
 
 

Delft University of Technology

Prioritized Planning Algorithms for Trajectory Coordination of Multiple Mobile Robots

Cap, Michal; Novak, Peter; Kleiner, Alexander; Selecky, Martin; Pechoucek, Michal

DOI
10.1109/TASE.2015.2445780
Publication date
2015
Document Version
Final published version
Published in
IEEE Transactions on Automation Science and Engineering

Citation (APA)
Cap, M., Novak, P., Kleiner, A., Selecky, M., & Pechoucek, M. (2015). Prioritized Planning Algorithms for
Trajectory Coordination of Multiple Mobile Robots. IEEE Transactions on Automation Science and
Engineering, 12(3), 835 - 849. https://doi.org/10.1109/TASE.2015.2445780

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TASE.2015.2445780
https://doi.org/10.1109/TASE.2015.2445780


IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 12, NO. 3, JULY 2015 835

Prioritized Planning Algorithms for Trajectory
Coordination of Multiple Mobile Robots

Michal Čáp, Peter Novák, Alexander Kleiner, and Martin Selecký

Abstract—In autonomous multirobot systems one of the con-
cerns is how to prevent collisions between the individual robots.
One approach to this problem involves finding coordinated tra-
jectories from start to destination for all the robots and then
letting the robots follow the preplanned coordinated trajectories.
A widely used practical method for finding such coordinated
trajectories is “classical” prioritized planning, where robots plan
sequentially one after another. This method has been shown to be
effective in practice, but it is incomplete (i.e., there are solvable
problem instances that the algorithm fails to solve) and it has
not yet been formally analyzed under what circumstances is the
method guaranteed to succeed. Further, prioritized planning is
a centralized algorithm, which makes the method unsuitable for
decentralized multirobot systems.
The contributions of this paper are: a) an adapted version of

classical prioritized planning called revised prioritized planning
with a formal characterization of a class of instances that are
provably solvable by this algorithm and b) an asynchronous
decentralized variant of both classical and revised prioritized
planning together with a formal analysis showing that the algo-
rithm terminates and inherits completeness properties from its
centralized counterpart.
The experimental evaluation performed in simulation on real-

world indoor maps shows that: a) the revised version of priori-
tized planning reliably solves a wide class of instances on which
both classical prioritized planning and popular reactive technique
ORCA fail and b) the asynchronous decentralized implementation
of classical and revised prioritized planning finds solution in large
multirobot teams up to 2x-faster than the previously proposed syn-
chronized decentralized approach.

Note to Practitioners—Consider a large warehouse in which the
goods are stored and retrieved by autonomous mobile robots. One
way to deal with possible collisions between the robots is to ig-
nore interactions between the vehicles during the route planning
for each robot and handle the conflicts only during the route exe-
cution. However, such an approach is prone to deadlocks, i.e., to sit-
uations during which some of the robots mutually block each other,

Manuscript received August 31, 2014; revised January 06, 2015, May 06,
2015, and May 20, 2015; accepted May 21, 2015. Date of publication June 29,
2015; date of current version July 17, 2015. This paper was recommended for
publication by Associate Editor F. Ehlers and Editor L. Sabattini upon evalua-
tion of the reviewers’ comments. This work was supported in part by the Czech
Science Foundation under Grant 13-22125S) and in part by the Grant Agency
of the Czech Technical University in Prague under Grant SGS14/143/OHK3/
2T/13.
M. Čáp and M. Selecký are with the Department of Computer Science,

Czech Technical University in Prague, Praha 121 35, Czech Republic (e-mail:
cap@agents.fel.cvut.cz; martin.selecky@agents.fel.cvut.cz).
P. Novák is with the Department of Software and Computer Technology,

Delft University of Technology, Delft 2628 CC, Netherlands (e-mail:
p.novak@tudelft.nl).
A. Kleiner is with iRobot, Pasadena, CA 91125 USA (e-mail: alexander.

kleiner@gmail.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASE.2015.2445780

cannot proceed and fail to complete their transportation task. An
alternative approach would involve planning collision-free routes
for each robot before the robots start executing them. However,
the current methods that guarantee ability to find a solution to any
such coordination problem are not applicable in practice due to
their high computational complexity. Instead, a simple and com-
putationally efficient approach in which robots plan their routes
sequentially one after another (classical prioritized planning) is
often used for finding coordinated trajectories even though the
algorithm is known to fail on many dense problem instances. In
this paper, we show that a simple adaptation of this classical al-
gorithm called revised prioritized planning is guaranteed to find
collision-free trajectories for a well-defined class of practical prob-
lems. In particular, if the system resembles human-made transport
infrastructures by requiring that the start and destination position
of each vehicle must never obstruct other vehicles from moving,
then the proposed approach is guaranteed to provide a solution.
For instance, in our warehousemultirobot system example, the col-
lision-free routes can be efficiently computed by the revised prior-
itized planning approach. This paper formally characterizes the
problem instances for which the method is guaranteed to succeed.
Further, we propose a new asynchronous decentralized adapta-

