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Abstract

Real-time collision avoidance with full consideration of ship maneuverability, collision risks and International Regulations for

Preventing Collisions at Sea (COLREGs) is difficult in multi-ship encounters. To deal with this problem, a novel method is

proposed based on model predictive control (MPC), an improved Q-learning beetle swarm antenna search (I-Q-BSAS) algorithm

and neural networks. The main idea of this method is to use a neural network to approximate an inverse model based on decisions

made with MPC for collision avoidance. Firstly, the predictive collision avoidance strategy is established following the MPC

concept incorporating an I-Q-BSAS algorithm to solve the optimization problem. Meanwhile, the relative collision motion states in

typical encounters are collected for training an inverse neural network model, which is used as an approximated optimal policy of

MPC. Moreover, to deal with uncertain dynamics, the obtained policy is reinforced by long-term retraining based on an aggregation

of on-policy and off-policy data. Ship collision avoidance in multi-ship encounters can be achieved by weighting the outputs of the

neural network model with respect to different target ships. Simulation experiments under several typical and multi-ship encounters

are carried out using the KVLCC2 ship model to verify the effectiveness of the proposed method.

Keywords: collision avoidance, multi-ship encounters, predictive control, beetle swarm antennas search, neural networks

1. Introduction

Ship collision avoidance is an important research topic for

navigation safety. Research methods on collision avoidance

have been developed from traditional path planning methods

(i.e., A* and artificial potential field) to intelligent optimization

methods. In this section, a survey of the existing ship colli-

sion avoidance methods and the related works of the algorithms

adopted in this study (i.e., model predictive control and beetle

swarm antenna search) are introduced, the contributions of this

paper are also expounded.

1.1. A survey of ship collision avoidance methods

Existing ship collision avoidance methods can be divided

into two main categories: path generation methods and intelli-

gent optimization methods.

Email address: xieshuo@whut.edu.cn (Shuo Xie)

Traditional path generation methods, such as the A* algo-

rithm (Chen et al., 2016) and artificial potential field (Xue et al.,

2012), have been applied in collision avoidance for decades and

showed good results. A* is a global heuristic search algorithm

with both considerations of the start position and the destina-

tion. The main drawback of A* is the relatively low search effi-

ciency in a large grid map. Hierarchical Planning (Wang et al.,

2014; Cheng et al., 2014) is an effective approach to improve

the efficiency by pre-processing a higher-level map before path

planning. Different form the grid map in A*, APF uses artificial

gravitational and repulsive fields to model the environment with

small computation (Kim et al., 2011). The generated paths of

APF are smoother than those of A*, which are more suitable for

ships. Related works of APF (Lyu and Yin, 2018; Lazarowska,

2018) for ship path planning have been carried out in past years.

In recent years, with the introduction of COLREGs and the
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development of collision risk model theories, intelligent opti-

mization methods have been studied to achieve real-time and

reliable ship collision avoidance (Li et al., 2019), such as neu-

ral networks (Simsir et al., 2014), fuzzy mathematics (Perera

et al., 2012), swarm itelligence (Lazarowska, 2015) and rein-

forcement learning (Yin and Zhang, 2018).

Neural network is commonly used to model the uncertain

factors in calculation of collision risks (Inaishi et al., 1992).

Combinations with expert systems (Simsir et al., 2014) and

fuzzy mathematics (Ahn et al., 2012) are the common approaches

to overcome the defects of neural networks, i.e., local extremum

and low precision with insufficient samples. Besides, fuzzy

mathematics can be also applied in the fuzzy classification of

collision risk (Hara and Hammer, 1993) and fuzzy reasoning

(Perera et al., 2015). The performance of fuzzy mathematics

mainly depends on the membership functions set in advance,

which needs more prior knowledge.

With the development of computer science, swarm intelli-

gence and model-free reinforcement learning methods attract

more attention in ship collision avoidance. The common used

swarm intelligence algorithms in ship area are ant colony opti-

mization (Lazarowska, 2015; Tsou and Hsueh, 2010) and par-

ticle swarm optimization (Ma et al., 2018; Chen and Huang,

2012a), which can obtain good results with an appropriate fit-

ness function (Liu et al., 2017). Reinforcement learning is a

classical machine learning method, which has been widely used

in artificial intelligence field. With the development of deep

learning, deep reinforcement learning has been proposed to solve

the continuous state decision problem through end-to-end learn-

ing (Mnih et al., 2015), which makes the application of re-

inforcement learning methods in ship collision avoidance be-

come possible (Yin and Zhang, 2018). However, the relative

low learning efficiency of RL has become the biggest obstacle

in its practical application in ship collision avoidance.

In summary, traditional path generation methods and intelli-

gent optimization methods have both been successfully studied

for ship collision avoidance. SI algorithms are commonly used

with ship collision risk model to achieve the collision avoid-

ance. Model-free methods can obtain a general optimal policy

through interactions with the environment, but have the disad-

vantage of low learning efficiency.

1.2. Related works on model predictive control for ship colli-

sion avoidance

Ship motion has large inertia and hysteresis characteristics,

which brings challenges for collision avoidance. Approaches

in the control area for systems with time delay (Zhang and

Zhang, 2017; Zhang et al., 2016; Ou et al., 2009; Zhang et al.,

2004; Zheng et al., 2016, 2017a,b) provide solutions for ship

collision avoidance. Among them, a typical model-based con-

trol method, i.e., model predictive control (MPC) (Zheng et al.,

2017b, 2016, 2017a), has attracted much attention in ship col-

lision avoidance due to the ability of fully considering the ship

maneuverability model and the constraints. MPC is an effective

approach with advantages of rolling optimization and state pre-

diction, which can be easily combined with other algorithms.

Distributed MPC (DMPC) has been applied in the field of

multi-agent collaborative collision avoidance to solve the prob-

lem of motion conflict between multiple agents (Negenborn and

Maestre, 2014; Zheng et al., 2017b). An effective approach to

realize the collision avoidance is to treat the collision risk in-

dex between each agent (e.g., relative distance) as constraint

conditions in MPC. Zheng et al. (2017b) propose a novel cost

effective robust DMPC for waterborne automated guided vehi-

cles, which can model the price of robustness by explicitly con-

sidering uncertainty and system characteristics in a tube-based

robust control framework. Li et al. (2017) focus on the collision

avoidance problem in unmanned aerial vehicles (UAVs) forma-

tion and proposes a real-time cooperative path planning scheme

based on DMPC. Dai et al. (2017) also use DMPC to plan the

motion of multiple UAVs. Meanwhile, virtual state trajectories

with compatibility constraints are used to guide the system in-

stead of the real trajectory, which can guarantee the collision

avoidance stability of the whole system. Perizzato et al. (2015)

use DMPC to solve the collision avoidance problem of multiple

autonomous ground robots, and realizes the autonomous path
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planning of multiple robots with obstacles and internal collision

avoidance constraints. In addition, uncertain disturbances also

have great impact on multi-agents collision avoidance. Chen

et al. (2018b) use DMPC to solve the vessel train formation con-

trol problem of cooperative multi-vessel systems and maintains

the distance between multiple ships. Besides, the ship domain

model is also used to set the constraint conditions in MPC. Ab-

delaal et al. (2016) propose a trajectory tracking and collision

avoidance method based on nonlinear MPC in elliptical ship

fields, and apply it to a 3-DOF ship model. Furthermore, a dis-

turbance observer is introduced in (Abdelaal et al., 2018) in the

designed controller, and effective collision avoidance can be re-

alized under the condition of uncertain disturbance.

Generally, to achieve reliable collision avoidance, all states

of the so-called own ship and target ships still need to be pre-

dicted for optimization, which has a certain influence on the

real-time performance of MPC. In order to increase the solv-

ing speed of MPC, one approach is to simplify the multi-step

prediction in MPC to a one-step final cost calculation by com-

bination with a reinforcement learning method. In (Negenborn

et al., 2005), a value-function MPC approach is proposed to re-

duce the computation by using the output of the designed value-

function instead of the cost functions of the original MPC, which

can be regarded as a model-based reinforcement learning (MBRL)

method with a deterministic model and known objective func-

tion. Then, the value-function MPC approach can provide su-

pervised experiences for model-free RL algorithms, i.e., TD

learning. This idea can be seen as a prototype of a model-based

method for model-free (MB-MF) learning.

1.3. Related works on beetle swarm antenna search

Stochastic optimization algorithms, such as ant colony op-

timization (ACO) (Bououden et al., 2015), particle swarm op-

timization (PSO) (Chen et al., 2018a; Wang et al., 2018b), etc.,

are commonly used for optimization tasks, e.g., the optimiza-

tion in MPC. Among them, the PSO algorithm has been most

widely used to solve various optimization problems because of

its simple structure and fast optimization speed.

As a bionic search algorithm similar to PSO, beetle anten-

nas search (BAS) algorithm (Jiang and Li, 2018; Zhu et al.,

2018) and beetle antennas swarm search (BSAS) (Wang and

Chen, 2018; Chen et al., 2018c) have been proposed recently,

which have more concise search rules. The optimality of BSAS

has been validated in several optimization problems (Wang et al.,

2018a). For general optimization issues, e.g., the optimiza-

tion of model parameters (Chen et al., 2018c), the path plan-

ning problem (Mu et al., 2019) etc., the BSAS algorithm has

proofed to be an effective optimization approach. Regarding

the fine-tuning problem, the BSAS is also capable of adjusting

the hyper-parameters, e.g., the PID parameters (Lin et al., 2018)

and the neural network parameters (Sun et al., 2019). Due to

the concise search strategy, the BSAS algorithm is considered

to have great potential in solving optimization problems.

1.4. Contributions

In this study, real-time collision avoidance considering ship

maneuverability, collision risk and COLREGs is realized for

multi-ship encounters. The main contributions of this paper are:

1) An improved Q-BSAS is proposed to realize ship collision

avoidance with model predictive control; 2) A neural network-

based inverse model is used for the optimal policy approxima-

tion to reduce the time cost and reinforced by long-term retrain-

ing for robust collision avoidance.

We compare existing methods used for ship collision avoid-

ance from the aspects of on-line ability, consideration of the

ship maneuverability, consideration of collision risk model, abil-

ity to deal with uncertain dynamics, optimization or learning

time cost and consideration of COLREGs, as shown in Table 1,

and detailed as follows:

(1) On-line ability: The proposed method solves on-line

collision avoidance problem based on MPC and neural networks.

Benefiting from rolling optimization of MPC, the proposed MPC

method and approximated neural networks have better on-line

ability to deal with dynamic ships compared with existing off-

line path planning methods (e.g.., A* (Ma et al., 2014)).

(2) Consideration of the ship maneuverability and collision
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risk model: Compared with existing optimization methods (e.g.,

neutral networks (Simsir et al., 2014), fuzzy mathematics (Per-

era et al., 2012) and swarm intelligence (Liu et al., 2017)), the

proposed method considers ship maneuverability and collision

risk model comprehensively and reduces the feedback delay by

collision risk prediction.

