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Abstract
Ferrofluid pocket bearings are interesting for fast and precise positioning systems thank to the
absence of stick-slip, the low viscous friction and their cost-effective nature. However, the
characteristics of the bearing change due to over(de)compression since air escapes out of the enclosed
pocket. This article presents an experimentally validated model that includes the air mass inside the
pocket in the calculation of the equilibrium position of the ferrofluid bearing. Moreover, a simple and
efficient way to obtain the operational range of the bearing is presented and a sensitivity analysis was
performed. The sensitivity analysis showed that ferrofluid pocket bearings are always self-aligning
and that the tilt stiffness increases when the fly height decreases or the tilt angle increases.

Supplementary material for this article is available online

Keywords: precision engineering, numerical modelling, hydrostatic bearing, magnetism,
sensitivity analysis, rotational stiffness, sealing capacity

(Some figures may appear in colour only in the online journal)

1. Introduction

A ferrofluid is a colloidal suspension of small magnetic par-
ticles inside a carrier fluid. The magnetic particles (3–15 nm),
often covered with a layer of dispersant, give the fluid para-
magnetic properties [1–3].

Numerous applications have been suggested for ferro-
fluids over the years [4–7], ranging from sensors [8, 9] and
actuators [10–14] to the use of ferrofluid as a lubricant [15] or
an energy harvester [16]. Another frequently suggested
application is to make staged [17] and non-bursting [18]
ferrofluidic seals. This enables rotary shafts to be sealed
without the common disadvantage of wear [19, 20], like in
vacuum feedthrough [21] or aqueous environments [22].
Ferrofluid bearings and seals can be optimised by maximising
the magnetic force generated by permanent magnets using
ferromagnetic material [23–25]. The absence of stick-slip also

makes ferrofluid bearings useful in high precision systems
[26–30].

Ferrofluid bearings can be classified as either pressure
bearings or pocket bearings [31]. Ferrofluid pressure bearings
only rely on the pressure inside the ferrofluid to carry a load.
Pocket bearings on the other hand rely on both the pressurised
air pocket, which is encapsulated by the ferrofluid seal, and the
pressure inside the seal itself. The pressure is a result of the
magnetic body force which depends on the external magnetic
field and the boundary condition of the magnetic fluid [32, 33].

Lampaert et al [34] presented a mathematical model to
calculate the maximum load capacity of ferrofluid pocket
bearings. Over(de)compression of a ferrofluid pocket bearing
resulted in air escaping in and out of the pocket which sub-
sequently changed the behaviour of the bearing. However, the
bearing also showed good repeatability over multiple com-
pression-decompression cycles when the mass inside the
pocket is unaltered. In practice, this is the operational range of
the bearing.

In this article, the behaviour of the bearing after over(de)
compression is modelled to determine its operational range.
First, an experimentally validated model is presented to
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calculate the position of the ferrofluid seal depending on the
air mass inside the pocket. Next, this position will be used to
calculate the load capacity of the ferrofluid bearing according
to literature. Moreover, a simple and efficient way to obtain
the operational range is presented based on only the strength
of a ferrofluid seal and the mass inside the pocket. Finally, a
sensitivity study was performed in order to see how different
variables affect the load capacity and operational range of the
bearing.

2. Methods

First, the calculation of the strength of a ferrofluid seal in the
presence of an external magnetic field is described. Subse-
quently, the load capacity of the bearing is derived and the
sensitivity of the load capacity with respect to tilt is analysed.
The sensitivity can be used to determine how the bearing
performs in practice where disturbances are present. The ideal
gas law is introduced to calculate the air mass enclosed by the
ferrofluid seal. Next, the finite element method (FEM) model
is introduced, which will be used to calculate the positions of
the interfaces between ferrofluid and air. The magnitude and
positions of the interfaces will subsequently be used to cal-
culate the load capacity and torque of the bearing. The load
capacity is calculated according to Lampaert et al [34].
Finally, the experimental set-up that was used to validate the
predicted load capacity of the bearing is introduced. Figure 1
shows the schematic of the bearing including all the important
parameters.

2.1. Mathematical model

2.1.1. Ferrofluid seal. The pressure inside a stationary
ferrofluid seal can be derived from the Ferrohydrodynamic
Navier–Stokes equations for incompressible Newtonian fluids
[2, 35]. In the derivation, it is assumed that the ferrofluid is
completely saturated and that the only body force present is
the magnetic body force. The result is equation (1) for the
pressure distribution inside a ferrofluid [24, 34]. In this
equation, the pressure (p(r)) inside the ferrofluid at a specific

radial position (r) and fly height (h), is dependent on the
magnetic field intensity (H(r)) at that specific location and the
magnetic field intensity of the outer fluid-air interface (Ho).
Moreover, μ0 is the permeability of vacuum and Ms the
saturation magnetisation of the ferrofluid.