tion of both classical and revised prioritized algorithm that can
be used in multirobot systems without a central solver. This tech-
nique can be used to find coordinated trajectories just by running
a simple asynchronous negotiation protocol between the individual
robots. This paper provides an analysis showing that the asyn-
chronous decentralized implementations of classical and revised
prioritized planning exhibit desirable theoretical properties and an
experimental comparison of performance of different variations of
centralized and decentralized prioritized planning algorithms.
Index Terms—Collision avoidance, decentralized algorithms,

multirobot systems, trajectory planning.

I. INTRODUCTION

I N RECENT years, several successful demonstrations of
production-quality mobile robots, autonomous unmanned

aerial vehicles (UAVs), and self-driving cars fueled excitement
about the future opportunities offered by autonomous multi-
vehicle systems both for transportation of goods and people.
Clearly, the efficiency and safety of such systems will depend
on the existence of guaranteed methods for reliable collision
avoidance between the individual vehicles. As an example
of an autonomous multivehicle system, consider a factory
where intermediate products are moved between workplaces
by autonomous robots. The worker at a particular workplace
calls a robot, puts an object to a basket mounted on the robot
and orders the robot to autonomously deliver the object to an-
other workspace where the object will be retrieved by another
worker. An important requirement in such a system is that
each robot must be able to avoid collisions with other robots
that autonomously carry out their tasks at the same floor. The

1545-5955 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



836 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 12, NO. 3, JULY 2015

problem of avoiding collisions between individual robots can
be approached from a control engineering perspective by em-
ploying reactive collision avoidance and from AI perspective
by planning coordinated trajectories for the robots.
In the reactive approach, the robot follows the shortest path

to its current destination and attempts to resolve collision situa-
tions as they appear. Each robot periodically observes positions
and velocities of other robots in its neighborhood. If there is a
potential future collision, the robot attempts to avert the colli-
sion by adjusting its immediate heading and velocity. A number
of methods have been proposed [4], [7], [14] that prescribe
how to compute such collision-avoiding velocity in a reciprocal
multirobot setting, with the most prominent one being ORCA
[13]. These approaches are widely used in practice thanks to
their computational efficiency—a collision-avoiding velocity
for a robot can be computed in a fraction of a millisecond [13].
However, they resolve collisions only locally and therefore they
cannot guarantee that the resulting motion will be deadlock-free
and that the robot will always reach its destination.
In the planning approach, a multirobot motion planner is

used that takes into consideration the start and goal position
of each robot and plans coordinated trajectories for all robots
that are mutually conflict-free. If the robots track the resulting
joint trajectories precisely (or within some given tolerance
that has been accounted for during the planning phase), it is
guaranteed that the robots will reach their goals without a col-
lision. However, it is known that even the simplest variants of
the multirobot path planning problem are computationally in-
tractable. Finding coordinated collision-free paths for multiple
circular robots moving amidst polygonal obstacles is known to
be strongly NP-hard [10]; the same task involving rectangular
robots in an empty room is known to be in PSPACE-hard
[5]. This implies that it is possible to construct instances of
coordination problems that are not efficiently solvable under
the current computation paradigm.
The existing multirobot planners are typically based either

on the coupled heuristic search in the joint state space of all
robots or on decoupled planning. The coupled approaches are
able to find optimal solution [11], [12], [19], but their worst-
case time complexity grows exponentially with the number of
robots involved in the conflict, which makes them impractical
for coordination of more than a few robots.
On the other hand, decoupled approaches plan independently

for each robot. They can be fast enough for real-time applica-
tions, but they typically suffer from incompleteness, i.e., there
are solvable coordination problems that these algorithms fail to
solve. A widely used decoupled scheme for the multirobot mo-
tion planning that has been shown to be effective in practice is
prioritized planning [3]. In prioritized planning, each robot is
assigned a unique priority and the algorithm proceeds sequen-
tially from the highest-priority robot to the lowest priority one.
In each iteration, one of the robots plans its trajectory such that
it avoids the higher priority robots. Such a greedy approach is
clearly incomplete if we allow arbitrary maps and arbitrary start
and goal locations for each robot, but in relatively sparse en-
vironments, the technique tends to perform well. However, it
has not yet been formally studied under what circumstances is
prioritized planning guaranteed to provide a valid coordinated
solution.