(3) Ability of dealing with uncertain dynamics: In the pro-

posed neural network-based method, the inverse model is re-

trained by using on-policy data on the long-term, which takes

the advantage of reinforcement learning method (Yin and Zhang,

2018) and has the ability to deal with uncertain ship dynamics.

(4) Time cost: The proposed neural network-based method

reduces the time cost of optimization by using an approximated

inverse model as the optimal policy, which has the advantage of

function approximation in neutral networks (Simsir et al., 2014)

and reinforcement learning (Yin and Zhang, 2018). Besides,

compared with the pure model-free method (Yin and Zhang,

2018), the optimal policy is initialized by MPC, which makes

use of more prior model information and requires less time for

learning.

(5) Consideration of COLREGs: COLREGs are used to set

the control constraints in the proposed method, which can gen-

erate more reliable collision avoidance results (Abdelaal et al.,

2018) than the methods without considering COLREGs.

In addition, compared with existing BAS-based optimiza-

tion algorithms (Jiang and Li, 2018; Wang and Chen, 2018),

the proposed I-Q-BSAS algorithm achieves better optimization

performance by the exploitation of the historical optimums and

Q-learning-based behavior decision.

1.5. Outlines

The remainder of this article is organized as follows. In Sec-

tion 2, Preliminaries including the ship hydrodynamic model,

collision risk model and COLREGs are described. In Section 3,

the predictive collision avoidance strategy based on MPC is

proposed. In Section 4, the reinforced inverse method for pre-

dictive collision avoidance in multi-ship encounters is proposed.

In Section 5, simulation experiments under multi-ship encoun-
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ters are carried out to assess the effectiveness of the proposed

methods. In Section 6, conclusions and further research are

presented.

2. Preliminaries

In this section, the ship hydrodynamic model, collision risk

model and the COLREGs are introduced.

2.1. Ship hydrodynamic model

Generally, the 3-DOF motion coordinates of an underactu-

ated surface vessel are shown in Fig. 1.

v

u

V
Ψ

δ

x0

r

y0

x

y

β

oo

o

v

rr

oo

Figure 1: 3-DOF motion coordinate system of underactuated surface ship.

In Fig. 1, Oo − xoyo is the inertial coordinate system of the

vessel; O− xy is the co-rotational coordinate system of the ves-

sel; u, v and r are the velocities in surge (body-fixed x), sway

(body-fixed y) and yaw directions, respectively; δ and ψ are the

rudder and heading angle of the vessel, respectively; β is the

drift angle. The kinematic model expressing the relationship

between [x, y, ψ] and [u, v, r] is:


ẋ

ẏ

ψ̇

 =


sin (ψ) cos (ψ) 0

− cos (ψ) sin (ψ) 0

0 0 1




u

v

r

 , (1)

Furthermore, a 3-DOF dynamics model of the vessel can

be denoted as (Yasukawa and Yoshimura, 2015; Luo and Li,

2017):

(m − Xu̇)u̇ = f1(u, v, r, δ),

(m − Yv̇)v̇ + (mxG − Yṙ)ṙ = f2(u, v, r, δ),

(mxG − Nv̇)v̇ + (Iz − Nṙ)ṙ = f3(u, v, r, δ),

(2)

where m is the total mass of the vessel; xG is the longitudinal co-

ordinate of the gravity center of the vessel in surge direction; IZ

is the moment of the inertia; Xu̇,Yv̇,Yṙ,Nv̇ and Nṙ are the inertia

coefficients; f1, f2 and f3 are the lumped forces and moments in

3-DOF, defined as:

f1 =Xuu + Xuuu
2

+ Xuuuu
3

+ Xvvv
2

+ Xrrr
2

+ Xδδδ
2

+ Xδδuδ
2
u + Xvrvr + Xvδvδ + Xvδuvδu

+ Xuvvuv
2

+ Xurrur
2

+ Xuvruvr + Xrδrδ

+ Xurδurδ + X0,

f2 =Y0uu + Y0uuu
2

+ Yrr + Yδδ + Yvvvv
3

+ Yδδδδ
3

+ Yvvrv
2
r + Yvvδv

2
δ + Yvδδvδ

2
+ Yδuδu + Yvuvu

+ Yruru + Yδuuδu
2

+ Yrrrr
3

+ Yvrrvr
2

+ Yvuuvu
2

+ Yruuru
2

+ Yrδδrδ
2

+ Yrrδr
2
δ + Yrvδrvδ + Y0,

f3 =N0uu + N0uuu
2

+ Nrr + Nδδ + Nvvvv
3

+ Nδδδδ
3

+ Nvvrv
2
r + Nvvδv

2
δ + Nvδδvδ

2
+ Nδuδu + Nvuvu

+ Nruru + Nδuuδu
2

+ Nrrrr
3

+ Nvrrvr
2

+ Nvuuvu
2

+ Nruuru
2

+ Nrδδrδ
2

+ Nrrδr
2
δ + Nrvδrvδ + N0,

(3)

where X∗,Y∗ and N∗ are the hydrodynamic coefficients with re-

spect to the motion state ∗, e.g., Xu is the hydrodynamic coef-

ficient with respect to u in the surge direction. Without lose of

generality, (1)∼(3) can be denoted by the following non-linear

state-space model:

Ẋ = fA (X, δ) ,

X =

[
x y ψ u v r

]T
.

(4)

where fA represents the state transition function between the

lumped state X, the control rudder δ and the differential Ẋ.
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2.2. Collision risk model

In typical encounters, the collision risk index (CRI) with

respect to two ships can be evaluated using several relative mo-

tion parameters (Szlapczynski and Szlapczynska, 2017), i.e.,

distance of the closest point of approach (DCPA), time to the

closest point of approach (TCPA), the relative distance and po-

sition direction and the relative speed, as shown in Fig. 2

DCPA

V

VT

VT
-V

VR
Ψ T 

T

The own ship

The encountering 
ship

Oo xo

yo

CPA

TThhe own

Figure 2: Motion parameters of two ships in typical encounter.

For convenience of expression, the ship we consider for col-

lision avoidance is defined as the own ship and the obstacle ship

which causes the encounter situation with the own ship is de-

fined as the target ship. Conventionally, the relative motion pa-

rameters are calculated by:

DCPA = RT sin (ψR − αT − π) ,

TCPA = RT cos (ψR − αT − π) /VR,

RT =

√
(xT − x)2 + (yT − y)2,

θT = αT − ψ ± 2π,

(5)

where RT is the relative distance between two ships; ψR is the

relative course direction of the target ship; αT is the true relative

position direction of the target ship; θT is the angle converted

from αT in the body-fixed coordinate system of the own ship to

the inertial coordinate system; VR is the relative speed of the tar-

get ship. The intermediate parameters in (5) can be calculated

by:

vxR =uT sin(ψT ) + vT cos(ψT ) − (u sin(ψ) + v cos(ψ)) ,

vyR =uT cos(ψT ) − vT sin(ψT ) − (u cos(ψ) − v sin(ψ)) ,

VR =

√
vxR

2 + vyR
2,

ψR = arctan
vxR

vyR

,

+


0

π

2π

vxR ≥ 0 ∩ vyR ≥ 0

(vxR < 0 ∩ vyR < 0) ∪ (vxR ≥ 0 ∩ vyR < 0)

(vxR < 0 ∩ vyR ≥ 0)

,

αT = arctan
xR

yR

+


0

π

2π

xR ≥ 0 ∩ yR ≥ 0

(xR < 0 ∩ yR < 0) ∪ (xR ≥ 0 ∩ yR < 0)

(xR < 0 ∩ yR ≥ 0)

,

xR =xT − x,

yR =yT − y,

CT =ψT − ψ.

(6)

where XT =
[
xT , yT , ψT , uT , vT , rT

]T are the motion states of the

target ship; vxR and vyR are the relative speed components of the

target ship on the X and Y axes, respectively; CT is the relative

heading angle of the target ship.

Since fuzzy logic is quite suitable in dealing with linguistic

representations and subjectives concept like collision risk (Ahn

et al., 2012), plenty of researches (Hara and Hammer, 1993;

Ahn et al., 2012) have adopted fuzzy logic to model the degree

of the collision risk by using membership functions. In fuzzy

logic, the membership function is a generalization of an indica-

tor in classical sets, which represents the degree of truth as an

extension of valuation. In this study, the fuzzy logic method is

also used for determining the index of the collision risk based

on DCPA, TCPA, RT , θT and velocity ratio K = VT /V , of which

the memberships are defined as follows:

1. The membership function of DCPA:

uDCPA =


1 |DCPA| ≤ d1,

1
2 −

1
2 sin

[
π

d2−d1

(
|DCPA| − d1+d2

2

)]
d1 < |DCPA| ≤ d2,

0 |DCPA| > d2,

(7)
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where, d1 is the closest safety distance of the two ships, which

varies with θT as:

d1 =


1.1 − θT

π
× 0.2 0◦ ≤ θT < 112.5◦,

1.0 − 1.5π−θT
π
× 0.8 112.5◦ ≤ θT < 247.5◦,

1.1 − 2π−θT
π
× 0.4 247.5◦ ≤ θT < 360◦,

(8)

2. The membership of RT :

The so-called distances of the last action (DLA) and Arena

are used to determine the membership of RT . The Arena is

proposed in (Davis et al., 1982) to describe the area for which

entering of a ship should trigger a collision avoidance action

so as to avoid violating the actual domain (Szlapczynski and

Szlapczynska, 2017). The DLA indicates the closest distance

for taking action to avoid collision (Chen et al., 2015). Then

the membership of RT is:

uRT =


1 RT ≤ DD,

1
2 −

1
2 sin

[
π

DA−DD

(
RT −

DD+DA
2

)]
DD < RT ≤ DA,

0 RT > DA,

(9)

where DD and DA are the value of DLA and radius of the Arena

respectively (Chen et al., 2015), which are set as the distance

limits for collision avoidance.

3. The membership of TCPA:

uTCPA =


1 |TCPA| ≤ t1,(

t2−|TCPA|
t2−t1

)
t1 < |TCPA| ≤ t2,

0 |TCPA| > t2,

(10)

where t1 and t2 represent the time limits for collision avoidance,

which can be determined by DD and DA:

t1 =


1

VR

√
DD

2 − DCPA2 DCPA ≤ DD,

1
VR

(DD − DCPA) DCPA > DD,

t2 =


1

VR

√
DA

2 − DCPA2 DCPA ≤ DA,

1
VR

(DA − DCPA) DCPA > DA,

(11)

4. The membership of θT :

uθT =
1
2

[
cos (θT − 19) −

5
17

+

√
440
289

+ cos2 (θT − 19)

]
. (12)

Generally, it is most dangerous when the target ship is com-

ing from 19◦ of the own ship under the same other conditions (Yan,

2002).

5. The membership of K :

uK =
1

1 + 2
K
√

K2+1+2K sin C

. (13)

where C ∈ [0, 180] is a constant coefficient.

Therefore, the following risk model is established (Chen

et al., 2015):

fCRI = λCRIuCRI
T,

λCRI =

[
λDCPA λTCPA λRT λθT λK

]
,

uCRI =

[
uDCPA uTCPA uRT uθT uK

]
.

