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Abstract
Routing trains through busy railway station layouts is an important part of the time-
tabling process. For each train, a feasible route has to be determined to provide reli-
able operations, given the arrival and departure times at stations. In this paper, we 
propose a model for stable and robust train routing with the goal to minimize capac-
ity occupation and maximize robustness. We define a multi-objective optimization 
problem and provide the heuristic RouteCare based on a max-plus automata model 
and a delay propagation model. We consider microscopic infrastructure to guaran-
tee practical feasibility. The performance of the proposed algorithm is demonstrated 
on real-life instances of the Dutch railway network. The generated solutions outper-
formed the variants of RouteCare that independently maximize stability or robust-
ness by 10.4% and 9.5%, respectively. In addition, RouteCare showed that even for 
the same number of resources used, a more robust route plan can be found that uses 
the station capacity more efficiently.

Keywords Railway · Routing · Conflict-free · Stable · Robust · Max-plus algebra

1 Introduction

Timetable planning becomes more challenging with increasing demands and needs 
more attention and more effort from traffic planners. The need for more reliable 
planning is constantly growing. In particular, stations are locations in the network 
that are usually recognized as bottlenecks where most of the delays are being gen-
erated. In addition, intensive use of infrastructure resources (e.g., track sections, 
switches, crossings) requires periodic and frequent preventive maintenance to keep 
a high level of service. These challenges raise the following questions: 1. How to 
incorporate stability measures in the planning process to obtain an acceptable level 
of stability? 2. How to assign more robust routes with less interdependencies? 3. 
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How to increase the availability of the infrastructure and reduce the required fre-
quency of maintenance? Answering all these questions serve the single goal of pro-
viding a better and more reliable service to passengers.

To quantify the quality of scheduling solutions, Goverde and Hansen (2013) 
proposed design parameters such as efficiency, feasibility, stability and robustness. 
Timetable efficiency is the ability of trains to have travel times as short as possi-
ble. Timetable feasibility is the ability of all trains to adhere to their scheduled train 
paths, which are conflict-free considering microscopic details, i.e., all trains can pro-
ceed undisturbed by other traffic. Timetable stability is the ability of a timetable to 
absorb initial and primary delays so that delayed trains return to their scheduled train 
paths without rescheduling. This is directly connected to the infrastructure occupa-
tion. If the occupation is higher, then the remaining time allowances are lower and 
provide a less stable timetable. Timetable robustness is the ability of a timetable to 
withstand design errors, parameter variations, and changing operational conditions. 
We use these definitions of timetable indicators and translate them to the station 
level when designing route plans. To satisfy these design indicators, we need to con-
sider different mathematical models both on a microscopic and macroscopic level of 
detail (Goverde et al. 2016). A microscopic level considers the detailed infrastruc-
ture (block lengths, curvatures, gradients) and signalling system, while a macro-
scopic level considers relevant timetable points (e.g., stations, junctions, bridges) as 
nodes and tracks between them as arcs. If microscopic details were not considered 
but instead default minimum headway norms are used, then we refer to normative or 
macroscopic feasibility.

In this paper, we consider an extension of the train routing problem (TRP) that 
was introduced by Zwaneveld et al. (1996). The TRP consists of choosing an appro-
priate route for each train arriving or departing in a station area and platform assign-
ment where each train is assigned to one station platform track. The input to the 
TRP is usually a predefined macroscopic timetable that includes a number of trains 
and the scheduled arrival and departure times in the station. The output of the TRP 
is a route plan, which represents a set of compatible train routes consisting of an 
infrastructure itinerary assigned to each train at the appropriate time according to 
the timetable. In addition, a route plan is defined on the microscopic level.

The TRP attracted a lot of attention in the past and different approaches to model 
the TRP are found in the literature, particularly focusing on determining macroscop-
ically feasible and efficient train routes. Carey and Carville (2003) gave a heuristic 
approach similar to the manual planning methods currently used in Great Britain. 
Zwaneveld et  al. (1996, 2001) suggested formulating the TRP as a node packing 
problem, while Lusby et  al. (2011a) proposed the set packing formulation. Zwan-
eveld et al. (1996, 2001) defined a TRP on a conflict graph, which models all con-
flicting train routes. While doing so, they considered only aggregated train routes 
due to the size of problem instances, and thus cannot guarantee the conflict-freeness 
of the produced route plan.

Caimi et  al. (2011) defined the problem as a multicommodity flow problem. 
They considered the TRP on a Resource Tree Conflict Graph which computes a 
route plan that is conflict-free at the microscopic level and gave a computationally 
efficient model. Corman et  al. (2009) proposed an Alternative Graph formulation 
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for rescheduling and rerouting using an incompatibility graph and blocking times. 
The incompatibility graph models all routes that cannot be used simultaneously. All 
incompatible routes are then included in the Alternative Graph, which also requires 
sequence-dependent setup times to model the sectional-release route locking princi-
ple. A more efficient aggregated route formulation is furthermore introduced which 
computes slightly conservative microscopically conflict-free solutions with small 
extra buffer times. An extensive overview of the state-of-the-art is given in Sels et al. 
(2014) for periodic routing and Lusby et al. (2011b) and Cacchiani et al. (2014) for 
non-periodic cases. In our paper, the focus is on the periodic TRP version, but the 
approach may easily be adjusted to the non-periodic problem as well.

It has been commonly accepted that delays of trains are unavoidable in real-time 
operations as being subject to internal and external stochastic disturbances. In order 
to absorb these disturbances in real-time, a route plan should contain time supple-
ments in the train process times and buffer times between pairs of consecutive train 
movements. These time allowances help to reduce delays and make the route plan 
more robust. Therefore, robustness of route plans is a necessary feature; however, it 
has been considered rarely in the literature. Caimi et al. (2005), Caprara et al. (2010) 
and Dewilde et  al. (2014) introduced robustness implicitly by rewarding extended 
buffer times between trains as a common way to improve the robustness. Herrmann 
(2006) introduced three other robustness measures for the TRP as in Zwaneveld 
et al. (1996) which are variations on maximizing (clique/edge/node) weights in the 
conflict graph. These measures resemble an explicit robustness measure based on 
stochastic disturbance distributions. Caimi et al. (2005) and Herrmann used fixed-
point heuristics to solve the TRP. Note that Herrmann referred to these measures 
as stability measures. In our paper, we define robustness explicitly as reducing the 
cumulative train delays in the station area. This robustness notion has been used 
in Kroon et al. (2008) for improving timetable robustness, but has not been used in 
train routing problems so far.