Recently, Velagapudi et al. presented a decentralized version
of prioritized planning technique for teams of mobile robots
[18], which is able to utilize the distributed computational re-
sources to reduce the time needed to find a solution. However,
since the algorithm proceeds in globally-synchronized rounds,
faster-computing robots have to wait at the end of each round
for the longest-computing robot and thus the distributed com-
putational power is not used efficiently.
The contribution of this paper is twofold. First, we propose a

revised version of the prioritized planning scheme and show that
for this version it is possible to formulate sufficient conditions
under which the algorithm is guaranteed to provide a solution.
Second, we propose a novel asynchronous decentralized variant
of both classical and revised prioritized planning scheme that
is guaranteed to terminate and inherits completeness properties
from the respective centralized counterpart. We experimentally
show that asynchronous decentralized algorithm exhibits better
utilization of the distributed computational resources and thus
provides faster convergence times compared to the previously
presented synchronized approach.
Partial results of the presented work appeared in [2] and [17],

where the focus was on the design of an asynchronous version of
the decentralized prioritized planning. Here, we extend our pre-
vious work by proposing a revised version of prioritized plan-
ning scheme, by theoretical analysis of the properties of all dis-
cussed algorithms, by performing experimental comparison on
real-world indoor maps using idealized simulation and by in-
cluding reactive techniques into the comparison.

II. PROBLEM DEFINITION

Consider circular robots operating in a 2-D workspace
. The subset of occupied by the body of a robot

when its center is on position is denoted as . The max-
imum speed robot can move at is denoted as . Each robot
is assumed to be assigned a task that involves moving from its
start position to some goal position and stay there. We as-
sume that the start and goal positions of all robots are mutu-
ally disjunct, i.e., the bodies of robots do not overlap when the
robots are on their start positions and when they are on their goal
positions.
A path of robot in workspace is called

satisfying if it starts at the robot’s start position , ends at
robot‘s goal position , and the body of the robot whose center
follows the path always lies entirely in . A trajectory

is a mapping from time points to positions
in workspace and unlike a path, it carries information about
how it should be executed in time. Analogically, a trajectory
of robot is called satisfying if it starts at the robot’s start
position , finally reaches and stays at the goal position , the
body of robot whose center follows the trajectory always
lies entirely in , and the robot never moves faster than its
maximum speed .
The trajectories of two robots are said to be conflict-

free if and only if the bodies of the robots never intersect
when they follow the trajectories and .
Problem 1 (Trajectory Coordination Problem): Given

a workspace and tasks for robots
, find trajectories such that each trajectory



ČÁP et al.: PRIORITIZED PLANNING ALGORITHMS FOR TRAJECTORY COORDINATION OF MULTIPLE MOBILE ROBOTS 837

is satisfying for robot and trajectories of every two
different robots are mutually conflict-free.
1) Notation: The following shorthand notations will be used

to denote regions occupied by a different subsets of robots at
their start and goal positions:

Further, we will work with the concept of a space–time re-
gion: When a spatial object, such as the body of a robot, follows
a given trajectory, then it can be thought of as occupying a cer-
tain region in space–time . A dynamic obstacle
is then a region in such a space–time . If , then

we know that the spatial position is occupied by the dy-
namic obstacle at the time . The function

maps trajectories of a robot to regions of space–time that robot
occupies when its center point follows given trajectory . As

a special case, let .

A. Assumptions on Communication

We assume that each robot is equipped with an independent
computation unit and a wireless device for communication with
other robots. Wireless communication channels are typically
implemented as broadcast channels, where each communicated
message is broadcast, but ignored by the nodes that are not
among the declared recipients of the message. In such a channel
a single broadcast message uses the same channel capacity as a
single point-to-point message and thus we will prefer to perform
a single broadcast instead of sending several point-to-point mes-
sages. Further, in the following discussion, we will assume that
such a communication channel is reliable, i.e., each broadcast
messages is eventually received by all robots in the system, and
that the communication channel preserves the ordering of mes-
sages that were sent in.

III. PRIORITIZED PLANNING

A straightforward approach to solve trajectory coordination
problems is to see all robots in the system as one composite
robot with many degrees of freedom and use some path plan-
ning algorithm to find a joint path for all the robots. However,
the size of the joint configuration space that has to be searched
during the planning is exponential in the number of robots and
thus this approach quickly becomes impractical if one wants to
plan for more than a few robots. A pragmatic approach that
is often useful even for large multirobot teams is prioritized
planning. The idea of prioritized planning has been first artic-
ulated by Erdman and Lozano–Perez in [3]. Since the quality of
the returned solution depends on the order in which the robots
plan, later works such as [1] and [15] focused on heuristics for
choosing a suitable priority sequence for the robots.

