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Laser speckle imaging (LSI) can be used to study dynamic processes in turbid media, such as blood flow.
However, it is presently still challenging to obtain meaningful quantitative information from speckle, mainly
because speckle is the interferometric summation of multiply scattered light. Consequently, speckle represents a
convolution of the local dynamics of the medium. In this paper, we present a computational model for simulating
the LSI process, which we aim to use for improving our understanding of the underlying physics. Thereby
reliable methods for extracting meaningful information from speckle can be developed. To validate our code,
we apply it to a case study resembling blood flow: a cylindrical fluid flow geometry seeded with small spherical
particles and modulated with a heartbeat signal. From the simulated speckle pattern, we successfully retrieve
the main frequency modes of the original heartbeat signal. By comparing Poiseuille flow to plug flow, we show
that speckle boiling causes a small amount of uniform spectral noise. Our results indicate that our computational
model is capable of simulating LSI and will therefore be useful in future studies for further developing LSI as a

quantitative imaging tool.

DOI: 10.1103/PhysRevE.100.033317

I. INTRODUCTION

Using diffuse optics for studying dynamics in disordered
media is slowly becoming the main enabler of noninvasive
optical diagnostic devices [1], finding many applications in
the study of biological tissue. These developments are also
driven by the increasing demand for readily accessible health
care to the rising world population. The main phenomena
occurring when light propagates in tissue are absorption and
scattering. Absorption of light is used for identifying the
different molecular species present in a sample and for de-
termining their concentration. Light scattering, on the other
hand, provides information about scatterer size and motion in
the sample. In most cases, light is used to illuminate tissue,
after which the scattered light is collected in either reflection
or transmission.

Iluminating diffuse media with coherent light leads to
a random interference pattern called speckle. The speckle
is formed by the constructive and destructive interference
resulting from path length variations of the light coming to
the detector due to surface irregularities or different depths
traversed in the media. To interpret such speckle images,
physical models of light-tissue interaction are needed. Many
different models have been used to study light propagation
in tissue with the aim of gaining better insight into the un-
derlying physics and quantifying the detected signals. These
techniques range from approximating the light transport as a
diffusive process [2—6], to simulating a photon random walk
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using Monte Carlo techniques [7-9], to modeling scattering
from blood using the Mie-Percus-Yevick equations [10].

Any motion of, or inside, the sample causes the speckle
pattern to change. The entire pattern could move (“translating
speckle”), maintaining speckle correlation, or the speckles
could randomly appear or disappear (“speckle boiling””) due to
relative motion of the scatterers [11]. Since the speckle pattern
contains information about the dynamics of the scatterers,
speckle imaging is thus used in many applications, ranging
from nondestructive testing, stellar interferometry [12], to
study of coatings [13,14], to biomedical applications [15].
Therefore, using speckle decorrelation is very attractive for
the study of flow behind turbid media, as is the case for many
biological applications.

For the specific case of blood flow embedded in tissue,
the reflection, absorption, and transmission properties of the
different layers that the light travels through each have an
impact on the detected light. The standardization of param-
eters required for medical applications is very challenging,
considering that properties of skin and tissue could vary
from patient to patient, e.g., depending upon health, age, and
ethnicity of the subject. Although there is large variation in
optical properties of the static scatterers contributing to the
detected signal, the temporal dynamics of the flow or the
moving scatterers is also imprinted in the temporal evolution
of the speckle patterns. Thus underlying flow can be studied
by observing the temporal statistics of speckle fluctuations
[16,17]. Using speckle patterns to study any phenomenon
has the advantage that no direct imaging is necessary, which
largely simplifies the required equipment. In vivo blood flow
monitoring has been studied quite extensively using speckle-
based techniques. These techniques, such as laser speckle
contrast imaging (LSCI) and complementary techniques like
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red blood cells
in an artery

FIG. 1. Sketch of laser speckle imaging applied to an artery: a
plane wave of coherent light enters the medium, multiply scatters on
the particles, and is finally gathered at a camera set at a 90° angle
w.r.t. the incoming light. The result is a noiselike interferometric
pattern, known as a speckle pattern, from which we wish to obtain
quantitative information.

multiexposure LSCI, along with relevant applications, have
been described in detail in a recent review [18].

