

Delft University of Technology

Conformal automation for air traffic control using convolutional neural networks

van Rooijen, S. J.; Ellerbroek, J.; Borst, C.; van Kampen, E.

Publication date 2019 **Document Version** Accepted author manuscript

Published in

Proceedings of the 13th USA/Europe Air Traffic Management Research and Development Seminar 2019, ATM 2019

Citation (APA) van Rooijen, S. J., Ellerbroek, J., Borst, C., & van Kampen, E. (2019). Conformal automation for air traffic control using convolutional neural networks. In *Proceedings of the 13th USA/Europe Air Traffic Management Research and Development Seminar 2019, ATM 2019: 17/06/19 - 21/06/19 Vienna, Austria*

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

Conformal Automation for Air Traffic Control using Convolutional Neural Networks

J. Ellerbroek

Solving a simple conflict:

Put A behind B ...

... B behind A

... B in front of A

... or even changing both headings

Solution: Strategically conformal automation

Strategic conformance is "... the degree to which automation's behavior and apparent underlying operations match those of the human."

– Hilburn et al. (2014)

Previous research

- Ability to adapt to controller preferences without full knowledge of underlying decision-making dynamics
- 2. Required **feature engineering** based on prior knowledge and assumptions
- 3. Only considered simple two-aircraft conflicts

Source: Regtuit – Strategic Conformal Automation for Air Traffic Control (2018)

Purpose of this study: predict controller actions in a more realistic setting

Train a model on controller actions using **supervised** learning

Approach: Convolutional Neural Networks

Source: MathWorks - Deep Learning - Convolutional Neural Networks

Approach: Convolutional Neural Networks

ŤUDelft

Image convolution

	[1	0	1]
Filter:	0	1	0
	1	0	1

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

A whole convolution layer

Input Volume (+pad 1) (7x7x3)	Filter W0 (3x3x3)	Filter W1 (3x3x3)	Output Volume (3x3x2)
x[:,:,0]	w0[:,:,0]	w1[:,:,0]	0[:,:,0]
0 0 0 0 0 0 0	-1 0 1	0 1 -1	2 3 3
0 0 0 1 0 2 0	0 0 1	0 -1 0	3 7 3
0 1 0 2 0 1 0	1 -1 1	0 -1 1	8 10 -3
0 1 0 2 2 0 0	w0[:,:,1]	w1[:,:,1]	o[:,:,1]
0 2 0 0 2 0 0	-1 0 1	-1 0 0	-8 -8 -3
0 2 1 2 2 0 0	1 -1 1	1 -1 0	-3 1 0
0 0 0 0 0 0 0 0	0 1 0	1 -1 0	-3 -8 -5
	w0[:,,2]	w1[:,:,2]	
	TIV	-1 1 -1	
0 2 1 2 1 1 0	1×0	0 -1 -1	
0212010	0 -1 0	1 0 0	
0 0 2 1 0 1 0	Bias $b0(1x1x1)$	Bias h1 (1x1x1)	
0 1 2 2 2 2 0	b01:.:.01	b1[:.:.0]	
0 0 1 2 0 1 0	1	0	
0 0 0 0 0 0 0			
w 21		(1	
		toggie mo	vement
0 2 1 1 2 0 0			
9 1 0 9 1 0 0			
0 0 1 0 0 0 0			
0 1 0 2 1 0 0			
0 2 2 1 1 1 0			
0 0 0 0 0 0 0			

TUDelft

Approach: Choosing the right input

The Solution-Space Diagram

ŤUDelft

Approach: Choosing the right input

The Solution-Space Diagram

Approach: The model

Approach: Example of input layer

Approach: Model output

Three models for three control variables:

- 1. Resolution type (heading, speed, direct-to)
- 2. Resolution direction (left/right, up/down)
- 3. Resolution magnitude

Getting the data: Experiment setup

Human in the loop experiment:

Control a sector, while

 Avoiding Loss-of-Separation between aircraft
Guiding the aircraft to their exit waypoint as efficiently as possible

