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Conformal Automation for Air Traffic Control 
using Convolutional Neural Networks 

J. Ellerbroek
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Source: Westin – Exploring Acceptance of Individual-Sensitive Automation for Air Traffic Control (2017)

Aircraft A

Aircraft B

Protected
Zone

The problem of conformance

Solving a simple conflict:
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Source: Westin – Exploring Acceptance of Individual-Sensitive Automation for Air Traffic Control (2017)

The problem of conformance

Put A behind B …
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Source: Westin – Exploring Acceptance of Individual-Sensitive Automation for Air Traffic Control (2017)

The problem of conformance

… B behind A
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Source: Westin – Exploring Acceptance of Individual-Sensitive Automation for Air Traffic Control (2017)

The problem of conformance

… B in front of A
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Source: Westin – Exploring Acceptance of Individual-Sensitive Automation for Air Traffic Control (2017)

The problem of conformance

… or even changing both
headings
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Solution: Strategically conformal automation

Source: Westin – Exploring Acceptance of Individual-Sensitive Automation for Air Traffic Control (2017)
Hilburn - The Role of Strategic Conformance in Decision Aiding Automation (2014)

Five levels of abstraction

Strategic conformance is “… the degree to which 

automation’s behavior and apparent underlying 

operations match those of the human.” 

– Hilburn et al. (2014)
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1. Ability to adapt to controller preferences without 
full knowledge of underlying decision-making 
dynamics

2. Required feature engineering based on prior 
knowledge and assumptions

3. Only considered simple two-aircraft conflicts

Previous research

Source: Regtuit – Strategic Conformal Automation 
for Air Traffic Control (2018)



Purpose of this study: predict controller 
actions in a more realistic setting
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Approach

Train a model on controller actions using supervised 
learning

SPL

SUG

HSD

SSB

NIK

Magnitude

Direction

Type

Model testing

Individual modelsK-fold validation

Supervised learning

Training data
(run 1-3)Dataset

run 1-4

ATCo ATC simulator

Test data (run 4)

Performance
metrics

Consistency
metric

Part A: Part B: Part C:
Data generation Model training Measuring conformance

Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.

(a) Regular (b) Inter-participant (c) Baseline

Fig. 7: Three validation steps for participant 1 (P1).

TABLE I: (Hyper)parameters during training.

Parameters Value

Optimization algorithm Adam
Output activation Softmax classifier
Loss function Categorical entropy
Train/val/test ratio 60%/15%/25%
K-folds 5
Mini batch-size 32 samples
Steps-per-epoch 2 ⇥ training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

models were trained. In this section, the training phase is
illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween �1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,
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Approach: Convolutional Neural Networks

Source: MathWorks – Deep Learning - Convolutional Neural Networks 

Learned Features 70%
19%

11%

Convolutional Neural Network (CNN)

Airplane
Cat

Hoverboard
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Approach: Convolutional Neural Networks

INPUT
Channels: 3

OUTPUT
Classes: 2 or 3

SIZE: 64x32x3 63x31x32 31x15x32 30x14x64 15x7x64 14x6x32 2688 1024 1024 2 or 3

Convolution
Filters: 32

Downsampling Convolution
Filters: 64

Convolution
Filters: 32

Downsampling Flattening Dense Dropout Dense

Fig. 1: The Convolutional Neural Network structure used in this research. All weights in one plane are
identical. Size values are given in pixels. Adapted from LeCun (1998) [16].

new output map. By using different filters, specific visual
features can be extracted from the input image, such as small
corners or edges. In this study, filter size is always 2 ⇥ 2
pixels, and filters progress over the image with a stride of
1 pixel. The visual features are subsequently combined to
form compositions while progressing through the net, using
successive layers of filters. To avoid overfitting and reduce
computational cost, the data is also downsampled in between
filter steps [24]. In the final steps, the data is flattened, and
reduced in steps to the expected number of output classes
(e.g., when a conflict resolution maneuver can be either using
heading, speed, or a direct-to, output classes are heading,
speed, and direct-to, resulting in an output size of three). To
reduce overfitting, a dropout layer is added here that sets the
weights of a fraction of the neurons to zero at each epoch
during training [25].

The neurons in each layer are specified by an activation
function. In this study, all layers but the final layer use a
Rectified Linear Unit (ReLU) activation function, because of
its computational efficiency [26]. The final layer uses a softmax
function [27], which transforms the layer of real values into
a vector of probabilities per output class �(z). The softmax
function is defined by Equation 1, where all entries of � are
real, within [0, 1], and add up to 1. K is the dimension of input
vector z.

�(z)j =
e
zj

PK
k=1 e

zk
for j = 1, ...,K (1)

A cross-entropy function is used to take these probabilities
into account in the loss function [28]. The cross entropy H is
calculated for M output classes by comparing the probability
vector � resulting from the softmax function to the one-hot
encoded target vector yi:

H(y,�) = �
MX

i

yi log �i (2)

The calculated losses, averaged over a minibatch of samples
are used to update the network parameters ✓. In this study,
this update is done using a first-order gradient-based opti-
mization algorithm called Adam. Empirical results show that it
outperforms previously popular optimizers such as AdaGrad,
RMSProp and SGDNesterov [29].

