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Abstract—Oscillating-water-column (OWC) devices are a very
important type of wave energy converters which have been
extensively studied over the years. Although most designs of
OWC are based on floating or fixed structures exposed above
the surface level, little is known from completely submerged
systems which can benefit from reduced environmental loads and
a simplified structural design. The submerged type of resonant
duct consists of two OWCs separated by a weir and air chamber
instead of the commonly used single column. Under conditions
close to resonance, water flows from the first column into the
second one, resulting in a positive flow through the system from
which energy can be extracted by a hydro turbine. While existing
work has looked at the study of the behaviour of one OWC,
this paper addresses the dynamic interaction between the two
water columns including the mass transfer mechanism as well as
the associated change of momentum. A numerical time-domain
model is used to obtain some initial results on the performance
and response of the system for different design parameters. The
model is derived from 1D conservation of mass and momentum
equations, including hydrodynamic effects, adiabatic air com-
pressibility and turbine induced damping. Preliminary results
indicate that the mass transfer has an important effect both on
the resonance amplification and on the phase between the motion
of the two columns. Simulation results are presented for the
system performance over several weir heights and regular wave
conditions. Further work will continue in design optimization
and experimental validation of the proposed model.

Index Terms—wave energy converter, submerged oscillating
water column, mass transfer

I. INTRODUCTION

In the past decades the demand and use of energy has
increased, the majority of the energy is being generated by
non-renewable energy resources. The finite supply and the
significant environmental impacts of these energy sources
has let to the increased demand for technologies exploding
renewable energy. The potential global wave power resource
is estimated around 2TW [1], harvesting energy from waves
is a promising resource. Over the years many types of wave
energy converters (WEC) have been developed [2]. The work
of this paper is based on the oscillating-water-column (OWC)
type of WEC. The basic geometrical configuration of an OWC
comprises a large chamber inside a floating or fixed structure
connected to the open sea via an opening in the vertical
wall. Inside the chamber fluctuation of the water column

elevation compresses and expands the air, forcing it in and
out the chamber through a turbine to the atmosphere. The
OWC’s dynamics and energy conversion mechanism have been
extensively investigated and a number of OWCs have been
built and tested. Since the 80s various OWC plants have been
operative [3].
Although extensive research has been done on this basic con-
figuration little is known about completely submerged systems
using oscillating water columns. The submerged resonant duct,
analysed in this paper was proposed by D. Carey in the late
70s [4] and consists of two water columns separated by a weir
and an air chamber. Under resonance conditions water flows
over the weir into the second column, resulting in a positive
mean flow through the full system. The hydraulic turbine
placed at the exit of the second column extracts the kinetic
energy contained in the flow. Previous work has elaborated
on the behaviour of a single submerged column [5]–[10]
excluding the interaction between the two columns and the
turbine. Additionally in these and other works [11]–[13] the
time dependent Bernoulli equation has been used as basis for
the equation of motion, neglecting the momentum associated
by the change of mass. This paper addresses the dynamic non-
linear interaction of the coupled water column, including the
mass transfer [10] and its associated change of momentum.
Furthermore, the behaviour of the turbine is included in the
time-domain analysis of the system.

II. TIME-DOMAIN NUMERICAL MODEL

A. System description

Consider the submerged OWC shown in Fig. 1. The OWC
consist of an air chamber with initial volume V0 and the initial
pressure p0 corresponding to the atmospheric patm and hydro-
static pressure ρghc in equilibrium position at depth hc. The
level of the weir, separating the two water columns, zw is
measured in upward direction from depth hc. The two columns
are denoted by subscripts 1 and 2, the areas of the column A1,
Ac1 and Ac2 are assumed constant along the streamlines L1,
Lc1 and Lc2. The area of the exit duct along streamline L1 is
a function of the turbine diameter A2 = 1

4πD
2
t . The in-plane

width of the structure is denoted by Lt. Lastly the horizontal
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Fig. 1. Cross-section of the submerged Oscillating water column, symbols
denote geometrical characteristics.

distance between the center of the mouth of the first column
to the exit of the second column is denoted by Lh

