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Driven by several techno-economic, environmental and structural factors, the 

electric energy industry is expected to undergo a paradigm shift with a considerably 

increased level of renewables (mainly variable energy sources such as wind and 

solar), gradually replacing conventional power production sources. The scale and 

the speed of integrating such sources of energy are of paramount importance to 

effectively address a multitude of global and local concerns such as climate change, 

sustainability and energy security. In recent years, wind and solar power have been 

attracting large-scale investments in many countries, especially in Europe. The 

favorable agreements of states to curb greenhouse gas emissions and mitigate 

climate change, along with other driving factors, will further accelerate the 

renewable integration in power systems.  

Renewable energy sources (RESs), wind and solar in particular, are abundant almost 

everywhere, although their energy intensities differ very much from one place to 

another. Because of this, a significant integration of such energy sources requires 

heavy investments in transmission infrastructures. In other words, transmission 

expansion planning (TEP) has to be carried out in geographically wide and large-

scale networks. This helps to effectively accommodate the RESs and optimally 

exploit their benefits while minimizing their side effects. However, the uncertain 

nature of most of the renewable sources, along with the size of the network systems, 

results in optimization problems that may become intractable in practice or require a 

huge computational effort. Thus, the challenge addressed in this work is to design 

models, strategies and tools that may solve large-scale and uncertain TEP problems, 

being computationally efficient and reasonably accurate. Of course, the specific 

definition of the term “reasonably accurate” is the key issue of the thesis work, since 

it requires a deep understanding of the main cost and technical drivers of adequate 

TEP investment decisions. 

A new formulation is proposed in this dissertation for a long-term planning of 

transmission investments under uncertainty, with a multi-stage decision framework 

and considering a high level of renewable sources integration. This multi-stage 

strategy combines the need for short-term decisions with the evaluation of long-term 

scenarios, which is the practical essence of a real-world planning. 
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The TEP problem is defined as a stochastic mixed-integer linear programming (S-

MILP) optimization, an exact solution method. This allows the use of effective off-

the-shelf solvers to obtain solutions within a reasonable computational time, 

enhancing overall problem tractability. Furthermore, in order to significantly reduce 

the combinatorial solution search (CSS) space, a specific heuristic solution strategy 

is devised. 

In this global heuristic strategy, the problem is decomposed into successive 

optimization phases. Each phase uses more complex optimization models than the 

previous one, and uses the results of the previous phase so that the combinatorial 

solution search space is reduced after each phase. Moreover, each optimization 

phase is defined and solved as an independent problem; thus, allowing the use of 

specific decomposition techniques, or parallel computation when possible. A 

relevant feature of the solution strategy is that it combines deterministic and 

stochastic modeling techniques on a multi-stage modeling framework with a rolling-

window planning concept. 

The planning horizon is divided into two sub-horizons: medium- and long-term, 

both having multiple decision stages. The first sub-horizon is characterized by a set 

of investments, which are good enough for all scenarios, in each stage while 

scenario-dependent decisions are made in the second sub-horizon. 

One of the first modeling challenges of this work is to select the right network 

model for power flow and congestion evaluation: complex enough to capture the 

relevant features but simple enough to be computationally fast. The thesis includes 

extensive analysis of existing and improved network models such as AC, linearized 

AC, “DC”, hybrid and pipeline models, both for the existing and the candidate lines. 

Finally, a DC network model is proposed as the most suitable option. 

This work also analyzes alternative losses models. Some of them are already 

available and others are proposed as original contributions of the thesis. These 

models are evaluated in the context of the target problem, i.e., in finding the right 

balance between accuracy and computational effort in a large-scale TEP problem 

subject to significant RES integration. It has to be pointed out that, although losses 

are usually neglected in TEP studies because of computational limitations, they are 

critical in network expansion decisions. In fact, using inadequate models may lead 

not only to cost-estimation errors, but also to technical errors such as the so-called 

“artificial losses”. 

Another relevant contribution of this work is a domain-driven clustering process to 

handle operational states. This allows a more compact and efficient representation of 

uncertainty with little loss of accuracy. This is relevant because, together with 

electricity demand and other traditional sources of uncertainty, the integration of 

variable energy sources introduces an additional operational variability and 

uncertainty. 
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A substantial part of this uncertainty and variability is often handled by a set of 

operational states, here referred to as “snapshots”, which are generation-demand 

patterns of power systems that lead to optimal power flow (OPF) patterns in the 

transmission network. A large set of snapshots, each one with an estimated 

probability, is then used to evaluate and optimize the network expansion. In a long-

term TEP problem of large networks, the number of operational states must be 

reduced. Hence, from a methodological perspective, this thesis shows how the 

snapshot reduction can be achieved by means of clustering, without relevant loss of 

accuracy, provided that a good selection of classification variables is used in the 

clustering process. The proposed method relies on two ideas. First, the snapshots are 

characterized by their OPF patterns (the effects) instead of the generation-demand 

patterns (the causes). This is simply because the network expansion is the target 

problem, and losses and congestions are the drivers to network investments. Second, 

the OPF patterns are classified using a “moments” technique, a well-known 

approach in Optical Pattern Recognition problems. 

The developed models, methods and solution strategies have been tested on small-, 

medium- and large-scale network systems. This thesis also presents numerical 

results of an aggregated 1060-node European network system obtained considering 

multiple RES development scenarios. Generally, test results show the effectiveness 

of the proposed TEP model, since—as originally intended—it contributes to a 

significant reduction in computational effort while fairly maintaining optimality of 

the solutions. 
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Impulsada por factores técnicos, económicos, ambientales y estructurales, la 

industria de la energía eléctrica se someterá a un cambio de paradigma con una 

integración masiva de energías renovables (principalmente fuentes de energía 

intermitentes como la eólica y solar). La escala y velocidad de integración de estas 

fuentes de energía son factores críticos para abordar de manera efectiva una multitud 

de problemas locales y globales, como el cambio climático, la sostenibilidad y la 

seguridad energética. En los últimos años, las energías eólica y solar han estado 

atrayendo grandes inversiones en muchos países, especialmente en Europa. Es de 

esperar que los acuerdos internacionales para reducir las emisiones y mitigar el 

cambio climático, junto con otros factores, aceleren aún más la integración de 

energías renovables en el sistema eléctrico. 

Las fuentes de energía renovables (RESs), y en particular la eólica y la solar, se 

encuentran disponibles en casi todas partes, aunque sus intensidades energéticas 

difieren mucho de un lugar a otro. Debido a esto, una integración significativa de 

dichas fuentes de energía requiere grandes inversiones en infraestructuras de redes 

de transporte. Dicho de otro modo, la planificación de la expansión de la red de 

transporte (TEP) considerará grandes potencias que se transportan a grandes 

distancias. La integración de fuentes de generación intermitente en amplias áreas 

geográficas permitirá explotar dichas fuentes de forma óptima, minimizando los 

efectos indeseables. Pero la incertidumbre asociada y con el tamaño de los sistemas 

plantea problemas de optimización que pueden ser  intratables o al menos requerir 

grandes esfuerzos computacionales. 

Por todo esto, el desafío abordado en esta tesis es el diseño de modelos, estrategias y 

herramientas que puedan resolver problemas TEP de gran escala con un alto nivel 

de incertidumbre (debido en parte a las RESs), siendo computacionalmente eficiente 

y con una precisión razonable. Por supuesto, la estimación de lo que se considera 

“precisión razonable” es parte del trabajo de la tesis, pues requiere un profundo 

conocimiento de los costes asociados y los factores técnicos que condicionan las 

inversiones en expansión de la red. 

En esta tesis se propone una formulación del problema de planificación a largo 

plazo de las inversiones de transporte, en sistemas de gran tamaño y con una 
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penetración masiva de fuentes renovables. La planificación se modela en varias 

etapas, porque combina la necesidad de tomar decisiones a corto plazo con la 

evaluación de escenarios a largo plazo, que es la esencia práctica de una 

planificación en el mundo real. 

El problema TEP se define como una optimización de programación lineal entera 

mixta estocástica (S-MILP), un método ya clásico de programación matemática. 

Esto permite el uso de “solvers” eficientes, y por tanto la factibilidad general del 

problema. Además, se propone en esta tesis una estrategia de reducción del espacio 

combinatorio de búsqueda (CSS) en etapas sucesivas. 

En esta estrategia global, se descompone el problema original en fases sucesivas de 

optimización. Cada fase utiliza modelos de optimización más complejos que las 

anteriores, aprovechando los resultados de las fases anteriores para reducir el 

espacio combinatorio de búsqueda. Cada fase de optimización se define y se 

resuelve como un problema independiente; lo que permite el uso de técnicas y 

modelos a medida, o computación en paralelo cuando sea posible. Los distintos 

problemas combinan técnicas deterministas y estocásticas en un marco de 

planificación de ventana deslizante. 

El horizonte de planificación se divide en dos sub-horizontes, uno de corto-medio y 

otro de largo plazo. Ambos tienen múltiples etapas de decisión. El primer sub-

horizonte se caracteriza por un conjunto de inversiones suficientemente buenas para 

el conjunto de todos los escenarios (o “storylines”) definidos, mientras que en el 

horizonte de largo plazo se adoptan decisiones de inversión a medida de cada 

escenario. 

Uno de los primeros desafíos de modelado en esta tesis es seleccionar el modelo de 

la red adecuado para el flujo óptimo de cargas (OPF). El modelo debe detectar 

adecuadamente congestiones de líneas y niveles altos de pérdidas, que son los 

factores principales para invertir en la red, pero debe ser suficientemente simple 

para permitir ejecuciones rápidas. La tesis incluye un extenso análisis de los 

modelos de red existentes y mejorados, tales como AC, AC linealizado, “DC”, 

modelos híbridos y “pipelines”, y además particularizando los modelos para líneas 

existentes y nuevas. Finalmente se propone el modelo DC como la opción más 

adecuada. 

Esta tesis también analiza modelos alternativos de pérdidas. Algunos ya son 

conocidos, pero otros –nuevos o variantes de conocidos- forman parte de las 

contribuciones originales de la tesis. Estos modelos se evalúan en el contexto 

específico del problema TEP de gran escala con alta penetración de renovables, 

buscando el equilibrio adecuado entre la precisión y el esfuerzo computacional. 

Debe señalarse que las pérdidas son frecuentemente ignoradas en estudios de TEP a 

gran escala, debido a limitaciones de cálculo, pero son muy relevantes en las 

decisiones de expansión de la red. De hecho, además de los errores de estimación de 
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costes, el uso de modelos inadecuados de pérdidas puede provocar errores técnicos, 

como el de las llamadas “pérdidas artificiales”. 

En este tipo de problemas, frecuentemente se modela la incertidumbre en la 

explotación horaria del sistema mediante un conjunto de estados operativos o 

“snapshots”. Estos “snapshots” son patrones de generación y demanda que a su vez 

generan patrones de flujo de cargas óptimo (OPF) en la red de transporte. En general 

es necesario utilizar un gran conjunto de “snapshots”, cada uno con una 

probabilidad estimada, para evaluar y optimizar la expansión de la red 

Una contribución importante de esta tesis es un método de “clustering” 

especializado de estos “snapshots” para reducir el tiempo de cálculo y la dimensión 

del problema, pero sin perder información relevante. Esto es muy importante 

porque, junto con la demanda de electricidad y otras fuentes tradicionales de 

incertidumbre, la integración de energías renovables introduce una variabilidad 

operativa adicional. 

Esta tesis muestra cómo se puede lograr la reducción adecuada de “snapshots” 

mediante “clustering”, gracias a una buena selección de variables de clasificación en 

el proceso de agrupamiento. El método propuesto se basa en dos ideas. En primer 

lugar, los estados operacionales se caracterizan por sus patrones de OPF (los 

efectos) en lugar de los patrones de generación-demanda (las causas). Estos son los 

mejores criterios de agrupamiento porque las congestiones y las pérdidas son las 

principales razones para las inversiones en la red. En segundo lugar, los patrones de 

OPF (congestiones y pérdidas) se clasifican usando variables de “momentos”, un 

enfoque bien conocido en problemas de reconocimiento de imágenes. 

Los modelos, métodos y estrategias de solución han sido probados en sistemas 

eléctricos de pequeño, mediano y gran tamaño. Esta tesis también presenta 

resultados numéricos para un sistema de red a escala europea, representado 

mediante 1060 nudos, y considerando varios escenarios de desarrollo de renovables. 

Los resultados muestran la eficacia del modelo propuesto, ya que genera soluciones 

óptimas o cuasi-óptimas con una reducción significativa en el esfuerzo 

computacional. Además, la estrategia está diseñada para que la herramienta de 

planificación sea realmente interactiva y práctica, pues pide y proporciona 

información útil y comprensible al planificador. 
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optimization, stochastic programming, moments technique, 
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På grund av teknisk-ekonomiska, miljömässiga och strukturella anledningar, 

förväntas elkraft-industrin genomgå ett paradigmskifte med kraftigt höjd andel 

förnybara energikällor (främst variabla energikällor såsom vindkraft och solkraft), 

vilka stegvis kommer ersätta konventionella kraftslag. Volymen och tidsperspektivet 

för integrering av dessa energikällor är centrala för att lösa en mängd globala och 

lokala utmaningar som klimatförändringar, hållbarhet och leveranssäkerhet. Under 

senare år har vindkraft och solkraft inneburit storskaliga investeringar i många 

länder, särskilt inom Europa. De gynnsamma förutsättningar som olika länder 

tillhandahåller för att minska växthusgaser och motverka klimatförändringar, samt 

andra faktorer, kommer ytterligare öka integrationen av förnybara energikällor i 

kraftsystemen. 

Förnybara energikällor (RESs), vind och sol i synnerhet, finns i överflöd nästan 

överallt, även om deras energiintensitet varierar kraftigt från ett ställe till ett annat. 

På grund av detta kräver en lyckad storskalig integration av dessa energikällor 

omfattande investeringar i elnäten. Med andra ord, utbyggnadsplanering för elnäten 

(TEP) måste genomföras över ett geografiskt stort område. Detta underlättar 

integrationen av RES genom att optimalt itmyttja deras fördelar och samtidigt 

mininera deras nackdelar. Dock, den varierande produktionen hos de flesta av de 

förnybara källorna, samt storleken på elsystemen, resulterar i optimeringsproblem 

som kräver beräkningsresurser som är så omfattande att de är orimligt att genomföra 

i praktiken.  

Således är utmaningen i detta arbete att designa strategier och verktyg som ska vara 

beräkningseffektiva och tillräckligt noggranna för att göra det möjligt att lösa 

problem med TEPs i stor skala. Den specifika definitionen av "tillräckligt 

noggranna" är centralt i detta arbete, då det kräver djup förståelse för de 

dominerande kostnaderna och tekniska drivkrafterna för investeringsbeslut i TEPs. 

En ny formulering föreslås här för utbyggnadsplanering av investeringar i 

transmissionssystem under osäkerhet, med ett beslutsramverk i flera steg som tar 

hänsyn till en hög andel förnybara energikällor som är på väg att integreras. Denna 



 

xx  
 

nya flerstegsstrategi kombinerar behovet av kortsiktiga beslut med utvärdering av 

långsiktiga scenarier, vilket i praktiken är själva syftet med verklig planering. 

TEP-problemet definieras som en stokastisk mixed-integer linjär programmering (S-

MILP) optimering, vilket är en exakt metod. Detta tillåter användning av effektiva, 

redan utvecklade, optimeringsprogram för att hitta lösningar med rimlig 

beräkningstid, samt öka problemets spårbarhet. Dessutom, för att signifikant minska 

den kombinatoriska rymden (CSS), har en specifik heuristisk lösningsstrategi tagits 

fram. 

I denna heuristiska globala strategi, är problemet uppdelat i successiva 

optimeringsfaser. De primära faserna använder relativt icke-komplexa 

optimeringsmodeller jämfört med de följande, och varje fas använder resultatet från 

den tidigare fasen, så att den kombinatoriska rymden reduceras efter varje fas. Varje 

optimeringsfas kan definieras och lösas som ett oberoende problem, vilket tillåter 

användning av specifika metoder för att dela upp problemen, eller parallellisera dem 

när möjlighet för detta finns. Specifikt för lösningsstrategin är att den kombinerar 

både deterministiska och stokastiska modelleringstekniker i en fler-stegs-

uppsättning med ett så kallat “rolling window”-koncept. 

Planeringshorisonten är indelad i två undernivåer: mellan och lång sikt, vilka båda 

har multipla beslutsfaser. Den första beslutshorisonten karakteriseras genom ett 

antal investeringar i varje steg vilket är en tillräckligt god approximation för alla 

scenarier medan scenario-beroende beslut söks i den senare beslutsfasen. 

En av de första modelleringsutmaningarna är att välja de rätta elsystem-modellerna 

för kraftflöden och utvärdering av flaskhalsar: tillräckligt komplexa nog för att 

fånga relevanta parametrar men enkla nog för att vara beräkningsmässigt snabba. I 

denna avhandling finns en omfattande genomgång av existerande metoder och 

förbättrade modeller såsom AC, linjäriserad AC, "DC", hybrid samt pipeline 

modeller, både för existerande samt möjliga nya förbindelser. Slutligen föreslås en 

DC-modell som den bästa lösningen.  

Avhandlingen analyserar även alternativa förlustmodeller, där vissa är allmänt 

tillgängliga och andra är nya förslag från här genomförd forskning. Dessa modeller 

utvärderas med avseende på det här studerade problemet, dvs för att försöka hitta 

den rätta balansen mellan noggrannhet och beräkningseffektivitet i storskaliga TEP-

problem med en signifikant volym RES. Det måste påpekas att även om förlusterna 

vanligvis är försummade i TEP-studier p.g.a. begränsade beräkningsmöjligheter, är 

de viktiga för att fatta rätt utbyggnadsbeslut. Faktum är att användning av 

otillräckliga modeller kan leda till inte enbart fel i kostnadskalkyler, men också till 

tekniska fel såsom s.k. "virituella förluster". 

Ett annat relevant bidrag i denna avhandling är en domändriven klustrings-process 

för att hantera olika driftstillstånd. Detta tillåter en mer kompakt och effektiv 

representation av osäkerhet med liten förlust av noggrannhet. Detta är relevant då, 
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tillsammans med efterfrågan och andra traditionella källor till osäkerhet, integration 

av förnybar energi introducerar en ytterligare källa till variabilitet och osäkerhet vid 

driften av kraftsystemet. 

En signifikant del av denna osäkerhet och variabilitet är ofta hanterad av ett antal 

driftslägen i kraftsystemet, "ögonblicksbilder", vilka representerar en uppsättning av 

produktion-konsumtions-balanser i kraftsystem vilka leder till motsvarande optimala 

kraftflöden (OPF) i transmissionsnäten. En stor andel av dessa ögonblicksbilder, 

varje med en uppskattad sannolikhet, används sedan för att utvärdera och optimera 

nätutbyggnaden. I långsiktig TEP av stora nät måste antalet driftslägen reduceras. 

Pga detta, sett från ett behov av metoder, visar denna avhandling hur reduktion av 

dessa ögonblicksbilder kan åstadkommas genom klustring, utan relevant förlust av 

noggrannhet, givet att ett bra urval av klassificerande variabler används i 

klustringsprocessen. Den föreslagna metoden vilar på två idéer, 1: Ögonblicksbilder 

är karakteriserade av sina OPF-flöden (effekterna) istället för mönstret hos 

produktion-konsumtions-balanserna (orsakerna). Detta är naturligt eftersom att 

nätutbyggnad är det som studeras samt att förluster och flaskhalsar är drivkrafterna 

till nätverksinvesteringar. 2: OPF-flöden klassificeras genom användande av 

"moments" tekniken, ett välkänt angreppssätt vid problem inom Optisk 

mönsterigenkänning. 

De utvecklade modellerna, metoderna och lösningstrategierna är testade på små, 

medelstora samt storskaliga elsystem. Denna avhandling presenterar också 

numeriska resultat av ett aggregerat 1060-nods europeiskt elsystem, vilket erhållits 

med beaktande av ett flertal RES-scenarier. Generellt sett visar testresultaten 

effektiviteten med den föreslagna TEP modellen. Den bidrar, vilket varit målet med 

utvecklingen, till en kraftig reduktion i beräkningstid medan den bibehåller kvalitén 

i resultaten. 
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Om verscheidene techno-economische, milieu- en structurele redenen wordt 

verwacht dat de elektrische energie-industrie een paradigmaverschuiving zal 

ondergaan met een aanzienlijk hoger aandeel van hernieuwbare energiebronnen 

(hoofdzakelijk variabele energiebronnen als wind en zon), die geleidelijk de 

conventionele elektriciteitsproductiebronnen zullen vervangen. De schaal en de 

snelheid van de integratie van zulke energiebronnen zijn van het grootste belang om 

een verscheidenheid aan mondiale en lokale kwesties aan te pakken, zoals 

klimaatverandering, duurzaamheid en energiezekerheid. Zoals in recente jaren is 

waargenomen hebben wind- en zonne-energie grootschalige investeringen 

aangetrokken in vele landen, met name in Europa. De gunstige overeenkomsten van 

staten om broeikasgasemissies te beteugelen en klimaatverandering te verminderen, 

samen met andere drijvende krachten, zal de hernieuwbare integratie in 

elektriciteitssystemen verder versnellen. 

Hernieuwbare energiebronnen (RESs), en met name wind en zon, zijn bijna overal 

rijkelijk aanwezig, alhoewel hun energie-intensiteit sterk verschilt van plaats tot 

plaats. Hierom vereist een significante integratie van zulke energiebronnen grote 

investeringen in transmissie-infrastructuren. Met andere woorden, de planning van 

transmissie-uitbreiding (TEP) moet worden uitgevoerd over geografisch uitgestrekte 

en grootschalige netwerken. Dit helpt om de RESs op effectieve wijze te 

accommoderen en hun voordelen optimaal uit te buiten, en tegelijkertijd hun 

neveneffecten worden geminimaliseerd. Echter, het onzekere karakter van de meeste 

hernieuwbare bronnen, tezamen met de omvang van de netwerksystemen, resulteert 

in optimalisatieproblemen die zulke rekenkundige inspanning vergen dat deze in de 

praktijk onnavolgbaar kunnen worden. De uitdaging die daarom in dit werk wordt 

opgepakt is om modellen, strategieën en instrumenten te ontwerpen die 

grootschalige en onzekere TEP-problemen kunnen oplossen, en rekenkundig 

efficiënt en redelijk accuraat zijn. Natuurlijk is de specifieke definitie van de term 

“redelijk accuraat” een hoofdzaak van het werk, aangezien het een grondig begrip 

vergt van de voornaamste kosten en technische aanjagers van adequate TEP-

investeringsbeslissingen. 
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Een nieuwe formulering wordt in dit proefschrift voorgesteld voor een 

langetermijnplanning van transmissie-investeringen onder onzekerheid, met een 

multi-stadium beslissingskader en rekening houdend met een hoge mate van 

integratie van hernieuwbare bronnen. Deze multi-stadium-strategie combineert de 

behoefte aan kortetermijnbesluiten met de evaluatie van langetermijnscenario’s, wat 

de praktische essentie is van daadwerkelijke planning. 

Wordt het TEP-probleem gedefinieerd als een ‘stochastic mixed-integer linear 

programming’-optimalisatie, een exacte oplossingsmethode. Dit maakt het gebruik 

van effectieve, kant-en-klare solvers mogelijk voor het vinden van oplossingen met 

een redelijke rekentijd, waarmee de algehele navolgbaarheid van het probleem 

wordt verbeterd. Verder wordt, om de ‘combinatorial solution search (CSS) space’ 

significant te verminderen, een specifieke heuristische oplossingsstrategie opgesteld. 

In deze algemene heuristische strategie wordt het probleem ontleed in 

opeenvolgende optimalisatiefases. Elke fase gebruikt complexere 

optimalisatiemodellen dan de vorige fase, en gebruikt de resultaten van de vorige 

fase, en dus verkleint de combinatorial solution space na elke fase. Elke 

optimalisatiefase zou kunnen worden gedefinieerd en opgelost als een onafhankelijk 

probleem, wat dus het gebruik van specifieke ontledingstechnieken, of waar 

mogelijk parallelle berekening, mogelijk maakt. Een relevant kenmerk van de 

oplossingsstrategie is dat deze deterministische en stochastische 

modelleertechnieken combineert binnen een multi-stadium modelleerraamwerk met 

een planningsconcept met glijdende tijdshorizon.  

The planningshorizon is onderverdeeld in twee sub-horizonten:  middellange- en 

langetermijn. Beide omvatten meerdere beslissingsstadia. De eerste sub-horizon 

wordt gekarakteriseerd door een reeks investeringen in elk stadium,  welke goed 

genoeg zijn voor alle scenario’s, terwijl scenario-afhankelijke beslissingen in de 

tweede sub-horizon worden gezocht. 

Eén van de eerste modelleeruitdagingen van dit werk is om het juiste netwerkmodel 

te selecteren voor elektriciteitstransport - en congestieberekeningen: complex 

genoeg om de relevante kenmerken te vangen, maar simpel genoeg om een hoge 

rekensnelheid te hebben.  Het proefschrift bevat een uitgebreide analyse van 

bestaande en verbeterde netwerkmodellen zoals AC, ‘linearized AC’, “DC” , 

hybride en pijplijnmodellen, zowel voor de bestaande als de in overweging genomen 

lijnen.  Tot slot wordt een DC-netwerkmodel naar voren gebracht als de beste optie. 

In dit werk worden ook alternatieve verliesmodellen geanalyseerd. Sommige zijn al 

beschikbaar en andere worden aangeboden als originele bijdrages van het 

proefschrift. Deze modellen worden geëvalueerd in de context van het specifieke 

probleem, d.w.z. bij het vinden van de juiste balans tussen precisie en de benodigde 

rekenkracht in een grootschalig TEP-probleem dat onderhevig is aan een 

significante RES-integratie. Het moet worden opgemerkt dat, hoewel verliezen 

gewoonlijk worden genegeerd in TEP-studies vanwege beperkingen in rekenkracht, 
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deze cruciaal zijn bij netwerkuitbreidingsbesluiten.  In feite kan het gebruik van 

inadequate modellen niet alleen tot kostinschattingsfouten leiden, maar ook tot 

technische fouten zoals de zogenaamde “kunstmatige verliezen”. 

Een andere relevante bijdrage van dit werk is een domein-gedreven 

clusteringsproces om met operationele toestanden om te gaan. Dit zorgt voor een 

compactere en efficiëntere weergave van onzekerheid met weinig verlies in precisie. 

Dit is relevant, omdat, samen met de energievraag en andere traditionele bronnen 

van onzekerheid, de integratie van variabele energiebronnen extra operationele 

variabiliteit met zich meebrengt. 

Een significant deel van deze onzekerheid en variabiliteit wordt vaak gecontroleerd 

door een groep operationele toestanden, hier ‘snapshots’ genoemd. Dit zijn 

productie-vraag-patronen van elektriciteitssystemen die tot optimale patronen van 

elektriciteitstransport (OPF) in het transmissienetwerk leiden. Een grote 

verzameling snapshots, elk met een geschatte waarschijnlijkheid, wordt dan gebruikt 

om de netwerkuitbreiding te berekenen en te optimaliseren. Voor langetermijn-TEP 

van grote netwerken moet het aantal operationele toestanden worden gereduceerd. 

Daarom, vanuit een methodologisch perspectief, laat dit proefschrift zien hoe de 

reductie van snapshots kan worden bereikt door middel van clusteren, zonder 

relevant verlies in precisie, op voorwaarde dat een goede selectie van 

classificatievariabelen wordt gebruikt in het clusteringsproces. De voorgestelde 

methode berust op twee ideeën. Het eerste is dat de snapshots worden 

gekarakteriseerd door hun OPF-patronen (de effecten) in plaats van de productie-

vraag-patronen (de oorzaken). De reden is simpelweg dat de netwerkuitbreiding het 

kernprobleem vormt, en verliezen en congesties de drijfveren voor 

netwerkinvesteringen zijn. Het tweede idee is dat de OPF-patronen worden 

geclassificeerd met behulp van een “momenten”-techniek, een bekende aanpak in 

“Optical Pattern Recognition” problemen. 

De ontwikkelde modellen, methodes en oplossingsstrategieën worden uitgetest op 

klein-, midden-, en grootschalige netwerksystemen. Dit proefschrift presenteert ook 

de numerieke resultaten van een geaggregeerd Europees netwerksysteem met 1060 

knooppunten waarbij gekeken is naar meerdere RES-ontwikkelingsscenario’s. Over 

het geheel genomen laten de testresultaten de effectiviteit van het voorgestelde TEP-

model zien, omdat – zoals oorspronkelijk was beoogd – het bijdraagt aan een 

significante reductie in benodigde rekenkracht, terwijl ook de optimaliteit van de 

oplossingen op eerlijke wijze wordt gehandhaafd. 
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This chapter gives a brief introduction to the research topic, describes the scope 

and outlines the main as well as the specific objectives of this thesis. The thesis 

organization and structure is also presented at the end of this chapter.    

1.1. BACKGROUND 

Most of the energy that we consume today, in one form or another, comes from 

unsustainable energy sources. In particular, the electric industry is highly dependent 

on fossil fuels for power production. This has led to a series of questions from 

energy dependence and sustainability concerns to climate change issues, which are 

some of the major drivers of renewable energy source (RES) integrations in many 

power systems across the world.  It is now widely recognized that integrating RESs 

in power systems brings about a lot of economic, environmental, societal and 

technical benefits to all stakeholders. Among the wide-range benefits of RESs is 

their significant contribution in combating climate change and abating its dire 

consequences. Most RES technologies (wind and solar PV, for instance) have very 

low carbon footprints, making them very suitable for solving such emission-induced 

health and environmental problems. Hence, integrating RESs in power systems 

partly replaces polluting (conventional) power generation sources, resulting in a 

“cleaner” energy mix i.e. one with lower emission levels.  

The potential of RESs is immense throughout the globe. In principle, RESs can meet 

several times the world’s energy demand in a sustainable manner. In many states, 

the transition to RES based power systems is on the increasing trend. Moreover, the 

capital costs of RESs are continuously declining while conventional fuel prices 

continue to oscillate. Moreover, there have been continuous performance 

improvements and R&D undergoing in the RES sector in the past decades. As a 

result, demand for wind and solar energy systems has been continuously increasing. 

With climate change, sustainability, energy security, continuously increasing 

demand for electricity and socio-economic factors as the main drivers, the level of 

global RES integration has been steadily growing during the past decades, as 

indicated in a report by the International Energy Agency (IEA) [1]. The report 

further shows that, in 2013 alone, an approximately 19.1% of global electric energy 

consumption came from RESs, most of which was from hydropower [1], [2]. After 

several decades of efforts in research and continuous development in RES, the 

yearly growth in the capacity of RES plants is becoming greater than the total 

investment capacity added in power plants based on coal, natural gas and oil all 

combined [3]. Nowadays, RESs have reached a significant level of share in the 

energy supply options, becoming one of the prominent global alternative power 

supply sources. The latest global trends in renewable energy investment status 

reports indicate that renewables represented a 58.5% of net additions to global 

power capacity in 2014, with significant growth in all regions, which represents an 

estimated 27.7% of the world’s power generating capacity, enough to supply an 

estimated 22.8% of global electricity. Investments in wind and solar power sources 
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continue to outpace other technologies. Figure 1.1 shows the trends cumulative wind 

and solar power additions in Europe as well as globally. These trends nothing but 

reflect the growing interest in developing renewables. The overall cost-cutting 

achieved to date has helped to ensure such a strong momentum in 2014, reaching an 

investment boom up to 29% in solar, and 11% in wind technologies globally [4]. 

These figures are further strengthened in 2015 [4]  with more than 33% and 16% 

new investments made globally in solar and wind technologies.  

 

Fig. 1. 1 Cumulative installed capacity of wind and solar [4]–[7] . 

These remarkable growths have been against a number of odds such as the recent 

global financial crisis, the dramatically falling fuel prices and the slowdown of 

growth of global electricity consumption that have been thought to decelerate or 

stall this trend [4]. The recent developments in the 2015 Paris climate conference 

(COP-21), overall trends in international policy on RESs, energy dependence 

concerns, the falling capital costs of several matured RES technologies, and other 

techno-economic factors are all expected to further accelerate the RES integration in 

power systems. In general, there is a general consensus that RESs will cover a 

significant amount of electricity consumption in the years to come [2]. 

It can be inferred from Figure 1.1 that Europe, as the leading advocate of 

renewables, accounts for nearly half of the total installed capacities of these 

resources worldwide. European countries have set forth ambitious targets for 

emissions reductions and RES integration. As in Figure 1.2, the renewable share in 

the final energy consumption in Europe is expected to reach 20%, 27% and 80% by 

2020, 2030 and 2050, respectively. As a result, the integration of wind and solar is 

especially expected to significantly increase in the years to come. 
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Fig. 1. 2 Historical and targeted trends of renewable energy share in gross final 

energy consumption in Europe [8]. 

Despite these interesting figures, several challenges remain in place concerning the 

tapping of large-scale RESs, their integrations and their efficient utilization. A 

growing effort in pursuing innovative approaches to increase RES participation is 

required to guarantee a clean energy future. Most of the challenges are related to the 

nature of such resources (especially wind and solar), which are abundant almost 

everywhere on earth but whose energy intensities vastly differ from one place to 

another, and their intermittent nature poses significant challenge in operation and 

planning in terms of uncertainty and variability. In addition, power systems are 

subject to many more sources of uncertainties at different levels: uncertainty in 

generation expansion/retirement, fuel prices, demand growth, component outages, 

carbon emissions, demand response, etc.  

The massive integration of such variable energy sources is likely to require 

significant investments in transmission infrastructures. Because of their distributed 

and uncertain nature, unprecedented transmission expansion planning (TEP) should 

be carried out over a geographically wide area and large-scale networks. This would 

help to exploit their benefits while minimizing the side effects. In the context of 

Europe, for instance, there is an ambitious plan to develop large-scale RESs in the 

coming decades in a bid to curb GHG emissions, promote clean energy technologies 

and meet the increasing demand for electricity. However, these energy sources are 

mostly located in places of low demand, such as the West Coast and the North Sea 

with respect to large-scale wind power developments. There are also initiatives to 

import a huge amount of solar power from Middle East and North Africa (MENA) 

[9]. 
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With these and other scenarios in mind, the European network will have to be 

adequately reinforced and expanded [10], [11]. However, the high level uncertainty 

and variability inherent to such resources [12], along with the size of these network 

systems and the temporal scope, results in a complex and combinatorial 

optimization problem, requiring a huge amount of computational effort, usually 

addressed as a Transmission Expansion Planning (TEP) problem. 

The computational complexity of a TEP problem dramatically increases with the 

size of the network, the planning scope, and the level of uncertainty, and it may 

eventually become intractable. Extensive literature survey reveals that existing 

planning models cannot seamlessly be extended to long-term TEP of large-scale 

networks with high penetration level of RESs mainly because they are not properly 

equipped with the necessary strategies and methods to systematically handle the vast 

uncertainty and operational variability inherent to such a problem. Even at a local 

(national) level, most traditional solution methods have severe modeling and 

computational limitations. All this explains the need for new strategies, tools and 

methods that effectively cope with a problem of this magnitude, which is the main 

theme of this thesis. 

1.2. RESEARCH MOTIVATION AND PROBLEM DEFINITION 

As introduced in the above background, the renewables’ share in the total energy 

consumption will keep on steadily increasing. This will require tapping variable 

energy sources such as wind and solar in geographically wide and remote areas, far 

away from major demand centers and existing transmission infrastructures, leading 

to expansion planning problems of huge network systems. The unprecedented 

uncertainty, temporal and spatial scopes of such problems pose a significant 

computational challenge. This is the main motivation of the present work. Framed in 

this context, this thesis endeavors to address three main research questions 

emanating from modeling and methodological perspectives of the TEP problem.  

Network fidelity: In the context of long-term planning of large-scale networks 

under high penetration of variable energy sources, what are the levels of details that 

can be included in a network expansion model that strikes the right balance between 

accuracy and computational requirement? This question mainly relates to the 

modeling aspects of the network systems. This is discussed in detail in Chapter 3, 

and the modeling aspects of network losses is covered in the published work of this 

thesis [13]. 

Uncertainty and variability:  In the same context, how should the different sources 

of uncertainty and variability be captured in such a way that ensures the right 

balance between problem tractability and solution accuracy? To address this 

question, a new uncertainty and variability management method is presented and 

thoroughly discussed in Chapter 4 and in the published work of this thesis [14]. 
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TEP Model: The high temporal and geographical scope of the problem as well as 

the need for combining short- to long-term planning decisions demands a careful 

design of the TEP model. From this perspective,  how should the TEP model be 

formulated so that it meets these requirements? How could the model combine the 

need for short-term decisions (investments) with the benefits of long-term planning? 

How could the model interact with the user in a useful and understandable way, 

despite the complexity of the problem? These and other related issues are addressed 

in Chapter 5. 

Managing combinatorial explosion: Given the size of the problem, how should the 

combinatorial solution search space be handled? The present work proposes a 

heuristic solution method which includes a systematic way of decomposing the TEP 

problem into successive optimization phases. This is partly presented and discussed 

in the published work of this thesis [15]. 

1.3. THESIS OBJECTIVES 

Main Objective—The main objective of this research is to develop appropriate 

mathematical optimization models, uncertainty and variability management 

methods, and solution strategies that support the complex decision-making process 

of long-term expansion planning of large-scale transmission grids under a high level 

renewable integration.  

Specific Objectives —The specific objectives of this thesis are: 

 To formulate a tractable long-term TEP model for very large-scale network 

systems under high level uncertainty and massive integration of variable 

energy sources; 

 To propose methods for managing uncertainty and variability introduced by 

intermittent energy sources such as wind and solar power generators, 

electricity demand and price as well as component availabilities in addition 

to handling the rest of uncertainty sources that are inherent to TEP problems; 

 To devise a new solution strategy for enhancing the tractability of the TEP 

problem, i.e. reducing computational time without significantly 

compromising the optimality of the solution;  

 To test the proposed solution techniques on realistic networks and in the 

target problem context. 

1.4. RESEARCH METHODOLOGY  

In order to achieve the main research objective, this thesis develops simulation 

models, methods and solution strategies to analyze the long-term expansion of 

electricity grids under uncertainty and a dramatically changing power generation 

scheme over time. In other words, the TEP problem is formulated from the 

perspective of long-term expansion planning and under high penetration level of 

renewables. Under these circumstances, the proposed model should sufficiently 



 

7  
 

emulate the anticipated complex-decision making process that planners have to face. 

The tractability of such a model is of a paramount importance, but the essential 

decision-making drivers must be accurately considered. 

Since the overall objective of this thesis is the design and implementation of a 

complex optimization tool in an engineering research context, the methodology 

resembles a R&D engineering design process of an advanced system (iterative in 

practice, but formulated as being sequential): 

 Requirements specification: This is the statement of the problem to be 

solved, and/or the functionality of the system. 

 State of the art review: This is related to the analysis of previous experiences 

and results, existing models and tools that can be re-used or improved. 

 Brainstorming: This refers to the creative and free-minded gathering of 

concepts, ideas and design options. 

 System design: The architectural and conceptual decisions and guidelines for 

the global approach need to meet the requirements, including feasibility 

analisys, and the decomposition of the system into inter-related subsystems 

(each one provided with its own requirements). 

 Subsystem or component design and testing: Each problem is solved as 

separately as possible, trying to meet its particular requirements. Each one 

must be tested within its own context and requirements specification. 

 System integration and testing: This includes the integration of subsystems 

and the validation of the results considering the system requirements. 

The research work and the structure of this document reflect the above 

methodology. 

In an engineering design process, innovation may happen both at the system level 

and at the subsystem or component level, and sometimes even in the 

testing/validation techniques. Similarly, the contributions of the thesis appear at the 

problem level (global strategy and architecture) and at the sub-problem level 

(modeling alternatives, losses models, clustering technique for operation states). The 

systematic testing and validation process included in the thesis is as well considered 

as a contribution, due to the complexity and the size of the original problem. 

The proposed optimization model and the solution strategy are implemented in 

GAMS
©
 and solved in most cases using the CPLEX™ algorithm, mostly by 

invoking default parameters. The clustering methodology is implemented in the 

MATLAB
©
 programming environment, and Visual Basic™ with Excel

©
 is used as 

an interface for this purpose. The whole work here aims to provide a reliable 

expansion solution containing short-, medium as well as long-term decisions that 

can effectively cope with the rapidly changing environment in the power industry. 
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1.5. THESIS OUTLINE AND ORGANIZATION 

This thesis, as schematically illustrated in Fig. 1.3, is organized in a bottom-up 

scheme. The first chapter presents a brief overview of the problem and motivation of 

the research work, and outlines the research objectives and methodology. The 

subsequent chapter presents an extensive review of the literature by organizing 

previous related works to highlight the research questions and objectives.  

 

Fig. 1. 3 A schematic illustration of the thesis outline 

Chapter 3 begins by reviewing existing and modified TEP models, from the network 

representation perspective, describing the modifications made in order to develop a 

reasonably accurate network representation suitable for the large-scale TEP 

problem. A comprehensive comparison of six TEP models, and thirteen variants of 

these models with different network fidelity levels, is performed both theoretically 

and numerically, to further motivate the need to develop a tractable TEP model. 

This chapter also presents a detailed modeling of network losses, which 

encompasses an extensive comparison of existing and novel losses models with 

respect to efficiency and accuracy. 

Chapter 4 introduces the novel methodology developed in this thesis for managing 

uncertainty and variability inherent to the problem at hand. The methodology is 

described in detail and its efficacy is demonstrated with numerical tests.  

Chapter 5 presents detailed descriptions of the mathematical formulations of the 

TEP optimization problem in a multi-stage planning horizon and stochastic 

programming framework. This chapter also introduces the proposed solution 

strategy. In the subsequent chapter, the proposed strategy, tools and methods are 
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verified by carrying out numerical studies on a realistic 1060-node European 

network system. 

The last chapter gathers the main findings of this thesis in the form of conclusions, 

summarizes the main contributions of the thesis by revisiting the thesis objectives, 

and finally draws some directions for extending this work. 
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This chapter presents a comprehensive review of existing literature focusing on the 

relevant previous works in relation to transmission grid expansion planning.  

2.1. CHAPTER OVERVIEW 

In power systems, grid expansion planning is always one of the most critical issues 

that have to be constantly addressed for meeting the demand while maintaining 

system integrity and reliability. In other words, transmission expansion planning 

(TEP) is mandatory in every electric power industry which continually undergoes 

rapid changes in structure, management and operation [16] regardless of the 

electricity markets: traditional or competitive. The literature on the subject area of 

TEP includes several decades of research works, dating back to 1970. Recently, 

there has been a dramatic increase in the volume of publications on this topic, 

especially in the past decade. This could be partly explained by the deregulation of 

power systems which increased the level of uncertainty in such systems, increasing 

complexity of the problem, and increasing penetration level of non-conventional 

generation sources. A detailed review of existing literature on TEP as of 2003 is 

presented in [17], which has been recently complemented by authors in [18]–[20]. 

Generally, from the context of TEP, the following relevant issues define the 

structure of this literature review: 

 Fidelity of network representation (alternating current—AC, “direct 

current”—DC models, etc.),  

 Solution methods employed (mathematical, heuristic and meta-heuristic),  

 Nature of the electricity market (regulated vs. deregulated),  

 Objective function considered (investment cost, investment + operation 

costs, etc.),  

 Flexibility of expansion plans (static vs. dynamic), and 

 Methods adopted to handle uncertainty and variability inherent to the TEP 

problem (probabilistic, stochastic, etc.).  