The performance of CNNs is naturally determined by their

inputs, as they should capture all relevant information for the
model to make a prediction. This research utilizes the Solution
Space Diagram (SSD) as input to the neural network. The
SSD was originally designed as a decision support tool that
integrates various critical parameters of the Conflict Detection
and Resolution problem [30]–[32]. This was later extended
to complexity and workload analysis [11], [33]–[35], and
automated conflict resolution [15], [36]. Based on the findings
of these studies, this research hypothesizes that an SSD image
as learning feature contains sufficient information concerning
air traffic conflicts to make an informed decision.

Figure 2 illustrates how the SSD is constructed. It consists
of an area of reachable velocities, bounded by concentric
limits of minimum and maximum operating speeds. This
reachable space is reduced by triangular velocity obstacles that
correspond to the set of velocity vectors that would lead to
a loss of separation with a nearby aircraft. The color of the
velocity obstacles is determined by the time to closest point of
approach (CPA), divided into three ranges: red (tcpa < 60s),
orange (60 < tcpa < 120s) and gray (tcpa > 120s). The
remaining free space corresponds to the reachable conflict-free
speed/heading combinations. In the SSD, the current heading
and speed are indicated by the green vector, see Figure 2. As an
additional feature, the target heading to the exit waypoint of the
respective aircraft is shown with a blue line. This information
is part of the normal tasks of an air traffic controller, and may
influence conflict resolution decisions.

In the current study, the above method is used to learn
individual controller strategies for observed traffic conflicts.
Following Westin’s approach [37], this study defines strategy
in terms of three control variables: resolution type (heading,
speed, or direct-to), resolution direction (left or right, speed
increase or decrease), and resolution magnitude ([0, 10] deg,
[10, 45] deg and > 45 for heading resolutions, and [200�250]
kts, and [250� 290] kts for speed resolutions) With the SSDs
of all detected conflicts as input, three independent CNNs (as
described in Figure 1) are trained to match the SSD of the
controlled aircraft to the observed controller strategy: one CNN
for resolution type, one for resolution direction, and one for
resolution magnitude.

III. EXPERIMENT

An experiment was performed to provide training and testing
data for the model described in the previous section. In this
experiment, participants were asked to control a sector with

Learned Features 70%
19%

11%

Convolutional Neural Network (CNN)

Airplane
Cat

Hoverboard
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Filter:



13

A whole convolution layer
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Approach: Choosing the right input

The Solution-Space Diagram

Step 1 Step 3Step 2
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Approach: Choosing the right input

Distance to CPA

Conflict angle

Closest Point of 
Approach (CPA)

PROTECTED ZONE

Vmin

Vcon

Vint

Vmax

EXIT WAYPOINT

-Vint

Aint

Acon

The Solution-Space Diagram
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Approach: The model

INPUT
Channels: 3

OUTPUT
Classes: 2 or 3

SIZE: 64x32x3 63x31x32 31x15x32 30x14x64 15x7x64 14x6x32 2688 1024 1024 2 or 3

Convolution
Filters: 32

Downsampling Convolution
Filters: 64

Convolution
Filters: 32

Downsampling Flattening Dense Dropout Dense

Fig. 1: The Convolutional Neural Network structure used in this research. All weights in one plane are
identical. Size values are given in pixels. Adapted from LeCun (1998) [16].

new output map. By using different filters, specific visual
features can be extracted from the input image, such as small
corners or edges. In this study, filter size is always 2 ⇥ 2
pixels, and filters progress over the image with a stride of
1 pixel. The visual features are subsequently combined to
form compositions while progressing through the net, using
successive layers of filters. To avoid overfitting and reduce
computational cost, the data is also downsampled in between
filter steps [24]. In the final steps, the data is flattened, and
reduced in steps to the expected number of output classes
(e.g., when a conflict resolution maneuver can be either using
heading, speed, or a direct-to, output classes are heading,
speed, and direct-to, resulting in an output size of three). To
reduce overfitting, a dropout layer is added here that sets the
weights of a fraction of the neurons to zero at each epoch
during training [25].

The neurons in each layer are specified by an activation
function. In this study, all layers but the final layer use a
Rectified Linear Unit (ReLU) activation function, because of
its computational efficiency [26]. The final layer uses a softmax
function [27], which transforms the layer of real values into
a vector of probabilities per output class �(z). The softmax
function is defined by Equation 1, where all entries of � are
real, within [0, 1], and add up to 1. K is the dimension of input
vector z.

�(z)j =
e
zj

PK
k=1 e

zk
for j = 1, ...,K (1)

A cross-entropy function is used to take these probabilities
into account in the loss function [28]. The cross entropy H is
calculated for M output classes by comparing the probability
vector � resulting from the softmax function to the one-hot
encoded target vector yi:

H(y,�) = �
MX

i

yi log �i (2)

The calculated losses, averaged over a minibatch of samples
are used to update the network parameters ✓. In this study,
this update is done using a first-order gradient-based opti-
mization algorithm called Adam. Empirical results show that it
outperforms previously popular optimizers such as AdaGrad,
RMSProp and SGDNesterov [29].

The performance of CNNs is naturally determined by their

inputs, as they should capture all relevant information for the
model to make a prediction. This research utilizes the Solution
Space Diagram (SSD) as input to the neural network. The
SSD was originally designed as a decision support tool that
integrates various critical parameters of the Conflict Detection
and Resolution problem [30]–[32]. This was later extended
to complexity and workload analysis [11], [33]–[35], and
automated conflict resolution [15], [36]. Based on the findings
of these studies, this research hypothesizes that an SSD image
as learning feature contains sufficient information concerning
air traffic conflicts to make an informed decision.