However, there presently is no agreement in the literature
as to how to quantitatively deduce the material’s dynamics
from the speckle dynamics [19]. One metric for quantifying
the speckle dynamics is the speckle contrast, which is the ratio
of the intensity’s standard deviation and its mean. Since the
speckles are dynamic, they will blur when observed with a
regular camera due to its finite exposure time, 7. The speckle
contrast of the blurred speckles depends on T and on the
speckle decorrelation time, 7.. It is widely accepted that 7.
is inversely proportional to the local velocity of the scatterers,
but there is disagreement on the proportionality constant [19].
It was even shown theoretically that the velocity distribution
affects how C depends on 7. [20]. Therefore, in order to
further develop laser speckle imaging (LSI) as a quantitative
measurement technique, a thorough understanding of the scat-
tering process must be acquired.

This can be achieved by using computer simulations, which
have the major advantage that noise factors—which are al-
ways present in experiments—can be turned off one-by-one
to quantify their effect. Therefore, we have developed an
interferometric computational model which can simulate the
LSI process: an incoming coherent plane wave is multiply
scattered by an ensemble of randomly distributed particles—
which represent red blood cells in the present study—and is
finally collected at a camera (see Fig. 1). The optics code is
based on coherent Mie scattering with multiple scattering im-
plemented iteratively but simplified in order to make studying
the temporal dynamics computationally feasible. The particles
are evolved using an existing computational fluid dynamics
(CFD) code, which we have coupled to our optics code. The
result is a modular code capable of simulating every aspect
of the LSI process. Finally, note that the standard approach

for simulating light scattering in turbid media is to use Monte
Carlo techniques [7-9], in which light scattering is simulated
as random walks of photons. Our approach explicitly tracks
the position of each particle, allowing for accurately comput-
ing interference effects, and should thus lead to more realistic
results.

As a first step towards quantitative LSI, and to validate our
simulations, we mimic an experimental setup [21] which used
a cylindrical phantom with a size characteristic to that of the
external carotid artery (radius ~1 mm). Spherical particles
the size of red blood cells (radius ~4 pum) were used as
scatterers. The flow was given a mean velocity typical to
blood in the external carotid artery (~1 m/s), modulated with
a realistic heartbeat. We study the effect of a realistic flow
profile by comparing it with plug flow. Using our code, we
have simulated the resulting dynamic speckle images of the
moving particles. Finally, we have retrieved the frequency
spectrum of the modulated heartbeat from the speckles, which
also compares well with that from the experimental setup.
These results show the capability of our code to simulate the
LSI process. In future work, we aim to include the effect
of more parameters to develop a quantitative understanding
of their influence on speckle dynamics (e.g., the effect of a
surrounding static scattering medium: skin and tissue).

II. APPROACH

In this section, we first outline the principle of LSI. Then
we elaborate on the underlying electromagnetic theory (i.e.,
Mie theory) on which our code is based. We proceed by
discussing the geometry and the fluid dynamics of our simple
case study. Finally, we discuss some relevant notes for obtain-
ing accurate simulation results.

A. Speckle imaging

When phase-coherent light scatters on a surface that is
rough at optically relevant scales, a speckle pattern is formed.
This is the result of a random interferometric summation
caused by the different path lengths the light has traveled as it
originates from different spots of the scattering surface. One
metric that can be used to extract information from speckle is
the speckle contrast [22,23]:

c=2 (1)

{n’

where (I) is the mean intensity and o7 is its standard deviation.
We speak of fully developed speckle when the phases become
uniformly distributed over [0, 2] radians after diffusing or
scattering (i.e., no specular component remains) [24]. Then
the intensity becomes Gaussian-distributed [25]: o; = (I},
and thus C = 1. However, when the light depolarizes due to
multiple scattering, a value below one may be expected [26].

When both the illumination and the scatterers remain the
same, the speckles will also remain unchanged. When the
scatterers move without relative motion, the speckles will
simply translate at the same rate. However, if there is relative
motion between the scatterers, the path-length differences
will change, which causes speckles to randomly appear and
disappear. This is called “speckle boiling” [11,27], which is a
source of noise in laser speckle imaging.
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FIG. 2. We sample instantaneous data rapidly (interval At;,) to
mimic a real camera and at distant intervals (At apart) to gather
temporal data.

Provided that the effect of speckle boiling is sufficiently
small, we can use translating speckle to study the collective
dynamics of the scatterers [22,28], although nontranslational
speckle could also be used [11]. When translating speckle
is imaged with a camera, a blurred speckle image will be
measured due to the finite camera exposure or integration
time. Since blurring decreases o;, but does not affect (/), the
result is a lower C. Therefore, through the camera integration
time, the speckle contrast depends on the amount of blurring
and thus also on velocity [19]. Our research group has applied
this principle previously to experimentally study pulsatile flow
in a patient-specific carotid artery [21,29].