2.2. NETWORK REPRESENTATION FIDELITY 

Power systems are characterized by their complex nature whose components are 

generally described by highly nonlinear and nonconvex models. The complexity of 

such systems are often systematically handled in complex power systems analysis, 

operation and planning problems mainly by using “proxy” models. Fidelity then 

refers to the level of details (i.e. actual physics describing the characteristics of the 

system) captured by such proxy models i.e. in relation to accuracy and complexity 

levels. This is especially the case in TEP problems, where the network is 

represented by various models such as the customary non-linear AC [21]–[23], the 

classic “direct current” (DC) [24]–[28], [29], “pipeline” [30]–[32], hybrid (which 

combines the DC and the pipeline models) [31], or linear variants of these models 

and disjunctive ones [10], [33], [34].  
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The AC network model is the most realistic and detailed model. In particular, it 

implicitly models network losses but its mathematical complexity, nonlinear and 

nonconvex nature means its application in TEP problems is very limited. The DC 

model, which is derived from the AC model by making use of a number of 

simplifying assumptions, respects the physical laws that govern power flows in 

power systems. It is currently the most commonly used network model in TEP 

studies because of its appealing computational performance while delivering 

reasonably “accurate” solutions. However, the simplifying assumptions made in its 

formulation (which include flat voltage, zero resistance and very small voltage 

angles) make this model lossless. Moreover, the existence of reactive power flows is 

not acknowledged by the DC model.  

In a pipeline model, flows are only required to respect the capacity and nodal 

balance constraints. This model effectively treats the lines as flow networks. In other 

words, flows in a line can assume any value independent of its parameters and 

system variables (voltage and angles, in particular). Because of this, expansion 

solutions obtained from TEP models employing this model can be suboptimal or 

may sometimes be incompatible with the original network system. Hybrid network 

models combine both DC and pipeline models, and are generally better than the 

pipeline ones in terms of accuracy. Some other network models, formulated by 

relaxing or linearizing the AC network model, have been proposed recently by 

various researchers [35]–[37], [38], [39]. Respective authors claim that their models 

can bridge the AC and the DC network models. Yet, their applicability in large-scale 

networks has not been demonstrated. 

From computational viewpoint, the network models reviewed here have different 

requirements. Generally, the higher the network fidelity level is, the more accurate 

the solution is but the higher the computational burden is. In Chapter 3, different 

TEP models formulated using these models and their variants are further reviewed 

and compared in terms of solution accuracy and their computational requirements, 

from which some conclusions are drawn. 

2.3. SOLUTION METHODS IN TEP 

The solution methods employed in TEP can be generally classified as mathematical,  

heuristic and metaheuristic methods. 

2.2.1. Mathematical Solution Methods in TEP Optimizations 

The TEP problem is first formulated into a constrained mathematical optimization 

with a certain objective function, which is then solved by making use of pure 

mathematical procedures and algorithms. The solution obtained should therefore 

satisfy several technical, economic, and reliability criteria constraints imposed in the 

optimization process. As early as 1970, authors in [40] and [41] proposed 

mathematical optimization techniques using linear programming and dynamic 

programming, respectively, to solve the transmission expansion problem. The 
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literature on the TEP problem is dominated by mixed integer linear programming 

(MILP) optimization which embeds a DC network model, as in [42]–[44]. In 

general, the solution approaches adopted in such problems can be categorized as 

convex and nonconvex optimization techniques. The first category includes linear 

programming—LP [40], [45]–[47], mixed integer linear programming [42]–[44], 

[48], and quadratic programming—QP [49], [50]. Non-convex optimization 

techniques include nonlinear programming—NLP [51], [52] and mixed integer non-

linear programming [53], [54]. Unlike others, LP- and NLP-based TEP optimization 

models do not take account of the lumpiness of investments because the investment 

variables are relaxed to assume continuous values.  

There are also solution techniques in the literature that exhibit characteristics of both 

categories such as dynamic programming [41], [55], [56], decomposition techniques 

[55]–[57], and branch and bound methods [60], [61]. Other mathematical 

optimization techniques like Benders [62]–[64] and hierarchical decompositions 

[63], [64] have been also widely used. To overcome the computational challenges of 

large-scale TEP problems, authors in [65] further propose techniques for 

accelerating generalized Benders’ decomposition methods. 

A MILP model has been formulated to solve a long-term TEP problem in a 

competitive pool-based electricity market by maximizing social welfare and 

considering uncertainties in electricity demand [66]. The work utilizes a set of 

decision-making metrics such as changes in aggregate social welfare, generator 

surplus, demand surplus and merchandizing surplus to obtain an optimal TEP 

solution, as a guide to make investment decisions. Similarly, a static MILP long-

term TEP model based on disjunctive formulation, incorporating losses and N-1 

security criteria has been developed in [67]. Authors in [67] characterize 

uncertainties due to contingencies and inflows to hydropower plants by using 

multiple scenarios. 

The work in [36] has developed a TEP model with ‘redesign’ or switching. It is 

based on the notion of “a transmission network may be efficient after cutting off 

some of its circuits”. Thus, a MILP TEP model based on a disjunctive formulation 

has been developed where all transmission lines including existing ones are taken to 

be as candidates, while the cost of cutting off a line is considered to be zero. Authors 

have also presented a fair comparison of the disjunctive model with other variants of 

TEP mathematical formulations in terms of their performances. The analysis has 

also included N-1 contingency and a discussion on how to handle uncertainties in 

demand and generation. TEP and network switching problems have been developed 

into a combined MILP problem in [68] and authors indicate that “there can be some 

savings upon switching off some lines in a system”. 

Because of the complexity of the problem (and/or being motivated by the structure 

of the TEP problem), some researchers have resorted to the use of mathematical 

decomposition techniques to enhance tractability and “speed up” the solution 
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process. The Benders decomposition technique is especially the most commonly 

used approach in TEP studies [57], [58], [69], [70], [71]. Reference [71] presents a 

methodology to increase the robustness of TEP solution by incorporating a detailed 

contingency analyses, and considering uncertainties in load and wind generation via 

Monte Carlo simulations. Authors in [64], [72] develop a bi-level mathematical 

programming, where the TEP problem is split into two levels: upper and lower 

levels. The upper level minimizes the investment cost; whereas, the lower-level 

maximizes aggregate social welfare for a given investment decision (obtained from 

the upper level). The duality theory is employed to link the two levels.  

The work in [73] proposes a mathematical method based on a network topological 

synthesis to investigate the impact of power-flow patterns on transmission planning 

in a competitive market environment. TEP based on some econometric approaches 

has also been reported in the literature. A decision analysis scheme based on min-

max regret criteria in future plan has been methodically employed to make the TEP 

solution robust and flexible enough in the face of uncertainty. Authors in [74] adopt 

real options analysis. The main idea behind this approach stems from evaluating the 

worth and the risk of transmission expansions by constructing binomial trees to 

represent all possible paths for investments. 

In general, for many real-world problems, the solution obtained by mathematical 

solution methods is usually accurate, which can be regarded as one of the 

advantages of using such methods. If the problem is fully convexified, global 

optimality is guaranteed within a finite simulation time. However, the use of such 

solution methods in complex power systems may sometimes render significant 

computational challenges.  

2.2.2. Heuristc and Methaheuristic TEP Solution Methods 

The complexity and combinatorial nature of the TEP problem prompted researchers 

to seek for various heuristic [61], [75] and meta-heuristic optimization methods 

[76]–[79] that can provide an expansion solution (with no guarantee of optimality) 

within a reasonable simulation time. Heuristic methods, mainly based on sensitivity 

analyses or invented engineeric methods, are often used when the structure or size of 

the problem makes it impossible or prohibitively expensive to use exact solution 

methods. Metaheuristics improve the performance of low level heuristic algorithms 

by employing higher level algorithms that increase the chance of avoiding or 

escaping locally optimal solutions. 

In [40], a heuristic method is proposed to form fictitious overload paths in the 

network. Then, the approach makes use of guiding numbers to penalize those 

without initial transmission lines. Heuristic procedures based on a sensitivity 

analysis are also proposed in [80]. This methodology has been later extended to a 

multistage TEP problem with a constructive heuristic algorithm [81], [82]. A least-

effort algorithm has been also proposed in [83] where a heuristic index tries to 

identify the circuits that provide better power-flow distributions in the system. In 
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[84], a flow sensitivity-based TEP model has been developed where the expansion 

decision has been made based on a value given by the ratio of cost of a line and flow 

distribution factor (which gives the sensitivity across a corridor). In [85], a static 

long-term TEP model is developed, and possible investments are heuristically 

ranked in accordance with their effectiveness in increasing the system’s load 

supplying capability or reducing unserved power. Similar approaches have been 

applied to short-term TEP models in [21], [61].  

In [86], a heuristic static TEP model with an objective of minimizing aggregate 

investment and operation costs has been developed. The integer expansion variables 

have been represented by continuous sigmoid functions, and the expansion decision 

has been made using a heuristic model based on sensitivities obtained from the 

values of the sigmoid function. In [75], an expansion decision has been made by 

analyzing the heuristic ratio of reduction in load shedding as a result of investment 

and the investment cost of the line under consideration. 

Acknowledging the complexity of the TEP problem in large instances of network 

systems, authors in [87] have combined Benders’ and hierarchical decomposition 

techniques to solve a static TEP problem of a relatively large-scale systems. Three 

different levels of network models, namely, the transportation, the hybrid and the 

DC, have been employed to make successive network investments. The 

mathematical and computational complexity of these models is in increasing order 

from the first to the last model. Initially, a relaxed version of the problem based on 

the transportation network model, which is mathematically speaking the least 

complex one, is solved to obtain fractional investment decisions (which are optimal 

for the relaxed transportation-based TEP model). This way, some 60-70% of the 

investment decisions are made which requires converting the fractional investment 

decisions obtained using the relaxed model. The solution from the relaxed problem 

is then used as a starting point to the next incrementally complex model (the hybrid 

one without imposing integrality constraints, in which further investments up to 

15% are made. As the solution process progresses towards the “optimal” solution, 

further network modeling details are incrementally added (like in the DC, where 

integrality constraints are enforced). This, according to authors in [87], speeds up 

the solution process.  

Meta-heuristic optimization methods have been also widely applied in TEP in a bid 

to further tackle the computational burden of TEP problems and improve the 

solution accuracy by avoiding local optima which is thought to be a common 

problem with heuristic solution techniques. These methods are often inspired by 

nature. The most common ones are genetic algorithm (GA), simulated annealing 

(SA), tabu search (TS), game theory (GT), expert systems (ES), fuzzy set theory 

(FS), ant-colony optimization (ACO), particle swarm optimization (PSO) and 

greedy randomized adaptive search procedure (GRASP) [88]. Meta-heuristic 

methods integrate the features of optimization and heuristic methods. Compared to 



 

17  
 

heuristic methods, meta-heuristics usually yield high quality solutions within a 

relatively lower computational time.  

The literature in this area includes GA [89]–[93], differential evolution algorithm 

(DEA) [94], [95], TS [96], [97], greedy randomized search algorithm (GRSA) [69], 

[79], SA [98], ACO [99], [77], PSO [100], [101], chaos quantum honey bee 

algorithm [102], ESs [103] and scatter search (SS) [104].  

The concept of object-oriented programming paradigm has been applied to model 

dynamic TEP in a deregulated environment [105]. Reference [106] reports a method 

based on evolutionary programming for solving a MINLP TEP problem which 

minimizes the aggregate cost including the cost of investment, generation and 

unserved power. The proposed solution method has been compared with other 

methods such as GA, TS and SA.  

GA has been applied to solve a least-cost and reliability base TEP problem in [107]. 

The work in [108] also uses GA to solve the same problem and proposes a 

methodology based on Taguchi’s orthogonal arrays to handle uncertainty in 

renewable generation and demand. Authors in [109] propose a Niche GA (NGA) for 

solving a stochastic MINLP TEP problem. In [110], a combination of Benders 

decomposition and DEA has been used to solve a multi-stage MILP TEP model 

based on a disjunctive formulation. A limited discrepancy local search (LDLS), a 

tree-search meta-heuristic optimization technique, has been proposed to solve a TEP 

problem in [111]. Here, the complex power system is encapsulated in a black-box 

which is then queried for information about the quality of a proposed expansion. 

Authors in [111] claim that the LDLS method can be applied flexibly to a power 

system of any size even if this has not been substantiated in their study. A GA-based 

‘overload minimization’ instead of the classical ‘unserved power minimization 

approach’ has been proposed in [112]. In this case, the fitness function includes 

investment cost, overload and underload penalties. 

2.4. TEP IN REGULATED AND DEREGULATED POWER SYSTEM STRUCTURES  

Despite the fact that the main aim of expanding the power transmission network in 

both environments is to better serve a growing demand for electricity while 

satisfying a number of economic and technical constraints, different ways are 

followed in order to achieve such an objective [113]. For instance, TEP in regulated 

environment is usually carried out in coordination with generation expansion; hence, 

the level of uncertainties is relatively low. On the other hand, deregulations of 

power systems have generally increased the level of uncertainty in the systems, 

introduced additional objectives some of which can be conflicting, and increased the 

requirements for transmission expansion problems. Under a competitive market 

structure, the naturally regulated transmission utility needs to provide non-

discriminatory access to all the market players and facilitate fair competition [114]. 

Because of these reasons, TEP in a deregulated environment is more challenging 

than in a regulated (traditional) environment. References in [12] and [115] present a 
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detailed review of existing TEP models as well as methods adopted for 

incorporating uncertainties in a deregulated market environment. In addition, a 

comparison of centralized vs. deregulated expansion plan, and the need for new 

methodologies in the restructured power industry has been pointed out in [113]. 

The literature on TEP in a regulated environment, whose objective is to meet the 

demand while satisfying certain reliability and quality standards, includes [17], [31], 

[40], [47], [57], [69], [70], [80], [83], [86], [87], [116] [103], [117]–[121]. Previous 

works on TEP in a deregulated environment include [62], [66], [73], [122] and 

[123]. Authors in [124] propose a mid-term transmission expansion model in a 

liberalized electricity market with an objective of maximizing the aggregate benefits 

of the whole system and considering power exchange deviations, N-1 security 

criteria and unsupplied power. Investment decisions are made based on computing 

and analyzing investment sensitivities which are determined from dual variables and 

reduced costs as a result of the investments.  

Reference [125] presents a meta-heuristic based static TEP model in a restructured 

power industry which includes N-1 security criteria, and uncertainties in demand as 

well as in generation and consumer bids. The model minimizes investment and 

congestion costs and uncertainties are handled via Monte Carlo simulations [125]. A 

congestion driven TEP model is proposed in [126], [127] in the context of 

restructured markets. In [112] and [128], multi-stage TEP models are proposed in a 

deregulated market environment context. Then, SA is used to solve the resulting 

problems, and fuzzy models to incorporate uncertainties as a result of load evolution 

along a given planning horizon, and system component availabilities. 

Generally, TEP in deregulated power systems is more complex than in regulated 

environment because of the increased level stochastic sources such as generation, 

policy and market-related ones. A detailed review of issues related to uncertainty 

management in TEP is presented in Section 2.7. 

2.5. OBJECTIVE FUNCTION OF CONSIDERED IN TEP 

Traditionally, the objective of TEP has been to minimize the investment cost of lines 

subject to a number of operational and technical constraints [57], [111], [129], 

[130]. In other words, a centralized approach of TEP is mainly to meet current and 

future demand with adequate reliability and at a reasonable cost. However, the 

continuously changing environment of power systems is forcing a reconsideration of 

this approach. For instance, in a deregulated environment, TEP has to satisfy 

multiple objectives set by the regulatory body and/or other stakeholders, some of 

which can be conflicting. In addition to minimizing the investment cost of lines, 

TEP in a deregulated environment should aim to provide non-discriminatory access, 

create a conducive environment for fair competition, increase network reliability, 

meet the demand at a minimum operation cost possible, mitigate transmission 

congestion, minimize risk, increase operation flexibility, and minimize 

environmental impacts among others. From this context, the objective function used 
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in TEP problems in the literature include minimizing operation and investment costs 

[23], [43], [58], [121], [131]–[133], costs of operation, investment and load 

shedding [16], [97], [128], [134], [135], congestion and load shedding costs [136], 

[137], and maximizing welfare [58] among others.  

2.6. DECISION DYNAMICS OF TEP 

From the decision dynamics viewpoint, the literature in TEP can be categorized as 

static and dynamic. Static planning framework does not recognize the dynamic 

nature of the problem; a single target year is instead considered, for which the 

optimal expansion solution is determined. All investments are assumed to be made 

in the same year. The fact that decisions can be postponed is not acknowledged in 

such a framework; it answers only the TEP questions of where and what 

investments are to be made on the system. Majority of the literature falls into this 

category, some examples are [16], [23], [26], [43], [57], [58], [97], [111], [129], 

[131], [136]–[139]. In contrast, a dynamic planning scheme involves a multi-year 

decision framework, emulating the dynamic nature of the expansion problem. A 

dynamic planning determines not only the type and the location of investments to be 

made but also the timing of each investment. Recent works on dynamic TEP include 

[24], [28], [121], [128], [130], [132], [134], [135], [140]–[142]. 

Generally, the dynamic planning scheme involves a more orthodox planning 

framework than the static counterpart, and often leads to a better expansion solution 

at a lower cost when compared to the static one. However, the dynamic planning 

approach is a very complex problem, requiring a higher computational effort. To 

overcome this, some researchers employ meta-heuristic approaches such as GA 

[121], SA [128], ordinal optimization [142] and others. 

2.7. TREATMENT OF UNCERTAINTY AND VARIABILITY IN TEP 

Traditionally, TEP has been carried out deterministically, often for the worst-case 

scenario (peak-load) in many power systems in a centralized approach. Even if 

network investments have been often oversized to meet the worst case scenario, the 

deterministic approach has been operational in most cases where the system’s 

conditions are relatively predictable. However, recent developments in the power 

industry (deregulation, increasing level of variable energy sources, etc.) have 

increased the level of uncertainty and variability in the system, and made it 

impossible to exactly distinguish what the worst-case scenario is. All this adds extra 

complexity to the decision-making process of grid expansions.  

The vast literature on TEP is based on deterministic planning, but the review in this 

section is limited to the techniques applied to address some of the limitations of 

deterministic planning models by considering the effects of uncertainty on TEP 

solutions. So far, various methods have been employed for managing such 

uncertainty in network expansion planning problems. A comprehensive review of 

some of the techniques adopted for modeling uncertainty in such problems can be 
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found in [18]. Authors in [143] also excellently present the uncertainty management 

techniques so far suggested or applied by researchers in the generic subject of 

energy systems. In the context of TEP, the techniques can be generally classified 

into probabilistic, stochastic and parametric methods, depending on how uncertainty 

is described in the input parameters. 

The first category includes probabilistic-power-flow and probabilistic-reliability-

based methods. Both methods are based on sensitivity analyses, which are often 

carried out by varying one uncertain input parameter at a time. But it may also 

include the combined variations of several uncertain inputs. Either way, to perform 

sensitivity analysis, all uncertain input parameters considered should have known 

PDFs so that some instances of the corresponding parameters can be sampled. The 

PDFs themselves are approximated from the respective historical data of uncertain 

parameters.  

The principal goal of probabilistic approaches is to estimate the statistical 

parameters (e.g. mean values, variances, PDFs, etc.) of relevant output variables 

such as the network expansion solution, the combined investment and operation 

cost, the loss of load probability, and the expected level of unserved energy. This 

can be achieved either numerically, analytically or a combination of both. Monte-

Carlo simulation (MCS) is the most widely used numerical approach in estimating 

the PDFs of output variables. It involves an iterative process including generation of 

samples and running simulations. First, a sample containing realizations of the 

uncertain input parameters involved is generated using their respective PDFs. 

Second, considering this sample as an input, a deterministic optimization is run and 

corresponding values of random variables of interest are computed and recorded. 

This process is repeated until a sufficiently large number of samples are computed 

for the random output variables of interest so as to estimate their PDFs. Note that 

during the iterative process, sampling can be carried out either sequentially or non-

sequentially depending on the type of MCS used. 

In particular, MCS has found wide applications in a TEP optimization framework to 

deal with various sources of operational uncertainty. For example, the authors in 

[12] developed a market-based TEP model which embeds MCS for generating 

different samples using the PDFs of various random inputs (load, component 

availability, generator bid prices and wheeling transactions), and then ultimately 

compute PDFs of locational marginal prices (LMPs). Similarly, uncertainties related 

to load, renewable power generation, fuel and emission allowance prices are 

considered in [144]. And the solution approach used in [144] combines optimization 

with MCS. In [131], uncertainty in CO2 emission price is accounted for and 

simulated using MCS while other sources of uncertainties are largely ignored except 

demand uncertainty, which is represented by only two load levels. In [145], 

uncertainties associated to load and wind power generation are also simulated using 

MCS. In addition, the forced outage rates (FORs) of individual lines are used to 

randomly simulate line contingencies. Similarly, authors in [146] also consider 
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uncertainties in load and wind power generation, as well as line outages using the 

so-called deterministic N-1 analysis. Even if correlations among most uncertain 

parameters naturally exist, they are not explicitly modeled in [145], while in [146], 

only a correlation factor of 0.75 is assumed between two wind speed regimes 

considered in the analysis. In [147], load uncertainty is considered and MCS is used 

to generate a large number of samples which are later reduced by employing a 

scenario reduction technique. In [148], MCS is used to simulate load and market 

price uncertainties and estimate the probability distribution of the adaptation cost of 

various candidate plans. The authors in [149] also use MCS to include wind power 

production uncertainty under a large-scale wind integration framework; and this 

work is further extended in [150] to include uncertainty in solar power production. 

Generator and transmission line availabilities are simulated using MCS in [151], and 

reference [152] applies a similar approach to handle uncertainties associated with 

load, generator and line outages. Since MCS is a generic approach in uncertainty 

handling, it has been widely applied in other fields than TEP. For instance, in a 

generation expansion planning framework, MCS has been used in [153] to capture 

uncertainties related to fuel prices, generator availability, and availability and price 

of electricity imports and exports. Also, in a unit commitment problem, [154] 

considers wind power generation uncertainty, and an MCS based on Latin 

hypercube sampling has been used to generate sufficiently large wind power output 

samples. Then, a conventional sample reduction algorithm is applied to reduce the 

size of the samples. 

Generally, the MCS approach can be feasible in small-scale problems or when a 

small set of uncertain input is considered. However, it is worth noting here that the 

applicability of MCS-based analyses is limited in long-term TEP problems with 

high RES generation due to the following reasons. First, it naturally requires too 

many optimization runs which may cause long execution times before estimates of 

PDFs corresponding to the variables of interest are obtained. Second, the high level 

uncertainty in such problems, and the correlations among uncertain parameters, 

further makes the MCS intricate and computationally expensive. Thus, the MCS 

approach may not be a practical and viable option for such huge problems. In an 

effort to overcome computational issues (convergence problem, in particular), 

variance reduction techniques such as importance and stratified sampling (e.g. see 

[148]) are sometimes applied to drastically reduce the samples required to estimate 

the PDFs of the output variables. However, since the variance reduction process is 

applied prior to the TEP optimization, it is very difficult to draw conclusions about 

whether the considered samples are reasonably good representatives of all the 

samples that are discarded, particularly from the network expansion strategy 

viewpoint. In some cases, in an effort to reduce the computational burden, all 

uncertain input parameters are simply replaced by their expected values, and 

subsequently, a deterministic mathematical problem (which can be stated as the 

expected value problem) is solved. However, this again could result in poor 

solutions as it may not be well suited to extreme situations. 
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Analytical methods are also applied as alternatives or complements to MCS 

approaches. They are used to systematically approximate the statistical properties of 

random output variables of interest, which are themselves functions of one or more 

random input variables. These include methods such as cumulant, Gram-Charlier 

expansion, Taylor series expansion, first-order second-moment method, point 

estimation methods (PEMs), etc. [155]. In comparison to MCS approaches, the 

analytical methods (the PEMs, in particular) are generally claimed to yield 

comparable results to MCS-based techniques with lower computational effort. But 

their merits highly depend on the dimension of the input uncertainty set considered. 

Intuitively, the higher this dimension is, the higher the computational cost will be, 

and it is harder to estimate the statistical behavior of random output variables. 

Furthermore, the assumptions and mathematical simplifications (e.g. linear 

approximations) required by most of these methods to simplify the problem may 

render non-negligible inaccuracy.  

Among the aforementioned analytical methods, PEMs have been applied in TEP to 

the estimation of PDFs of certain output variables. For example, PEM is used in 

[24] to account for uncertainty associated with load and wind power output. A two 

point estimate method (2PEM), a variant of PEMs, is adopted in [156] to quantify 

uncertainty in transfer capacity by considering uncertainties in network parameters 

and bus injections. The same approach is further extended in [136] to handle wind 

power output uncertainty in a TEP problem incorporating large-scale wind power. 

The work in [137] presents an experimental analysis to show the versatility of the 

PEM-based approach theoretically developed in [136]. The authors in [157] use 

another variant of PEM approach, called 2-micro PEM, to handle uncertainties in 

load and wind power generation and estimate PDFs of desired output variables. The 

idea of PEM is to represent each uncertain input by its first statistical moments (e.g. 

mean, variance, skewness and kurtosis) and concentrations in either side of the mean 

value. In most cases, the mean and other two values (one below and another above 

this mean) are used, which means this would require running 3w deterministic 

optimizations (where w is the total number of uncertain parameters considered). The 

2PEM even considers only two concentrations selected from either side of the mean 

(which may not necessarily be symmetric)For example, 2PEM is used to represent 

uncertainties related to transfer capacity [156] and wind power output [136]. This 

reduces the computational effort significantly, but with a relevant loss of accuracy. 

In the same way as in MCS approaches, the optimization problem is run a number of 

times (but with largely lower number of iterations than that required by MCS). This 

way, the expected value and higher order moments of output variables are 

determined, and using analytical methods, their PDFs are then estimated. Note that 

the number of iterations required in PEM-based approaches depends on how the 

uncertain input parameters are represented. For example, the 2PEM requires 2w

iterations where w is the total number of uncertain parameters. 
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While analytical methods based on PEM may be successfully applied in small (even 

medium-scale) problems with a few uncertain parameters, and may deliver useful 

estimates of PDFs, their application becomes of limited use (or computationally 

expensive) when the scale of the problem and the level of uncertainty under 

consideration increase (such as in long-term TEP problems with strong penetration 

of RESs on large-scale systems). Moreover, the existence of both spatial and 

temporal correlations among random input variables complicates the practical 

application of PEM in TEP. 

Sometimes, a combination of MCS and analytical methods is used in power system 

analyses. In particular, the authors in [158] combine MCS with analytical methods 

to account for uncertainties in load and wind power output. They first use MCS to 

estimate the PDF of wind power output. Then, discrete samples of the wind power 

output are simulated by combining analytical and probabilistic methods in a chance-

constrained TEP framework. The authors claim their approach is computationally 

more efficient than MCS. Similarly, the combination of MCS and PEM is also 

adopted in a two-paper work [136] and [137] when considering uncertainties in load 

and wind power generation. The authors in [159] develop an analytical methodology 

to consider uncertainty in wind power generation and generator availability. Their 

methodology is compared with MCS, and it is reported that the results obtained 

using both approaches largely coincide. 

Stochastic methods, on the other hand, assume a given number of operational states 

is available, each one with a certain probability. All these operational states are then 

jointly considered in the analysis, the outcome being the expected values of relevant 

output variables. The quality of the solution based on this approach depends on how 

thoroughly the operational situations are explored and how representative the 

selected operational states are. In general, a good TEP solution can be obtained 

when a large number of operational states is considered. Nevertheless, this increases 

the computation burden. Because of this, the number of operational states must be 

significantly reduced before the stochastic programming model is run by using 

certain algorithms such as forward and backward selection [160] (for example, see 

the previous works in the context of substation and TEP [147], joint generation and 

TEP [151], generic TEP [152] and power management [161] problems). Very often 

this number is predetermined. For instance, the authors in [162] represent the 

uncertainty related to pool price by considering three realizations of pool price per 

day corresponding to three periods, each with an 8-hours interval. But the number of 

operational states to be considered can also be iteratively estimated by monitoring 

some accuracy indices (for example, see [163]). The authors in [164] develop a 

methodology based on the roulette wheel technique to randomly generate a large 

number of samples with certain probabilities of occurrence, and employ backward 

scenario reduction algorithm before a stochastic optimization problem is solved. 

This technique uses the corresponding PDFs of load demand and wind power 

generation. In [165], uncertainties in demand and fuel price are modeled using a 
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binomial Markov chain as a stochastic process. The work in [166] only considers 

uncertainty in CO2 allowance price, and the “carbon” price uncertainty is modeled 

via samples generated from a set of PDFs obtained using Geometric Brownian 

Motion and MCS. 

Under the auspices of stochastic methods, although not common, the variability of 

uncertain parameters may be individually aggregated to a predefined number of 

values with approximate probabilities or weights, such as the load aggregation 

technique in TEP [131] and joint substation and TEP problems [147]. In stochastic 

methods, data-mining techniques are also applied to drastically reduce an initially 

large number of operational states to be considered, prior to running the 

optimization. These include different supervised and unsupervised clustering 

techniques used in contingency and reliability [167] and electricity supply analyses 

[168]. In [163], authors use such techniques in order to take into account the 

uncertainties related to wind power output and load in a stochastic TEP model, a 

reduced number of clusters are formed from a two-dimensional random input 

dataset (i.e. containing load and wind power output series). Here, the input datasets 

themselves are generated using Gaussian copula, a multivariate probability 

distribution capable of describing the dependence of random variables. Instead of 

working with a fixed number of clusters (like in traditional clustering), the authors 

in [163] adopt a mechanism to iteratively determine the minimum number of 

clusters needed, by increasing the number of clusters until the marginal 

improvement in the objective value is sufficiently small. Note that, in addition to 

working on data series generated using joint PDFs, it is also possible to perform the 

clustering process on historical data samples (if available), forecast data series or 

samples generated from individual PDFs. 

In general, the clustering algorithm uses uncertain parameters (the causes) as 

clustering variables (hereinafter, clustering based on causes or CbC). The entire 

clustering process involves grouping “similar” snapshots together, selecting 

representative snapshots per cluster and assigning probabilities to each one of them. 

Similarity is measured by the distance among snapshots in the uncertain input space. 

However, such clustering is not efficient because it is carried out without 

acknowledging the effects of the snapshots on the target problem. This significantly 

conditions the outcome of the optimization, especially in the context of TEP. As it 

shall be explained in detail in the following chapters, clustering based on effects 

(CbE), which is advocated by this work, is superior to CbC. 

Both the probabilistic and the stochastic methods depend on the availability of 

historical data or PDFs of random variables. But sometimes the relevant random 

parameters may not have sufficient information (historical data) to formulate their 

PDFs. This is especially the case in deregulated power systems where information 

asymmetry is rampant. Inspired by such knowledge gap, parametric (non-

probabilistic) methods [169] such as info-gap decision theory (IGDT), robust 

optimization (RO) and fuzzy systems theory (FST) are used to systematically 
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account for random as well as non-random uncertainties. They all model uncertainty 

by characterizing the uncertain input parameters’ space using parametric ranges, i.e. 

by forming parametric input datasets such as polyhedral (formed by upper and lower 

bounds of uncertain parameters), ellipsoidal (an approximate uncertainty space), etc.  

As stated above, the IGDT tool is inspired by the severe lack of information about 

uncertain parameters. It requires only the definition of ranges of uncertain 

parameters over which the parameters may have certain values, which can be seen 

as an advantage over probabilistic and stochastic methods. In general, IGBT-based 

TEP models such as [170] seek robust solutions in the face of severe uncertainty, 

where the robustness of the solution is measured by “immunity” to a range of 

operational situations defined by the uncertainty set. But the theory itself has been 

the subject of strong criticism [171], citing its weaknesses such as conservativeness, 

localized and poor solution approximation, etc. Instead, robust optimization has 

been praised as a good alternative to decision making under severe uncertainty 

[172], [173].. The concept of RO is similar to IGDT. Like in IGDT, uncertainty 

comes from a known uncertainty set. In [174], uncertainties in renewable power 

generation and demand are considered and represented by their corresponding 

uncertainty sets in an RO-based TEP model. The solution obtained by RO should, in 

principle, be robust under the worst-case situation in the uncertainty set, which also 

makes RO highly conservative. Reference [175] presents a slight modification to 

ordinary RO by adding features to minimize conservatism i.e. by characterizing 

uncertainties using ellipsoidal constrained uncertainty sets and incorporate 

correlation factors of considered uncertain parameters by means of the variance-

covariance matrix. Recently, there are also some ongoing research works (e.g. 

adjustable RO in [172]) to address the conservativeness of RO. These normally 

work by adjusting the uncertainty sets depending on how much uncertainty one 

desires to capture. But RO still remains to be a hot research area in mathematical 

optimization which requires further refining to solve robust problems.  

On the other hand, FST is inspired by linguistic expressions such as “high”, 

“medium”, “low”, etc. Each uncertain parameter is considered as a fuzzy variable 

and is represented by a certain membership function (often a trapezoidal 

membership function). For example, generator and consumer bid prices are modeled 

using this method in [176]. Some of the major disadvantages with FST-based 

methods are the absence of clear guidelines to select appropriate membership 

functions, and the fundamental difficulty to prove the accuracy of the solutions. 

A long-term TEP problem, with investment horizons spanning over 30 or more 

years and increasing RES penetration, demands extensive management of 

uncertainty and operational variability. This is one of the subject areas of this thesis. 

The subsequent chapters describe in detail how the two types of uncertainties 

(random and nonrandom, according [12]) are handled. In general, random 

uncertainties (characterized high frequency changes) are modeled by considering a 

sufficiently large number of operational situations, also known as “snapshots” in this 
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thesis. Then, a new clustering methodology based on moments technique, a tailor-

made approach for TEP problems, is then used to substantially reduce the original 

set of snapshots by grouping them into a predefined number of clusters. A detailed 

description of the clustering method can be found in Chapter 4 as well as in the 

published work of this thesis [14]. On the other hand, the nonrandom uncertainty 

types, often characterized by low frequency changes, are represented by a number of 

storylines, each with an estimated probability of realization. 

2.8. SIGNIFICANCE OF THIS RESEARCH 

There is no question about the importance of TEP in every electric power industry. 

It has always been mandatory, as a part of the changes needed to face the ever 

increasing demand for electricity within a reliable operational frame [16]. The 

power industry is expected to further experience rapid changes and transformations 

to meet environmentally-friendly, sustainable, secure and affordable energy to a 

growing demand for electricity. Nowadays, there is a general consensus that this 

objective can be achieved by aggressively promoting the deployment of renewables, 

variable energy sources, in particular. In the coming decades, because of the 

aforementioned techno-economic and environmental reasons, a large amount of 

such energy resources are expected to be integrated in power systems. However, 

such resources are often abundantly available in remote locations broadly dispersed 

across a geographically wide area, and often far away from major demand centers. 

This will require huge transmission investment needs.  

The resulting TEP problem poses a huge challenge for network planners because of 

its complexity. Both the size of the system and the level of uncertainty are huge. The 

intermittent nature of variable energy resources (such as wind and solar) also 

introduces significant uncertainty and variability to the system, further complicating 

the TEP problem. Exiting transmission networks should be largely reinforced and 

expanded to balance the extra operational uncertainty introduced by such energy 

sources. In general, solving a TEP problem for such a big system under high levels 

of uncertainty demands an exceptionally huge computational effort when using 

reasonably precise network expansion models.  

In the European context, for instance, there is a huge potential of large-scale wind 

power in the North Sea, West Coast and Baltic areas. In addition, a huge amount of 

solar power is expected to be imported from the Middle East and North Africa 

(MENA) [9]. Under these circumstances, a pan-European electricity network 

expansion [9] has to be adequately reinforced and expanded to support full 

integration of these large-scale RESs and fully transport the power generated from 

such sources to meet the ever increasing demand for electricity [11]. This is an 

extremely challenging task because of the unprecedented geographical, temporal 

and uncertainty scope, albeit there is a need for TEP tools to help in such a complex 

decision-making process.  
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Despite the extensive literature on TEP, the problem still remains to be very 

challenging especially with network instances of this magnitude. In other words, 

there has been little progress on a TEP problem which considers large-scale 

integration of RESs on a network of continental or intercontinental size. The 

literature is vastly composed of solving TEP problems in small- to medium-scale 

networks. In such networks, introducing any level of complexity (in modeling, 

solution strategy or both) may be affordable, but this is not the case with networks 

of a continental size. The size of the TEP problem have been getting more complex 

because of the ever-increasing size of the networks being dealt with, uncertainties 

growing from time to time, etc., increasingly becoming computationally demanding. 

As a result, traditional solution strategies and more detailed TEP models (such as the 

AC power flow based one) are no longer computationally affordable. Technically 

speaking, the geographically wide TEP optimization model should be as simple as 

possible to make sure that the problem is computationally and practically tractable 

but at the same time it should deliver reliable and robust solutions. In general, 

currently adopted TEP models and solution approaches cannot be seamlessly 

applied to such a huge problem, principally due to their computational limitations. 

Computational complexity of a TEP problem dramatically increases with the size of 

the network dealt with. Unless handled systematically, pursuing optimal expansion 

solutions in continental scale TEP problems such as the EU network deems to be 

impossible. This justifies the fact that the problem needs to be approached in a way 

different from the conventional one.  

In general, new “algorithmic and computational methods are needed to address (1) 

the high dimensionality of an optimization problem having a long decision horizon, 

large geographic scale and high uncertainty; (2) a need to provide solutions in 

terms of tradeoffs among multiple objectives; and (3) the discrete nature of the 

investment decisions” [177]. 

In view of the complex nature of the problem, this thesis proposes a global strategy, 

methods and tools to solve this kind of problem, as outlined and discussed in the 

published works of this thesis [13], [14], [15]. The entire TEP tool comprises: 

 Successive optimization problems that reduce the space of combinatorial 

solution search space while gradually using more detailed and accurate 

models. 

 Multi-stage planning, to find short-term decisions that consider long-term 

scenarios. 

 Two-period planning framework to combine stochastic models with 

alternative deterministic storylines. 

 Mathematical programming, empowered by heuristic and expert knowledge. 

 Effective methods for handling the vast uncertainty and variability inherent 

to such a problem.  

 Network models that adequately capture the physical characteristics of the 

network system.  
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Both the tractability of a TEP problem and the accuracy of an expansion solution 

largely depend on the level of system details captured by the expansion model. This is 

associated with the characterization of physical network variables, in particular, 

flows and losses. This chapter thoroughly reviews a number of TEP models, 

commonly used in grid planning studies, in terms of accuracy and mathematical 

complexity levels. In addition to the systematic comparisons of various existing 

models both theoretically and numerically, this chapter contributes some 

improvements to the mathematical modeling of existing TEP models.   

3.1. CHAPTER OVERVIEW 

Transmission grid is the backbone of any power flow analysis, planning and 

operation. This is particularly indispensable in TEP studies because the expansion 

solutions are conditioned by the topology, the strength and the level of modeling 

details of the network which constitutes existing and candidate lines. Therefore, 

modeling the network (grid) should be an integral part of any TEP study. As 

extensively reviewed in Chapter 2, TEP models based on a number of network 

models, each with a different fidelity level, have been adopted. Here, the context of 

fidelity should be understood as the extent to which the physical characteristics of the 

system are captured.  

This chapter reviews some of the most commonly used and new network models in 

the context of TEP studies, and discusses in detail the pros and the cons of each one 

from a modeling complexity and computational performance points of view.  

3.2. TEP MODEL FIDELITY—THEORETICAL VIEW 

The TEP problem can be considered as an optimal power flow problem consisting of 

a number of discrete constraints. A number of existing TEP models as well as 

improved and new ones are reviewed and discussed here. Theoretical and 

experimental comparisons of different models are also presented. This is motivated by 

the conflicting accounts of existing network models in the literature [178]–[181] as 

well as the need to build the right network model that balances the tradeoff between 

accuracy and computational requirement. Note that, for the sake of simplicity, a 

number of notations are suppressed.  

3.2.1. An AC based TEP Model (ACTEP) 

Current transmission networks are predominantly AC systems. The ACTEP model, 

which is based on the customary AC power flow equations (1) and (2), employs the 

most accurate network model but the resulting optimization problem is highly 

nonlinear and nonconvex.  

     
                                 (1) 

      
                                 (2) 
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This model minimizes a user-defined objective function as in (3) subject to a number 

of technical constraints given by Equations (4) through (15). Note that the TEP 

problem requires adding the discrete variables to the power flow equations in (4)—(7) 

and corresponding capacity constraints in (8) and (9). The flow equations related to 

existing lines are generalized to indicate their switching statuses/utilizations.  

                                              (3) 

Equations (4) and (5) represent the active and reactive power flows in existing lines, 

respectively; whereas, Equations (6) and (7) are the corresponding flows in candidate 

ones.  

        
                                     (4) 

         
                                           (5) 

        
                                     (6) 

         
                                      (7) 

The flow limits for existing and candidate lines are given by (8) and (9), respectively.  

  
    

          
              (8) 

  
    

          
              (9) 

Equations (10) and (11) represent the active and the reactive power balances at each 

node, respectively i.e. the Kirchhoff’s current law (KCL).  

                                       (10) 

                                       (11) 

Equations (12) and (13) provide the permissible bounds for the active and the reactive 

power generation of a unit, respectively.  

                                    (12) 

                                    (13) 

Voltage and angle bounds as well the corresponding reference values are given by 

(14) and (15), respectively.  

                                     (14) 



 

32  
 

                                   (15) 

As it can be seen, the resulting ACTEP model is a mixed integer programming 

(MINLP) problem, which is highly non-linear and non-convex. According to 

computational complexity theory, MINLP problems are regarded as NP-hard or even 

NP-complete problems [182], [183]. Despite there are some advances in MINLP 

solvers in recent years, employing the AC flow equations in power system planning 

applications (especially for large-scale TEP problems) is yet increasingly difficult. For 

this reason, ACTEP is rarely employed in the literature. The few ACTEP models 

proposed in the literature are practically limited to small-scale systems, and often use 

heuristic and metaheuristic methods for solving the resulting problem. For instance, 

authors in [21] propose a constructive heuristic algorithm, guided by interior point 

method, for solving an ACTEP problem. Reference [184] proposes a genetic 

algorithm for solving a similar problem guided by Benders decomposition. The 

ACTEP problem is decomposed into a master involving only an integer programming 

problem and a sub-problem with a nonlinear programming nature. As mentioned in 

the previous chapter, heuristic and metaheuristic solution methods neither guarantee 

optimality nor give a measure to the optimal solution. 

In some cases, it is suggested that decoupling the products of binary (   and   ) and 

continuous variables in (4)—(7) by means of disjunctive (also called big-M) 

formulation as in (16)—(19) may facilitate the computational process. However, 

choosing suitable values for the big-M parameters is not straightforward. In principle, 

such parameters should be selected to ensure sufficiently tight relaxations of the 

original equations. Inappropriate values may lead to numerical difficulties which can 

further slow down the solution process. Reference [57] estimates the minimum 

values by solving a shortest-path problem.    

