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When the positions of two generic singularities of equally signed topological index coincide, a higher-order singularity
with twice the index is created. In general, singularities tend to repel each other when sharing the same topological
index, preventing the creation of such higher-order singularities in 3D generic electromagnetic fields. Here, we dem-
onstrate that in 2D random vector waves higher-order polarization singularities—known as polarization vortices—can
occur, and we present their spatial correlation. These polarization vortices arise from the overlap of two points of
circular polarization (C points) with the same topological index. We observe that polarization vortices of positive
index occur more frequently than their negative counterparts, which results in an index-symmetry breaking unprec-
edented in singular optics. To corroborate our findings, we analyze the spatial correlation of C points in relation to
their line classification and link the symmetry breaking to the allowed dipolar and quadrupolar moments of the field
at a polarization vortex. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.6.001237

1. INTRODUCTION

A hurricane generated from storms swirling in the ocean [1] and a
peak in the gravitational-wave strain from the merging of two
black holes [2] both represent observations of events in nature
exhibiting singular parameters in their describing mathematical
model. In many cases, these extreme events contain the formation
or annihilation of vortices, given by a flow of a physical quantity
around a singular point. Besides vortices present in systems with
non-zero rest mass, they also exist in massless systems, such as
light in the form of phase and polarization vortices [3–6].
While the former are the generic, lowest-order form of phase
singularities, the latter represent higher-order polarization singu-
larities. These are generated by the merging of two generic polari-
zation singularities, namely two points of circular polarization
(C points), where both singularities have the same topological in-
dex [7]. Polarization vortices are as a result exceptional points of
the vector field that describes light. With the current knowledge
and technology, light fields can be engineered to exhibit such
higher-order singularities, typically on the optical axis of vortex
beams of arbitrary angular momentum [8–12], or in radially and
azimuthally polarized beams [13–19]. Contrarily, higher-order
singularities are not to be expected in random ensembles of waves
in 3D. In these fields, a multitude of lowest-order singularities
occurs [20–22], but with a spatial repulsion between the ones
with the same topological index [23–26]. However, a different
physics governs the behavior of polarization singularities in 2D
random light. In this case, the vicinity of same-index C points
is promoted with respect to opposite-index ones [27], suggesting

that despite their non-generic nature, polarization vortices might
be abundant in these 2D fields.

In this paper, we report our observation of polarization vortices
in 2D random vector waves. Besides their statistical emergence,
we demonstrate that these higher-order singularities obey strict
spatial correlation rules. Most surprisingly, the amount of polari-
zation vortices occurring is not symmetric with respect to their
topological index. An excess of positive vortices is found with
respect to negative ones. This index imbalance concerns the en-
semble of polarization vortices only, as considering all polarization
singularities of the field together will still lead to index neutrality.
We trace back our finding to the correlation of pairs of same-
index C points in random light. We employ a vectorial model
for 2D random fields to underpin the index imbalance as a con-
sequence of the dimension of the vector field, which is truly
two-dimensional. Finally, we explain this finding by attributing
the field distribution around the vortices to the field’s dipolar
and quadrupolar moments.

2. EXPERIMENTAL OBSERVATION OF
POLARIZATION VORTICES

We experimentally investigate polarization vortices in a two-
dimensional random light field with a home-made polarization-
and phase-resolving near-field microscope [28]. This allows us to
map the in-plane optical field generated by the random interfer-
ence of TE waves in a chaotic cavity [25,27,29]. The chaotic
cavity [Fig. 1(a)] consists of a silicon-on-insulator photonic crystal
cavity (220 nm thick layer of silicon on a silica buffer).
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In such a D-shaped arena, we generate an ensemble of random
waves by injecting monochromatic light through an input wave-
guide [25]. With our aperture-based near-field probe we raster
scan the surface of the cavity, specifically on the square region
highlighted in Fig. 1(a). An interferometric detection approach
[28,30] allows us to determine both amplitude and phase of each
vector component of the in-plane TE field, with sub-wavelength
resolution [25]. With this information, we can fully identify the
polarization state of light at each experimental pixel. Figure 1(b)
illustrates a zoomed-in section of a measurement, in which we
employ our data to compute the instantaneous orientation (angle
of arrows) and amplitude (length of arrows) of the electric field
E�t� in the chaotic cavity. In general, the time evolution of these
vectors describes an ellipse, sketched in Fig. 1(c) and known as the
polarization ellipse.