( ) ( ( ) ) ( )m- = -p r p M H r H . 1s o0 0

Equation (1) can be used to calculate the pressure difference
over a ferrofluid seal (Δp or pi−p0) by evaluating the
magnetic field intensity at the inner interface (Hi) and at the
outer interface (Ho), equation (2). Figure 2 shows the location
and shape of the ferrofluid seal for an arbitrary Hi and Ho at h.
The figure also shows the resulting pressure distribution.

Next, equation (2) can be used to calculate the maximum
pressure difference that a ferrofluid seal can withstand. The
maximum pressure difference (pi,max−p0) is determined by
the maximum difference in magnetic field intensity that can
be achieved across the ferrofluid seal (ΔH or Hi−Ho). For
the geometries discussed in this article, this maximum is
obtained when the inner ferrofluid interface is located at the
maximum magnetic field intensity at that specific fly height,
thus when Hi=Hmax. This results in equation (4) for the

Figure 1. A cross-section of the ferrofluid pocket bearing defines the
parameters used in this article. The cylindrical magnet, with
magnetisation M, is placed in a non-ferromagnetic base (grey).

Figure 2. The pressure distribution (middle figure), acting on the
plate above the bearing (bottom figure), is a result of the shape and
placement of the ferrofluid seal (top figure). The total load capacity
is obtained by integrating the pressure distributions given in the
bottom figure. The coloured areas in the middle figure represent
visually the contributions of the seal and pocket to the total load
capacity of the bearing.
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calculation of the maximum strength of the seal. Note that the
value of Hmax is dependent on the the magnetic field
generated by the permanent magnet and the fly height. The
value of Ho is dependent on the amount of ferrofluid present
in the system (Vff). Figure 3 shows the corresponding location
and shape of the seal, the pressure distribution and magnetic
field intensity over the seal

( ) ( )m- = -p p M H H , 2i s i o0 0

( )=m p V
M

R T
. 3i i i

air

The same reasoning applies to the calculation of the
minimum pocket pressure, given in equation (6). In that case,
the magnetic field intensity at the outer interface equals the
maximum magnetic field intensity at that fly height
(Ho=Hmax). This results in a negative pressure drop over
the seal, since Ho>Hi. Figure 4 shows the shape of the
ferrofluid seal for a minimum pressure inside the pocket and
once again the pressure distribution and magnetic field for
that specific configuration. Note that the pressure inside the
pocket is lower than the ambient pressure. The corresponding
pressure difference the seal has to withstand is referred to as
the minimum strength of the ferrofluid seal

( ) ( )m- = -p p M H H , 4i max s max o, 0 0

( )=m p V
M

R T
, 5i max i max i max

air
, , ,

( ) ( )m- = -p p M H H , 6i min s i max, 0 0

( )=m p V
M

R T
. 7i min i min i min

air
, , ,

2.1.2. Load capacity. Integration of all the different forces
that act on the plate (figure 2) results in the total load capacity
of the bearing (FL), equation (8). Combining equations (2)
and (8) results in equation (9) for the load capacity expressed
in a cylindrical coordinate system. The total load capacity is
made up of the contribution of the air pocket and the
contribution of the ferrofluid seal. The radial position of the
inner interface is denoted by ri and the outer interface by ro

( ( ) ) ( )ò ò q= -
p

F p r p r rd d , 8L

r

0

2

0
0

o

( ) ( ( ) )

( )

     
òm p pm= - + -F M H H r M H r H r r2 d .

9
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r

r
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2

Air pocket

0

Ferrofluid seal

i

o

Figures 2–4 visually show how the load capacity is calculated
using equation (8) or (9). The contribution of the pocket to the
total load capacity is indicated by the yellow marked area,
while that of the seal is marked orange.

The stiffness of the ferrofluid bearing can be calculated
by taking the derivative of the load capacity with respect to
the vertical position, equation (10)

( )= -k
F

h

d

d
. 10z

L

2.1.3. Tilt. The plate at height h above the magnet is now
tilted around the y-axis in clockwise direction by a tilt angle
α, figure 5. The tilt angles are assumed to be small (a  1 ),
therefore at an angle θ, α is reduced to γ according to
equation (11). A cross-section of the bearing at angle θ is

Figure 3. The shape of the ferrofluid seal and the resulting pressure
distribution over the seal for a maximum pressurised pocket at a
height h. The corresponding load capacity of the seal and the pocket
are indicated in orange and yellow.