       
                                                       (16) 

        
                                            (17) 

       
                                                       (18) 

        
                                            (19) 

Because of the computational issues associated with the AC-based TEP models, a 

number of relaxed ACTEP models [35] have been proposed, and compared in terms 

of their computational requirements and solution qualities. Even if the relaxed AC 

models are interesting, and demand relatively lower computational effort when 

compared to ACTEP, authors concluded that they are not feasible for large-scale TEP 

applications. From this perspective, further reductions and mathematical 

simplifications are needed to solve such problems. Several computationally less-
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intensive linearized models, with different levels of fidelity and computational 

complexity, have been employed in TEP applications. They are derived from the AC 

power flow equations under a number of simplifying assumptions. The most 

commonly used models are reviewed below. 

3.2.2. A Linearized AC based TEP Model (LinACTEP)  

The formulation of this model, denoted as LinACTEP, includes the objective function 

(3) and constraints (8)—(15) as well as linearized forms of the AC power flow 

equations in (1) and (2). The linearization process is based on two practical 

assumptions, which is explained as follows. The first assumption is concerning the 

bus voltage magnitudes, which in power transmission systems are expected to be very 

close to the nominal value     . Hence, without loss of generality, a flat voltage 

profile is assumed throughout the system. The second assumption is in relation to the 

angular difference    across a line, which is practically small because of stability 

reasons, leading to the trigonometric approximations          and        . 

Note that this assumption is valid in transmission systems, where the active power 

flow dominates the total apparent power in lines. The LinACTEP model, which is 

based on the two assumptions and a Taylor series expansion, is first introduced in 

[133] in the context of transmission expansion planning. In this model, the voltage 

magnitude at bus   can be expressed as the sum of the nominal voltage and a small 

deviation    , as in (20). 

                                   (20) 

Note that the voltage deviations at each node     are expected to be very small. 

Substituting (20) in (1) and (2) and neglecting higher order terms, one gets:  

        
                   

                              (21) 

         
                   

                             (22) 

Notice that Equations (21) and (22) still contain nonlinearities because of the products 

of two continuous variables—voltage deviations and angle differences. However, 

since these variables (   ,     and   ) are very small, their products can be neglected. 

Hence, the above flow equations become: 

                       
                 (23) 

                        
            (24) 

When the investment planning problem includes network switching, reinforcement, 

replacement and expansion of transmission lines, Equations (23) and (24) must be 

multiplied by the corresponding binary variables as in (25)—(28). This is to make 

sure that the flow through an existing or a new line is zero when the associated 
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switching/investment variable is zero; otherwise, the flow in that line should obey the 

Kirchhoff’s law. Note that the models here are generalized to include network 

redesign (switching) via the switching variable    i.e. existing network can be 

redesigned by cutting off some lines that improve the overall economic efficiency. 

                          
         (25) 

                           
        (26) 

                          
         (27) 

                           
        (28) 

The bilinear constraints, involving products of binary (   and   ) with voltage 

deviation and angle difference variables, introduces undesirable nonlinearity to the 

problem. This nonlinearity can be avoided using the big-M formulation i.e. by 

reformulating the above equations into their respective disjunctive equivalents as in 

(29)—(32). As a rule-of-thumb, the big-M parameter is often set to the maximum 

transfer capacity in the system. Alternatively, they can also be estimated according to 

the approach in [57].   

                         
                    (29) 

                          
                   (30) 

                         
                   (31) 

                          
                   (32) 

The apparent power flow    through a line is given by    
    

  and this has to be 

less than or equal to the rated value which is denoted as: 

  
    

     
           (33) 

Considering line switching/investment, Equation (33) can be rewritten as: 

  
    

            
 
    (34) 

  
    

            
 
    (35) 

The quadratic expressions of active and reactive power flows in (34) through (35) can 

be easily linearized using piecewise linearizations, considering a sufficiently large 

number of linear segments,  . There are a number of ways of linearizing such 
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functions such as incremental, multiple choice, convex combination and other 

approaches in the literature [13], [185]. Here, the first approach (which is based on 

first-order approximation of the nonlinear curve) is used because of its relatively 

simple formulation. To this end, two non-negative auxiliary variables are introduced 

for each of the flow variables     and    such that      
    

  and      
  

  
 , and by implication        

    
  and        

    
 . Note that these 

auxiliary variables (i.e.   
  ,   

 ,   
  and   

 ) represent the positive and the negative 

flows of    and   , respectively. Expressing a variable as the difference of its positive 

and negative parts, which is called bijection, is a widely applied technique in linear 

programming problems. Bijection guarantees the equivalency of the reformulated 

problem with the original one, and a proof of this can be found in [186]. Bijection 

helps one to consider only the positive quadrant of the nonlinear curve, resulting in a 

significant reduction in the mathematical complexity and by implication the 

computational burden. In this case, the associated linear constraints are:  

  
            

 
                      (36) 

  
            

 
                     (37) 

  
    

        
 
                    (38) 

  
    

        
 
                    (39) 

where         
     ,         

     ,               and              . 

Note that at most one of the two auxiliary variables introduced per active and reactive 

flows through a line should be zero at a time. This condition is implicitly enforced by 

the theory of optimality because, as it can be inferred from (38), network losses are a 

function of    
    

  , and should be minimized. Setting both of them to be greater 

than zero does not only make sense but contradict with the notion of optimality. A 

small penalty can be alternatively included in the objective function to ensure at most 

one of them is zero at a time. As shall be described in the following section, this losses 

model can in some situations result in “fictitious” losses [13]. Several existing and 

proposed losses models are compared theoretically as well as numerically in Section 

3.5 and in the published work of this thesis [13].   

The active and reactive power losses in line   can be approximated as follows: 

                     
                 

     
               (40) 

                      
                    

   
   (41) 

Clearly, Equations (40) and (41) are nonlinear and nonconvex functions, making the 

problem more complex to solve. This can be overcome by having the quadratic angle 

differences piecewise-linearized, as it is done in [133]. Such a linearization requires 
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introducing additional binary variables and big-M formulation to avoid unnecessary 

constraints on the angle differences when a binary variable associated to an existing or 

candidate line is zero. A major disadvantage of the linear models of (40) and (41) in 

[133] is related to the computational issues. The additional binary variables required 

as well as the introduction of the big-M method increase the complexity of the TEP 

problem. To overcome this issue, losses are first expressed as a function of flow, 

which has substantial benefits from the computational point of view. This will be 

explained shortly. The angle-based losses models in (40) and (41) are expressed in 

terms of the active and the reactive power flows as in (42) and (43). Note that 

Equation (42) can be easily obtained by multiplying the squared expressions of both 

sides of the equations in (23) and (24) by the resistance of the branch, combining the 

resulting equations, neglecting higher order terms and reordering both sides of the 

resulting equation. Equation (43) can be also obtained in a similar fashion but by 

multiplying the squared expressions by the reactance the line. More details about the 

derivation of Equations (42) and (43) is provided in Appendix A. 

         
    

       
     (42) 

          
    

       
     (43) 

Note that expressing the losses as a function of flows has two advantages.  First, doing 

so reduces the number of nonlinear terms that has to be linearized, which in turn 

results in a model with a reduced number of equations and variables. For example, if 

Equations (41) and (42) are used instead, in addition to the quadratic power flow 

terms   
  and   

 , the quadratic angle differences   
  need to be also linearized to 

make the problem linear and convex. On the contrary, when Equations (43) and (44) 

are used, one is only required to linearize   
  and   

 . Second, it avoids unnecessary 

constraints on the angle differences when a line between two nodes is not connected 

or remains not selected for investment. This is often avoided by introducing binary 

variables and using a so-called big-M formulation [133]. However, this adds extra 

complexity to the problem. 

Losses are often treated as “virtual” loads connected to the buses. In this respect, the 

losses in a given line are equally distributed to the nodes connecting the line. To take 

account of these changes, the load balance equations in (10) and (11) should be 

slightly modified as in (44) and (45). The line capacity constraints in (34) and (35) 

may be also extended as in (46) and (47). The quadratic terms in these equations can 

be linearized in the same way as in the quadratic flow functions. However, even if this 

is an elegant approach, the additional linear constraints lead to a further computational 

complexity. Because of this reason, Equations (34) and (35) are adopted in the 

analysis throughout this work. Note that the absolute value flow terms in (46) and (47) 

are replaced by the linear expression        
    

 . 

                                                 (44) 
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                                                 (45) 

                                        
 
   (46) 

                                        
 
   (47) 

Computationally speaking, the LinACTEP problem (either lossy or lossless) is 

relatively less complex when compared with the full ACTEP model. The entire 

LinACTEP model is a MILP optimization problem, for which efficient and off-the-

shelf solvers are available, and optimal solution may be guaranteed in a finite 

simulation time. 

3.2.3. A “DC” based TEP Model (DCTEP) 

This model, which is denoted as DCTEP, is the most commonly used model in 

technical and economic analyses of complex power systems [33], [53], [82], mainly 

because of its relatively lower computational requirement compared to the models 

discussed previously. This TEP model often minimizes a certain objective function 

(48) subject to a number of linearized power flow equations [180]. It is derived from 

the well-known AC network flows under the simplifying assumptions described 

above in Subsection 3.3.2 (i.e. the assumptions related to the unity voltages, and small 

angular differences across lines) and zero resistance. Further details of the DC 

network model including its full derivation and related details can be found in [180].  

                                             (48) 

The DCTEP model respects constraints related to the Kirchhoff’s voltage law (KVL) 

of existing (49) and candidate (50) lines. As described in the preceding Section, the 

bilinear terms in Equations (49) and (50) are separated by the method of disjunctive 

formulation as in (51) and (52). Sufficiently large values should be selected for the 

big-M parameters involved in this formulation to make sure that reformulated 

problem is tight enough, and that numerical problems are avoided. The approach 

presented in [186] can be used to approximate the minimum big-M value for each 

corridor, as in [187], [188]. 

        
                                   (49) 

        
                                 (50) 

        
                                          (51) 

        
                                         (52) 

The corresponding network capacity limits are given by (53) and (54). 
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                                   (53) 

                                   (54) 

The DCTEP model also needs to respect the nodal active power balance (55), the 

generation limits (56) and the voltage angle related constraints (57). However, due to 

the simplifying assumptions in this model, information regarding reactive power and 

voltage magnitude variations among nodes are neglected. 

                                      (55) 

                                   (56) 

                                  (57) 

Basically, the underlining assumptions make the DC model lossless. However, losses 

are often approximated by the quadratic expression in (40) [180], or some proxy of it, 

and combined with the DC power flow model. Some of the existing linear losses 

models (presented in the next subsection) are derived from (40).  

Notice that Equation (40) is both nonlinear and nonconvex. In complex problems such 

as a large-scale TEP one, linear models are welcome. The expression in (40) can be 

linearized in order to include losses in DCTEP models. The most common approach 

in this case is to perform a piecewise linearization of the expression in (40) as 

proposed in [43], and further applied in formulating a long-term TEP problem of 

deregulated power systems [66]. As explained before (see Section 3.3.2), the main 

drawback of such a linearization approach, when used in TEP problems, is that 

angular differences between nodes are inappropriately constrained to be zero for those 

nodes connected by lines selected for contingency screening or candidate lines that are 

not built. This is due to the fact that, in common piecewise-linearized models, angle 

differences are formulated in terms of the line flows (zero flow implies equal angles). 

To avoid this problem, the corresponding linear constraints are reformulated into their 

respective disjunctive equivalents (described as the big-M approach as in [43]) to 

guarantee that these constraints are not binding for lines that are not built or not 

operative. However, the big-M approach creates some numerical difficulties during 

the OPF solution process, such as ill-conditioning of matrices representing the system 

topology. To avoid the use of the big-M approach, losses can be expressed as a 

function of flows (as in the case of LinACTEP) instead of angle differences. The 

relationship between a line flow and its losses can be readily derived using the DC 

flow model equations or directly from Equation (42) by simply neglecting the reactive 

power flow, which leads to:  

        
      

      (58) 
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Unlike angle differences, line flows are bound to be zero in lines that are not built 

(candidate lines) or not operative (because of contingency screening or maintenance). 

Another advantage of Equation (58) is its possible application to model losses in 

HVDC lines or, generally, in lines where flows are independent of the voltage angles 

at the buses they are connected to. The linearization of the quadratic flow function in 

(58) is as described in the preceding Section, and includes the constraints given in 

(36) and (38).  

Like in the case of lossy LinACTEP model formulation, losses in each line are treated 

as “virtual” loads connected to the two end nodes of the line. In other words, losses in 

a given line are equally distributed to the nodes connecting the line. When formulating 

a lossy DCTEP model, the line capacity constraints (53) and (54) as well as the load 

balance equation in (55) need to be slightly modified to take account of the losses as 

in (59)—(61), respectively.  

                                 (59) 

                                 (60) 

                                                 (61) 

In Equations (59) and (60), the absolute flow terms      are easily linearized by 

introducing two non-negative continuous auxiliary variables   
  and   

  such that 

     
    

 . This implies        
    

 . These two auxiliary variables 

correspond to the forward and the backward flows in a line. Note that at most one of 

them will be zero at a time. This condition is implicitly enforced by the theory of 

optimality because network losses are a function of    
    

   and should be 

minimized. Setting both of them to values higher than zero does not only make sense 

but contradict with the law of optimality. A small penalty can alternatively be 

included in the objective function to ensure at most one of them is zero at a time.  

Computationally speaking, the DCTEP problem (either lossy or lossless) is relatively 

less complex when compared with the LinACTEP model. Since the entire formulation 

keeps the problem linear, like in the case of LinACTEP, commercially available 

solvers can solve problems of this type efficiently. 

3.2.4. A Modified “DC” based TEP Model (M-DCTEP) 

It has been stated that the formulation of a DC network model is anchored on the 

basic assumption that the voltage magnitudes are close to the nominal one, which 

effectively leads to a flat voltage profile in the system. This assumption is valid in 

most cases especially in electrical networks spanning over small geographical areas 

because in such networks, the transmission lines are often short and have low 

impedances, leading to low voltage drops. However, in larger instances of network 

systems, which are the subject of this thesis, voltage drops may be very high since 
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long lines are very common in such networks. Moreover, since RESs are often 

available in remote areas, very far from major demand centers, long lines are 

expected to be constructed to tap the available resources. Because of these reasons, 

it can be appealing to modify the DC model to include some of the interesting 

features of LinACTEP model. In this model, denoted as M-DCTEP, the customary 

flow equations in the DC model, which solely depend on angular differences, are 

replaced with the following equations: 

                         
                    (62) 

                         
                   (63) 

where Equations (62) and (63) stand for the disjunctive flow models in existing and 

candidate lines, respectively, and                . The remaining constraints 

in DCTEP are also retained here. A full list of constraints can be found in Appendix 

C.         

3.2.5. Relaxed “DC” based TEP Model (R-DCTEP) 

The relaxed DC TEP (R-DCTEP) model can be considered as an alternative 

formulation of the DCTEP model. As explained before, the DC model relies on 

disjunctive formulations for decoupling bilinear terms. Selecting appropriate big-M 

parameters can be problematic in most cases, and this directly influences the 

solution process. Unlike the DCTEP, this model does not require big-M formulation 

in the case of candidate lines, which can be regarded as a significant computational 

advantage. Instead of using the disjunctive model, the DC model is relaxed by 

replacing the bilinear terms with new continuous auxiliary variables. In other words, 

the proposed R-DCTEP model is linearized by transforming the bilinear terms in the 

DC power flow equations into separable functions [189]. Here, we shall see how 

this is done for the bilinear terms in (46). First, two auxiliary continuous variables 

     and      are introduced such that                and               . 

This means the product of discrete and continuous variables      appearing in the 

DC flow equation (46) can be transformed into separable functions given by 

    
      

  as in (66). The linearization of these quadratic terms is straightforward; 

the incremental approach (described in the preceding Section) is adopted here.  

Like in the DCTEP, this model minimizes a given objective function (64) subject to 

a number of technical constraints.  

                                              (64) 

Equation (65) corresponds to the big-M equivalent formulation of the DC power 

flow model in existing lines while the relaxed form of such a model for candidates is 

shown in (66).  

        
                                         (65) 
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           (66) 

Constraints (67)—(70) form the set of additional constraints required to make the 

linearization approach complete. Further details of the linearization technique adopted 

here can be found in an optimization modeling book [189].  

     
     

 
               

     

 
             (67) 

                         (68) 

    

 
      

           

 
              (69) 

      

 
      

           

 
              (70) 

The rest of the constraints correspond to the power flow limits (71) and (72), load 

balance (73), generation capacity limits (74) and voltage angle bounds (75). 

                                   (71) 

                                   (72) 

                                      (73) 

                                   (74) 

                                 (75) 

When it is desired to include network losses in the TEP study, they can be modeled 

in a similar way as in the DCTEP model described before i.e. by including the 

constraints (58)—(61).  

Note that the investment variables in this model need not only be discrete variables; 

continuous variables can equally be used. As one of its salient features, this model 

avoids the big-M formulation; and hence, demands relatively less computational effort 

compared to its DC counterpart. Unlike the DC model, the investment variables can 

be relaxed to hold continuous values instead of discrete ones while respecting the 

physical laws of flows, which is another important feature of this model. This is 

relevant because, sometimes, a first-hand estimate of the network expansion needs 

may be required. In such cases, it is desirable that such information be made 

available as fast as possible. One way to do this is by relaxing the discrete 

investment variables to continuous ones. Thus, the R-DCTEP model with 

continuous investment variables can be used in this regard. The versatility of such 

models is demonstrated in the following chapters.  
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3.2.6. A Hybrid TEP Model (HTEP) 

Due to the computationally intensive nature of the problem, some researchers have 

resorted to further simplify the DC model. A hybrid TEP model (HTEP), which has 

been used in  network expansion problems [10], [31], is formulated by exempting the 

candidate lines from obeying KVL. In other words, candidate lines only respect load 

balance and capacity limits. On the other hand, flows in existing lines are governed by 

both Kirchhoff’s laws. Since the DC flow equations are not included in this model, 

the discrete variables can be relaxed to continuous ones. Although the simplifications 

and assumptions made in this model lead to a more manageable TEP model 

(computationally speaking), it has a major drawback which is associated with 

“reverse” flows (i.e. flows in a direction opposite to that determined by the law of 

physics). In power systems, physical laws dictate that power always flows from nodes 

with high potential to those with low potential. In the case of DC models, this should 

be from nodes with high voltage angles to those with lower voltage angles. However, 

when HTEP is used as a transmission investment model, flows in the newly added 

lines (i.e. candidates) could unfortunately be in the opposite direction in certain 

circumstances, violating the physical laws that govern power flows in AC systems.  

To further clarify this problem, consider the system in Figure 3.1. All corridors can be 

reinforced with the same line characteristics as the existing one. Assume the generator 

connected to node 1 is a renewable type with a very low cost of power production. As 

can be seen, there are two electrical paths to the high-load node 5 namely 1-2-3-4-5 

and 1-6-5. Suppose the former path is congested, with all lines along the path reaching 

their respective maximum capacities, and suppose the latter path has sufficient 

capacity for sending more power to the load node. However, congestion in the parallel 

path (1-2-3-4-5) makes it impossible to send more power to this node. When the 

system is expanded by making use of the HTEP model, instead of investing in all 

lines in this path, the model may instead lead to an investment in corridor 1-2 to allow 

reverse flows in the same line. This temporarily “relieves” the congestion and enables 

the system to send more power to node 5. The sum of the investment cost of line 1-2 

and operation of cost of the power injected by G2 (in the form of a counter flow in the 

newly added line) may in the end be lower than the overall investment cost of the four 

lines along the path (1-2-3-4-5). This phenomenon is detected in the numerical 

analysis of all models, which will be discussed shortly.  

The problem of reverse flows can be avoided by introducing binary variables. 

However, this adds extra complexity to the problem, which is not affordable when the 

expansion planning involves large-scale network systems. 



 

43  
 

2

1

3

6

5

4
G
2

G
1

 

Fig. 3. 1 Illustrative example of counter flows 

3.2.7. A “Pipeline” TEP Model (PTEP) 

This model, denoted as PTEP, is sometimes referred to as “flow” or transportation 

model which has been used in TEP studies in [32]. All lines are regarded as pipelines, 

respecting only the capacity limits and nodal balance. PTEP does not obey the 

Kirchhoff’s voltage law. This means that a given line can carry any desired amount of 

power flow independent of its impedance and the angular differences.  

A PTEP model can be formed with any of the models presented and discussed before 

by excluding the KVL constraints related to both existing and candidate lines. As an 

example, a lossless PTEP model can be formulated from the DCTEP model in 

Subsection 3.3.3 by considering only the constraints in (53)—(57). The PTEP model 

is mathematically less complex and computationally less-intensive when compared to 

any other model discussed so far. However, given the overly simplified network 

model used in its formulation, the expansion solutions obtained by employing this 

model can be largely suboptimal. Like in the HTEP model, PTEP may also be prone 

to problems of reverse flows. 

3.2.8. A “Copper Sheet” TEP Model (CSTEP) 

The copper sheet TEP (CSTEP) model regards existing lines as if they did not have 

flow limits i.e. by relaxing the flow limits. This model can be alternatively understood 

as a TEP model without flow limit constraints. CSTEP can be formulated with any of 

the TEP models presented and discussed so far by excluding the capacity constraints 

of existing lines or relaxing the binary switching variable associated to these lines to 

have continuous values with no bounds imposed. For instance, a lossless CSTEP form 

of the DCTEP model would include the constraints in (51), (52) and (55)—(57) as 

well as the constraints in (53), where      and     . Such a model can be a very 

handy tool in quickly analyzing corridors that are prone to congestion so that 

preventive measures can be undertaken. In addition, it can be very useful in 

identifying corridors that may need reinforcements/investments. This application is 
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especially relevant when carrying out TEP on large-scale networks, where the huge 

geographical scope makes it difficult to short-list candidate lines for investments. In 

such network systems, planners cannot rely on expert knowledge (unlike in small- to 

medium-scale systems) for the candidate selection procedure. Its application in this 

regard will be further discussed in the following chapters. 

3.3. TEP MODEL FIDELITY—NUMERICAL COMPARISONS 

3.3.1. Input Data and General Description 

The TEP models briefly described and discussed under Subsection 3.2 have been 

compared numerically by running case studies constituting of the Garver’s 6-bus, 

IEEE 24- and 118-bus test systems in terms of computational requirement as well as 

solution accuracy. As mentioned earlier, the motivation of such a comparative 

analysis is to find the model that strikes the right balance between accuracy and 

computational demand in the context of large-scale TEP applications.  

For the analysis here, a deterministic model with an objective function given by (76) 

is considered which is subject to the constraints corresponding to each model. 

Equation (76) is composed of the net present values (NPV) of investment cost, 

operation as well as costs of energy not served (ENS).  

The investment cost of a line is prorated in fixed annual installments throughout its 

lifetime    . The transmission line assets are characterized by very long lifetimes, 

often in the order of 50 years. Whereas, a planning horizon may be lower than this (as 

it is often the case). Therefore, it should be noted that the operation and ENS costs are 

incurred every year during and after the planning horizon, leading to a seemingly 

infinite payments of these costs annually. To further clarify this, consider the 

illustrative example in Figure 3.2. It is understood that investments are made in a 

specific year within the planning horizon (the second year in this case) and the 

investment costs are spread throughout its lifetime in equal and yearly payments. 

However, the operation and load shedding costs are incurred every year within and 

after the planning horizon. To balance these cost terms and take account of the long-

term impact of network investments, a perpetual planning horizon, i.e. an endless 

payment horizon of fixed installments is assumed here. In other words, the concept of 

perpetuity described in detail in [190] is adopted. Based on the finance theory in 

[190], the present value of perpetuity, which is the sum of the net worth of infinite 

annual fixed payments, is determined by dividing the fixed payment at a given period 

by the interest rate  . Based on this, the operation and load shedding costs include the 

associated annual costs within (part I) and outside the planning horizon (part II). The 

latter (part II) are determined by the perpetuity of the costs in the last planning stage 

updated by NPV factor in this case        . Note that when the lifetime of a given 

line expires, investment can be made in an identical line i.e. with the same cost and 

technical characteristics. This leads to infinite fixed payments, in agreement with the 

concept of a perpetual planning horizon. 
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 Fig. 3. 2 Illustration of cost components within and outside the planning horizon 

 

For the sake of simplicity, the duration of planning horizon is assumed to be one year. 

Hence, Equation (70) becomes: 

   
             

       

                

 

                   

                     
 

                     

                     
  

                 

                   
 

                   

                   
  

 

(77) 
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The constraints of lossy TEP models presented before can be extended to a multi-load 

level planning framework. For the sake of quick reference, a summary of each of the 

models is presented in Appendix B. All simulations are carried out in an HP Z820 

Workstation with E5-2687W processor, clocking at 3.1 GHz. GAMS 24.0™ is used 

to code and run the optimizations. Throughout the analysis in this section, CPLEX 

12.0™ is used to solve the problems mainly with default parameters. Interest and 

discount rates are assumed to be the same. A fixed 5% interest rate is considered, and 

the number of partitions for all sorts of linearization is set to 10 but five segments are 

sufficient according to the extensive analysis on this issue in the published work of 

this thesis [13]. The range of permissible node voltage deviations is between +10% 

and -10% of the nominal voltage; voltage angles are allowed to vary within 1.5 and -

1.5 radians. For the analysis in this chapter, the lifetime of any transmission line is 

assumed to be 30 years long. 

 

Fig. 3. 3 Aggregation of a load duration curve 

 

An hourly demand series for one year is aggregated by dividing the load duration 

curve into 30 load blocks, as shown in Figure 3.3. The duration (in hours) of each load 

block is indicated in Figure 3.4. Further input data used in the simulations can be 

found in Appendix C. 
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Fig. 3. 4 Number of hours for each load block    

 

3.3.2. Numerical Results and Comparisons 

Numerical performance of each model is assessed by carrying out simulations on the 

aforementioned test systems. Simulation results are summarized in Tables 3.1 through 

3.4 and Appendix D. Table 3.1 presents the investment decisions obtained by each 

model with and without losses. As can be observed, neglecting losses generally leads 

to underinvestment or even a different expansion solution. The overall costs for the 

lossless cases seem lower than those computed with losses. However, these are 

unrealistic because the cost and impact of losses are unaccounted for. In the following 

section, we shall see a detailed analysis of losses and their influences in expansion 

results.    

Comparing the expansion results with that of an AC solution reveals that all lossy 

models provide very similar solutions. This is especially the case with LinACTEP and 

DCTEP as well as the modified DCTEP models. The expansion results of lossy 

LinACTEP model only differ by one from the solutions of AC and lossy DC-based 

TEP models. Yet, the total investment costs for the three models are the same in all 

three models, as can be seen in Table 3.2. Figure 3.5 compares the losses in each load 

level computed by each TEP model. It can be inferred from this figure that the 

DCTEP results in the lowest losses, followed by LinACTEP and the remaining 

models. 

Computational burden generally increases with model fidelity i.e. PTEP, HTEP,  

R-DCTEP, DCTEP, M-DCTEP, LinACTEP and ACTEP. Despite its solution 

accuracy, the LinACTEP demands nearly 5 times more computational effort to solve 

the same problem than the DCTEP model. Interestingly, the modified lossy DCTEP 
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models (R-DCTEP, M-DCTEP) perform well. The computational requirement of R-

DCTEP is significantly lower than that of DCTEP while the increase in simulation 

time when using the M-DCTEP is marginal compared to the simulation time of 

DCTEP. Figure 3.6 demonstrates this phenomenon. In general, from the simulation 

results, one can see that the models which strike the right balance between accuracy 

and computational demand are lossy DCTEP and its derivative M-DCTEP. 

 

Table 3. 1 Network expansion solutions for different TEP models – 6-bus case 

   
Investment solution 

  
From 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 

  
To 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6 

D
is

cr
et

e
 

PTEP 
Lossy 

    
1 1 

  
1 

  
1 

 
1 1 

Lossless 
    

1   
  

1 
  

1 
 

1 1 

HTEP 
Lossy 

    
1 1 

  
1 

  
1 

 
1 1 

Lossless 
    

1   
  

1 
  

1 
 

1 1 

R-DCTEP 
Lossy 

    
1 1 

  
1 

 
1 1 

 
1 1 

Lossless 
    

1   
  

1 
  

1 
 

1 1 

DCTEP 
Lossy 

    
1 1 

  
1 1 1 1 

 
1 1 

Lossless                 1 1         1 1     1     1 1 

M-DCTEP Lossy     1 1   1 1 1 1  1 1 

LinACTEP 
Lossy 

   
1 1 1 

  
1 1 

 
1 

 
1 1 

Lossless                 1 1         1 1     1     1 1 

ACTEP* 
    

1 1   1 1 1 1  1 1 

C
o
n
ti

n
u
o
u
s 

PTEP 
Lossy    0.1 1 0.17 

  
1 

 
0.1 1 

 
1 1 

Lossless        1     
  

1 
 

    1 
 

1 1 

HTEP 
Lossy    0.1 1 0.26 

  
1 

 
0.2 1 

 
1 1 

Lossless        1     
  

1 
 

    1 
 

1 1 

R-DCTEP 
Lossy    0.1 1 0.26 

  
1 

 
0.2 1 

 
1 1 

Lossless        1             1         1     1 1 

* Best solution after a number of restarts  

 

Another observation in Tables 3.1 and 3.2 is that the models, whose investment 

variables are converted to continuous ones, yield interesting expansion outcomes. The 

values of those lines that make up the optimal solution set are significant. This is very 

relevant information which can be exploited by solution strategies that reduce the 

combinatorial solution search space. This will be discussed in detail in Chapter 5. 
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Table 3. 2 Costs and simulation times for different TEP models – 6-bus case 

   

Investment 

cost (€) Total cost (€) 

CPU time 

(s) 

Discrete 

PTEP 
Lossy 284987239.4 1316109950.0 0.764 

Lossless 260205740.3 1073807336.9 0.078 

HTEP 
Lossy 284987239.4 1316174242.8 2.855 

Lossless 260205740.3 1073807337.0 0.125 

R-DCTEP 
Lossy 311007813.4 1316174242.8 1.372 

Lossless 260205740.3 1073807337.0 0.234 

DCTEP 
Lossy 382874160.8 1919502705.2 34.991 

Lossless 358092661.7 1661650011.6 3.697 

M-DCTEP Lossy 382874160.8 1844384854.2 36.442 

LinACTEP 
Lossy 382874160.8 1844384838.0 166.375 

Lossless 358092661.7 1658033570.6 116.532 

ACTEP Lossy 358092661.7 1658033601.9 434087.045 

Continuous 

PTEP 
Lossy 269495228.7 1297679459.3 0.187 

Lossless 260205740.3 1073807336.9 0.015 

HTEP 
Lossy 269767517.4 1298477815.1 0.172 

Lossless 260205740.3 1073807337.0 0.031 

R-DCTEP 
Lossy 269767517.4 1298477815.1 0.359 

Lossless 260205740.3 1073807337.0 0.094 

 

 

Fig. 3. 5 Losses computed by selected TEP models – 6-bus case 
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Fig. 3. 6 Performance comparison of selected TEP models – 6-bus case 

 

Table 3. 3 Network expansion solutions for different TEP models – 24-bus case 

   

Investment solution (values shown in brackets) 

D
is

cr
et

e
 

PTEP 
Lossy 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1) 

Lossless 2-4 (1), 4-9 (1) 

HTEP 
Lossy 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1) 

Lossless 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1) 

R-DCTEP 
Lossy 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1) 

Lossless 2-4 (1), 2-8 (1), 4-9 (1), 16-17 (1) 

DCTEP 
Lossy 1-2 (1), 2-4 (1), 2-8 (1), 4-9 (1), 10-11 (1), 16-17 (1) 

Lossless 1-2 (1), 1-8 (1), 2-4 (1), 4-9 (1), 16-17 (1) 

LinACTEP 
Lossy 1-2 (1), 2-4 (1), 2-8 (1), 4-9 (1), 10-11 (1), 16-17 (1) 

Lossless 1-2 (1), 1-8 (1), 2-4 (1), 4-9 (1), 16-17 (1) 

ACTEP* 1-2 (1), 2-4 (1), 2-8 (1), 4-9 (1), 10-11 (1), 16-17 (1) 

C
o
n
ti

n
u
o
u
s 

PTEP 
Lossy 

1-2 (0.2), 1-8 (0.2), 2-4 (1.0), 2-8 (0.3), 4-9 (1.0), 14-16 

(0.2), 16-17 (0.6), 16-19 (0.1), 17-18 (0.1) 

Lossless 2-4 (1.0), 4-9 (1.0) 

HTEP 
Lossy 

1-2 (0.2), 1-8 (0.2), 2-4 (1.0), 2-8 (0.3), 4-9 (1.0), 9-10 

(0.03), 10-11 (0.02), 14-16 (0.2), 15-21 (0.07), 16-17 

(0.8), 16-19 (0.13), 17-18 (0.11) 

Lossless 1-2 (1.0), 2-4 (1.0), 2-8 (0.47), 4-9 (1.0), 16-17 (0.77) 

R-DCTEP 
Lossy 

1-2 (0.2), 1-8 (0.2), 2-4 (1.0), 2-8 (0.3), 4-9 (1.0), 9-10 

(0.03), 10-11 (0.02), 14-16 (0.2), 15-21 (0.07), 16-17 

(0.8), 16-19 (0.13), 17-18 (0.11) 

Lossless 1-2 (1.0), 2-4 (1.0), 2-8 (0.47), 4-9 (1.0), 16-17 (0.77) 

*Best solution after multiple restarts 
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The simulation results pertaining to the 24-bus case, shown in Tables 3.3 and 3.4, and 

Figure 3.7, largely support the analysis and conclusions made in the 6-bus case. The 

expansion outcome of lossy LinACTEP and DCTEP models exactly match with the 

AC expansion solution; however, the simulation times of these models significantly 

differ. Like in the 6-bus case, LinACTEP is a lot more computationally demanding 

than any other model. It is about five times and 41 times more computationally 

expensive than DCTEP in the 24-bus and 118-bus cases. Hence, this indicates that the 

DCTEP model balances well accuracy with computational requirement. Figure 3.8 

plots the losses computed by selected models. It can be observed that the differences 

in these losses curves is not significant mainly because of the similarity in the 

expansion outcomes. 

As explained in the preceding sections, a major concern with the hybrid and pipeline 

models is the occurrence of reverse flows. These are not observed in the first two case 

studies but they are detected in the IEEE 118-bus system in corridors 34—37, 84—

85, 85—89, 88—89, which have been part of the expansion solution. This is corrected 

by excluding the candidate lines in these corridors. Alternatively, this can be avoided 

by including a small penalty in the objective function. The penalty factor should 

however be selected carefully not to influence the outcome.    

Table 3. 4 Costs and simulation times for different TEP models – 24-bus case 

  

 Investment 

cost (€) Total cost (€) 

Simulation 

time (s) 

Discrete 

investement 

variable 

PTEP 
Lossy 1375373.199 3916428514.8 6.973 

Lossless 743444.9723 3913114138.0 0.219 

HTEP 
Lossy 1375373.199 3916554450.2 16.069 

Lossless 1375373.199 3913746068.8 1.95 

R-DCTEP 
Lossy 1375373.199 3916554450.2 15.741 

Lossless 1375373.199 3913746068.8 1.529 

DCTEP 
Lossy 1660360.438 3917018556.0 62.556 

Lossless 1437326.947 3913885370.5 4.368 

LinACTEP 
Lossy 1660360.438 3916449214.4 362.562 

Lossless 1437326.947 3913873912.4 148.591 

ACTEP Lossy 1660360.438 3916450118.3 - 

Continuous 

investment 

variable 

PTEP 
Lossy 1195667.085 3916117546 0.952 

Lossless 743444.9723 3913114138 0.063 

HTEP 
Lossy 1314158.391 3916253139 3.775 

Lossless 1145970.474 3913516667 0.156 

R-DCTEP 
Lossy 1314158.391 3916253139 2.746 

Lossless 1145970.474 3913516667 0.39 
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Fig. 3. 7 Performance comparison of selected TEP models – 24-bus case 

 

 

Fig. 3. 8 Losses computed by selected TEP models – 24-bus case 

 

It has been stated from the outset that the main motivation of carrying out this analysis 

is to identify and/or propose an improved TEP model that strikes the right balance 

between accuracy and computational requirement from the context of large-term TEP 

problems of large-scale networks under uncertainty. From this perspective, the 

computational requirement can be roughly estimated from the simulation results in 

this section. As the plots in Figures 3.9 and 3.10 show the simulation times appear to 

follow polynomial trends. Holding other parameters the same, the expected simulation 

times for a system containing 1000 nodes or 1000 candidate lines are computed. 

These are depicted in Table 3.5. Note that these values only give rough estimates. In 
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reality, the computational complexity of such problems, i.e. the solution process, is 

influenced by a multitude of model parameters and system variables. The number of 

candidate lines determines the number of discrete variables in the optimization 

problem as well as operational variables, mainly flows and losses. Whereas, the 

number of nodes is closely related to the operational variables such as unserved 

power, nodal power injections, voltages and angles, etc.  

 

Fig. 3. 9 Simulation time trends as a function of system parameters—DCTEP  

 

Fig. 3. 10 Simulation time trends as a function of system parameters—LinACTEP  

The figures in Table 3.5 show the stark differences in the computational complexity 

of the models with increasing system nodes and discrete investment variables 

(candidate lines). With the same computing machine, in a 1000-node system, 

LinACTEP would likely take astoundingly 85 days and a half (nearly three months) 

before it returns a possible optimal solution; whereas, the DCTEP model would finish 
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within approximately 2 days. The observations with the number of candidates are 

similar. This strengthens the previous argument that DCTEP or its “equivalent” 

formulations, R-DCTEP and M-DCTEP, are the most feasible models that can be 

extended to TEP problems of a significant network size. Based on the comprehensive 

analysis made in this section, these models seem to strike the right balance between 

computational requirement and solution accuracy. Comparing the impacts of both 

parameters on the solution process in these numerical results reveals that the system 

node size has stronger impact than the number of the discrete variables. 

Table 3. 5 Estimating the computational burden (measured in days) of selected lossy 

TEP models  

 System size 

TEP Model 1000 Nodes 1000 Candidates 

PTEP 0.025 0.013 

HTEP 1.794 0.814 

R-DCTEP 1.219 0.553 

DCTEP 1.742 0.792 

LinACTEP 85.500 38.750 

 

3.4. REPRESENTATION OF TRANSMISSION LOSSES 

Most of the existing losses models fall into one of the categories reviewed in the 

following subsection. It should be noted here that the formulations of those models 

have been slightly modified in this thesis. First, the flow-based losses expression in 

(58) is used instead of the angle-based one in (40) when formulating the linear losses 

models. Second, additional features and constraints are included in some of these 

models to improve their computational performance and accuracy in representing 

losses. In addition, some alternative losses models are subsequently presented. 

3.4.1. Motivation and Overview 

The global push for the integration of renewable energy sources (RESs) involves 

planning the expansion of the transmission grid over geographically wider areas. 

Moreover, the expected high penetration of RESs introduces significant uncertainties 

in the development and operation of the system, which need to be accounted for. In 

most cases, large-scale renewable generation projects will be located far away from 

major demand centers. Due to the intermittency of their production, ensuring an 

acceptable level of guarantee of supply in systems with very high RES penetration 

will require a well-developed transmission network with sufficient capacity to 

transport the renewable power produced at remote areas to any other area where 

renewable production is very low. Depending on the availability of RESs, the power 

flow patterns of the system are expected to undergo dramatic changes over time. 

As a result, to properly address a TEP study, a large number of operational states 

(snapshots) and network investment candidates must be considered, together with 
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several timeline scenarios (or storylines) to represent the uncertainty about the 

evolution of the system in the future. This leads to a very complex combinatorial TEP 

optimization problem, requiring a large number of optimal power flow (OPF) 

computations, which can eventually become intractable. The common practice of 

considering only the OPF for the peak demand scenario is no longer valid in such 

power systems, particularly in the context of TEP, where operational states stressing 

different parts of the network may be largely different. Thus, the OPF formulation 

considered in TEP should be computationally very efficient to ensure tractability 

while delivering results with an acceptable level of accuracy. For instance, using a full 

alternating current optimal power flow (AC-OPF) model, similar to the model used in 

[191], is not computationally affordable for such a problem, while the classic direct 

current optimal power flow (DC-OPF) [180] may not be a good solution either 

because it neglects transmission losses. In general, the OPF formulation should 

feature all aspects that are believed to play a non-negligible role in TEP, especially in 

large-scale systems. 

Network losses may change the economic generation dispatch and affect optimal 

solutions for the development of the network; see in [31] and more thorough analyses 

in [43]. In spite of this, losses are frequently neglected in TEP models or treated in an 

overly simplified way, mainly to reduce the computational burden when dealing with 

systems of a significant size. Finding an appropriate representation of losses is critical 

when the scope of the considered system becomes as wide as the full European 

transmission network [192]. Moreover, as mentioned previously, large power flows 

are expected in large-scale network of systems with high penetration of RESs, leading 

to higher losses which could in turn play a more relevant role in TEP. 

When using the conventional AC-OPF model, network losses (both active and 

reactive) are implicitly modeled because such a model includes all network 

parameters. However, the resulting problem is highly nonlinear and non-convex 

which makes computing the optimal solution very demanding. Acknowledging the 

complexity of the AC-OPF problem, distributed and parallel computation schemes are 

proposed in [193]. But in some cases, the AC-OPF problem is directly solved via 

mathematical optimization techniques (for example, the interior-point method in 

[194]). Due to the nature of the problem, such techniques often rely on a series of 

approximations to reduce its complexity. Moreover, the nonlinear and non-convex 

nature of the problem means global optimality could be highly compromised because 

the solution algorithm could get stuck at local optima. This limitation, combined with 

the complexity of the AC-OPF problem, led researchers to resort to different heuristic 

and meta-heuristic solution methods which are based on different nature-inspired 

algorithms such as: harmony search [195], evolutionary programming [196], 

imperialist competitive [191], chaotic invasive weed optimization [197], particle 

swarm optimization [198], shuffle frog leaping [199] and many others [200]. Such 

solution approaches are claimed to find “good” solutions within an acceptable 

computational time but provide no guarantee of achieving global optimality. 
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Generally, even if the AC-OPF network model is the most detailed and accurate 

modeling approach, its practical application is only limited to flow analysis pertaining 

to single or very few system snapshots due to its mathematical complexity. In other 

words, it is computationally expensive, if not impossible, to carry out multi-faceted 

analysis using an AC-OPF based network model and given the sheer size of current 

power system networks with a high level uncertainty (for example, long-term TEP 

problems). Therefore, a full modeling of losses (i.e. using an AC power flow model) 

is not computationally affordable, especially in the TEP context. Therefore, a tradeoff 

between accuracy in losses representation and efficiency (in computational terms) of 

the OPF model becomes critical to address TEP studies with high renewable 

generation penetration scenarios and large-scale networks. This work addresses this 

objective and contributes losses formulations and a strategy to solve the resulting 

problem that best achieves this trade-off. The proposed losses models and other 

existing ones are compared in terms of accuracy in losses representation and 

computational efficiency. 

A review of some of the existing linear modeling approaches of losses is provided in 

[201]. A losses model based on mixed integer linear programming is reported in [43], 

applying a piecewise linear approximation of the quadratic expression of losses. And, 

the same model is applied in TEP studies in [66]. An iterative way of adding linear 

constraints is adopted in [201] using a dynamic piecewise linear model. In this case, 

the fully accurate expression of losses is iteratively approximated by adding linear 

cuts of actual transmission losses. A further extension of this iterative approach is 

reported in [202], where losses are approximated by progressively adding linear cuts 

of equally distributed nodal losses, instead of line losses. The node-based approach in 

[202] is reported to take advantage of the fact that there are fewer nodes than lines in a 

typical power system. Iterative or dynamic methods to compute losses are feasible in 

small to medium-scale systems, but in very large-scale systems, performing several 

iterations may be computationally unaffordable. 

