/TPI Last, in
order to understand which features of ALNS/TPI contribute
to its superior performance, we perform a factor analysis of
features. The results are shown in Tables 1 and 2 (we also in-
clude the results of ALNS/TS, ALNS/TS/PI and old ALNS).
We compare ALNS without PSD (ALNS/TI), ALNS with-
out TS (ALNS/PI), ALNS without IPO (ALNS/TP) and
ALNS with frequent CD update (ALNS/TPI/CD). All the re-
sults are compared with ALNS/TPI, so for other algorithms,
we calculate the percentage of increase in quality (IQ, higher
is better) and increase in time (IT, lower is better).

All the features contribute more to the solution quality for
area distribution. Among all these features, IPO contributes
most to the solution quality. However, IPO also increases
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Figure 2: Comparison of algorithms on area distribution (left) and worldwide (middle), anytime quality of different algorithms
(right)

Table 1: Results of different ALNSs for area distribution
Instance ALNS/TPI ALNS/TI ALNS/PI ALNS/TP ALNS/TPI/CD ALNS/TS ALNS/TS/PI Old ALNS

Quality/% Time/s IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/%
50 A 84.94 3.86 0.00 -7.12 -2.55 -0.43 -3.78 -33.23 -0.35 12.38 -4.26 84.91 -0.35 84.02 -7.01 54.34
75 A 79.24 7.47 -0.04 -6.19 -1.94 -1.95 -3.18 -44.29 -0.28 18.43 -5.12 61.14 -0.41 74.65 -6.38 53.94
100 A 70.44 11.42 -0.60 0.48 -3.24 -11.83 -5.14 -73.69 -0.56 27.69 -6.25 32.60 -2.04 66.18 -5.55 54.75
125 A 63.75 11.87 -0.07 8.30 -2.68 -11.66 -4.87 -56.93 0.14 27.07 -4.61 40.50 -1.92 57.04 -5.23 63.63
150 A 56.95 13.04 -1.42 5.87 -2.97 -6.76 -6.60 -55.78 -0.18 32.89 -7.34 42.23 -3.64 56.94 -10.29 72.23
175 A 53.57 15.05 -1.34 3.73 -2.62 -15.34 -4.62 -51.04 0.24 39.20 -9.81 39.04 -2.44 57.37 -15.55 77.68
200 A 49.70 16.59 -2.82 3.12 -4.41 -16.37 -6.46 -44.88 0.26 41.49 -15.94 37.34 -4.76 58.92 -23.49 82.54
225 A 45.73 17.93 -3.30 2.05 -3.45 -15.52 -5.57 -47.45 0.62 40.86 -18.44 39.51 -3.32 67.09 -20.38 85.19
250 A 45.39 19.49 -5.00 2.06 -4.76 -17.63 -9.13 -40.99 -0.23 45.70 -25.70 41.16 -5.89 67.58 -31.16 87.13
275 A 42.07 20.67 -3.36 3.78 -3.07 -11.25 -6.98 -35.90 0.36 52.38 -30.48 43.85 -4.57 69.73 -30.51 87.30
300 A 39.75 22.57 -2.69 0.71 -3.43 -14.01 -8.30 -37.89 0.86 54.34 -31.99 42.35 -5.32 67.76 -35.44 88.80
325 A 38.26 23.76 -2.62 1.98 -3.38 -11.75 -9.10 -32.95 1.42 61.09 -34.99 41.96 -5.67 70.65 -29.40 89.85
350 A 35.85 25.26 -2.32 0.73 -2.89 -9.79 -7.64 -28.85 1.48 65.26 -43.97 47.32 -5.25 71.27 -30.05 90.62
375 A 34.26 26.73 -3.45 -1.92 -2.67 -11.99 -6.95 -33.75 1.70 68.27 -43.32 51.84 -5.23 70.46 -23.84 91.68
400 A 32.15 27.13 -2.08 -1.20 -1.78 -3.14 -6.30 -28.61 1.82 68.84 -50.69 55.16 -4.82 68.40 -21.95 93.04
Avg. 51.47 17.52 -2.07 1.09 -3.06 -10.63 -6.31 -43.08 0.49 43.73 -22.19 46.73 -3.71 67.20 -19.75 78.18

Figure 3: Number of instances solved within 600s (top) and
3600 (bottom)

the CPU time more compared with PSD and TS. TS works
better than PSD, especially for the area distribution. This
is because for area distribution, the distribution of tasks is
dense and the CD of tasks is high. It is then more difficult
for the algorithm to find a good solution. TS, which prevents
the algorithm from searching recent solutions again, works
better in this case. PSD works much better when the problem
instance gets larger, which means that PSD performs well
when the solution sequences get long. When the solution
sequences get long, evaluating a solution only by its total
quality gives up too much in-process information of partial
sequences. ALNS/TPI/CD works better than ALNS/TPI for
the area distribution because CD is an important heuristic
influencing the quality for the dense distribution. However,
the CPU time is nearly 3 times that of ALNS/TPI. From the
results of ALNS/TPI/CD for the worldwide distribution, we
can find that the frequent CD updates do not contribute to the
solution quality all the time. The previous definition of CD
focuses too much on the conflict with scheduled tasks while
neglecting the potential conflict with unscheduled tasks.
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Table 2: Results of different ALNSs for worldwide distribution
Instance ALNS/TPI ALNS/TI ALNS/PI ALNS/TP ALNS/TPI/CD ALNS/TS ALNS/TS/PI Old ALNS