When the polarization ellipse degenerates into a perfect circle,
its orientation ψ becomes undetermined, generating a singularity
in the director field, i.e., the field describing the orientation of the
ellipse. These dislocations occur in general as points in a plane and
are known as C points [31]. Here, we shift our attention from
C points to higher-order singularities, consisting of two superim-
posed C points that share the same topological index. The topo-
logical index, or charge, of a polarization singularity is defined as

I � 1

2π

Z
C
dψ , (1)

where ψ is the orientation angle of the local polarization ellipse
and C is a closed path around the singularity. In this formalism,
the detection of a polarization vortex is equivalent to that of low-
est-order singularities, except that a double index is observed (see
Appendix A for more details on the experimental approach).

With a pixel size of 17 nm in the experimental measurements,
we detect approximately 80 polarization vortices per measured
field map (17 μm × 17 μm) at a wavelength of λTE ≈ 550 nm
(corresponding to a free-space wavelength of 1550 nm). This
number is roughly 2 orders of magnitude smaller than the num-
ber of C points found in the same field map (≈6500), as is ex-
pected due to their higher-order nature. Note that dealing with

experimental data with finite resolution we have to set an effective
threshold below which two same-index C points are considered as
one single polarization vortex. In a pragmatic way, we set this dis-
tance to be the pixel size of our experiment.

Figure 2 presents an illustrating set of four polarization vortices
detected in one measured random field. Depending on their topo-
logical index (�1), the polarization vortices exhibit different
topologies [32]. These differ from the three classes noted for
C points, i.e., stars, lemons, and monstars [33,34]. Considering
the orientation of the major axis of the polarization ellipse around
the vortices (insets in Fig. 2), we identify two possibilities. For
positive vortices (I � �1) the axes of the surrounding ellipses
never point toward the singularity, resulting in a circular pattern
around the vortex. In the case of negative vortices (I � −1) these
directors point toward the singularity along four directions, form-
ing a four-pointed star.

3. SPATIAL DISTRIBUTION OF POLARIZATION
VORTICES

A. Pair and Charge Correlation Function and
Index-Symmetry Breaking

While these singularities might appear to be the result of a seem-
ingly arbitrary threshold, a distinct spatial correlation resulting
from an underlying mechanism that governs their behavior would
highlight their collective contribution to the general topology of
random light fields. To characterize the spatial correlation of
polarization vortices, we compute their pair and charge correla-
tion functions g�r� and gI �r�. These functions are commonly
used to describe the spatial distribution of point-like singularities
[20], and of discrete systems of various types [35]. The g�r� de-
scribes the spatial density variations of polarization vortices as a
function of distance from each other. In the gI �r�, each vortex is
weighted additionally with its topological index. Because a single
measurement frame contains only ∼80 vortices, we combine the
outcome of 150 different measurements of the random light field.
Thus, we achieve sufficiently good statistics for an experimental
determination of g�r� and gI �r�.

Fig. 1. Sketch of the experimental procedure. (a) Schematic of the chaotic cavity used for the generation of an optical randomwave field. The gray area is a
photonic crystal, confining TE light in the inner region of the cavity. The black areas constitute ridge waveguides for in-coupling and output. (b) Near-field
measurement of the instantaneous electric field in the cavity. The purple arrows illustrate amplitude (length) and orientation (angle) of the TE electric field in
the cavity, for t � 0. (c) Schematic of the polarization ellipse and its parameterization with orientation angle ψ , ellipticity angle χ, and handedness h.
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We find that the polarization vortices indeed exhibit a clear
spatial correlation. Figure 3 presents the pair and charge correla-
tion function for polarization vortices in 2D random vector
waves. In these correlation functions we can identify several char-
acteristic features. First, g�r� clearly tends to zero when r ≈ 0,
indicating that polarization vortices are never to be found in close
proximity regardless of their mutual sign, unlike C points.
Second, the oscillation of this correlation function exhibits a
much clearer contrast compared to the one displayed by C points
[27] and phase singularities [25]. The first peak reaches values ≥4,
more than twice as high as the values observed in the pair
correlation function for C points. Additionally, this first peak
in the g�r� actually consists of two peaks. Interestingly, in the