In some cases, a single linear losses equality constraint determined by curve fitting is 

used [203], but this may either overestimate or underestimate transmission losses, 

depending on the parameters of the constraint (i.e. slope and intercept). In a similar 

manner, the authors in [144] simply represent losses in a given line as a certain 

percentage of its flow. In other cases, a quadratic function of losses is merely added to 

a DC branch flow model to account for losses in TEP [86]. But this adds nonlinearity 

to the problem, thus, negatively influencing the convergence speed of the computation 

process. Elsewhere, in problems other than TEP such as locational marginal price 

calculations, transmission losses are modeled by a fictitious load either concentrated 

at a single node (often the slack bus) or distributed among all nodes of the system. 

The distribution of losses is based on either predefined [204] or adaptive coefficients 

(alternatively termed as distribution factors of losses) [205]. In reference [204], the 

entire system losses are distributed among all nodes based on fixed losses distribution 

factors obtained from an AC power flow analysis; whereas, the authors in [205] 
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assume the losses in each line are distributed as additional loads between its terminals. 

In the latter case, the distribution factors are computed by means of a DC power flow 

analysis and losses are iteratively estimated. A further extension of the work proposed 

in [204], with adaptive coefficients instead of fixed ones, is presented in [206], and  

authors  in [207] combine and extend  the methods developed in these works, i.e. an 

iterative linear approximation of losses with adaptive coefficients is employed in 

[207]. These coefficients are modified iteratively based on information obtained from 

an AC power flow analysis, the operational system states, the operation point of 

generators and the network parameters. 

In generation expansion planning (GEP) frameworks, transmission losses and hence 

their associated impacts on the system are mostly neglected because GEP is often 

carried out without considering transmission networks. A few works in the GEP 

subject area incorporate losses by using certain loss allocation methods. For example, 

losses in transmission and distribution networks are simply considered to be a certain 

percentage of the demand to be supplied at each node in [208]. The authors in [209] 

account for losses by multiplying the total power generation at each node with a 

predefined coefficient (which ranges from 1.08 to 1.10). Similarly, power injections at 

each node are assumed to comprise a certain ratio of losses [153]. Losses estimated 

using such approaches may be sufficient in the GEP context; however, such a rough 

estimation method cannot be extended to TEP, which must consider the entire 

network system. 

Another losses modeling approach, mostly common in economic dispatch (ED) 

problems, is Kron's loss formula [210], which is based on the concept of marginal 

transmission losses allocation. Here, losses are represented as a function of levels of 

power injections (i.e. power generation levels of generating units). This can be 

understood as an approach which calculates the marginal increase in transmission 

losses due to an increase in the load or generation level. The so-called B-loss 

coefficients [210] capture such sensitivity factors i.e. the transmission loss 

coefficients. These coefficients are determined once using power flow analysis and 

often considered to remain unchanged over a large set of operational situations, which 

seems to be a very conservative assumption. In [211], Kron’s loss formula is used to 

estimate losses in an ED problem which minimizes the total cost of power generation. 

Transmission losses are also modeled using the same formula in a stochastic [212] 

and a deterministic [213] multi-objective ED optimization framework considering 

wind power generation. The differences between these two works lie in the solution 

algorithms employed and the level of details in handling uncertainty. Reference [212] 

presents a stochastic programming framework to better handle uncertainties in load 

and wind power generation. And, particle swarm optimization is used to solve the 

resulting problem; whereas, reference [213] uses a variant of firefly algorithm for the 

same purpose. Most recently, the authors in [214] embed the Kron’s loss formula in a 

reliability constrained unit commitment problem to estimate the total transmission 

losses. The application of Kron’s loss formula in the subject area of ED is not limited 
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to the aforementioned works. In [215], this formula is embedded in an ED 

optimization model which has the cost of power generation as an objective function, 

and an imperialist competitive algorithm is employed as a solution method to the 

resulting problem. Authors in [216] use a different heuristic method (charged system 

search algorithm) to solve the same problem as in [215], but including emission costs. 

Other works related to ED, incorporating Kron’s loss formula, employ point estimate 

method (analytical) [217] and a derivative of genetic algorithm (meta-heuristic) [218] 

to solve the ED problem. Both works consider wind power integration, and an 

objective function that jointly minimizes the costs associated to power generation and 

emissions. 

In [219], with an apparently different strategy, losses are represented by incorporating 

penalty functions in the objective function. Similarly, the authors in [220] include a 

linear cost term in the objective function in order to account for the cost of losses and 

solve a constrained TEP optimization problem which is based on a modified DC-OPF. 

The authors in [191] also extend this concept by considering a nonlinear formulation 

for the cost of losses, which is to be minimized in a multi-objective TEP framework 

based on an AC-OPF. The penalty method may significantly reduce overall losses 

computed in the system if a large penalty factor is used. Finding an appropriate 

penalty factor is not easy. Hence, there is a tendency to over-condition the system 

through the application of large factors, which may lead to sub-optimal results. In 

many DC-OPF based TEP problems, transmission losses are altogether neglected (for 

instance, see in [138]), mainly for computational reasons. 

The main motivation of the present study is as follows. As shall be explained in more 

detail in the subsequent sections, most of the linear losses models currently used in 

TEP applications have certain accuracy and/or computation related drawbacks. Of a 

particular interest here is the estimation accuracy of losses. Most of the linear losses 

models in TEP do not have the capability to effectively limit “artificial losses” (i.e. 

extra losses which do not exist in reality, but computed by some models to increase 

the economic efficiency of the optimal solution under specific circumstances). This 

means that the computation of such losses leads to an artificial increase in cheap 

power generation, yet reduce the overall operation cost in the system. Models that do 

not appropriately limit “artificial” losses normally rely on linear inequality constraints 

that mainly form an unbounded feasible losses space.  

Artificial losses normally involve spilling cheap energy produced in an exporting area 

to ease network congestion between this area and an importing one, thus allowing 

some extra demand in the importing area to be supplied with the remaining cheap 

energy. Congestion occurs because there may be several parallel paths between the 

exporting and the importing area, one of which may have very low transfer capacity. 

Then, spilling some cheap energy along the constrained path in the form of artificial 

losses eases the network congestion and allows more power to be transported along 

the other paths while complying with Kirchhoff’s laws in AC systems. Generally, 

“artificial” losses are computed when overly simplified losses models with an 
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unbounded feasible solution space are used in the OPF analyses of a system with a lot 

of cheap generation from RESs.  

Based on what has been explained, one can conclude that artificial losses are not 

exclusive of systems where RES generation exists. However, given that these losses 

normally make economic sense only when large amounts of cheap power production 

are available, some of which are to be spilled (in the form of artificial losses), the 

computation of artificial losses is especially worrisome when there is abundant, 

intermittent, and non-controllable RES generation in the system.  

Another important factor is the computational complexity of the resulting linear losses 

model. As mentioned earlier, this work is written in the context of large-scale and 

long-term network expansion planning under high penetration of renewable 

generation, where there is no room for detailed or complex models of losses. Long 

term network expansion planning problems are of a huge size when formulated for 

large systems like the European one or the eastern or western interconnections in the 

USA. Therefore, the main goal in the present study is to seek a losses representation 

that is accurate enough to appropriately address problems like the avoidance of 

artificial losses, while not imposing a significant computational burden. All in all, the 

main purpose of this study is to find a good linear model for losses in such problems, 

considering computational efficiency, accuracy of losses estimation, and especially 

effective limits to “artificial losses”. 

In this work, two novel linear losses models that represent an alternative to currently 

existing ones, and two variants of existing models, are compared to one another. The 

losses models considered here are compared in terms of their accuracy and the 

increase in the computational time as a result of including them in the OPF 

formulation; always from the perspective of their application to large TEP problems. 

Case studies including small, medium and large-scale networks are used to illustrate 

the performance of the models.  

3.4.2. Transmission Network Losses in TEP 

3.4.2.1. Impact of Losses on TEP Results 

As mentioned earlier, neglecting transmission losses in TEP studies significantly 

reduces the computation burden of the problem. However, this can jeopardize the 

accuracy of TEP solutions, especially in large-scale power systems (where power may 

flow over long distances). 

According to the analyses in [31] and more thoroughly in [43],  accounting for losses 

in a TEP problem influences expansion decisions, often resulting in a higher number 

of line investments. The following three points summarize the impact of losses on 

optimal transmission expansion. 

 “Free” power transfer: Neglecting network losses in TEP problems involves 

ignoring the operational cost of transporting power. Therefore, a lossless TEP 
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results in a network configuration with a lower expansion cost but higher 

network losses. Considering network losses allows balanced expansion plans 

that minimize overall costs. 

 Hiding congested lines: Actual losses imply not only additional generation, 

but also additional power flows all over the network. If losses are neglected, 

lines that would in fact be congested may seem to be uncongested, resulting in 

such lines being excluded from the set of possible expansion decisions and; 

hence, leading to a different expansion solution. 

 Changes to generator dispatch profile: Network losses can considerably affect 

the dispatch order of generators. In large systems or those with large flows, 

this may in turn affect the network expansion solution. 

The aforementioned effects have been verified in two case studies as shall be 

presented in the results section. Generally, a TEP model with losses leads to a network 

configuration with lower overall system costs, where a trade-off is achieved between 

all considered cost components. When losses are considered, some extra investments 

may be undertaken to reduce congestion and losses. 

3.4.2.2. Modeling Aspects: Artificial Losses and Their Consequences 

In losses models, another important aspect that should be appropriately handled is the 

presence of so-called “artificial losses”. The term “artificial losses” is used here to 

refer to the amount of losses exceeding the real ones which may be computed if the 

losses model (used to solve economic dispatch -ED- or TEP problems) does not 

provide an appropriate upper bound for the estimation of losses. Therefore, the word 

“artificial” is used here to indicate that such losses do not occur in reality, and the 

related power flows are not realistic. Such inaccuracy in modeling losses is due to the 

use of an overly simplified formulation of losses, with the purpose of making the 

problem computationally tractable (i.e. by keeping all formulations linear). Note that 

the use of more complex and detailed losses models (such as MILP losses models 

involving a large number of binary variables) avoids the computation of artificial 

losses but such models are not computationally affordable in large-scale TEP 

optimization problems.  

In a convex cost-minimizing optimization problem such as the ED or the TEP 

problems, computed losses in each line should normally be very close to their real 

values even if the “feasible” region defined for losses is unbounded. This is because 

minimizing losses normally makes economic sense. However, under special 

circumstances, an artificial increase of losses may result in a reduced operation cost. 

A simple example of this case is provided in the system shown in Figure 3.11. Note 

that, in linear ED and TEP problems, losses in each line are effectively treated as 

demand by equally distributing them to both extreme ends of the line (i.e. nodes).  

Artificial losses may appear in areas where power production is available at a very 

low cost, such as solar or wind power, and network congestion prevents this cheap 

energy from being exported to other areas. There may be several parallel paths to 
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transport power from the exporting to the importing areas, while the capacity of one 

of these parallel paths is significantly lower than that of the remaining paths. Note that 

congestion in power systems is caused by the physical limitations of the grid, i.e. 

power transmission capacity limits. A power transmission line, for example, has a 

maximum level of power carrying capability that should not be exceeded for its 

healthy operation. Otherwise, it could get overheated due to the resistive losses in the 

line. This may eventually lead to not only malfunctioning and irreparable damages to 

the line but also operational and technical problems in the system. In interconnected 

AC systems, power flows predominantly depend on angle differences between nodes, 

when the system tries to increase the power flow in a particular line, other power 

flows increase as side-effects. This is clearly demonstrated by using a three-node AC 

system, shown below. 

To understand how losses models with unbounded feasible losses space can result in 

artificial losses, let us assume an AC network, so power-flows must comply with both 

Kirchhoff‘s laws. Then, some artificial losses along the congested path would result in 

some extra amount of power being shifted along the remaining ones without violating 

the power flow capacity constraint for the former path. Recall that losses in every line 

are treated as demand by equally distributing the losses to both extreme ends of the 

line (i.e. effectively considered as “virtual loads”). Since the power produced in the 

exporting area is very cheap (i.e. energy produced at zero or very low cost from 

intermittent, renewable, energy sources), consuming extra power at some nodes to 

supply an artificial demand would make economic sense i.e. in reducing the overall 

operation cost in the system. This occurs when the incremental supply costs computed 

at these nodes turn out to be negative. Then, creating an artificial demand in the form 

of artificial losses in lines connected to these nodes would be efficient from an 

economic point of view (unrealistically lowering operation costs, and/or avoiding 

network investments). 

Note that artificial losses are higher in congested paths than in uncongested ones 

because this is a means to artificially “reduce” or “control” the amount of power 

flowing in congested paths so that the capacity limit and flow constraints are not 

violated. In other words, spilling energy in the congested paths in the form of artificial 

losses would keep (though this is not realistic) the flow in these paths within the limits 

set by the capacity of the congested lines, while still complying with the 2
nd

 

Kirchhoff’s law, which rules the distribution of power flows in the system. Thus, by 

reducing the amount of power flowing in congested paths, more power can be 

transferred over uncongested paths while complying with the laws of physics and 

keeping flows within line capacity limits. 
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Fig. 3. 11 An illustrative three-node system. 

Therefore, inaccurate losses models may result in artificial losses. Additional losses in 

lines adjacent to congested ones may relax some active constraints, and thus lower the 

overall system cost [221]. Negative incremental supply costs rarely happen in 

properly developed networks. However, in TEP problems, the currently existing 

network will be exposed to demand and generation scenarios only occurring in the 

(long term) future, sometimes including much higher demand and generation levels 

than now. As a result, the original network system may be very heavily loaded and 

stressed, and therefore, not well-adapted to the operation situations being represented 

in the TEP problem. In some scenarios, losses might be artificially increased to reduce 

operation costs while avoiding certain network investments. Therefore, the losses 

model used in a TEP problem should prevent artificial losses by setting appropriate 

upper bounds or relevant constraints. 

It has been already stated that some existing losses models do not properly limit 

artificial losses. Here, a fictitious three node AC system [221] is used to demonstrate 

that such losses may exist in expansion planning studies if not properly handled. We 

shall see below how some of the existing losses models deal with such losses. The 

system considered includes a low-cost (renewable wind power) generator at node 1 

whose installed capacity is1000 MW and an expensive (conventional) generator at 

node 2 with a capacity of 400 MW, as shown in Figure 3.11(a). Their associated 

marginal costs of power production are depicted in Figure 3.11.The demand at each 

node is also shown in Figure 3.11. The power transfer capacity limits of the lines 1-2, 

1-3 and 3-2 are 1000, 500 and 200 MW, respectively The data for this system, 

including impedances of the three lines, can be found in [221].   
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Suppose the economic dispatch (ED) of this AC system, which is based on a DC-OPF 

model, minimizes the total cost of generation while meeting the following technical 

constraints: both Kirchhoff’s laws and generators’ minimum and maximum power 

production limits. First, the resulting DC-OPF based ED problem is solved by 

neglecting losses. And, Figure 3.11(a) shows the economic dispatch results 

corresponding to this case. Here, one can easily observe that line 3-2 is loaded to its 

full capacity. Second, a quadratic losses model is embedded in the DC-OPF based ED 

problem. This is needed for comparing the losses computed by an existing losses 

model [201]. The ED problem (which encompasses the aforementioned constraints 

and the nonlinear losses model) is then solved by including the transmission capacity 

constraints. The corresponding OPF results (i.e. the actual power generations, line 

flows and corresponding losses) are presented in Figure 3.11(b). Note that the two 

values associated with each line, shown in Figure 3.11(b)-(d), correspond to losses 

(upper) and power flow (lower) in MW through the line, respectively. It should also 

be noted that the mismatches in load balance at each node in Figure 3.11(b)-(d) 

correspond to the losses in the lines connected to the node. 

Third, the quadratic losses model is replaced by the linear losses model in [201]. In 

this case, the resulting ED problem is solved excluding and including transmission 

capacity constraints. The dispatch solutions corresponding to these cases are shown in 

Figure 3.11 (c) and (d), respectively. Clearly, the solution in Figure 3.11(c) dictates 

that if there were no transmission capacity constraints, the cheaper generator at node 1 

would produce its maximum allowable power (1000 MW) and literally cover all the 

demand. The expensive generator at node 2 would only contribute a small amount of 

power to cover the remaining balance (in this case example, the losses in the system).  

In addition, artificial losses would not be computed in the transmission system. This is 

because it would be possible to increase flow through link 3-2 beyond its rated 

capacity, which would remove the congestion (or, alternatively speaking, the 

bottleneck), and also allow more flows to go through the parallel path 1-2. In other 

words, it would not make sense to spill power in the form of artificial losses when it is 

possible to send as much power through the lines as needed to the other side of the 

network (i.e. node 2). However, the ED results (considering line capacity constraints) 

show that this link is congested in reality. Hence, an ED model which excludes the 

transmission capacity constraints does not lead to a realistic OPF solution. In other 

words, given the physical limitations of the lines, i.e. the power transfer limits shown 

in Figure 3.11(a), the dispatch solution in Figure 3.11(c) is not practically feasible. 

This is because, as shown in Figure 3.11(c), lines 1-3 and 2-3 are loaded above their 

physical limits. And, this is not acceptable because of the previously stated reasons. In 

order to correct this, generator 1 should step down its power production while 

generator 2 should step up power production so that a feasible dispatch solution as in 

Figure 3.11(b) is obtained. As it can be seen in Figure 3.11(b), such rearrangement of 

nodal injections increases the operation cost of the system but this is required if 

feasible solution is pursued in such instances. In fact, it does not make sense at all to 

run ED neglecting line capacity limits. This argument is brought here only to 
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demonstrate the relationship between congestion and artificial losses. The 

consideration of line capacity limits is always crucial to obtain a realistic solution. 

However, the underlying point here is that artificial losses will be computed if 

improper losses models are used in systems where congestion and massive low cost 

generation are present. 

Generally, when low cost generators are unable to deliver power to a particular 

consumer because of congestion, other expensive generators located elsewhere on the 

grid are dispatched. For instance, as shown in Figure 3.11(b), the power production by 

the expensive generator is increased by nearly 70% of its rated capacity while that of 

the cheaper generator is reduced by about 275 MW. As a result, this temporarily 

relieves the congestion in the lines, and effectively avoids its consequences. The re-

dispatching process, explained here, is one of the tools commonly used for congestion 

management in real power systems. Others remedies of congestion include line 

reinforcements or switching. In general, most of the congestion management tools 

rely on ED or TEP optimization models, and the transmission losses model embedded 

in such models plays a relevant role in the final solution. We shall now see why some 

of the existing linear losses models do not behave well in certain circumstances. 

As stated earlier, the dispatch solution in Figure 3.11(d) corresponds to the solution of 

an ED problem, embedding the linear losses model proposed in [201] and considering 

the line capacity limits. Here, it can be observed that the losses computed in line 1-3 

are artificially high, nearly 40 times higher than the actual value in Figure 3.11(b). 

This can be explained as follows. As in Figure 3.11(b), line 2-3 is fully loaded to its 

rated capacity (200 MW) while the other lines are only partially loaded. One can see 

that the demand at nodes 1 and 3 is easily met making use of the output of the cheaper 

generator at node 1. The problem arises when we try to supply the demand at node 2 

with cheap energy produced at node 1. Since line 2-3 is loaded to its full capacity, it is 

not possible to transport as much cheaper power from generator 1 as we would like to 

fully serve the load at node 2. This is due to the Kirchhoff’s laws that govern the 

distribution of energy flows among lines. According to Kirchhoff’s law, part of each 

MW of power injected at node 1 to supply the load at node 2 would flow through the 

other parallel path connecting nodes1, 3 and 2 to reach node 2. As a result, the flow 

through line 2-3 would increase beyond its rated capacity. Hence, it is not technically 

possible to send more flow through line 1-2 instead of using lines 1-3 and 2-3, trying 

to avoid the congestion at the latter. Thus, the only feasible solution here is to dispatch 

the more expensive generator located at node 2 to supply part of the load at the same 

node, as shown in Figure 3.11(b). However, some losses models with an unbounded 

“feasible” solution space of losses (see the models reviewed in Section 3, especially 

those based on linear inequalities), may result in artificial losses.  

For instance, in the considered example, using the losses model in [201] leads to 

losses as high as 100 MW in line 1-3, as illustrated in Figure 3.11(d). From an 

economic point of view, this reduces the overall dispatch cost (even if it is not 

technically possible). This is because extra losses come at a nearly zero cost (i.e. the 
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cost of producing power from primary wind energy is zero), allowing the congestion 

in line 2-3 to be (artificially) relieved; and thus paving the way to transfer about 12 

MW of cheaper power through line 1-2 to meet the demand at node 2. Losses 

computed with the aforementioned model for line 1-3 amount to 20% of the capacity 

of this line, and are nearly 40 times higher than the losses that would actually exist in 

the line (which should be about 2.5 MW). As a result, the overall system cost is 

lowered by nearly 14% with respect to the situation where losses computed in the ED 

for line 1-3 are limited to their actual level. This is a feasible solution from a 

mathematical point of view, but it makes no sense from a physical point of view (this 

is why these losses are called “artificial”). As already pointed out, such unrealistic 

results arise from the imperfect modeling of losses, and this  is not unique to the 

losses model in [201]. It happens with many of the commonly used existing losses 

models, where the “feasible space” considered for losses in the OPF problem is not 

effectively bounded (i.e. because of the “bigger than” linear inequality constraints 

commonly used in the losses models). The results of the entire economic dispatch for 

this small illustrative example can be found in Table 3.6, in the following section.  

Furthermore, if artificial losses are allowed in the solution, conducting the TEP on this 

system would not lead to reinforcing line 2-3. However, reinforcing line 2-3 might in 

fact reduce the overall system cost when real losses are considered because this could 

relieve the existing network congestion and allow the expensive power produced by 

the generator at node 2 to be replaced with the low-cost power produced at node 1. 

The following section reviews some of the formulations of existing losses models, 

focusing on their modeling accuracy (artificial losses, in particular) and computational 

requirements. Since existing models do not achieve an adequate compromise between 

accuracy and computational efficiency in the context of TEP, this thesis contributes 

two alternative losses models, which are able to adequately deal with this problem. 

The performance of different models is analyzed and compared in the subsequent 

sections. 

3.4.3. Review of Existing Linear Transmission Losses Models 

3.4.1.1. One Linear Equality Constraint 

One common way of modeling losses is by assuming losses to be proportional to 

flows, i.e. representing them using a single equality constraint. This model is 

hereinafter referred to 1Lin. The parameters (i.e. slope and intercept) of such a linear 

constraint can be determined by minimizing the mean squared error (MSE) for values 

of losses that range from zero to the maximum flow capacity of the line. This results 

in the expression in equation (78), which is similar to that of the model proposed in 

[203] apart from the fact that a non-zero intercept is assumed here. Note that the 

coefficients included in (78), 1  and 0.165 , correspond to the optimized slope and 

intercept parameters of the linear losses equality constraint that best “fits” the scaled 

quadratic function of losses       
      achieving an MSE value as low as 0.006.  
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           (78) 

In equation (78),   
    denotes the capacity of the line  . Considering the absolute 

value of flow in line  ,     , in (78) may seem to add non-linearity to the problem, but 

this can be easily linearized by introducing two non-negative auxiliary variables, 

representing the flow in the positive and the negative direction for the line, as 

explained in the preceding sections.  

Computationally speaking, this model is the most attractive. This is because its 

formulation does not require additional variables (discrete or continuous); only a 

single constraint needs to be added per line. When embedded in a TEP problem, its 

impact on the overall solution process is marginal. This model avoids artificial losses, 

which is another relevant feature. However, representing losses with a single equality 

constraint is not accurate enough for TEP problems since it results in a significant 

underestimation or overestimation of losses depending on its parameters (i.e. the slope 

and the intercept). At least four to five linear constraints are needed for the error in 

losses estimation to be acceptable. Numerical examples will be given at the end of this 

section to justify this argument. 

3.4.1.2. Tangent or Traversing Linear Inequality Constraints 

This is a linearization method in which a series of lines are defined as linear 

constraints which set a lower limit to losses, as shown in Figure 3.12(a) [201]. This 

model can be formulated either using L tangent lines or L lines traversing the 

quadratic losses curve whose equations are given by the right hand side of the linear 

constraints in (79) and (80), respectively. The parameters of each of these lines (the 

slope and the intercept) are determined using the values of flow, “real” losses and 

derivate at the intersection points of the quadratic losses curve and the corresponding 

line representing a linear constraint. For example, for the first tangent line, its slope is 

given by evaluating the first derivative of the quadratic flow function   
  in (58) at 

      
    which becomes     

   ; while its intercept can be determined by 

substituting the values of    and     at the Cartesian coordinate     
        

       

in the linear equation of the line. In general, the linear expressions of the l
th
 constraint 

(where (1,2,..., )l L ), which corresponds to the l
th
 tangent or traversing line, are given 

by (79) and (80), respectively. The resulting model is a linear programming (LP) type 

which is generally computationally fast. 

            
             

           
  (79) 

                
                  

           
  (80) 

where        
    

 ;    
    

  
   

 
 is the maximum step-size used in the 

representation of losses, and L is the number of linear constraints. Note that, for the 

sake of simplicity, Figures 3.12(a) and (b) show only two partitions (i.e. L = 2) but the 
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formulation is valid for any desired number of partitions. Models (79) and (80) are 

hereinafter referred to TanIneq and TravIneq, respectively. 

The main drawback of both modeling approaches is that the feasible solution space of 

losses is not bounded from above, potentially resulting in artificial losses. However, 

when artificial losses do not occur in the system, four or five steps should provide a 

reasonably accurate value of losses (see in the results section). 

3.4.1.3. Piecewise Linear Approximation 

This model, hereinafter referred to a piecewise linear (PWL) losses model, is 

described in [43]. It is further used in a long-term TEP problem in a deregulated 

environment [66]. This model is denoted as PWL, and it is based on the piecewise 

linearization of the nonlinear losses term. It should be noted here that the original 

piecewise linear models found in the literature have been modified here. Line flows—

instead of angle differences—are discretized here when computing losses, for the 

reasons already mentioned above. In other words, a piecewise linear approximation of 

the quadratic term of the losses expression in equation (58) is computed here. In order 

to do this, the absolute value of the line flow variable is represented by the sum of 

positive step-size flow variables       associated with each partition of line losses 

computed using the corresponding linear expressions. This can be understood as a 

piecewise linear fitting (or first order approximation) of the quadratic losses function, 

as depicted in Figure 3.12(b). Generally, the resulting model, which includes 

constraints (81)–(84), is an LP type.  

    
  

    
 

     

 

   
                           

     (81) 

           
    (82) 

       
    

        

 

   
 (83) 

      (84) 

Note that       is a discrete flow variable associated to the l
th
 linear constraint used to 

represent the losses curve. Equation (81) provides the expression of linearized losses, 

which are computed as the accumulated sum of step-size losses; equation (82) ensures 

that the step-size variables do not exceed a preset value. According to equation (83), 

the discrete flow variables should add up to the absolute value of flows in line  . 

Equation (84) ensures losses are non-negative. 
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Fig. 3. 12 Method of linearizing losses by (a) tangent or traversing linear inequality 

constraints with or without an upper bound and (b) piecewise linear approximation. 

It is also possible to piecewise–linearize the losses curve by using secants (which 

allow positive and negative errors in the losses representation) as reported in [44] 

instead of chords (which allow only positive errors) as in this model. Under normal 

conditions, the former may result in a slightly lower estimation error of overall losses 

than the latter provided that the expressions of the secants are properly optimized. 

This is because of the partial cancelation of the positive and the negative errors. 

However, this has to be weighed in the context of TEP, where losses computed on an 

individual line basis have more relevance than the overall system losses. Transmission 

investment decisions are especially sensitive to the underestimation of losses. 

The main drawback of this model is the large number of additional flow variables 

needed to represent losses. This model limits artificial losses, since the equality 

constraints in (81) and (83) guarantee that computed losses are bound to be less than 

or equal to      
          . Authors in [37] acknowledge that artificial losses 

computed with such a losses model can sometimes have a dramatic impact on the 

optimality of the transmission expansion solution. In order to avoid this effect, they 

reformulate the above model by introducing binary variables to ensure that the angle 

difference and the losses pair fall exactly on either of the linear segments. However, 

they have concluded that introducing binary variables makes the problem highly 

complex to solve. The same model has been used in an ED problem [222], and with 

numerical results of the ED problem which embeds this model, authors have showed 

that “the optimization arrives at an infeasible solution from the physical point of 

view” [222]. They have demonstrated that the solution algorithm “tries to optimize 

losses” (referred to artificial losses here) in one of the lines to send more power 

through other links. Moreover, computed losses in their study are 3.4 times higher 

than the actual ones.  Note that even if the PWL model is based on linear equality 

constraints, artificial losses can still be computed under certain circumstances. 
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Alternatively speaking, losses can be optimized, but not as high as the losses that 

would be computed by the models based on inequality constraints. In the PWL 

model, losses cannot be higher than      
          . 

3.4.4. Coping with Artificial Losses 

As it has been already stated earlier, unless properly addressed in the TEP 

optimization model, artificial losses may negatively affect the optimality of a TEP 

solution. The results of the simple system shown in Figure 3.11 are used to illustrate 

how the models already described above deal with artificial losses. 

We can see in Table 3.6 that both TanIneq and TravIneq models result in high 

artificial losses because of the reasons mentioned in Section 2. When PWL model is 

used, losses in line 1-3 are reasonably limited; yet, they are 50% higher than the actual 

ones. The 1Lin model avoids artificial losses, but it underestimates losses, in this case, 

producing a value of losses that is 35% lower than the actual one. Such inaccuracy 

(which can even be higher in large-scale systems) is not acceptable in the TEP 

context. 

When conducting a TEP optimization for this system, the tangent-based losses model 

does not result in the reinforcement of the network, since it is cheaper to compute high 

artificial losses than to reinforce line 2-3. With the PWL losses model, line 2-3 is 

selected for reinforcement because the computed artificial losses in this illustrative 

example are too small to influence the expansion results. However, it should be noted 

that, when using the PWL model, the resulting expansion solution depends on the 

amount of artificial losses computed (the higher their level is, the fewer the network 

investments will most probably be). Using the 1Lin model also results in the 

reinforcement of line 2-3. Note that reinforcing corridor 2-3 relieves the congestion 

and allows the full use of the low-cost generator at node 1, reducing the overall 

system cost. 

Table 3. 6 Economic Dispatch Results Considering Different Losses Models 

Models 

System  

losses 

(MW) 

Generated power (MW) 

Total cost (€) G1 G2 

1Lin 2.109 720.900 281.210 55,168,454.68 

TanIneq 
†
 100.689 833.370 267.319 48,286,036.20 

TravIneq 
§
 100.731 833.391 267.340 48,291,302.83 

PWL, IneqUB 
§
, LogicPWL  4.646 725.410 279.236 56,065,934.04 

† With tangent linear constraints § With traversing linear constraints 

 

These results show that some of the customary models provide artificial losses that 

may significantly influence expansion plans. Moreover, in long-term TEP problems 

stated for large-scale systems, the level of penetration of renewable sources is 

normally relevant. Together with the computing time (due to the size of the system), 
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the presence of large amounts of low-cost generation is of great concern because large 

artificial losses may make economic sense. 

In conclusion, an appropriate linear model for losses is needed in large-scale TEP 

problems. This should be chosen considering: 

 Computational efficiency 

 Estimation accuracy of losses, and especially 

 Effective limits to artificial losses 

In the next subsection, this thesis presents some models that can represent losses more 

accurately (and reduce artificial losses) and more efficiently (from computational 

point of view) than the ones already described. A comparative analysis of all these 

models is included in Section 3.5. 

3.4.5. Proposed Linear Losses Models 

3.4.5.1. Tangent or Traversing Linear Inequality Constraints with an Upper 

Bound 

As stated earlier, when using TanIneq or TravIneq losses models, artificial losses may 

appear in some lines for economic reasons. This can be partially avoided by including 

an additional linear constraint in the formulation of TanIneq or TravIneq that sets an 

upper limit to the feasible losses region, as shown in Figure 3.12(a) (using two 

constraints). Including such a constraint may also accelerate convergence because of 

the reduced feasible region. 

The expression of the upper bound constraint is given by         
            

 , 

where        
    

 . Note that the inclusion of such a constraint does not fully 

avoid artificial losses, but limits their value (see Table 3.6) to the polygon area 

depicted in Figure 3.12(a). The resulting LP losses model is hereinafter referred to 

IneqUB. 

3.4.5.2. Piecewise Linear Approximation with Logical Precedence Constraints 

This is a modified version of the piecewise model presented before. When using such 

a model, it is desirable that the losses segments be “filled up” successively, i.e. in 

increasing order of the segment indices. Otherwise, under the circumstances that lead 

to artificial losses, upper segments (with larger slopes leading to higher losses) would 

be filled up first and to a greater extent than lower segments (with smaller slopes). 

Despite this fact, the piecewise linearization technique presented earlier lacks a 

constraint that enforces the right behavior in the filling of losses segments. For this 

reason, the constraint in (85) is added here to guarantee that at least upper segments 

are not filled to a greater extent than lower ones. This model is denoted as LogicPWL. 

              (85) 
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Including (85) helps to limit artificial losses but does not fully eliminate them, since 

all step-size variables       could be made equal, instead of forcing a given step 

variable to be at its maximum before the following step is allowed to be non-zero (see 

Table 3.6). As a result, this development achieves a reduction in the level of artificial 

losses computed but does not manage to fully avoid them. 

3.4.5.3. Traversing Linear Equality Constraints 

The problem of computing artificial losses (when using existing LP type losses 

models) can be completely avoided if we can (i) convert the inequality constraints in 

the TravIneq model into equality constraints, and (ii) stipulate that no more than one 

constraint can be active simultaneously. The condition in (ii) can be met by 

introducing binary variables, as many as the number of linear constraints. Only one of 

these binary variables will have a value equal to 1, while the others will be set to 0. 

This can be expressed mathematically as in (86) or (87), where losses are made equal 

to the expression of the particular linear constraint whose binary variable is 1. 
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(87) 

     

   

   
   (88) 

Equation (88) ensures that at most, one of the binary variables has a value equal to 1. 

Although this formulation is mathematically correct, it is non-linear because it 

includes products of binary and flow variables. These products can be easily 

expressed using an alternative linear expression by replacing the equations (86) and 

(87) above with their disjunctive equivalents as in (89) and (90). One of the 

drawbacks of the big-M formulation is the complication associated with the selection 

of the right value of the big-M parameter. Very large values may lead power flow 

matrices to be ill-conditioned, while low values may cause convergence and 

inaccuracy problems [57]. To avoid such problems, equations (89) and (90) are 

reformulated as in (91) and (92), respectively. Equations (93) and (94) are included as 

well to ensure that the line segment considered to represent losses corresponds to the 

one defined for an interval that includes the value of the flow variable. 

                                   (89) 
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  (94) 

where 

   
      

      is the step-size of each linear constraint;        
  

  
 ;      and      are the slope and the intercept of the l

th
 constraint in TravIneq, 

which are given by          
   and           

     , respectively; 

     is the binary variable associated with the l
th 

constraint; 

   is a big-M parameter; 

   is an upper bound constant given by: 

                              
            

              
 ; 

    is a lower bound constant whose value in this case is zero; and 

 L is the total number of linear losses constraints. 

In this case, the resulting model includes constraints (88) and (91)–(94), and is 

referred to as TravEq. The disadvantage of this model is its mathematical complexity. 

It is easy to understand that the higher the number of constraints and binary variables, 

the larger the computational burden of the model is. Regarding artificial losses, test 

results obtained for the system in Figure 3.11 show they are effectively avoided. 

3.4.5.4. SOS2-based Losses Modeling 

The first three losses models, presented earlier, have certain drawbacks, particularly 

in terms of their accuracy in estimating losses. The improvement achieved as a 

result of the additional constraints included in IneqUB and LogicPWL may not be 

sufficient to properly limit artificial losses in some situations. Moreover, despite the 

fact that it provides a more accurate estimate of losses than the first three models, 

the MILP-based model (i.e. TravEq) cannot be suitably applied to large-scale TEP 

problems because of its computational complexity. Because of this reason, a new 

losses modeling approach is proposed in this thesis. This is based on the use of 

Special Ordered Sets of type 2 (SOS2) [223] (also discussed in detail in [224]), 
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which is explained in detail in the following paragraphs. This model is hereinafter 

referred to as SOS2-based losses model. 

Piecewise linear functions, as in Figure 3.13, can be modeled by introducing a set of 

positive variables     , where (0,1,..., )l L , that form an SOS2 (see [223]). These 

variables can be understood as weights associated to the points where the linear losses 

constraints cross the quadratic losses curve, here called intersection points. The main 

property of SOS2 variables, as described in [223], is that at most, two consecutive 

variables among them can have non-zero values. This property leads to the fact that 

losses are computed by carrying out a linear interpolation between two consecutive 

intersection points. 

The formulation of this losses model is as follows. First, the absolute flow in a line is 

expressed as the sum of the products of the flow values at the partitions defined on the 

flow axis in Figure 3.13 {i.e.      where (0,1,..., )l L } and the corresponding lambda 

variables, as in equation (95). Without loss of generality, the intersection points can be 

assumed to be equally spaced on the horizontal (flow) axis, where the distance 

between two consecutive points is given by    
   , as in the previous models. Thus, 

the flow at the l
th
 intersection point becomes      

   . Substituting this in (40) gives 

the line losses at this point as         
          , where (0,1,..., )l L . Then, the 

flow expression in (96) is derived accordingly.  

Similarly, the line losses can be expressed as in (97), from which (98) is derived by 

considering the quadratic expression of losses at each intersection point. Equation 

(15) is a general upper bound for the lambda variables. Note that      and       are 

both zero since they correspond to the flow and the losses at the first intersection point 

(i.e. the zero coordinates as in Figure 3.13). Elsewhere, the SOS2 approach has been 

applied for dealing with nonlinear functions in a mixed integer programming gas 

network optimization [225]. The authors in [224] also extend this concept to 

linearization of a two-dimensional function. 

Remember that in this model, it is additionally required that at most two consecutive 

lambda variables are non-zero. This requirement combined with (99) makes the 

lambda variables have the same properties as SOS2 variables, thoroughly described in 

[223]. Adding this condition ensures the values of the flow and the losses for each line 

are linked and correspond to a point that lies exactly on one of the linear segments 

between two consecutive intersection points (see Figure 3.13).  

               

 

   
 (95) 
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 (97) 



 

74  
 

       
   

   

    
 

 

       

 

   
 (98) 

     

 

   
   (99) 

To further clarify how this linearization works, an example is provided next. Suppose 

the value of the line flow lies between p3 and p4 (see Figure 3.13). In this case, all but

3 and 4 variables would be zero, forcing the flow-losses pair to lie on the fourth 

segment. This is because, due to constraints represented by equations (95) and (97), 

the line losses are computed by linearly interpolating the value of the losses function 

(the expression for     for a value of the line flow, 3 3 4 4p p  , lying between the 

two extreme flow values in the corresponding segment, p3 and p4. Then, the 

expression of losses is computed as 3 3 4 4    . Since 3 4 1   from (15), 

3 3 4 4p p   and 3 3 4 4    can be equivalently expressed as 3 3 4 3(1 )p p    and

3 3 4 3(1 )     , respectively, which clearly implies that line losses are computed by 

linear interpolation.   

As an example of the computation of the parameters of the expression used here to 

approximate actual losses, suppose the actual flow     is 75 MW for a given line 

with a rated capacity and a resistance of 100 MW and 0.1 per-units, respectively. Note 

that the above formulations are based on per-units. However, if one wants to instead 

work with megawatts, the per-unit flows and losses should be multiplied by the base 

power 
B

S (here, assumed to be 100 MVA). Based on this, multiplying the value of per 

unit losses     in equation (40) by
B

S  gives the value of losses in megawatts    

i.e.           which is also equal to        
 . We know by definition the per-

unit flow    is obtained by dividing the MW flow     by the base power
B

S  i.e.    

  . Therefore, we can rewrite the losses expression as       
    

  or equivalently 

as     
  where    is a coefficient given by      . For the example case,    is equal to 

0.001/MW.  

Taking five equally spaced partitions, the set of evenly distributed flow steps taken in 

the losses representation  0 1 2 3 4 5, , , , ,p p p p p p becomes 0,20,40,60,80,100 . 

Clearly, we can see that the line flow, 75, lies in the fourth partition (i.e. between 60 

and 80). Actual losses corresponding to the flows 60 and 80 MW, computed using the 

quadratic expression, are 3.6 and 6.4 MW, respectively. In the losses model presented 

here, only the lambda variables corresponding to the intersection points (60, 3.6) and 

(80, 6.4) should be different from zero. Thus, equations (13)—(15) become:

3 475 60 80   ,                 and 3 4 1   , respectively. Solving these 

equations simultaneously, we get 3 0.25  , 4 0.75  and         MW. In this 

case, the difference between the losses value computed with the proposed model (5.7 

MW) and those that would be computed using the quadratic losses function (5.625 
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MW) is practically negligible, clearly showing the accuracy of this model. It is also 

interesting to observe that the point (75, 5.7) lies exactly on the linear segment which 

passes through the intersection points (60, 3.6) and (80, 6.4), thus resulting in the 

linear equation for losses               .  

 

Fig. 3. 13 Piecewise linearization of losses in the SOS2 approach 

The number of additional variables required to represent losses using this model may 

create a considerable computational burden, but the losses representation is more 

accurate. Artificial losses are not a concern here since the lambda variables are SOS2. 

In other words, constraints (96) and (98), together with SOS2 properties, guarantee 

that losses are not oversized for economic reasons.  

It should be noted, however, that even if the SOS2 stipulation is not explicitly 

included in the model, losses should be bounded to be lower than      
          . 

This has been experimentally proven by applying this losses model to the 3-node test 

system in  

Figure 3.11. The results of the economic dispatch for this system, when employing 

this SOS2-based losses model, confirm its ability to effectively eliminate artificial 

losses. Calculated losses coincide with the actual losses (3.222 MW), with generators 

G1 and G2 producing 721.456 and 281.766 MW, respectively. The total system 

operation cost in this case is € 56,217,891.45. 



 

76  
 

3.5. NUMERICAL COMPARISONS OF THE LOSSES MODELS 

Case studies including small, medium and large-scale networks are used here to 

analyze the performance of the models considered in this work. For this purpose, a 

static version of the DCTEP model, described in Section 3.3 and in [15], is 

considered. In addition, the hourly forecast of electricity demand at each node is 

assumed to be given for the whole target (planning) year and a load duration curve is 

used to aggregate the demand at each node into 5 load blocks by means of piecewise 

approximation. The demand level and number of hours in each load block are 

determined in such a way that the peak hours are modeled more precisely than the off-

peak and shallow ones. All case studies have been solved using a computing machine 

Core 2 Duo SU7300 processor with 4 GB RAM clocking at 1.3 GHz.  

3.5.1. Impact of Losses on TEP Results—Numerical Results 

For the analyses here, a static version of the DCTEP model in [15] is employed. The 

considered TEP model minimizes the sum of operation and transmission investment 

costs while simultaneously satisfying a number of customary technical constraints. 