Figure 4. The shape of the ferrofluid seal and the resulting pressure
distribution over the seal for a minimum pressurised pocket at a
height h. The corresponding load capacity of the seal and the pocket
are indicated in orange and yellow.
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given in figure 6. This figure presents the pressure distribution
that acts on the plate. Moreover, a body fixed frame of
reference ( q¢ ¢ ¢r z, , ) is introduced which will be used to
calculate the load capacity and torque.

In contrast to equation (8), the pressure is now dependent
on the angular coordinate q¢, since the system is not
axisymmetric any more. The total load capacity of the
bearing perpendicular to the surface of the plate is obtained by
combining equations (2) and (12), (13). The load capacity in
vertical direction is approximately the same as the load
capacity perpendicular to the surface of the plate for small tilt
angles ( » ¢F FL L). Note that in this analysis, part of the
resultant force ¢FL, acting in r-direction due to the tilt, is
neglected. This force accelerates the plate and possibly results

in the plate gliding off the ferrofluid

( ) ( )g a q= cos , 11

( ( ) ) ( )
( )

ò ò q q¢ = ¢ ¢ - ¢ ¢ ¢
p q¢ ¢

F p r p r r, d d , 12L
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Next, the torque that acts on the plate around the y-axis
(My) can be calculated by multiplying the pressure distribu-
tion with its lever arm and integrating it over the entire area of
the bearing, equation (14). Note that this is easily done in the
body fixed frame of reference since the pressure distribution
acts normal to the plate. Due to symmetry the resulting torque
around the x-axis is zero

( ( ) ) ( )

( )

( )

ò ò q q q= - ¢ ¢ - ¢ ¢ ¢ ¢ ¢
p q¢ ¢

M p r p r r r, cos d d .

14

y

r

0

2

0
0

o

Finally, the tilt stiffness of the bearing (kf) around the y-
axis (f-direction) can be calculated by taking the derivative of
the torque with respect to the tilt angle, equation (15). The
negative sign is missing since the angle α is defined in the
negative f-direction

( )
a

=fk
Md

d
. 15

y

The sensitivity of the load capacity and operational range
with respect to tilt will be included in the sensitivity analyses.
Moreover, the effects of the saturation magnetisation and the
applied volume of ferrofluid are included, see the results in
section 3.

2.1.4. Mass inside pocket. If the pressure inside the pocket
exceeds the maximum pressure the seal can withstand with
respect to ambient pressure (equations (4) and (16a)), the seal
breaks, air escapes and the bearing loses mass until equilibrium
can be obtained again (figure 3 and equation (5)), as observed by
Lampaert et al [34]. Consequently, this mass loss changes the
characteristics of the bearing, namely the load capacity and
stiffness. Mass gain also changes the characteristics. When the
pressure difference over the seal exceeds the minimum strength
of the seal (equations (6) and (16c)) it breaks. The result is that
air surrounding the bearing moves through the seal into the air
pocket. This process continues until the bearing gained sufficient
air mass such that equilibrium can be obtained again, (figure 4
and equation (7)).

By introducing the ideal gas law in the calculations, the
equilibrium position of the seal becomes dependent on the air
mass enclosed by the ferrofluid seal, equations (3) and (16b).
Compression and decompression of the bearing are assumed
to be done in a slow fashion, such that the system can

Figure 5. Schematic representation of the tilted bearing. The plate is
tilted around the y-axis by an angle α. A cross-section of the bearing
at the angle θ is shown in figure 6.

Figure 6. The shape of the ferrofluid seal and the resulting pressure
distribution over the seal for a tilted bearing. Note that a body fixed
frame of reference is introduced in the center of mass of the plate and
that the tilt angle γ is introduced.
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continuously adjust itself to the temperature of the surround-
ings. Therefore, it is reasonable to assume an isothermal
process, =R T Constant, with the temperature assumed to be
room temperature, T=293 K. The molar mass of air is
denoted byMair and the universal gas constant by R . Initially,
the mass of air inside the pocket is mi,0, which is defined as
the mass encapsulated by the seal at the fly height h0, figure 7

( )>p p aLoosing mass, 16i i max,

( ) p p p bConstant mass, 16i min i i max, ,

( )<p p cGaining mass. 16i i min,

2.2. FEM implementation

The goal of the FEM is to calculate the magnetic field pro-
duced by the magnet and subsequently to calculate the
equilibrium position of the ferrofluid seal for varying mi, Vff ,
α, Ms and h. Using the position of the seal, the load capacity
and torque can be calculated and the total behaviour of the
bearing is obtained.