displacement range contained within the double peak of the
g�r�, the gI �r� exhibits a zero crossing, going approximately from
−4 to 2.5 over a distance of less than one fifth of light’s wave-
length. The average nearest-neighbor distance for pairs of same-
sign vortices is 20% larger than that of opposite-sign vortices.

Surprisingly, as r increases, gI �r� does not display a damped
oscillatory behavior around zero but rather approaches a finite
positive value. This indicates that index neutrality seems to be
violated (see Appendix B). By counting the number of positive
and negative vortices in a total of 150 measurements, we find
an average ratio of vortices f � N�∕N − � 2.3� 0.2 for
N � 81.9� 6.9 vortices per measured field map. Such a strong
imbalance in a topological index is highly unusual to find outside
of elementary particle physics [36], and to our knowledge has not
been observed so far for any other type of singularity in electro-
magnetic waves. This is corroborated by the fact that statistical
properties of dislocations with opposite topological index are
usually indistinguishable [33]. To understand the origin of this
topological index asymmetry it is therefore useful to take one step
back and reconsider the entities from which polarization vortices
are formed: pairs of C points.

B. Index-Symmetry Breaking in the Spatial Distribution
of C Points

Figure 4(a) presents the pair correlation function of C points for
the cases in which both the singularities that constitute the pair
have either positive (gA��, orange data) or negative (g

A
��, purple

data) topological index, and reside in areas of opposite handedness
of circular polarization (symbolized by the superscript A). The
restriction to anti-handed C points as origin for polarization vor-
tices is here given by the vanishing correlation function gCsame�r�
for co-handed C points as r → 0 [27].

Fig. 2. False-color map for the orientation ψ of the major axis of the polarization ellipse in a 2D random light field (main plot). The plot is a
8.5 μm × 8.5 μm subsection of one measured field map. Markers correspond to C points. The color of the markers, light or dark gray, denotes a topo-
logical index of �1∕2 or −1∕2, respectively. In the observed map, four polarization vortices are highlighted (zoomed-in figures in the panels next to the
main plot, with the major axis of the polarization ellipse additionally shown as black directors). These are depicted by light (index�1) or dark (index −1)
gray symbols.

Fig. 3. Pair (g) and charge (gI ) correlation function for polarization
vortices in random waves. The data points are representative of the ex-
perimental results, while solid lines are the result of the theory for polari-
zation vortices in 2D random light.
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At distances r < λ∕5, g�� is higher than g�� by about a factor
2. This preference of two positive index singularities to be in close
proximity to each other is consistent with the observation of a
larger number of polarization vortices with positive rather than
negative index. As the displacement is increased toward values
of r > 2λ the two correlation functions start to coincide, as they
will eventually do for r → ∞, indicating no long-range index-
dependent correlations.

From bare intuition there is no reason why a pair of entities
with index −1 should behave differently from a pair of index �1.
In this regard, it is important to recall that in a 2D slice of a 3D
field, C points of opposite handedness would not exhibit any cor-
relation, i.e., gA�� � gA�� � 1 [33]. Confining the random field
to two dimensions breaks this degeneracy, encouraging pairs
of positive C points to approach each other more than negative
ones.

We verify this experimental observation by computing the
theoretical expectations for the measured pair correlation func-
tions. For the cases of gA�� and gA�� the theoretical curves can
be computed with the model described in [27] for a 2D TE ran-
dom field, with the extra care of treating positive and negative
topological indices independently. The pair correlation of polari-
zation vortices requires an extension of the model in [27], since in
that framework it corresponds to a higher-order correlation func-
tion. In fact, the pair correlation function of polarization vortices
can be interpreted as having two same-index C points in rA and
two in rB , corresponding to two polarization vortices displaced by
r � rB − rA. In accordance with the notation introduced by Berry

and Dennis [20] and also used in [27], such correlation function
can be defined as follows:

g�rB − rA� �
hρ�ul �rA�	ρ�ur�rA�	ρ�ul �rB�	ρ�ur�rB�	i

hρ�ul �rA�	ρ�ur�rA�	i2
: (2)