(14)

where fCRI is the collision risk index used to evaluate the risk

level, which is the outcome of the collision risk model. The

λDCPA , λTCPA ,λRT , λθT and λK are the set weights of uDCPA ,

uTCPA ,uRT , uθT and uK , respectively.

2.3. COLREGs

The COLREGs are the maritime traffic rules formulated

by the International Maritime Organization (IMO) to prevent

and avoid collisions between ships at sea (Naeem et al., 2012).

COLREGs divide the encounter state of two ships into three cat-

egories, i.e., head-on (rule 14), small and large angle crossing

(rule 15) and over-taking (rule 13) according to different rela-

tive position directions (θT in Fig. 2) between two ships, which

are shown in Fig. 3. Head-on5°355° 67.5°112.5°210°247.5° Small angle crossing on starboardOvertakingLarge angle crossing on StarboardOvertakingCrossing on port
Figure 3: Encounter situations classification in typical encounter.

7



In Fig. 3, θT ∈ [355◦, 360◦]∪ [0◦, 5◦] represents the head-on

encounter; θT ∈ [5◦, 67.5◦] represents the small angle cross-

ing encounter on starboard side and θT ∈ [67.5◦, 112.5◦] rep-

resents the large angle crossing encounter on starboard side;

θT ∈ [247.5◦, 355◦] represents the crossing encounter on lar-

board side; θT ∈ [112.5◦, 247.5◦] represents the over-taking en-

counter (Zheng and Wu, 2000).

For collision avoidance suggestions, the COLREGs stipu-

late that the own ship is the give-way ship, i.e., the ship which

should change the course to avoid the collision, and has the duty

of steering to avoid collision in head-on and starboard crossing

encounter scenarios. Otherwise, the own ship is the stand-on

ship, meaning that it should keep its course and speed. When

the own ship is the give-way ship, it is generally recommended

to turn right in head-on and starboard crossing encounters to

avoid crossing ahead of the encountering ship. In large angle

starboard crossing encounter, a port steering which has a better

effect than a starboard steering is acceptable (Tsou and Hsueh,

2010; Tsou et al., 2010).

3. Predictive collision avoidance based on Improved Q-BSAS

With the ship hydrodynamic model and collision risk model,

the future states and collision risks of the own ship and en-

countering ship can be predicted and the MPC scheme can be

adopted for collision avoidance.

3.1. Optimization problem

For compact formulation, fCRI (X, XT , δ) is used to repre-

sent the nonlinear relationship between the collision risk fCRI

and the state of two ships (X, XT ) with the control value δ of

the own ship based on (1)∼(14). Then, the value of fCRI can

be regarded as the negative safety reward of the action δ with

the current state X, XT , i.e., the safety is inversely proportional

to the fCRI . Meanwhile, the action change ∆δ can be used as

the negative economic reward, i.e., the economy is inversely

proportional to the ∆δ.

Referring to the idea of reinforcement learning (RL) and

MPC, the discounted sum of these two rewards at control time

step t can be used for optimization as:

FCRI (t) =

t′=t+NP∑
t′=t+1

γt′−t
∣∣∣ f̂CRI(t′)

∣∣∣,
Fu (t) =

t′=t+NP∑
t′=t+1

γt′−t
∣∣∣∆δ̂(t′)∣∣∣,

∆δ̂
(
t′
)
=

 δ̂ (t′) − δ̂ (t′ − 1) i f (t′ > t + 1)

δ̂ (t′) − δ (t) i f (t′ = t + 1)
,

(15)

where [t+1, t+NP] is the prediction horizon at control time step

t, t′ is the prediction time step, γ ∈ [0, 1] is a discount factor that

can guarantee the convergence of the final value, ∆δ̂ (t′) is the

action change at time t′ in the prediction horizon, f̂CRI(t′) is the

calculated collision risk under the control of δ̂(t′).

The final target of MPC is to find the control sequence δ̂ (t) =[
δ̂ (t + 1), δ̂ (t + 2), · · · , δ̂ (t + NP)

]
that maximizes the sum of

positive rewards, i.e., to minimize the sum of negative rewards

(FCRI and Fu) over prediction horizon. Therefore, the optimiza-

tion strategy can be established as:

arg min
δ

J (t) = arg min
δ
{µ1FCRI(t) + µ2Fu(t)} ,

sub ject to − δmax ≤ δ̂(t′) ≤ δmax,

(16)

where µ1 and µ2 are two positive weights, which satisfy µ1 +

µ2 = 1, δmax is the maximum rudder angle of the own ship.

In addition, COLREGs described in Section 2.3 should be

considered in the collision avoidance. The own ship is recom-

mended to give starboard steering to avoid encountering ships

in head-on, overtaking and small angle crossing encounters,

otherwise, normal input constraints are set based on the max-

imum rudder angle in large angle crossing encounters. Then,

the constraint in (16) is modified as:

 −δmax ≤ δ̂(t′) ≤ δmax i f 67.5◦ < θT ≤ 355◦,

0 ≤ δ̂(t′) ≤ δmax otherwise,
(17)

and the optimization problem is denoted as:

arg min
δ

J (t) = arg min
δ
{µ1FCRI(t) + µ2Fu(t)} ,

sub ject to (17).
(18)
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3.2. Re-sailing and state constraints

Since the collision states (e.g., the DCPA, TCPA, etc.) will

change during the voyage, the ship is considered to re-sail back

to the route if there is no collision risk. Moreover, the give-way

ship may change to a stand-on ship after collision avoidance

measures are taken, which requires a stable course angle and

speed based on COLREGs. In order to solve the course keeping

and re-sailing problem at the same time, the widely used line-

of-sight (LOS) guidance strategy (Liu et al., 2018) is adopted

in this study to transform the re-sailing problem to a course

keeping problem. When two ships have passed each other (i.e.,

TCPA < 0), the LOS guidance strategy is adopted for re-sailing

and course keeping, otherwise the proposed collision avoidance

method is adopted for collision avoidance. Fig. 4 shows the

LOS guidance strategy when the own ship is sailing from the

start position Ps(xs, ys) to the destination Pd(xd, yd).

In LOS guidance, the ship is guided by minimizing the er-

ror ψ̃LOS between the actual heading angle ψ and the LOS angle

ψLOS . The LOS angle ψLOS can be calculated by solving the fol-

lowing equations:

(xLOS − x)2 + (yLOS − y)2 = R2
LOS,

yLOS−ys
xLOS−xs

=
yd−ys
xd−xs

,

ψLOS = arcsin
(

xLOS−x
RLOS

)
,

(19)

where PLOS (xLOS, yLOS) is the LOS guidance point; RLOS is the

radius of the acceptance circle in Fig. 4. Then the tracking error

is ψ̃LOS = (ψ − ψLOS).

Note that the own ship may consider abnormal behavior to

obtain the smallest cost, it is necessary to set reasonable state

constraints. Since the LOS guidance strategy is used for stand-

on and re-sailing, we set the constraint on the LOS tracking

error as
∣∣∣ψ̃LOS

∣∣∣ < π
2 during the collision avoidance to prevent go

backward behavior caused by excessive steering. Besides, the

constraint on the relative distance between the own ship and en-

countering ship is also considered as RT > LPP where LPP is the

ship length to prevent dangerous stand-on behavior. Therefore,

LOSy

u

v

Start position

Destination

PLOS (xLOS, yLOS)
RLOS

Own ship

Encountering
ship

Oo xo

yo

Ps (xs, ys) Pd (xd, yd)
 (x, y)

Figure 4: The LOS guidance strategy and LOS tracking error.

the optimization problem in (18) is modified as:

arg min
δ

J (t) = arg min
δ
{µ1FCRI(t) + µ2Fu(t)} ,

sub ject to (17),
∣∣∣ψ̃LOS

∣∣∣ < π
2 ,RT > LPP.

(20)

In this study, the widely used penalty function and satura-

tion approaches are adopted in the predictive collision avoid-

ance to deal with the inequality state constraints and control

input constraints in (20), respectively.

3.3. Improved Q-BSAS algorithm for collision avoidance

Generally, conventional optimization methods for complex

nonlinear optimization tasks like (20) are very sensitive to the

initialization of the optimization and usually lead to unaccept-

able solutions due to the local optima (Song et al., 2007). To

deal with this problem, stochastic optimization algorithms, e.g.,

particle swarm optimization (Chen et al., 2018a; Wang et al.,

2018b), have been used in MPC and been able to achieve global

optimality by exploitation of knowledges from previous itera-

tions (Bououden et al., 2015). As a stochastic search algorithm,

beetle swarm antennas search (BSAS) algorithm has more con-

cise search rules and less computation than particle swarm opti-

mization (Wang and Chen, 2018), which is considered for MPC

optimization problem in this study.

In addition, existing BSAS algorithms do not make full use

of the historical trajectories of the antennas and the step of the
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beetle is adjusted only based on the current performance in each

iteration (Wang and Chen, 2018), which leads to the difficulty

of finding a trade-off between the exploratory and exploitation

in complex problem (e.g., the nonlinear optimization problem

in (20)).

In order to solve the optimization problem in (20), an im-

proved Q-BSAS (I-Q-BSAS) algorithm is proposed by intro-

ducing the historical optimums of the antennas and a behav-

ior decision based on Q-learning. At each control step t of

MPC, the I-Q-BSAS algorithm takes the control sequence δ̂(t)

as the variables to be optimized and the objective function J of

MPC as the fitness function. Then the optimization algorithm

searches δ̂(t) within the set number of iterations and takes the

optimal δ̂(t) corresponding to the best fitness J as the optimiza-

tion result of MPC.

3.3.1. Orignal BSAS based collision avoidance

Throughout the paper, the number of iterations in the opti-

mization process is expressed as k to distinguish from the con-

trol step t in MPC. All the following vectors with respect to

the left, right antennas and the centroid of the beetle represent

control sequences δ̂ for searching. The random value used in

optimization is expressed as rd.

The Original BSAS algorithm sets a certain number of bee-

tles for optimization. Each beetle searches the optimal positions

following the BAS algorithm. The update strategy of each bee-

tle is:

δ̂ilk = δ̂ik−1 + 1
2 dk d

‖d‖ ,

δ̂irk = δ̂ik−1 −
1
2 dk d

‖d‖ ,

δ̂ik = δ̂ik−1 + cdk sign
(
Jilk − Jirk

) d
‖d‖ ,

(21)

where d is a random vector distributed between [−1, 1] with

length NP, i.e., d = rands(NP, 1); δ̂ilk , δ̂irk and δ̂ik are the left

antenna, the right antenna and the centroid of the ith beetle at k

iteration, respectively; Jilk and Jirk are the cost function values

of δ̂ilk and δ̂irk , respectively; dk is the set distance between the

two antennas at k iteration; c is the ratio between the beetles

step and dk.