The shape and position of the ferrofluid seal for an
arbitrary fly height h, is completely defined by the two vari-
ables Hi and Ho, figure 8. Therefore, an additional formulation
(Γ), dependent on these variables, is introduced in the FEM,
in order to distinguish air and ferrofluid, figure 7 and
equation (17). Γ=1 for all the coordinates which are part of
the union of the sets Ω1 and Ω2 and indicates ferrofluid. Air is
defined by Γ=0, therefore volume integration of Γ results in
the total amount of ferrofluid present in the system,
equation (18). Next, the solving strategies for a perfectly
aligned bearing as well as a tilted bearing will be discussed

( )
( ) ( )
( ) ( )

( )

⎧⎨⎩
È
È

q
q
q

G =
Î W W
Ï W W

r z
r z

r z
, ,

1 if , , Ferrofluid

0 if , , Air
,

17

1 2

1 2

∭ ( ) ( )q= GV r z V, , d . 18ff

2.2.1. Perfect alignment. When there is no tilt, the system is
axisymmetric which simplifies Γ to Γ(r, z). Therefore, the
system is modelled in COMSOL Multiphysics® (COMSOL
Inc. version 5.3.1.348) as 2D axisymmetric. First, the
magnetic field generated by the magnet is calculated.
Subsequently, the equilibrium position of the ferrofluid seal
is calculated by combining all the different forces
(equations (2) and (3)) with the description for the
ferrofluid (equations (17) and (18)). The calculations start
from the fly height h0 with the initial mass mi,0 inside the
pocket with volume Vi,0, figure 7. The characteristic of
the aligned bearing is obtained by calculating the position of
the ferrofluid for different fly heights. An overview of the
solving strategy is given in figure 9.

2.2.2. Tilt. Due to the tilt, the system is not axisymmetric any
more, figure 5. Therefore, the previously described solving
strategy cannot be used any more. The problem can still be
solved by modelling it in 3D, however this becomes
computational expensive when more accuracy is needed. In
order to reduce computational cost, the tilted bearing will be
approximated by implementing a 2D (middle) Riemann sum, in
which the pressure distribution at the centerline of each individual
part k, represents the pressure distribution of that entire part. The
interval and size β of each partition is determined by the number
of subdivisions N, figure 11 and equation (19).

To illustrate this, the pressure distribution of partition k
simplifies from ( )q¢ ¢p r , to ( )q b¢ =p r k, on the interval
between its lower boundary (θl, k) and upper boundary (θu, k).
Note that the tilt angles are small ( a 1 ), therefore the
angular coordinate θ is approximately the same in the global
and body fixed frame of reference (q q¢ » ). The cross-section
presented in figure 6 corresponds to the centerline of the

Figure 7. Air and ferrofluid are distinguished by the function Γ in
the FEM.

Figure 8. The ferrofluid domain (Γ=1) is divided into the sets Ω1

and Ω2, which are defined by Hi, Ho, Hmax and h.
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orange partition presented in figures 5 and 11. Note that
increasing the number of elements increases the accuracy of
the approximation but also increases computational time. The
convergence study showed that a physics-controlled mesh
size 5 and N=16 are required to obtain a relative error below
0.5%, see result in figure 15. The torque of the bearing (My)
showed to be the most sensitive to small variations in the
calculated equilibrium position of the ferrofluid. Therefore,
My is used to quantify the convergence of the calculation.
Note that My is scaled with respect to the finest and therefore
assumed the most accurate calculation. This calculation
was performed using a physics-controlled mesh size 1
and N=56.

The advantage of the discretization is that each partition
can be modelled using a 2D axisymmetric model, each with a

slightly different tilt angle (γk≈αcos(θ=βk), equation (11)).
The disadvantage is that N calculations are needed. The model
is solved for static equilibrium in an iterative fashion for the
variables Hi and Ho, figure 10. The fminbnd algorithm in the
MATLAB® R2018a Optimisation ToolboxTM (The MathWorks
Inc.) is used in combination with the Livelink for the finite
element calculations in COMSOL Multiphysics®. When Hi and
Ho are known, both the load capacity and torque of the tilted
bearing (equations (13) and (14)) can be calculated using the
discretization, equations (20) and (21). Note that the lever arm
of the pressure distribution can be approximated as ( )q¢r cos for
small tilt angles

( )b
p

=
N

2
, 19

Figure 9. The solving strategy for the aligned (axisymmetric)
ferrofluid bearing.