A. Classical Prioritized Planning
In classical prioritized planning each robot is assigned a

unique priority. The trajectories for individual robots are then
planned sequentially from the highest-priority robot to the
lowest priority one. For each robot a trajectory is planned that
avoids both the static obstacles in the environment and the
higher priority robots moving along the trajectories planned in
the previous iterations.
Algorithm 1 lists the pseudocode of classical prioritized plan-

ning. The algorithm iterates over the robots, starting from the
highest-priority robot 1 to the lowest-priority robot . During
th iteration the algorithm computes a trajectory for robot that
avoids the space–time regions occupied by robots .
The trajectory of robot is computed in Best-traj
function, which returns a trajectory for robot such that the body
of the robot stays inside the static workspace and avoids
dynamic regions occupied by other robots. Such a function
would be in practice implemented using some application-spe-
cific technique for motion planning with dynamic obstacles,
e.g., [8] or [16]. For the reasons that will be discussed later, it
is desirable that this function is realized using an algorithm of-
fering some form of completeness, since this property will be
inherited also by the multirobot algorithm.

B. Properties
Classical prioritized planning terminates either with success

or with failure in at most iterations. The successful termina-
tion occurs in exactly iterations if in each iteration a valid tra-
jectory for robot has been found. The termination with failure
occurs if there exists a robot for which no satisfying trajectory
that avoids higher priority robots can be found.
When the algorithm terminates successfully, each robot is as-

signed the computed trajectory, which is conflict-free with re-
spect to the trajectories of the other robots. This follows from the
fact that the trajectory planned for each robot is conflict-free
with the higher priority robots, since it was planned to avoid
collision with them and also with the lower priority robots since
their trajectories were planned to avoid collisions with the tra-
jectory of robot .
Prioritized planning is in general incomplete, consider the

counter-example [9] depicted in Fig. 1.
Let us now analyze when the classical prioritized planning

algorithm is bound to fail. The algorithm fails to find a trajec-
tory for robot if: 1) no satisfying path exists for robot , i.e.,
the robot cannot reach its destination even if there are no other
robots in the workspace; 2) every satisfying trajectory of robot



838 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 12, NO. 3, JULY 2015

Fig. 1. Incompleteness of classical prioritized planning: In this scenario,
robot 1 travels from to and robot 2 travels from to in a corridor
that is only slightly wider than a body of a single robot. Both robots can travel
at identical maximum speeds. Observe that irrespective of which robot starts
planning first, its trajectory will be in conflict with all satisfying trajectories of
the robot that plans as the second.

Fig. 2. Type A conflict: Robot 1 travels from to and robot 2 travels from
to . The gray areas represent obstacles. Both robots can travel at identical

maximum speed. The trajectory for robot 1 is planned first and the straight line
trajectory from to at the maximum speed is found. Consequently, all sat-
isfying trajectories of robot 2 are in Type A conflict with robot 1.

Fig. 3. Type B conflict: Robot 1 travels from to and robot 2 travels from
to . The gray areas represent obstacles. Robot 1 can travel twice as fast as

robot 2. The trajectory for robot 1 is planned first and the straight line trajectory
from to at the maximum speed is found. The trajectory for robot 2 is
planned second, but all satisfying trajectories for robot 2 are in Type B conflict
with robot 1 and thus trajectory planning for robot 2 fails.

is in conflict with some higher priority robot. There are two
types of conflicts that can occur between a satisfying trajectory
of robot and a higher priority robot:
Type A: Occurs if the trajectory is in conflict with a
higher priority robot which has reached and is “sitting” at
its destination, i.e., it is blocked by a static higher priority
robot. Fig. 2 depicts a scenario in which all satisfying tra-
jectories of one of the robots are in Type A conflict.
Type B: Occurs if the trajectory of robot is in conflict
with a higher priority robot which is moving towards its
destination, i.e., it is “run over” by a moving higher pri-
ority robot. Fig. 3 shows a scenario in which all satisfying
trajectories of one of the robots are in Type B conflict.

A question that naturally arises is whether it is possible to
restrict the class of solvable instances or to alter the classical
prioritized planning algorithm in such a way that there is always
at least one trajectorywithout neither TypeA nor Type B conflict
for each robot.
One way to ensure that there is a satisfying trajectory without

Type A conflict for every robot is to only consider instances,
where each robot has a path to its goal that avoids the goal re-
gions of all higher priority robots.When each robot follows such
a path, then they cannot be engaged in a Type A conflict, because
the Type A conflict can only occur at the goal region of one of
the higher priority robots.