Here, ρ�ul 	 is the point density of singularities in the left-handed
component (ψ l ) of the vector field E [20,27], i.e.,

ρ�ul 	 � δ�ψ 0
l �δ�ψ 0 0

l �
���� ∂ψ

0
l

∂x
∂ψ 0 0

l

∂y
−
∂ψ 0

l

∂y
∂ψ 0 0

l

∂x

����, (3)

with ψ l � ψ 0
l � ιψ 0 0

l . For compactness, we use the definition of
the vector ul � �ψ 0

l ,ψ
0 0
l , ∂xψ

0
l , ∂yψ

0
l , ∂xψ

0 0
l , ∂yψ

0 0
l 	⊤ to express the

functional dependence on the left-handed field ψ l and its deriv-
atives. An analogous notation holds for ur in relation to the right-
handed field ψ r .

The outcome of the model is plotted as solid lines in Figs. 3
and 4(a). All the essential features of the correlation functions dis-
cussed in the previous section are accounted for and no additional
ones are revealed. Specifically, the excellent agreement at displace-
ments r < λ∕5 confirms the assessment that the occurring index
imbalance of polarization vortices is a result of the 2D confine-
ment of the underlying random field.

C. Topology of the Director Field Around Vortices:
Orientation-Dependent Pair Correlation of C Points

Especially with regard to their index-dependent behavior, it is in-
teresting to also consider the line classification of C points. As
detailed in [33], the index of C points is related to the topological

Fig. 4. (a) Pair correlation functions: gA���r� for pairs of C points with positive indices (orange) and gA���r� for negative pairs (purple). The data points
represent the experimental results, while solid lines correspond to the theoretical expectation for polarization singularities in 2D random fields. The gray
solid line is the theoretical expectations for C points in a 2D slide of a 3D field, under the paraxial approximation. (b), (c) Pair correlation functions for
lemon pairs (b) and star pairs (c) as a function of the displacement angle among the C points, measured with respect to the orientation of one (the) director
associated to each singularity (see insets for schematics). In these two plots, the lines are a guide for the eyes.
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properties of the director field around these singularities, with
negative index singularities always being star-type, and positive
index ones primarily being lemon-type. This line classification
is the testament to the broken rotational invariance of the field
topology around C points. Thus, we can associate a set of special
directions around a C point. These are the directions along which
the director of the polarization ellipse points toward the singular-
ity core: three directions for star-type and one for lemon-type
[37]. To study director-dependent effects on the spatial correla-
tion of polarization singularities we compute a new set of pair
correlation functions, including a dependence on the displace-
ment direction with respect to the C point’s directors.

Figures 4(b) and 4(c) present the pair correlation g�r, θ� of
C points as a function of the displacement direction θ with respect
to C point directors [see schematics in the insets of Figs. 4(b) and
4(c)]. We restrict the evaluation of g�r, θ� to the singularities con-
tained in an angular sector of width π∕3 around θ. For lemons
(one director), the choice of this reference frame is unambiguous.
For stars (three directors), we choose one of their three directors as
the reference, at random.

The lemon-lemon correlation function in Fig. 4(b) displays a
strong dependence on the displacement angle θ. When approach-
ing r � 0, the data corresponding to small displacement angles
(brown) is approximately 8 times as high as the one corresponding
to θ ≈ π (light orange). This means that among these closely
spaced lemon-lemon pairs, a clear majority is oriented along
the direction given by the singularity directors. Quantitatively,
among the lemon pairs with displacement r < λ∕10 approxi-
mately 50% are aligned within an angle π∕6 with respect to
the director of the reference singularity. 35% of the pairs have
either orientation θ � π∕3 or θ � 5π∕3. Finally, the remaining
15% are equally partitioned among θ � 2π∕3, θ � π, and
θ � 4π∕3. This finding clearly explains the circular pattern of
the director field that surrounds positive-index polarization vor-
tices (Fig. 2). For C point separations larger than λ the angular
dependence vanishes, and all the correlation functions corre-
sponding to different values of θ start to coincide.