The operation cost includes generation and reliability costs. The latter are simply 

modeled by including a factor in the objective function which penalizes unserved 

power computed at each node. The standard Garver’s 6-bus [40], shown in Figure 

3.14, and the IEEE 118-bus [226] test systems are used in the analyses. 
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Fig. 3. 14 Garver’s 6-bus test system 

 

Table 3.7 summarizes the results of the analyses, showing the values of the most 

relevant output variables of the TEP problem with and without losses. Here, lossy 

DCTEP and lossless DCTEP refer to the TEP optimization problems with and without 
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considering transmission losses, respectively. The total costs in Table 3.7 correspond 

to the optimal values of the objective function in the corresponding TEP optimization 

problems, which is given by the sum of the operation and the transmission investment 

costs. Comparing the total cost figures under lossy and lossless DCTEP (see in Table 

3.7); the latter apparently results in a network expansion solution at a lower overall 

cost. However, this does not include real costs as the effect of losses is not accounted 

for in the lossless DCTEP problem. 

Table 3. 7 Impact of Network Losses on Expansion Results 

Garver’s 6-bus System Lossless TEP Lossy TEP 

Total cost (investment + operation costs) 0.9157
 §
 1

§
 

Investment cost (as a fraction of total 

costs) 
0.1468 0.2244 

Losses (MW) 0 110.0089 

#Corridors with investments 3 5 

IEEE 118-bus system   

Total costs (investment +operation costs) 0.9047
†
 1

†
 

Investment cost (as a fraction of total cost) 0 0.1024 

Losses (MW) 0 501.1706 

#Corridors with investments 0 11 
§ Expressed as the ratio of the total costs of lossy TEP in Garver’s system 
† Expressed as the ratio of the total costs of lossy TEP in IEEE 118-bus system 

 

Let us define lossy ED as the economic dispatch (ED) problem, where the total 

operation cost is minimized taking into account transmission losses and considering 

the network configuration computed in the lossless DCTEP problem (i.e. the network 

consisting of lines in the base-case system plus the network reinforcements computed 

by running the lossless DCTEP optimization).  

In order to determine how good the network investment decisions obtained by lossless 

TEP are, it suffices to compare the following two cost figures: (i) the objective 

function value (operation cost) of the lossy ED plus the cost of network investments 

computed in the lossless DCTEP, and (ii) the total costs (i.e. network investment plus 

operation costs) computed in the lossy DCTEP problem. Note that the full operation 

costs, including transmission losses, resulting from the network configuration 

(investments) computed taking into account losses are the ones already computed in 

the lossy DCTEP problem. As expected, the total costs corresponding to the first and 

the second case studies, computed as in (i), are found out to be approximately 16% 

and 14% higher than those computed as in (ii), respectively. In other words, the total 

costs of a system—including operation and transmission investment—resulting from 

lossy DCTEP can be significantly lower than that of the system expanded according 

to lossless DCTEP. This is because lossless DCTEP underestimates the operation cost 

of the system (since it does not take into account the extra costs related to the 
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existence of losses) and results in underinvestment which, in the end, turns out to be 

significantly more costly. Generally, incorporating network losses in DCTEP shifts 

the costs incurred from operation to line investments, resulting in different expansion 

results. We can also observe in Table 3.7 (especially for the second case study) that 

the reduction of losses achieved in lossy DCTEP may, by itself, justify network 

investments. This is because of the corresponding reduction achieved in operation 

costs. Related to this, the losses computed in the lossy ED case are nearly 5.3% higher 

than those computed in the lossy DCTEP for the Garver’s case study. This figure even 

gets as high as 29% in the second case study. The costs corresponding to these extra 

losses amount to approximately 11% and 23% of the total costs computed in the lossy 

DCTEP problem, respectively.  

The optimal network expansion strategy for the Garver’s system in the lossless 

DCTEP case comprises investments in corridors (2,4), (3,5) and (4,6). However, 

when the network is expanded taking into account losses, two more lines are built in 

corridors (2,3) and (2,5). It should be noted here that the network expansion results 

obtained by the lossy DCTEP agree with the full AC-OPF network expansion results 

reported in [37]. This shows that a DCTEP model with losses can result in a realistic 

and reasonably accurate TEP solution.  

Analyzing the lossy DC-OPF results for the lossless TEP solution (i.e. lossy ED) 

clarifies the reasons for the higher costs compared to the lossy TEP solution. The 

results show that corridor 3-5 is congested in the first case, forcing the curtailment of 

about 30 MW of load at node 5. In addition, losses in the system are 5.3% higher than 

those in the system expanded according to lossy DCTEP. As expected, the increase in 

losses along with the increase in non-served energy causes an increase in the 

operation cost of the system which exceeds the savings in network investments. 

The overall cost reduction achieved by considering losses in TEP can be obtained by 

subtracting the total system costs computed for the system expanded according to the 

lossy DCTEP from those of the system expanded according to the lossless DCTEP. In 

this case, the operation cost reduction achieved when considering losses is 

approximately 20% higher than the cost of the two extra investments in the lossy 

DCTEP. As a result, net savings achieved in this particular case are about 2.3% of the 

total system costs obtained for the lossy DCTEP. 

Similarly, the results of the second case study, i.e. the IEEE 118-bus system [226], 

also highlight the undesirable consequences of ignoring losses. Given the data in 

[226], this system does not require investments regardless of which TEP model is 

used (lossy or lossless DCTEP). However, in order to create a need for line 

investments, the base case electricity demand of 3733.07 MW has been increased by 

90% to 7092.83 MW. 

Even in this case, no line investment is deemed necessary when the lossless DCTEP 

model is used. However, in the lossy DCTEP exercise, up to 11 network 

reinforcements are planned, mainly due to the substantial 29% reduction in losses they 
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bring about. This is a good example of reinforcements solely justified by the reduction 

of losses. 

3.5.2. Numerical Comparison of the Losses Models 

The level of accuracy of the results provided by different losses models is evaluated 

by two criteria: (1) the relative error in the estimation of losses, and (2) the impact of 

such error on the intermediate and final results of the TEP problem, i.e. the 

differences occurring due to losses computation in the set of network investment 

decisions and in the overall system cost (investment + operation). To this end, three 

test systems including the Garver’s 6-bus, IEEE 118-bus and 425-node Spanish 

network systems are employed. The results for the first case study are presented here. 

Test results and further discussions can be found in the published work of this thesis 

[13].  

A Garver’s  6-bus System 

The standard Garver’s 6-bus test system is used as a case study. A complete 

description and data of this system can be found in [40]. This system comprises 

eleven candidate lines across different corridors, and is shown in Figure 3.14. 

One of the goals of this work is to test the accuracy and computational burden of 

different linear losses models in a TEP context. Table 3.8 shows the accuracy in the 

computation of system losses and system costs for each model for various numbers of 

linear losses constraints, or segments. Note that the system costs in this table refer to 

the investment plus the operation costs computed after running the TEP optimization 

model which embeds each losses model. 

Table 3. 8 Effect of Number of Partitions in Losses Linearization on System Costs 

and Relative Error in the Estimation of Losses for the Garver’s System 

  Number of partitions (L) 

  1 2 3 5 10 15 20 
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%
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TanIneq
†
 26.740 5.712 3.322 1.270 0.354 0.089 0.052 

TravIneq
§
 46.549 10.866 6.102 2.212 0.538 0.209 0.110 

IneqUB
§
 46.549 10.883 6.102 2.212 0.538 0.209 0.110 

LogicPWL 46.549 10.883 6.102 2.212 0.538 0.209 0.110 

SOS2-based 46.549 10.883 6.102 2.212 0.538 0.209 0.110 

TravEq 46.549 10.883 5.278 1.387 0.505 0.027 0.030 

C
o
st
, 
in
 M

€
 

TanIneq
†
 286.29 291.11 291.67 292.21 292.41 292.48 292.49 

TravIneq
§
 305.21 295.60 294.21 293.13 292.66 292.56 292.54 

IneqUB
§
 305.21 295.60 294.21 293.13 292.66 292.56 292.54 

LogicPWL 305.21 295.60 294.21 293.13 292.66 292.56 292.54 

SOS2-based 305.21 295.60 294.21 293.13 292.66 292.56 292.54 

TravEq 305.21 295.60 294.50 293.51 293.02 293.05 292.94 
† With tangent linear constraints § With traversing linear constraints 



 

80  
 

 

The total resistive losses value computed using an AC-OPF of the expanded system 

(in this case, 109.19 MW) is taken as a reference when assessing the relative accuracy 

of each model. Given that artificial losses do not make economic sense in this small 

system, the results obtained by all models are found out to be very similar in terms of 

their accuracy in estimating losses, no matter how many linear constraints or 

segments, L, are considered. As it can be seen in Table 3.8, when L is larger than 5, 

the relative error induced when computing the overall system losses falls below 5%, 

which is practically negligible from a TEP perspective. Table 3.8 also shows that 

considering a single linear constraint (i.e. L=1) can result in greatly overestimated 

losses. 

As depicted in Table 3.8, losses have a considerable impact on the overall system cost 

(which includes the operation and the network investment costs). For small values of 

L, the system costs tend to be overestimated in all the models, except for TanIneq, in 

which the total system costs are underestimated. As L increases beyond 5, the effect of 

the model choice on the total system costs becomes insignificant because losses are 

represented accurately. 

The performance of models related to their computational requirements can be 

assessed based on the figures provided in Table 3.9. This table shows the time elapsed 

when running the TEP problem for the Garver’s system using each of the losses 

models considered. As L increases, the MILP type model i.e. TravEq losses model 

becomes computationally very demanding compared to the others, because its 

formulation includes binary variables. 

Table 3. 9 Effect of Numbers of Partitions in Losses Linearization on TEP’s 

Computation Time in the Garver’s System  

 Computation times for each model (in seconds) 

L TanIneq
†
 TravIneq

§
 IneqUB

§
 LogicPWL PWL 

SOS2-

based TravEq 

1 0.875 0.953 0.813 0.829 0.833 0.823 0.906 

2 0.900 0.984 0.875 0.925 0.834 0.838 1.188 

5 0.930 1.010 0.899 1.078 0.855 0.872 1.688 

10 1.010 1.050 0.954 1.110 0.870 0.928 2.186 

15 1.050 1.080 0.985 1.172 0.901 0.963 3.016 

20 1.091 1.130 1.020 1.192 0.923 0.981 6.226 
† With tangent linear constraints § With traversing linear constraints 

 

Table 3.9 also shows there are small differences among the computational 

performances of the considered models. The IneqUB model behaves very well despite 

the fact that it is mathematically more complex due to the additional constraint added 

as an upper limit to the feasible losses space. This suggests that shrinking the feasible 
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space by adding an upper bound has a substantial contribution to speeding up the 

solution process. 

In general, it seems that the SOS2-based model is attributed with the lowest 

computational requirements, with the exception of the piecewise linearization 

technique. In this particular case, the savings in computing time achieved by the 

SOS2-based model with respect to the other models, apart from the PWL one, ranges 

from 3% to 24% when L is set to 5, as depicted in Table 3.9. Using the piecewise 

linearization technique in a TEP optimization may result in a faster convergence of 

the algorithm than using the SOS2-based model. However, in order for the solution 

provided by the piecewise linearization technique to be acceptable, either of the 

following two conditions must be met: (i) there should not be any operational 

condition in the considered system that can lead to artificial losses, or (ii) the effects 

of artificial losses should be deliberately neglected. However, knowing a priori (i.e. 

before solving a TEP or an OPF problem) whether artificial losses make economic 

sense in a system is very difficult. 

When planning the expansion of the grid in this test system for the set of data in [40] 

(i.e. in the base-case scenario), artificial losses are not computed regardless of which 

losses model is used in the TEP optimization. This may be related to the fact that the 

original generation in this system does not include any renewable generation. For the 

purposes of assessment here, another scenario with some specific changes to the data 

in [40] has been defined. Changes made to the original data are as follows: 

 A low-cost wind power generator is included at node 1, with a capacity five 

times greater than the original capacity of the generator at that node. This 

leads to a 45% penetration level of wind power in terms of installed capacity. 

 The capacity of line 1-4 is upgraded from 100 MW to 500 MW. 

 The capacity of line 2-4 is derated by 50%. 

 Demand at node 2 is decreased by 50%, and  

 Demand at node 4 is increased by 400%. 

Note that apart from the above changes, the remaining data (including demand, 

generation and network parameters) are kept the same as in the base-case scenario. In 

the new scenario, artificial losses as high as 5 times the actual losses are computed for 

line 1-2 using TanIneq or TravIneq models. Thus, the only network investment found 

optimal when using these models is in corridor 3-5. In contrast, using the TravEq and 

SOS2-based losses models, which avoid artificial losses, result in reinforcements in 

corridors 2-4, 3-5 and 4-6. 

As expected from previous analyses, using IneqUB, PWL or LogicPWL significantly 

reduces artificial losses to about 89, 74, and 72% of the actual value of losses, 

respectively. This indicates that the features added to IneqUB and LogicPWL manage 

to effectively limit artificial losses. However, sometimes, artificial losses computed in 

these three models also have an impact on the optimal network expansion solution. 
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Thus, in the case of this test system, the optimal expansion solution computed when 

using either of these losses models differs from that computed when using the TravEq 

and SOS2-based models. Thus, if IneqUB, PWL or LogicPWL are used, network 

investments computed do not concern corridor 2-4. Reinforcing this corridor is 

avoided by artificially increasing losses.  

Even though the 1Lin model avoids artificial losses as well, its use in TEP or OPF 

problems results in significant errors in losses estimation. In this case, losses 

computed with this model are about 37% lower than real ones, which is not 

acceptable. The impact of such a deviation on the network expansion solution 

computed can also be substantial. This occurs when using 1Lin in the new scenario 

defined above, in which reinforcing corridor 4-6 is not deemed optimal. 

A Standard IEEE 118-bus System 

To support the conclusions drawn from the analyses of the previous case study, 

similar tests have been carried out on a system featuring a medium-scale network: the 

IEEE 118-bus system. Data used in this analysis can be found in [226]. The analysis 

conducted is basically the same as in the previous case study. The detailed discussion 

of the results can be found in the published work of this thesis [13]. In order to assess 

the accuracy of losses computed by each model, the benchmark level of losses is 

obtained by solving an AC-OPF problem. Note that the AC-OPF problem is 

formulated for the network configuration which includes the truly optimal network 

investments. This benchmark value amounts to 489.52 MW. The relative error made 

in the estimation of losses, with respect to this reference value, drops below 10% in all 

models for L greater than or equal to 5. Having a 10% error in losses estimates may be 

deemed acceptable in many cases because an error of this magnitude normally do not 

have a relevant impact on the network expansion solution computed. The results in 

this case study also support the choice of the SOS2-based or PWL models, since the 

savings achieved by SOS2-based model in the computation time with respect to other 

models, apart from the piecewise linearization technique, ranges from 17% to 40% 

[13]. However, given the inability of the piecewise linear losses model to sufficiently 

limit artificial losses, it should be considered as a reasonable option only in systems 

where artificial losses are not relevant. 

A 425-node Spanish System 

To further validate the findings in this work, a real-life large-scale system featuring 

the Spanish system has been considered. The electricity network in this case-study 

comprises 425 nodes and 628 transmission lines. Both wind and solar power 

generation existing in the Spanish system are included. All in all, a 25% penetration 

level of power generation from RES is considered in the case study. Test results from 

this system generally shows that the PWL losses model demands the least 

computation effort while delivering similar results to other models in terms of 

accuracy. The SOS2-based model is found out to be, computationally speaking, the 

second best performing model. Differences in computation times between both losses 
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models are nevertheless insignificant. As pointed out earlier, using the piecewise 

linearization technique in TEP studies makes sense only if one can anticipate that 

artificial losses computed by any model will be negligible, and/or the system 

considered in the studies is unlikely to result in artificial losses.  

With regards to the accuracy in the computation of losses and the resulting overall 

system costs, it can be observed that all models provide quite similar values for losses 

and system costs when L is greater than or equal to 5. Regarding the computational 

time, the SOS2-based and PWL models clearly outperform the rest of the models, 

achieving savings in computation time as high as 25% with respect to the third best 

performing model in this regard. 

All this suggests that the SOS2-based model is the most appropriate losses model for 

long-term network expansion optimization problems featuring large-scale RES 

integration, since it strikes a good trade-off between accuracy in losses representation 

(including avoidance of artificial losses), and computation time required to solve the 

TEP problem. 

3.5.3. Effects of Number of Partitions on TEP Solutions 

Since the estimation accuracy of losses by the linear models depends on the value of 

L, it can also be expected that the choice of L affects network expansion planning 

outcomes. For the Garver’s system, the optimal network investment plan involves the 

reinforcement of corridors 2-3, 2-5, 2-6, 3-5 and 4-6, in line with the AC network 

expansion solution reported in [37]. When artificial losses are not computed, using 

any of the models assessed here find the same optimal network expansion solution for 

any value of L greater than or equal to 3.  

However, the threshold value for L in the two larger test systems is 5, beyond which 

the investment decisions do not change. When L is set to a value lower than the 

threshold (i.e. 3 in the Garver’s system or 5 in the other two), investment decisions 

depend on which losses model is used. Generally, the TanIneq model underestimates 

both losses and required line investments. The remaining models overestimate losses 

and, consequently, result in overestimated network expansions.  

3.5.4. Concluding Remarks 

The main motivation behind this study is the need to choose or develop an adequate 

losses model for large-scale TEP applications. Such a model should be 

computationally efficient, provide a reasonably accurate estimate of losses in every 

line and in particular, avoid the computation of artificial losses aimed at alleviating 

network congestion (a common drawback of many linear models). 

The compliance with these requirements has been separately analyzed for several 

losses models. Besides, and most importantly, the impact of the use of each model on 

the outcome of network expansion planning has also been assessed. In particular, four 

alternative linearization methods have been evaluated together with other four variants 
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of existing methods. The performance of these methods has been assessed by 

embedding each method in TEP problems pertaining to small, medium and large-size 

systems. 

The results show how the accuracy of estimated losses increases with the number of 

linear partitions L considered in the linearization of nonlinear losses curve. However, 

increasing L beyond a certain threshold has no significant effect on losses estimates 

and TEP results. Then, it is not worth the extra computational burden. It seems that 5 

partitions are sufficient to compute a reasonably accurate estimate of losses for 

medium and large-scale systems. Higher number of partitions (greater than or equal to 

5) results in relative errors below 10% and 5% in the estimates of losses for the 

medium-scale system, respectively. This is acceptable from the TEP context since 

such small deviations in the estimation of losses are not likely to influence TEP 

results. 

Regarding the computational results, the SOS2-based linear losses model is found out 

to be the most efficient, having computational advantage over the other assessed 

models with as high as 40% reduction in solution time. In contrast, models which 

involve regular binary variables are certainly the most computationally intensive, 

which makes them inappropriate for large-scale expansion planning problems. 

The additional features included in IneqUB and LogicPWL losses models achieve 

some improvements in the accuracy and/or the computational efficiency of their 

original versions, TanIneq or TravIneq and PWL. For instance, the addition of an 

upper bound in TanIneq or TravIneq makes the resulting IneqUB model perform 

better than the former in terms of computational efficiency while yielding similar 

results. On the other hand, adding the logical precedence constraints to the piecewise 

linear losses model results in an increase in the computation time required to solve the 

TEP problem but achieves an increase in the level of accuracy of the representation of 

network losses. 

The results also show the importance of avoiding, or at least limiting, artificial losses 

computed. This is especially true when the problem being dealt with is the 

computation of long-term network expansion of large-scale systems featuring large 

amounts of RES generation because, in such a problem, having artificial losses may 

make economic sense. 

Models which make use of inequality constraints to represent losses define an 

unbounded feasible space of losses. As a result, such models fail to limit artificial 

losses. However, those models that include an upper bound constraint for the feasible 

losses space, as well as the piecewise-linearized losses models, largely suppress 

artificial losses. The SOS2-based model, on the other hand, avoids them completely. 

Despite their complexities, models based on additional binary variables guarantee that 

artificial losses are effectively avoided.  
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All in all, the proposed SOS2-based model balances accuracy very well with 

computational burden of the resulting TEP problem. For instance, in the large-scale 

system considered in the present work, using this model demands lower 

computational effort than using any other model considered in the study (with 

reductions in time achieved higher than 33%). This makes the SOS2-based model is 

the best candidate for modeling losses in very large-scale TEP problems, featuring a 

high-level RES integration. 

3.6. SUMMARY 

Both the tractability of a TEP problem and the accuracy of an expansion solution 

largely depend on the level of system details captured by the expansion model. This is 

associated with the characterization of physical network variables, in particular, flows 

and losses.   From this angle, this chapter has presented an extensive review of the 

most commonly used TEP optimization models with different mathematical 

complexity levels, theoretical and numerical comparisons of these models from the 

viewpoint of expansion solution accuracy and computational requirements. 

Contributions from this chapter include the systematic comparisons of various 

existing TEP models, and some improvements and proposed changes to the 

mathematical modeling of existing TEP models that can speed up the computational 

process. Some of these include two variants of the DC expansion planning model. 

Instead of the angle-based losses representation commonly used in TEP studies, this 

work uses a flow-based losses model which has a significant computational advantage 

over the angle-based equivalent losses modeling technique.  

The comparative analysis of linear TEP models also includes the effect of network 

losses on the expansion outcome. Analysis results have showed that neglecting 

network losses leads to underestimation of network investment needs. Hence, 

modeling losses should be an integral part of TEP models. The fact that network 

losses are a function of quadratic flow adds complexity to the TEP model because of 

its nonlinear and nonconvex nature. It should be linearized to keep the entire problem 

linear. In this regard, the provision of rigorous theoretical and technical analyses, and 

exhaustive performance comparisons, of several losses models has been presented in 

this chapter. Existing linear losses models are thoroughly assessed in terms of their 

accuracy in losses representation as well as the contribution in computational burden. 

Generally, this assessment has revealed that existing models are not adequate because 

of either their accuracy related issues or computational limitations. Because of this, 

the thesis has proposed two novel linear losses models as well as two modified 

versions of existing ones that address accuracy and computational issues inherent to 

the existing losses models. 
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This chapter introduces the novel method developed in this thesis for handling the 

uncertainty and variability in a very efficient manner. Numerical results as well as 

the computational implications from applying this method in TEP problems are 

presented and discussed towards the end of this chapter.  

4.1. CHAPTER OVERVIEW 

The global drive for integration of renewable energy sources (RESs) means they 

will have an increasing role and a profound impact on power systems. On one hand, 

it is inevitable that such resources introduce more variability and uncertainty to the 

system operation because of their intermittent nature. On the other hand, achieving 

large shares of RES power production results in a more relevant role of electricity 

networks since the variability of the power production from such energy sources 

involves the need to develop larger amounts of interconnection capacities among 

zones to ensure security of supply at zones where RESs (wind and sun, for example) 

are scarce or not available/developed. Hence, TEP becomes a more relevant issue 

since the variability and uncertainty of RES power production significantly increase 

the amount of operational situations to be considered. 

TEP involves solving an optimization problem subject to multiple sources of 

complexity, such as the use of discrete variables, its non-linear behavior, and the 

existence of several levels of uncertainty. As mentioned earlier, this problem is 

especially hard to solve when the goal is the long-term expansion of a large network 

in a power system featuring large amounts of generation from RESs, since in this 

case the size of the problem increases very substantially. Moreover, the addition of 

new transportation load such as electric vehicles, railways, etc. also brings in more 

operational uncertainty to the system. It is therefore mandatory that long-term TEP 

tools consider the operational impact of such uncertainties and variability in system 

conditions, since additional investments may be required to expand the network. In 

principle, such objective can be met by considering a large number of operational 

states but this leads to a computationally intractable TEP problem. Improving the 

management of such kind of uncertainty in TEP problems is one of the main focus 

areas of this thesis, contributing therefore, to a more cost efficient penetration of 

RES energy in power systems. 

For the sake of clarity, the terminologies uncertainty and variability are defined as 

follows. Variability, as defined in [227], refers to the natural variation in time of a 

specific uncertain parameter, whereas uncertainty refers to “the degree of precision 

with which the parameter is measured” or predicted. For example, wind power 

output is characterized by both phenomena; its hourly variation corresponds to the 

variability while its partial unpredictability (i.e. the error introduced in predicting 

the wind power output) is related to uncertainty. The schematic illustration in Figure 

4.1 clearly distinguishes both terminologies. As demonstrated in this figure, the 

hourly differences in wind power outputs are due to the natural variability of 

primary energy source (wind speed); whereas, the likelihood of having different 
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power outputs at a given hour is a result of uncertainty (partial unpredictability) in 

the wind speed. 
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Fig. 4. 1  Illustration of variability and uncertainty in wind power output 

The different sources of uncertainties in long-term TEP problems that are related to 

the variability and uncertainty (partial unpredictability) of situations are usually 

classified as random and nonrandom [12]. The random ones are also known as high-

frequency uncertainties because they correspond to situations that occur repeatedly. 

Hence, they can be characterized by probability distribution functions (PDFs), 

estimated by fitting historical data. Such uncertainties have a profound impact on 

the operation of power systems. Demand variability is one example of random 

uncertainty. On the other hand, nonrandom uncertainties do not occur repeatedly; so 

they cannot be estimated by PDFs. A good example here is generation expansion. 

In light of this, an appropriate long-term TEP tool should account for both types of 

uncertainties. Because of their aforementioned differences, different methodologies 

are employed to effectively deal with each type of uncertainty. Nonrandom 

uncertainties are often modeled by a set of possible future scenarios (also known as 

here storylines), each with a certain probability of realization. In other words, the 

storylines denote realizations of multi-dimensional data trajectories pertaining to the 

evolutions of uncertain parameters over a given time horizon (often yearly). Fuel 

and emission prices, generation expansion/closure, demand (economic) growth, 

policy-related and other parameters (with low frequency changes) are characterized 

by a number of storylines, often defined by the user in a “what-if” fashion. This 

chapter focuses on the art of dealing with the variability of operational states and the 

associated random uncertainties (i.e. sources of operational uncertainty). Therefore, 

it should be noted here that the topic here is also limited to this subject area. 

As introduced above, this chapter focuses on a particular aspect of the global TEP 

problem, namely the operational variability and uncertainty of the system which is 

introduced by the so-called random uncertainties. This is the level of uncertainty 

that remains when one considers known and constant factors of nonrandom 
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uncertainties such as generation investments, costs and prices, economic growth 

(average demand growth level) and policy-related parameters. Operational 

variability and uncertainty include, for instance, component outages or availability, 

demand variability, and wind and solar power output variability. If such 

uncertainties are not properly managed, the quality of network expansion planning 

solutions could be significantly jeopardized. 

In spite of the aforementioned facts, the network expansion planning of power 

systems has often been solved using a deterministic approach, where the effect of 

operational uncertainty and variability is not accounted for, or represented in an 

overly simplified way, such as planning for the worst-case state —traditionally peak 

demand (i.e. the most stressful state from network point of view), or a proxy of this 

(for instance, dealing with a very limited number of operational states). However, 

this is not valid in current power system planning, especially in long-term TEP 

problems because of the large variability in operation conditions that can result in 

added stress to the system. The variation of operation conditions throughout the 

planning horizon, which cannot be predicted appropriately, is the main source of the 

operational uncertainty. Even if planning the network expansion for the most-

stressful (worst-case) operation situation were an elegant approach, it would be very 

difficult to identify the “worst-case”, since it would be unrealistic to expect it to 

happen at the peak load time. In relation to this, it has been particularly reported in 

[228] that transmission investment decisions made under uncertainty are more 

robust than their deterministic counterparts. Authors in the former work highlight 

the benefits of including uncertainty in TEP studies. However, mainly because of 

computational reasons, many sources of uncertainty and variability are frequently 

ignored, partially addressed, or represented by few predefined operational states in 

TEP models. It is obvious that handling large instances of operational situations is 

not computationally feasible and/or efficient in power systems planning. On the 

other hand, inadequate consideration of operational situations could adversely affect 

decision-making. Therefore, an operational variability and uncertainty management 

tool that balances accuracy with computational burden is needed in TEP studies. 

Given that operational uncertainty and variability resulting in the need to consider a 

multiplicity of operational states in TEP studies are very much linked, and largely 

related to the existence of RES generation, we shall deal with both of them jointly in 

the remainder of this chapter under the name of operational uncertainty 

management.  

4.2. PROPOSED METHOD OF OPERATIONAL UNCERTAINTY MANAGEMENT 

Despite the vast literature on TEP (see Chapters 2 and 3), current modeling and 

planning practices have some limitations with regards to handling operational 

uncertainty because: (1) they tend to incorporate only a few sources of operational 

uncertainty (often one or two) while many sources of uncertainty are unaccounted 

for; and (2) spatial and temporal correlations among the uncertain parameters are 

largely neglected. In general, currently available network expansion planning 



 

91  
 

methods are not adequate to handle large-scale systems while appropriately taking 

account of operational uncertainty and variability. Therefore, there is still a need to 

develop a scheme to accurately represent uncertainty in the context of TEP applied 

to large scale systems. The scheme adopted for uncertainty treatment should be able 

to capture the variability of relevant uncertain parameters and correlations existing 

among them, especially for long-term TEP with high penetration levels of renewable 

generation. The work in this thesis may be deemed a probabilistic method as 

explained above in detail. As it shall be explained in the following paragraphs and 

sections, differences with existing approaches are related to the criteria employed to 

select the set of operational states considered in the TEP problem, and the level of 

detail considered in representing the system. 

As mentioned above, operational uncertainty can be handled as the variation of 

stochastic parameters which are repeatable in time (often hourly) and exhibit a 

random behavior with known approximate probability distributions. It can be 

broadly represented by a set of operational states, here referred to also as 

“snapshots”, each containing a generation—demand pattern (i.e. with different 

levels of demand at each node and generator outputs).  Each operational state can be 

considered as a generation—demand pattern of the power system, which leads to an 

OPF pattern in the network. A large set of snapshots, each one with an estimated 

probability of occurrence, is assumed to be already available to evaluate and 

optimize the network expansion. In particular, hourly generation—demand data for 

a given target planning year (8760 snapshots, in total) are considered in this work. 

All snapshots are assumed to have the same probability of occurrence, therefore 

given by 1/8760. It should be noted here that this can be scaled up to any number of 

snapshots. 

A common practice to handle such uncertainty is to perform a clustering process 

over the multi-dimensional stochastic input dataset (i.e. generation—demand 

patterns) [167]. Clearly, the overall accuracy of the TEP solutions in this regard 

depends on the selection of the clustering variables. The accuracy is indeed 

determined by how representative the clusters are with respect to the original set of 

operational situations or snapshots. Usually, a large number of clusters are required 

to achieve a reasonable level of accuracy. 

This thesis shows how to reduce the number of clusters, corresponding to operation 

snapshots considered in the TEP problem, without a relevant loss of accuracy in the 

TEP results, using an adequate selection of the classification variables in the 

clustering process. The proposed method relies on two ideas. First, the snapshots are 

characterized by their OPF patterns (the effects) instead of generation—demand 

patterns (the causes). This is because the network expansion planning is the target 

problem, and losses and congestions (resulting from the OPF) are the drivers of 

network investments. Second, OPF patterns, after some processing to represent their 

relevant features as “fingerprints”, are classified using a “moments” technique, a 

well-known approach to address Optical Pattern Recognition problems. To the best 
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knowledge of the authors, this is the first time this technique has been applied in a 

TEP problem. 

The proposed clustering method is conceptually illustrated in Figure 4.2. This 

Figure illustrates the process to follow in order to compute, for each snapshot t  

taken from the generation—demand dataset, the values of classification variables, 

the relevant moments, to be considered in the clustering analysis. A description of 

this process follows: 

1) The OPF of the snapshot is computed neglecting transmission line 

capacities. 

2) The transmission lines with more relevant congestions (overloads) and losses 

are selected. 

3) The selected lines are represented as graphical objects, with properties such 

as location, orientation, thickness (overload or losses) and length. This 

arrangement of objects can be deemed the “fingerprint” of the snapshot. 

4) The graphical pattern, or snapshot’s fingerprint, is then coded into a reduced-

dimension space defined by moments. This technique is common in Optical 

Pattern Recognition problems. 
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Fig. 4. 2  Conceptual illustration of the proposed clustering methodology 

 

Snapshots where network investment needs are similar have similar fingerprints of 

network overloads caused by non-capacity constrained economic flows. Similar 

fingerprints should result in similar “moments”. Thus, if the set of moments is 

properly selected, non-similar snapshots should result in different moments. This 

means that the snapshots can be effectively clustered using their moments as 

clustering variables, i.e., computing the distances in the moments space as measures 

of similarity. 
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Once the clustering process is completed, the last step involves choosing from the 

original dataset a representative snapshot for each cluster. This can, for example, be 

the medoid of the set of snapshots grouped together in the corresponding cluster. 

Note that ,
( )SBC NS

i w
d w and i    and ,

( )SBC NS

i w
g w and i     in Figure 4.2 

represent the demand and the generation levels at node i  for snapshot w ; whereas, 

,
( )SBC MS

m w
I w and m    , ,

( )SBC

c w
x w  , etc. are the corresponding computed 

moments. 

In general, the main contributions of this work include: 

 The definition of a novel method for clustering operational states, including 

a detailed description of the process being followed, and the provision of 

formulations of each stage in the process. The main features of this 

clustering method are listed next: 

o The method is a tailor-made approach for TEP problems; 

o It involves systematic management of operational uncertainty in TEP 

problems, leading to an accurate representation of uncertainty, which 

makes this approach suitable to be applied in TEP of systems with 

significant share of generation from RESs; 

o It allows compact representation of snapshots via a new set of 

clustering variables, and the compactness of the set of the clustering 

variables derived leads to a significant reduction in computational 

burden, which makes this method suitable for the TEP of large 

systems. 

 The comparative analyses of results produced by the proposed method and 

other snapshot clustering methods that, contrary to the former, are based on 

the causes of optimal power flows. 

Other contributions in this chapter include the new quasi-linear losses model used in 

the capacity unconstrained economic dispatch problem, and the nonlinear 

optimization approach developed to estimate the geographical coordinates of a test 

system. 

4.3. NETWORK CAPACITY UNCONSTRAINED ECONOMIC DISPATCH 

In order to characterize the snapshots by their OPF patterns (the effects or results of 

system operation), a Network Capacity Unconstrained Economic Dispatch 

(NCUED) model is used. This model is similar to the “copper sheet” TEP model 

described in Chapter 3. In this model, transmission capacity constraints are 

neglected (relaxed), leading to the assumption of having a flexible network. 

Technically speaking, this means that the constraints corresponding to the power 

transfer capacity limits of existing corridors are not active in the NCUED model. As 

a result, each existing corridor has the flexibility to accommodate any amount of 

flows that increase the overall system welfare as far as the flows respects the 

Kirchhoff’s laws. For example, suppose a given line has a capacity of 100 MW. In 
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an ordinary economic dispatch problem, this constraint has to be included, which 

means the line cannot carry more than 100 MW of power. However, in the NCUED 

problem, the capacity constraint is not imposed, allowing the line to transport more 

than 100 MW of power. This assumption makes sense in order to detect TEP 

investment needs, since the latter are closely related to the corridors of the system in 

which investments would have the largest impact on system operation by allowing 

the largest increase in flows that are efficient from an economic point of view. In 

this way, the aim here is to consider the relevance of each snapshot on prospective 

expansion needs. Snapshots that result in similar patterns of overflows in lines may 

then be grouped together, because this means that similar network investments will 

be needed to increase the efficiency of the system operation.  

The NCUED model minimizes the total operation cost in (100), which includes the 

costs of generation ( ), unserved power (  ), and emissions (   ), subject to the set of 

DC-OPF based constraints in (101) and the losses model provided by the set of 

constraints in (102). Issues related to the formulation of these cost terms are 

discussed in Chapter 3. 
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 (102) 

If required, an additional term may be added to Equation (100) to factor in the 

investment cost of the “would-be” lines capable of accommodating the extra flows 

in a corridor (i.e. for flows beyond   
    by multiplying the net extra MW needed in 

each line by a fixed capital cost per MW. This should be then weighted by the 

capital recovery factor and spread in fixed installments during the lifetime of the 

line. Should this be adopted, Equation (100) needs to be modified to account for the 

associated costs during and after the planning horizon. This is extensively discussed 

in Chapters 3 and 5. 

In equation (102),   ,   ,    and    represent the linear constraints of the losses 

model considered in the NCUED model. Note that each scenario in a given planning 

stage contains a certain number of operational samples (or at least 8760 hourly 

demand-generation samples corresponding to the total number of hours in a given 

year). Note that the constraints in (101) employed in the NCUED model are 

applicable only for existing lines. In order to obtain proper estimates of the losses in 

overloaded lines, the losses model formulation for each individual line in Chapter 3 

is replaced here with the quasi-linear losses model in (102). This is based on the 

following plausible assumption: in a congested corridor, there “exist” parallel lines 

(able to transport all flow in the corridor) whose capacity limits are identical to that 

of the existing line in that corridor. This is based on the nature of the NCUED model 

(also known as the “copper sheet” model). Note that the coefficients in    are 

obtained by minimizing the mean squared error as a result of representing losses by 

a linear curve. The quasi-linear losses model used here is illustrated in Figure 4.3. 

This figure shows the losses model considering the installation of four parallel lines 

in a given corridor. It is straightforward to extend this to a higher number of parallel 

lines.    
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Fig. 4. 3  Losses model for the NCUED model (with potentially 4 parallel lines) 

4.4. DEFINITION OF CLUSTERING VARIABLES 

This thesis proposes the use of new classification variables in the clustering process 

of operation states (snapshots), which is especially devised for TEP analyses. These 

variables may then be used in any clustering algorithm, and the standard k-means 

algorithm has been applied in the test cases. This section describes the criteria 

applied for the selection of clustering variables. 

4.4.1. Selection of Operation Variables for Network Expansion Planning 

Power production and demand patterns are used as clustering variables in many 

power system planning applications such as contingency and reliability analysis 

[167], electricity supply analysis [168], TEP [132] and medium-term thermal 

scheduling [229] problems. However, such an approach (hereinafter, clustering 

based on causes, CbC), is not appropriate for TEP because some snapshots, 

apparently different, may result in the same transmission investment needs. 

Instead of considering the production/demand patterns (the causes), the clustering 

process proposed here is based on the effects of such patterns on the transmission 

grid, because the effects (congestions and losses) are more closely related to 

network investments needs. 

For the sake of simplicity, the two node system in Figure 4.4 is used to illustrate the 

proposed clustering methodology. Let us assume that we have two intermittent 

generation sources connected at each node. The electricity demand at each node is 

assumed to be 100 and this remains the same for the seven snapshots which we will 
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consider here (see Table 4.1). Assume further that the capacity of the transmission 

line is 50, and 40 considering a 20% security margin. 

 

 

Fig. 4. 4  A system for illustrating the methodology 

Given the snapshots in Table 4.1 for this system, we want to obtain four clusters 

using the generation patterns as clustering variables (the conventional approach) and 

the proposed method, and compare the results. In this regard, when we apply the 

conventional clustering method, we obtain the clusters in column 7 of Table 4.1. 

Statistically, these clustering results make sense. However, one can observe some 

inconsistency in the clusters when measured in terms of expansion needs. They are 

not generally representative because the effect of each snapshot on the system is 

lost. For instance, the first two snapshots have the same effect in terms of expansion 

needs because both result in congestion in the line with an overload of 60 in either 

direction. Yet, they are grouped into two different clusters. Snapshots 3 and 4 also 

have the same effect in terms of TEP, both creating an overload of 10 MW in the 

line, but these snapshots again fall into different groups. This means that the first 

four snapshots result in an overload in the line (noting the difference in magnitudes 

of the overloads). The last three snapshots do not overload the line; hence, they are 

non-overloading snapshots.  

Table 4. 1 Illustrative example 

 

Classification Variables Unbalances Clustering Results 

Snapshots G1 G2 

Absolute 

overflow 

D1-

G1 

D2-

G2 

Clustering 

Based on 

G1 and G2 

Proposed 

Clusterin

g Method 

Snapshot 1 200 0 60 NA NA 1 1 

Snapshot 2 0 200 60 NA NA 3 1 

Snapshot 3 150 50 10 NA NA 2 2 

Snapshot 4 50 150 10 NA NA 3 2 

Snapshot 5 100 100 0 0 0 4 3 

Snapshot 6 125 75 0 -25 +25 4 4 

Snapshot 7 75 125 0 +25 -25 3 4 

NA: Not Applicable 

 

 y 

x 

G1 G2 

100 100 

2 1 

1 
N1 N2 
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If we cluster the snapshots by taking into account their effects instead of the causes, 

we obtain very realistic clusters. Note that we can determine the moments of 

overloads about any axis as per the proposal and the clustering results do not 

change. However, it is not necessary to do so here because we only have one line. 

As far as the non-overloading snapshots are concerned, we can see that the last two 

snapshots have the same effect when it comes to losses in the line. As a result, it 

makes sense from TEP point of view that they should be grouped together. Figures 

4.5 and 4.6 compare the clustering results obtained by classical and the proposed 

method, respectively.  

 

Fig. 4. 5  Clustering results using conventional approach 

 

Fig. 4. 6  Clustering results using proposed method 
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Generally, comparison results of this simple example demonstrate how effective the 

proposed clustering methodology is in obtaining representative clusters in terms of 

network expansion needs. 

In network expansion planning, the benefits of investing in a certain corridor can be 

measured in terms of reduction of network congestion, either under normal 

conditions or in a contingency situation, and/or the reduction of overall losses. Since 

both congestion and losses are directly related to power flow patterns, these patterns 

are the subjects of the proposed classification method. 

Power flow patterns should identify the areas of the network where reinforcements 

have the largest potential to reduce operation costs. They may also show the 

estimated size of the reinforcements to be made. Thus, snapshots with similar power 

flow patterns should also lead to similar investment solutions, and when clustered 

together (with accumulated probability), a reduced set of clusters representing a 

reduced set of flow patterns may be successfully used in a TEP problem, instead of 

the large original set of operational states. 

According to the features of flow patterns leading to investments, snapshots may be 

grouped into two big categories: overloading snapshots (those which lead to relevant 

network congestion), and non-overloading ones.  

In overloading snapshots, where network congestion is relevant, making flows 

compatible with existing line capacities probably causes a significant increase in 

operation costs. Then, one should expect that network reinforcements are largely 

related to the need to reduce congestion. On the other hand, in non-overloading 

snapshots, only those reinforcements that are able to significantly reduce network 

losses can make economic sense. 

Line overloads in the NCUED model, whose formulation has been provided in the 

previous section, reflect the size of the extra flow of power in each line, beyond its 

capacity, that would make economic sense given the current topology of the grid. 

Hence, network investment needs associated with overloading snapshots are closely 

related to the size and location in the network of overloads resulting from the 

NCUED. Therefore, in overloading snapshots, only the flows in lines that are close 

to congestion are taken into account in the clustering process. 

On the other hand, the pattern of losses in the transmission allows characterizing 

potential network investments related to non-overloading snapshots. Losses in the 

network are the result of flows created by unbalances of power production and 

demand in the network. Therefore, different patterns of transmission losses should 

be the result of different patterns of unbalances of power production and demand in 

the system. Given that the location of conventional generation available to produce 

power is relatively stable across operation snapshots, non-overloading snapshots can 

reasonably be clustered using the pattern of demand and available RES power 

production. 
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It can, therefore, be concluded that the size and the location of line overloads caused 

by economic power flows in the NCUED of the system are probably the most 

relevant to cluster those snapshots that result in congestion-relieving investment 

needs. For the rest of the snapshots, the pattern of unbalances of demand and 

available renewable electricity production can be used as clustering criteria since 

their related investment are aimed at reducing losses. 