After each beetle has finished searching in one iteration, the

global optimal position δ̂g and the cost function value Jg of the

beetle swarm are updated based on greedy-strategy:

Jg = Jik , δ̂g = δ̂ik i f Jik < Jg, (22)

where Jik is the current fitness value of the centroid position δ̂ik

of the ith beetle. In addition, the so-called ε - strategy is com-

monly used for attenuation of dk to improve the search ability

as: lk = η · lk−1

dk = lk−1 + dmin

i f rd > ε ∩ min
k=1,2,··· ,n

Jik ≥ Jg. (23)

where dmin is the set minimum of dk; n is the number of beetles;

0 ≤ η ≤ 1 is the attenuation coefficient; l is the set attenuation

range; 0 < ε < 1 is the set probability of the beetles to miss

their best positions. Then the optimization problem in (20) can

be solved with the original BSAS algorithm as denoted in Al-

gorithm 1.

Algorithm 1 Predictive collision avoidance based on original
BSAS
Input: The current time, t; The state of the own ship and the other ship at the current time,

Xs(t) and XT (t);
Output: Result of collision avoidance at the current time, δ(t);
1: if t < tend then
2: Initialize the parameters of BSAS, i.e.,c,η,dmin, the number of iteration m, the num-

ber of the beetles n and the centroid of each beetle δ̂10 , δ̂20 , · · · , δ̂n0 .
3: Use δ̂10 , δ̂20 , · · · , δ̂n0 , the ship states Xs(t) and XT (t) and the ship motion model

(4) to predict collision risks based on (5∼14), then calculate the cost function values
based on (15) and (16) to obtain the initial fitness of each beetle.

4: Calculate the global optimal position δ̂g and the cost function value fg based on
(22).

5: while k ≤ m do
6: for each beetle i← 1 to n, where n is the beetle number do
7: Update the current position δ̂ik based on (21).
8: end for
9: for each beetle i← 1 to n, where n is the beetle number do

10: Update the global optimal position δ̂g and the cost function value fg and
each δ̂ik based on (22)

11: end for
12: Update dk according to (23);
13: k = k + 1
14: end while
15: Make δ (t) = δ̂g (1).
16: return δ (t)
17: end if

3.3.2. Improvement based on historical optimum of antennas

In this section, the original BSAS is improved based on his-

torical optimums of two antennas. It can be seen from (21) that

the locations of the two antennas are always constrained by the
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position of the current centroid in the original BSAS, which

can easily lead to local optima. The historical optimums of two

antennas and the corresponding optimal fitness values are intro-

duced to improve the update strategy of both the antennas and

centroid as:

δ̂ilk =δ̂ilbest +
1
2

dk ·
d
‖d‖

,

δ̂irk =δ̂irbest −
1
2

dk ·
d
‖d‖

,

δ̂ik =δ̂ik−1 + crd

(
‖Jirbest‖

‖Jilbest‖ + ‖Jirbest‖

) (
δ̂ilbest − δ̂ik−1

)
+ crd

(
‖Jilbest‖

‖Jilbest‖ + ‖Jirbest‖

) (
δ̂irbest − δ̂ik−1

)
,

(24)

where rd ∈ [0, 1] is a random value, δ̂ilbest and δ̂irbest are the

historical optimums of the left antennas and right antennas, re-

spectively; Jilbest and Jirbest are the cost function values of δ̂ilbest

and δ̂irbest , respectively. Then, the δ̂ilbest, δ̂irbest and the global

δ̂g are updated as:



Jilbest = Jilk , δ̂ilbest = δ̂ilk i f (Jilk ≤ Jilbest),

Jirbest = Jirk , δ̂irbest = δ̂irk i f (Jirk ≤ Jirbest),

Jg = Jilk , δ̂g = δ̂ilk i f (Jilk ≤ Jg),

Jg = Jirk , δ̂g = δ̂irk i f (Jirk ≤ Jg),

Jg = Jik, δ̂g = δ̂ik i f (Jik ≤ Jg),

(25)

Compared with the update strategy of the original BSAS,

the two antennas of each beetle have less position constraints.

Besides, one-step movement of a set distance toward the cur-

rent best direction in the original BSAS has been changed to

two-step movements as shown in Table 2. It can be seen from

Table 2 that the improved beetle will move a certain distance to-

wards the historical optimal position of two antennas of which

the length is determined by the optimal fitness value. There-

fore, the improved strategy guarantees that the best position of

the centroid is approaching the antenna which has the optimal

ability in historical searching, rather than the current better an-

tenna. According to (17), to make sure that the δ̂ilbest and δ̂ilbest

are located on two sides of δ̂i, the initial historical optimal po-

sition of two antennas are as:


δ̂ilbest

[
j
]

j=1,2,···NP

= − δmax, δ̂irbest
[
j
]

j=1,2,···NP

=δmax i f (67.5◦ ≤ θT ≤ 355◦) ,

δ̂ilbest [i]
j=1,2,···NP

=0, δ̂irbest
[
j
]

j=1,2,···NP

=δmax otherwise.
(26)

3.3.3. Behavior decision based on Q-learning

In addition to the exploration of the individual beetle, the

swarm behaviors of the beetles, i.e., the attenuation of step and

the feedback of global optimal position, are also important in

the optimization process.

1) Attenuation of the dk

The set valve of ε used for attenuation of dk in (23) will

have a greater impact on the search ability of BSAS. To obtain

a better attenuation approach of dk, each individual beetle is

considered to be able to decide whether dk needs to decrease

or not based on its own optimization performance. Then a step

vector Dk =
[
dk

1, d
k
2, · · · , d

k
n

]T
is defined for the beetle swarm,

and (23) is changed to:

 lki = η · lki ,

dk
i = lki + dmin,

i f rd > ε ∩ min
k=1,2,··· ,n

Jik ≥ Jg, (27)

Then the improved update strategy of δ̂ilk and δ̂irk in (21) is

modified as:

δ̂ilk =δ̂ilbest +
1
2

dk
i ·

d
‖d‖

,

δ̂irk =δ̂irbest −
1
2

dk
i ·

d
‖d‖

,

δ̂ik =δ̂ik−1 + crd

(
‖Jirbest‖

‖Jilbest‖ + ‖Jirbest‖

) (
δ̂ilbest − δ̂ik−1

)
+ crd

(
‖Jilbest‖

‖Jilbest‖ + ‖Jirbest‖

) (
δ̂irbest − δ̂ik−1

)
.

(28)

2) Exploitation of the global optimal position δ̂g

In (Wang et al., 2018a), the PSO algorithm is combined with

BSAS, and a velocity update strategy is introduced for BSAS.

Note that the PSO algorithm uses a certain number of particles

for optimization. In each iteration, the velocity of each particle

is updated by learning from the global and local optimal posi-

tions, so as to update the positions of the swarm (Wang et al.,
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Table 2: Movement changes of the centroid in each iteration after improvement

Each iteration Original strategy
Improved strategy

Step1 Step2

Distance c · dk crd

(
‖Jirbest‖

‖Ji lbest‖+‖Jirbest‖

) ∥∥∥δ̂i lbest − δ̂ik−1

∥∥∥ crd

(
‖Ji lbest‖

‖Ji lbest‖+‖Jirbest‖

) ∥∥∥δ̂irbest − δ̂ik−1

∥∥∥
Direction sign

(
Ji lk − Jir k

)
d
‖d‖

(
δ̂i lbest−δ̂ik−1

)
∥∥∥∥∥δ̂i lbest−δ̂ik−1

∥∥∥∥∥
(
δ̂irbest−δ̂ik−1

)
∥∥∥∥∥δ̂irbest−δ̂ik−1

∥∥∥∥∥
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Figure 5: A schema of I-Q-BSAS and original BSAS based predictive collision avoidance.

2018b). Therefore, the exploitation of the global optimal posi-

tion in PSO is reflected in the velocity of the particle. At the

same time, a velocity weight is used to achieve the balance of

exploration and exploitation.
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However, the BSAS algorithm uses random directions of

the antennas and the step of the centroid for exploration, which

is different from PSO. The balance of exploration and exploita-

tion in BSAS is achieved by the step attenuation η in (23). Since

the step attenuation strategy is adopted separately, it is consid-

ered to remove the velocity weight introduced in (Wang et al.,

2018a) and directly learn the optimal position on the centroid

position as:

δ̂ik = δ̂ik−1 + ζ1rd(δ̂ibest − δ̂ik−1 ) + ζ2rd(δ̂g − δ̂ik−1 ), (29)

where rd ∈ [0, 1] is a random value; δ̂ibest is the historical local

optimal position of the centroid, which is updated as (30); ζ1

and ζ2 are the learning factors of δ̂ibest and δ̂g , respectively.

 Jibest = Jik

δ̂ibest = δ̂ik

i f Jik < Jibest. (30)

where Jibest is the best fitness value of each δ̂ibest.

3) Behaviors decision based on Q-learning

In order to choose the best behavior of each individual parti-

cle, a common reinforcement learning method, i.e., Q-learning,

has been used for the optimization and decision in PSO al-

gorithm (Samma et al., 2016). It is considered that the Q-

learning method can choose the better behavior of each bee-

tle based on the long-term performance compared with the ad-

justing method based on the current performance in (Wang and

Chen, 2018). Therefore, the Q-learning method is applied for

the behavior decision of each beetle by regarding the behavior

decision process as a typical Markov decision-making process

M =
{
sM , aM , rM

}
, where sM , aM and rM are the state, action

and reward, respectively.

With respect to the state sM , since the exploration ((27) and

(28)) and exploitation ((29)) are the main behaviors of each bee-

tle, the state sM of the MDP for behavior decision is defined as:

sM =


1 Exploring with step reducing based on (27) and (28),

2 Exploring without step reducing based on (28),

3 Learning the global and local optimum based on (29),

(31)

where number 1, 2 and 3 are the codes of the behaviors.

With respect to the action aM , since the target of behavior

decision is to fix the beetle’s current behavior to a deterministic

state sM , the action aM is defined as:

aM =


1 sM = 1,

2 sM = 2,

3 sM = 3,

(32)

With respect to the reward rM , considering that the difficul-

ties of contributions to the local optimal Jibest and the global

optimal Jg are different, two different positive rewards are set

as shown in (33), which is different from a signal reward in

(Samma et al., 2016).

rM =


1 i f Jik < Jibest,

2 i f Jik < Jg,

−1 other,

(33)

where rM is the immediate reward for each state-action pair

(sM , aM).