Figure 2 illustrates how the SSD is constructed. It consists
of an area of reachable velocities, bounded by concentric
limits of minimum and maximum operating speeds. This
reachable space is reduced by triangular velocity obstacles that
correspond to the set of velocity vectors that would lead to
a loss of separation with a nearby aircraft. The color of the
velocity obstacles is determined by the time to closest point of
approach (CPA), divided into three ranges: red (tcpa < 60s),
orange (60 < tcpa < 120s) and gray (tcpa > 120s). The
remaining free space corresponds to the reachable conflict-free
speed/heading combinations. In the SSD, the current heading
and speed are indicated by the green vector, see Figure 2. As an
additional feature, the target heading to the exit waypoint of the
respective aircraft is shown with a blue line. This information
is part of the normal tasks of an air traffic controller, and may
influence conflict resolution decisions.

In the current study, the above method is used to learn
individual controller strategies for observed traffic conflicts.
Following Westin’s approach [37], this study defines strategy
in terms of three control variables: resolution type (heading,
speed, or direct-to), resolution direction (left or right, speed
increase or decrease), and resolution magnitude ([0, 10] deg,
[10, 45] deg and > 45 for heading resolutions, and [200�250]
kts, and [250� 290] kts for speed resolutions) With the SSDs
of all detected conflicts as input, three independent CNNs (as
described in Figure 1) are trained to match the SSD of the
controlled aircraft to the observed controller strategy: one CNN
for resolution type, one for resolution direction, and one for
resolution magnitude.

III. EXPERIMENT

An experiment was performed to provide training and testing
data for the model described in the previous section. In this
experiment, participants were asked to control a sector with
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Approach: Example of input layer
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Approach: Model output

Three models for three control variables:
1. Resolution type (heading, speed, direct-to)
2. Resolution direction (left/right, up/down)
3. Resolution magnitude

INPUT
Channels: 3

OUTPUT
Classes: 2 or 3

SIZE: 64x32x3 63x31x32 31x15x32 30x14x64 15x7x64 14x6x32 2688 1024 1024 2 or 3

Convolution
Filters: 32

Downsampling Convolution
Filters: 64

Convolution
Filters: 32

Downsampling Flattening Dense Dropout Dense

Fig. 1: The Convolutional Neural Network structure used in this research. All weights in one plane are
identical. Size values are given in pixels. Adapted from LeCun (1998) [16].

new output map. By using different filters, specific visual
features can be extracted from the input image, such as small
corners or edges. In this study, filter size is always 2 ⇥ 2
pixels, and filters progress over the image with a stride of
1 pixel. The visual features are subsequently combined to
form compositions while progressing through the net, using
successive layers of filters. To avoid overfitting and reduce
computational cost, the data is also downsampled in between
filter steps [24]. In the final steps, the data is flattened, and
reduced in steps to the expected number of output classes
(e.g., when a conflict resolution maneuver can be either using
heading, speed, or a direct-to, output classes are heading,
speed, and direct-to, resulting in an output size of three). To
reduce overfitting, a dropout layer is added here that sets the
weights of a fraction of the neurons to zero at each epoch
during training [25].

The neurons in each layer are specified by an activation
function. In this study, all layers but the final layer use a
Rectified Linear Unit (ReLU) activation function, because of
its computational efficiency [26]. The final layer uses a softmax
function [27], which transforms the layer of real values into
a vector of probabilities per output class �(z). The softmax
function is defined by Equation 1, where all entries of � are
real, within [0, 1], and add up to 1. K is the dimension of input
vector z.

�(z)j =
e
zj

PK
k=1 e

zk
for j = 1, ...,K (1)

A cross-entropy function is used to take these probabilities
into account in the loss function [28]. The cross entropy H is
calculated for M output classes by comparing the probability
vector � resulting from the softmax function to the one-hot
encoded target vector yi:

H(y,�) = �
MX

i

yi log �i (2)

The calculated losses, averaged over a minibatch of samples
are used to update the network parameters ✓. In this study,
this update is done using a first-order gradient-based opti-
mization algorithm called Adam. Empirical results show that it
outperforms previously popular optimizers such as AdaGrad,
RMSProp and SGDNesterov [29].

The performance of CNNs is naturally determined by their

inputs, as they should capture all relevant information for the
model to make a prediction. This research utilizes the Solution
Space Diagram (SSD) as input to the neural network. The
SSD was originally designed as a decision support tool that
integrates various critical parameters of the Conflict Detection
and Resolution problem [30]–[32]. This was later extended
to complexity and workload analysis [11], [33]–[35], and
automated conflict resolution [15], [36]. Based on the findings
of these studies, this research hypothesizes that an SSD image
as learning feature contains sufficient information concerning
air traffic conflicts to make an informed decision.

Figure 2 illustrates how the SSD is constructed. It consists
of an area of reachable velocities, bounded by concentric
limits of minimum and maximum operating speeds. This
reachable space is reduced by triangular velocity obstacles that
correspond to the set of velocity vectors that would lead to
a loss of separation with a nearby aircraft. The color of the
velocity obstacles is determined by the time to closest point of
approach (CPA), divided into three ranges: red (tcpa < 60s),
orange (60 < tcpa < 120s) and gray (tcpa > 120s). The
remaining free space corresponds to the reachable conflict-free
speed/heading combinations. In the SSD, the current heading
and speed are indicated by the green vector, see Figure 2. As an
additional feature, the target heading to the exit waypoint of the
respective aircraft is shown with a blue line. This information
is part of the normal tasks of an air traffic controller, and may
influence conflict resolution decisions.