B. Motion of the water column

The equation of motion of a submerged water column is
derived using the control volume Vc indicated by the dashed
red box in Fig. 1 , the full length of the volume is from the
entrance to the weir level with variable cross section Ac1 and
A1. For free-surface levels of x1 < zw the volume is only
partially filled, resulting in the mass changes related with
the surface level of the columns. The equations of motion
including this change of mass are derived from the equations
of conservation of momentum and mass. The momentum
equation is given by [14]:∫

Vc

∂ρv
∂t

+∇ · (ρvv) dVc =
∫
S

−pn dS +

∫
Vc

ρg dVc

=

∫
Vc

−∇p+ ρg dVc
(1)

Where g is the gravitational acceleration, ρ the water
density, v the local velocities and p the external pressures.
Equation (1) holds for any control volume, thus the integrands
vanishes from the equation:

∂ρv
∂t

+∇ · (ρvv) = −∇p+ ρg (2)

Rewriting the second term in (2) by:

∇ · (ρvv) = [∇ · (ρv)]v + ρv · ∇v (3)

and applying the chain rule differentiation results in the
conservation of momentum equation from which the forces
associated by the change of mass times the velocity, the
acceleration and the external pressure can be distinguished:[

∂ρ

∂t
+∇ · (ρv)

]
v + ρ

[
∂v
∂t

+ v · ∇v
]
= −∇p+ ρg (4)

The expression for the change of mass can be derived from
the conservation of mass equation [14]. Assuming a rigid body
translation of the fluids the displacement and the associated
change of mass can both be expressed as a function of the
flow velocity.∫

V

∂ρ

∂t
dV +

∫
V

∇ · (ρv) dV = ρAc1ẋ1 (5)

Solving the integrands for the control volume Vc = L1A1+
(Lc1 + zw)Ac1 results in the following expression for the
change of mass:[

∂ρ

∂t
+∇ · (ρv)

]
=
ρAc1ẋ1
Vc

(6)

Further, by assuming an inviscid and irrotational fluid with a
constant density the acceleration term in (4) can be simplified
to:

ρ

[
∂v
∂t

+ v · ∇v
]
= ρ

∂v
∂t

+ ρ∇1

2
v2 (7)

Substituting both expressions of (6) and (7) in (4) and
integrating over the streamline results in the equation of
motion of the column expressed in pressure.

ρ(
Ac1
A1

L1 + Lc1 + x1)ẍ1 +
Ac1x1
Vc

ρẋ21 + ρ
ẋ21
2

= p− ρgx1
(8)

C. Weir Discharge

Equation (8) describes the motion behaviour of x1,2 < zw.
When the displacement exceeds the weir level water is dis-
charged to the other column and requires the equation to be
modified. The fluid is assumed to be drawn off instantaneously,
the discharge is denoted by Qw and positive for flow from
column 1 to column 2. The value weir discharge, for the
displacements and velocities conditions presented in Fig. 2
is given by:

Qw =

ẋ1Ac1 x1 ≥ zw , x2 < zw , ẋ1 > 0
(ẋ1 − ẋ1Ac1+ẋ2Ac2

Ac1+Ac2
)Ac1 x1 ≥ zw , x2 ≥ zw

−ẋ2Ac2 x1 < zw , x2 ≥ zw , ẋ2 > 0
0 x1 < zw , x2 < zw

(9)
Introducing the weir discharge decouples the free-surface

elevation from the velocity of the column, the free-surface is
now described by:

x1 =

∫ t

t0

(
ẋ1 −

Qw
Ac1

)
dt

x2 =

∫ t

t0

(
ẋ2 +

Qw
Ac2

)
dt

(10)

With the fluid being drawn the velocity and momentum at
the free surface is decreased, resulting in the expressions for
the convective and mass change momentum of:



Fig. 2. Weir discharge for displacement and velocity conditions. (a) for x1 ≥
zw and ẋ1 ≥ 0 while x2 ≤ zw and for all values of ẋ2, (b) for x1,2 ≥ zw
for all values of ẋ1,2, (c) for x2 ≥ zw and ẋ2 ≥ 0 while x1 ≤ zw and for
all values of ẋ1, (d) for x1,2 ≤ zw and all values of ẋ1,2

ρ
ẋ21
2

= ρ
(ẋ1 − Qw

Ac1
)2

2

ρ
ẋ22
2

= ρ
(ẋ2 +

Qw
Ac2

)2

2

(11)