To realize Q-learning, a Q-table Qk(sM
k , a

M
k ) is created for

each beetle to calculate the value of the state-action pair (sM
k , a

M
k )

at kth iteration. After each beetle takes an action aM
k for search-

ing at the kth iteration, the next state sM
k+1 and immediate re-

ward rM
k+1 is obtained. Then, the Q-table at the next iteration

Qk+1(sM
k+1, a

M
k+1) is calculated as:

Qk+1(sM
k+1, a

M
k+1) = Qk

(
sM

k , a
M
k

)
+ αM

[
rM

k+1 + γM max Qk

(
sM

k+1, a
M
)
− Qk

(
sM

k , a
M
k

)]
,

(34)

where αM and γM are the learning rate and discount factor of

Q-learning. With the Q-table, the action aM
k is selected by a

so-called ε-policy to balance the exploration and exploitation:

aM
k =

 arg max QM
k

(
sM

k , a
M
)

rd < ε,

frand {1, 2, 3} rd ≥ ε.
(35)

where frand{·} represents random selection function, rd ∈ [0, 1]

is a random value.
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The final improved Q-learning-BSAS, i.e., I-Q-BSAS, al-

gorithm is proposed and listed as Algorithm 2. The conver-

gence and global optimality analysis of the improved BSAS are

given in Appendices A. To better illustrate the differences be-

tween the proposed I-Q-BSAS based collision avoidance and

original BSAS based collision avoidance, a schema of Algo-

rithm 1 and Algorithm 2 is shown in Fig. 5. For comprehensive

verification of the proposed I-Q-BSAS, standard optimization

tests with benchmark functions are given in Appendix B.

Algorithm 2 Predictive collision avoidance based on Improved
Q-BSAS
Input: The current time, t; The state of the own ship and the other ship at the current time,

Xs(t) and XT (t);
Output: Result of collision avoidance at the current time, δ(t);
1: if t < tend then
2: Initialize the parameters of the improved Q-BSAS, i.e.,c,η,dmin,ζ1,ζ2, D the

number of iteration m, the number of the beetles n, the centroid of each beetle
δ̂10 , δ̂20 , · · · , δ̂n0 and the Q-table for each beetle.

3: for each beetle i← 1 to n, where n is the beetle number do
4: Initialize the historical best position of the left antenna δ̂i lbest and the right

antenna δ̂irbest of each beetle based on (26).
5: Use δ̂i0 , δ̂i lbest , δ̂irbest , the ship states Xs(t) and XT (t) and the ship motion

model (4) to predict risks based on (4∼14), then calculate the cost function values
based on (15) and (16) to obtain the corresponding fitness Ji0 , Ji lbest and Jirbest, re-
spectively.

6: Calculate the initial local optimal positions δ̂ibest and fitness Jibest based on
(30).

7: Calculate the initial global optimal positions δ̂g and fitness Jg based on (25).
8: end for
9: while k ≤ m do

10: for each beetle i← 1 to n, where n is the beetle number do
11: Update the two antennas positions δ̂ilk , δ̂ir k based on (28).
12: Update the historical best positions of the left antennas δ̂i lbest and right

antennas δ̂irbest , and the corresponding fitness Ji lbest and Jirbest based on (25).
13: Use Q-Learning method and (33) to choose the current optimal action of

each beetle and obtain the best state of each beetle based on (35).
14: switch the best state do
15: case 1
16: Update the centroid position δ̂ik based on (28).

17: case 2
18: Update the centroid position δ̂ik based on (28).
19: Update di based on (27).
20: case 3
21: Update the centroid position δ̂ik based on (29).

22: Update the local optimal positionδ̂ibest and fitness Jibest based on (30).
23: Update the global optimal position δ̂g and fitness Jg based on (25).
24: end for
25: k = k + 1
26: end while
27: Make δ (t) = δ̂g (1).
28: return δ (t)
29: end if

4. Reinforced inverse method based on neural networks

Based on the proposed I-Q-BSAS algorithm and MPC strat-

egy, collision avoidance in typical encounters can be realized

efficiently. Note that the MPC strategy still needs to solve the

optimization problem at each time step, which will increase the

time cost in multi-ship encounters. Referring to the function ap-

proximation approach in reinforcement learning, we use neural

networks to learn an inverse relationship model between the in-

puts and outputs of the proposed MPC strategy in this section,

which is regarded as an inverse approximation of the proposed

MPC strategy. Then the time cost can be reduced by end-to-

end output of the neural network model. Besides, the network

model is re-trained in the long term based on an experience re-

ply technique to deal with the uncertain dynamics problem.

4.1. Direct inverse system and optimal policy

Conventionally, the direct inverse system of an original sys-

tem is obtained by establishing an inverse relationship model

between the output and input of the original system directly

(Dirion et al., 1995). Then the direct inverse system of the col-

lision avoidance system can be established by constructing the

inverse relationship between the original system input (i.e., the

rudder), the system states (i.e., ship motion, DCPA, TCPA) and

the target (i.e., target CRI). Then, the obtained inverse system

can be connected with the original system to form a pseudo lin-

ear system as shown in Fig. 6.

 Inverse 
system 

 Original 
system 

pseudo linear collision avoidance system

rudder
Collision avoidance 

states

The target CRI

Collision avoidance 
states

CRI

Figure 6: Inverse model of collision avoidance.

It can be seen from (4)∼(15) that the direct inverse system

of the ship collision avoidance process has a strong nonlinear-

ity and cannot be expressed clearly. As a widely used black-

box modeling method, neural networks (Dirion et al., 1995; He

et al., 2016) or deep neural networks (Finn et al., 2016) have

been successfully applied in the inverse control area, and its

strong approximation ability for arbitrary nonlinear models has

been verified. In this study, a back propagation neural network

(BPNN) is used to approximate the relationship between the in-

put and output of the direct inverse system for collision avoid-

ance, i.e., the inverse model.
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Firstly, representative state features in collision avoidance

can be extracted to construct the sample pairs for the inverse

model. Since a set of relative motion states can correspond to

several sets of original motion states of the ships, the relative

parameters (i.e., DCPA, TCPA, relative distance RT , relative po-

sition direction θT , relative heading direction CT , relative speed

ratio K) are more suitable for training than the original ship mo-

tions (X, XT ). Thus, the following sample pair is designed for

the inverse model:
S in(t) = [DCPA (t),TCPA (t),RT (t), θT (t),CT (t),

K (t), fCRI (t + 1)
]
,

S out(t) = [δ (t)] ,

(36)

where S in(t) and S out(t) are the sample input and output, re-

spectively. Then, a parameterized conditionally policy µθ (S )

represented by a neural network with weight matrix θ can be

trained by minimizing the least square error as:

min
θ

1
2

∑
‖S out(t) − µθ (S in(t))‖22. (37)

After training with the data samples based on the proposed

I-Q-BSAS predictive avoidance method in typical encounters,

the optimal control value of the own ship can be output directly

from the policy µθ (S ) by setting a minimum collision risk at

the future moment fCRI (t + 1) = fCRI min, so as to achieve the

inverse collision avoidance for each encountering ship.

4.2. Reinforced inverse method for multi-ship encounters

Conventional optimization method for multi-ship collision

avoidance encounters needs to optimize the cost including the

CRI between the own ship and each encountering ship (Lazarowska,

2015), which suffers from a large computation and difficulty

of finding an optimum in multi-object optimization. In this

study, the direct inverse model (i.e., the optimal policy) in typ-

ical encounters is used to design a general multi-ship collision

avoidance method with less computation and reinforced based

on on-policy data. Firstly, the weighting method is applied on

the outputs of the inverse model based on CRI for multi-ship

encounters. Then, the on-policy data are collected and aggre-

gated with the data generated by pre-simulation for long-term

re-training of the inverse model.

1) Output weighting based on CRI

To deal with general control problems, the inverse model is

usually combined with a conventional feedback method (e.g.,

PID). Then the outputs of the inverse model and feedback method

can be combined by weighting method directly to obtain the fi-

nal output (Son et al., 2017). In addition, the weights of differ-

ent outputs are commonly set based on the control error.

For collision avoidance, the weighting method can also be

applied to combine different outputs of the inverse model with

different encountering ships. Then, the error between the cur-

rent risk and the target risk f̃CRI(t) = fCRI(t)− fCRI min is defined

as the collision risk error, and the final output can be obtained

as:

δ (t) =

ns∑
i=1

f̃CRIi (t)
ns∑

i=1
f̃CRIi (t)

· δi (t) . (38)

where ns is the number of the encountering ships; f̃CRIi (t) is the

collision risk error of the ith encountering ship with the own

ship; δi (t) is the output of the inverse model for the ith encoun-

tering ship.

2) Long-term learning for the optimal policy

In practical navigation environment, uncertain disturbances

(e.g., ship dynamics perturbation) will change the optimal pol-

icy over time. In order to improve the performance of the in-

verse method, both off-policy and on-policy datasets, i.e., the

dataset DMPC of simulation or actual collision avoidance in typ-

ical encounters based on Algorithm 2 and the dataset DS in ac-

tual multi-ship avoidance based on the inverse model, can be

aggregated for long-term retraining of the optimal policy µθ (S )

at every time step Nre, which can mitigate the mismatch be-

tween the distribution of DMPC and the actual data (Nagabandi

et al., 2018).

Furthermore, to overcome the problems of correlation data

and non-stationary distribution of data. The inverse model is
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Figure 7: The work flow of the reinforced inverse collision avoidance method for multi-ship encounters.

Algorithm 3 Reinforced inverse collision avoidance method for multi-ship encounters
1: for each typical encounters do
2: Initial a virtual encountering ship to form the encounter scene.
3: Use the proposed improved Q-BSAS algorithm for collision avoidance simulation based on Algorithm 2
4: Collect the simulate sample data with the form of (36) as dataset DMPC
5: end for
6: Use a neural network to train the data DMPC and obtain the policy µθ (S ).
7: Initialize the sample pool Ds and the minimum size of Ds for training nDs .
8: while t < tend do
9: for Each encountering ship i← 1 to ns, where ns is the number of the encountering ships do

10: Calculate the relative motion parameters based on (5)∼(13) and the collision risk fCRIi (t) based on (14).
11: Use the trained policy µθ (S ) to output the optimal input δi (t), directly.
12: end for
13: Calculate the final optimal input δ (t) based on (38) and conduct the collision avoidance.
14: Collect the actual sample data with each encountering ship, and add it into Ds.
15: if the size of Ds is larger than nDs and t = k · Nre (where k is a positive integer) then
16: Aggregate the data in Ds with size of nDs and DMPC for retraining the policy µθ (S ) for Nepmin epochs.
17: while The training epoch Nep < Nepmax and do
18: Continuously train the policy µθ (S ) for Nepmin epochs.
19: Nep = Nep + Nepmin
20: Use the output of the current policy for one-step state prediction and calculate the state constraints.
21: if The state constraints in (20) are satisfied then
22: Break while and end the re-training process.
23: end if
24: end while
25: end if
26: t = t + 1.
27: end while

trained by random sampling from previous state transition (i.e.,

the experience replay policy (Mnih et al., 2015)). Then, a mini-

batch dataset D∗ selected randomly from DS is aggregated with

DMPC . By this long-term learning, an adaptive optimal pol-

icy µθ (S ) can be obtained without huge computation. During

the retraining, the control constraints on δi (t) in (17) are also
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considered based on the saturation approach and the state con-

straints are added to the end conditions of the re-training. A

minimum training epoch Nepmin
= 10 and a maximum epoch

Nepmax
= 100 are set for each re-training time in this study. At

every time step Nre, the re-training process is conducted for at

least Nepmin
epochs and stopped if the state constraints are satis-

fied or the maximum epoch Nepmax
is reached.