Unfortunately, the existence of a trajectory without Type B
conflict is difficult to guarantee in classical prioritized planning
algorithm, because interactions with lower priority robots are
completely ignored during trajectory planning at each iteration
of the algorithm. If we want to ensure that each robot has a
satisfying trajectory without Type B conflict, the trajectories of
all higher priority robots have to be planned such that the lower-
priority robots are always left with some alternative trajectory
that can be used to avoid the potential conflicts of this type.
One way to ensure that there is a satisfying trajectory without

Type B conflict for every robot is to consider only instances in
which each robot has a path to its goal that avoids start region
of lower priority robots and enforce that the trajectory of each
robot will avoid the start regions of all lower priority robots.
When this is ensured, then any robot always has a fall-back op-
tion to wait at its start position (since no higher priority robot
can run over its start region) until its desired path is clear of
the all higher priority robots. Thus, it can always avoid Type B
conflicts.
Moreover, if the robot continues by following a path that

avoids the goal regions of higher priority robots, then the re-
sulting trajectory is also guaranteed to avoid Type A conflicts.
The result of the above analysis can be intuitively summa-

rized as follows: If we have a trajectory coordination problem
instance in which every robot can reach its goal without
crossing: a) the regions occupied by the lower priority robots at
their start positions and b) the regions occupied by the higher
priority robots at their goal positions, then such an instance can
be in the worst-case resolved by moving the robots sequentially,
one after another, to their destinations. The following theorem
states this property formally.
Theorem 2: Let us have a trajectory coordination problem

with workspace and tasks for robots
. If for every robot there exists an -avoiding and

-avoiding satisfying path, then a sequential conflict-free so-
lution can be constructed.

Proof: We will construct the solution inductively as
follows:
Induction assumption: The trajectories of robots

are satisfying and -avoiding.
Base step (robot 1): Robot 1 is the highest-priority robot.

There are no higher priority robots that robot 1 needs to avoid.
From our assumption there exists a path that is satisfying
for robot 1 and -avoiding. A satisfying and -avoiding
trajectory for robot 1 can be simply constructed by following
the path at an arbitrary positive speed. Such a trajectory can
always be constructed, therefore the algorithm will not report
failure when planning for robot 1.
Induction step (robot ): From our assumption there ex-

ists a path that is satisfying for robot , -avoiding and
-avoiding. Since all the trajectories for robots

are satisfying (i.e., eventually reach the goal and stay there),
there must exists a time point after which all robots
have reached and will stay at their goal. A satisfying and
-avoiding trajectory for robot that is conflict-free with all

robots can be constructed as follows:
• In interval stay at . The trajectory cannot be in con-
flict with the higher priority robots during this interval, be-



ČÁP et al.: PRIORITIZED PLANNING ALGORITHMS FOR TRAJECTORY COORDINATION OF MULTIPLE MOBILE ROBOTS 839

cause all trajectories of robots are and
thus also -avoiding.

• In interval follow path until the goal position is
reached. The path avoids regions and thus the trajec-
tory cannot be in collision with any of the higher priority
robots because they are at their goal positions
during this time interval, which the path avoids.

Such a trajectory can always be constructed.
The trajectories of robots are satisfying and

-avoiding, which implies that they are also -avoiding.
The newly computed trajectory for robot is satisfying and

-avoiding. By taking the union of the old set of trajectories
and the new trajectory, we have a set of trajectories for robots

that are satisfying and -avoiding.
As we can see from the constructive proof of Theorem 2,

the instances that admit -avoiding and -avoiding paths
for each robot can be solved by a simple sequential algorithm
that navigates all robots one after another along their shortest

-avoiding and -avoiding paths. Albeit simple, such an
approach never lets two robots move concurrently and thus
it typically generates solutions of poor quality. The solution
quality can be improved if we adopt the prioritized planning
approach and find for each robot a best -avoiding trajectory
that avoids conflicts with higher priority robots.

C. Revised Prioritized Planning

Using insights for the preceding discussion, we propose a Re-
vised version of Prioritized Planning (RPP) in which a trajec-
tory for each robot is sought so that both: a) start position of all
lower priority robots are avoided and b) conflicts with higher
priority robots are avoided. The pseudocode of RPP is listed in
Algorithm 2.

D. Properties

The RPP algorithm inherits the termination and soundness
properties from the PP algorithm. The algorithm terminates suc-
cessfully after iterations if a trajectory for each robot has been
found. The algorithm terminates with a failure at iteration if
there is a robot for which a satisfying trajectory in has
not been found.
In general, it is not guaranteed that a trajectory that avoids

both start positions of lower priority robots and regions occu-
pied by higher priority robots will exist for each robot. Thus, the
algorithm may fail to provide a solution to a solvable problem
instance. Consider the example in Fig. 1 once again. However,
for instances characterized by the following condition, the so-
lution is guaranteed to exists and RPP will find it.