4.4.2. The Use of Moments of Relevant Network Expansion Drivers  

In overloading snapshots, considering line overloads and their location as clustering 

variables would define a number of clustering variables equal to three times the 

number of overloaded lines (
ol

N ), which may be a relevant fraction of total lines. 

In non-overloading snapshots, considering net demands in system nodes (demand 

minus net available RES power)–and  their location—as clustering variables, would 

define a number of clustering variables equal to three times the number of system 

nodes (
N

N ). Then, grouping all the hourly snapshots of a year into clusters would 

require managing a matrix of samples of 8760* *3
ol

N  and 8760* *3
N

N , 

respectively. In order to overcome this dimensionality problem, methods such as 

principal component analysis may be applied. 

Along with these methods, the theory of moments provides a powerful tool to 

represent information, both for overload patterns and net demand patterns 

(unbalances between demand and gross RES power production). 

The theory of moments, widely used in statistics and mechanics, describes the 

geometrical properties of physical objects. The basic two-dimensional Cartesian 

moment,
pq

m , of order p q and with a density function of ( , )f x y , is given by (103) 

[230]. 

    

  

  

  

  

             (103) 

where ( , )x y stand for the Cartesian coordinates. 

A reduced set of Cartesian moments can be used to characterize the pattern followed 

by a much larger set of variables distributed throughout a certain space. For this 

reason, pattern recognition and classification techniques based on moments are 

widely used. The low-order moments starting from the zeroth to the fourth orders 

are often employed for such purposes. A review of the method of moments and 

significant research works on this issue are reported in [230]. For the clustering 

purpose considered in this work, the first and the second order moments are 

sufficient. 
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Both line overloads in the system and net demands can be represented as masses of 

a size proportional to their actual values, placed in those locations where these 

overloads and power unbalances occur. By making use of the moments technique in 

[230], the pattern (location and size) of these masses can be accurately characterized 

using a reduced set of moments. The first and the second order moments of these 

masses are used for obtaining the clusters of operation snapshots in a year. 

Overloads in lines are represented as bars, with a distributed mass proportional to 

the overload, while net demands are represented as punctual masses (positive or 

negative). 

The first order moments determine the center of mass of equivalent objects 

representing the relevant network expansion drivers (overloads and net demands); 

whereas, second order moments describe the “inertia” of these equivalent objects to 

rotate about a given axis. 

4.5. DETAILS OF THE PROCESS OF DEFINING CLUSTERING VARIABLES   

Practical implementation details of the definition of clustering variables employed to 

choose operation snapshots in TEP problems are described here. Since the 

classification variables considered for overloading and non-overloading snapshots 

are different, the definition of both sets of variables is discussed separately. 

4.5.1. Overloading Snapshots 

The direction of flows in overloaded lines does not have any influence on expansion 

needs. Hence, the absolute value of excess flows is considered when computing 

clusters. 

Moments are computed considering normalized distances among nodes and 

normalized levels of overloads in lines, so that magnitudes are comparable (i.e. in 

“per unit” quantities). 

For instance, in the case example considered here, coordinates of nodes are all 

divided by the maximum length of a line between two nodes in the system, while the 

overloads are divided by the system base power used in power flow computations. 

In this way, one can make sure that variables representing overloads and distances 

range between similar values. 

Given that network expansion needs should also be computed taking contingency 

conditions into account, overloads have been defined as the excess of flows in lines 

over 80% of their rated capacity. This is a common technique used to consider 

contingencies through some safety margin in the absence of a detailed model to 

represent N-1 operation conditions. 

The next paragraphs describe the computation of moments to be chosen as 

classification variables, which, as already mentioned, are first and second-order 
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ones. The description and derivation of these moments can be found in [230]. In this 

case, the mass density    in per unit values is given by: 

    
          

                 
   

                            
          (104) 

Thus, the total mass is given by the product of mass density and length 

   i.e.       . Based on this, the centroid, or the first order moment (FOM), of a 

group of masses can be determined by equations (105) and (106).  

     
            

        
                        (105) 

     
            

        
                        (106) 

As stated earlier, the overloaded lines are regarded as thin rods, each with a constant 

cross-section and a uniform mass density along its length. Given   and   as the 

mass density and the cross-section of such a rod, respectively, the moment of inertia 

about a perpendicular axis passing through its center of mass is calculated as 

        
   

    
 which becomes  

  

  
 ; where       stands for the mass of the rod. 

The parallel axis theorem (also known as Steiner’s theorem) is used to determine the 

moment of inertia about any axis other than this.  

The second order moments (SOM), i.e. moments of inertia about different axes of 

the overload patterns can be derived similarly. For instance, the SOM about a given 

vertical, horizontal and perpendicular axes can be determined using (107)—(109), 

respectively. 

               

 

 
  

 

  
           

                      

     

(107) 

               

 

 
  

 

  
           

                      

     

(108) 

                               

 

 
  

 

  
     

              

             

(109) 

where      is the moment of inertia of a set of overloads about a given axis  , for 

snapshot  , whereas   ,    and    represent the distances from each line to the 

particular axis of rotation, in this case,       
    

 ; whereas,    denotes the 

angle in which a particular line forms with the vertical axis. 
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To illustrate how the different moments are computed, consider the overload 

patterns shown in Figure 4.7 corresponding to a certain snapshot. For this particular 

example, the coordinates of the overloaded lines and their corresponding mass 

densities (i.e. the overloads) are indicated in Table 4.2. Given these, the length   , 

the effective mass density      as well as the centroid             of each line can 

be determined. These values are tabulated in Table 4.2. 

 

Fig. 4. 7 An illustrative example for moment calculation 

 

Table 4. 2 Parameters of the masses 

Overloaded 

lines 

Starting 

point 

Ending 

point 
                        

L1 (0.1,0.2) (0.2,0.1) 0.50 0.1414 0.0707 0.15 0.15 45˚ 

L2 (0.2,0.1) (0.3,0.3) 0.90 0.2236 0.2012 0.25 0.20 26.57˚ 

L3 (0.3,0.3) (0.6,0.5) 0.75 0.3606 0.2705 0.45 0.40 56.31˚ 

L4 (0.2,0.7) (0.4,0.8) 0.25 0.2236 0.0559 0.30 0.75 63.43˚ 

 

In this example, the total mass of the overloads, i.e.       , is 0.5983. The 

centroid, i.e. the coordinate where this mass is concentrated, is computed as follows: 
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It is straightforward to compute the SOM (moments of inertia) about any axis. For 

instance, the moment of inertia about the x-, y- and z-axes are determined using the 

parallel axis theorem. To do this, one has to calculate the distances from the centroid 

of each overloaded line to these axes i.e.           and     . The distances      and 

     are the same as the values in      and      in Table 4.2, respectively. Whereas, 

     should be calculated using the distance formula where the two coordinates are 

      and            . Hence, 

                                    and            .  

Plugging in these values in SOM expressions in (107)—(109) gives           , 

           and         . Note that     and      correspond to the x- and 

the y-axes, respectively. 

4.5.2. Non-overloading Snapshots 

The density functions used to compute moments for non-overloading snapshots are 

the positive and the negative net demands of system nodes, i.e. the unbalances 

between demand and RES power production available at each node. The moments 

of negative and positive power unbalances are calculated separately to avoid the 

canceling out of net-demands of opposite signs in those nodes that are located 

symmetrically with respect to the axes considered in the computation process. 

The demand and RES power production dispatched at each node should result from 

the NCUED, as for the case of overloading snapshots. After all, the amount of 

demand that can be served, and the RES power that can be used, will be conditioned 

by the expansion of the network, and should be as large as possible.  

The equations (110)—(114), analogous to (105)—(109), are some of the expressions 

used here for computing the relevant moments.  
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(114) 

In the above equations,     denotes the set of non-overloading snapshots, and
i

D  

and ,RES i
p represent the demand and the total renewable power output at node i , 

respectively; whereas, dx,i, dy,i and dz,i represent the distances from node i , whose 

Cartesian coordinate is , ,
( , )

i c i c
x y , to a particular axis of rotation, and here, 

2 2 2

, , ,z i x i y id d d  . In the case study, 23 moments shown in Table 4.3 are calculated for 

each type of unbalances (positive or negative), resulting in a total of 46 moments. 

4.6. NUMERICAL RESULTS AND DISCUSSIONS 

4.6.1. Considered Moments 

Moments considered in this thesis correspond to FOM and SOM about several axes, 

as tabulated in Table 4.3. The selected moments must correspond to features that 

altogether distinctly represent each overload pattern of the network under 

consideration. The overall number of moments considered may vary with the power 

system analyzed. However, there is a threshold beyond which adding more moments 

only adds redundant information. Arbitrarily, a total of 23 moments are computed 

for each snapshot in the analysis though, as it shall be seen in the results section, not 

all of them are necessary to accurately represent the snapshots in the TEP problem. 

The selection of the appropriate number of moments for each power system is a 

separate problem by itself that needs to be addressed. However, since it depends on 

the particular system to be expanded, it can be determined off-line before the TEP 

process starts, and kept constant for all the snapshots. 

Table 4. 3 Considered moments 

Information about moments Considered moments (features) 
# of 

moments 

Center of masses (FOM) c
x ,

c
y  2 

About vertical axes (SOM) 
cx x

I


,
'x x

I


 

where 'x  = -100, -60, 0, 40, 80 * 
6 

About horizontal axes (SOM) 
cy y

I


,
'y y

I


 

where 'y  = -10, 0, 70, 90 ** 
5 

About perpendicular-axes 

(SOM) 

cz
I and 

z
I  

where z = (0,-10); (-60,0); (40,70); 

(0,90); (0,0); (-100,-10);(80,-10);  

(-100,90); (80,90) *** 

10 

* Vertical axis, ** horizontal axis 

*** axis perpendicular to the x-y plane at a given (x,y) coordinate  
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4.6.2. Modeling System Operational Uncertainties 

This thesis focuses on efficiently handling operational uncertainties in TEP by 

considering their expected influence in the final TEP solutions. The uncertainties 

considered here are discussed separately in the following subsections. 

4.6.1.1. Demand Variability and Uncertainty 

To capture demand variability, load aggregated models are often used, as in [231], 

based on the load duration curve. In real life, there exist spatial variations in demand 

which may significantly influence TEP solutions. Therefore, to account for this 

impact, demand correlations ranging from 0.7 to 1 are factored in to generate the 

demand series at different locations. 

4.6.1.2. Conventional Generator Outages  

A two–state model (online or offline) is used to represent the state of conventional 

power units based on their respective forced outage rates (FOR) , which range from 

0.05 to 0.15 depending on the technology type of each generator. Then, a discrete 

random binomial distribution is applied to generate availability patterns for different 

generators, obtained from their corresponding forced outage rates. 

4.6.1.3. RES Output Variability and Uncertainty 

The outputs of wind and solar power plants are subject to the wind speed and solar 

radiation regimes, respectively. A common approach to handle uncertainties in RES 

output is MCS, in which a number of samples are generated randomly from 

probability distributions. For the present analyses, historical hourly wind speed and 

solar irradiance data have been used. These are taken from publicly available 

meteorological websites (see[232], and[233], respectively). 

Wind and solar power productions are correlated in space and time, and this effect is 

taken into account in the generation of input samples. In addition, the 

complementary nature of wind and solar power sources is also captured by taking 

correlations between them ranging from -0.3 to -0.1, which comply with the results 

in [234]. Note that wind and solar power outputs are determined by plugging in the 

hourly values of the primary renewable resource available in the wind [235] and 

solar [236] power output expressions (also known as power curves) . For instance, 

the hourly wind power output        of each wind farm is determined by the 

nonlinear model of a typical wind turbine model as in (115). 

        

                                  

        
              

                                 

                                       

   (115) 

In the above equation, A and B are parameters represented by the expressions in 

[237]. Similarly, the hourly solar power output        is determined by plugging in 
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the hourly solar radiation levels in the solar power output expression given in (116), 

[238]. 

       

 
 
 

 
 

    
 

       
               

    

    
                      

                  

   (116) 

4.6.3. Test Results and Discussion 

The standard IEEE 24-bus Reliability Test System (RTS) [239] has been used to 

show the behavior of the proposed clustering approach and test its performance in 

the target TEP problem. The data used in this study can be found in [239]. 

The clustering method requires information about the location of each transmission 

line and node, but the information available in [239], as in many other standard test 

systems, does not include node coordinates. Because of this, estimates of the 

geographical coordinates of nodes in the system of the case study have been 

generated by computing a geographical map of the network system. Distances 

among neighboring nodes are as close to the lengths of the lines linking these nodes 

as possible. These distances, i.e. the lengths of the lines, are assumed to be 

proportional to their corresponding impedances. A non-linear optimization problem 

has been solved to generate the network system map including the required 

geographical information (see Appendix E). Figure 4.8 shows the resulting map of 

the standard IEEE 24-bus system. Note that nodes 9 to 12 are in one substation 

which has 4 transformers, linking these nodes, and so are nodes 3 and 24 connected 

by a transformer (see Appendix C). 

The test system comprises 24 buses, 33 existing corridors, and 19 potential new 

ones, totaling 52 candidate corridors for potential investments. In addition to the 

existing generation capacity in the considered test system, three RES generators 

with a combined installed capacity of 3000 MW are added to the system, including a 

500 MW solar farm connected to node 4 and two 1500 and 1000 MW wind farms 

connected to nodes 13 and 22, respectively. The hourly production time series of 

wind and solar farms for the planning year are determined as explained in the 

preceding section, as well as the hourly demand profile at each node and the 

availability profile of conventional generators. In total, 8760 samples, corresponding 

to hourly combinations of the regarded uncertain parameters, are subject to the 

clustering process. In particular, each sample includes the availability state of 11 

conventional generators, the load level of 16 electricity consumers and the available 

power output of three RES generators, bringing the total dimension of the samples 

in the “uncertainty space” to 30. The dimension of samples significantly increases 

with the network size, and the number and types of uncertain parameters being 

considered, leading to the curse of dimensionality and creating problems in the 
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clustering process. The proposed clustering technique overcomes such problems by 

mapping high-dimensional samples to relatively lower-dimensional ones. Note that 

throughout this analysis, both terms–samples and snapshots–refer to operation 

states. 

 
Fig. 4. 8  Generated map of IEEE 24-bus system 

4.6.2.1. Clustering Results for Overloading Snapshots 

The NCUED problem is solved for all snapshots to obtain the corresponding 

patterns of overloads. Figure 4.8 shows that there are a total of 13 overloaded lines, 

obtained by combining the sets of overloaded lines in all snapshots. In the 

considered case study, in a total of 4741 snapshots (out of the 8760 samples), there 

is at least one overloaded line that is congested (shown in Figure 4.8). This means 

that each overloading snapshot includes a subset of overloaded lines among those 

shown in Figure 4.8. In the remaining 4019 snapshots, there is no congestion in the 

system.  

Once the fingerprint of each sample is obtained, the subsequent step is to compute 

the features of snapshots that are used as clustering variables in a TEP problem. In 

this case, the features considered are the moments of overloads, and groups of 

patterns are determined according to the set of moments. As mentioned before, the 

set of moments has to be adjusted to each power system under analysis, but only 

once and for all the further optimization processes to take place. The moments 
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considered are selected here for the given case study using some performance 

metrics. One of these metrics is the similarity ratio, which is the ratio of average 

intra-cluster to average inter-cluster distances, in the space of moments. These are 

given by equations (117) and (118), respectively. The average intra-cluster distance 

measures the compactness of clusters; whereas, the average inter-cluster distance 

measures the cluster discrimination. The former should be as small as possible, 

while the latter should be as large as possible, resulting in a minimum value of the 

ratio. 

     
 

 
 

 

  

 
            

 
      
  (117) 

     
 

      
        

      
 

 

 
     

   
     

 

(118) 

In equations (117) and (118),
2

. represents the Euclidean distance. 

This ratio has been calculated for several numbers of moments and clusters, as 

illustrated in Figure 4.9. For each set and number of clusters, the evolution of the 

considered ratio with the number of moments taken has been represented in a 

separate curve. It can be observed in Figure 4.9 that adding more moments beyond 

15 seems to have little significance since the similarity ratio remains stable. This 

corresponds to a 50% reduction in the dimension of the clustering space. Another 

important conclusion is that adding more clusters does not improve the similarity 

ratio beyond some threshold. Here, the threshold seems to be close to 40 clusters. 

 
Fig. 4. 9  Variation of similarity ratio with number of moments and clusters (for 

overloading snapshots) 
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As stated earlier, the application of the proposed clustering technique involves 

mapping the high-dimensional input dataset into the space of moments, which is 

quite convenient because it makes working with a relatively lower number of 

parameters possible when clustering the corresponding snapshots, thus reducing the 

dimension of the data set. The 4741x30 overloading dataset is, for example, 

clustered using the computed 4741 moment samples each including 15 moment 

values.  Figure 4.10 displays the hourly time series of values for two of the moments 

considered. Each series comprises 4741 hourly values, and the hour for each value 

of the moment in the series is represented in the horizontal axis. The thick line 

represents the values of the “dominant” moment variable. The concept of dominance 

here should be understood in the following context. A moment variable about a 

given axis is dominant when the variance of its values is larger in magnitude than 

the variance of any of the other considered moment variables, which correspond to 

moments computed about different axes from that of the dominant moment variable. 

In the case study, the dominant moment variable is the moment about the corner 

point (-100, 90) of the network map in Figure 4.8. Here, it should be noted that the 

moment samples (snapshots) in Figure 4.10 are sorted by increasing index of the 

cluster they belong to. 

 
Fig. 4. 10  Patterns of moment values in the overloading snapshots sorted by 

increasing order of cluster indices (horizontal axis represents the number of 

samples) 
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results are accurate enough. Clearly, one can see that there is some discernible 

pattern in the plot i.e. some homogeneity in the values of the moments in each 

cluster and large differences among the values of the moments in different clusters, 

which validates the clustering approach. 

4.6.2.2. Clustering Results for Non-overloading Snapshots 

As mentioned earlier, the non-overloading snapshots are clustered according to 

variables related to line losses and their locations. The selected variables are the net 

demand at each node along with its geographical location. As in the previous case, 

the standard k-means algorithm is used for clustering the moments of these 

variables. Moments considered here correspond to those listed in Table 4.3 except 

for the fact that the positive and the negative power unbalances (net demands) are 

treated separately, resulting in a total of 46 moments i.e. 23 moments for unbalances 

of each sign. 

 
Fig. 4. 11  Estimating an appropriate number of moments and clusters for non-

overloading clusters 

The number of clusters is decided based on the Elbow method, as in Figure 4.11, 

which allows balancing the accuracy of the clustering analysis (given by the 

objective value of the k-means algorithm) displayed on the primary vertical axis) 

and the number of clusters. The evolution of the objective value (minimized by the 

k-means clustering algorithm) with the number of clusters is shown in a curve. 

When plotting this curve, 46 moments have been considered. In this case, one can 

see that using 10 clusters seems a reasonable trade-off. The evolution of similarity 
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power unbalances. One can see in Figure 4.11 that the changes in the similarity ratio 

are negligible when 15 or more moments are taken. Then, 15 is an appropriate 

number of moments. 

4.6.2.3. Clustering in the Principal Components Space 

As discussed in the previous subsection, moments of overloads and net-loads are 

used as clustering variables, and the results presented in this thesis are based on this. 

For the test system considered here, it has been already stated earlier that when 

clustering snapshots in the space of moments, a reasonably good balance between 

accuracy and computation burden is achieved using 15 to 20 moments, both in the 

case of overloading and non-overloading snapshots. However, this may not be the 

case for larger systems. Intuitively, the number moments required to distinguish 

properly the respective patterns may be higher for larger systems, potentially leading 

to a size problem. Therefore, additional ways may be required to reduce the number 

of clustering variables. 

 
Fig. 4. 12  First principal component values sorted by increasing order of cluster 

indices (for overloading snapshots) 

An interesting idea is to apply the Principal Component Analysis (PCA) to find the 
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to get the same results as with 15 moments (see Figure 4.9). It is even lower (4 
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Table 4. 4 Eigenvalues of covariance matrices of moments 

  Overloading snapshots Non-overloading snapshots 

Principal 

component Eigenvalues  

Cumulative 

sum of 

eigenvalues Eigenvalues  

Cumulative 

sum of 

eigenvalues 

1 58.854 85.02% 399.451 65% 

2 9.002 96.59% 179.280 94% 

3 1.839 99.35% 31.360 100% 

4 0.510 99.93% 1.225 100% 

 

Figure 4.12 shows a plot of the first principal component values (PC1), sorted by 

increasing order of cluster indices. One can see that the first principal component 

captures nearly 85% of the required information in terms of data variability in the 

principal components space. It is also interesting to note that this pattern closely 

resembles the pattern of the dominant moment variable in Figure 4.9. As shown in 

Table 4.4, the first two principal components account for 97% and 94% of the 

variance of the principal component values of the moments taken in the case of 

overloading and non-overloading snapshots, respectively. In general, PCA can be a 

handy tool in reducing the dimension of the set of clustering variables without 

losing significant information. 

4.6.2.4. Comparisons in terms of TEP Results 

Since the clustering approach proposed here is to be applied to TEP, its efficiency 

should be verified in this context. This can be accomplished by running a DC-based 

TEP model (presented in the preceding Sections and Chapter 3) considering the set 

of snapshots identified as representatives of the clusters, and comparing TEP results 

with those of the full-scale (brute-force) problem that considers all the 8760 

snapshots.  

In this respect, investment decisions considering all the 8760 snapshots include new 

lines in corridors (2,4), (4,9), (9,11), (11,13), (13,23) and (21,22). Overall, 

investment costs in this brute-force problem amount to 82.8 M€. Now, one can 

check the evolution of network investment costs with the number of clusters, as 

shown in Figure 4.13. Investment costs with only 50 clusters, obtained using the 

moment-based clustering approach, are the same as those of the brute-force TEP 

solution. However, one can see in Figure 4.13 that selecting clusters according to 

generation—demand patterns, results in underinvestment even for higher number of 

clusters. This reveals a lack of representativeness of the snapshots selected 

according to this set of clustering variables.  

In addition to investment decisions, one should also compare the total dispatch 

(operation) costs. Operation costs are computed by solving the economic dispatch 

problem for the whole target year considering investment decisions. Regarding 
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clustering methods, it has been already stated from the outset that the method 

proposed here is denoted as clustering based on effects (CbE); while the traditional 

method based on generation—demand patterns is identified as clustering based on 

causes (CbC). 

 

Fig. 4. 13  Evolution of investment costs with number of clusters 

 

Fig. 4. 14  Evolution of total dispatch costs with number of clusters 

Figure 4.13 shows the evolution of the global dispatch costs with the number of 

clusters for both clustering approaches. Comparison of the total system dispatch 

costs in both cases (i.e. CbE and CbC) also strengthens the previous statement on 
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the required number of clusters. In order to obtain the same results as in the brute-

force problem in terms of investment solution and deviation in operation costs, CbC 

requires 310 or more clusters, while CbE only needs about 40 clusters of 

overloading snapshots along with 15 clusters of non-overloading ones. 

In Figs. 13 and 14, the variations of costs with the number of clusters can be 

explained as follows. It is generally accepted in clustering theory that when 

increasing the number of clusters, the level of accuracy increases. When varying the 

number of clusters, two important parameters are affected: the representative 

snapshots and the cumulative probability of each cluster
w

 . Note that the 

representative snapshot in a given cluster is selected among the snapshots, grouped 

to that same cluster, based on certain criteria (for example, being the closest to the 

centroid which means the medoid in the cluster). The parameter
w

 is the cumulative 

probability of all snapshots grouped together. Assuming the probability of 

occurrence of each snapshot is the same, 
w

 should be proportional to the number of 

snapshots in cluster w. This means
w

 is the sum of all individual probabilities in the 

same cluster. Both these parameters define the accuracy level of the clustering 

outcome. The higher the number of clusters are, the more similar the snapshots 

grouped together will be (in terms of their effects on network expansion needs), and 

therefore the higher the clustering accuracy will be. On the other hand, a lower 

number of clusters increase the chance of clustering “dissimilar” snapshots together. 

Chances are also high that the representative snapshots selected for each cluster may 

not accurately represent their companions in their respective clusters. Therefore, 

when using a smaller number of clusters, the variability of operation situations is 

likely to be underestimated, potentially resulting in underinvestment, as shown in 

Figure 4.13. Obviously, the ultimate price of such inadequate network 

reinforcements in the system is an increase in operation cost due to the presence of 

congestion and unserved power. This is reflected in Figure 4.14, where one can 

easily see very high dispatch costs associated to smaller number of clusters. When 

the number of clusters is slowly increased, all curves gradually approach the 

benchmark one, showing an increasing trend of accuracy. Here, it is interesting to 

observe that the CbE-based method approaches the benchmark before the CbC-

based one, showing the former’s excellent performance and clear advantage in terms 

of computational burden —which is further increased by the compact representation 

of the snapshots. Another important result observed in Figure 4.14 is the decreasing 

trend in the dispatch costs achieved when one increases the number of clusters for 

non-overloading snapshots while keeping the number of clusters of overloading 

snapshots constant. This can be attributed to the better estimation accuracy of 

transmission losses achieved in this way, which may increase the accuracy of the 

computation of operation costs and justify some more line reinforcements. This is 

particularly shown in the case study, also depicted in Figure 4.14 by the two curves 

in the middle. 
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Therefore, the main conclusions from these analyses are two. First, it is much better 

to cluster snapshots based on relevant power flow effects (overloads and losses) than 

clustering them based on input system variables (generation—demand patterns). 

Second, the moments approach is an effective way to reduce the dimension of the 

clustering space. 

These results are in line with those shown in Figs. 4.9 and 4.11, where the threshold 

for the number of clusters of overloading and non-overloading snapshots seems to 

be also 40 and 15, respectively, when the proposed clustering approach is applied.  

4.7. COMPUTATIONAL IMPLICATIONS 

Some computational implications of the proposed approach are discussed here. The 

efficacy of the proposed method has been already verified on the 24-bus test system. 

The results are very interesting in that the moment-based clustering using power 

flow variables results in a very compact optimization problem (because of the 

significant reduction of snapshots) without considerable loss of accuracy. In 

addition, the results also show that using the generation—demand patterns (the 

causes, CbC) instead of power flow patterns (the effects, CbE) would require a far 

higher number of snapshots to achieve the same level of accuracy in the TEP 

context.  

The method can generally be extended to large-scale TEP problems. As it is known, 

the main limiting factor in such problems is the computation burden. The computing 

time is directly related to the problem complexity. In this regard, given the DC-

based TEP optimization problem [14], the marginal impact of reducing the number 

of snapshots on its computational burden can be quantified. This depends on 

complexity of the problem being considered, i.e., the number of equations, 

variables, non-zeroes, etc. For example, in the TEP problem presented in [14], the 

total number of equations and continuous variables can be determined by  (119) and 

(120), respectively. 

 1 * 2( ) ( )(5 2 )
N G RES CL EL

S N N N N N L         (119) 

 * 4( )
G RES N CL EL

S N N N N N        (120) 

where L corresponds to the number of partitions in the losses modeling [15].  

The above expressions, (119) and (120), clearly indicate that the impact of the 

number of snapshots on the problem size is linear i.e. a reduction in the number of 

snapshots by a certain fraction results in the same level of reduction in the number 

of equations and variables. One can observe in (119) and (120) that reducing the 

number of snapshots marginally (i.e. by one snapshot) leads to a reduction in the 

number of equations and continuous variables by an amount given by: 

 2( ) ( )(5 2 )
N G RES EL CL

N N N N N L     and  4( )
G RES N EL CL

N N N N N    , respectively.  
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Such a reduction in complexity of the problem can indeed result in a huge difference 

in computing time. The impact can even be more noticeable in large-scale problems. 

For instance, for a 1000-node system, assume there are 2000 existing and 2000 

candidate lines, five conventional generators of different technologies and five types 

of renewable energy sources at each node. Suppose the number of losses partitions, 

L, is set to 5. Under these assumptions, the reductions in the number of equations 

and continuous variables, with respect to the marginal reduction of one snapshot, 

amount to 82,000 and 30,000 respectively. Computationally speaking, such a huge 

reduction in complexity significantly enhances the tractability of the TEP problem.  

Furthermore, it has already been stated that, when using the proposed method, the 

minimum number of clusters required for obtaining an optimal TEP solution in the 

test system  is 50 (see Figure 4.14). However, up to 310 clusters are required to get 

the same solution using conventional clustering variables. This means that the 

resulting TEP optimization problem may have 6 times fewer equations and 

variables. Considering all the benefits, the proposed method seems to be very 

promising and can be extended to large-scale TEP problems which consider high 

uncertainty and a long temporal scope.  

From a computational perspective, the implementation of the proposed clustering 

method is not burdensome. This is because it is formulated over a very fast NCUED 

model, and also because the OPF for each snapshot can be individually computed. 

This allows parallel computation, which further facilitates the computation process. 

4.8. SUMMARY 

This chapter has introduced a novel way of clustering operational states, or 

snapshots, based on classification variables that are closely related to TEP problems, 

instead of using the customary generation and demand variables. 

In the proposed approach, snapshots are characterized according to their effects on 

the network, i.e. the congestions (overloads) and losses that will in fact create 

expansion needs. In the non-overloading snapshots, net power unbalances are 

instead used as significant variables. The effects on the network are then translated 

into a much more compact representation, namely a moments-based space of 

variables. Moments translate both the geographical location and the power-related 

parameters of potential investment needs into a reduced reference system. 

The method has been tested comparing its results against both the original brute-

force problem (using the whole original set of snapshots) and a clustering method 

based on generation and demand patterns. 

For identical results of the TEP problem, the test results show that the proposed 

method reduces the number of required snapshots in almost 200 times with respect 

to the original problem, and in 6 times regarding the generation—demand pattern 
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based clustering method. This work also estimates the savings in computing time 

related to the marginal reduction in the number of snapshots. 

As a global conclusion, it can be stated that the proposed power-flow clustering 

criteria (the effects on the network), combined with the moments-based compact 

representation of those effects, seems to be an adequate and promising method to 

handle operation uncertainty in the context of TEP problems. 

In addition to the new clustering method, contributions from this chapter include the 

losses model used in the NCUED model as well as the nonlinear optimization 

approach developed to generate a network map by making use of network 

parameters (impedances, in particular).   
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This chapter presents the algebraic formulation of the stochastic TEP (STEP) model 

along with a detailed description of the proposed solution strategy. 

5.1. THE TEP PROBLEM 

5.1.1. Multi-stage and Stochastic Programming Framework  

A TEP problem is naturally dynamic because the solution has to explicitly provide 

necessary information regarding not only where and what but also when network 

investments are needed. Given adequate operational information at each stage along 

each storyline as in Figure 5.1, the problem can be formulated by considering 

multiple decision stages (i.e. a multi-year decision framework). This accounts for 

the dyamic nature of the problem. Note that an operational information here refers to 

the large number of demand and generation snapshots. 

The multistage modeling framework assumes that there are n probable future 

storylines (or scenarios) each associated with a probability of realization    that 

stochastically represent major long-term uncertainties described in Chapter 4. The 

entire horizon is then divided into two sub-horizons (also known as here periods), 

each having multiple decision stages. Figure 5.1 schematically illustrates the two-

period stochastic TEP modeling framework and the structure of its expansion 

solution. This modeling framework is appropriate because it combines robust short- 

to medium-term decisions with alternative long-term scenarios, reflecting the 

adaptive nature of real-life planning.  

As stated in the above, Figure 5.1 represents the possible future scenario trajectories 

with multiple spots throughout the planning horizon, along with the decision 

structure in each planning period. The figure shows a single investment solution    

(where           ) at every stage of the first period which is common (or good 

enough) for all scenarios, and flexible or strategic decisions       and      (where  

               ) in every stage of the second one [15]. Note that in order 

to broaden the investment options, two line investment-pools, one for each period, 

are considered, from which the potential lines can be selected for investment. 

Investments in the first period    can be postponed to the second period       if 

deemed necessary from an economic standpoint. 

The length of the first period can be taken as 5 to 15 years; whereas, the second 

period can be set in the range between 20 and 35 years long depending on the 

planner’s choice. Overall this may lead to a 25 to 50-years long planning horizon.  

The mathematical formulation of the model developed here is presented and 

explained in detail in the following sub-sections.  



 

121  
 

Now Stage τ Stage 

τ=T1
(a)

1S


2S


Sn


Stage 1

Now Stage τ 

(b)

Stage 1 Stage 

T1

Stage 

ζ=T

1S


2S


Sn


Stage 

ζ=T

Sn


2S


1S


' ,
Sn Sn

z y

2 2
' ,
s S

z y

1 1
' ,
s S

z y

Stage 

ζ=T1+1

Stage 

ζ=T1+1
Scenario Sn

Scenario S2

Scenario S1

1T
zz

2
z

1
z

 

Fig. 5. 1 A schematic representation of (a) possible future scenario trajectories and 

(b) a decision structure 

 

5.1.2. Algebraic Formulation of the TEP Model 

The stochastic TEP model developed in this thesis is described as follows.  

5.1.2.1. Objective Function 

As mentioned earlier, this work develops a generalized optimization model that 

simultaneously determines the optimal location, time and size of transmission line 

investments under a high penetration level of RESs. In other words, the objective is 
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to expand the transmission network at a minimum possible cost from the system 

perspective. The resulting problem is formulated as a stochastic MILP optimization 

with an overall cost minimization as an objective function. The decision variables 

include the yearly transmission investment variables as well as the operational ones 

constituting dependent and independent variables. 

The objective function in (121) is composed of NPV of six cost terms each weighted 

by a certain relevance factor                . Note that, in this work, all cost 

terms are assumed to be equally important; hence, these factors are set to be equal. 

However, depending on the relative importance of the considered costs, different 

factors can be adopted in the objective function.  

   
        

                                  

            
(121) 

The first term in (121),      , represents the total investment costs under the 

assumption of a perpetual planning horizon [190]. In other words, the investment 

cost is prorated in annual installments throughout the lifetime of the installed 

component. Here, the total investment cost is the sum of investment costs of 

candidate lines as in (122).  

       
       

 
    

     
  

               
                      

 
(122) 

The second term,    , in (121) denotes the total maintenance costs, which is given 

by the sum of individual maintenance costs of new and existing lines and generators 

at each stage, and the corresponding costs incurred after the last planning stage, as in 

(123). Note that the latter costs depend on the maintenance costs of the last planning 

stage. Here, a perpetual planning horizon is assumed.  

            

    

       
        

   
                       

                         

 

 
       

 
      

        
   

                     
                                            

 

(123) 

 

The third term     in (121) refers to the total cost of energy in the system, which is 

the sum of the cost of power produced by new and existing generators at each stage 

as in (124). Equation (124) also includes the total energy costs incurred after the last 

planning stage under a perpetual planning horizon. These depend on the energy 

costs of the last planning stage.  



 

123  
 

            

    

       
        

   

                       
                       

 
       

 
      

        
   

                     
                                          

 

(124) 

The fourth term       represents the total cost of unserved power in the system 

and is calculated as in (125).  

              

    

      

               
                         

 
       

 
                

                                            

 

(125) 

The last term       gathers the total emission costs in the system, given by the 

sum of emission costs for the existing and new generators as well that of power 

purchased from the grid at the substations. 

              

    

       
        

   
                       

                  

 
       

 
      

        
   

                     
                                        

 

(126) 

The individual cost components in (122)—(126) are computed by the following 

expressions. Equation (127) represents the investment costs of lines. Notice that all 

investment costs are weighted by the capital recovery factor, 
        

         
. The 

formulations in (127), along with the logical constraints which are described in the 

constraints section, ensure that the investment cost of each line added to the system 

is considered only once in the summation. For example, suppose an investment in a 

particular line   is made in the second year of a three-year planning horizon. This 

means that the line should be available for utilization after the second year. Hence, 

the binary variable associated to this line will be 1 after the second year while zero 

otherwise i.e.               . In this particular case, only the difference         

        equals 1, implying that the investment cost is considered only once.  
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(127) 

Equations (128) and (129) stand for the maintenance costs of new and existing lines 

at each time stage, respectively. The maintenance cost of a new/existing line is 

included only when its corresponding investment/utilization variable is different 

from zero. The maintenance costs of new and existing generators at each stage can 

also be similarly formulated but this cost information is not often available for 

network planners. 

     
          

  

        

        
      

    

       
  

        

         
  

    

    

       
  

        

        
                    

(128) 

     
       

  

     

     
          

         
  

         

      

             

(129) 

The total operation costs given by (130) and (131) for new and existing generators, 

respectively, depend on the amount of power generated for each scenario, snapshot, 

stage and generator type. Therefore, these represent the expected costs of operation.  

     
                   

  

             

                 
  

             

            

        

(130) 
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Similarly, the penalty term for the unserved power, given by (132), is dependent on 

the scenarios, snapshots and time stages. Equation (132) therefore gives the 

expected cost of unserved energy in the system.  

                             

            

          (132) 

Equations (133) gathers the expected emission costs of power generated by new and 

existing generators, which are computed using (134) and (135), respectively. Note 

that, for the sake of simplicity, a linear emission cost function is assumed here. In 

reality, the emission cost function is highly nonlinear and nonconvex, as in [44]. 

Moreover, the cost of power generation          
          is often modeled using a 

linear cost curve, where the marginal cost of power production is constant. Should 

there be a need to use more detailed generation cost curves (quadratic cost curves, 

for instance), nonlinear terms should be linearized using one of the techniques, 

extensively discussed in Chapter 3. For the sake of simplicity, a linear cost curve is 

adopted throughout this thesis.   

     
       

        
             (133) 

     
                

    
   

           
  

             

         (134) 

     
                

    
   

           
  

             

        (135) 

5.1.2.2. Constraints 

Kirchhoff’s Laws: Flows in AC systems are governed by Kirchhoff’s voltage and 

current laws, abbreviated as KVL and KCL, respectively. The “DC” network model, 

described in Chapter 3, is reproduced here by extending the multi-load level 

equations to fit the proposed TEP framework. Inequalities (136) and (137) represent 

the KVL constraints in existing lines in the first and the second investment sub-

horizons, respectively. The corresponding constraints for candidate lines are given 

by (138)—(140), respectively. 

              
                                               (136) 

              
                                                 (137) 

                
                                              

    
(138) 
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(139) 

                
                            

                    

    
(140) 

As mentioned in Chapter 3, the DC network model does not provide voltage 

magnitude information because one of the underlining assumptions in deriving this 

model is the consideration of flat voltage throughout the system. This can be 

somehow corrected by using the linearized active AC power flow equation, 

presented in Chapter 3, instead of the DC power flow equations described above, as 

in (141)—(144). Notice that these equations reduce to (136)—(140) if the voltage 

deviations (from the nominal value) at each node and line resistances are very small. 

These are among the simplifying assumptions in DC formulation. 

                                           
               

                                          
(141) 

                                           
               

                                            
(142) 

                                             
               

                                           

     

(143) 

                                             
               

                                             

     

(144) 

                                             
               

                
                               

     

(145) 

KCL constraints dictate that the load balance at each node should be respected all 

the time i.e. the sum of all injections should be equal to the sum of all withdrawals. 

This is enforced by adding the following constraints:  

            

            

          

          

           

   

         

           

   

                  

            

               

          

                      

(146) 
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Constraints Related to Network Losses: The real power losses in line   can be 

approximated as follows: 

                
           

                             

           
(147) 

Clearly, Equation (147) is a nonlinear and nonconvex function. Since keeping the 

linearity of the TEP problem is critical for computational reasons, Equation (147) 

need to be linearized. The most common linearization approach in the literature is 

piecewise-linearizing the quadratic angular difference. However, instead of doing 

this, the expression in (147) can be expressed in terms of active power flows as in 

(148), which is thoroughly described in Chapter 3. Issues related to network losses 

and linearization are extensively discussed in Chapter 3 and also in the published 

work of this thesis [13]. 

            
            

 

    
 

                            

           

(148) 

The quadratic expressions of active power flow in (148) can then be easily 

linearized using piecewise linearization, considering a sufficiently large number of 

partitions,  . There are a number of ways of linearizing such functions such as 

incremental, multiple choice, convex combination and other approaches in the 

literature [13], [185], [240]. Here, the convex combination approach, which is 

implemented making use of special ordered sets of type 2 (SOS2). This modeling 

technique of losses is described in Chapter 3. Further details can be also found in the 

published work of this thesis [13]. For the sake of completeness, the model is 

reproduced here. To realize the linearization, two non-negative auxiliary variables 

are first introduced for each of the flows            such that                    
  

          
 . This implies                        

            
 . Note that these auxiliary 

variables (i.e.           
  and           

  represent the positive and negative flows of 

          , respectively. This helps one to consider only the positive quadrant of the 

nonlinear curve, resulting in a significant reduction in mathematical complexity, and 

by implication the computational burden. In this case, the associated linear 

constraints are:  

          
                               

 
 

   

                    

                     

(149) 

                       
          

                           

 

   

             

                            

(150) 

              

 

   

                                           (151) 
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(152) 

where                 
  

   

 
. Note that this has to be done for both existing and 

candidate lines. Further details about this model can be found in [13]. The losses in 

candidate lines are also linearized in a similar way. 

Note that expressing the losses as a function of flows has a clear advantage over the 

angle-based losses. It avoids unnecessary constraints on the angle differences when 

a line between two nodes is not connected or remains not selected for investment. In 

the linearization of losses based on Equation (147), such a problem is avoided by 

introducing additional binary variables and using a so-called big-M formulation 

[133]. However, this adds extra complexity to the problem. 

Line Flow Limits: Flows in any line should lie within a permissible range i.e. within 

its thermal capacity limits. In existing lines, these constraints are enforced by (153) 

and (154) in the first and the second sub-horizons, respectively. The corresponding 

constraints in the case of candidates are given by (155)—(157).  

                             
                                  

     
(153) 

                               
                                  

     
(154) 

                                                             

              
(155) 

                                                              

              
(156) 

                                    
                             

              
(157) 

Active Power Limits of generators: The generation capacity limits of existing and 

new generators are given by (158) and (159), respectively. Note that the binary 

variables          are required to indicate whether an existing/new generator is 

available or not. This makes sure that the power generation variable is zero when the 

generator is not being used. 

         
                        

            
                   

                         
(158) 

         
                        

            
                    

                         
(159) 

It should be noted that, in the case of intermittent power sources, the lower 

generation limits          
      

 and          
      

 are often set to 0 while the corresponding 
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upper limits are set equal to the actual power output of the variable generation 

source corresponding to the level of primary energy source (wind speed and solar 

radiation, for instance). Hence, the upper bound in this case depends on the 

operational state (i.e. the snapshot) and the scenario.   

Logical Constraints: Investment-related logical constraints (160)—(165) also need 

to be included in the formulation. These set of constraints ensure that an investment 

made at time stage   cannot be reversed or divested in the subsequent time stages; 

instead, the asset should be available for utilization immediately. 

      
           

                                (160) 

      
          

                               (161) 

         
              

                                  (162) 

          
          

                              (163) 

        
             

                                  (164) 

         
                                (165) 

Budget Constraints: A budget constraint for line investments is enforced by adding 

the constraint in (166) for the first period and (167) for the second one. 