To illustrate the relation ship between the proposed I-Q-

BSAS based predictive collision avoidance algorithm and the

reinforced inverse method, the work flow of the reinforced in-

verse method for multi-ship encounters is shown in Fig. 7 and

denoted in Algorithm 3.

In summary, the optimal collision avoidance policy based

on the proposed MPC strategy is approximated by an inverse

neural network model. The MPC strategy generates superior

trajectories for the training of the neural network model, and

the output of the neural network is used directly for collision

avoidance to reduce the time cost.

5. Simulation experiments

Simulation experiments for ship collision avoidance in multi-

ship encounters are conducted using the KVLCC2 ship model.

The cost function value J in predictive collision avoidance is

the fitness of the proposed I-Q-BSAS optimization method. A

smaller fitness reflects a better optimization performance (Kennedy

and Eberhart, 1995). Therefore, the optimal fitness values and

real-time performance (i.e., the calculation time of each opti-

mization process) are both compared in the experiments.

In addition, it is considered that the collision avoidance is

completed when the collision risk fCRI between each encounter-

ing ship has been reduced to a certain threshold. In this study,

the risk threshold was set to fCRIT = 0.01, and the line-of-sight

strategy is adopted for ship resuming when the collision avoid-

ance is finished. In all simulation experiments, the control in-

terval is set as h = 0.5s, the control horizon and prediction hori-

zon are set as hC = 0.5s and hP = 4s (Liu et al., 2018). In this

study, we consider more safety collision avoidance results refer-

ring to several related optimization-based and learning-based

researches (Yin and Zhang, 2018; Chen and Huang, 2012a).

The weights are set as µ1 = 0.95 and µ2 = 0.05 referring to the

basic collision avoidance reward function in (Yin and Zhang,

2018).

Besides, the original BSAS and LDWPSO methods are used

for comparisons in the simulation experiments, since LDWPSO

is very similar to BSAS and has been widely used for com-

parisons (Xin et al., 2009; Taherkhani and Safabakhsh, 2016).

Throughout this section, the OS and ES in each figure represent

the own ship and encountering ship, respectively.

5.1. Collision avoidance in typical encounters

The initial relative state of the encountering ship is set based

on the relative course angle CT0, the position direction θT0, the

distance RT0, and speed ratio Kv, as:

XT0 = [xT0, yT0, ψT0, uT , 0, 0],

xT0 = x0 + KvRT0 sin(θT0),

yT0 = y0 + KvRT0 cos(θT0),

ψT0 = ψ0 + CT0,

uT = u0Kv,

(39)

where X0 = [x0, y0, ψ0, u0, 0, 0] is the initial state of the own

ship, which is set as X0 = [0, 0, 0, 1.174, 0, 0], where 1.174 m/s

is the service speed of KVLCC2 model ship. Since the scale

of KVLCC2 is 45:1, the distance RT0 in head-on, small angle

crossing and overtaking encounters are set as RT0 = 4nm/45 =

164m, and RT0 in large angle crossing encounter is set as RT0 =

2nm/45 = 82m to establish a more close-quarters scenario. CT0,

θT0 and Kv in different encounters are set as Table 3.

Table 3: Initial states in typical encounters.

Head-on Crossing Over-takingSmall angle Large angle

CT0/
◦ 180 220 270 0

θT0/
◦ 0 20 70 0

Kv 1 1 0.8 0.3

Furthermore, the design parameters of the original BSAS,

the proposed I-Q-BSAS and LDWPSO are given in Table 4.

Based on the convergence analysis in Appendix A, the con-

stants in BSAS and I-Q-BSAS are set as c = 1. The learning
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Table 4: The design parameters of original BSAS, the proposed I-Q-BSAS and LDWPSO.
Common parameters Parameters of BSAS and I-Q-BSAS Parameters of LDWPSO

Parameters m Pmax Pmin nBS AS η dmin c ζ1 ζ2 nPS O wv c1 c2

Values 15 based on (20) 3 0.9 0.1 1 1.3 1.8 9 1-0.6*i/m 1 1.3 1.8
Significance Max it-

eration
Constrains Pop

size
Attenuation
coefficient

minimum
step

step
ratio

learning factors Pop
size

weight of
the speed

local
learning
factor

global
learning
factor

1 i is the current iteration.

Figure 8: Trajectories, rudder angles and fitness values in head-on encounter.

factors of BSAS and I-Q-BSAS are set the same as those in the

LDWPSO for fair comparisons. Other hyper-parameters are set

referring to the BAS and LDWPSO baselines in (Jiang and Li,

2018; Wang and Chen, 2018; Xin et al., 2009). Note that the

fitness is calculated three times per iteration in BSAS and I-Q-

BSAS, so the population size of LDWPSO is set to three times

that of BSAS and I-Q-BSAS for fairness.

Since the inverse model is trained with the samples gener-

ated by predictive collision avoidance in typical encounters as

mentioned in section 4.1, both the performance of the predictive

collision avoidance and the inverse model are verified.

5.1.1. Verification of the predictive collision avoidance

The ship trajectories, the collision avoidance states (i.e., the

rudder, CRI, relative distances and DCPA) and the mean opti-

mal fitness values in 20 repeated tests in head-on, small angle

crossing, large angle crossing and over-taking encounters are

shown in Fig. 8, Fig. 9, Fig. 10 and Fig. 11, respectively. Be-

sides, the computation time cost of the optimization process at

each time step are shown in Fig. 12. Furthermore, the average

optimal fitness values (Ave f ), the minimum relative distance

(Mind) and the maximum DCPA after avoidance (MaxDCPA)

are regarded as the evaluation indicators of the optimization

and collision avoidance performance. The average time cost

(AveT ) of the optimization is regarded as the indicator of real-

time performance. The indicator results are calculated as shown

in Table 5.

It can be seen form Fig. 8∼Fig. 12 and Table 5 that:

1) With respect to the optimization performance, the pro-

posed I-Q-BSAS algorithm can obtain smaller fitness values in

all encounter scenarios compared with the original BSAS and

LDWPSO algorithms, which indicates the better optimization

performance of the proposed method for collision avoidance. It
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Figure 9: Trajectories, rudder angles and fitness values in small angle crossing encounter.

Figure 10: Trajectories, rudder angles and fitness values in large angle crossing encounter.

Table 5: The indicator results of collision avoidance in typical encounters.
Ave f Mind /m MaxDCPA/m AveT /s

I-Q-BSAS LDWPSO BSAS I-Q-BSAS LDWPSO BSAS I-Q-BSAS LDWPSO BSAS I-Q-BSAS LDWPSO BSAS

ho1 1.0208 1.0213 1.0215 34.603 9.772 13.544 59.640 16.206 24.544 0.337 0.466 0.319
sac1 0.7890 1.0239 1.0239 54.507 27.763 18.525 88.671 42.485 27.120 0.432 0.329 0.446
lac1 0.7847 1.1160 1.1081 54.370 36.951 43.243 60.282 44.842 49.438 0.336 0.506 0.337
ot1 1.1001 1.2294 1.2292 45.558 13.349 22.934 65.530 23.198 38.124 0.452 0.470 0.417
1 ho: head-on; sac: small angle crossing; lac: large angle crossing; ot: over-taking
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Figure 11: Trajectories, rudder angles and fitness values in over-taking encounter.
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Figure 12: Time cost of each optimization process in typical encounters.

can be seen from the data in Table 5 that the minimum relative

distances Mind and the maximum DCPAs MaxDCPA of the I-

Q-BSAS are much larger than those of BSAS with the setting

weights, which are more obvious in head-on, small angle cross-

ing encounters and over-taking. The possible reason is that the

collision risks in head-on, small angle crossing and over-taking

encounters are relatively higher than those in large angle cross-

ing, which can be seen from the CRI curves around the mini-

mum distance in Fig. 8∼Fig. 12. Besides, as can be seen from

the constraints of the relative distances RT , LOS tracking error

in Fig. 8∼Fig. 12 and the control constraints in Fig. 13 that, both

the state and control constraint conditions in (20) are satisfied

in all encounters, which indicates that the proposed I-Q-BSAS

obtains better collision avoidance results than BSAS and LDW-

PSO with the same constraint conditions.

2) With respect to the real-time performance, it can be seen

from Table 5 that the average time costs AveT of the I-Q-BSAS

algorithm are slightly higher than those of the original BSAS

algorithm in all encounters except the large angle crossing en-

counter. In addition, the mean value of the average computation

time cost of the I-Q-BSAS increases 2.45% than the original

BSAS, which indicates that the improvement in I-Q-BSAS has
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Figure 13: The control constraints during collision avoidance in typical encounters.
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Figure 14: Inverse model prediction.

a certain influence on its real-time performance.

In summary, the proposed I-Q-BSAS algorithm can obtain

better optimization and collision avoidance results than the orig-

inal BSAS and LDWPSO with the same level of time cost and

state constraints, which performs better in ship predictive colli-

sion avoidance.

5.1.2. Verification of the inverse model

The obtained simulation results based on the proposed I-Q-

BSAS method in typical encounters (set in Table 3) are used to

train the inverse model. The real rudder output, the predictions

and absolute errors of the trained inverse model are shown in

Fig. 14. The mean square error of the predictions is calculated

to be 0.55◦. After the training, initial states for typical encoun-

ters in Table 6 are set to verify the effectiveness of the proposed

inverse model, using the I-Q-BSAS-based predictive collision

avoidance method in Algorithm 2 for comparisons.

Table 6: Initial states for inverse model validation.

Head-on Crossing Over-takingSmall angle Large angle

CT0/
◦ 186 210 280 2

θT0/
◦ 3 15 75 2

Kv 1 1 1 0.3

Ship trajectories of the inverse model and I-Q-BSAS method

are shown in Fig. 15. The collision avoidance results and time
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Figure 15: Inverse predictive collision avoidance trajectory.
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Figure 16: Relative distance of inverse predictive collision avoidance.
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Figure 17: Time cost of inverse predictive collision avoidance.

costs are both compared since the advantage of the inverse model

is that the optimal rudder can be directly output without the op-

timization process. The control inputs, relative distances are

shown in Fig. 16, and the time cost are shown in Fig. 17. The

minimum relative distance Mind, the maximum DCPA after

avoidance MaxDCPA, and the average time cost AveT are cal-

culated as shown in Table 7.

Table 7: Collision avoidance indicators of inverse method in typical encounters
Mind /m MaxDCPA/m AveT /s

I-
QBSAS

Inverse
model

I-
QBSAS

Inverse
model

I-
QBSAS

Inverse
model

ho1 29.824 30.194 48.044 48.514 0.365 0.002
sac1 25.854 32.868 38.635 51.936 0.373 0.003
sac1 59.429 57.274 64.354 62.791 0.370 0.003
ot1 27.480 26.168 43.844 42.632 0.481 0.004
1 ho: head-on; sac: small angle crossing; lac: large angle crossing; ot:

over-taking

It can be seen from the results in Fig. 15 ∼ 16 that, in case of

using one set of typical encounter samples (Table 3), it is pos-

sible to realize the collision avoidance by the proposed inverse

model in another different set of encounters (Table 6). With

the direct output of the inverse model, the time cost of collision

avoidance can be significantly reduced while a good avoidance

result similar to that of I-Q-BSAS can be obtained, which can

be seen in Fig. 17 and Table 7.