Figure 10. The solving strategy for the tilted (asymmetric) ferrofluid
bearing.
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2.3. Experimental set-up

The presented model was validated by comparing the results
of the theoretical model and the experiments that were per-
formed as described below. In the validation, both the load
capacity and stiffness were compared and discussed.

Experiments were performed using a test set-up as shown
figures 12 and 13. A Zwick/Roell Z005 was used to measure
the force over displacement behaviour of the bearing. The
relative accuracy of the force measurement is 0.21%, whereas
the repeatability has an accuracy below 0.33%. For the dis-
placement measurement, the repeatability is 0.3 μm and the
accuracy is 0.6 μm.

The ferrofluid bearing under testing consisted of a
cylinder magnet, HKCM 9961-835, with a radius of 40 mm, a
height of 10 mm and a remanent flux density of 1.28 T, placed
in an aluminium casing. Next, the magnet attached to the
aluminium casing, chosen for its non-ferromagnetic proper-
ties, was placed onto a low-grade steel plate. This is con-
venient since no glue or other connections were needed for
the connection of the base plate and magnet. Finally, the
magnet was mounted onto the testing machine using stainless
steel bolts and aluminium clamps, figure 12. It is important to
note that the head of the tensile testing machine was made of
aluminium. If the material would be ferromagnetic, the force
measurement would be errored, since the magnet would
attract the head of the machine.

2.3.1. Initialisation. Before the measurement started, the test
set-up had to be prepared properly, meaning alignment of the
machine and bearing, application of the ferrofluid and
determination of the position of the surface of the bearing.
This was done in the following manner: the head of the tensile
tester was pressed onto the bearing with a force of 100 N, in

Figure 11. The discretization of the tilted bearing (figure 5) in a top
view. The lever arm around the y-axis of a small pressure element is
displayed.

Figure 12. The test set-up consists of the ferrofluid bearing (purple),
the head of the tensile testing machine (yellow) and the load cell
(orange). The stiffness of the test set-up is approximately
2× 106 N m−1.

Figure 13. The ferrofluid bearing consists of the cylinder magnet (2)
which is placed inside the aluminium casing (1) and the ferrofluid
(3). The bearing is mounted to tensile testing machine (5) using
clamps, bolts and a steel base plate (4).
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order to determine the position of the surface of the bearing,
h=0 mm, and the stiffness of the test set-up, approximately
2×106 N m−1. At h=0 mm, the surface of the head was
aligned to the surface of the bearing using the nuts and bolts,
red marking in figure 12.

Next, the head was retracted and ferrofluid was applied to
the system using a pipette. The pipette is slightly inaccurate,
since the ferrofluid was pulled out of the nozzle due to the
magnetic attraction of the magnet onto the ferrofluid.
Therefore, the mass of the pipette filled with ferrofluid was
measured before and after application of the ferrofluid, using
a weigh scale with an uncertainty of 0.005 g. By combining
the density of the ferrofluid, ρ=1380 kg m−3, and the
difference in mass, which corresponds to the applied mass of
ferrofluid, the applied volume could be calculated.

The ferrofluid used in the measurements is the Ferrotec
APG 513A, which has a saturation magnetisation of
Ms=32 kAm−1 at a temperature of 300 K. The applied
volume of ferrofluid in the measurements was 0.38 ml.

2.3.2. Measurements. Before the actual measurements, an
initial pre-wetting step was performed. This means
compressing the bearing maximally until the head reaches

=h 0 mm. This was done in order to apply a thin film of
ferrofluid onto the head of the tensile testing machine, such
that the experiments performed afterwards were repeatable.
The thin film of ferrofluid only has to be applied once.
Effectively, this means that the applied volume of 0.38 ml is
slightly decreased.

After the pre-wetting step, three different measurements
were performed, figure 14. First, the maximum load capacity

of the bearing was measured by completely compressing the
bearing until h=0 mm. During the second and third
measurement, the bearing was compressed until heights of
0.1 mm and 0.35 mm respectively, after which the bearing
was fully decompressed. All the measurements were
performed with a speed of 0.3 mmmin−1.

3. Results

The results of the convergence study are given in figure 15.
Initially, when the number of discretizations N is small the
relative error is >5%. Increasing the number of discretizations
increases the accuracy of the model. In contrast, the conv-
ergence is fairly independent of the chosen physics-controlled
mesh size. A physics-controlled mesh size 5 and N=16
result in an error below 0.5%.