According to Goverde and Hansen (2013), stability is regarded as an important 
design indicator. A common way to express stability, which we also adopt in this 
paper, is through infrastructure capacity occupation. Capacity occupation norms 
for station occupation are proposed by the International Railway Association UIC 
(UIC 2013) and as such should be respected in the planning processes. In the lit-
erature, these norms are also known as stability norms. For example, having a route 
plan with an infrastructure occupation rate of a platform track of 90% of the time 
can not be accepted as a good route plan. Capacity occupation in a periodic time-
table can be defined by the minimum cycle time � , which represents then a stabil-
ity measure (Heidergott et  al. 2005; Goverde 2007). The minimum cycle time is 
the minimal period length in which the periodic execution of arrival and departure 
events is feasible after compressing the events as much as possible. Therefore, we 
want to minimize the cycle time � to achieve this. Let us assume a route plan with a 
scheduled cycle time T. The minimized � provides T − � time allowances (i.e., time 
supplements and buffer times) on the critical cycle and more everywhere else, i.e., 
on non-critical cycles. For more details on timetable stability evaluation, we refer 
to Goverde (2007, 2010), and on capacity assessment, we refer to Bešinović and 
Goverde (2018). Burkolter (2005) developed a Petri-net model that minimizes the 
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cycle time to find a stable timetable structure (e.g., a train sequence). The proposed 
model applies two heuristics, local search and simulated annealing. The feasibility 
is additionally checked on the microscopic level by the model of Herrmann (2006). 
Petering et al. (2015), Zhang and Nie (2016) and Sparing and Goverde (2017) solve 
a related problem to Burkolter (2005) for bigger networks. They developed vari-
ants of exact minimal cycle time optimization (MCTO) models to find an optimal 
timetable structure. Bešinović and Goverde (2016) proposed a two-stage stability-
to-robustness model that integrates MCTO and further designs an actual stable and 
robust timetable by effectively distributing time allowances. So far, no implementa-
tions of using the minimum cycle time as a stability measure for route plans exists in 
the literature.

The use of individual infrastructure elements plays a considerable role in traffic 
operations, because the occupation of each element determines how frequent main-
tenance should be undertaken. Each resource, particularly movable elements like 
switches, needs regular maintenance and replacement due to their lifetime cycle. 
The lifetime depends on multiple factors that may be train-, track- or usage-related. 
Some of these relevant factors are trains’ axle load, total tonnage, soil quality, main-
tenance and component renewal, train speed, number of operations (i.e., switch 
movements), and number of trains in facing or in trailing direction (Zwanenburg 
2009). Closing a track section to maintain a switch often needs some traffic adjust-
ments, which causes local changes in train routes, possible platform changes or even 
cancelling trains, and above all, evokes passenger inconvenience. Therefore, it is 
highly beneficial to spread the usage of infrastructure elements as equally as possi-
ble. The parameters defining the resource occupation can be the total blocking time 
and/or the number of resources used in a station. In our paper, we adopt the latter.

We introduce an extension to the original TRP and define it as the robust train 
routing problem (RTRP). Given a microscopic infrastructure and signalling system, 
macroscopic timetable (arrival and departure times), a set of alternative routes and 
train dynamics characteristics, determine a route plan including platform assignment 
that provides conflict-free, stable and robust operations with minimized and evenly 
distributed infrastructure use. To compute conflict-free solutions, we consider a 
much higher level of (infrastructure) details compared to e.g. Zwaneveld et  al. 
(1996, 2001), which is already NP-hard. Together with additional objectives such 
as robustness, i.e. explicitly considering many disturbance scenarios, and an even 
infrastructure use, our considered problem requires many new variables, extra con-
straints, and a stochastic model formulation. In our opinion, this makes the newly 
created problem significantly more difficult to solve even for small instances. There-
fore, we opted to apply a heuristic approach to find feasible, stable and robust route 
plan solutions.

In this paper, we propose a new microscopic multi-objective approach for the 
RTRP to improve train routing and platform assignment, which incorporates the 
important aspects of feasibility, stability, robustness, and balanced infrastructure 
occupation. We introduce the multi-start local search heuristic RouteCare to solve 
the RTRP. RouteCare is based on two models for capacity assessment and robust-
ness evaluation. The former involves a max-plus automata model, and the latter 
integrates a delay propagation model. One of the main advantages of the max-plus 
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automata model is the ability to represent the infrastructure resources and blocking 
times of these resources corresponding to blocking time stairways. Other than the 
time-event graph max-plus algebra models (Heidergott et al. 2005; Goverde 2007), 
in the max-plus automata, both the start and end time of blocking each resource by 
each train are taken into account. In this way, conflicts between trains are naturally 
forbidden, and this enables to compute capacity occupation by a given route plan. 
Feasibility is guaranteed by explicitly modelling track use and considering all opera-
tional constraints of the infrastructure and signalling system. Stability is achieved by 
minimizing total infrastructure occupation. Robustness is enforced by reducing the 
expected train delays. An even resource use is encouraged by distributing trains over 
more resources. A case study of a typical station area in the Netherlands shows the 
potential of the RouteCare algorithm by improvements in the obtained route plans 
compared to the original route plans. The approach represents a valuable addition 
to decision support tools in planning processes. In particular, RouteCare may be 
used in the planning of basic route plans, and also for short-term adjustments due to 
scheduled infrastructure maintenance and construction works.

The main contributions of this paper are fourfold. First, we propose a new RTRP 
formulation that for the first time explicitly includes stability and uses the minimum 
cycle time as a stability measure for the RTRP. Second, the capacity assessment 
model provides a microscopically conflict-free solution while no additional con-
straints for modelling headway constraints are needed. Third, the proposed model 
considers a more even use of infrastructure resources which may lead to generating 
more acceptable route plans and reduce required maintenance works. Fourth, the 
model incorporates capacity and robustness assessment directly in the optimization 
process of the TRP. As a result, planners gain an extended knowledge about the cre-
ated route plan as soon as it has been produced. This is an improvement to the cur-
rent general practice, where a capacity and robustness assessment is undertaken a 
posteriori or not at all in the design steps.

The remainder of the paper is organized as follows. Section 2 gives the defini-
tions and notation used in the paper. Section 3 presents the methodology for solving 
the TRP. In particular, first the necessary data preprocessing and adopted modelling 
assumptions are given in Sects. 3.1 and 3.2. Then, models for capacity assessment, 
robustness evaluation and a multi-objective notion of the RTRP are described in 
Sects. 3.3, 3.4 and 3.5. The heuristic RouteCare and the corresponding permutation 
rules are elaborated in Sects. 3.6 and 3.7. Section 4 gives results of computational 
experiments, which is followed by conclusions in Sect. 5.

2  Definitions and notation

The microscopic infrastructure topology graph G = (X, S) represents the network at 
the level of homogeneous behavioral sections (i.e. sections with a constant value of 
speed limit, gradient and curvature). Each arc (in railway terms infrastructure sec-
tion) in S ⊆ X × X is described with its attributes such as length and constant charac-
teristics of speed limit, gradient, and radius. The microscopic nodes x ∈ X represent 
both points in which these characteristics change and infrastructure element changes 
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like boundaries of blocks, switches, and platform track sections. Next to the infra-
structure, we denote the set of trains by Z and typically denote a train by z ∈ Z.

A resource represents a subset of infrastructure elements that can be exclusively 
allocated to a single train at a given time. In practice, this is a block section or 
an interlocking section such as switch, crossing, single or double slip. The set of 
resources is denoted by R, with a typical element r ∈ R . We also define the subset of 
resources that belong to platform tracks (tracks where a train stops) as Rplatform.

An itinerary represents a sequence of resources r that can be used by a train to 
traverse through a station and it is denoted as j. The set of all itineraries in a station 
is denoted J. An itinerary may define an inbound movement, i.e. from the station 
entry to the platform track, outbound movement, i.e. from the platform track to exit 
of the station, and through movement from entry to exit of the station. Typically, 
when a train is stopping, its itinerary is split into inbound and outbound.