Using either

- 1. Heading (HDG)
- 2. Speed (SPD)
- 3. Direct To (DCT)

Getting the data: Participants and runs

Getting the results: Training models

- Three models for type, direction, and magnitude
 - Training data: run 1-3
 - Test data: run 4

Getting the results: Training models

K-fold validation: better performance for small datasets

۵lft

Iteration 1	Val		Training			Test
Iteration 2		Val				Test
Iteration 3			Val			Test
Iteration 4				Val	Test	
Iteration 5		Val			Test	
	Run 1 - 3				Run 4	

Source: Wikipedia – Overfitting (2019)

Getting the results: Testing conformance

Two types of models: individual and general

Three tests: individual, cross-validation, and baseline

Getting the results: Measuring performance

Accuracy: 0.95

MCC: 0

Results: Let's start with some eyeballing

ŤUDelft

Results: Let's start with some eyeballing

ŤUDelft

Results: Training performance

Individual model training Participant 1

Results: Individual conformance

P6 Direction prediction 96% accuracy

Results: Individual conformance

P8 Type prediction 43% accuracy

Results: Individual conformance

Results: Consistency

Results: Consistency

Results: Cross-validation

ŤUDelft

Results: Cross-validation

Results: Cross-validation

ŤUDelft

Results: Baseline validation

TUDelft

Discussion: Putting things into perspective

Limitations of the experiment

- 1. Participating 'air traffic controllers' are not professionals
- 2. Scenarios are constrained in conflict angles and altitude
- 3. Experiment runs still contain training effects

Discussion: Putting things into perspective

Suitability of SSD and machine learning approach

- 1. Convolutional neural networks converge but overfitting does occur
- 2. Higher-level decisions and information are not incorporated in the model
- 3. Neural networks remain a black-box approach

Conclusions: The silver lining

SSD images contain sufficient information to predict resolutions in horizontal conflict detection and resolution

2

Convolutional Neural Networks are a feasible approach to achieve individual-sensitive automation

3 Human controllers are sufficiently consistent to train a machine learning algorithm and are strategy heterogeneous as a group

Conformal Automation for Air Traffic Control using Convolutional Neural Networks

J. Ellerbroek

Preliminary analysis

Simulation parameters:

- ATM simulator:
- Resolutions:
- Max. number of A/C:
- Resolution algorithm:

BlueSky
Heading changes only
Two
Modified Voltage Potential

Source: Hoekstra, Ellerbroek - BlueSky ATC Simulator Project: an Open Data and Open Source Approach (2016)

Consistency metric

Type and direction:

$$consistency = max \left(\frac{\sum class I}{\sum class I + II}; \frac{\sum class II}{\sum class I + II} \right)$$

Value:

 $consistency = \frac{\sum unique \ values \ possible}{\sum unique \ values \ used}$

Network Architecture

Layer	Input	Filter size	Stride	Num filters	Activation	Output
Conv2D	32x64x3	2x2	1	32	ReLU	31x63x32
MaxPool	31x63x32					15x31x32
Conv2D	15x31x32	2x2	1	64	ReLU	14x30x64
MaxPool	14x30x64					7x15x64
Conv2D	7x15x64	2x2	1	32	ReLU	6x14x32
Flatten	6x14x32					2688
Dense	2688				ReLU	1024
Dropout	1024					1024
Dense	1024				Softmax	3

ŤUDelft

Network Training

Parameters	Value	Unit
Optimization algorithm	Adam	-
Output activation	Softmax classifier	-
Loss function	Categorical entropy	-
Train/val/test ratio	60/15/25	-
K-folds	5	-
Mini batch-size	32	samples
Steps-per-epoch	$2 \times$ training samples / batch-size	samples
Epochs	30	-
Learning rate	0.01	-
Dropout rate	20	%
Input image dimensions	128x128	px

ŤUDelft

Crossing conflicts

Increase of MCC and accuracy by using individual models

Performance of P4's model