In the current study, the above method is used to learn
individual controller strategies for observed traffic conflicts.
Following Westin’s approach [37], this study defines strategy
in terms of three control variables: resolution type (heading,
speed, or direct-to), resolution direction (left or right, speed
increase or decrease), and resolution magnitude ([0, 10] deg,
[10, 45] deg and > 45 for heading resolutions, and [200�250]
kts, and [250� 290] kts for speed resolutions) With the SSDs
of all detected conflicts as input, three independent CNNs (as
described in Figure 1) are trained to match the SSD of the
controlled aircraft to the observed controller strategy: one CNN
for resolution type, one for resolution direction, and one for
resolution magnitude.

III. EXPERIMENT

An experiment was performed to provide training and testing
data for the model described in the previous section. In this
experiment, participants were asked to control a sector with

x3
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Getting the data: Experiment setup

Human in the loop experiment:

Control a sector, while

Using either

1

2 Guiding the aircraft to their exit waypoint as 
efficiently as possible

Avoiding Loss-of-Separation between aircraft

1. Heading (HDG)
2. Speed (SPD)
3. Direct To (DCT)

(a)

Vmin
Vmax

-Vint

(b) (c)

Fig. 2: Construction of the SSD: (a) The grey area indicates the set of conflicting relative velocities. (b) The area is displaced by
the velocity vector of Aintruder to generate the velocity obstacle of Aintruder for Acontrolled, (c) The SSD is created by limiting the
solution area with the minimum (Vmin) and maximum (Vmax) velocity of Acontrolled. Adapted from Mercado et al. (2010) [11].

multiple incoming aircraft, where they guided the aircraft to
their exit waypoint as efficiently as possible, while avoiding
losses of separation. The shape of the sector – inspired by Am-
sterdam Sector South 1 – is shown in Figure 3. Maneuvering
was restricted to the horizontal plane, i.e., all aircraft flew at
the same flight level and only heading, speed, and direct-to
commands were allowed by means of a command interface
(Figure 4). These restrictions decreased the solution space and
degrees of freedom, which enabled better comparison between
controllers in terms of consistency and strategy.

A. Conditions

Two traffic scenarios (S1 and S2) were used in the experi-
ment with identical sector geometry but different traffic flows.
Each scenario consisted of 10 conflict pairs. The main aircraft
flow was always directed towards the north, and was crossed
by traffic on several headings from the east. All conflicts were
crossing conflicts, with conflict angles between 45 and 135
degrees. Every conflict angle in the set {45, 55, ... , 135} was
visited at least four times during the entire experiment. The
conflicts were chronologically spaced in a way to minimize
interference between conflicts.

Both scenarios were performed two times, resulting in a total
of four 20-minute scenarios, generating 80 minutes of data
per participant. The order of the conditions was randomized
between participants to avoid learning biases.

B. Participants

The population consisted of 12 participants. All participants
were novices, with varying experience in performing ATC
control tasks. Half of the participants had knowledge of ATC
concepts, but no working experience in controlling a sector.
The other half of the participants previously participated in
an ATC introductory course at the Dutch Aerospace Research
Laboratory NLR, and therefore had some experience in con-
trolling air traffic.

C. Procedure

The experiment was performed on a personal computer with
a 30” screen showing the sector under control, and a touch
control device window similar to the touch control devices
used at the Dutch air navigation service provider LVNL.
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Fig. 3: The 50nm ⇥ 60nm sector as displayed in ATC simulator
SectorX. The magenta lines depict the main traffic flows north-
and west-bound. Three aircraft are visible of which two are
in conflict. The circles surrounding the aircraft indicate the
protected zones (D = 5nm).

Fig. 4: The command interface that participants used in con-
trolling the aircraft.
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Getting the data: Participants and runs

2 scenarios with 4 repeats12 participants

Novice

‘Intermediate’
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Fig. 2: Construction of the SSD: (a) The grey area indicates the set of conflicting relative velocities. (b) The area is displaced by
the velocity vector of Aintruder to generate the velocity obstacle of Aintruder for Acontrolled, (c) The SSD is created by limiting the
solution area with the minimum (Vmin) and maximum (Vmax) velocity of Acontrolled. Adapted from Mercado et al. (2010) [11].

multiple incoming aircraft, where they guided the aircraft to
their exit waypoint as efficiently as possible, while avoiding
losses of separation. The shape of the sector – inspired by Am-
sterdam Sector South 1 – is shown in Figure 3. Maneuvering
was restricted to the horizontal plane, i.e., all aircraft flew at
the same flight level and only heading, speed, and direct-to
commands were allowed by means of a command interface
(Figure 4). These restrictions decreased the solution space and
degrees of freedom, which enabled better comparison between
controllers in terms of consistency and strategy.

A. Conditions

Two traffic scenarios (S1 and S2) were used in the experi-
ment with identical sector geometry but different traffic flows.
Each scenario consisted of 10 conflict pairs. The main aircraft
flow was always directed towards the north, and was crossed
by traffic on several headings from the east. All conflicts were
crossing conflicts, with conflict angles between 45 and 135
degrees. Every conflict angle in the set {45, 55, ... , 135} was
visited at least four times during the entire experiment. The
conflicts were chronologically spaced in a way to minimize
interference between conflicts.

Both scenarios were performed two times, resulting in a total
of four 20-minute scenarios, generating 80 minutes of data
per participant. The order of the conditions was randomized
between participants to avoid learning biases.