       
         

  

        

         
                     (166) 

       
           

  

        

           
           

            
  

        

            
   

                               

(167) 

Unserved Power Limits: The unserved power at any given node cannot exceed the 

demand at the same node, and this is enforced by:  

                                                   (168) 

Emission Related Constraints: Sometimes, there can be emission reduction targets 

that are set forth either globally, locally or both. Constraint (169) is added here to 

limit the expected emission level at a given year   below a preset target value.  

          
 
           

  

             

     
           

              

    

(169) 

Angle and Voltage Related Constraints: For stability and power quality reasons, 

the voltage magnitude at each bus and its angle are bounded as:  

                                                       (170) 
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                                                  (171) 

HVDC Line Constraints: DC lines are modeled as “pipelines”, which means that 

power flows in such lines are not governed by Kirchhoff’s voltage law. Unlike in 

AC lines, flows in DC ones are independent of the voltages and angles at the nodes 

where the DC lines are connected to. DC lines only respect load balance and 

capacity constraints and; hence, share the flow constraints, node balance as well as 

the losses constraints in (146)—(157) with their AC counterparts. 

5.2. TEP MODEL REVISITED 

From a computational standpoint, the TEP model presented in Section 5.1, which is 

based on a yearly temporal planning scope, may not be affordable when applied to 

network systems of the European scale. This is for practical reasons -such as 

computing time, lack of reliable information about the future, and a better 

understanding of the results- only a reduced number of planning stages (two or 

three) are defined here. Given the sheer size of such network systems, computing 

optimal power flow calculations for each time stage and scenario over a long 

planning horizon (often 30 to 50 years) renders significant computational challenge. 

To overcome this, the TEP problem can be re-formulated based on a reduced 

number of planning stages in each sub-horizon (period). The mathematical 

formulation of the three-stage problem is discussed here. Reducing this further to a 

two-stage problem should be straightforward.  

In a two-period planning framework, assume the first period has two decision 

stages, one intermediate and one final stages, which are denoted as   and   , 

respectively, and the second period is represented by one stage at the final planning 

horizon, as shown in Figure 5.2. This leads to a three-stage optimization problem. 

The operational information for these stages is assumed to be available to evaluate 

the system once investments are made in each stage. 

One way to formulate the objective function of such three-stage problem with three 

stages is to minimize the total NPV sum of costs in each of the considered years (i.e. 

the three planning stages), as in (121a). The composition of these costs is the same 

as that of the original model in Section 5.1, and the costs are computed using 

Equations (122a)—(135a). The cost terms here differ from those described before in 

that they do not reflect the operation, maintenance, emission and reliability costs 

incurred outside these stages. In other words, the costs corresponding to all the 

stages except that of the target ones and those beyond the planning horizon are not 

taken into account in the formulation. As a result, the short to long term impacts of 

expansion decisions on the levels of these costs may not be properly captured.  
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Fig. 5. 2 A schematic representation of (a) possible future scenario trajectories and 

(b) a decision structure 
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The constraints to this optimization problem are the same as the ones in the original 

formulation except for the domain of variables and parameters related to the 

stage            . 

As stated above, the real costs associated to investment and other terms throughout 

and outside the planning horizon are not properly captured by this modeling, which 

can be regarded as its major disadvantage. Because of this, the resulting expansion 

solution can be suboptimal. 

The above problem can be corrected by accounting for the costs incurred on the 

“missing” years i.e. the years apart from the target ones. By making use of the 

annuity concept [190], the operation, maintenance, emission and reliability costs 

incurred between the intermediate stages considered in the formulation can be 

approximated from the corresponding known quantities at these stages. This is 

further demonstrated in Figure 5.3. In this figure, suppose the first sub-horizon 

(period) spans over a 15 years time while the duration of the second one is 25 years. 

Furthermore, let us assume we have two target years for making investments in the 

first period i.e. one intermediate stage (5
th
 year) and the last planning stage (15

th
 

year). The second sub-horizon (i.e. from the 16
th
 year to the 40

th
 one) has only one 

planning stage, which in this case is considered to be the last one. In effect, instead 

of having 40 yearly stages (15 in the first period and 25 in the second one), the 

whole planning horizon has now 3 decision stages. For this planning framework, the 

operation costs corresponding to these years are explicitly known. Now, the issue is 

to approximate the costs incurred in the years other than those explicitly considered 

i.e. the costs corresponding to Part I—IV in Figure 5.3.  

Without loss of generality, the fixed payments in the years leading to stage 5 can be 

assumed to be the same as the costs at this stage    . Similarly, the annualized costs 

between the sixth and the 15
th

 years can be assumed to be equal to those at the 15
th

 

year     , while the annual costs in each year of the second period can be regarded 

to be equal to     . Given all this, the concept of annuity [190] can be applied. 

Hence, the costs in Part I are assumed to be accrued and paid in full at the end of the 

fifth year, those in Part II at the fifth year and those in Part III at the last stage of the 

planning horizon. The total operation costs in each range (part) can be estimated by 

the difference of the perpetuity of the corresponding two known operation costs, 

updated by the NPV factor. Note that the present value of perpetuity, which is the 

sum of the net worth of infinite annual fixed payments, is determined by the ratio of 



 

134  
 

the fixed payment at a given time by the interest rate  . For the illustrative example, 

the total costs for the “missing” years can be estimated using:     
   

 
 

   

       ,  

     
    

        
    

        , and        
    

         
    

        . It is rather 

straightforward to express the costs incurred after the planning horizon, which 

depend on the costs in the final planning stage. Assuming a perpetual planning 

horizon,      can be expressed as 
    

        . The remaining costs can be formulated 

in a similar manner. The objective function then minimizes the sum of all these cost 

terms formulated in this manner. 
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Fig. 5. 3 Illustration of cost components in the formulation 

The complete formulation of the objective function of the resulting TEP model with 

a reduced number of stages is presented in (121b)—(135b). The constraints for this 

optimization are the same as those in the original formulation with the exception of 

the time stage domain, which in this case is             
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5.3. VERSATILITY OF THE MODEL 

Power systems are subject to continuous changes and high level uncertainty. 

Because of this, it is almost impossible to exhaustively characterize its possible 

evolutions only in the form of a predefined number of storylines (scenarios). 

Moreover, the number of scenarios should be limited to ensure tractability. Yet, 

expansion decisions have to cope with the inevitable changes in system evolutions. 

To adapt the decisions to a changing environment, the model proposed in this thesis 

is useful for implementing the old concept of a rolling window of planning, a 

common practice in a decision-making process. The rolling window concept lays a 

quasi-dynamic planning framework which is attractive in intuitive terms because it 

recognizes the fact that the plan will be effectively readjusted as new data becomes 

available and tries to accommodate the effect of uncertainty by constantly 

readjusting the probabilities of realization of the storylines. This is demonstrated in 

Figure 5.4. This planning framework uses the three-stage planning model developed 

in the preceding section. Figure 5.4 (a) shows the possible future storyline 

trajectories              with three scenario spots along the planning horizon, in 

the three-stage and two-period planning framework. Whereas, Figure 5.4 (b) 

illustrates the decision structure in each stage, showing a single investment decision 

   common for all scenarios in the first period, and scenario-dependent 

decisions              in the second period. Figure 5.4 (c) depicts new possible 

future scenario trajectories    
    

      
   after new information is unveiled or made 
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available. A new TEP optimization is carried out accounting for these changes, and 

as illustrated in Figure 5.4 (d), a new set of decisions are obtained. Note that Figures 

5.4 (c) and (d) both demonstrate the moving window of planning framework. 

It is understood that as time passes by, the scenarios unfold or new information 

becomes available that changes the probabilities of realizations of the scenarios 

under consideration. Either way, the planning can be repeated by rolling the 

planning window and new investment decisions are obtained. This process can be 

repeated as many times as desired. In doing so, there will be some overlaps in the 

planning windows, and in the decisions. Of a particular interest in this case are the 

decisions made in the first period. 
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Fig. 5. 4 A schematic representation of the quasi-dynamic planning framework 
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In general, the quasi-dynamic planning framework helps to explore new expansion 

solutions as a result of dramatic changes in system evolution and/or obtain possible 

adjustments to a previously made expansion strategy for some changes in the 

storylines. Planning experience shows that the first-stage expansion decisions are 

not built all overnight (i.e. at the same time). Considering the current practice in 

construction of lines, the permit process can be shorter for some, longer for others or 

even indefinite for some “unlucky” ones. This gives the planner an opportunity to 

revise the decisions taken in the first stage of the preceding planning window by 

comparing them with the decisions in the current window. Based on this, s/he can 

make some adjustments to the lines planned in the previous window. For instance, 

the lines in common can be understood as robust and retained in the current 

planning process. On the other hand, part of the lines of the first stage decisions of 

the previous window may not appear in the current planning window which may be 

taken as a reason to cancel/abandon them. This process somehow emulates the 

dynamism involved in TEP. 

The developed TEP tool is generally practical because it can work with only a few 

easily defined and understood storylines, two planning stages and snapshots that are 

automatically generated only for a few spots in time. This is consistent with the 

natural and frequent interaction between the planner and the TEP tool, which is 

described above as a “rolling window”. 

5.4. DESCRIPTION OF THE SOLUTION STRATEGY 

TEP is a naturally combinatorial optimization problem because it includes many 

discrete (binary or integer) investment decision variables, which pose a significant 

computational burden. When the size of the system is not large, available solvers 

can explore the combinatorial search space and find the best expansion topology 

within a reasonable lapse of time. However, for large-scale network systems, this is 

not possible without using efficient solution techniques that can systematically 

explore the search space and deliver optimal or close to optimal within a reasonable 

computational time. 

The computational complexity of TEP is especially pronounced when the 

considered network is of a continental size, as this work aims to address, where one 

has to consider thousands of candidate lines in the expansion planning model. This 

leads to an unprecedentedly huge and combinatorial problem. Suppose a given 

system has 2000 candidate corridors for line investments. Assume we have 5 

transmission technologies to select from for the investment in each corridor. This 

would result in a combinatorial search space of           possible combinations, 

which is “maddeningly” huge.  

Currently available MILP solvers may not be able to efficiently handle a problem of 

this magnitude; or else, this may take unacceptably long optimization times even if 

the simplest algebraic TEP model is used. In order such problems to be tractable, the 

number of candidate lines for an expansion strategy should be limited. Traditionally, 
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this information has been often accomplished based on expert knowledge. In other 

words, a short list containing the candidates has been often made available for 

carrying out TEP studies. Sometimes, the candidate list by experts is complemented 

using some heuristic procedures such as the copper sheet method [241] or economic 

indicators such as locational marginal prices [241], [242] and [243], etc. However, 

given the huge network size (continental), a short list of candidate lines cannot 

unfortunately be made available. This means that one cannot rely only on expert 

knowledge, but also consider a lot of candidates to complete this missing 

information. In addition, using a huge list of candidates introduces sufficient 

flexibility in the search for the most economical expansion strategy.  

Unfortunately, as mentioned earlier, increasing the number of candidate lines 

increases the combinatorial solution search (CSS) space, rendering significant 

burden to the solution process. Given the network size and the huge number of 

candidates needed in the planning, the size of the optimization problem quickly 

increases and its computational complexity becomes beyond an acceptable level. 

Unless the CSS space is sufficiently reduced, the resulting optimization can be 

intractable or demand an exceptionally huge computational effort. This makes it 

important to reduce the size of the problem without significantly compromising the 

quality (accuracy) of the solution.  

Because of the aforementioned reasons, the resolution of such a complex 

combinatorial problem needs to be supported by heuristic methods. This thesis 

proposes an effective solution strategy involving a gradual reduction of the CSS 

space, and the possibility of parallel computation. The aim of this global solution 

approach is to significantly enhance the tractability of the TEP problem. This is 

largely discussed in the published work of this thesis [15]. The solution strategy 

here is motivated by the work in [87], where a static TEP problem of network 

systems is solved by making use of a hierarchical decomposition technique in 

combination with Benders’ decompositions. The pipeline, the hybrid and the DC 

models are employed in successive phases to make network investments. As stated 

in Chapter 3, the complexity of these models is in increasing order from the pipeline 

to the DC model. Initially, a relaxed version of the problem based on the 

transportation network model, which is mathematically speaking the least complex 

one is solved without enforcing integrality constraints on investment variables, and 

an initial set of expansion decisions are obtained. According to authors in [87], up to 

60-70% investments are made using the pipeline-based model. Further investments 

(this time, 10-15%) are made using the hybrid model without integrality constraints. 

As the solution process progresses towards the “optimal” solution, further network 

modeling details are added (like in the DC, where integrality constraints are fully 

enforced) to get the final line additions to the set of solutions already obtained in the 

earlier phases. This solution process, according to [87], speeds up the solution 

process. In the present work, this solution approach is extended to TEP problems of 

very large-scale systems, featuring multiple decision stages and storylines. Unlike in 
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[87], pipeline models are not used in the decomposition strategy proposed in this 

thesis. As demonstrated in Chapter 3, the use of pipeline TEP models can lead to a 

largely suboptimal expansion strategy.  

The proposed solution strategy is schematically illustrated in Figure 5.5, 

summarizing the procedures followed. The technique works by decomposing the 

problem into a number of successive optimization phases as illustrated in Figure 5.5. 

Each phase uses the results of the previous one to reduce the search space. This 

reduction in complexity allows each phase to use more complex models with a 

similar computational load. Moreover, each optimization phase could be defined and 

solved as an independent problem; thus, allowing the use of specific decomposition 

techniques, or parallel computation whenever possible.  

Generally, as shown in Figure 5.5, this solution strategy can be understood as an 

approach that refines the large size of initial candidate list (ICL) by employing a 

mathematically simplified optimization model (in this case, MODELS I and II) 

before applying a more accurate and advanced optimization model (which in this 

case is MODEL III) to produce the final optimal investment decisions from the 

reduced candidate list (RCL), obtained by MODELS I and II. In effect, this 

approach significantly reduces the CSS space, facilitating the computational 

process.  
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Fig. 5. 5  An illustration of the search space reduction approach and parallel 

implementation 

In general, a significant computational gain is achieved by using this technique. This 

is because, on one hand, a relatively simplified optimization model (designated by 



 

142  
 

MODEL I in Figure 5.5 and whose formulation can be found in Chapter 3 and [15]), 

is employed in the early phases before gradually switching to a more detailed and 

complex optimization models (designated as MODEL II and MODEL III). On the 

other hand, parallel computation is implemented wherever it is possible. In addition, 

MODEL I makes use of continuous investment variables which helps to further 

reduce the computation burden. Converting the naturally discrete investment 

variables into continuous ones might seem a coarse assumption but numerical 

results in Chapter 3 and [15] have demonstrated the effectiveness of this 

methodology, especially when continuous variables  are used only in the preliminary 

models to reduce the space of solution search. 

In the context of the developed TEP problem, the first phase involves deterministic 

problems as many as the number of scenarios that can be independently solved. In 

the second phase, the reduced candidate list is further refined by MODEL II which 

involves a fully stochastic optimization model with continuous investment decision 

variables. This is followed by a final stochastic optimization, based entirely on an 

improved DC network model, but this time, considering only the lines selected after 

Model II of the second phase. 

Since the foremost optimization phases assume continuous investment variables, a 

set of investment decisions with fractional values is thus obtained for each scenario. 

A threshold is therefore set to limit the list of candidates that would be passed on to 

the second phase. The present work considers all candidates whose investment 

variables are different from zero after the optimization. And, these would be 

selected to eventually form a RCL. This may rather seem very conservative 

assumption. As a selection criterion, setting this threshold slightly higher than zero 

will hardly change the solution but this can rather help to further disregard lines with 

small investments, which are unlikely to appear in the final and optimal solution. 

In the final stage of the first phase, the solution sets of each scenario (i.e. those lines 

whose investment decision variables are greater than zero) are combined to obtain a 

reduced set of candidates i.e. RCL. In other words, for a candidate line to be 

considered in the RCL, the line should be selected at least in one of the scenarios i.e. 

its investment variable should be greater than zero; otherwise, it is rejected.  

The second phase has two stochastic optimization processes sequenced one after 

another (i.e. MODELS II and III). The difference between the two models is that 

MODEL II is formulated based on the hybrid or the relaxed DC TEP model (see in 

Chapter 3), which allow continuous investment decisions, while MODEL III is fully 

based on an improved DC TEP model, in which only discrete investment variables 

are feasible. The optimization process in MODEL II is carried out considering all 

the scenarios together but only taking into account the lines in RCL. This 

optimization results in an intermediate solution comprising some of the lines in 

RCL. MODEL II further reduces the search space because not all the lines in the 

RCL are selected for an expansion plan. Therefore, here, we can also use the same 
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threshold to get rid of the lines which do not appear in the solution after running 

MODEL II of the second phase.  

As a final step, the second optimization process is run with the intermediate solution 

as an input. This process finally obtains the required TEP solution.  

It should be noted that MODELS I and II can be based on the hybrid or relaxed DC 

TEP model, described in Chapter 3, including network losses. The main property of 

the hybrid model is that it exempts candidate lines from obeying the second 

Kirchhoff’s law while the rest is the same as in the DC network model (see in [180] 

and Chapter 3). This property makes the hybrid model fit for the CSS space 

reduction process because it allows the use of continuous transmission investment 

variables. The relaxed DC TEP model (R-DCTEP), proposed in Chapter 3, also 

permits the use of continuous variables. This model fares better than the hybrid TEP 

model (HTEP) because flows in R-DCTEP are forced to obey the law of physics 

unlike in HTEP where reverse flows can occur in candidate lines. These issues, 

including numerical results are discussed in detail in Chapter 3 (see Tables 3.1—3.4 

and Appendix D). 

5.5. TEST RESULTS AND DISCUSSIONS 

The proposed solution approach has been tested on the IEEE 300-bus system which 

is big enough to verify its viability. As a contribution of this thesis, this work has 

been partly published in [15]. 

Here, the approach is illustrated by a smaller case, i.e. the modified Garver’s system. 

Test results of the IEEE 300-bus system are also briefly presented. More details can 

be found in [15]. 

5.5.1. Illustrative Example - Modified Garver’s System 

The RCL-based solution strategy proposed in this work is illustrated on a small test 

system, shown in Fig. 5.6. Information about the Garver’s test system and data can 

be found in [40]. For this small-scale system, three scenarios, which are assumed to 

be equally probable, are defined as follows:  

 In the first scenario, a trend of increasing power generation from renewable 

sources is assumed at node 0 which grows from 0 to 300 MW in period 1 

and 300 to 1800 MW in period 2. This is accompanied by a demand growth 

of 10% in period 1 and 50% in period 2. 

 The second scenario involves expansions of conventional power generations 

at node 1 (from its base value to 250 MW in period 1 and 350 MW in period 

2) and node 3 (from its base value to 460 MW in period 1 and 660 MW in 

period 2). Moreover, a 5 and 20% demand growth are assumed in periods 1 

and 2, respectively. 

 The third scenario is characterized by a trend of increasing renewable 

development at node 6 accompanied by moderate demand growth. In this 
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case, generation at node 6 grows from 0 to 300 MW in period 1 and 1800 

MW in period 2. Similarly, demand grows from 10% in period 1 to 40% in 

period 2. 

The following values of model parameters are considered. The duration of the first 

period is set to 5 years while that of the second period is 15 years, resulting in a 20-

year planning horizon. An interest rate of 5% is used in the cash-flows. For the sake 

of simplicity, variability in load is represented by three load levels (i.e. peak, off-

peak and shallow) while five linear constraints are considered in the linearization of 

transmission losses. It is further assumed that there is only one stochastic decision 

stage in the first period, and another deterministic decision stage in the second one. 

 

Fig. 5. 6  A schematic diagram of a modified Garver’s system 

The HYBRID model is used in PHASE I (see Fig. 5.5). In this case, each scenario is 

dealt with independently; the optimization is carried out deterministically and thus 

the number of candidate lines is trimmed down from 20 to 13. This consists of 

candidates in the following right-of-ways: {(0,1); (0,2); (0,3); (0,4); (0,5); (1,2); 

(1,5); (2,3); (2,5); (2,6); (3,5); (3,6); (4,6)}. In PHASE II, a full stochastic 

optimization is carried out using a DC network model, and considering only the 
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reduced candidate list obtained in PHASE I. The final expansion results consist of 

lines in corridors { (0,2); (0,4); (0,5); (2,3); (2,6); (3,5); (3,6); (4,6)}.  

In this small example, the TEP optimization process based on the RCL approach is 

found out to be approximately 9 times faster than the direct approach. A breakdown 

of the computation time in the RCL approach shows the last phase (or simply 

PHASE II) accounts for more than 95% of the total time. In other words, the share 

in the overall computation time of PHASE I is insignificant; however, its impact in 

the overall reduction of the computational burden is considerably high.  

In PHASE II, before the final step in the solution process, another phase is 

implemented i.e. the candidates in the RCL are further refined by employing a 

stochastic optimization based on a HYBRID model with continuous investment 

variables. This phase further reduces the candidates in the RCL to 11, in which 

candidates (1,2) and (2,5) are dropped out. Only these eleven candidates are used 

when running the last phase of the solution process. However, even if the results are 

the same, the whole process in this case requires a slightly higher computation time 

than in the case of the two-model approach mentioned above. Yet, the 

computational requirement is much lower than the brute-force model which is 

described below. 

To measure the accuracy of the final solutions obtained by employing the proposed 

solution strategy, and see if there is any important information lost in the 

intermediate solution process, the full stochastic TEP model is run with discrete 

investment decision variables i.e. the brute-force model with the whole initial set of 

candidates. Expansion results in both cases entirely match and, in this specific 

example, no information is lost in the solution process.  

5.5.2. IEEE 300-Bus System 

To further validate the versatility of the solution methodology, an IEEE 300-bus 

network system is employed. This is a three-area system whose data can be found in 

[244]. For the sake of simplicity, each corridor is considered to be a candidate for 

reinforcement, overall resulting in 411 candidate lines. It is deemed necessary to 

provide the model with as many candidates as possible (potentially encompassing 

some existing and new corridors). 

As the data in [244] are not complete, the following assumptions and modifications 

are made to the IEEE 300-bus test system before the TEP optimization is carried 

out. All negative power generations are considered as load; and the power 

generation at the reference bus is increased to 2400 MW to make up the generation 

deficit in the base case network. In addition, transmission investment costs are 

assumed to be proportional to the reactance of each line.  

Three scenarios are defined in a similar fashion as in the case of the previous case 

study. The proposed solution methodology is tested on this system. Particularly, in 
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PHASE I, which is a fully deterministic optimization based on the HYBRID model 

with continuous investment variables, the number of candidates are reduced from 

411 to only 61. After the following phase i.e. after running PHASE II which is a 

fully stochastic optimization based on discrete investment variables, the final 

solution consists of only 43 lines. 

To see how close the results obtained by applying the RCL approach are to the 

optimal solutions and to quantify the extent of loss of important information, a 

stochastic TEP model considering all the initial 411 candidate lines (what is 

described as the brute-force model previously) is run. Based on the results, slight 

mismatches are observed in the solutions. Out of the total 47 reinforcements in the 

optimal brute-force solution, only 4 candidates do not appear in the RCL solution. 

They are rejected by the first phase in the reduction process. The information lost on 

the way can be partially minimized by rerunning PHASE I but this time excluding 

the first batch of candidates that are already in the reduced candidate list from the 

whole set of candidates to find alternative paths or second best candidates. This 

way, two of the discarded candidates are recovered. In fact, this comes at an 

additional cost i.e. a slight increase in computation time.  

Worth mentioning here is the substantial reduction in computational time. The TEP 

optimization model employing the proposed solution strategy is found out to be 

nearly 10 times faster than the brute-force one. Moreover, based on the results of 

this case study, the information lost when applying the heuristic methodology is less 

than 3%. The difference in the objective function values in both cases is about 1.8%, 

further indicating the insignificance of the lost information. 

5.5.3. Some Implications 

In general, the proposed solution strategy performs outstandingly well in both case 

studies in reducing computation time, while providing optimal or quasi-optimal 

solutions. The computational gain as a result of decomposing the problem into 

successive optimization phases is a factor of 9 or 10, which is, indeed, significant 

enough to make this a feasible approach for large-scale networks (time savings will 

be more relevant as the size of the system grows). As far as the accuracy of 

solutions is concerned, 100% and 97% success rates (matching results) are observed 

in the modified Garver’s and IEEE 300-bus systems, respectively. However, 

sometimes, relevant information can be lost in the solution process i.e. some 

candidate lines may be excluded in the CSS reduction phases, which may be 

economically and technically useful in the end. The information lost can be 

dramatically alleviated or avoided by obtaining second-best, third-best, etc. 

candidates in addition to the first-best ones. An extensive study on techniques to 

minimize information lost in the process is part of future work. 
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5.6. SUMMARY 

This chapter has presented the algebraic formulation of the stochastic TEP model in 

a multi-stage planning framework. The optimization problem considers a weighted 

sum of multiple objectives including cost of operation and maintenance, emission, 

energy production, load shedding and line investments. The model is formulated in 

such a way that it combines mandatory short- to medium-term network expansion 

decisions with long-term (strategic) decisions both determined in the face of 

uncertainty. Another salient feature of the proposed model is its account for the 

long-term impact of line investments on the overall system costs by means of 

econometric concepts. Since a long-term TEP problem spans over 30 or more years, 

performing a yearly evaluation of the system operation and investment decisions 

throughout the planning horizon may render significant computational burden. 

Because of these reasons, a compact formulation, with fewer number of decision 

stages, is developed for large-scale TEP applications. The versality and interactive 

nature of the proposed model is demonstrated with the old concept of rolling 

window of planning, which emulates the continuously changing evolution of the 

system.  

To address the combinatorial nature of such a problem, an effective solution strategy 

is described in full. The method works by decomposing the original problem into 

successive optimization phases, which use TEP models with increasing fidelity 

levels. It employs relatively fast optimization models to refine a huge initial 

candidate list before switching on to a more accurate optimization model based on 

the DC network model. This strategy dramatically reduces the combinatorial 

solution search space, consequently, leading to a faster computation without 

significantly compromising the optimality of the solution. The results of the case 

studies on modified Garver’s and IEEE 300-bus systems show the effectiveness of 

the proposed solution strategy in considerably reducing the computational 

complexity. 
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VI. CASE STUDIES 

 

 

 

 

 

 

 

 

 

 



 

150  
 

This chapter presents numerical results from a case study employing a reduced 1060-

node European network system. The proposed methods and solution strategy are 

further tested on this system.     

6.1. CHAPTER OVERVIEW 

Solving a TEP model of extra-large network systems (the European network, for 

example) under high levels of temporal and uncertainty scopes is prohibitively 

expensive or it can even be impossible. In other words, network planning has to be 

carried out considering the enormous variability of expected system conditions 

(described as operation states or snapshots in the preceding chapters) and the high 

level uncertainty about the evolution of the system in the future (referred to as 

scenarios or storylines), demanding a new dimension of thinking to solve the 

resulting huge problem. 

Here, the techniques proposed in the previous chapters are employed to reduce the 

complexity of the problem and enhance tractability. First, the moment-based 

technique, which has been introduced in Chapter 4 and disseminated to the research 

community in [15], is used to cluster the operational states based on their effects on 

expansion needs. Second, the uncertainty regarding the evolution of the system is 

represented by a number of scenarios (or storylines) unfolding as time passes by. 

The number of storylines is limited, often defined according to expert knowledge. 

For the sake of brevity, three storylines are defined and used in this case study as the 

aim of the analysis in this chapter is to demonstrate the versatility of the proposed 

models, methods and solution strategy. 

6.2. A 1060-NODE EUROPEAN SYSTEM 

The TEP model, uncertainty and variability management methods and the solution 

strategy developed in this thesis have been tested on a reduced European 

transmission system. The analysis of the test results is presented as follows.  

6.2.1. Data Preparation and Assumptions 

In order to run a TEP on a continental scale, a great deal of data is required. For 

instance, hourly series of demand and generator output for each technology should 

be available for each node. In addition, network parameters (including transfer 

capacity and electrical parameters) of both existing and candidate lines should be 

known. However, most of this information is not publicly available for obvious 

reasons. The information and data used in the case study have been extracted from 

various sources (see in the following subsections for further details, and the 

corresponding assumptions that have been made to complement some missing 

information). 

6.2.1.1. Base-case Network 
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Electricity network is a backbone for any TEP optimization process. Apparently, the 

required information about the existing European network is not readily available. 

For this reason, the Enipedia database (which is developed by TUDelft, accessible 

via http://enipedia.tudelft.nl) has been used to generate a European network model, 

used here in the case study.  

 

Fig. 6. 1 Network model aggregated by NUTS-3 regions 

The database contains plenty of information, yet incomplete when it comes to 

electricity networks (especially in countries of the Northern and Eastern Europe, 

where this information related to the networks had to be almost generated from 

scratch). In addition, a lot of details are missing especially at lower resolutions. In 

other words, those lines which carry power over relatively longer distances seem to 

be sufficiently available, but some lines that connect a local electricity demand or 
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generator are largely missing in the database. Because of this, the demand and 

generation capacities are aggregated by the smallest socio-economic regions of 

Europe (officially referred to as NUTS-3). And, a network model have been 

developed considering only the interconnections among these regions (with voltage 

levels higher or equal to 220 and 150 kV for AC and DC lines, respectively). The 

network connections within a NUTS-3 region are simply disregarded regardless of 

the type or voltage level; instead, represented by a single node located at the 

geographical center of the considered region.  

The network model, developed based on the data extracted from Enipedia database, 

is not yet complete because a large number of important links are missing 

(especially in the Balkan and Nordic countries). The missing network links are 

recovered by visually inspecting the network extracted from Enipedia database, and 

painstakingly comparing it with the ENTSO-E’s paper map of European networks. 

Once we know the number and the type of lines interconnecting the NUTS-3 

regions, we can represent those lines with a corresponding equivalent line, whose 

transfer capacity and electrical parameters are approximated as follows. First, 

standard values of transmission line parameters [245] are used for each type and 

voltage level. In some cases, lines connecting two specific areas can be of the same 

type and voltage level but their lengths can be generally different. Therefore, the 

standard values need to be readjusted to account for the effect of distance. For 

instance, the transfer capacity of a line gets substantially lower when the distance 

increases. On the other hand, the impedance of a line increases with distance. With 

this in mind, the maximum transfer capacity of each of the lines connecting two 

areas is determined, the sum of which gives the total (maximum) transfer capacity 

between the two given areas. This can be understood as the transfer capacity of an 

artificial line connecting the two areas. However, because of N-1 security criterion, 

the actual transfer capacity is often far less than the arithmetic sum. As a proxy to 

this criterion, we can deduct the maximum transfer capacity of a line among those 

connecting the two areas, and obtain the effective (net) transfer capacity between 

those areas. And, the corresponding electrical parameters (resistance and reactance, 

in particular) are determined by fitting a curve with known transfer capacities and 

electrical parameters. Figure 6.1 shows the final European network model developed 

in this manner. 

6.2.1.2. Generation Capacity by Technology 

The Enipedia database contains a huge list of generators of different technologies 

associated with their geographical coordinates and relevant tags such as generation 

capacity (in MW), annual MWh-production and emission intensity among others. 

Unfortunately, the database is not complete. Only a fraction of the generators have 

the generation capacity information, prompting to devise other ways to recover the 

required data. For instance, the technology type (if missing in the database) of a 

generator is identified by its emission intensity because each technology has a 
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comparatively unique carbon footprint. In addition, the annual production values are 

mapped to capacities by using regression models to recover the generation 

capacities of the generators. The regression models (see Figure 6.2, for example) are 

technology-specific, and in some cases, are even different for the same technology 

situated in different countries. They are obtained from already known quantities.  

 

Fig. 6. 2  An example of a linear relationship between MWh-production and MW-

generation capacity in nuclear technology. 

When the generation capacities of all generators is determined, obtaining the total 

generation capacity corresponding to each technology in each NUTS-3 areas (nodes) 

is straightforward. Since we know the location of each generator, we can add the 

capacities of the generators of the same technology which are located within the 

same region. This way, we get the total generation capacity for each technology and 

region. 

6.2.1.3. Electricity Demand 

The total demand per country is available in the ENTSO-E website. This aggregate 

demand is redistributed among all nodes in the country in proportion to their 

respective population sizes. For instance, suppose country X has a total electricity 

demand of 100 MW and four NUTS-3 regions, with its population distributed across 

the regions in the following proportion {40%, 30%, 20%, 10%}. For this country, 

the corresponding electricity demand consumed by the population in each region 

would be {40, 30, 20, 10} MW, respectively.  

ENTSO-E also regularly publishes records of hourly electricity demand aggregated 

at country levels. This information is used in order to generate the demand series at 

all the nodes in each country. This is needed because electricity consumption varies 

with geographical locations and weather patterns. For instance, geographically 

dispersed demand regimes, particularly those in different time horizons, are likely to 

be less correlated. Therefore, spatial demand correlations ranging from 0.9 to 1 are 

factored in to account for such spatial variations of electricity demand within each 

country. This can be achieved by generating different time-lagged demand series or 
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using Cholesky factorization to create different demand series with a given 

correlation matrix, whose entries depend on the distance among the nodes. 

Electricity demand is assumed to grow by 1% annually, and this is kept the same for 

all scenarios. Accordingly, the demand growth at the end of the first and second 

stages is10% and 30%, respectively. 

6.2.1.4. Time-Series of Wind and Solar Power Sources 

Solar irradiance and wind speed data are the most useful components in determining 

wind and solar power outputs. Because of this, historical records of solar irradiances 

with different time resolutions are collected from multiple sources such as [246] and 

[247]. Similarly, wind speed data series have been collected from various sources. 

Majority of the meteorological websites in Europe have historical records of wind 

speed, spanning over several years, publicly available. Some missing information is 

complemented from the daily data provided by the European Climate Assessment 

and Dataset (ECA&D), available online on http://eca.knmi.nl/. In some cases, wind 

speed series for different years are used because the inter-annual wind speed 

variations are often very small (less than six percent of the mean [248]). 

It should be noted here that whenever wind speed or solar irradiance information is 

not available for a specific place or country, the corresponding series are either 

generated from approximate probability distributions (given that the corresponding 

mean values are known) or simply assumed to be the same as that of neighboring 

nodes, where this information is already known. This has been the case for some 

nodes in the Balkan and Baltic countries. 

Once the hourly series of wind speed and solar irradiance are known for each node 

in the test system, the corresponding power outputs are determined by plugging in 

these values in the respective power output expressions in [249] and [250]. 

6.2.1.5. Time-Series of Conventional Power Sources  

The conventional power sources considered here are nuclear, gas- and coal-fired 

power plants.  In order to generate the time-series for these technologies, a two–state 

model (online or offline) is used to represent the state of conventional power units 

based on their respective forced outage rates (FOR) , which range from 0.05 to 0.15 

depending on the type of generator. This way, a discrete random binomial 

distribution is employed to generate availability patterns for different generators, 

obtained from their corresponding forced outage rates. 

6.2.1.6. Other Power Sources  

The time series of hydro power plants are generated based on the assumption that 

hydro power outputs are closely related to rainfall patterns (which can be found in 

national meteorological sites). In this manner, the highest power output from 

hydropower plants is assumed to occur at the same time with the highest rainfall, 

http://eca.knmi.nl/
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and for lower rainfalls, production is reduced proportionally and kept at its 

minimum during dry seasons (i.e. when there is no rainfall). 

Power plants that generate electricity from municipal solid waste, biomass and 

geothermal at each node (if any) are assumed to be available year-round. 

6.2.2. Scenario Definitions 

The process of defining scenarios is in itself a very challenging task. A large number 

of scenarios are often required to fully explore the plausible future states. For the 

sake of simplicity, only three scenarios are used in the EU-1060 node system. These 

scenarios are characterized by large-scale power production from either wind in the 

Northern Europe, where a large portion comes from the North Sea area, distributed  

 

Fig. 6. 3 Hotspots for distributed solar (orange circles) and wind (blue circles) 

generation 
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renewable energy (mainly, wind and solar), or solar resources in the MENA and 

Southern Europe. From now on, the above scenarios are referred as North-Wind, 

Distributed-RES, and South-Solar, respectively.  

6.2.2.1. North-Wind Scenario 

This scenario can be considered as a pro-wind scenario. By the end of the first stage, 

a 35 GW of wind power is assumed to be generated from the North Sea, West Coast 

and Baltic Sea areas. This amount is injected at 88 strongly connected nodes 

bordering these areas. It is distributed among the nodes in proportion to their 

corresponding average wind speeds. Another 15 GW of wind power is distributed 

among all the nodes in the system proportionally to the primary energy source (i.e. 

average wind speed) and total area suitable for wind turbine installations in each 

region. Hence, the total wind capacity in the first stage is 50 GW. 

In the second stage, wind power with a total capacity of 200 GW is expected to be 

installed, 140 GW of which comes from the North Sea, West Coast and Baltic Sea 

areas. As in the first stage, this is assumed to be injected at the same nodes (i.e. the 

88 strongly connected nodes bordering these areas), distributed among the nodes in 

the same manner. The remaining 60 GW balance is distributed among all the nodes 

in the system in proportion to the average wind speed and total area suitable for 

wind turbine installations in each region. 

6.2.2.2. Distributed-RES Scenario 

The amount of generation capacities is assumed to be added in the first and the 

second stages is the same as in the North-Wind scenario. However, in this scenario, 

large-scale wind or solar installations is limited; instead, distributed generation of 

wind and solar power is favored. It is assumed that 30% (i.e. 15 GW and 60 GW in 

the first and the second stages, respectively) of the total power comes from a total of 

53 sunny and 125 windy regions identified across Europe, as in Figure 6.3. Equal 

amount of the 30% power is generated by wind and solar sources. Again, 

distribution of the installed wind or solar among each set of nodes is made in 

proportion to the primary energy resource (either wind speed or solar radiation), and 

suitable areas for wind turbine or solar PV installations. The remaining balance (i.e. 

70%) is redistributed among all nodes proportionally to the existing installed wind 

or solar power capacity at each node. 

6.2.2.3. South-Solar Scenario 

This scenario is mainly characterized by large-scale solar power imports from 

MENA. The total amount of installed capacity is the same as in the above two 

scenarios (i.e. 50 and 200 GW in the first and the second stages), of which 70% is to 

be imported from MENA via 10 nodes, selected based on proximity and 

connectivity strength criteria. The remaining balance is redistributed among all 

nodes according to existing installed solar power at each node. 
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6.2.3. Candidate Lines for Expansion 

The candidate selection involves selecting corridors to be possibly reinforced, 

technology and its cost structure.  

6.2.3.1. Identifying Corridors to be Reinforced 

It is a daunting challenge to create an initial candidate pool for expansion at 

continental or inter-continental level. This is because, on one hand, from the 

transmission investment perspective, there are several technological options, which 

make the problem even more difficult. On the other hand, there is generally a lack of 

expert knowledge on the set of potential corridors to be investigated for future 

investments in such a big system. Because of this, some heuristic candidate selection 

methods have been used such as the copper sheet method in [241] and methods in 

[241] and [243] which makes use of marginal prices as economic indicators for the 

selection process of candidates. An extended and automatic version of the marginal 

prices –based candidate selection methods in [241] and [243]  is reported in [242]. 

Yet, it is likely that such methods eventually end up with a huge list because, in such 

a big system, there can be many possibilities which satisfy the conditions for the 

selection. Authors in [242] propose a mechanism for reducing the large list of 

candidates initially discovered.  

In any case, a sufficiently large set of candidates (potentially encompassing some 

existing and new corridors) are required for TEP optimization. For the sake of 

simplicity, each corridor is considered as a candidate for reinforcement, resulting in 

a total of 1654 candidate lines in existing corridors (which comprise AC and DC 

connections). In addition, ten new HVDC submarine connections (in new corridors) 

are included in the initial candidate list, bringing the total number in the initial 

candidate list to 1664. 

6.2.3.2. Cable-Overhead Proportion, Selecting Technology and Construction 

Cost 

A recent study shows that underground cables with 315 kV higher voltage levels 

constitute less than 5% of the total circuit length in Europe [251]. However, there is 

a general consensus that this will significantly change in the future (mainly caused 

by the lack of right of ways for overhead lines and increasing urbanization). Because 

of this, it is assumed that one fifth of a given line being added to the network in the 

first stage will be underground, and a 50% of new line additions is assumed by the 

end of the second stage. The total installation cost of a line is calculated by taking 

these assumptions into account. It should be noted here that these assumptions do 

not take effect on undersea power transmissions, where it is assumed that only 

HVDC cables are the only viable options (particularly, for distances higher than  

50 km).  
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Nowadays, there are a number of proven transmission technology options. In this 

regard, selecting the most economically viable option is in itself a separate problem. 

In this work, only a selected number of technologies is considered. Of a special 

importance here is the DC technology. The share of DC connections (in terms of 

length) in modern power system networks is very small. This will, however, 

significantly change in the future because DC lines alleviate some of the technical 

limitations of AC lines [245]. For instance, it is generally accepted that HVDC is 

more attractive for bulk power transmission over longer distances than HVAC. 

Concerning this, different references report different break-even distance ranges 

between HVDC and HVAC connections, mostly beyond 100 km. However, it also 

depends on the amount of power to be transported. The break-even distance is 

usually about 50 km for submarine cables and 400 km (in some cases, as low as 200 

km) for overhead lines. The cost structure of different transmission technologies 

given in [245] are used for the calculations and analyses in this dissertation. 

To select an appropriate transmission technology in a given corridor, we have set a 

criteria based on the value of an investment decision variable after the first phase of 

the solution process, size of excess flows in that corridor (i.e. higher than the 

maximum capacity), and its length. This is summarized in Table 6.1 below. The 

terminal costs of all HVDC lines is assumed to be 100 k€/MW. 

Table 6. 1 Transmission technology selection 

 Investment 

decision 

variable after 

PHASE I 

Extra flows in a 

corridor after  

PHASE I (MW) 

Distance of 

corridor (km) 

Transmission 

technology 

Cost 

(k€/km) 

1 4  3000
 

250  
600kV HVDC 

bipolar 

900*, 

3400
§
 

2 1 and 4  
3000 and 

2000
 250  

500kV HVDC 

bipolar 

840*, 

2860
§
 

3 1  
2000 and 

1000  
 

250 and 

150  

500kV HVAC 

double circuit 

1570*; 

7860
§
 

4 1  1000 and 500  
 

150  
400kV HVAC 

double circuit 

800*; 

3750
§
 

5 1  3000
 

150  
400kV HVAC 

Up to 4 circuits 

800*; 

3750
§
 

6 1  500
 

150  
400kV HVAC 

double circuit 

800*; 

3750
§
 

* Overhead line ; 
§
 Underground or undersea cable able 

6.3. OPTIMIZATION RESULTS AND DISCUSSION 

It should be noted that the optimization is carried out by a computing machine with 

Intel Xeon E5520 at 2.27 GHz frequency and with 32 GB RAM memory. First, 
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using the moment-based clustering technique in [15], a total of 8760 operation states 

(hourly snapshots) are reduced into 60 representative snapshots. Accordingly, the 

representative snapshots for each spot along the scenario tree are obtained, as shown 

in Figure 6.1. 

 

Fig. 6. 4 First stage expansion results (shown in bold) 

With these snapshots, the proposed solution methodology is tested on this system. 

The successive optimization process described earlier, is run starting with 1654 

elements in the ICL. Consequently, in the first phase, which involves fully 

deterministic optimization based on the hybrid network model with continuous 

investment variables, the number of candidate lines is reduced from 1654 to 687. 