A train route defines an assignment of an itinerary to a train. A train route pzj is 
an itinerary j ∈ J assigned to train z ∈ Z . A train route pzj is described by a subset 
of used resources pzjr , where r is a resource at the route. We define the set of all 
possible routes for a train z as Pz . Further, the set of all train routes over all trains is 
denoted as P. Each train route blocks resources for a limited time that can be com-
puted using the blocking time theory (Hansen and Pachl 2014). In addition, a train 
line is a train service that is defined with train type, stopping pattern, frequency and 
train routes through stations.

A route plan consists of assigned routes for all trains including inbound and out-
bound routes and selected platform tracks within a station and is denoted by P̄ . In 
addition, the set of used resources in P̄ is established as R̄ =

⋃
pzj∈P̄

pzjr , where j ∈ J , 
r ∈ pzj , R̄ ⊆ R and P̄ ⊆ P.

The blocking time of a resource is the time during which the resource is solely 
dedicated to a single train and cannot be used by any other. A blocking time con-
sists of an approach, running and clearing time, corresponding to a train running 
from the approach signal to the block signal, traversing the block itself, and run-
ning out of the block until the train has completely left the block over its entire train 
length (Hansen and Pachl 2014). In addition, the blocking time includes setup and 
release times, as well as the driver sight and reaction time. The blocking time of a 
resource r on a route pzj is denoted as bzjr and is defined with its starting and ending 
time, bzjr = (szjr, fzjr) , for all z ∈ Z , j ∈ J , and r ∈ j . A blocking time stairway of a 
train route is computed for a given train-dynamic speed profile based on the sched-
uled running time on the (macroscopic) network level. For this purpose, we use the 
microscopic timetabling models developed in Bešinović et  al. (2017). A blocking 
time stairway for a train route pzj is defined as Bzj = (szj, fzj) , where szj and fzj are 
vectors of start and end times of all resources r over the train route pzj.

Note that in our approach it is not fundamental that the timetable is periodic. 
However, the timetables in the Netherlands are planned as such, so we assume 
throughout the paper that all route plans are also periodic with a scheduled cycle 
time T.

Capacity occupation of a station is defined as the share of time that the train 
routes from a given route plan occupy the infrastructure in a given time period. 
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Capacity occupation may be determined as a summation of critical blocking times 
in the station network. A critical blocking time is one that affects the value of the 
capacity occupation if its size changes. These critical blocking times together form a 
so-called critical cycle. Resources that are included in the critical cycle are referred 
to as critical resources, and the minimum cycle time of a route plan is the weight of 
the critical cycle, i.e., the sum of its arc weights.

Platform occupation is the total blocking time allocated to trains stopping at a 
certain platform. The occupation of a single resource r, such as a platform track, is 
denoted as Br and computed as the sum of the blocking times over this resource by 
all routes in a route plan.

Table  1 summarises the notation used throughout the paper, while a detailed 
introduction of each is given in the following sections.

3  Modeling the RTRP

3.1  Preprocessing

The preprocessing consists of the following procedures which are briefly explained.

1. Import all possible route alternatives.
2. Reduce the set of alternative routes.
3. Compute the blocking time stairways for each train route.
4. Derive the pairs of conflicting train routes.

In Procedure 1, the input for each train line is a set of train routes that are imple-
mented in the interlocking system which represent all possible routing alternatives. 
In theory, we may incorporate all existing routes that connect a station entry/exit 
with all station platform tracks, but in practice the set of preferable platforms is 
commonly reduced to a smaller number of platforms depending on the station layout 
and previous planning decisions.

For a pair of origin and destination nodes there may exist an ample number of 
defined alternative routes. Therefore, during experimental testing, route reduction 
rules (Procedure 2) may be implemented to reduce computation time, as in Zwan-
eveld et al. (1996) and Dewilde et al. (2014). We tested the reduction carried out in 
Zwaneveld et al. (1996).

In Procedure 3, we use a microscopic model previously developed in Bešinović 
et al. (2017) for computing blocking time stairways for all possible train routes using 
the detailed infrastructure defined by the graph G. First, running times are computed 
for scheduled arrival and departure times from the timetable in a way that time sup-
plements are equally distributed along the train run. Then, blocking time stairways 
are computed for all train routes in the station.

Procedure 4 defines a set of conflicting train routes, which is done by finding 
conflicts between two train routes. A conflict is determined as an overlap (in time 
and space) between blocking times of two routes. For example, let us consider train 
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routes pzj and pqm , where z and q are trains in Z and j and m are corresponding 
itineraries in J, respectively. Also, assume that train z precedes train q within the 
station. The corresponding blocking time stairways are Bzj and Bqm . Let rc denote 
a conflicting resource. Then, the conflict between two train routes are identified as:

czj,qm = {(pzj, pqm)|∃rc ∈ pzj ∪ pqm, szjrc < sqmrc , fzjrc > sqmrc},∀z, q ∈ Z, j,m ∈ J.

Table 1  Notation of the RTRP

Notation Description

X Set of infrastructure nodes
S Set of infrastructure arcs
G = (X, S) Infrastructure graph
Z Set of trains
R Set of resources
Rplatform Set of resources belonging to platform tracks
P Set of all alternative train routes
P̄ Set of selected train routes in a route plan

R̄ Set of used resources in P̄
z Trains
j Itineraries
r Resources
pzj Train route of a train z over itinerary j
rzjk Resource k of a pzj
szj , fzj Vectors of start and end times of a blocking time stairway for train z on itinerary j
Bzj Blocking time stairway for train z on itinerary j (tuple of two vectors)
szjr , fzjr Start and end times for train z on itinerary j at resource r
Br Total blocking time over all routes using resource r
C Set of conflicting train route pairs
K Set of critical resources from the critical cycle
T Scheduled cycle time
H Time horizon for the delay propagation model
V Set of events in station areas, e.g., entry, exit, arrival, departure events
A Set of activities, e.g., running, dwelling times, headways
EAN = (V ,A) Event-activity network
lij Lower bound for process (i, j)
Q Number of replications
q Replication
h Time
Di(h) Observed delay at h-th period of the i-th event
kij Modulo parameter
�(q) One disturbance replication (scenario)
�, �, � Weight factors of the objective function
N Number of trains in route plan P̄
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If czj,qm = � , then there is no conflict between routes pzj and pqm . The set of conflict-
ing train route pairs C is defined as:

3.2  Assumptions

We make three assumptions within the RTRP formulation. First, we assume that an ini-
tial route plan is given and feasible for all z ∈ Z . The input to the RTRP is a route plan 
P̄ which is the output from a previous planning step, the timetable design. By using a 
timetabling approach developed in Goverde et  al. (2016), our generated timetable is 
microscopically conflict-free, and so is our initial P̄ . Second, we assume that the weight 
of a train route equals the running time through the station. Third, we do not consider 
passenger connections in stations. To solve the given multi-objective RTRP, we intro-
duce a heuristic algorithm in the following sections. In particular, Section 3.3 describes 
a max-plus automata model to compute the capacity occupation, Sect. 3.4 gives a delay 
propagation model to evaluate robustness, Sect. 3.5 presents the objective function and 
Sect. 3.7 combines all previous in a heuristic algorithm.