B. Participants

The population consisted of 12 participants. All participants
were novices, with varying experience in performing ATC
control tasks. Half of the participants had knowledge of ATC
concepts, but no working experience in controlling a sector.
The other half of the participants previously participated in
an ATC introductory course at the Dutch Aerospace Research
Laboratory NLR, and therefore had some experience in con-
trolling air traffic.

C. Procedure

The experiment was performed on a personal computer with
a 30” screen showing the sector under control, and a touch
control device window similar to the touch control devices
used at the Dutch air navigation service provider LVNL.
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Fig. 3: The 50nm ⇥ 60nm sector as displayed in ATC simulator
SectorX. The magenta lines depict the main traffic flows north-
and west-bound. Three aircraft are visible of which two are
in conflict. The circles surrounding the aircraft indicate the
protected zones (D = 5nm).

Fig. 4: The command interface that participants used in con-
trolling the aircraft.

scenario 1: 10 conflicts

x 4
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Fig. 2: Construction of the SSD: (a) The grey area indicates the set of conflicting relative velocities. (b) The area is displaced by
the velocity vector of Aintruder to generate the velocity obstacle of Aintruder for Acontrolled, (c) The SSD is created by limiting the
solution area with the minimum (Vmin) and maximum (Vmax) velocity of Acontrolled. Adapted from Mercado et al. (2010) [11].

multiple incoming aircraft, where they guided the aircraft to
their exit waypoint as efficiently as possible, while avoiding
losses of separation. The shape of the sector – inspired by Am-
sterdam Sector South 1 – is shown in Figure 3. Maneuvering
was restricted to the horizontal plane, i.e., all aircraft flew at
the same flight level and only heading, speed, and direct-to
commands were allowed by means of a command interface
(Figure 4). These restrictions decreased the solution space and
degrees of freedom, which enabled better comparison between
controllers in terms of consistency and strategy.

A. Conditions

Two traffic scenarios (S1 and S2) were used in the experi-
ment with identical sector geometry but different traffic flows.
Each scenario consisted of 10 conflict pairs. The main aircraft
flow was always directed towards the north, and was crossed
by traffic on several headings from the east. All conflicts were
crossing conflicts, with conflict angles between 45 and 135
degrees. Every conflict angle in the set {45, 55, ... , 135} was
visited at least four times during the entire experiment. The
conflicts were chronologically spaced in a way to minimize
interference between conflicts.

Both scenarios were performed two times, resulting in a total
of four 20-minute scenarios, generating 80 minutes of data
per participant. The order of the conditions was randomized
between participants to avoid learning biases.

B. Participants

The population consisted of 12 participants. All participants
were novices, with varying experience in performing ATC
control tasks. Half of the participants had knowledge of ATC
concepts, but no working experience in controlling a sector.
The other half of the participants previously participated in
an ATC introductory course at the Dutch Aerospace Research
Laboratory NLR, and therefore had some experience in con-
trolling air traffic.

C. Procedure

The experiment was performed on a personal computer with
a 30” screen showing the sector under control, and a touch
control device window similar to the touch control devices
used at the Dutch air navigation service provider LVNL.
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Fig. 3: The 50nm ⇥ 60nm sector as displayed in ATC simulator
SectorX. The magenta lines depict the main traffic flows north-
and west-bound. Three aircraft are visible of which two are
in conflict. The circles surrounding the aircraft indicate the
protected zones (D = 5nm).

Fig. 4: The command interface that participants used in con-
trolling the aircraft.

scenario 2: 10 conflicts

x 4

80 conflicts x 12 participants
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Getting the results: Training models

• Three models for type, direction, and magnitude
– Training data: run 1-3
– Test data: run 4
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Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.

(a) Regular (b) Inter-participant (c) Baseline

Fig. 7: Three validation steps for participant 1 (P1).

TABLE I: (Hyper)parameters during training.

Parameters Value

Optimization algorithm Adam
Output activation Softmax classifier
Loss function Categorical entropy
Train/val/test ratio 60%/15%/25%
K-folds 5
Mini batch-size 32 samples
Steps-per-epoch 2 ⇥ training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

models were trained. In this section, the training phase is
illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween �1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,
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K-fold validation: better performance for small datasets

Iteration 1 TestTrainingVal

Run 1 - 3

Iteration 2 TestVal

Iteration 3 TestVal

Iteration 4 TestVal

Iteration 5 TestVal

Run 4

Source: Wikipedia – Overfitting (2019)
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Getting the results: Testing conformance

Two types of models: individual and general

Three tests: individual, cross-validation, and baseline
Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.
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Fig. 7: Three validation steps for participant 1 (P1).

TABLE I: (Hyper)parameters during training.

Parameters Value

Optimization algorithm Adam
Output activation Softmax classifier
Loss function Categorical entropy
Train/val/test ratio 60%/15%/25%
K-folds 5
Mini batch-size 32 samples
Steps-per-epoch 2 ⇥ training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

models were trained. In this section, the training phase is
illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween �1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,

BaselineCross-validationIndividual conformance
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Results: Let’s start with some eyeballing

Participant 7, Scenario 1, Run 4 Participant 11 , Scenario 1, Run 4
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Results: Training performance

Individual model training Participant 1

Fig. 8: Validation performance during training of P1’s individ-
ual model. The spread indicates the maximum and minimum
performance for each fold per control variable.