Ac1x1
Vc

ρẋ21 =
Ac1x1
Vc

ρ

(
ẋ1 −

Qw
Ac1

)2

Ac2x2
Vc

ρẋ22 =
Ac2x2
Vc

ρ

(
ẋ2 +

Qw
Ac2

)2
(12)

Additionally, the drop of water from the weir on the free
surface of the column gives an additional impact pressure.
The magnitude of the impulse is determined assuming the
instantaneous discharge and mass transfer. The velocity of the
dropping water is derived from the potential and kinetic energy
relation depending on the difference between the weir level
and the column displacement.

ρg(zw − x) =
1

2
ρv2drop (13)

The impact force is calculated from the velocity difference
of the dropping water and the column and the weir discharge,
resulting in an impact pressure of:

pdrop,2 =
(vdrop,2+ẋ2)ρ|Qw|

Ac2
x1 ≥ zw, x2 < zw

0 x1 > zw
(14)

pdrop,1 =
(vdrop,1+ẋ1)ρ|Qw|

Ac1
x2 ≥ zw, x1 < zw

0 x2 > zw
(15)

It is important to mentions that the impact is assumed to
be spread over the full area of the second column. In reality
the drop acts locally and will affect the internal free-surface
variations.

D. Air chamber dynamics

Apart from the mass transfer the columns are coupled by the
pressure in the air chamber. The mass of air in the air chamber
is M = ρair(t)V (t), being ρair(t) the air density and V (t)
the air volume. The air volume is given by the equation:

V (t) = V0 −Ac1x1 −Ac2x2 (16)

Given the small temperature oscillations and short timescale
for heat exchange, the thermodynamic process is assumed both
adiabatic and reversible. The equation of the relation between
the air density and the air pressure for this isentropic process
is: (

p0
p(a)

) 1
γ

=

(
ρ0
ρ(t)

)
(17)

where ρ0 is the initial air density and γ the polytropic
exponent, here a value of γ = 1.4 is used for the isentropic
process. Assuming little air is discharged inside the water, the
continuity of mass holds:

dρ(t)V (t)

dt
= ρ̇(t)V (t) + V̇ (t)ρ(t) = 0 (18)

Substituting (16) and (17) into (18) gives the equation that
describes the dynamics of the air chamber.

ṗair = γ
Ac1ẋ1 +Ac2ẋ2

V0 −Ac1x1 −Ac2x2
(p0 + pair) (19)

E. Turbine pressure

A hydraulic turbine is used to extract the energy from the
constrained flow in the second column. In the proposed model,
the operating turbine is introduced as a reaction pressure on
the equation of motion of the water column.

The turbines pressure ptur is obtained from the power
generated by the turbine Ptur as a function of its specific speed
and unit discharge through the turbine. For bulb turbines this
relation is obtained from empirical regression relations found
in [15]:

Ptur =

(
390.591

(
Q(t)

D2
tH(t)0.5

)0.8209
H(t)1.25

N

)2

(20)

ptur =
Ptur
Q(t)

(21)

Where N is the rotation speed of the turbine in rpm, H(t)
is the dynamic head of the flow through the turbine in meters,
and Q(t) is the flow discharge in cubic meters per second:



Fig. 3. Relation between turbine power output and available power Pav versus
the fluid velocity at the turbine for different rotational speeds according to
empirical relations from Bulb turbines [16]; a turbine diameter of 2m is used.

H(t) =

1
2ρ
(
Ac2
A2
ẋ2

)2
ρg

(22)

Q(t) = Ac2ẋ2 (23)

The empirical relation in (20) was obtained from operating
turbines under stationary pressure and discharge conditions
and is does not include any dynamic effects which might
could be derived from oscillatory flows and pressures. For
the current application this assumption implies instantaneous
changes in the turbine reaction and extracted power which
become more relevant for larger systems, nevertheless this
simplified model gives sufficient insight for the purpose of
this work on the coupling effect that the turbine pressure
has on the motion of the water flow. For this paper, energy
extraction from the turbine is only considered for the flow
exiting the system (unidirectional flow), when the flow is in
the opposite direction, the flow is assumed to be undisturbed
by the presence of the turbine, i.e. the pressure reaction from
the turbine is zero when flow is coming from the exit opening.