5.2. Collision avoidance in multi-ship encounters

In order to verify the effectiveness of the proposed reinforce

inverse method for multi-ship encounters, different encounter-

ing ships are set at the same time for collision avoidance. The

proposed reinforced inverse method denoted in Algorithm 3

is used for multi-ship collision avoidance experiments. Both

the proposed I-Q-BSAS based method and the off-line inverse

model are used for comparisons to verify the effectiveness of

neural network approximation in the inverse model and long-

term learning in the reinforced inverse method. In I-Q-BSAS

based method, the rudders with respect to different encounter-

ing ships are optimized by I-Q-BSAS and weighted based on

(38) to generate the final rudder action. To simplify the illustra-

tion, RI and IM are used to represent the proposed reinforced

inverse method and inverse model, respectively.

5.2.1. Collision avoidance without ship dynamics perturbation

In the comparative test, the time step for retraining the opti-

mal policy is set as Nre = 5s. Four different encountering ships

are set at the same time to form the multi-ship encounter. Since

the optimization process is replaced with the output of the in-

verse model, the fitness in multi-ship encounter is calculated as:

Jmulti (t) =µ1 ·max
{
fCRI1 (t), fCRI2 (t), · · · , fCRIn (t)

}
+µ2 · |∆δ (t)| ,

(40)

where Jmulti (t) is the fitness in multi-ship encounter at time t; n

is the number of the encountering ship and fCRIi (t) is the colli-

sion risk between the own ship and the ith encountering ship; µ1

and µ2 are set the same as in (16). Besides, the minimum rela-
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Figure 18: Collision avoidance results without ship dynamics perturbation.
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Figure 19: Relative distances, LOS tracking errors and fitness results without ship dynamics perturbation.

tive distance between the own ship and each encountering ship

is taken as the evaluation index of actual collision avoidance

performance.

The ship trajectories, the collision risks, the rudder inputs

for each encountering ship, and the final rudder values are shown

in Fig. 18. To fully compare the network based methods (i.e., RI

and IM) and the I-Q-BSAS method, the relative distances be-

tween the own ship and each encountering ship, the LOS track-

ing errors and the final fitness results are shown in Fig. 19, as

well as the state constraints. The time cost of I-Q-BSAS, the

inverse model and reinforced method are shown in Fig. 20. The

final indicators, i.e., the minimum distances, mean fitness val-

ues and mean time cost are calculated as shown in Table 8.

Table 8: Collision avoidance indicators in multi-ship encounters without pa-
rameter perturbation.

RTmin /(m)
Jmultimean /(-) Tmean/(s)ES1 ES2 ES3 ES4

I-Q-BSAS 16.86 18.73 38.16 61.10 0.681 0.450 2
IM1 19.16 21.10 30.32 63.65 0.727 0.001 1
RI1 19.11 21.19 40.34 62.67 0.665 0.007 6
1 IM: the inverse model; RI: the reinforced inverse method

It can be seen from Fig. 18 and Fig. 19 that the own ship can

realize effective collision avoidance based on the reinforced in-

verse method, the inverse model and the I-Q-BSAS method. At

the beginning of the collision avoidance, the CRIs with ship 1

and 2 are both higher than those with ship 3 and 4. Correspond-
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Figure 20: Time cost without ship dynamics perturbation.

ingly, the final rudder outputs have the highest fitting degree

with the outputs for ship 1 and 2. After that, the CRIs with ship

1 and 2 are reduced and the CRI with ship 3 is increased and

becomes even higher than the CRIs with ship 1 and 2. There-

fore, the final rudder value locates between the outputs for ship

1, 2 and ship 3 until the collision avoidance is finished.

Compared with the inverse model, the outputs of the rein-

forced method are still different from those in the inverse model

since the optimal policy is re-trained in the reinforced method.

It can be seen from Fig. 18 that the CRI with ship 3 of the rein-

forced method is reduced faster than that of the inverse model,

which results in larger distance with ship 3 and better final opti-

mal fitness of the reinforced method as shown in Fig. 19 and Ta-

ble 8. Note that the re-training process in the reinforced method

also results in larger time cost than the direct inverse model,

which can be seen in Fig. 20 Table 8.

Compared with the proposed I-Q-BSAS method, it can be

seen from Fig. 20 and Table 8 that both the reinforced method

and inverse model have much lower time costs than I-Q-BSAS

since the optimization processes are approximated by the neural

networks. Without ship dynamics perturbation, the final rela-

tive distance results and fitness results of the reinforced method

and I-Q-BSAS method are very similar, which can be seen in

Table 8. The minimum distances and LOS tracking errors also

satisfy the constraints, which can be seen in Fig. 19.

Therefore, it can be concluded that the reinforced method

performs better than the inverse model and the proposed I-Q-

BSAS method in collision avoidance without ship dynamics

perturbation.

5.2.2. Collision avoidance with ship dynamics perturbation

Several dynamic parameters of the own ship are perturbed

to a certain extent at the beginning of multi-ship collision avoid-

ance. In view of the collision avoidance in this study is mainly

based on steering, two coefficients related to the rudder angle

in the sway and yaw directions, i.e., Yδ and Nδ in (3) are in-

creased by 50%. Then the final ship trajectories, rudder results

and CRIs are shown in Fig. 21, the relative distances, the LOS

tracking errors and fitness results are shown in Fig. 22. The time

costs are shown in Fig. 23. The minimum relative distances, the

mean fitness and time cost results are calculated in Table 9.

Table 9: Collision avoidance indicators in multi-ship encounters with parameter
perturbation.

RTmin /(m)
Jmultimean /(-) Tmean/(s)ES1 ES2 ES3 ES4

I-Q-BSAS 19.99 21.87 27.99 64.11 0.733 0.451 3
IM1 27.83 30.01 0.68 69.05 0.753 0.001 5
RI1 26.68 29.23 30.16 69.11 0.715 0.012 7
1 IM: the inverse model; RI: the reinforced inverse method

It can be seen from Fig. 21 that, after the perturbation of

ship dynamics, the rudder outputs by the reinforced method are

still similar to those in Fig. 18, while the inverse model without

re-training is failed to reduce the CRI with encountering ship 3

effectively, which results in a minimum distance close to zero

with ship 3 as shown in Table 9, which is infeasible under the

constraints shown in Fig. 22.

Compared with the inverse model, the proposed reinforced

inverse method obtains an adaptive optimal policy which is more

suitable for the current ship model and avoids collision with

encountering ship 3. It can be seen from Fig. 22 and Table 9

that the reinforced method obtains obviously larger minimum

distance with ES3 than the inverse model while the minimum

distances with other encountering ships are at the same level.

Thus, the reinforced method also obtains a better mean fitness

value than the inverse model, which can be seen in Table 9. Be-

sides, the time costs of the reinforced method are larger than

those of the direct inverse model, which is similar to the results

without parameter perturbation.
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Figure 21: Collision avoidance results with ship dynamics perturbation.
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Figure 22: Relative distance, LOS tracking errors and fitness results with ship dynamics perturbation.
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Figure 23: Time cost with ship dynamics perturbation.

Compared with the proposed I-Q-BSAS method, it can be

seen from Fig. 21 and Fig. 22 that the relative distances and

LOS tracking errors of both the reinforced method and I-Q-

BSAS satisfy the constraints since the state constraints are still

considered in the re-training process, while those of the inverse

model violates the constraints. In spite of this, the reinforced

method still obtains larger minimum distances and better mean

fitness results than the I-Q-BSAS, which can be seen in Ta-

ble 9. Moreover, the reinforced method also has much fewer

time costs than the I-Q-BSAS approach, which is similar to the

results without ship dynamics perturbation.

Generally speaking, both the proposed I-Q-BSAS and the

inverse model can achieve multi-ship collision avoidance under

the known ship dynamics. Benefiting from the function approx-
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imation and re-training with on-policy data, the proposed rein-

forced inverse method can reduce the time cost of I-Q-BSAS

significantly, and obtain better collision avoidance performance

than the direct inverse model when the ship model dynamics

are perturbed or unknown.

6. Conclusions and future research

In view of the real-time ship collision avoidance problem,

a reinforced inverse method for predictive collision avoidance

is proposed by combining MPC, an improved Q-BSAS (I-Q-

BSAS) algorithm and a neural network. MPC is applied for

establishing the predictive collision avoidance strategy, and the

proposed I-Q-BSAS algorithm is used for solving the MPC op-

timization problem by combining an improved BSAS and Q-

learning. The neural network is used to learn an inverse model

that is used to approximate the optimal policy in MPC for real-

time collision avoidance. In addition, the inverse model is rein-

forced through long-term retraining with aggregated on-policy

and off-policy data. The following conclusions are drawn from

the simulation experiments using the model of KVLCC2:

(1) In terms of collision avoidance in typical encounters, the

proposed I-Q-BSAS can obtain smaller optimal fitness valves

and better collision avoidance performance than the origi-

nal BSAS and LDWPSO with the same level of time cost.

Moreover, the proposed inverse model can significantly re-

duce the time cost of the proposed I-Q-BSAS with the ap-

proximated performance.

(2) In terms of collision avoidance in multi-ship encounters,

the proposed reinforced method still has lower time cost

than the proposed I-Q-BSAS and performs better than the

direct inverse model with ship dynamics perturbation, which

verifies the effectiveness of the neural network approxima-

tion and the long-term policy retraining, respectively.

Future works can be carried out on the following aspects:

1) Note that only one ship is considered for collision avoid-

ance in this study, the distributed model predictive control frame

work (Zheng et al., 2017b, 2016, 2017a) could be considered

for multi-ship collision avoidance if all the ships are controlled.

2) In this study, the weighting approach is used to consider

both safety and economy in ship collision avoidance. This re-

quires repeated adjustments. A multi-objective Q-BSAS algo-

rithm can be considered for more reasonable collision avoid-

ance results as part of future research.

3) The uncertain environment (i.e., unknown static obsta-

cles and encountering ship states) can be considered, and the

obtained optimal policy will be combined with several model-

free reinforcement learning methods to deal with the uncertain

environment.
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Appendices

A. Convergence and global optimality analysis of the im-

proved BSAS

In this section, convergence and global optimality analysis

of the improved BSAS denoted in Section 3.3.2 are given.

A.1. Convergence analysis

The improved BSAS algorithm uses random directions of

the beetle antennas for optimization, which is a kind of stochas-

tic optimization algorithm. Linear time-invariant discrete sys-

tem stability analysis is a widely used method for convergence

analysis of stochastic optimization algorithms (Samal et al., 2007;

Kadirkamanathan et al., 2006). Since Jilbest and Jirbest are up-

dated at every iteration and remain the same between two ad-

jacent iterations, which can be regarded as discrete variables

changing over iterations as a dynamic system:

ϕ1 (k) =
‖Jirbest‖

‖Jilbest‖ + ‖Jirbest‖
,

1 − ϕ1 (k) =
‖Jilbest‖

‖Jilbest‖ + ‖Jirbest‖
,

(41)

where k is the iteration number.