Figure 14. The position of the tensile testing machine (fly height h)
versus the time for the different measurements. All three measure-
ments start 1.5 mm above the surface of the magnet. h0 indicates the
height of the ferrofluid seal.

Figure 15. The accuracy of the discretized model (figure 11) with
respect to the number of discretizations N. The convergence of the
mesh size and discretization is determined by scaling the torque My

with respect to the finest and therefore assumed the most accurate
result, obtained using mesh size 1 and N=56.

Figure 16. The modelled load capacity is compared to the
measurement results. The maximum load capacity is given in blue,
while red and yellow indicate two different compression and
decompression cycles.
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Next, the results of the measurements described in
section 2.3.2 are given in figure 16. In this figure, the load
capacity of the ferrofluid pocket bearing is shown versus the
fly height for both the measurements and the model. The
expected load capacity, calculated using the suggested model,
is shown with black markers, while the different measure-
ments are indicated with continuous lines.

Figure 17 shows the pressure and mass inside the pocket
of the ferrofluid bearing versus the fly height. Note that the
values correspond to the values of the model given in
figure 16. These results are used to explain and interpret the
behaviour of the bearing, namely the mass loss and opera-
tional range. In the top figure, the blue colour indicates the
maximum pressure that the ferrofluid seal can withstand at
that fly height, see also figure 3. The corresponding mass
inside the pocket at maximum pressure is given in the bottom
figure in blue. Note that the mass is normalised with respect to
the initial mass mi,0, figure 7. The red colour indicates the
minimum pressure that the seal can withstand, see also
figure 4. The corresponding mass inside the pocket is given in
the bottom figure in red. The black lines correspond to

measurements 2 and 3 of figure 16. The operational range of
the ferrofluid pocket bearing is coloured green.

In the top figure of figure 18, the part of measurement 3
(figure 16) that is located in the operational range of the
bearing according to figure 17, is presented. The bottom
figure of figure 18 shows both the stiffness of the bearing
derived from the load capacity measurements, as well as the
stiffness derived from the load capacity predicted by the
model.

Lastly, the sensitivity of the load capacity and operational
range with respect to the saturation magnetisation of the
ferrofluid (figure 19), the applied volume of ferrofluid
(figure 20) and the tilt (figure 21) are given. The load capacity
of the bearing significantly increased when the saturation
magnetisation increased. The operational range did not
change significantly when the saturation magnetisation was
increased from 20 to 40 kAm−1. Figure 20 shows that
increasing the amount of ferrofluid increases both the load
capacity and operational range. In contrast, figure 21 shows
that tilt decreases both.

Figures 22 and 23 present the torque and the tilt stiffness
with respect to the tilt angle for both the maximally and
minimally pressurised pockets. Both figures globally show
the same behaviour. When the tilt angle is positive, the torque
and tilt stiffness are positive for all the different fly heights.
The torque and tilt stiffness increase when the fly height is
decreased or when the tilt angle is increased. When the pocket
of the bearing was minimally pressurised, the magnitude of

Figure 17. The pressure difference the ferrofluid seal can withstand
calculated using the presented model (top figure) ket bearing (bottom
figure). Decreasing the fly height increases the maximum and
minimum strength of the ferrofluid seal, but decreases the air mass
inside the pocket. The black markers correspond to measurements 2
and 3 from figure 16.

Figure 18. The load capacity (top figure) and stiffness (bottom
figure) of the bearing, in the operational range of measurement 3
(figure 16), are compared to the model.
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both the torque and tilt stiffness are lower when compared to
the maximally pressurised pocket.

4. Discussion

4.1. Model validation: load capacity and operational range

All three measurements given in figure 16 show a zig–zag
pattern, indicating that the mass of air inside the pocket
changes. Either mass is gained or mass is lost. When the
bearing is compressed, the pressure inside the pocket
increases and the load capacity increases. When the pressure
increases such that the strength of the ferrofluid seal is
exceeded, mass escapes out of the pocket, as described in
section 2.1.4. During decompression, the pressure inside the
pocket decreases. When the ferrofluid seal cannot withstand
the pressure difference any more, mass is gained. Thus, the
strength of the ferrofluid seal defines the maximum and
minimum load capacity of the bearing, which increase when
the fly height is decreased. Overall, both the load capacity and
stiffness of the ferrofluid pocket bearing seem to be accurately
described by the suggested model, figures 16 and 18.