Moreover, this is further reduced to 640 using MODEL II of the second phase. With 

this reduced set of candidates and the ten proposed lines across new corridors as 

inputs (i.e. a total of 650 candidate lines), the two-stage stochastic discrete 

optimization (i.e. MODEL III) is run, and the final investments are obtained. It 

should be noted here that the same number of candidates are used in both stages. 
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The solution time (i.e. the total CPU time that the whole optimization process took) 

has been about 25 hours, which is rather small for such a complex problem. An 

attempt to run the Brute-force TEP optimization problem (i.e. without the 

implementation of the search space reduction methodology) was not successful due 

to computational limitations.  

Regarding the resulting investment decisions, a total number of 331 are built in the 

first stage, approximately 11% of which are HVDC lines. This is shown in Figure 

6.4. As mentioned earlier, these investments are considered to be good enough for 

all three scenarios. It is interesting to see that most of the biggest investments in the 

first stage are made across or close to the borders of the European countries, where 

the main bottlenecks exist. The major corridors with investments in the first stage 

are shown in Table 6.2.  

Table 6. 2 Major Corridors of investment in the first stage 

From 

NUTS-3 

To 

NUTS-3 Type 

From 

NUTS-3 

To NUTS-

3 Type 

FR615 ES212 AC ITE41 ITE43 AC 

FR302 UKJ42 DC UKH23 UKI21 AC 

ITC44 ITC47 AC CH033 CH040 AC 

ITE43 ITE44 AC FR714 FR713 AC 

ES512 FR815 DC ITF61 ITF63 AC 

CH056 ITC44 AC CH021 CH023 AC 

FR422 DE139 AC CH011 CH012 AC 

ITG25 ITE44 DC DEA12 DEA17 AC 

FR811 FR815 AC NL335 UKJ41 DC 

FR811 FR813 AC CH023 CH033 AC 

CH055 CH056 AC FR615 FR623 AC 

UKH32 UKJ42 AC DE13A DE139 AC 

GR211 ITF45 DC ITG27 ITG25 AC 

FR812 FR813 AC FR532 FR533 AC 

ITF63 ITF65 AC DEA26 DEA27 AC 

ITE1A ITE16 AC FR533 FR512 AC 

CH011 CH013 AC ITE15 ITE14 AC 

ITE14 ITD55 AC GR231 GR211 AC 

GR241 GR142 AC DEA26 DEA29 AC 

ITF65 ITG13 AC ITF51 ITF61 AC 

ES413 ES414 AC ITD55 ITC4B AC 

GR133 GR142 AC DEF05 NOR_SEA DC 

FR422 DE132 AC DE112 DE143 AC 

ES211 ES212 AC DE949 NOR_SEA DC 

ITC47 ITC4B AC ITG17 ITG18 AC 
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ITE41 ITE1A AC DEF03 SE224 DC 

CH013 FR711 AC DE137 DE143 AC 

FR613 FR615 AC DEA17 DEA31 AC 

ES511 ES512 AC ES612 MRCO AC 

FR532 FR612 AC ITE1A ITE43 AC 

FR612 FR613 AC DE136 DE137 AC 

ITG13 ITG17 AC DEF0F DEF08 AC 

DEA29 NL422 AC DEF08 DEF03 AC 

CH012 CH021 AC ES212 ES213 AC 

UKH32 UKI21 AC CH040 CH055 AC 

FR711 FR714 AC ES413 ES418 AC 

UKH23 UKH22 AC PL631 SE221 DC 

 

 

Fig. 6. 5 Second stage expansions in the North-Wind scenario (shown in bold) 
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Likewise, the investments corresponding to each scenario in the second stage are 

shown in Figures 6.5—6.7. The numbers of investments in North-Wind, 

Distributed-RES and South-Solar scenarios are 431, 349 and 423, respectively. As 

expected, the number in each scenario here is a lot higher than in the first stage, 

especially in the North-Wind and South-Solar scenario. This is rather expected 

because large-scale renewable development prospects inevitably require huge 

network investments. On the other hand, one can observe that, with distributed 

generation, line investment requirements are much lower than in the case of highly 

dispersed large-scale renewable generations.  

 

Fig. 6. 6 Second stage decisions in the Distributed-RES scenario (shown in bold) 

Another interesting observation here that the scenarios have a lot of investment 

decisions in common. The North-Wind and South-Solar scenarios, in particular, 

seem to use the same corridors in the central Europe for transporting power either 

south or north direction, respectively. This is contrary to the perception that different 

scenarios result completely different investment strategies. In fact, there are some 
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differences in the investment decisions of both scenarios. Especially in the Southern 

and Northern Europe, where the power for each comes from, there seems to be a 

shift in investments from north to south or vice versa. 

Worth mentioning here is the substantial reduction in computation time. This is as a 

result of reducing the combinatorial solution search space from 2
1654

 to 2
640

, which 

is indeed significant from a computational point of view. 

The total investment costs in the first stage amount to about € 12 billions. The result 

of such an investment is an average system cost reduction of 29%. 

 

Fig. 6. 7 Second stage decisions in South-Solar scenario (in bold) 

6.4. SUMMARY 

A realistic European network system has been employed to test the methods, the 

strategies and the TEP model developed in this thesis. It is to be understood that 

TEP at a continental level is a very dimensionally huge and mathematically complex 

combinatorial problem which makes it difficult to solve by currently available 
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computational machines. Obtaining optimal expansion solutions within a reasonable 

computation time is vital. To enhance tractability, the solution strategy (described in 

Chapter 5) have been employed to effectively reduce the combinatorial solution 

search space, as a result, leading to a faster computation without significantly 

compromising the optimality of the solution. In addition, the clustering 

methodology proposed in this thesis (see in Chapter 4) is used to dramatically 

reduce the operational states. Generally, test results show the effectiveness of the 

proposed solution strategy and methods for managing uncertainty and variability in 

considerably reducing the computational complexity and enhancing the tractability 

of the TEP problem of large-scale network systems.  
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This final chapter concludes the research carried out in this dissertation by 

summarizing its main contributions point-by-point, and drawing some conclusions 

from the case studies carried out throughout this thesis. In addition, this thesis 

points out the limitations of the developed approaches and suggests possible 

extensions as future work. 

7.1. MAIN CONTRIBUTIONS 

The contributions of this thesis include methodological and modeling aspects of the 

TEP problem. The main contributions are briefly summarized as bullet points 

below. It should however be noted that this summary does not include the 

contributions associated with the improvements and the modifications made to 

existing mathematical modeling techniques of TEP formulations. These are clearly 

stated in the body of this thesis. 

 From a modeling perspective,  

o A new TEP model has been proposed for a long-term planning of 

transmission infrastructures under uncertainty with a multi-stage 

decision framework and considering a high level of renewable 

generation sources. One of the outstanding features of the developed 

TEP model is its ability to capture the long-term impact of network 

investments on system costs. This has been partly published in [15] 

as a contribution to the scientific research. 

o Regarding the significant impact that network losses have on TEP 

solutions (although losses are neglected in most TEP studies because 

of computational limitations), new linearized losses models have 

been proposed, some of which strike the right balance between 

accuracy and computational effort. Particularly, this is very critical in 

the context of medium to long-term TEP in large-scale power 

systems that include a significant presence of variable energy 

sources. An extensive analysis on this issue has been published in 

[13]. 

 From a methodological perspective,  

o A new clustering methodology is introduced to effectively and 

efficiently handle uncertainty and variability related to the problem at 

hand. This contribution has been published in [14]. 

o The entire TEP problem is formulated as a stochastic mixed-integer 

linear programming optimization, an exact solution method, for 

which efficient solvers are available, and an optimal solution may be 

found in a reasonable computing time. 

o In order to significantly reduce the combinatorial solution search 

space, a practical and robust heuristic solution strategy has been 

devised. This approach is based in decomposing the problem into 

successive optimization phases, each one reducing the search space 

for the next phase as the level of detail of the models is increased. 
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 The extensive experimental and theoretical analysis made throughout the 

thesis. 

o Standard test systems with 6-, 24- and 118-buses have been used to 

rigorously analyze several existing and new network models in terms 

of accuracy and computational burden. The overall goal of such a 

numerical analysis has been to seek the right network model (flows, 

in particular) in the context of large-scale TEP problems. 

o A number of existing losses models have been also broadly reviewed, 

and compared with new ones in terms of computational performance 

(specifically, accuracy and computaitonal burden). To this end, 

small-, medium- and large-scale network systems have been 

employed. The main purpose of the analysis has been to show the 

merits and the demerits of each losses model, and identify the one 

that represents losses in a reasonably accurate fashion without 

significantly adding complexity to a TEP problem of large-scale 

network instances.   

o To test and validate the proposed snapshot-clustering technique, a 

standard IEEE 24-bus network system has been used. The 

geographical coordinates of its nodes have been estimated using line 

impedances. 

o The efficacy of the heuristic solution strategy have been 

experimentally verified by carrying out case studies consisting of 

Garver’s 6-bus and IEEE 300-bus test systems.  

o A 1060-node European network system has been developed as a case 

study, and the entire TEP tool has been experimentally verified. 

7.2. CONCLUSIONS 

The TEP problem addressed in this work is quite complex and not tractable in a direct 

and brute-force way, because: 

 It is a large-scale problem – thousands of buses, thousands of candidate 

reinforcements or new investments, hundreds of required investments. 

 It is a long-term problem – for instance 20 or more years ahead. 

 It is subject to many sources of uncertainty – demand, generation 

investments, operational uncertainty, renewable generation sources. 

In this context, the main objective of this research has been to develop mathematical 

optimization models, uncertainty and variability management methods, and solution 

strategies that support the complex decision-making process of such a problem. The 

result is a new TEP model with the following outstanding features: 

 It is a MILP optimization model, based on an improved “DC” network model, 

for which efficient off-the-shelf solvers are available. 
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 It applies stochastic programming to capture the uncertainty and/or variability 

of the many and diverse parameters related to a long-term TEP problem with 

renewable generation. 

 It includes a weighted sum of relevant costs such as emission, operation and 

maintenance, reliability and investment costs as an objective function. 

 It provides a detailed description of all cost terms during and after the 

planning horizon, so that the user may have a useful feedback about cost 

drivers and sensitivities. 

 Its formulation is based on a two-period planning framework which helps to 

combine robust short-term decisions with alternative long-term scenarios, 

reflecting the adaptive nature of real-life planning. 

 It provides adequate and robust solutions in a reasonable computing time, by 

means of several modeling and algorithmic solutions that have been tested 

both separately and within the integrated tool 

Those modeling decisions and techniques that have made the original problem 

tractable have been already described in the document, and the most relevant of them 

have been also summarized in the contributions section. The main conclusions 

derived from each one of them are included below. 

Structure of the problem as a succession of optimization phases 

This is a common practice in engineering design –from conceptual to detailed design 

phases- and it has proven to be very efficient in this case. Depending on the size and 

complexity of the problem, the user may define the most promising structure. There 

are plenty of modeling options that can be selected in order to make every 

optimization phase feasible and useful, increasing the level of accuracy as the space of 

search is reduced: network models, number of candidates to be considered, losses 

models, number of storylines for long-term uncertainty, and number of operational 

states for short-term uncertainty. 

Two-stage time scope 

This seems the minimum decision-making structure that reflects real-life planning in 

order to model a robust and adaptive behavior. A short-term decision stage at about 

the 5
th
 year is suggested along with a long-term evaluation stage at –for instance- the 

20
th

 year (at the end of the storylines). On the other hand, implementing more stages 

increases the size and the complexity of the problem, underming its tractability (at 

least for large-scale systems). 

Two-level uncertainty handling 

The representation of uncertainty at two levels fits well into the global strategy. 

Storylines, proposed by the user of the tool in a “what-if” fashion, represent 

alternative long-term evolutions for economic growth, generation investment policies, 

fuel prices, and so on. Operational states (or snapshots) represent hourly-based 
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uncertainty factors used to evaluate the performance of the system at a particular year. 

They may include demand, renewable generation, failures, and other operational 

events (with their geographical distribution) that can be generated by stochastic 

processes based in the characteristics of the system.  

Clustering of operational states (snapshots) 

One of the most relevant contributions of this work is an original method of clustering 

that reduces dramatically the number of snapshots needed to capture the operational 

uncertainty factors. As a particular conclusion, this new clustering technique is a key 

issue to make the whole approach consistent and feasible. As a general conclusion, the 

efficiency of clustering techniques depends a lot on the selection of adequate 

classification variables, and those variables should be directly related to the purpose of 

the samples to be clustered  – in this case, representation of line overloads and losses 

patterns in the TEP problem. 

Network models 

Based on the comprehensive analysis carried out in this thesis, the DCTEP or its 

“equivalent” formulations, relaxed and improved DCTEP models, are the most 

appropriae models that can be extended to TEP problems of a significant network 

size. When network losses are adequately accounted for in such models (especially 

the DCTEP), a reasonably accurate solution is guaranteed without a significant 

increase in computational requirement. Despite its interesting features, the linearized 

ACTEP model is too complex to be applied in large-scale TEP problems.  

Although the simplifying assumptions in hybrid and pipeline TEP models lead to 

mathematically less complex and computationally more efficient optimization models, 

expansion decisions obtained by such models can be largely understated. In other 

words, the use of hybrid and pipeline models in TEP studies can often result in 

underinvestment. In addition,  “reverse” flows  (i.e. flows in a direction opposite to 

that determined by the law of physics) can be computed in certain circumstances. In 

power systems, physical laws dictate that power always flows from high potential to 

low potential. In the case of DC models, this should be from nodes with high voltage 

angles to those with low voltage angles. However, when a hybrid or pipeline network 

model is embedded in a network investment model, flows in newly added lines can be 

in a direction opposite to that dictated by the physical laws that govern power flows in 

AC systems. 

Losses models 

Transmission losses influence network investment decisions, often resulting in a 

higher number of network investments. Despite this fact, transmission losses are often 

neglected in TEP studies or represented with overly simplified losses models mainly 

because of computational reasons. Most of the existing losses models, mainly 

inequality-based ones which form an unbounded feasible space, lead to the 
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computation of “artificially” high losses at the expense of network invetments. This is 

especially very common in network systems that have to be expanded in the long-term 

to accomodate large-scale renewable integration because the original network systems 

are likely to be heavily congested. In such circumstances, if inaccurate losses models 

are used, instead of investing in congested corridors, losses can be artificially 

increased in adjacent links to temporarily “relieve” the congestion and “allow” power 

transfer from generation nodes to sinks. In the presence of very cheap generation 

sources (i.e. renewables whose marginal cost of energy production is zero or close to 

zero), the marginal cost of increasing losses is nearly zero. Such unrealistic solution 

can be avoided by discrete modeling of losses (i.e. by introducing a large number of 

additional binary variables in the losses linearization process). However, such discrete 

variables add complexity to the problem, significantly undermining its tractability. 

The use of SOS2 variables in modeling losses avoids the computation of artificial 

losses without significantly increasing the computational load.  

The optimization problem and tool 

The nature of the problem is a stochastic MILP optimization, for which there are a 

handful of efficient off-the-shelf solvers such as CPLEX™ which generally have the 

capability to find globally optimal solution for such problems in polynomial times. 

Alternatively, such solvers can provide a measure to the optimal solution in the event 

a user-defined solver parameters, such as the simulation time limit, are imposed.  

As the problem instance gets large, it requires unacceptably large amount of 

computional effort (and time). In other words, the computational time highly depends 

on the size of the problem, which is mainly related to the number of equations, 

discrete and continuous variables. Keeping other parameters constant, the numbers of 

equations and variables increase linearly with the numbers of storylines, snapshots, 

new and existing lines, and nodes. The marginal impact of the aforementioned model 

parameters on the size of the problem (i.e. the numbers of equations and variables) is 

in a decreasing order. In other words, the number of storylines have the highest impact 

on the size of the optimization problem, which is followed by the number of 

snapshots, and so on. Because of this, the numbers of snapshots and storylines should 

be substantially reduced (limited) in order to ensure problem tractability.  

Apart from the size of the problem, some mathematical modeling aspects also 

influence the computational effort. A very relevant issue here is related to the big-M 

parameters used in the formulation. Improper selection of these parameters in some 

cases create numerical difficuluties, and undesirably long simulation times. It is 

generally recommended that big-M formulations be avoided. However, if this is not 

possible, their values should be carefully selected such that the problem is sufficiently 

tight.  

The results 



 

171  
 

The last, but maybe the most important conclusion, is that the proposed strategies, 

models and tools really work. They have been tested on small-, medium- and large-

scale network systems. In addition, to further validate this work, an aggregated 

1060-node European network system has been employed as a case study considering 

multiple RES development scenarios. Generally, numerical results show the 

versatility of the proposed TEP model. Moreover, the proposed methods and 

solution strategy are very effective in facilitating the solution process, and result in a 

significant reduction in computational effort while fairly maintaining optimality of 

the expansion solutions. 

7.3. DIRECTIONS FOR FUTURE WORKS 

The research work presented in this thesis has certain limitations, most of which can 

be translated into future directions of research. The methods, models and strategies 

developed in this thesis can be further extended or improved to support future 

works. Some of the shortcomings are listed below.  

Comparing the Proposed Clustering Method with Other Techniques: The thesis 

has demonstrated that clustering based on effects (using the proposed optical pattern 

based method) leads to a substantially reduced number of clusters compared to 

ordinary clustering algorithms that work on the causes instead of the effects. Such 

comparison can be extended to include other state-of-the-art clustering techniques. 

Information Extraction from Moments of Inertia: As a further extention to the 

moments technique, the eigenvalues of the moments of inertia can be further 

analyzed to see if some relevant information can be extracted that can point to the 

need for corridor investments. 

Extending the Proposed Solution Strategy: As in any heuristic technique, relevant 

information can, in some cases, be lost in the solution process.  Some candidates 

that would otherwise be economical for the system may be discarded in the early 

phases of the solution strategy. Developing some mechanisms to detect and reduce 

the information loss can be very interesting for the future work. In addition, 

comparing the proposed strategy with other candidate selection algorithms that have 

been recently proposed by other researchers is an important issue that can be 

addressed in the future. 

Exploring Other Classification Variables: Overloads and losses patterns in the 

system have been identified as appropriate variables for classifying the operational 

snapshots. These variables are very much related to the network investment needs. 

However, further exploration of relevant variables such as unserved power at each 

node and others may be interesting. 

Transmission Technology Selection: There are several mature transmission 

technologies each having different physical and economic characteristics. In 

addition, transmission lines have very long economic lifetimes, and the TEP 
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problem is characterized by strong economies of scale. From the AC context, for 

instance, the cost per MW per km decreases with increasing voltage level. This, in 

the current work, is handled by associating a binary variable for each technology. 

However, this considerably increases the complexity of the problem, therefore 

stressing computational requirements. From this perspective, it would be useful to 

implement a methodology (possibly heuristic) that can effectively determine which 

transmission technology to consider for investment and which to discard, at the 

same time reflecting the uncertainty in the maturity level –and so the future cost - of 

the transmission technology.  

TEP from the Smart-grid Context: The present work focuses mainly on the 

development of models, methods and tools to handle wide-area and long-term grid 

expansion planning under high penetration level of variable energy sources. It does 

not include the effects of smart-grid technologies, large-scale deferrable loads, 

demand side management, energy storage technologies (centralized and/or 

distributed) and others on the network investment needs as well as on the system. 

These technologies, along with substantial network expansions, are expected to be 

deployed in the system to support large-scale integration of variable energy sources, 

minimize the impact of high level variability and unpredictability of such energy 

sources, and maintain system integrity, stability and power quality. Hence, this line 

of research can be very interesting for future works.  

Integrated approach: The coordination of different sectors of energy infrastructure 

expansion and developments is becoming increasingly important. Because of this, 

developing a multi-sectoral optimization problem is of paramount importance. It 

would be interesting to analyze this from the perspectives of coordinating different 

forms of energy consumption, improving overall system efficiency, enhancing 

energy security, optimally integrating and exploiting RESs, reducing GHGs, etc.  
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APPENDIX A: DERIVATION OF THE FLOW-BASED ACTIVE AND REACTIVE POWER 

LOSSES 

The derivations related to the losses equations in (40) and (41) are provided here. 

Squaring both sides of the flow equations in (23) and (24) and dividing each by 

    
 , we get: 

     

    
               

 

           
 

                                          
  

              (A.1) 

     

    
               

 

           
 

                                          
  

              (A.2) 

Since the variables   ,     and     are very small, the second order terms (i.e. 

bilinear products of these variables) can be regarded to be close to zero. Hence, the 

first and the second terms in (A.1) and (A.2) can be neglected, leading to the 

following expressions, respectively. 

     

    
                    (A.3) 

     

    
                    (A.4) 

Multiplying both sides of (A.3) and (A.4) by    and adding both sides gives: 

    
  

    
 

 

    
  

    
 

 

                             (A.5) 

After rearranging Equation (A.5), we get: 

     
    

       
                

     

  
       (A.6) 

One can easily verify that    
     

  
      , reducing Equation (A.6) to: 

     
    

       
                                    (A.7) 

Recall that the right hand side of (A.7) corresponds to the active power losses 

expression in (40), which proves the derivation. The flow-based reactive power 

losses in (41) are derived in a similar way. Multiplying both sides of Equations 

(A.3) and (A.4) by    instead of   , adding both sides and rearranging the resulting 

equation leads to: 

     
    

       
         

   
                      (A.8) 

Note that, in Equation (A.8),                      . Hence, the equation 

reduces to:  



 

175  
 

     
    

       
         

   
      (A.9) 

And, observe that the right hand side of Equation (A.9) is equal to the reactive 

losses expression in (41). 
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APPENDIX B: MULTI-LOAD LEVEL TEP MODELS 

For quick reference, this section presents compact forms of the lossy TEP models 

described in Chapter 3. The objective function in Equation (B.1) is common for all 

models. 
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* This model can also be formulated from models other than the DCTEP. 
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APPENDIX C: INPUT DATA 

The data for the test systems used in the analysis throughout the thesis are provided 

here. Base power in all cases is 100 MVA. 

C. 1. Garver’s 6-bus System 

Table C. 1 Garver’s 6-bus data 

Generator data 

Node 

PGmax 

(MW) 

PGmin 

(MW) 

QGmax 

(MVAr) 

QGmin 

(MVAr) 

Marginal cost 

(€/MWh) 

1 150 0 65 -65 30 

3 360 0 150 -150 40 

6 600 0 200 -200 5 

      Load data 

Node PDmax (MW) QDmax (MW) 

  1 80 16 

   2 240 48 

   3 40 8 

   4 160 32 

   5 240 48 

   6 0 0 

   

      Existing lines data 

    From To r (pu) x (pu) Smax (MVA) 

1 2 0.1 0.4 100 

 1 4 0.15 0.6 80 

 1 5 0.05 0.2 100 

 2 3 0.05 0.2 100 

 2 4 0.1 0.4 100 

 3 5 0.05 0.2 100 

 

      Candidate lines data 

   

From To r (pu) x (pu) 

Smax 

(MVA) IC (M€) 

1 2 0.1 0.4 100 40 

1 4 0.15 0.6 80 60 

1 5 0.05 0.2 100 20 

2 4 0.1 0.4 100 40 

1 3 0.09 0.38 100 38 

1 6 0.17 0.68 70 68 

2 5 0.08 0.31 100 31 

2 6 0.08 0.3 100 3 
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2 3 0.05 0.2 100 20 

3 4 0.15 0.59 82 59 

3 5 0.05 0.2 100 20 

3 6 0.12 0.48 100 48 

4 5 0.16 0.63 75 63 

4 6 0.08 0.3 100 30 

5 6 0.15 0.61 78 61 

 

C. 2. IEEE 24-bus System (Base power 100 MVA) 
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Fig. C. 1 Single line diagram of IEEE 24-bus test system 
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Table C. 2 IEEE 24-bus data 

Generator data 

   

Node PGmax (MW) PGmin (MW) 

QGmax 

(MVAr) 

QGmin 

(MVAr) 

Marginal cost 

(€/MWh) 

1 192 62.4 80 -80 16 

2 192 62.4 80 -80 16 

7 300 75 180 -180 43 

13 591 207 240 -240 48 

15 215 66.3 110 -110 58 

16 155 54.3 80 -80 12 

18 400 100 200 -200 4 

21 400 100 200 -200 4 

22 300 60 96 -96 0 

23 660 248.6 310 -310 12 

4 1500 0 0 0 0 

17 1000 0 0 0 0 

      Demand data 

   Node PDmax (MW) QDmax (MW) 

  1 108 22 

   2 97 20 

   3 180 37 

   4 74 15 

   5 71 14 

   6 136 28 

   7 125 25 

   8 171 35 

   9 175 36 

   10 195 40 

   13 265 54 

   14 194 39 

   15 317 64 

   16 100 20 

   18 333 68 

   19 181 37 

   20 128 26 

    

Existing lines data 

From To r (pu) x (pu) Smax (MVA)  

1 2 0.0026 0.0139 175  

1 3 0.0546 0.2112 175  

1 5 0.0218 0.0845 175  
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2 4 0.0328 0.1267 175  

2 6 0.0497 0.192 175  

3 9 0.0308 0.119 175  

3 24 0.0023 0.0839 400  

4 9 0.0268 0.1037 175  

5 10 0.0228 0.0883 175  

6 10 0.0139 0.0605 175  

7 8 0.0159 0.0614 175  

8 9 0.0427 0.1651 175  

8 10 0.0427 0.1651 175  

9 11 0.0023 0.0839 400  

9 12 0.0023 0.0839 400  

10 11 0.0023 0.0839 400  

10 12 0.0023 0.0839 400  

11 13 0.0061 0.0476 500  

11 14 0.0054 0.0418 500  

12 13 0.0061 0.0476 500  

12 23 0.0124 0.0966 500  

13 23 0.0111 0.0865 500  

14 16 0.005 0.0389 500  

15 16 0.0022 0.0173 500  

15 21 0.0027 0.029 1000  

15 24 0.0067 0.0519 500  

16 17 0.0033 0.0259 500  

16 19 0.003 0.0231 500  

17 18 0.0018 0.0144 500  

17 22 0.0135 0.1053 500  

18 21 0.0016 0.0129 1000  

19 20 0.0025 0.0198 1000  

20 23 0.0014 0.0108 1000  

21 22 0.0087 0.0678 500  

Candidate lines data 

From To r (pu) x (pu) Smax (MVA) IC (M€) 

1 2 0.0026 0.0139 175 0.03 

1 3 0.0546 0.2112 175 0.55 

1 5 0.0218 0.0845 175 0.22 

2 4 0.0328 0.1267 175 0.33 

2 6 0.0497 0.192 175 0.5 

3 9 0.0308 0.119 175 0.31 

3 24 0.0023 0.0839 400 0.2 

4 9 0.0268 0.1037 175 0.27 

5 10 0.0228 0.0883 175 0.23 
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6 10 0.0139 0.0605 175 0.16 

7 8 0.0159 0.0614 175 0.16 

8 9 0.0427 0.1651 175 0.43 

8 10 0.0427 0.1651 175 0.43 

9 11 0.0023 0.0839 400 0.2 

9 12 0.0023 0.0839 400 0.2 

10 11 0.0023 0.0839 400 0.2 

10 12 0.0023 0.0839 400 0.2 

11 13 0.0061 0.0476 500 0.33 

11 14 0.0054 0.0418 500 0.29 

12 13 0.0061 0.0476 500 0.33 

12 23 0.0124 0.0966 500 0.67 

13 23 0.0111 0.0865 500 0.6 

14 16 0.005 0.0389 500 0.27 

15 16 0.0022 0.0173 500 0.12 

15 21 0.0027 0.029 1000 0.68 

15 24 0.0067 0.0519 500 0.36 

16 17 0.0033 0.0259 500 0.18 

16 19 0.003 0.0231 500 0.16 

17 18 0.0018 0.0144 500 0.1 

17 22 0.0135 0.1053 500 0.73 

18 21 0.0016 0.0129 1000 0.36 

19 20 0.0025 0.0198 1000 0.55 

20 23 0.0014 0.0108 1000 0.3 

21 22 0.0087 0.0678 500 0.47 

1 8 0.0348 0.1344 175 0.35 

2 8 0.0328 0.1267 175 0.33 

6 7 0.0497 0.192 175 0.5 

13 14 0.0057 0.0447 500 0.62 

14 23 0.008 0.062 500 0.86 

16 23 0.0105 0.0822 500 1.14 

19 23 0.0078 0.0606 500 0.84 

 

C. 3. IEEE 118-bus System (Base power 100 MVA) 
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Fig. C. 2 Single line diagram of IEEE 118-bus test system 
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Table C. 3 IEEE 118-bus network data 

Network data 

From To r (pu) x (pu) Smax (MVA) IC (M€) 

1 2 0.0303 0.0999 115 18 

1 3 0.0129 0.0424 115 7.6 

4 5 0.0018 0.008 400 1.8 

3 5 0.0241 0.108 115 16.2 

5 6 0.0119 0.054 115 9.7 

6 7 0.0046 0.0208 115 4.7 

8 9 0.0024 0.0305 400 5.5 

8 5 0 0.0267 400 6 

9 10 0.0026 0.0322 400 5.8 

4 11 0.0209 0.0688 115 12.4 

5 11 0.0203 0.0682 115 12.3 

11 12 0.006 0.0196 115 4.4 

2 12 0.0187 0.0616 115 11.1 

3 12 0.0484 0.16 115 24 

7 12 0.0086 0.034 115 6.1 

11 13 0.0223 0.0731 115 13.2 

12 14 0.0215 0.0707 115 12.7 

13 15 0.0744 0.2444 115 36.7 

14 15 0.0595 0.195 115 29.3 

12 16 0.0212 0.0834 115 15 

15 17 0.0132 0.0437 400 7.9 

16 17 0.0454 0.1801 115 27 

17 18 0.0123 0.0505 115 9.1 

18 19 0.0112 0.0493 115 8.9 

19 20 0.0252 0.117 115 17.6 

15 19 0.012 0.0394 115 7.1 

20 21 0.0183 0.0849 115 15.3 

21 22 0.0209 0.097 115 17.5 

22 23 0.0342 0.159 115 23.9 

23 24 0.0135 0.0492 115 8.9 

23 25 0.0156 0.08 400 14.4 

26 25 0 0.0382 400 6.9 

25 27 0.0318 0.163 400 24.5 

27 28 0.0191 0.0855 115 15.4 

28 29 0.0237 0.0943 115 17 

30 17 0 0.0388 400 7 

8 30 0.0043 0.0504 115 9.1 

26 30 0.008 0.086 400 15.5 
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17 31 0.0474 0.1563 115 23.4 

29 31 0.0108 0.0331 115 6 

23 32 0.0317 0.1153 115 17.3 

31 32 0.0298 0.0985 115 17.7 

27 32 0.0229 0.0755 115 13.6 

15 33 0.038 0.1244 115 18.7 

19 34 0.0752 0.247 115 37.1 

35 36 0.0022 0.0102 115 2.3 

35 37 0.011 0.0497 115 8.9 

33 37 0.0415 0.142 115 21.3 

34 36 0.0087 0.0268 115 6 

34 37 0.0026 0.0094 400 2.1 

38 37 0 0.0375 400 6.8 

37 39 0.0321 0.106 115 15.9 

37 40 0.0593 0.168 115 25.2 

30 38 0.0046 0.054 115 9.7 

39 40 0.0184 0.0605 115 10.9 

40 41 0.0145 0.0487 115 8.8 

40 42 0.0555 0.183 115 27.5 

41 42 0.041 0.135 115 20.3 

43 44 0.0608 0.2454 115 36.8 

34 43 0.0413 0.1681 115 25.2 

44 45 0.0224 0.0901 115 16.2 

45 46 0.04 0.1356 115 20.3 

46 47 0.038 0.127 115 19.1 

46 48 0.0601 0.189 115 28.4 

47 49 0.0191 0.0625 115 11.3 

42 49 0.0358 0.1615 230 97 

45 49 0.0684 0.186 115 27.9 

48 49 0.0179 0.0505 115 9.1 

49 50 0.0267 0.0752 115 13.5 

49 51 0.0486 0.137 115 20.6 

51 52 0.0203 0.0588 115 10.6 

52 53 0.0405 0.1635 115 24.5 

53 54 0.0263 0.122 115 18.3 

49 54 0.0365 0.1445 230 87.1 

54 55 0.0169 0.0707 115 12.7 

54 56 0.0028 0.0096 115 2.1 

55 56 0.0049 0.0151 115 3.4 

56 57 0.0343 0.0966 115 17.4 

50 57 0.0474 0.134 115 20.1 

56 58 0.0343 0.0966 115 17.4 

51 58 0.0255 0.0719 115 12.9 
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54 59 0.0503 0.2293 115 34.4 

56 59 0.0413 0.1255 230 73.6 

55 59 0.0474 0.2158 115 32.4 

59 60 0.0317 0.145 115 21.8 

59 61 0.0328 0.15 115 22.5 

60 61 0.0026 0.0135 400 3 

60 62 0.0123 0.0561 115 10.1 

61 62 0.0082 0.0376 115 6.8 

63 59 0 0.0386 400 6.9 

63 64 0.0017 0.02 400 4.5 

64 61 0 0.0268 400 6 

38 65 0.009 0.0986 400 17.7 

64 65 0.0027 0.0302 400 5.4 

49 66 0.009 0.0456 800 33 

62 66 0.0482 0.218 115 32.7 

62 67 0.0258 0.117 115 17.6 

65 66 0 0.037 400 6.7 

66 67 0.0224 0.1015 115 15.2 

65 68 0.0014 0.016 400 3.6 

47 69 0.0844 0.2778 115 41.7 

49 69 0.0985 0.324 115 48.6 

68 69 0 0.037 400 6.7 

69 70 0.03 0.127 400 19.1 

24 70 0.0022 0.4115 115 61.7 

70 71 0.0088 0.0355 115 6.4 

24 72 0.0488 0.196 115 29.4 

71 72 0.0446 0.18 115 27 

71 73 0.0087 0.0454 115 8.2 

70 74 0.0401 0.1323 115 19.8 

70 75 0.0428 0.141 115 21.2 

69 75 0.0405 0.122 400 18.3 

74 75 0.0123 0.0406 115 7.3 

76 77 0.0444 0.148 115 22.2 

69 77 0.0309 0.101 115 15.2 

75 77 0.0601 0.1999 115 30 

77 78 0.0038 0.0124 115 2.8 

78 79 0.0055 0.0244 115 5.5 

77 80 0.0108 0.0332 800 24.5 

79 80 0.0156 0.0704 115 12.7 

68 81 0.0018 0.0202 400 4.5 

81 80 0 0.037 400 6.7 

77 82 0.0298 0.0853 115 15.4 

82 83 0.0112 0.0367 115 6.6 

83 84 0.0625 0.132 115 19.8 
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83 85 0.043 0.148 115 22.2 

84 85 0.0302 0.0641 115 11.5 

85 86 0.035 0.123 400 18.5 

86 87 0.0283 0.2074 400 31.1 

85 88 0.02 0.102 115 15.3 

85 89 0.0239 0.173 115 26 

88 89 0.0139 0.0712 400 12.8 

89 90 0.0163 0.0651 800 46.1 

90 91 0.0254 0.0836 115 15 

89 92 0.0079 0.0383 800 32.8 

91 92 0.0387 0.1272 115 19.1 

92 93 0.0258 0.0848 115 15.3 

92 94 0.0481 0.158 115 23.7 

93 94 0.0223 0.0732 115 13.2 

94 95 0.0132 0.0434 115 7.8 

80 96 0.0356 0.182 115 27.3 

82 96 0.0162 0.053 115 9.5 

94 96 0.0269 0.0869 115 15.6 

80 97 0.0183 0.0934 115 16.8 

80 98 0.0238 0.108 115 16.2 

80 99 0.0454 0.206 115 30.9 

92 100 0.0648 0.295 115 44.3 

94 100 0.0178 0.058 115 10.4 

95 96 0.0171 0.0547 115 9.8 

96 97 0.0173 0.0885 115 15.9 

98 100 0.0397 0.179 115 26.9 

99 100 0.018 0.0813 115 14.6 

100 101 0.0277 0.1262 115 18.9 

92 102 0.0123 0.0559 115 10.1 

101 102 0.0246 0.112 115 16.8 

100 103 0.016 0.0525 400 9.5 

100 104 0.0451 0.204 115 30.6 

103 104 0.0466 0.1584 115 23.8 

103 105 0.0535 0.1625 115 24.4 

100 106 0.0605 0.229 115 34.4 

104 105 0.0099 0.0378 115 6.8 

105 106 0.014 0.0547 115 9.8 

105 107 0.053 0.183 115 27.5 

105 108 0.0261 0.0703 115 12.7 

106 107 0.053 0.183 115 27.5 

108 109 0.0105 0.0288 115 6.5 

103 110 0.0391 0.1813 115 27.2 

109 110 0.0278 0.0762 115 13.7 

110 111 0.022 0.0755 115 13.6 
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110 112 0.0247 0.064 115 11.5 

17 113 0.0091 0.0301 115 5.4 

32 113 0.0615 0.203 400 30.5 

32 114 0.0135 0.0612 115 11 

27 115 0.0164 0.0741 115 13.3 

114 115 0.0023 0.0104 115 2.3 

68 116 0.0003 0.0041 400 0.9 

12 117 0.0329 0.14 115 21 

75 118 0.0145 0.0481 115 8.7 

76 118 0.0164 0.0544 115 9.8 
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APPENDIX D: SIMULATIONS RESULTS – 118-BUS CASE 

This section presents simulation results corresponding to the IEEE 118-bus case 

study. 

Table D. 1 Comparison of expansion decisions obtained by different TEP models – 

118-bus case 

Type 
Model Investment solution 

D
is

cr
et

e
 

PTEP Lossy 34-43 (1), 43-44 (1), 44-45 (1), 82-83 (1), 85-86 (1), 86-87 (1) 

HTEP Lossy 
34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-83 (1), 83-85 (1), 

85-86 (1), 86-87 (1) 

R-DCTEP 
Lossy 

34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-83 (1), 83-85 (1), 
85-86 (1), 86-87 (1) 

DCTEP 

Lossy 

34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-83 (1), 83-85 (1), 

85-86 (1), 86-87 (1) 

Lin ACTEP 

Lossy 

1-3 (1), 2-12 (1), 34-43 (1), 43-44 (1), 44-45 (1), 77-78 (1), 82-

83 (1), 83-85 (1), 85-86 (1), 86-87 (1) 

C
o
n
ti

n
u
o
u
s 

PTEP 

Lossy 

15-17 (0.2), 23-25 (0.1), 25-27 (0.1), 26-30(0.3), 34-37 (0.1), 

34-43 (0.7), 38-65 (0.1), 43-44 (1.0), 44-45 (1.0), 60-61 (0.1), 
63-64 (0.1), 64-65 (0.2),  65-68 (0.1),  68-81 (0.06), 69-70 (0.1), 

69-75 (0.1), 77-78 (0.2), 82-83 (0.4), 83-85 (0.2), 85-86 (0.6), 

85-88 (0.2), 86-87 (0.6), 100-103 (0.07) 

HTEP 
Lossy 

4-5 (0.02), 8-5 (0.07), 8-9 (0.07), 8-30 (0.2), 9-10 (0.07), 15-17 

(0.15), 23-25 (0.1), 25-27 (0.1), 26-30 (0.3), 30-17 (0.09), 34-37 
(0.1), 34-43 (0.8), 38-37 (0.4), 38-65 (0.1), 43-44 (1.0), 44-45 

(1.0), 60-61 (0.1), 63-59 (0.3), 60-64 (0.2), 64-65 (0.2), 65-66 

(0.1), 65-68 (0.1), 69-70 (0.1), 68-81 (0.1), 69-75 (0.1), 77-78 
(0.2), 82-83 (0.6), 83-85 (0.2), 85-86 (0.6), 85-88 (0.07), 86-87 

(0.6), 100-103 (0.07) 

R-DCTEP 
Lossy 

4-5 (0.02), 8-5 (0.07), 8-9 (0.07), 8-30 (0.2), 9-10 (0.07), 15-17 

(0.15), 23-25 (0.1), 25-27 (0.1), 26-27 (0.3), 30-17 (0.09), 34-37 
(0.1), 34-43 (0.8), 38-37 (0.4), 38-65 (0.1), 43-44 (1.0), 44-45 

(1.0), 60-61 (0.1), 63-59 (0.3), 60-64 (0.2), 64-65 (0.2), 65-66 

(0.1), 65-68 (0.1), 69-70 (0.1), 68-81 (0.1), 69-75 (0.1), 77-78 
(0.2), 82-83 (0.6), 83-85 (0.2), 85-86 (0.6), 85-88 (0.07), 86-87 

(0.6), 100-103 (0.07) 

 

Table D. 2 TEP model performances in terms of costs and simulation times—118-

bus case  

Type Model 
Investment 

cost (€) 
Total cost (€) 

CPU time 

(s) 

Discrete 

PTEP Lossy 166531673.8 13787863085 48.173 

HTEP Lossy 197508547.7 13835854730 1452.432 

R-DCTEP Lossy 197508547.7 13835854730 1542.35 

DCTEP Lossy 197508547.7 13843756116 1928.329 

LinACTEP Lossy 198679473.5 13895952854 78495.506 

Continuous PTEP Lossy 162317520.7 13729793181 5.647 
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HTEP Lossy 174961933.2 13774538987 10.467 

R-DCTEP Lossy 174961933.2 13774538987 23.883 

 

 

Fig. D. 1 Comparison of losses at each load level computed by different models 118-

bus case  

 

 

Fig. D. 2 Computational requirement of PTEP as a function of number of nodes and 

number of candidate lines 
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Fig. D. 3 Computational requirement of HTEP as a function of number of nodes and 

number of candidate lines 

 

 

Fig. D. 4 Computational requirement of R-DCTEP as a function of number of nodes 

and number of candidate lines 
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APPENDIX E: OPTIMIZATION MODEL FOR A NETWORK MAP AND COORDINATES 

An artificial network map and geographical coordinates are generated using the 

network impedances    . Without loss of generality, the length of a line can be 

regarded to be proportional to its impedance, with a proportionality constant of    . 

Suppose we start with a desired map where the coordinate of each node is            

The objective function is then to minimize the sum of mean squared deviation (MSD) 

from the desired map. The constraints include the length constraints as well as the the 

boundaries of the coordinate variables. 

   
     

             
  

    

        
  

s.t. 

       
         

          
 
                   

             

              

              

The solution obtained using this optimization is not unique since the problem is non-

convex. Multiple runs may be required so that the best topography is selected.  Note 

that         is the coordinate of node   which is to be determined.  
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ATTRIBUTIONS 

The main set of computational tools employed in the presented research is the 

numerical decision support system jointly designated as STEP. These decision 

support models have been developed for this thesis and are documented mainly in 

Chapters 3-6, as well as the associated publications. Model code and all input 

parameters are freely available under CreativeCommons (CC) BY-SA 3.0 license, 

allowing free copies and redistribution of the material in any medium or format, as 

well as remixing, transforming, and building upon the material for any purpose, 

even commercially. The code can be requested directly from the author via email. 

STEP model is formulated and implemented in the General Algebraic Modeling 

System (GAMS©) BUILD 23.7-24.1.2. For handling input and output data, all 

calculations were performed using Microsoft Excel©. The optimization problems 

were for the most part solved with the CPLEX™ 12.5.1 solver for linear 

programming (LP) problems. 

For more information about licensing and the public domain, please consider the CC 

homepage under: http://creativecommons.org/. 
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