Fig. 9: Model test-performance per control variable.

the large variability in performance (particularly for the type

control variable) indicates that the personalized predictions are
not equally effective across the entire population of partici-
pants. The direction prediction shows the highest MCC score
(mean = 0.76, SD = 0.11), while type (mean = 0.52, SD =
0.21) and magnitude (mean = 0.64, SD = 0.12) predictions
achieve lower performances.

A potential reason for poor performance of the trained
model is low participant consistency: in some cases, the
participant data on which the model is trained does not show
sufficiently consistent behaviour across different runs, and
between conflicts that do appear comparable in the SSD.
Figure 10 shows the normalized consistency (as defined in
Section III-E) per participant and control variable. Here, it can
be seen that while some participants are relatively consistent
(participants 5, 7 and 10), other participants (particularly 8
and 11) show more erratic decision-making. Figure 10 also
shows that participant consistency varies per control variable.
For instance, participants can be very consistent in the type of
resolution they choose, but are less consistent in the direction

they choose for their resolutions.
The effect of participant consistency on the performance of

the trained model can be evaluated by observing the correlation
between consistency and model performance. To illustrate this,
Figure 11 shows the mean model performance (the mean over
all folds and abstraction levels), against the mean consistency
per participant. When a Pearson Correlation Coefficient test is

Fig. 10: Consistency scores per participant split per control
variable.

Fig. 11: Participant consistency vs individual model perfor-
mance. R2 = 0.56.

applied to this data, a positive correlation (r = 0.75, p = .005)
can be found between participant consistency and individual
model MCC. This supports the assumption that the personal
models of more consistent participants perform better than the
models of their less consistent counterparts.

C. Model performance on inter-participant data

A way to evaluate whether the personalized models are
indeed individual-sensitive, is to test the models against all
other participant test datasets. Figure 12 shows the results
of using the models of each participant on the test data of
all participants. In these spider-plots, the model performance
(MCC value) in terms of type (blue), direction (orange), and
magnitude (green) is shown for each participant’s test data,
along twelve radials of each chart. For the individual models
of participants 1, 6, 7, 9, and 10 it can be seen that overall
performance is highest when the model is applied to the test
data of the corresponding participant. For instance, for the
individual model of participant 1, a mean performance of MCC
= 0.72 is achieved when the model is applied on the test data
of participant 1, compared to an average MCC of 0.37 when
testing with other participants’ data. This difference indicates
that participant 1 makes different decisions in similar situations
compared to the rest of the population. Other participants’
models show more uniform MCC scores, regardless of which
test set is used.
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96% accuracy
P6 Direction prediction

Results: Individual conformance

Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.
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Fig. 7: Three validation steps for participant 1 (P1).

TABLE I: (Hyper)parameters during training.

Parameters Value

Optimization algorithm Adam
Output activation Softmax classifier
Loss function Categorical entropy
Train/val/test ratio 60%/15%/25%
K-folds 5
Mini batch-size 32 samples
Steps-per-epoch 2 ⇥ training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

models were trained. In this section, the training phase is
illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween �1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,
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Results: Individual conformance

Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.
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Fig. 7: Three validation steps for participant 1 (P1).

TABLE I: (Hyper)parameters during training.

Parameters Value

Optimization algorithm Adam
Output activation Softmax classifier
Loss function Categorical entropy
Train/val/test ratio 60%/15%/25%
K-folds 5
Mini batch-size 32 samples
Steps-per-epoch 2 ⇥ training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

models were trained. In this section, the training phase is
illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween �1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,
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Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.
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Fig. 7: Three validation steps for participant 1 (P1).

TABLE I: (Hyper)parameters during training.

Parameters Value

Optimization algorithm Adam
Output activation Softmax classifier
Loss function Categorical entropy
Train/val/test ratio 60%/15%/25%
K-folds 5
Mini batch-size 32 samples
Steps-per-epoch 2 ⇥ training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

models were trained. In this section, the training phase is
illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween �1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,

Fig. 8: Validation performance during training of P1’s individ-
ual model. The spread indicates the maximum and minimum
performance for each fold per control variable.

Fig. 9: Model test-performance per control variable.

the large variability in performance (particularly for the type

control variable) indicates that the personalized predictions are
not equally effective across the entire population of partici-
pants. The direction prediction shows the highest MCC score
(mean = 0.76, SD = 0.11), while type (mean = 0.52, SD =
0.21) and magnitude (mean = 0.64, SD = 0.12) predictions
achieve lower performances.

A potential reason for poor performance of the trained
model is low participant consistency: in some cases, the
participant data on which the model is trained does not show
sufficiently consistent behaviour across different runs, and
between conflicts that do appear comparable in the SSD.
Figure 10 shows the normalized consistency (as defined in
Section III-E) per participant and control variable. Here, it can
be seen that while some participants are relatively consistent
(participants 5, 7 and 10), other participants (particularly 8
and 11) show more erratic decision-making. Figure 10 also
shows that participant consistency varies per control variable.
For instance, participants can be very consistent in the type of
resolution they choose, but are less consistent in the direction

they choose for their resolutions.
The effect of participant consistency on the performance of

the trained model can be evaluated by observing the correlation
between consistency and model performance. To illustrate this,
Figure 11 shows the mean model performance (the mean over
all folds and abstraction levels), against the mean consistency
per participant. When a Pearson Correlation Coefficient test is

Fig. 10: Consistency scores per participant split per control
variable.