Corollary 3: If there is a -avoiding, -avoiding satis-
fying path for every robot and a complete algorithm is used
for the single-robot trajectory planning in Best-traj func-
tion, then RPP is guaranteed to terminate with a conflict-free
solution.

Proof: Consider the inductive argument from the proof of
Theorem 2. The argument states that at every iteration, there ex-
ists a -avoiding satisfying trajectory for robot that avoids
all higher priority robots. Since the single-robot planning algo-
rithm is assumed to be complete, it cannot fail in finding such a
trajectory.

E. Well-Formed Infrastructures

In this section, we introduce a class of multirobot systems
that can be coordinated using the RPP algorithm in a guar-
anteed way. Consider a situation when one designs a closed
multirobot system such, as a warehouse, where mobile robots
store and retrieve goods. In such systems Theorem 2 and
Corollary 3 can be exploited to design the environment and
the allowed tasks of the robots in a way that -avoiding
and -avoiding paths will always exists and RPP will be
consequently guaranteed to provide a conflict-free solution to
all possible trajectory coordination queries. An important class
of systems that satisfy the condition of having a -avoiding
and -avoiding paths for every possible task of every robot
are well-formed infrastructures:
To model systems such as warehouses, factories, rail roads,

road networks, etc., we introduce the notion of an infrastructure.
An infrastructure is a pair , where is a workspace (de-
scribed by a set of obstacle-free coordinates ) and a set
of points represents distinguished locations in the envi-
ronment called endpoints (modeling, e.g., storage locations in a
warehouse, workplaces in a factory, parking places, road stops,
etc.). Vehicles operating in such an infrastructure are assumed
to only move between the endpoints of the infrastructure, i.e.,

and .
A well-formed infrastructure has its endpoints distributed in

such a way that any robot standing on an endpoint cannot com-
pletely prevent other robots frommoving between any other two
endpoints. In a well-formed infrastructure, a robot is always able
to find a collision-free trajectory to any other unoccupied end-
point by waiting for other robots to reach their destination end-
point, and then by following a path around the occupied end-
points, which is in a well-formed infrastructure guaranteed to
exist.
In the following, we will describe the idea more formally.

First, let us introduce the necessary notation. Let be a
closed disk centered at with radius . Then,

is an -interior of a set .
Definition 4: An infrastructure is called well-formed

for circular robots having body radii if any two end-
points can be connected by a path in workspace

, where .
That is, there must exist a path between any two endpoints

with at least -clearance with respect to static obstacles and
at least -clearance to any other endpoint. See Fig. 4 for an
illustration.



840 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 12, NO. 3, JULY 2015

Fig. 4. Well-formed and ill-formed infrastructure. (a) Well-formed infra-
structure: The workspace and endpoints for robots having
radius form a well-formed infrastructure. (b) Ill-formed infrastructure:
The workspace and endpoints do not form a well-formed
infrastructure because there is no path from to with -clearance to
for a robot having radius .

The notion of well-formed infrastructures follows the struc-
ture typically witnessed in man-made environments that are in-
tuitively designed to allow efficient transit of multiple persons
or vehicles. In such environments, the endpoint locations where
people or vehicle stop for long time are separated from the
transit area that is reserved for travel between these locations.
In a road network, for example, the endpoints would be the

parking places. The system of roads is then built in such a way
that any two parking places are reachable without crossing any
other parking place. Similar structure can be witnessed in offices
or factories. The endpoints would be all locations, where people
may need to spend longer periods of time, e.g., surroundings of
the work desks or machines. As we know from our every day ex-
perience, work desks and machines are typically given enough
free room around them so that a person working at a desk or a
machine does not obstruct people moving between other desks
or machines. We can see that real-world environments are in-
deed often designed as well-formed infrastructures.
Suppose a particular workspace and a set of endpoints

form a well-formed infrastructure for robots having radius .
An instance of multirobot trajectory coordination problem in
such an infrastructure would then involve a number of robots
traveling from one endpoint to another so that each endpoint is
used by at most one robot. From the well-formed infrastructure
property, we know that for each robot there is a path from
its start endpoint to its goal endpoint that avoids all other end-
points in the infrastructure with clearance. Since all other
robots’ start and goal positions lie at endpoints, path is also
avoiding start and goal position of every other robot. In other
words, for every robot there is a path that is -avoiding and

-avoiding, which implies that the path is also -avoiding
and -avoiding. Therefore, any trajectory coordination query
in which all robots move between endpoints of a well-formed
infrastructure will be successfully solved by the RPP algorithm,
given that a complete algorithm is used for the single robot tra-
jectory planning.