3.3  Capacity assessment: max‑plus automata model

We propose a max-plus automata model for assessing the capacity occupation and refer 
to it as the capacity assessment (CA) submodel. The output of the CA submodel con-
sists of 1) the capacity occupation � , 2) the set of critical resources K, i.e., the resources 
that determine the critical cycle, 3) the total blocking times of single resources, Br for all 
resources r ∈ R̄ , 4) the platform occupation, Br for all platform resources r ∈ Rplatform , 
and 5) the number of resources � used by the route plan. All these output characteristics 
of a route plan are exploited afterwards to modify the set of chosen routes. In essence, 
a max-plus automata model considers blocking time stairways directly by using start 
and finish times of each block in the stairway. Also, the model does not allow overlap 
between two stairways. Thus, minimum headways between trains are modelled explic-
itly and the output is conflict-free. Graphically, the max-plus automata model resem-
bles a tetris game where a falling block represents a blocking time stairway.

Gaubert and Mairesse (1999) introduced max-plus automata which combine ele-
ments of the theory of heaps-of-pieces and max-plus algebra. An initial application of 
max-plus automata in railways is given in Van Egmond (1999). Max-plus algebra is an 
idempotent semiring over the union of real numbers and � = −∞ , ℝmax = ℝ ∪ {�} , 
and is equipped with the two binary operations maximum ( ⊕ ) and addition ( ⊗ ). Let a 
and b be real scalars or � , then the operations are defined as

The element � = −∞ is the neutral element for ⊕ and absorbing for ⊗ . The ele-
ment e = 0 is the neutral element for ⊗ . Properties of max-plus algebra are similar 

C =
⋃

z,q∈Z,j,m∈J

czj,qm.

a⊕ b = max(a, b) and a⊗ b = a + b.
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to conventional algebra. We refer to Goverde (2007) and Heidergott et al. (2005) for 
more details on max-plus algebra with applications to railways.

A max-plus automaton is a triple (P̄, R̄,M) . Here, P̄ is a finite set of tasks repre-
senting a route plan. A task p ∈ P̄ represents a train route pzj . In the remainder of the 
section, we omit indices to keep the notation clearer. R̄ is a finite set of resources (as 
defined in Sect. 3.1). Lastly, M is a linear transformation P̄ → ℝ

R̄×R̄
max

 , which is uniquely 
specified by a finite family of matrices M(p), p ∈ P̄ , as defined in the next paragraph.

Vectors s(p) and f(p) represent the start and end times of the blocking time stairway 
s of train route p, respectively; and are |R̄|-dimensional row vectors with an element 
equal to � if a resource is not used. Matrix M(p) represents a blocking time stairways 
of train route p in max-plus automata notation, and simultaneously equals the capacity 
occupation of p. Matrix M(p) is computed as:

Route plan P̄ is represented as P̄ = {p1,… , pn} , where n is the number of routes in 
P̄ . Therefore,

where p1 ⋯ pn is concatenation of train routes in P̄ and M(P̄) is computed sequen-
tially by adding one route at a time.

We introduce the upper contour of the route plan P̄ , x(P̄) , which is computed as

where x(e) is an |R̄|-dimensional row vector with all entries equal to �.
In order to determine the earliest possible start of the next cycle, we add the route of 

the first train in the cycle p1 to the route plan as P̄p1 . The difference f (p1) − s(p1) rep-
resents a vector of blocking times of p1 (from the next period) over all resources. The 
capacity occupation 𝜇(P̄) is computed as

where schedule P̄p1 is a schedule for one time period including the first train service 
p1 that belongs to the next period and the minimum is taken over all resources r ∈ R̄ , 
which correspond to the vector entries.

The set of critical resources K is constructed step-wise, after adding each train route 
pz to the heap of previously added routes M(p1 ⋯ pz−1) . A resource of pz that satisfies

is considered as a critical resource and is added to K. In other words, if the differ-
ence between upper contours after adding route pz is exactly the blocking time of 
that route f (pz) − s(pz) on some resources, then such a resource is a critical resource. 
Once all train routes from P̄ are included in M, all critical resources are known.

(1)Mij(p) =

⎧
⎪⎨⎪⎩

e, i = j, i ∉ R̄(p),

fj(p) − si(p), i, j ∈ R̄(p),

𝜀, otherwise.

M(P̄) = M(p1 ⋯ pn) = M(p1)⊗⋯⊗M(pn),

(2)x(P̄) = M(P̄)⊗ x(e),

(3)𝜇(P̄) = min
r∈R̄

[
x(P̄p1) − (f (p1) − s(p1))

]
r
,

f (pz) − s(pz) = x(p1 ⋯ pz) − x(p1 ⋯ pz−1)
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The total blocking time of each resource r is computed as:

Blocking times of platform tracks r ∈ Rplatform are contained in R̄ , so we do not 
explicitly recompute them. In addition, the number of unique resources used � for a 
given route plan is obtained as 𝜃 = |R̄| . Note that the model complexity, the size of 
the M matrices, depends on the route choices and number of resources used R̄ and 
not on the station layout complexity.

Algorithm 1 summarizes the capacity occupation model. Given is a timetable and 
the corresponding route plan P̄ that includes all selected train routes pz ∈ P̄ ⊂ P . First, 
all individual matrices M are computed for each train route p in P̄ . Next, matrix M(P̄p1) 
is created by adding one route at the time. While doing so, the critical resource r is 
determined in each iteration and assigned to the set of critical resources K. Then, the 
CA submodel computes the capacity occupation for a station by using (2) and (3). 
Finally, the output consists of the capacity occupation � , the critical resources K, total 
number of resources used � , and the resource occupation Br for all r ∈ R̄ . The output 
of Algorithm 1 depends on the order trains are scheduled in the timetable and thus its 
routes added to the heap. Note that in case that two trains arrive/depart simultaneously 
to/from the station (i.e., have rolling stock or passenger connection, but not infrastruc-
tural) they can be modelled as one piece to maintain their dependency (see Bešinović 
and Goverde 2018 for more details).

Algorithm 1 Pseudo code of the CA submodel

Input: timetable, route plan P̄
Output: µ(P̄ ), K, Br for all r ∈ Rplatform, θ
generate M(pz) for all pz ∈ P̄
for z = 2 to |Z|+ 1

compute M(p1...pz) := M(p1 · · · pz−1)⊗M(pz)
determine critical resource r and set K := K ∪ {r}

endfor
compute x(P̄ p1)
compute µ(P̄ )
compute Br for all r ∈ R̄
compute θ(P̄ )

For better understanding of the max-plus automata model, we give a numerical 
example of two train routes a and b running through a simple station (Fig. 1). Routes a 
and b make a route plan P̄ = ab . Train route a uses resources 1, 3 and 4, while b uses 4, 
2 and 1. The set of used resources is R̄ = {1, 2, 3, 4} . Their blocking times are defined 
with vectors of starting and ending times in Table 2.

Figure 2 visualises the capacity occupation of train routes a and b. Using (1), matri-
ces M for each train route are computed:

Br =
∑

z∈Z,j∈J

(f (pzjr) − s(pzjr)), ∀r ∈ R̄.