In the present work, we introduce a code capable of sim-
ulating the whole laser speckle imaging process. The code
propagates a coherent plane wave to all scatterers, computes
how the light diffracts of each of them, and then propagates all
scattered waves to a simulated camera. The resulting image
is an interferometric scattering pattern: a speckle pattern.
In addition to scattering directly to the camera (i.e., single
scattering), multiple scattering is implemented iteratively (see
Sec. III B). A separate fluid dynamics code is used for com-
puting the motion of the scatterers, after which the optics
code is used to calculate the instantaneous scattering. We
mimic the aforementioned blurring effect of a real camera by
time-averaging many independent instantaneous simulations
in rapid succession with time step Afy, as can be seen in
Fig. 2. This is accurate provided that n i, is sufficiently large.
We then repeat this process At later to obtain temporal data:
C(t).

B. Mie theory

For simulating the electromagnetic scattering of light by
the scatterers, our code makes use of Mie theory, which
describes the scattering of a plane wave by a single sphere
[30-33]. The electric field must satisfy the vector wave equa-
tion, V2E + K2E = 6, where k is the wave number. [The same
applies to the magnetic field (H), but we will leave H out
of the discussion, because it can always be derived from E

by taking the curl: iopH = V x E, where o is the wave fre-
quency and u is the magnetic permeability.] A complete set of
orthogonal basis functions that solve the vector wave equation
are the vector spherical harmonics: ]men and M pmn- Given an
incident field traveling in the z direction and polarized in the
x direction, E,- = Eye'*%, the scattered field can be expanded
in terms of the vector spherical harmonics:

E\(7) =Y E[ia,NS)(F) — b,M.3) (F)]. ©)
n=1

where E, = Eyi"(2n+ 1)/n(n + 1) is just a prefactor, 7 de-
notes that the functions depend on position, the superscript
“(3)” denotes the usage of the spherical Bessel function of the
third kind, and a, and b, are the Mie scattering coefficients.
1 can be neglected, as its influence is minor for most media:
Msphere ~ Msurroundings ~ M0-

When a far-field approximation is made, the infinite sum
in Eq. (2) reduces to a single term, and the scattered field
becomes an outgoing spherical wave:

Ey]_ €[5, 0][Ey 3)
El —ikr |0 Si||EiL |

where E) and E | are the component parallel and orthogonal
to the scattering plane, respectively, [S] is the amplitude
scattering matrix which for spherical particles depends only
on the scattering angle 65 and properties of the spherical
particle, and r is the radial coordinate (i.e., the distance from
the scatterer).

C. Fluid dynamics

In the present work, we use a simple time-dependent flow
in a cylindrical geometry:

u(r,t) = v(r)F(t), “4)

where u is the axial velocity, v(r) is the radial velocity profile,
and F () is a unitless temporal modulation with a mean of 1.

To study an actual heartbeat, F(¢) will be read from a
lookup table which contains the shape of a realistic heartbeat,
with the same peak-to-peak amplitude (0.75) as in Baker
et al. [34]. For the simpler sinusoidal case, we take F(t) =
Asin (2m ft) 4+ 1, with 2A = 0.75. The particle positions are
integrated in time using the Euler forward scheme with di-
mensionless time step At* = fAt =5 x 10~4, which yields
a maximum relative discretization error of 0.1%.

The exact solution for the radial velocity profile in a
cylinder is Hagen-Poiseuille flow,

V() = 2(v)[1 — (1%)2} )

where (v) is the mean velocity, and R is the radius of
the cylinder. For this realistic flow profile, there will be rel-
ative motion between the scatterers and there will therefore be
speckle boiling. To investigate its influence, we will compare
the results with plug flow: v(r) = (v).

D. Data analysis

To extract useful information from our simulated speckle
images, three factors in particular are important: speckle
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boiling causes temporal noise, the camera should be suf-
ficiently big with a sufficient resolution, and for a large
camera the speckle contrast should be calculated using
windowing.

First, speckle boiling is a physical noise factor caused by
the relative motion of the scatterers [11], such as is the case
in a fluid. In this work, we will study flow with and without
speckle boiling, as was discussed in the previous section,
which enables us to determine its influence.