F. Checking Solvability

In some systems, it can be hard or even impossible to en-
sure that all coordination queries will always take place between
endpoints of a well-formed infrastructure. An obvious case are
systems that cannot be structured as a well-formed infrastruc-
ture. Another example are systems that can be structured as
well-formed infrastructures, but in which the precise tracking of
trajectories cannot be guaranteed due to unexpected events, e.g.,

when a robot has to yield to a human who crosses its path. After
such an unexpected interruption, a new coordinated motion for
all robots must be found from the robots’ current positions to
their destinations. However, at the time of interruption some of
the robots can be outside of endpoints. Yet another example is
a well-formed infrastructure to which a new robot with a par-
ticular task is added and has to be coordinated with the other
robots that are executing their previously planned coordinated
trajectories. In such a scenario, the motion of all robots has to
be interrupted and the coordinated trajectories need to be com-
puted for all the robots from their current positions. Again, such
positions may be in general outside of an endpoint.
In these scenarios, the start positions of some of the robots

may be outside of an endpoint and thus RPP is not guaran-
teed to succeed. Nevertheless, Theorem 2 and Corollary 3 can
be exploited to quickly determine if the resulting coordination
problem is guaranteed to be solvable by RPP, without actu-
ally running the algorithm. This can be determined by verifying
that a -avoiding and -avoiding satisfying path exists for
each robot, which amounts to planning spatial paths amidst
static obstacles. We note that existence of a spatial path among
static obstacles can be verified significantly faster than finding
a spatio-temporal trajectory amidst dynamic obstacles (which
has to be done if RPP is executed), because in the latter case the
search space is augmented with an extra time dimension. Then,
in the case of a negative result, the system can decide to reject
or delay the adding of a new robot task, switch to a different
coordination algorithm, or ask a human operator to resolve the
coordination situation.

G. Limitations

We have shown that there is a class of instances that RPP
completely covers, but PP does not. See Fig. 5 for an example
of such an instance. However, outside this class we can find
instances that PP solves, but RPP does not. For an example,
consider the scenario depicted in Fig. 6. None of the algorithm
is therefore superior to the other in terms of instance coverage.
Further, since RPP avoids start regions preemptively, even

when they can be safely passed through, the solutions generated
by RPP tend to be slightly longer than the ones generated by PP.
This is demonstrated in Fig. 7.
We can see that despite the theoretical guarantees of RPP,

there exist situations in which PP can be a more appropriate
choice than RPP.

IV. DECENTRALIZED ALGORITHMS

Consider a multirobot system consisting of tens or hundreds
of heterogeneous autonomous robots. In such a scenario, a
decentralized implementation of (revised) prioritized planning
may be more desirable than a centralized one. In a decentralized
implementation, each robot runs its own instance of the algo-
rithm and exchanges messages with the other robots according
to a prescribed communication protocol. If an inconsistency is
detected by a robot, it recomputes the best trajectory for itself
using its own on-board computation resources. The process
should eventually converge to a state where all robots hold
mutually conflict-free trajectories.



ČÁP et al.: PRIORITIZED PLANNING ALGORITHMS FOR TRAJECTORY COORDINATION OF MULTIPLE MOBILE ROBOTS 841

Fig. 5. Scenario, where PP fails, but RPP succeeds. Robot 1 travels from
to , robot 2 travels from to , robot 3 travels from to . The gray areas
represent obstacles. All robots can travel at an identical maximum speed. Left:
In PP, the straightline trajectory between and at maximum speed is found
for robot 1. Similarly, the straight line trajectory at maximum speed is found
also for robot 2. Consequently, all satisfying trajectories for robot 3 are in Type
B conflict with robot 1 or robot 2 and thus trajectory planning for robot 3 fails.
Right: In RPP, a trajectory that avoids the region occupied by robot 3 at its start
position is found for robots 1 and 2. This allows robot 3 to avoid collisions with
robot 2 by waiting at its start position and then by following the shortest path to
.

Fig. 6. Scenario, where PP succeeds, but RPP fails. Robot 1 travels from
to , robot 2 travels from to . The gray areas represent obstacles. Assume
that both robots can travel at the same maximum speed. Robot 1 searches for a
trajectory that avoids the start position of robot 2; such a trajectory does not exist
and thus RPP finishes with failure. Note that PP will successfully find a solution
to this instance: Robot 1 will plan the trajectory that follows the straight line at
maximum speed. Robot 2 will search for a trajectory that avoids the trajectory
of robot 1 and finds that it suffices to travel at maximum speed to its goal .