In Fig. 3 the performance curve of the turbine is given for
different velocities with a turbine diameter Dt = 2m. The
available power Pav in the flow is calculated from the dynamic
pressure and discharge at the turbine:

Pav =

(
1

2
ρ

(
Ac2
A2

ẋ2

)2
)
· (Ac2ẋ2) (24)

Is it observed in Fig. 3, that for a constant rotational speed
the output power demanded by the turbine can be higher
than the available power in the flow. In this case a turbine
with variable speed operation would be able to deal with this
difference. In this paper, the results with velocities higher than
the limit velocity will be used to determine the power potential
of the device.

F. Wave pressure

The pressure variation at the opening is derived from linear
wave theory, simplified by assuming a undisturbed wave field
over the fully submerged structure. Additionally, a uniform
pressure at the opening is assumed under the condition of the
wave length being much longer compared to the width of the
opening. The equation for the excitation pressure caused by a
regular wave on both columns is:

pw,1 = ρga
cosh(k(−h1 + d))

cosh(kd)
sin(ωwt− 0) (25)

pw,2 = ρga
cosh(k(−h2 + d))

cosh(kd)
sin(ωwt− kLh) (26)

Where, a is the wave amplitude, k is the wave number, ωw
the wave frequency and b2 the horizontal distance between
openings of column 1 and column 2.

G. Radiation pressure

The hydrodynamic end-effects are determined from [5].
Here the pressures related to the added mass pa and radiation
damping pr are a function of the wave length Lw, depth
of the entrance h, the width b = A

Lt
and respectively the

acceleration and velocity of the column. In this paper response
is analysed for regular waves only, simplifying the equations
for the pressure of the added mass and radiation damping in
the time domain to:

pa = ρLa(Lw, h, b)
Ac
A
ẍ (27)

pr = ρωwDr (Lw, h, b) bẋ (28)

Where La is the added length and Dr the radiation damping
coefficient.

The dimensions of the model are tuned for a resonance
at wave periods around 8.5 seconds in first column and a
no resonance in the second column due to the difference in
inertia. Additionally the dimensions of the second column are
outside the range of the radiation coefficients in [5]. Therefore
the radiation forces are applied to the first column only, in
the second column the radiation damping is introduced as a
pressure loss at the exit. The added length La,2 is incorporated
in the equivalent length of the second column.

Leq,2 = L2 + La,2 (29)

H. Pressure losses

In the calculation the pressure losses in the first column are
assumed

ploss =
1

2
Kw

(
Ac
A

)2

ẋ |ẋ| (30)

Where the value of Kw,1 = 0.75 is used for the U-shaped
vertical duct [11]. A value of Kw,2 = 0.75 is assumed for the
pressure losses in the second column, related to the velocity
at the exit [17].



I. Overall system equations

Here the overall system, shown in Fig. 1, is considered.
Combining all external pressures in (8) give the following
equations of motion of the two columns, together with (19)
these are the three differential equations describing the be-
haviour of the system.

ρ(
Ac1
A1

L1 + Lc1 + x1)ẍ1 + ρ

(
ẋ1 − Qw

Ac1

)2
2

+
Ac1x1
Vc1

ρ

(
ẋ1 −

Qw
Ac1

)2

+ ρgx1 + pair

= pw,1 + pr,1 + pa,1 − ploss,1

(31)

ρ

(
Lc2 + x2 +

Ac2
A2

Leq,2

)
ẍ2 + ρ

(
ẋ2 +

Qw
Ac2

)2
2

+
Ac2x2
Vc2

ρ

(
ẋ2 +

Qw
Ac2

)2

+ ρgx2 + pair

= pw,2 + ptur,2 − ploss,2

(32)

III. RESULTS AND DISCUSSION

The present model is used to simulate the performance and
analyse the influence of the mass transfer between columns.
The dimensions given in Table I are determined for a reso-
nance to regular waves with a period of 8.5 seconds.