Quality/% Time/s IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/%
50 W 100.00 0.02 0.00 72.00 0.00 79.90 -2.17 99.41 0.00 44.74 0.00 38.12 0.00 81.31 -0.28 99.71
100 W 99.78 6.91 0.00 7.29 0.00 11.47 -1.49 10.81 0.00 19.30 -0.10 74.21 0.00 69.36 0.00 69.00
150 W 99.70 12.92 0.00 10.18 -0.20 14.16 -2.26 17.19 0.00 51.45 -0.47 72.48 0.00 68.92 -0.57 68.41
200 W 98.19 28.46 0.00 -5.55 -0.19 -0.14 -2.30 -2.69 0.09 45.27 -1.10 67.99 -0.04 63.56 -1.27 63.05
250 W 97.08 42.88 0.00 -5.13 -0.60 2.31 -2.38 -3.99 -0.05 45.47 -1.93 64.99 -0.35 64.56 -2.30 64.21
300 W 95.58 61.99 0.00 -3.49 -0.56 -8.02 -3.29 -8.56 -0.15 43.46 -2.67 58.59 -0.46 60.33 -2.56 64.50
350 W 94.91 79.99 0.00 -2.78 -1.11 -22.33 -4.36 -14.59 -0.19 48.61 -3.58 54.47 -1.09 54.06 -5.30 68.60
400 W 93.14 100.12 -0.06 -1.24 -0.99 -24.80 -4.90 -21.52 -0.20 51.80 -4.77 54.65 -1.17 50.43 -8.11 73.21
450 W 91.73 121.16 -0.23 -1.78 -0.98 -14.79 -5.48 -25.84 -0.24 56.07 -5.26 54.66 -1.17 56.20 -10.47 74.27
500 W 90.22 134.52 -0.54 1.55 -0.69 -5.23 -5.32 -28.04 -0.06 61.52 -5.93 54.19 -0.92 60.93 -12.50 78.54
550 W 88.84 142.44 -0.64 5.92 -0.84 -2.87 -4.79 -20.21 -0.11 66.28 -6.13 55.35 -1.15 63.52 -16.96 81.12
600 W 87.41 153.27 -0.85 6.66 -0.60 0.37 -5.38 -20.74 -0.17 69.63 -6.59 54.60 -1.22 65.77 -20.82 83.96
Avg. 94.71 73.72 -0.19 6.97 -0.56 2.50 -3.68 -1.56 -0.09 50.30 -3.21 58.69 -0.63 63.25 -6.76 74.05

Application in Real World
In this section, we discuss the difference between our simu-
lations and the potential application of our work in the real
world.

First, although the instances in our test instances are ran-
domly generated, they are very similar to real-world ones.
We do not have access to (often classified) instances of task
locations. However, in our instances, except for task loca-
tions, all parameters are real: satellite’s, orbits’, Earth’s pa-
rameters. The calculation of VTWs and transition time is
based on the real geographical locations. There is little dif-
ference between our and classified instances, since in reality
tasks are raised by the users and can be anywhere on the
Earth surface. Further, tasks can be dense in a small area:
we use the Chinese area distribution to simulate this. The
number of tasks can be different on different days: we use
different numbers of tasks to simulate this.

The satellite used in the simulation is called AS-01, which
is the first AEOS of China. The scheduler of AS-01 was de-
veloped by the group of Liu et al. (2017), which uses several
simple heuristic operators of the old ALNS to construct the
observation schedule. The satellite has now been in orbit for
more than two years and the scheduler has worked well un-
til now. However, since the current scheduler is simple and
greedy, the solutions generated by it are generally of low-
er quality than the ones generated by the old ALNS. But
since our hybrid ALNS is much more efficient than the old
ALNS, we believe it could improve on current operational
procedures.

Another difference between our model and real-life satel-
lites is the constraints of specific satellites. For example, for
some satellites, the observation time in an orbit is bounded
not only by memory and energy, but also by the maximum
continuous working time of sensors and the maximum work-
ing temperature. If this information is known, it can be added
as additional constraints to the proposed models.

Conclusions
We studied time-dependent multi-orbit agile Earth obser-
vation satellite scheduling, which is a complex real-world
scheduling problem. We developed the first realistic mixed

integer programming (MIP) model, and a novel hybridiza-
tion of adaptive large neighbourhood search (ALNS) and
tabu search (TS). As expected, MIP can find optimal solu-
tions only for small-size instances. Extensive empirical re-
sults demonstrated that, compared with two state-of-the-art
metaheuristic approaches, our proposed ALNS hybrid pro-
duces solutions with higher quality in less time. Factor anal-
ysis finds the novel insertion position ordering contributes
most to the performance, but also consumes the most time.
The partial sequence dominance heuristic performs better
when the problem instance grows in size. The TS heuristic
performs better when the conflict degree is high.

Our work proves that ALNS and TS hybridization is an
efficient method for this satellite scheduling problem. Our
next step is to evaluate the heuristics in this work on oth-
er similar problems. We believe these strategies can signifi-
cantly improve other algorithms for problems characterized
by time- and/or sequence-dependency.
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