Second, to mitigate statistical noise, a sufficient number of
speckles must be captured, and a sufficient number of pixels
should be used to represent each speckle (i.e., resolution). The
first ensures that the speckle space is well represented and
thus that the data samples are uncorrelated; the latter ensures
that speckles are not smoothed over the finite area of a pixel,
because that artificially reduces the measured C which needs
to be corrected [35,36]. For a real camera of 10242 pixels,
it was found that about 4 pixels per speckle suffices for
obtaining a good result [36,37]. For our simulated camera,
however, we are realistically limited to about 256> pixels
by computational constraints.[38] Using 256> pixels with
42 pixels per speckle, we obtained a noise signal for C, which
indicates bad statistics.

To overcome this, we instead have our simulated camera
underresolve the speckles, typically using merely (1/5)* pix-
els for each speckle in this paper. One cannot do this with
a real camera, as this would artificially reduce C, because
of spatial averaging over the finite pixel size. However, our
simulated pixels are infinitesimal points in space. Thus the
underresolving in our simulations is equivalent to using in-
finitesimal pixels whose separation is much greater than the
typical speckle size, as is recommended by Skipetrov et al.
[35]. In that manner, the simulated camera effectively samples
an area 400x larger than it could possibly have for resolved
speckle. Therefore, by underresolving the speckles, we retain
all intensity fluctuations, while increasing our statistical sam-
ple size.

Third, since the amplitude scattering matrix of a sphere in
Eq. (3) depends on the scattering angle, (I) will generally not
be constant across an image, which artificially increases o;.
Therefore, applying Eq. (1) directly will give a larger value
for C than it should have been. This is especially true for
a large camera, such as our simulated camera. If the system
is sufficiently dense (i.e., high particle concentration), singly
scattered light will be negligible compared to multiply scat-
tered light. For multiply scattered light, the light is incident
from random directions, resulting in a randomly distributed 6,
and thereby averaging out the effect of [S](6;).

However, for relatively dilute experiments, such as studied
in our simulations due to computational constraints, single
scattering contributes significantly. To overcome the issue at
hand, we use local speckle contrast analysis [39], in which C
is calculated through windowing, and then averaged to obtain
the (average) speckle contrast of the whole image:

M,—1My—1
1 )

C= AT > Cy (6)

2 x=0 y=0

We will discuss the required window size in Sec. IV A.

III. CODE DESCRIPTION

Our code comprises three parts: first computational fluid
dynamics (CFD) is used to evolve the particles in time, then
the particle positions are extracted from the fluid simulation
and processed to be used as the input for the optics code, and
last a Mie-based optics code is used to compute the scattering
of an incoming plane wave by the collection of particles.

A. Computational fluid dynamics (CFD)

To obtain the flow field and particle movements, one can
readily apply CFD, in which the discretized Navier-Stokes
equations describing fluid momentum and mass conservation
are solved numerically. Particles are typically simulated using
Lagrangian particle tracking. However, since the flow consid-
ered in this paper is rather simple, we use the exact solution
of the Navier-Stokes equations for the velocity of the particles
instead (see Sec. II C). When a particle leaves the cylinder, it
is teleported back to the entrance at the same radial and polar
position (i.e., cyclic boundary conditions).

Regardless, our code is designed to be compatible with
any existing CFD code (e.g., OpenFOAM). This is possible
because the speed of light is very large. Therefore, the par-
ticles cannot move a fraction of X in the time &t it takes the
light to scatter off of all particles (i.e., vdt < A results in
v <2 x 102 m/s for the case of our interest, whereas v ~ 1
m/s). Consequently, CFD and the optics code are one-way
coupled: CFD does not depend on the optics code, but its
output serves as the input of the optics code.

B. Optics

Our optics code uses the Mie far-field solution Eq. (3)
to compute the scattered light of each particle separately,
while explicitly keeping track of the phase. The required
Mie scattering coefficients in Eq. (2) are computed using
the BHMIE.F90 script from the book of Bohren and Huffman
[31], using the cutoff index nc as was found empirically by
Wiscombe [40]. Computing the Mie solution for all of space
is very computationally demanding, but luckily it needs only
to be evaluated at the points of interest, being the individual
points of our virtual camera (i.e., pixels of zero area), and at
the positions of every particle for multiple scattering.