TABLE I
DIMENSIONS

Variable unit value
d m 40
h1 m 20
h2 m 39
hc m 30
patm Pa 1.01e5
γ − 1.4
ρw kgm−3 1025
g ms−2 9.811
Lc1 m 10
L1 m 20
Lc2 m 10
Leq,2 m 15.5
Ac1 m2 40
Ac2 m2 160
A1 m2 28.5
Dt m 2
A2 m2 3.14
V0 m3 2000

A. Dynamic response without turbine

The submerged-OWC response is obtained in the time
domain by solving numerically the differential equations pre-
sented in the last section. The commercial software Matlab
was used to perform the numerical integration via the ODE45
variable time step solver. Zero initial conditions were used.

The outputs are the displacements of the inner free surfaces
x1 and x2, the flow velocities of the column ẋ1 and ẋ2 in

Fig. 4. Time domain response column 1 and 2 excluding mass transfer through
weir discharge, (a): Displacement, (b): Discharge.

Fig. 5. Time domain response column 1 and 2 including weir discharge for
a weir level of zw = 0.5m, (a): Displacement, (b): Discharge.

cross sections Ac1 and Ac2 and the air pressure difference
pair corresponding to the time domain vector t. The post-
processing of the output involves the computation of the power
output and average and maximum values of the variables. This
is performed on the last five periods of the response to obtain
the steady state response.

The time domain results for a response excluding a weir
discharge is presented in Fig. 4 and in Fig. 5 the response
is given for a weir level with the value zw = 0.5m. In
both figures the response is obtained for regular waves with
amplitude aw = 2m and different wave periods. The time
axis is normalized by the excitation period of each response
t̃ = t

Tw
.

In Fig. 6, 7, 8 and 9 the maximum and mean values of the
displacement and discharge of both columns are presented for
different weir levels and regular waves with amplitude aw =



Fig. 6. Maximum displacement for different weir levels excluding power take-
off. Continuous lines: response of the first column. Dashed lines: response of
the second column

Fig. 7. Maximum discharge for different weir levels excluding power take-
off. Continuous lines: response of the first column. Dashed lines: response of
the second column

2m. The time axis is normalized with respect to the design
period of the system Tn = 8.5s.

From the results certain features are evident: firstly, a clear
relation between a low weir level and a high discharge is
observed. The high discharge results in a negative maximum
discharge in the second column, indicating a uni-directional
flow in the direction of the exit. Related to the discharge,
a shifts in the period of the maximum response amplitude
is observed. For a weir level of zw = 0.5m with a high
discharge the resonance occurs at a period approximately 10
% higher than the design period. In [10] a period shift of 25

Fig. 8. Mean displacement for different weir levels excluding power take-off.
Continuous lines: response of the first column. Dotted lines: response of the
second column

Fig. 9. Mean discharge for different weir levels excluding power take-off.
Continuous lines: response of the first column. Dotted lines: response of the
second column

% was observed for a single column water column subjected
to atmospheric pressures at the free surface. The difference
can be explained by the difference in restoring force in both
models. In the present model the restoring force is composed
of the gravitational force and the air pressure. The gravitational
restoring force is decreased by the weir discharge, but on the
other hand the volume of air remains the same and thus the
restoring force of the air pressure is unchanged. The relative
reduction in the restoring force and thus stiffness is lower
compared to the experiment results presented in [10], resulting
in smaller shifts in natural periods. In Fig. 5 (b) the effect



Fig. 10. Maximum displacement of the second column against the periods
of regular waves with amplitude aw = 2m for zw = 0.5m including the
turbine response

of the reduced restoring force can be seen, here the troughs
of the discharge oscillations are shifted to a later moment in
time with respect to the oscillation of the force compared
to its maximum amplitude. In Fig. 4 (b the maximum and
minimum amplitude of the discharge is fully in phase with
the forcing with a wave period of 8.5 seconds, indicating
resonance conditions as expected for the given design period.
Furthermore, a change in mean displacement is observed in
both columns, a decrease in the first and an increase in
the second column. This is a result of the high velocities
and damping in the second column. Higher velocities, thus
discharges, in the second column result in a higher resistance
of the flow increasing the mean displacement of the second
column. Consequently, the mean displacement in the first
column is reduced by the coupling with the air pressure.
The change in mean displacement also reduces the potential
weir discharge. In a model without head losses in the second
column a smaller change in mean displacements was found,
including a higher discharge.