M(a) =

⎡⎢⎢⎢⎣

40 � 60 75

� e � �

15 � 35 50

0 � 20 55

⎤⎥⎥⎥⎦
, M(b) =

⎡⎢⎢⎢⎣

60 20 � −45

115 75 � 10

� � e �

140 100 � 35

⎤⎥⎥⎥⎦
.
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The matrix M for trains ab is computed as

The upper contour of the route plan ab is then computed as 
x(P̄a) = x(aba) = M(aba)⊗ x(e) = (255, 175, 315, 330)T . Here a is added to repre-
sent the first train from the following period. The capacity occupation is computed 
using (3) as

where the minimum is taken over the vector entries. Figure 3 shows the final result 
of the capacity assessment of route plan P̄ . Dashed lines give the upper contour 
which equals x(P̄a) = (255, 175, 315, 330)T . The double arrow depicts the capacity 
occupation 𝜇(P̄) which equals 215 s. There is one critical resource since all routes 
touch at resource 1, K = {1} . The total number of resources used is � = 4 and plat-
form occupation is 75 s and 35 s for each platform (resources 2 and 3), respectively.

M(ab) = M(a)⊗M(b) =

⎡⎢⎢⎢⎣

215 175 60 110

115 75 𝜖 10

190 150 35 85

175 135 20 70

⎤⎥⎥⎥⎦
.

𝜇(P̄) = 𝜇(ab) = min
r
[x(aba) − (f (a) − s(a))]r = min

r

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

255

175

315

330

⎤⎥⎥⎥⎦
−

⎡⎢⎢⎢⎣

40

𝜖

35

35

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
r

= 215s,

Table 2  Blocking times for train 
routes a and b 

Route r s(r) (s) f(r) (s)

a [0, �, 25, 40] [40, �, 60, 75]

b [80, 25, �, 0] [140, 100, �, 35]

Fig. 1  Example station layout 2
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Fig. 2  Resource occupation of 
train routes a and b T
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3.4  Robustness evaluation: delay propagation model

We implement a simulation-based model as robustness evaluation and refer to it as the 
RE submodel. The RE submodel simulates train operations in a station area under ini-
tial disturbances. Disturbances are defined as small deviations from the planned process 
times and are assumed to be known and given as input.

We consider a horizon of H hours to capture the propagation over a longer period 
of time. In transport networks with dense traffic, it may commonly happen that a train 
from 1 h causes a delay to a following train in a next period. We assume that all train 
orders are fixed as in the timetable, so no traffic control measures within the station 
area are taken into account. By doing so, we concentrate on the timetable itself.

We deploy a macroscopic model of a station area with several events for each train: 
entry to the station, arrival and departure to/from a platform and exit from the station. 
Also, all dependencies of train routes are maintained and mapped from the microscopic 
network used in the CA submodel to the macroscopic network. This level of abstraction 
allows to develop a fast RE submodel capable of performing a number of Monte Carlo 
simulations. We create an event-activity network EAN = (V ,A) , where vertices cor-
respond to events i ∈ V with corresponding event time vi , i.e., given scheduled arrival, 
departure or pass-through times. Arcs a ∈ A represent process times such as running, 
dwell, transfer of headway times. Each arc is described with a pair of events a = (i, j) . 
For modeling the RE submodel, we use precedence constraints

(4)vj − vi ≥ lij,

Fig. 3  Capacity occupation of 
ab. Dashed lines give the upper 
contour x(P̄a) . The double 
arrow depicts the capacity occu-
pation 𝜇(P̄)

T
im

e
Resources1 2 43

100

200

400

300
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where lij is the minimum process time over arc (i, j), computed using models from 
Bešinović et al. (2017). So, (4) gives a lower bound on the process times between 
two adjacent events.

The robustness evaluation model is based on a Sample Average Approximation 
Method, see Shapiro (2000). We assume that the primary disturbances are described 
by a non-negative random vector variable � that assigns non-negative disturbance 
values to each activity. Let � be a replication from � and D(v, �) is defined as the 
average weighted delay when route plan v is performed subject to disturbances in � . 
Thus, we want to find minimum D∗ as

To solve D∗ , we approximate it by (1) selecting a fixed number of realizations |Q|, 
and (2) making a random sample of Q vectors �(q) of primary disturbances. Thus, we 
compute the average cumulative delay D∗

Q
 as:

The robustness evaluation model is realized as an optimization model that mini-
mizes the average cumulative delay of the route plan P̄ , while Di(h) is a single delay 
of one event i in the h-th hour. The RE submodel is formulated as follows:

subject to

Here, variable v(q)
i
(h) defines the simulated event time of event i in hour h with 

respect to the input disturbances and kij defines the hour shift of events i and j. For 
example, if i is scheduled before j then kij = 0 , otherwise kij = 1 . Constraint (6) 
assures that precedence constraints are satisfied for the minimum process times and 
a given disturbance �(q)

ij
(h) in the h-th hour from event i to j. Constraint (7) guaran-

tees that a train does not depart earlier than scheduled. Note that the scheduled event 
time of periodic event i after h hours is vi + h ⋅ T  with T = 60  min. Finally, (8) 
defines all delay variables Di(h) as non-negative.

The RE submodel tests a given tentative route plan P̄ against a set of replications 
q ∈ Q , and returns the robustness measure D̄(P̄) = D∗

Q
 . From the RE formulation 

D∗ = minimize{ED(v,�)}.

D∗
Q
= minimize

{
1

|Q|
Q∑
q=1

D(v, �(q))

}
.

(5)D∗
Q
= minimize

{
1

|Q|
Q∑
q=1

D(v, �(q))

}

(6)v
(q)

j
(h + kij) − v

(q)

i
(h) ≥ lij + �

(q)

ij
(h), ∀(i, j) ∈ A,∀h ∈ H,

(7)v
(q)

i
(h) ≥ vi + hT , ∀i ∈ V ,∀h ∈ H,

(8)v
(q)

i
(h) − vi − hT ≤ Di(h), ∀i ∈ V ,∀h ∈ H
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can be seen that maximizing robustness equals minimizing the average cumulative 
delay, which we use as a robustness measure in Sect. 4. Also, we create an ordered 
list of the train routes that are affected the most, i.e., received the most delays, by 
summing the delays for each train line separately.

3.5  Objective functions for the RTRP

In order to address the posed questions, we define multiple objective functions.
As the first objective, a route plan with small capacity occupation allows more 

buffer times to be spread between trains. In other words, such a route plan tends to 
be more robust. We choose to minimize cycle time � to get the maximal achievable 
time allowance.

As the second objective, we introduce the robustness of a route plan and it is 
based on the delay propagation. In particular, the goal is to separate train routes in 
time as much as possible to minimize possible train delays. Train event times are 
considered as fixed as they are the result of a previous planning step—timetabling 
on a network level. Thus, in our model, time supplements are given and fixed, while 
buffer times between routes depend essentially on the route choice that has been 
made. Choosing certain routes, the knock-on effects of delays from one train to 
another can be significantly reduced or even avoided if two routes are independent. 
Thus, we want to find a route plan that minimizes the average train delay D̄.

The third objective considers balancing the use of single infrastructure resources. 
Since our focus is on a dominant passenger network, we can assume that all trains 
are of a similar tonnage, and thus, we may translate the expected lifetime of a 
resource to the number of train runs over it. In this way, a reduced number of sched-
uled routes over a single resource would extend its lifetime and reduce the main-
tenance frequency and the required (partial) station closures for these works. To 
achieve this, we maximize the number of � resources used in a station area. As a 
consequence, some used routes may be longer and/or slower; however, such route 
plan can significantly reduce the need for maintenance closures. Note that we also 
choose not to use efficiency in the objective function. Having another objective 
criterion makes it more difficult to balance and weigh all criteria correctly, and it 
makes the results also more difficult to interpret. This is acceptable for the TRP as 
running times do not differ much due to already reduced train speeds in a station 
area. Still, route efficiency is encouraged within permutation rules by giving priority 
to faster routes (see Sect. 3.7). Most importantly, a possible slight increase in run-
ning times will always be outweighed by the reduced need of maintenance closures 
of single resources.