Multiple scattering is implemented iteratively. In the first
iteration, the incident laser light is scattered via each particle
[ to each of the N — 1 other particles i # [:

E) = scatter;;(Eincident); (D

where the “scatter” operation refers to Eq. (3). In successive
iterations p, every particle i then has N — 1 incoming waves
from source particles [ # i, which it should scatter to all N —
1 other particles j # i:

Ef=) E ®
I
Eﬁl = scatter;_, ; (Ei’l)_l). 9)

This process includes backscattering (i.e., j =1 # i). The
iterative process is repeated until the maximum of the magni-
tudes of all scattered electric fields E jpl is a factor 103 smaller
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than the incident light, which for our simulations results in
about six or seven iterations. Subsequently, all (multiply)
scattered fields Ejpl are scattered to each of the M camera
pixels c:

E.;= Z scatter;_, . (Z qu?> . (10)
)

I

Finally, the intensity at each pixel ¢ can be computed:

Z Eci
i

The complexity of the resulting algorithm is N>(N + M), to
be repeated for each time step. The code is perfectly parallel
(i.e., using x cores is x times faster), because a great number
of independent instantaneous simulations are performed.

Through our iterative process, two implicit (and arguably
too strong) assumptions and simplifications are made. First
and most strongly, we use the Mie far-field solution Eq. (3)
at the length scale of the interparticle distance. It is clear that
this assumption is easily violated: for particle radius a = 4
pm and A = 600 nm, the interparticle distance should be
dr > 0.1 mm to satisfy the assumption. However, blood has
a hematocrit of ~50%, meaning the typical distance between
adjacent red blood cells is of the order of the particle radius.
Although this assumption is not satisfied for true blood, it is
still satisfied in our simulations for 95% of the interparticle
distances ({6r) = 3.45 mm), because we are limited to rel-
atively few particles due to computational constraints. There-
fore, this assumption does not affect our results at present. The
second assumption is that Mie theory requires an incoming
plane wave; therefore, we approximate the outgoing spherical
wave Eq. (3) of the first particle as a plane wave at the position
of the second particle:

2

I = Y

ikr e z
U(r) = S0~ W) = o (1——). 12
(=47~ V@ =" Sr (12)

This is a plane wave provided that a < §r, which is much
more easily satisfied than the previous assumption.

The scattering matrix must be computed N2(N + M)
times, comprising over 90% of the computational effort of the
code. Since we had made a far-field assumption, the scattering
matrix depends only on the scattering angle. Therefore, we
precompute it with 100 samples per degree, allowing for
accurate interpolation, and yielding a speedup of a factor
~10. In conclusion, despite some assumptions being arguably
too simplifying, they enable us to simulate time-dependent
laser speckle imaging within a feasible computational
effort.

As an alternative to our approach, one could instead use
more sophisticated methods such as the T-matrix method.
With some adaptations, existing T-matrix codes—such as
GMM [41] or FaSTMM [42]—could be implemented within
our combined fluids and optics framework by replacing the
core calculation routines of our optics code. Using the T-
matrix method, the above far-field assumption is eliminated:
the calculated multiply scattered field is exact. It would
even become possible to study nonspherical particles. How-
ever, a single (temporal) simulation of ours requires O(10%)

TABLE I. Simulation parameters.

Optics Refractive index Agphere = 1.52
Nmedium = 1

Wavelength A =532 nm

Flow system Fluid mean velocity (v) =1m/s

Flow signal frequency JSsinusoidal = 1 Hz

f heartbeat — 1.20 Hz

Particle radius a=4pum
Number of particles N =100
Radius cylinder R=1mm
Length cylinder L=1cm
Camera Number of pixels M =128 x 128
Physical size? 1.25cm x 5.0 cm
Distance from cylinder 25 cm
Simulation Camera integration time Aty = 100 ps
No. integration samples Ngine = 40
Total simulation time T = 40 periods
Data sampling rate 20 samples/period

“Note that our simulated camera size is without any lenses.

individual scattering simulations (cf. Fig. 2), which is not
computationally feasible without our assumptions. Further-
more, we will argue in the following section that our simu-
lations are already sufficiently accurate for our purposes.

IV. RESULTS

All simulation parameters are summarized in Table I for
reference.

Figure 3 shows several speckle figures. Instantaneous (i.e.,
no camera integration) speckle is shown in Fig. 3(a). In this
figure, the typical speckle is 4 =1 by 5+ 1 pixels in size,
which translates to 16 3.9 um by 78 £ 16 um. Theoret-
ically, the speckle size should correspond roughly to the
characteristic width of the point-spread function (PSF) of the
aperture [19]:

e (13)

ds eckle ™
P D

where z is the distance between the object and image plane,
and D is the aperture diameter. Note that in our simulations
the “aperture” is the cylinder’s frontal area: 1 cm by 2 mm.
Since our aperture has an aspect ratio of 5, the speckles
have aspect ratio 1/5. That is why we chose our camera to
be rectangular with aspect ratio 4, as to measure (almost)
circular speckles. Using the settings in Table I, Eq. (13)
results in 13 pm by 67 pum. Especially since we compare
only a “characteristic” width, our results correspond well with
theory, which validates the interferometric behavior of our
code [43].