B. Dynamic response including turbine

Next, the dynamic response of the presented model is
derived including energy extraction by the turbine. The re-
sults are again computed for regular waves with amplitude
aw = 2m and different periods. The results for the modelled
turbines with constant speeds N = 50, 100 and 200 rpm and
for a weir level of zw = 0.5m are compared to the results
without the turbine. The presented results are for the second
column only.

In Fig. 10 the maximum displacement of the second column
is presented. In Fig. 11,12 and 13 the mean, maximum and
minimum velocities at the turbine are presented. Lastly, the
mean generated power is given in Fig. 14.

The first clear distinction seen in the figures is the relation
between a high power generation and the lower velocities of
the second column caused by the decrease and increase of the
mean displacements in respectively column 1 and 2, which

Fig. 11. Mean velocity at the turbine against the periods of regular waves
with amplitude aw = 2m for zw = 0.5m including the turbine response

Fig. 12. Maximum velocity at the turbine against the periods of regular waves
with amplitude aw = 2m for zw = 0.5m including the turbine response

was also observed in the previous section. Furthermore, from
the graphs two effects of the decreased discharge can be seen.
Firstly, the maximum response amplitude moves toward the
design natural period of the model. Secondly, the maximum
amplitude in the maximum and mean velocity is becoming
flatter for an increased power generation. The amplitude of
the oscillations remain approximately the same a the same
wave period for the different rotations speeds, this results in
a reversed shape in the amplitude of the minimum velocity
response at the resonance period. To avoid stall of the turbine
reversed flow through the turbine is not desirable, therefore
an optimal value should be found in the power generation and
the dynamic response. For the optimization it is important
to note that the maximum velocities of the N = 50 rpm
are higher than the limit velocity found in Fig. 3. Despite
the overestimation of the generated power with respect to the



Fig. 13. Minimum velocity at the turbine against the periods of regular waves
with amplitude aw = 2m for zw = 0.5m including the turbine response

Fig. 14. Mean generated power against the periods of regular waves with
amplitude aw = 2m for zw = 0.5m including the turbine response

extraction capacity of the turbine at this speed, the response is
not critically damped and the flow at the turbine remained uni-
directional. Therefore the optimal power generation is assumed
to lay close to the power value found for a rotation speed of
N = 50 rpm. A turbine with variable rotational speed needs
to be designed to be able to extract the available power. Such
turbine should be able to react to the velocity oscillations
in a relatively shorter period when compared to conventional
hydraulic turbines.

A capture width ratio between the 7.5 and 12 % was found,
comparing the captured energy to the available energy in
regular waves in intermediate depths [18]. This research was
focused on the effect of the mass transfer of the system. Ad-
ditional optimizations regarding the energy transfer between
the columns and in the turbine are expected to increase its
efficiency.

IV. CONCLUSION AND RECOMMENDATIONS

This paper presented the analysis of the behaviour of a wave
energy converter. The WEC consists of two columns subject

to air pressure and mass transfer between the columns The
time-domain response was obtained by solving numerically
the differential equations used to model the device under the
excitation of regular waves. The model was derived from phys-
ical principles which include the instantaneous mass transfer,
the isentropic process for expansion and compression of air,
the response of a hydraulic turbine and hydrodynamic pressure
using the potential wave theory. The effect of pressure losses
caused by friction, turbulence, viscosity and vortex shedding at
the entrances are taken into account in the form of a pressure
loss coefficient. The results show that the mass transfer reduces
the gravitational restoring force in the discharging column,
while the receiving column gains mass and thus potential
energy together. Furthermore, the free-surface elevation is
decoupled from the discharge inside the water column, having
a direct effect on the pressures at the free surface related to the
convective acceleration and the change of mass. The falling
water generated an impact force on the receiving column
which should not be neglected in the analysis. A shift in
resonance periods is observed in the results, depending on
the magnitude of weir discharge an increase up to 10% of
the design periods was identified. This shift can contribute to
broaden the bandwidth of the resonance periods to optimize
the dynamic behaviour. The model provides a useful insight on
the behaviour of submerged oscillating water columns and the
results can provide a basis for design optimizations. Future
work includes experimental validation and evaluation of a
control strategy with respect to the operation of the turbine
subject to oscillatory flows.
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