Then the following equation is obtained by combining (24)

and (41):

δ̂ik =δ̂ik−1 + crdϕ1 (k)
(
δ̂ilbest − δ̂ik−1

)
+ crd (1 − ϕ1 (k))

(
δ̂irbest − δ̂ik−1

)
,

(42)

Furthermore, another discrete variable is defined as:

ϕ2 (k) = crdϕ1 (k) δ̂ilbest + crd (1 − ϕ1 (k)) δ̂ilbest (43)

Based on (42) and (43), the update strategy of the centroid

can be simplified to a typical linear time-invariant discrete sys-

tem as:

δ̂ik = (1 − crd) δ̂ik−1 + ϕ2 (k) , (44)

Then, the necessary and sufficient condition for the conver-

gence of the system denoted by (24) is that the only eigenvalue

of the coefficient matrix (1 − crd) satisfies the following condi-

tion:

|1 − crd | < 1⇔ 0 < crd < 2. (45)

Thus, the sufficient condition for convergence of the cen-

troid position is 0 < c < 2.

A.2. Global optimality analysis

Define S as the searching space of the improved BSAS and

µ [·] as the probability measure. Assuming that the theoretical

global optimum of the problem to be solved is ξ∗, which has a

probability in any subset ∀A ∈ S. The global optimality of the

proposed improved BSAS algorithm can be guaranteed by the

following condition since the global fitness Jg is monotonous

and non-increasing (Solis and Wets, 1981):

µ{δ̂g = ξ∗|∀ξ∗ ∈ S} > 0, (46)

Jiang and Li (2017); Wang and Chen (2018) have proposed that

the initialization of the step l0 of the beetle is very important for
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optimization. In Jiang and Li (2017), the l0 is given as:

l0 = 2
∥∥∥δ̂max − δ̂min

∥∥∥ , (47)

Where [δ̂min, δ̂max] = S is the searching space. However, the

proof of the global optimality of BSAS algorithm has not been

given at present. In this study, we attempt to proof the con-

ditional global optimality of the improved BSAS algorithm as

follows:

Theorem 1: Assuming that the step l0 of the beetle in the

improved BSAS algorithm is initialized as (47), the condition

denoted in (46) can be satisfied and the global optimality of the

improved BSAS is guaranteed:

Proof: Based on (27), the step of the beetle at kth iteration

dk satisfies:

µ
[
dk = d|∀d ∈

[
dmin, 2

∥∥∥δ̂max − δ̂min
∥∥∥ + dmin

]]
> 0, (48)

It can be seen from (28) that dk affects the exploring of two

antennas directly. The probability of {δ̂k
il = ξ∗} is:

µ
[
δ̂k

il = ξ∗
]

= µ

[
δ̂k

ilbest +
1
2

dk d
‖d‖

= ξ∗
]

= µ

 d
‖d‖

=
2
(
ξ∗ − δ̂k

ilbest

)
dk

 ,
(49)

Based on the law of total probability, we get:

µ

[
d
‖d‖ =

2
(
ξ∗−δ̂k

ilbest

)
dk

]
≥µ

 d
‖d‖

=
2
(
ξ∗ − δ̂k

ilbest

)
dk |

{
dk > 2

∥∥∥ξ∗ − δ̂k
ilbest

∥∥∥}
· µ

[
dk > 2

∥∥∥ξ∗ − δ̂k
ilbest

∥∥∥] ,
(50)

where ‖·‖ represents the 2-norm. Since d
‖d‖ is a random vec-

tor with an uniform distribution between [−1, 1], the following

equation is obtained:

µ

 d
‖d‖

=
2
(
ξ∗ − δ̂k

ilbest

)
dk |

{
dk ≥ 2

∥∥∥ξ∗ − δ̂k
ilbest

∥∥∥} > 0, (51)

In addition, for ∀d̃ ∈
(
2
∥∥∥ξ∗ − δ̂k

ilbest

∥∥∥ , 2 ∥∥∥δ̂max − δ̂min
∥∥∥ + dmin

)
,

we have the following equation based on (48) and the law of

total probability:

µ
[
dk > 2

∥∥∥ξ∗ − δ̂k
ilbest

∥∥∥]
=µ

[
dk = d̃

]
µ
[
d̃ > 2

∥∥∥ξ∗ − δ̂k
ilbest

∥∥∥]
+ µ

[
dk , d̃

]
µ
[
dk > 2

∥∥∥ξ∗ − δ̂k
ilbest

∥∥∥ |{dk , d̃}
]

≥µ
[
dk = d̃

]
µ
[
d̃ > 2

∥∥∥ξ∗ − δ̂k
ilbest

∥∥∥]
=µ

[
dk = d̃

]
> 0,

(52)

Then, combining (49)∼(52), we get:

µ
[
δ̂k

il = ξ∗|∀ξ∗ ∈ S
]
> 0, (53)

Based on (25) and (53), we get:

µ
[
δ̂g = ξ∗|∀ξ∗ ∈ S

]
≥µ

[
δ̂g = δ̂k

il|δ̂
k
il = ξ∗

]
µ
[
δ̂k

il = ξ∗|∀ξ∗ ∈ S
]

=µ
[
δ̂k

il = ξ∗|∀ξ∗ ∈ S
]
> 0.

(54)

Therefore, the condition in (46) is proofed to be satisfied, the

global optimality of the proposed improved BSAS algorithm

can be guaranteed with the initial step l0 setting as (47). Theo-

rem 1 proof finishes.

B. Comparisons of the proposed I-Q-BSAS, original BSAS

and LDWPSO with benchmark functions

As mentioned in Section 3.3.3, to verify the optimization

performance of the improved Q-learning beetle swarm antenna

search (I-Q-BSAS) algorithm comprehensively, several bench-

mark tests are conducted in this section. The original beetle

swarm antenna search (BSAS) algorithm and linear decreasing

weight particle swarm optimization (LDWPSO) algorithm are

used for comparisons. 6 benchmark functions with different

dimensions (Jamil and Yang, 2013), i.e., ’Ackley’, ’Rastrigin’,

’Sum Squares’, ’Rosenbrock’, ’Griewank’ and ’Salomon’, are

selected since the dimension of the benchmarks has influences

on the optimization performance.The detailed conditions and

equations of the benchmarks are shown in Table 10. The mean
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Table 10: Benchmark functions.
Benchmark functions Equations Search area

Ackley f1 (x) = 20 + e − 20 exp

−0.2

√
1
N

N∑
n=1

xn

 − exp


√

1
N

N∑
n=1

cos(2πxn)

 xn ∈
[
−10 10

]
Rastrigin f3 (x) =

N∑
n=1

(
xn

2 − 10 cos (2πxn) + 10
)

xn ∈
[
−5.12 5.12

]
Sum Squares f5 (x) =

N∑
n=1

(
nxn

2
)

xn ∈
[
−5.12 5.12

]
Rosenbrock f4 (x) =

N−1∑
i=1

100
(
xi+1 − x2

i

)2
+ (xi − 1)2 xn ∈

[
−10 10

]
Griewank f2 (x) = 1

4000

N∑
n=1

xn
2 −

N∏
n=1

cos
(

xn√
n

)
+ 1 xn ∈

[
−600 600

]
Salomon f6 (x) = 1 − cos

2π
√

N∑
i=1

x2
i

 + 0.1

√
N∑

i=1
x2

i xn ∈
[
−10 10

]

Figure 24: Comparison of the proposed I-Q-BSAS, BSAS and LDWPSO with 10 dimensions.

Figure 25: Comparison of the proposed I-Q-BSAS, BSAS and LDWPSO with 20 dimensions.
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Figure 26: Comparison of the proposed I-Q-BSAS, BSAS and LDWPSO with 30 dimensions.

Table 11: Mean and variance values of optimal fitness of the proposed I-Q-BSAS, original BSAS and LDWPSO.
Dimensions 10 20 30

Methods I-Q-BSAS BSAS LDWPSO I-Q-BSAS BSAS LDWPSO I-Q-BSAS BSAS LDWPSO

f1
mean 3.67E-03 4.56E-01 1.60E-01 7.35E-03 1.60E+00 1.45E+00 8.23E-03 2.26E+00 4.56E+00
var 1.18E-05 2.95E-02 2.61E-01 3.23E-05 7.11E-01 1.71E+00 6.96E-05 3.41E-01 7.60E+00

f2
mean 2.41E-03 2.42E+01 1.63E+01 7.98E-03 9.51E+01 6.85E+01 6.35E-03 1.71E+02 1.34E+02
var 8.02E-06 1.38E+02 2.16E+02 1.82E-04 9.91E+02 1.00E+03 8.73E-05 1.71E+03 2.26E+03

f3
mean 1.48E-05 5.63E-02 1.31E+00 2.93E-04 1.01E+00 4.66E+01 1.01E-03 6.47E+00 2.20E+02
var 3.67E-10 8.48E-04 3.41E+01 1.02E-07 2.25E-01 9.96E+03 2.14E-06 1.42E+01 4.94E+04

f4
mean 9.33E+00 4.14E+01 5.58E+02 2.35E+01 9.75E+01 9.21E+02 3.88E+01 2.95E+02 1.52E+03
var 5.01E-01 4.77E+03 5.00E+06 1.33E+02 8.96E+03 6.45E+06 1.51E+02 4.25E+04 9.86E+06

f5
mean 4.80E-03 9.78E-01 4.47E-02 3.79E-02 1.21E+00 3.49E+00 3.33E-02 1.74E+00 2.06E+01
var 2.67E-05 2.46E-02 5.69E-03 8.99E-03 7.31E-03 1.16E+02 3.36E-03 1.04E-01 1.03E+03

f6
mean 2.13E-03 2.10E-01 1.80E-01 4.87E-03 5.10E-01 7.15E-01 8.31E-03 9.35E-01 1.10E+00
var 4.07E-06 2.00E-03 2.27E-02 7.52E-05 1.99E-02 7.19E-02 1.45E-04 5.08E-02 1.38E-01

fitness curves and fitness ranges in 20 repeated tests with 10, 20

and 30 dimensions are shown in Fig. 24, Fig. 25 and Fig. 26,

respectively.

Remark: The dimension of the benchmark functions is the

dimension of the target variables to be optimized in the func-

tions.

Since random values are used in both I-Q-BSAS, BSAS and

LDWPSO, the fitness results of repeated tests at the same iter-

ation are different. The mean and variance values of the final

optimal fitness results represent the average ability and stability

of the optimization. Therefore, both the mean and variance val-

ues are calculated and shown in Table 11. It can be seen from

Fig. 24∼26 and Table 11 that the proposed I-Q-BSAS can ob-

tain smaller mean and variance values of the optimal fitness re-

sults than original BSAS and LDWPSO in all benchmark func-

tions with the same dimension, which indicates the proposed I-

Q-BSAS outperforms the original BSAS and LDWPSO in both

average ability and stability of optimization.
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