We summarize the multi-objective problem for solving the RTRP as

where �, � and � are weight factors of three objectives to normalize the costs of sin-
gle objectives.

(9)cost(P̄) = min
P̄

{
𝛼𝜇 + 𝛽D̄ + 𝛾𝜃

}
,
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First, the stability measure is of a deterministic nature, while the robustness 
measure is stochastic. Second, the former considers only the critical cycle, while 
the latter focuses on the buffer times, i.e., the delay reduction potential of the buffer 
times, also between all train lines of the route plan. When optimizing only on sta-
bility, i.e., over the critical cycle, good robustness over the complete route plan is 
not necessarily achieved. Reversely, if only robustness is considered, stability may 
suffer by high capacity occupation of a certain platform (resource). Thus, we need 
both measures to find the best overall solutions. The importance of a multi-objective 
approach is quantified in Sect. 4.

3.6  RTRP heuristic

We propose the heuristic RouteCare for solving the RTRP. RouteCare is a greedy 
multi-start local search heuristic that is based on the capacity assessment model and 
the delay propagation model. RouteCare returns the best found robust route plan 
RRP. Algorithm 2 gives an outline of RouteCare.

The initialization phase consists of assigning the input route plan P̄ as the best 
current RRP and its cost is the cost of P̄ , c(RRP) ∶= c(P̄) . RouteCare consists of 
several steps that are repeated iteratively until it performs an Niter number of itera-
tions. The algorithm may also terminate before reaching Niter if stagnation of the 
algorithm is observed. We assume that the algorithm stagnates when the total cost 
of a solution does not change for a given number of iterations stagMax . In order to 
prevent premature stagnation and move away from a possible local minimum, we 
execute a re-start when a solution is unchanged for a randMax number of iterations. 
To this end, we define a counter stag that tracks the number of iterations without 
solution improvement. If stag = randMax , then the route plan P̄ is randomized.

At each iteration, we receive a route plan P̄ with the evaluated corresponding cost 
c(P̄) . First, a tentative route plan P̄ is assessed on infrastructure occupation 𝜇(P̄) 
using the max-plus automata model from Sect. 3.3. Then, the algorithm evaluates 
the robustness of the proposed route plan P̄ by using the delay propagation model 
from Sect.  3.4 and checks the number of used resources 𝜃(P̄) . Consecutively, the 
total cost c(P̄) is obtained. If a new P̄ has a lower cost than RRP then P̄ becomes the 
new RRP.

Finally, we permute P̄ by selecting N candidate routes to be exchanged based on 
the rules defined in Sect. 3.7. One can choose a value for N between 1 and |Z|. Note 
that if N = |Z| then the new P̄ represents a completely new set of routes. An alterna-
tive route plan is evaluated again in the new iteration.

3.7  Route permutations

In this section, we define rules to remove unfavorable routes from a current P̄ and 
substitute them with alternative ones for a given train line. Therefore, we define a 
set of rules for excluding a route from P̄ and likewise, a set of rules for selecting 
an alternative route to be inserted in the P̄ . The exclusion rules are based on the 
output of the capacity assessment and robustness evaluation. The inclusion rules 
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are derived from the corresponding exclusion ones together with the constraints 
that provide a realizable route and satisfy the conflict-freeness of chosen routes.

We first give a set of exclusion (E) rules.
Rule E1. Exclude a train route with one or more resources on the critical cycle.
A route that is part of a critical cycle is a good candidate for exclusion. Brak-

ing a chain of critical events may lead to a change in capacity occupation. If a 
new route is chosen wisely, this rate may be reduced.

Rule E2. Exclude a route that participates in the critical cycle with the most 
critical resource, i.e., the one with the highest capacity occupation.

This rule relaxes the utilization of the resource with the highest capacity occu-
pation. As such, it provides a diversification in used resources and thus leads to a 
more dispersed utilization of station resources.

Rule E3. Exclude a route that uses a platform track with the highest 
occupation.

Resources that correspond to platform tracks may not necessarily be in the 
critical cycle. However, having more train lines scheduled to a single platform 
sets more dependencies between them, and in general leads to less resistance to 
possible delays. Therefore, we would like to use station platform tracks in a more 
even manner and to achieve this by distributing trains over all available platform 
tracks.

Rule E4. Exclude a route that received most delays in the robustness evalua-
tion. In the RE submodel, an ordered list of routes with total delays is generated, 
so we take the most sensitive route and seek for its alternative. Since one of the 
objectives in the model is reducing delays, excluding the least robust route may 
improve the route plan.

Rule E5. If more than one route exists that satisfies a certain exclusion rule, then 
exclude the route among the possible alternatives with a probability proportional 
to its weight, i.e., a route with lower weight has a higher probability to be selected.

Input: timetable, initial route plan P̄ , Niter, stagMax, randMax, α, β, γ
Output: robust route plan RRP
Initialize RRP := P̄ ; iter := 1; stag := 0
while iter <= Niter OR stag = stagMax

Compute capacity occupation µ(P̄ ), critical resources K, number of resources θ(P̄ ) (Section 3.3)
Evaluate robustness to determine the robustness cost D̄(P̄ ) (Section 3.4)
Compute cost of P̄ : c(P̄ ) := αµ(P̄ ) + βD̄(P̄ ) + γθ(P̄ )
if c(P̄ ) < c(RRP )

Update RRP := P̄ and c(RRP ) := c(P̄ )
Update stag := 0

else
Update stag := stag + 1

end if
if stag = randMax

randomize P̄
end if
Permute N routes in P̄ (Section 3.7)
Update iter := iter + 1

end while

Algorithm 2 Pseudo code of RouteCare algorithm
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Note that E-rules may be mutually exclusive. Therefore, during the experimenta-
tion phase, in each iteration one E-rule is chosen randomly with all rules treated 
equally. The weight of a route is the running time over it.

Inclusion (I) rules are given as follows. First, we define rules that naturally follow 
exclusion rules E1 to E3, thus representing their counterparts. All I-rules correspond 
to a train considered for exclusion by E-rules. In other words, I-rules are applied on 
the set of routes of the train z, that has been predetermined by an E-rule.

Rule I1. Include a route from Pz that does not use a resource in the critical cycle.
Rule I2. Include a route from Pz that does not use any critical resource.
Rule I3. Include a route from Pz that does not use the highest utilized platform 

track.
Rule I4. Include a route from Pz that ensures a conflict-free run considering all 

other routes in the route plan, i.e., select a route that satisfies

over all other train routes q in the route plan P̄.
Since one of the objectives is to deliver a conflict-free route plan, this rule opts 

only for an alternative route that does not create a conflict with other routes in P̄.
Rule I5. If more than one route exists that satisfies a certain insertion rule, then 

include a route among the possible alternatives with a probability proportional to its 
weight, i.e., the route with the lowest weight has a higher probability to be chosen.