Figure 3(b) shows the corresponding time-integrated
speckle image. For our settings, the speckles blur over ~10%
of the camera’s width, in the direction of motion. Note,
however, that these resolved speckle figures were created with
a 1 mm by 4 mm camera for the sake of visualization, whereas
the following results use unresolved speckle (as was discussed
in Sec. II D), such as is shown in Fig. 3(c).
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(a) Simulation: resolved, instantaneous

(b) Simulation: resolved, blurred

(c) Simulation: unresolved, blurred

FIG. 3. A few characteristic speckle figures: the influence of the camera integration time and resolved versus unresolved speckle. (b) The
temporally blurred version of panel (a). Note that the color ranges differ: absolute values are meaningless, and the blurred image (b) has a
factor 10 lower intensity range than panel (a), which would have caused panel (b) to appear mostly dark blue. The 16 x 16 grid used for local
speckle contrast analysis is also shown (c). Deviations from Table I: the camera size in panels (a) and (b) is 1 mm x 4 mm, and all three figures

use 256 pixels.

A. Convergence

To obtain accurate results, several factors are important,
which we will now discuss. First, it is important to have
a sufficient number of pixels (M) (i.e., spatial resolution)
in combination with a sufficiently large camera (to sample
enough of speckle space to obtain statistical significance).
Second, a sufficient number of camera integration samples
(ns.int) (i-e., temporal resolution) is required to mimic a real
camera. Third, an appropriate camera integration time (Afiy)
should be used, depending on the characteristic velocity ((v)).
We will not discuss the latter in this paper, other than noting
that At = 100 ps is appropriate for (v) = 1 m/s, given that
we obtain good results (whereas we have found that either a
too large or a too small At results in noise).

— ©
1.2 1 Q = = = 3|
1.1 / R . 5 . 5
N e _
D 0.9
0.8 1 //___(
0.7 1 —6— no windowing —o— grid 322
: —B— grid 22 —<— grid 642
—A— grid 42 grid 1282
0.6 —— grid 82 —+— grid 2562
grid 162 —— grid 5122
0.51 ; . : — — . :
25 26 27 28 29 210 211 212
M

(a) Spatial Convergence

Figure 4(a) shows the effect of the number of pixels (M),
and the used windowing size [cf. Eq. (6)] on the speckle
contrast of an instantaneous simulation. As was discussed in
Sec. ITA, we can expect C = 1 for fully developed speckle,
but since we have a minor (~10%) contribution of multiple
scattering, a value slightly below 1.0 can be expected. The
figure shows that when no windowing is used, the computed
C is significantly too high. The reason for obtaining C > 1 is
that our camera is sufficiently large for interferometric fringes
to be visible [see Fig. 3(c)], the cause of which was discussed
in the third point of Sec. IID. The fringes increase o7, and
thus also C [cf. Eq. (1)]. By using an increasing number
of smaller windows, we find that C decreases. This happens
because we effectively zoom in on the fringes, leaving only

0.385

0.380 -
—o— 64
—=- 128

(@) 0.375 1 —A— 256

—— 512

0.370 1024

0.365 1

0.360 1

2t 2 20 27

T int

(b) Temporal Convergence

FIG. 4. The effect of the spatial (number of pixels, M) and temporal (n ;,,) resolution and the effect of windowing on the computed speckle
contrast (C). The notation “grid 16>” denotes subdividing the image in a 16 x 16 grid of calculation windows [i.e., windows of 8 pixels for

1282 (27) total pixels], as is illustrated in Fig. 3(c).
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FIG. 5. Simulation results for the sinusoidally modulated flow. Top: obtained speckle contrast time series, shown for five simulated periods.
Bottom: its frequency spectrum obtained from 40 simulated periods. Insets on bottom: the frequency spectrum as obtained from merely two

simulated periods.

the speckles to be seen [see the grid drawn on Fig. 3(c)].
Therefore, windowing with sufficiently small windows is a
good thing. This is evidenced by the convergence to a value
just below C = 1.0, up to “grid 64°”.