The analysis of the star-star correlation function [Fig. 4(c)]
shows a much less clear dependence on the angle θ. Intuitively,
given the fact that star-type C points have three directors instead
of one, the dependence on θ of their pair correlation g�r, θ� could
be expected to have a periodicity of 2π∕3, i.e., to the angle
between the three directors of a perfectly symmetric star. We test
this hypothesis by computing the correlations g�r, θ� for
θ � nπ∕3 (n � 0, 1,…, 5) and plotting all the functions ob-
tained for even values of n with the same color (dark purple),
in contrast to that used for odd values of n (light purple).
Figure 4(c) shows that all the pair correlation functions corre-
sponding to angles θ 0 � θ� 2nπ∕3 are indeed consistent with
each other. On the contrary, some difference exists between
the functions computed at θe � 2nπ∕3 and those corresponding
to θo � �2n� 1�π∕3. This is especially visible in the region
r < λ. The most evident observation here is that g�r, θo� almost
vanishes at r � 0.4λ, while g�r, θe� stays close to unity. This in-
dicates that at this particular separation stars tend to stay aligned
to the direction of one of their directors rather than avoid it. With
respect to the region r < λ∕10, the correlation functions calcu-
lated for different values of θ have rather similar values. This is in
accordance with topological continuity observations that two stars
may join along a common director or pairs of directors can merge

together to form a saddle point with four directors [7]. It is
important to note that whether a pair of stars would be superim-
posed while pointing at each other with one of their directors or
not, this would still lead to the observed four-pointed star for the
director field which surrounds negatively indexed polarization
vortices (Fig. 2).

4. LINKING THE INDEX IMBALANCE TO
MULTIPOLAR MOMENTS

The influence that the director topology around C points has on
their spatial correlations can also be understood qualitatively by
linking it to the multipolar moments of the field at the vortex
center. We sketch the simplest scenarios of how two lemons
or two stars can merge in Fig. 5 [32] and note again that because
only the merging of C points with opposite handedness is con-
sidered, the resulting higher-order singularity has to have zero
in-plane field components. Consequently, the in-plane fields sur-
rounding the singularity lead to, to first order, spatially varying
linear polarization, with the direction of the field shown by arrows
in Fig. 5. The structure of these local field distributions corre-
sponds to purely longitudinal magnetic and electric dipolar fields
for vortices with positive charge as well as fields with only quad-
rupolar multipole components for negatively charged vortices.
This is similar to the fields used in tailored tightly focused light
beams to study the multipolar interaction of single nanoparticles
[38]. With the random fields under study being purely TE
polarized, we can recognize the vanishing correlation g�0� of
two merging lemons with anti-aligned directors (θ ≈ π) as the
restriction of a TE mode with no out-of-plane electric field, while
the azimuthally oriented polarization structure around the created
vortices corresponds to a longitudinal magnetic point dipolemz at
the vortex center. In contrast, positive-index polarization vortices
of a TM mode would originate exactly from merging lemon pairs
with anti-aligned directors, leading to a longitudinal electric di-
pole pz with a radially polarized in-plane electric field structure
[13], with the same index imbalance and correlation functions
as for TE modes. In addition, the in-plane quadrupolar nature
Qxy of the merging of two stars with opposite handedness hints
at the lower correlation gA���0� being a consequence of the need
of all six electric and magnetic field components to be zero at this
point. Considering the dip in the pair correlation function around
r � λ∕2 for two stars with anti-aligned directors, the structure of

TE: TM:

Polarization Vortex formation

Fig. 5. Sketch of the director orientation around two merging singu-
larities with opposite handedness and same index, leading to dipolar
moments pz and mz for lemon pairs (left panel, polarization vortex with
I � �1) and quadrupolar moments Qxy for star pairs (right panel,
polarization vortex with I � −1).
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the two approaching stars suggests an effective repulsion due to
the merging of four directors into two.