Measurements 2 and 3 showed that the behaviour of the
bearing during decompression differs from the behaviour

found during the initial compression. This phenomenon can
be explained by the fact that mass is lost during the initial
compression, which changes the system and therefore its
characteristics. The zig–zag pattern is not present in the
measurements during decompression of the bearing, indicat-
ing constant mass. After the minimum strength of the seal
gets exceeded, or minimum load capacity, mass is gained and
the system changes again. The behaviour of the bearing is
repeatable and predictable in the operational range.

The operational range of measurement 3 is well described
by the model. In contrast, measurement 2 shows that
decompression of the bearing, after almost maximum com-
pression, is less accurately described by the model. Inaccu-
racy of the model at these low fly heights could possibly be
explained by the neglected surface effects, like capillary
effects and surface tension. Also, the FEM model neglects
magnetisation of the ferrofluid in the calculations. Moreover,
the FEM model is sensitive to sharp edges in the geometry
and the relative mesh size at those edges, particularly at low
fly heights. The measurement itself can also be errored at low

Figure 19. The modelled sensitivity of the load capacity (top figure)
and the operational range (bottom figure), with respect to the
saturation magnetisation. The other parameters correspond to the
measurements, Vff=0.38 ml and α=0°. The air mass inside the
pocket is normalised with respect to the initial mass of
Ms=40 kA m−1.

Figure 20. The modelled sensitivity of the load capacity (top figure)
and the operational range (bottom figure), with respect to the applied
volume of ferrofluid. The other parameters correspond to the
measurements, namelyMs=0.32 kA m−1 and α=0°. The air mass
inside the pocket is normalised with respect to the initial mass of
Vff=0.4 ml.
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fly heights due to for example a damaged magnet. Dents in
the magnet result in magnetic field concentrations near the
magnet. This effect becomes less pronounced further away
from the magnet.

The stiffness of the test set-up is approximately 10 times
the stiffness of the bearing. A force of 40 N, which is the
approximately the load capacity of the bearing at a fly height
of 0.1 mm, results in a displacement error of maximally
20 μm. Other uncertainties in the model are the saturation
magnetisation of the steel base plate and the temperature of
the environment. The temperature was not measured during
the experiments, but is assumed to be approximately 293 K.
The FEM model is able to calculate both static and dynamics
problems. However, it is important to note that the model is
limited to dynamic problems with relative low accelerations
such that the problem can be approximated as quasi-static.
This is because the FEM finds the positions of the interfaces
between ferrofluid and air by solving for static equilibrium. In
contrast, the FEM description makes it possible to include
other forces, like capillary forces and surface tension, and to
include magnetisation of the ferrofluid.

Figure 17 will be used to illustrate and explain the beha-
viour of figure 16 and to determine the operational range of the
bearing. The operational range is indicated in green and is
determined by the minimum and maximum pressure difference
that the ferrofluid seal can withstand. When the fly height is
decreased, the ferrofluid is pushed radially outwards causingΔH
to increase subsequently increasing the strength of the seal.
Moreover, the magnetic field is stronger near the magnet thus
compression of the bearing will also result in an increased ΔH.
The combination of these two effects explains the increase in
strength of the ferrofluid seal given in the top figure of figure 17.

The operational range of the bearing can easily be
determined from figure 17, by looking at different constant
mass lines or horizontal lines in the bottom figure. The
intersection between a constant mass line and the green area
indicates the operational range for that specific mass. Two
examples are given with two sets of black markers. If the fly
height is decreased beyond the operational range, mass is lost
according to the set of blue markers. Afterwards, the new
constant mass line can be used to determine the new opera-
tional range of the bearing. If the fly height is increased
beyond the operational range, mass is gained according to the
set of red markers. Thus, the operational range and behaviour
of the bearing is determined by the initial compression, during
which mass is squeezed out of the pocket. Note that ferrofluid
bearings can easily be reset by separating the bearing and the
plate.

Figure 21. The modelled sensitivity of the load capacity (top figure)
and the operational range (bottom figure), with respect to the tilting
of the bearing. The other parameters correspond to the measure-
ments, namely Vff=0.38 ml and Ms=0.32 kA m−1. The air mass
inside the pocket is normalised with respect to the initial mass
of α=0.0°.

Figure 22. The tilt stiffness (bottom figure) of a maximally
pressurised ferrofluid pocket bearing is a result of the torque around
the y-axis (top figure), equation (15).
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It can be concluded that the model properly describes the
behaviour of the bearing, except at very low fly heights. It
might be interesting for further research to model and measure
the behaviour of multiple seals and pockets, or to use an
incompressible fluid instead of air inside the pocket. In both
cases, it might be convenient to measure the actual pressure
inside the pocket instead of only measuring the force and
displacement.