Fig. 11: Participant consistency vs individual model perfor-
mance. R2 = 0.56.

applied to this data, a positive correlation (r = 0.75, p = .005)
can be found between participant consistency and individual
model MCC. This supports the assumption that the personal
models of more consistent participants perform better than the
models of their less consistent counterparts.

C. Model performance on inter-participant data

A way to evaluate whether the personalized models are
indeed individual-sensitive, is to test the models against all
other participant test datasets. Figure 12 shows the results
of using the models of each participant on the test data of
all participants. In these spider-plots, the model performance
(MCC value) in terms of type (blue), direction (orange), and
magnitude (green) is shown for each participant’s test data,
along twelve radials of each chart. For the individual models
of participants 1, 6, 7, 9, and 10 it can be seen that overall
performance is highest when the model is applied to the test
data of the corresponding participant. For instance, for the
individual model of participant 1, a mean performance of MCC
= 0.72 is achieved when the model is applied on the test data
of participant 1, compared to an average MCC of 0.37 when
testing with other participants’ data. This difference indicates
that participant 1 makes different decisions in similar situations
compared to the rest of the population. Other participants’
models show more uniform MCC scores, regardless of which
test set is used.
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Results: Consistency

Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.
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Fig. 7: Three validation steps for participant 1 (P1).

TABLE I: (Hyper)parameters during training.

Parameters Value

Optimization algorithm Adam
Output activation Softmax classifier
Loss function Categorical entropy
Train/val/test ratio 60%/15%/25%
K-folds 5
Mini batch-size 32 samples
Steps-per-epoch 2 ⇥ training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

models were trained. In this section, the training phase is
illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween �1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,

Fig. 8: Validation performance during training of P1’s individ-
ual model. The spread indicates the maximum and minimum
performance for each fold per control variable.

Fig. 9: Model test-performance per control variable.

the large variability in performance (particularly for the type

control variable) indicates that the personalized predictions are
not equally effective across the entire population of partici-
pants. The direction prediction shows the highest MCC score
(mean = 0.76, SD = 0.11), while type (mean = 0.52, SD =
0.21) and magnitude (mean = 0.64, SD = 0.12) predictions
achieve lower performances.

A potential reason for poor performance of the trained
model is low participant consistency: in some cases, the
participant data on which the model is trained does not show
sufficiently consistent behaviour across different runs, and
between conflicts that do appear comparable in the SSD.
Figure 10 shows the normalized consistency (as defined in
Section III-E) per participant and control variable. Here, it can
be seen that while some participants are relatively consistent
(participants 5, 7 and 10), other participants (particularly 8
and 11) show more erratic decision-making. Figure 10 also
shows that participant consistency varies per control variable.
For instance, participants can be very consistent in the type of
resolution they choose, but are less consistent in the direction

they choose for their resolutions.
The effect of participant consistency on the performance of

the trained model can be evaluated by observing the correlation
between consistency and model performance. To illustrate this,
Figure 11 shows the mean model performance (the mean over
all folds and abstraction levels), against the mean consistency
per participant. When a Pearson Correlation Coefficient test is

Fig. 10: Consistency scores per participant split per control
variable.

Fig. 11: Participant consistency vs individual model perfor-
mance. R2 = 0.56.

applied to this data, a positive correlation (r = 0.75, p = .005)
can be found between participant consistency and individual
model MCC. This supports the assumption that the personal
models of more consistent participants perform better than the
models of their less consistent counterparts.

C. Model performance on inter-participant data

A way to evaluate whether the personalized models are
indeed individual-sensitive, is to test the models against all
other participant test datasets. Figure 12 shows the results
of using the models of each participant on the test data of
all participants. In these spider-plots, the model performance
(MCC value) in terms of type (blue), direction (orange), and
magnitude (green) is shown for each participant’s test data,
along twelve radials of each chart. For the individual models
of participants 1, 6, 7, 9, and 10 it can be seen that overall
performance is highest when the model is applied to the test
data of the corresponding participant. For instance, for the
individual model of participant 1, a mean performance of MCC
= 0.72 is achieved when the model is applied on the test data
of participant 1, compared to an average MCC of 0.37 when
testing with other participants’ data. This difference indicates
that participant 1 makes different decisions in similar situations
compared to the rest of the population. Other participants’
models show more uniform MCC scores, regardless of which
test set is used.
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R = 0.75

Results: Consistency

Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.
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Fig. 7: Three validation steps for participant 1 (P1).

TABLE I: (Hyper)parameters during training.

Parameters Value

Optimization algorithm Adam
Output activation Softmax classifier
Loss function Categorical entropy
Train/val/test ratio 60%/15%/25%
K-folds 5
Mini batch-size 32 samples
Steps-per-epoch 2 ⇥ training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

models were trained. In this section, the training phase is
illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween �1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,
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Results: Cross-validation

Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.
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Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px
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illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween �1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,

Fig. 12: Performance (in MCC) of individual models tested on the test datasets of all other participants.

Fig. 13: Performance (in MCC) of each participant’s individual
model compared to the mean performance of five general
models, averaged over all abstraction levels.

D. Comparison between individual and general models

A second way to test whether the trained models are
individual-sensitive is to compare individual model perfor-
mance to the performance of the general models, when applied
to the test data of each respective participant. Figure 13 shows
the average individual model performance per participant,
compared to the average general model performance per partic-
ipant. The chart shows that most individual models outperform
the mean of the general models, but some cases show near
equal or even worse (P4 and P8) performance, possibly caused
by a strategy change in the final run.