The restriction to certain field components due to the two-
dimensional nature of the field can thus be seen as directly respon-
sible for the resulting index imbalance of polarization vortices,
since for an unrestricted 3D field the occurrence of vortices from
two C points of opposite handedness would require additionally
the concurrence of an L line. This codimension-6 phenomenon
[21] of zero field intensity is not expected to occur generically in
3D fields. By reducing the dimension of the field under study, the
constraint on the field components is lifted for polarization vor-
tices with positive index, leading to the observed positive index
imbalance of the charge correlation function gI �r�.

In addition, this restriction to certain multipolar moments of
the field at polarization vortices implies that as soon as a certain
level of (experimentally unavoidable) noise is introduced to any
tailored 2D field, the allowed light–matter interaction of the field
with a small probe (be it a molecule, quantum dot, or scattering
particle) will be governed at high symmetry points only by the
shown multipolar moments.

5. CONCLUSION

In this paper we presented the experimental observation of
higher-order singularities of the polarization state of a random
light field, known as polarization vortices. We discovered that
polarization vortices in random waves exhibit a clear spatial cor-
relation, with measured values for their pair correlation function
reaching values larger than 4. Most interestingly, we saw an
imbalance in the total topological index of the detected vortices:
more than twice as many positive vortices were observed as neg-
ative ones. We traced back this observation to the fact that
C points with positive index are more often found at vanishing
mutual distances than negative ones. Moreover, we found that at
short distances, positive C points (mostly lemons) prefer to align
along the direction of the director of the singularity, while neg-
ative C points (stars) do not exhibit a clear preferential direction.
These observations find their explanation in the fact that a truly
2D (TE) random field is investigated, as no index imbalance is to
be expected for a 2D slice of a 3D field. In fact, the model de-
veloped in [27] for 2D random fields describes our experimental
findings in great detail. It is important to stress that the lower
dimensionality and the resulting correlations among the vector
field components is the true cause of the observations made in
this paper, which could inspire the development of a more uni-
versal description of the behavior of C points. Finally, we note
that these results are quite general for the 2D case, as they apply
to both TE and TM in-plane fields.

APPENDIX A: DETECTION OF POLARIZATION
VORTICES

To experimentally determine polarization vortices, some modifi-
cations to the generic algorithm for detecting singularities in com-
plex scalar fields on a rectangular grid are necessary. We call to
mind that C points (index �1∕2) are phase singularities (charge
�1) in the constructed complex Poincaré field Ψ � S1 � iS2
[39], where S1 and S2 are the first and second Stokes parameter,
respectively. Therefore, polarization vortices (index�1) appear as
phase vortices of charge �2 in Ψ. In order to determine the
location of polarization vortices, we need to be able to detect a

phase circulation of �4π. Such a phase change is too fast to
be encoded in 2 × 2 pixels. The generic algorithm of finite differ-
ence phase loops will always indicate the existence of a pair of
single-order singularities displaced by a single pixel. At this point
two approaches can be pursued. In a first approach one can es-
tablish the criterion for which two C points displaced by a single
pixel correspond to a single polarization vortex. Alternatively, a
new detection algorithm can be designed to perform phase inte-
grals over 3 × 3 pixel loops. This larger integration path allows for
the direct visualization of second-order singularities. After verify-
ing that both approaches yield the same result, we only applied
the second method for the data presented in this paper.

APPENDIX B: INDEX IMBALANCE AND CHARGE
CORRELATION FUNCTION

If more polarization vortices with positive than negative index are
present in a random light field, the number of same-sign vortex
pairs will by necessity always be higher than that of opposite-
signed pairs, yielding a positive value of the charge correlation
function gI at large distances. In more detail, having N� positive
vortices andN − negative ones, with N� � f N −, results in N same

pairs of same-charge singularities,

N same � N��N� − 1� � N −�N − − 1�
� �1� f 2�N 2� � o�N��, (B1)

and N opp with opposite charges,

N opp � N�N − � N −N� � 2f N 2�: (B2)

When r → ∞, we can neglect the term o�N��, so
gI �r → ∞� ∝ N same − N opp ∝ 1� f 2 − 2f

� �1 − f �2 > 0 ∀ f ≠ 1: (B3)
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