However, as we use increasingly small windows for “grid
128%2-5122,” C starts to become increasingly underestimated.
The same effect is seen in the bottom-left part of the figure.
This happens because we then effectively zoom in on the
speckles, which results in a reduced o7 and therefore a reduced
C and will eventually result in C =0 (i.e., in the limit of
infinitely small windows). Additionally, the point at which
windows become too small is relative to the speckle size,
because a sufficient number of speckles should be visible in
a window to accurately calculate C. For example, at 40962
(2'?) pixels, speckles are about 6.4% pixels in size; thus using
windows of 82 pixels (as is the case for “grid 5122”) is clearly
too small. The figure shows that this effect begins roughly at
“grid 128", corresponding to a window-size-to-speckle-size
ratio of 5. Therefore, we conclude that this ratio should be
larger than ~5 to obtain quantitative results. Furthermore, all
lines are consistently satisfyingly close to their asymptotic
value when windows of at least 82 pixels are used, which
is consistent with the experimental heuristic of using 5%—
7% pixels as a compromise between spatial resolution (i.e.,
small windows) and sufficient statistics (i.e., large windows)
[20] to obtain qualitative results.

Consequently, a balance between these two opposing ef-
fects is required. The windows corresponding to “grid 64%”
and “grid 3227 differ by merely ~1.2%, and “grid 16%”
deviates by merely ~3.1% from “grid 642, which indicates
convergence in that middle range. Given the computational

constraints, we decided to choose 1282 (27) pixels, for which
a 16 x 16 grid (i.e., 8 x 8-pixel windows) is most appropriate
with a ~2.6% error w.r.t. its value at 4096% (22) pixels, and
~0.4% w.r.t. the asymptote of “grid 64-.”

In Fig. 4(b) the effect of the number of camera integration
samples (75 ine) on C for a temporal simulation can be seen. For
the sake of completeness, the result is also shown for a varying
number of pixels. The first thing to note is that the conver-
gence behavior is independent of M, indicating that spatial
and temporal convergence can be studied independently. The
1282 pixels case deviates merely ~1.2% from those with more
pixels, indicating that 1282 pixels are also appropriate for a
temporal simulation. For ng i = 10, we have a ~2% error
w.r.t using ngine = 160, which reduces to ~0.5% for ng iy =
40. As a general rule of thumb, we found that one needs a
higher ng iy for a smaller camera. For our present camera,
ns.ine = 10 would suffice, but in line with our simulations with
a smaller camera, we chose ng iy = 40 in the present work as
well.

B. Extracting a heartbeat

As was discussed in Sec. II C, we study four distinct cases:
sinusoidal plug flow, sinusoidal Poiseuille flow, heartbeat plug
flow, and heartbeat Poiseuille flow. Tracer particles suspended
in each flow were simulated, after which our LSI code was
used to simulate speckle.

Figure 5 shows C(t) and the frequency spectra for the
sinusoidal cases. For plug flow [Fig. 5(b)], we obtain a per-
fectly periodic signal. This happens because we obtain the
very same particle positions for successive cycles due to our
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FIG. 6. Simulation results, like Fig. 5, but now for a heartbeat-modulated flow.

cyclic boundary conditions. For Poiseuille flow [Fig. 5(c)] on
the other hand, we retrieve a periodic signal, with some noise.
Most of that noise can be attributed to speckle boiling. In the
frequency spectra it can be seen that the main frequency peak
of the input signal is easily reconstructed, for plug flow and
Poiseuille flow alike. It can be seen that the effect of speckle
boiling on the frequency spectrum is minor noise with roughly
the same amplitude at all frequencies, which is easy to filter
out if we would want to.

Unlike the input signal, the output signal also shows a
frequency peak at twice the main frequency. This is caused
by the fact that C(¢) is broad at its troughs, but narrow at
its crests. This widening and narrowing effect can be created
by superimposing a cosine of twice the sine’s frequency.
C(t) shows this behavior, unlike the input signal, because C
does not simply scale linearly with velocity («#) [19]. Hence
we cannot expect C(¢) to be identically proportional to u.
More specifically, for low velocities, C drops sharply from
1, whereas for high velocities C approaches the asymptotic
value of 0 slowly. Thus changes at a low velocity (troughs
of u; crests of C) result in large changes in C, whereas
changes at a high velocity (crests of u; troughs of C) result
in a smaller change in C. Therefore, the crests of C should
theoretically be more narrow than its troughs, as is also
observed.