4.2. Sensitivity analysis

Only the three variables that are assumed to be the most
erroneous during the actual measurements are discussed in the
sensitivity analysis. Other variables, for example surface
effects, are neglected in the sensitivity analysis, since they are
either neglected or included in the derivation of the model on
which the rest of the analysis is based on. The presented
values in figures 19–21 are a bit exaggerated for errors that
might occur in practice. However, this way the effect of the
different errors becomes clearly visible. It is important to note
that the effects the variables have on the load capacity and
operational range of the bearing are evaluated individually.
Combined effects are beyond the scope of this research,
however they should be modelled and kept in mind when
designing ferrofluid bearings for high precision systems.

Both tilt and the applied volume of ferrofluid have a
significant influence on both the load capacity and the
operational range. In contrast to increasing the tilt angle,

increasing the amount of ferrofluid increases the operational
range and load capacity. Addition of more ferrofluid increases
the height of the ferrofluid ring, thus results in earlier contact
and establishment of both the seal and air pocket. However,
the effect of adding more ferrofluid decreases at low fly
heights. When the bearing is almost entirely compressed, the
outer interface Ho is nearing zero, so addition of more fer-
rofluid does not increase ΔH significantly any more. In
contrast, both saturation magnetisation and tilt change the
behaviour of the bearing at every fly height. The load capacity
of the bearing significantly increases when the saturation
magnetisation increases. This increase is linear according to
equations (1) and (9). It is also worth noticing that the
operational range of the bearing is limited by tilting of the
plate. Higher tilt angles result in earlier contact of the plate
with the bearing surface, thus limiting the operational range.
Moreover, tilt decreases the height at which the enclosed air
pocket is established, resulting in a decreased load capacity
and operational range. Accordingly, some general design
guidelines for ferrofluid bearings can be formulated. (1) Tilt
of either the plate or the bearing should be minimised, since
tilt decreases the load capacity and the operational range. (2)
Increasing the volume of ferrofluid increases the load capacity
and operational range. Ferrofluid should therefore be added to
the system, until the point of diminishing returns.

The small difference between the measured and the
predicted load capacity can possibly be explained by the
errors discussed here. Since only three possible errors are
discussed, no conclusions can be drawn regarding which set
of errors was present in the measurements. However, slight
overestimation of the amount of ferrofluid is likely, since a
ferrofluid trail is left behind on the head of the testing
machine after the initial compression.

Figures 22 and 23 show that the tilt stiffness of the bearing is
positive for positive tilt angles, for both maximum and minimum
pressure inside the pocket. Since the system is symmetric, the tilt
stiffness is also positive for negative tilt angles. Therefore, due to
the positive tilt stiffness, it can be concluded that the ferrofluid
bearing is self-aligning regardless of the pressure inside the
pocket. However, in order to be certain that the described
behaviour of the ferrofluid bearing is indeed correct, it is
recommended that for future work the load capacity and torque
of the bearing are actually measured for different tilt angles.

5. Conclusion

This article provides a simple and efficient way to obtain the
operational range of a ferrofluid pocket bearing from only the
mass versus fly height diagram. The operational range is only
dependent on the magnetic field produced by the magnet and
the amount of ferrofluid present in the system.

The experimentally validated model accurately describes
the load characteristic of a ferrofluid pocket bearing. The
model includes the air mass inside the pocket, since both the
load capacity and stiffness of the bearing change when the
mass changes. Overcompression of the bearing results in
mass loss and overdecompression in mass gain. The bearing

Figure 23. The tilt stiffness (bottom figure) of a minimally
pressurised ferrofluid pocket bearing is a result of the torque around
the y-axis (top figure), equation (15).
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shows repeatable and predictable behaviour when the mass
inside the pocket does not change. In practice, this is the
operational range of the bearing.

The operational range of the bearing is sensitive to errors
such as tilt or uncertainty in the applied volume of ferrofluid.
The sensitivity analysis shows that tilt decreases both the load
capacity and operational range of the bearing. Independent of
the pressure inside the pocket, both the torque acting on the
plate above the bearing and the resulting tilt stiffness are
always positive when tilted. It can be concluded that ferro-
fluid pocket bearings are always self-aligning. The tilt stiff-
ness increases when the fly height decreases or when the tilt
angle increases. Increasing the amount of ferrofluid increases
the operational range of the bearing significantly while the
load capacity is only increased for higher fly heights.
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