In terms of the nature of the defined rules and their relation to the objectives, we 
may say that rule pairs E1–I1, E2–I2 and E3–I3 relate to the capacity occupation 
constraints and the critical cycle time. Recall that due to the modelling nature of 
max-plus automata in the CA submodel, it is not needed to model headways explic-
itly. Furthermore, E4 encourages the robustness of a route plan. The pair of rules 
E3–I3 encourages more evenly distributed usage of resources, which is particularly 
valuable for the maintenance planning. Finally, rule I4 maintains the conflict-free-
ness of a given solution. Therefore, we may conclude that by using all defined rules, 
we obtain a RTRP model, and if we exclude E4 then we get the relaxation to the 
original TRP model.

4  Computational results

We tested RouteCare on a medium-sized station in the Netherlands, Den Bosch. The 
outline of the station is given in Fig. 4. The station includes eight station tracks of 
which five are equipped with a platform to provide boarding and alighting of pas-
sengers. The remaining station tracks are used for trains passing through the sta-
tion without stopping. As a common practice, station tracks are divided in groups 
per direction of traffic, that is, two platform tracks for trains running in one direc-
tion and the remaining three for the opposite one. In the basic scenario, 12 trains 
are serving the station every 30  min. Therefore, a cycle time of T = 30  min was 
considered. For the robustness evaluation, we simulated one day of service, H = 32 
(between 6 a.m.–22 p.m.). In the RE submodel, |Q| = 30 replications are performed. 
The delay distribution over all process times is assumed to be exponential. For the 

(pzj, pqm) ∉ C, q ∈ Z, z ≠ q,
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parameter of the exponential distribution, we adopted 5% of the process times (Yuan 
and Hansen, 2007). The parameters of RouteCare are defined after initial empirical 
experiments on the algorithm performance of finding better route plan solutions. In 
particular, N = 1 , randMax = 20 , Niter = 500 and stagMax = 40 . The parameters of 
the objective function (9) are defined based on the relative importance of each objec-
tive. The importance of the three objectives is defined by the lexicographic order: 
stability, robustness, and even infrastructure use. The first two objectives, capac-
ity occupation and robustness are of the same nature, both expressed in seconds, 
while capacity occupation is typically of a bigger order of magnitude for the experi-
ments performed. Therefore, � and � are both adopted to be 1. The third objective, 
the number of resources, is expressed in non-dimensional units, and typically takes 
lower values than both the capacity occupation and robustness, thus we adopted also 
� = 1 . We generated 40 alternative routes for all trains, thus there was no need for 
applying Procedure 2 in the preprocessing stage. We used an Intel E7 with 2.6 GHz 
processor for testing purposes.

The performance of RouteCare in terms of solution quality and algorithm stabil-
ity was tested first with the results given in Sect. 4.1. In addition, we compared the 
two submodels CA and RE to evaluate their effects individually to the obtained solu-
tions in Sect. 4.2. Initially, RouteCare was run with only the CA submodel active, 
while RE was evaluated a posteriori to determine the robustness of the solution. In 
the second run, RouteCare used only the RE submodel, while CA was performed 
a posteriori. By doing this, we could quantify the effect of considering only one 
objective function on the quality of the resulting route plans. After determining the 
benefits of the model, we undertook extensive computational analyses for different 
scenarios whose results are reported in Sect. 4.3.

4.1  Performance of the RouteCare heuristic

In this section, we give results on the stability of the RouteCare algorithm developed 
for solving the RTRP. To produce the initial macroscopic timetable, we used the 
timetabling model developed by Bešinović et al. (2016). Then we applied RouteCare 
to compute the route plan for the station. We reran the algorithm 30 times to evaluate 

Fig. 4  Station Ht layout (source: sporenplan.nl)
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its algorithmic stability. Table 3 shows the statistics of the obtained results. Particu-
larly, it gives the average and the standard deviation of the total cost and number of 
iterations needed to obtain a solution. We also compared the solution of RouteCare 
with the original route plan as considered in the timetabling denoted as OriginalRP. 
To that purpose, OriginalRP was evaluated using the objectives in RouteCare—
capacity occupation, average cumulative delays and number of resources. It can be 
observed from Table 3 that RouteCare performed good throughout successive simu-
lations, as it always found an improved solution.

Although it did not always end up to a single value, the obtained total cost has a 
limited standard deviation of only 0.73%. The average number of necessary itera-
tions before reaching a solution was 125, while in some simulation runs the solution 
has been found after 100 iterations. In all cases, the model needed considerably less 
than Niter iterations. Therefore, we can say that the average performance of Route-
Care was satisfactory for the given test case.

Figure 5 shows the improvement of the total cost (solid line) for one run of Route-
Care with both costs for the CA (dotted line) and RE (dashed line) submodels. It also 
gives intermediate costs of capacity occupation and robustness. It can be observed 
that in the first ten iterations the capacity occupation was relatively high, but notice-
able improvements were obtained in the beginning, due to decreasing the total delay 
of a route plan. Around iteration iter = 35 , we see another significant reduction in 
capacity occupation. At iter = 80 , we observe a small robustness improvement, 
which was the last change in the solution cost. The model continued iterations until 
it reached one of the stopping criteria stagMax , so the final solution was obtained 

Table 3  Results of the RTRP 
heuristic

Mean Standard deviation

Total cost 1089 7.95 (0.73%)
Number of iterations 125 39.46 (31.57%)
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after 142 iterations. The total cost was c(RRP) = 1089 , where �(RRP) = 690 s, 
D̄(RRP) = 333  s and � = 66 . We observed improvements in the newly generated 
route plan RRP when comparing with OriginalRP. The results for OriginalRP were 
�(OriginalRP) = 696 , D̄(OriginalRP) = 354 and �(OriginalRP) = 48 . So, the 
capacity occupation was reduced with 6 s, while average delay with 21 s. In addi-
tion, the new solution has a more diverse use of infrastructure resources. Thus, we 
may say that RouteCare may improve existing route plans.

4.2  Performance analysis: CA vs. RE submodels

In this section, we give a comparison of the produced route plans when only one 
of the CA or RE submodels is applied as well as the complete RouteCare with 
both submodels being active. Using only one submodel entails a subset of E- and 
I-rules that are applicable. Table 4 gives an outline of the used rules for each case 
considered.

Table  5 shows the results for all three cases. Namely, the capacity occupation, 
average cumulative delay as robustness cost, number of resources used, and the total 
cost. Bold numbers in the table indicate the value that was the aim of the optimi-
zation. For example, when only the CA submodel is used, then we obtain the RP 
that is optimized (minimized) for capacity utilization, while robustness is evaluated 
a posteriori. The second case is tackled in a similar way, while the last considered a 
multi-objective optimization with jointly minimizing capacity utilization, maximiz-
ing robustness (minimizing average cumulative delay) and maximizing the number 
of resources. 

When using only the CA submodel, we obtained the lowest capacity usage of 
609 s. However, a posteriori evaluation of robustness showed much greater cumu-
lative delay compared to the other two cases, more than 160%. This means that 

Table 4  Rules applied in 
submodels of RouteCare

E1–I1 E2–I2 E3–I3 E4 I4 E5–I5

CA submodel + + + − + +
RE submodel − − − + + +
CA and RE + + + + + +

Table 5  Results of individual submodels for |Z| = 12 trains

Bold values represent the best results

RouteCare Capacity occupation 
�(RRP)

Cumulative delay 
D̄(RRP)

No. of resources 
�

Total cost c(RRP)

Only CA 609 531 70 1210
Only RE 803 318 66 1187
CA and RE 690 333 66 1089
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focusing solely on minimizing infrastructure occupation does not necessarily mean a 
better route plan robustness.