The results for the heartbeat-modulated cases are shown
in Fig. 6. Just like for the sinusoidal cases, C(¢) shows the
same features as the input signal. That is, there is a clear
mapping between all local minima and maxima, and crests
of u again correspond to troughs of C and vice versa. For
plug flow [Fig. 6(b)], the signal is nicely periodic with little
noise. In the frequency spectrum it can be seen that the
original main frequency is found, and the characteristic higher
order frequencies are also retrieved. The relative peak heights

are not identical as those of the input signal, but—as was
also concluded for the sinusoidal case—they should not be,
because C does not scale linearly with u. The little noise
that is present is caused by the different particle positions for
each cycle, as with a period of 0.835 s the cyclic boundary
conditions do not result in identical particle positions in the
next cycle, as had been the case for the sinusoidal modulation
with a period of precisely 1 s.

For Poiseuille flow [Fig. 6(c)], we once again obtain a
signal which is more noisy than plug flow, which may again
be fully attributed to the speckle boiling associated with
the Poiseuille flow profile. Taking the frequency spectrum
of plug flow as a reference, it may be concluded that the
effect of speckle boiling is to apply spectral noise independent
of frequency, as was also observed for sinusoidal flow. The
relative peak heights are within 2% of those of plug flow—so
within our convergence errors—proving that speckle boiling
has no significant effect on our ability to use LSI for studying
the dynamics of a flow system.

Our group has previously applied the principles outlined in
this paper to extract the heartbeat in an experimental setup
[21]. The heartbeat was also measured in vivo using this
technique [29]. Our simulations compare well with those
experimental results.

C. Future work

The results presented thus far show the capability of our
code to simulate LSI. As merely the first step, we have
applied our LSI code to extract a heartbeat from a simulated
flow and studied the effect of (the noise induced by) speckle
boiling. Clearly, simpler techniques such as light-absorption
techniques are already able to do this, as only a (qualitative)
sensitivity to fluctuations in blood density is required. The
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real power of LSI is that it is based on light scattering,
which is sensitive to many more parameters, and may thus be
developed to become a truly versatile measurement technique.
Quantitative local velocity measurements that can nonin-
vasively monitor (opaque) turbid media might be possible,
because speckles are primarily sensitive to the transverse
direction of motion, and the speckle contrast (among other
speckle metrics) is sensitive to the magnitude of velocity
[19,22]. When combined with regional laser Doppler tech-
niques [20], which are sensitive to the longitudinal direction
of motion, a three-dimensional flowmetry technique for turbid
media might be developed. Light scattering is also sensitive
to the refractive index of the red blood cells, which yields
information about their oxygen content. LSI can also be used
as a cheap technique for perfusion measurements [39]. Further
possibilities include, but are not limited to, premature detec-
tion of atherosclerosis, measuring the dynamic morphology of
red blood cells, and distinguishing between different depths in
complex flow networks. The primary benefit of our new code
is that we can enable or disable and vary parameters at will, al-
lowing us to study their effect. For future work, our new code
can thereby be used to study and develop said applications.

V. CONCLUSIONS

In this paper, we have developed and applied a computa-
tional model for simulating the interference of multiply scat-
tered coherent light by moving particles. The model’s purpose
is to help us further develop laser speckle imaging (LSI) as a
quantitative imaging technique. The model is based on Mie
theory, which provides an exact solution for the scattering of

a plane wave by a single sphere. The fields of all particles are
gathered at the pixels of our simulated camera by adding them
vectorially, and then squaring them to obtain the intensity.
To incorporate multiple scattering, we devised an iterative
process in which each particle scatters not only to every pixel,
but also to every other particle. The process is repeated until
successive scattering orders become negligible. Simplifying
assumptions were made to make the process computationally
feasible: we assumed that particles are sufficiently far apart
(i.e., in each other’s far field) and sufficiently small, so that
they see scattered fields approximately as incoming plane
waves. Although these assumptions affect the speckle pattern,
they do not restrict us from obtaining meaningful results.

To show that our simplifications are not limiting, we have
applied our model to a case study resembling blood flow:
spherical particles of several micrometer moving in a cylin-
drical geometry with 1 m/s mean velocity. The flow system
was modulated with a 1 Hz sinusoidal signal and a 1.20 Hz
heartbeat signal. Using speckle blurring with a camera inte-
gration time of 100 us, we have successfully retrieved the
main frequency modes of the input signal from the speckles.
We have studied the influence of speckle boiling on the quality
of the result by comparing plug flow with a Poiseuille flow
profile and found that speckle boiling applies uniform spectral
noise to the signal. For our present case, its effect was of
the same order as our measurement uncertainty, ~2%, and
thus speckle boiling was not found to be detrimental for the
result. Our results prove that our numerical model is capable
of simulating the whole LSI process and is therefore a useful
tool for improving LSI as a quantitative indirect imaging
technique.
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