A paired t-test shows that the individual models perform

Fig. 14: Comparison of model performance between general
and individual models.

significantly better (t(11) = 2.9, p = 0.02) than the general
models in terms of MCC, see Figure 14. The individual models
provide a mean 0.08 (SD = 0.10) MCC improvement over the
general models. The personalized approach is most effective
for participant 1, whose individual models score 0.20 MCC
higher than the baseline.

V. DISCUSSION

The aim of this study was to create individual-sensitive
models of controller strategy by training a set of convolutional
neural networks on a visual representation of traffic conflicts.
A human-in-the-loop experiment was performed to generate
training data for the model creation.

It is a common problem in machine learning that such
model training requires a large amount of data. To mitigate
this problem, the performed experiment considered only a
subset of the types of conflict that controllers can encounter in
their sector. Throughout the experiment, similar conflicts were
presented to each participant multiple times, by only introduc-
ing conflicting traffic from the east, with a limited number
of crossing angles. In addition, altitude differences were not
taken into account, nor were altitude changes accepted as
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Results: Cross-validation

Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.
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Mini batch-size 32 samples
Steps-per-epoch 2 ⇥ training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

models were trained. In this section, the training phase is
illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween �1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,
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to the test data of each respective participant. Figure 13 shows
the average individual model performance per participant,
compared to the average general model performance per partic-
ipant. The chart shows that most individual models outperform
the mean of the general models, but some cases show near
equal or even worse (P4 and P8) performance, possibly caused
by a strategy change in the final run.
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significantly better (t(11) = 2.9, p = 0.02) than the general
models in terms of MCC, see Figure 14. The individual models
provide a mean 0.08 (SD = 0.10) MCC improvement over the
general models. The personalized approach is most effective
for participant 1, whose individual models score 0.20 MCC
higher than the baseline.

V. DISCUSSION

The aim of this study was to create individual-sensitive
models of controller strategy by training a set of convolutional
neural networks on a visual representation of traffic conflicts.
A human-in-the-loop experiment was performed to generate
training data for the model creation.

It is a common problem in machine learning that such
model training requires a large amount of data. To mitigate
this problem, the performed experiment considered only a
subset of the types of conflict that controllers can encounter in
their sector. Throughout the experiment, similar conflicts were
presented to each participant multiple times, by only introduc-
ing conflicting traffic from the east, with a limited number
of crossing angles. In addition, altitude differences were not
taken into account, nor were altitude changes accepted as



36
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Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.
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Fig. 7: Three validation steps for participant 1 (P1).

TABLE I: (Hyper)parameters during training.

Parameters Value

Optimization algorithm Adam
Output activation Softmax classifier
Loss function Categorical entropy
Train/val/test ratio 60%/15%/25%
K-folds 5
Mini batch-size 32 samples
Steps-per-epoch 2 ⇥ training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

models were trained. In this section, the training phase is
illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween �1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,
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equal or even worse (P4 and P8) performance, possibly caused
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neural networks on a visual representation of traffic conflicts.
A human-in-the-loop experiment was performed to generate
training data for the model creation.
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significantly better (t(11) = 2.9, p = 0.02) than the general
models in terms of MCC, see Figure 14. The individual models
provide a mean 0.08 (SD = 0.10) MCC improvement over the
general models. The personalized approach is most effective
for participant 1, whose individual models score 0.20 MCC
higher than the baseline.
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The aim of this study was to create individual-sensitive
models of controller strategy by training a set of convolutional
neural networks on a visual representation of traffic conflicts.
A human-in-the-loop experiment was performed to generate
training data for the model creation.

It is a common problem in machine learning that such
model training requires a large amount of data. To mitigate
this problem, the performed experiment considered only a
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their sector. Throughout the experiment, similar conflicts were
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Results: Baseline validationFig. 12: Performance (in MCC) of individual models tested on the test datasets of all other participants.
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Discussion: Putting things into perspective

Limitations of the experiment

1. Participating ‘air traffic controllers’ are not professionals

2. Scenarios are constrained in conflict angles and altitude

3. Experiment runs still contain training effects
Run 1

Run 2

Run 4

Run 3

Speed commands over time 
Participant 3
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Discussion: Putting things into perspective

Suitability of SSD and machine learning approach

1. Convolutional neural networks converge but overfitting does occur

2. Higher-level decisions and information are not incorporated in the model

3. Neural networks remain a black-box approach

“Turn right 
heading 050”Black box



40

Conclusions: The silver lining

1

2

3

SSD images contain sufficient information to predict 
resolutions in horizontal conflict detection and resolution

Convolutional Neural Networks are a feasible approach to
achieve individual-sensitive automation

Human controllers are sufficiently consistent to train a machine
learning algorithm and are strategy heterogeneous as a group



Conformal Automation for Air Traffic Control 
using Convolutional Neural Networks 

J. Ellerbroek
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BlueSky ATM Simulator

Source: Hoekstra, Ellerbroek - BlueSky ATC Simulator Project: an Open Data and Open Source Approach (2016)

• ATM simulator: BlueSky
• Resolutions: Heading changes only 
• Max. number of A/C: Two
• Resolution algorithm: Modified Voltage Potential

Simulation parameters:

Preliminary analysis
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Consistency metric

Type and direction:

Value:
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Network Architecture
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Network Training
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Crossing conflicts
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Increase of MCC and accuracy by using 
individual models
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Performance of P4’s model