In the second case, when the model only maximizes robustness, D̄(RRP) = 318 
s is achieved. However, the capacity occupation is remarkably higher than the one 
in the first case with in total 194 which is an increase of 31%. Applying only the 
RE submodel resulted in a total cost of 1187 which was slightly smaller than when 
applying only the CA submodel. However, since RE does not consider the use of 
resources, it ended up with four resources less than the CA case.

Comparing the complete RouteCare with the RE submodel, we observe that 
with just a minor increase of the average cumulative delay, from 318 to 333 s, we 
obtained a significantly reduced capacity occupation of �(RRP) = 690 instead of 
803. In addition, both models use an equal number of resources � = 66 . This means 
that by including both objectives in RouteCare, a route plan of overall better quality 
is obtained. Looking at the total costs of the three, we concluded that the multi-
objective setup performed the best with a solution that is better than the CA sub-
model by 117 (10.4%) and the RE submodel by 98 (9.5%). RouteCare showed that 
even for the same number of resources used, a more robust route plan can be found 
that uses more efficiently the station capacity.

In general, if a route planning is done by respecting only the robustness objec-
tive, it may lead to a significantly higher capacity occupation. Since the latter would 
be evaluated only afterwards, it may result in discarding such a route plan due to 
exceeding the stability norms. On the other hand, it is not sufficient to design a route 
plan that focuses only on minimizing the infrastructure occupation. Such a route 
plan may have an ample amount of time allowances but allocated inefficiently. Thus, 
distributing them in a smart way is also highly important. Therefore, it may be con-
cluded that it is important to include multiple objectives in the optimization model 
in order to obtain principally better solutions for the route plan.

4.3  Testing RouteCare on different timetable instances

In this section, we present the results of random scenarios and timetables gener-
ated. We tested 24 scenarios with different numbers of train lines ranging between 
9 and 14 operating within the cycle time T = 30  min. In these tests, we adopted 
Niter = 200 and stagMax = 40 . The characteristics of scenarios and the obtained 
results are given in Table 6.

Changing the number of trains does not necessarily mean a change in capacity 
occupation. Thus, the critical cycle may remain the same with an increasing (or 
decreasing) number of scheduled routes. In other words, an added route may not 
use resources on the critical cycle nor generate a new one. For example, this was 
observed between scenarios sc1 and sc2, the capacity occupation remained the same 
while the number of trains is different, 14 and 13, respectively. However, the robust-
ness cost for the latter case was reduced which is a result of less trains in the station.

The robustness cost shows better correspondence when changing the number 
of train routes in the station. In other words, more trains implies more dependen-
cies between train routes and thus, less buffer times in between. In addition, the 
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trend of increased total cost with an increasing number of train routes is more 
evident. As expected, the scenarios with a  smaller number of train routes used 
usually less resources, while the ones with more trains used more resources. For 
most of the scenarios, 21 out of 24, RouteCare finished in less than 100 itera-
tions, as shown in the last column.

We notice that the same number of trains does not necessarily generate the 
same costs, neither capacity occupation nor average delay. For example, the 
capacity occupation for scenarios with 13 train routes varies between 609 and 
890  s, while the average delay varies between 110 and 185  s. Thus, we may 
conclude that the capacity occupation does not only depend on the station layout 
and number of trains but also on the way how the infrastructure has been uti-
lized in terms of scheduled dwell times, corridors served by train lines, or types 
of trains. In addition, it depends on scheduled train operations such as trains 

Table 6  Additional computational results

Scenario No. of trains |Z| Capacity 
occupation 
�(RRP)

Total 
delay 
D̄(RRP)

No. of 
resources 
�

Total cost c(RRP) No. of iterations

sc1 14 826 125 65 1016 65
sc2 13 826 117 64 1007 62
sc3 13 599 115 74 788 64
sc4 12 599 107 74 780 89
sc5 11 654 94 74 822 44
sc6 10 599 94 72 765 72
sc7 9 608 80 64 752 59
sc8 13 746 105 66 917 71
sc9 12 631 110 62 803 105
sc10 13 821 115 72 1008 93
sc11 13 904 108 68 1080 47
sc12 12 651 107 66 824 77
sc13 11 651 94 64 809 62
sc14 10 484 92 61 637 85
sc15 9 160 80 62 302 50
sc16 12 746 103 71 920 45
sc17 10 631 97 62 790 78
sc18 12 821 94 67 982 109
sc19 12 631 110 69 810 70
sc20 13 690 118 71 879 120
sc21 13 890 115 70 1075 58
sc22 13 609 185 69 863 47
sc23 13 826 110 70 1006 61
sc24 13 821 176 74 1071 65
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passing through, originating or terminating in the station. So, all these criteria 
influence the capacity occupation heavily.

5  Conclusions

This paper presented a new microscopic multi-objective model for solving the 
robust train routing problem. The developed multi-start local search heuris-
tic RouteCare improves feasible, stable and robust route plans with even use 
of infrastructure resources. The model incorporates two submodels for capac-
ity assessment based on max-plus automata theory and robustness evaluation 
based on the delay propagation algorithm. The feasibility is guaranteed as the 
input to the model was computed using a microscopic model for computing run-
ning times and blocking time stairways. Stability and robustness are increased 
by minimizing the cycle time (capacity occupation) and minimizing the expected 
total delays. Finally, the model maximizes the number of different resources used 
which reduces the need for maintenance closure of resources and thus, for alter-
native traffic adjustments.

RouteCare was tested on a medium-size station in the Netherlands. The results 
showed high efficiency of RouteCare, i.e., the algorithm reported good perfor-
mance over multiple successive runs while the obtained solution was always 
within 0.73% of the best found solution. The two submodels were tested indi-
vidually to evaluate their distinctive performances and also compared with the 
complete RouteCare. Results revealed that it is highly important to consider mul-
tiple objectives in order to obtain principally better overall solutions for the route 
plan in a station area. In particular, for the test case, RouteCare achieved a 9.5% 
improvement compared to the model that included only the robustness objective. 
These results stressed the importance of using multi-objective approaches to gen-
erate better route plans. The extensive computational analysis for different input 
timetables showed that the capacity occupation and the corresponding total cost 
are also heavily influenced by the way the station capacity is utilized like train 
mix and preferred platforms or scheduled dwell times and not only by the number 
of scheduled trains and the station layout.

As part of future research, we may assess the efficiency of exclusion and inclu-
sion rules individually. The results may give an insight for further simultaneous 
usage of rules to further improve the performance of RouteCare. As new indica-
tors of infrastructure utilization, we may consider how resources are used, e.g. 
number of switch operations, axle load and resource age. We also plan to develop 
an exact model for solving the RTRP, which would allow to quantify the improve-
ments achieved by RouteCare. Moreover, we will test the importance of the 
implemented submodels on the resulting route plan by varying the correspond-
ing weight factors. In addition, multiple Pareto-optimal solutions can be provided 
to planners to be selected which would increase the quality of the implemented 
route plans and reduce time needed to generate them. Overall, RouteCare pro-
vided very promising results and could be considered as a valuable support tool 
to railway planners in designing better railway services.
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