Fig. 7. Scenario, where PP finds a higher quality solution than RPP. Robot
1 travels from to , robot 2 travels from to . There are no obstacles
in this scenario. When RPP searches for a trajectory for robot 1 it has to avoid
the start position of robot 2, resulting in the curved trajectory as depicted in
the picture. On the other hand, PP generates a shorter straightline trajectory
connecting start and destination of robot 1.

An advantage of such an approach is that several robots can
compute their trajectories in parallel and thus a conflict-free so-
lution can be computed faster. Another advantage for multi-
robot systems with heterogeneous robots is that the kinematic
and other potentially implicit constraints on the trajectory of a
particular robot remain local to that robot and do not need to be
formalized or communicated, which simplifies the design of the
communication protocol and allows each robot to use a custom
robot-specific planner for planning its trajectory.

A. Synchronized Decentralized Implementation
A decentralized implementation of the classical prioritized

planning scheme, where robots concurrently proceed in syn-
chronized rounds, has been first presented by Velagapudi et al.
[18]. We use their approach as a baseline decentralized imple-
mentation of both classical and revised prioritized planning and
denote the resulting algorithm as synchronized decentralized

implementation of prioritized planning, SD-PP and synchro-
nized decentralized implementation of revised prioritized plan-
ning SD-RPP. The SD-(R)PP abbreviation is used when a state-
ment holds for both variants.
The algorithm proceeds in synchronized rounds. In every

round, each robot ensures that its current trajectory is consistent
with the trajectories of higher priority robots from the previous
round. If the current trajectory is consistent, then the robot
keeps its current trajectory and remains silent. Otherwise, it
finds a new consistent trajectory for itself and broadcasts the
trajectory to all other robots. When a robot finishes its compu-
tation in the current round, it waits for all other robots to finish
the round and all robots simultaneously proceed to the next
round. The algorithm successfully terminates if none of the
robots changes its current trajectory during a single round. The
SD-PP algorithm terminates with failure if there is a robot that
fails to find a trajectory that avoids the higher priority robots
following their respective trajectories. The SD-RPP algorithm,
on the other hand, finishes with failure if there is a robot that
fails to find a satisfying trajectory that avoids the start positions
of lower priority robots. The pseudocode of SD-(R)PP is listed
in Algorithm 3.
In SD-(R)PP, each robot maintains a database of space–time

regions occupied by higher priority robots. We call such a data-
base a trajectory store and model it as a set of pairs

, where is the space–time region occupied by robot
.
Function represents the region of the space–time oc-

cupied by all robots stored in a trajectory store



842 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 12, NO. 3, JULY 2015

Further, we use predicate to express that
the trajectory of robot is collision-free against dynamic ob-
stacles , defined as

B. Properties

In order to facilitate and simplify the exposition of the later
introduced asynchronous algorithm, we developed an alterna-
tive proof of termination of the SD-(R)PP algorithm, which de-
viates from the original one devised by the authors of SD-PP in
[18]. Further, in this section, we show that SD-(R)PP inherits
the soundness and completeness properties from its respective
centralized counterpart.
The SD-(R)PP algorithm is guaranteed to terminate. First, we

need to define what termination means for a decentralized algo-
rithm. A decentralized algorithm:
• terminates when all robots stop computing;
• terminates with a failure if it terminates and there
is at least one robot that reported a failure during the
computation;

• terminates successfully if it terminates without a failure.
To show that SD-(R)PP terminates, we first show that robots
running SD-(R)PP cannot exchange messages forever.
Proposition 5: All robots running the SD-(R)PP algorithm

eventually stop sending INFORM messages.
Proof: We proceed by induction on the robot priority .

Inductive hypothesis: Robots eventually stop
sending messages.
Base step (robot 1):
Robot 1 is the highest-priority robot and as such it does not

receive any message from a higher priority robot. Therefore, its
trajectory store will stay empty. During the initialization, robot
1 either successfully finds its initial trajectory and broadcasts
a single message, or reports a failure and terminates. Since its
trajectory store is empty, its initial trajectory will never become
inconsistent, the robot will therefore never replan and send any
further INFORM messages.
Induction step (robot ):
From the inductive hypothesis, we have that each of the

robots eventually stops broadcasting messages.
After the last message from robots has been
received by robot , its trajectory store gets updated for the last
time, since from our assumption there are no more messages
from higher priority robots. After the trajectory store changes
for the last time, the robot either: a) keeps its current trajectory
if it is consistent with the last trajectory store; b) finds a new
consistent trajectory, or c) terminates with failure. In cases a)
and b), the current trajectory will never become inconsistent
again because the trajectory store does not change anymore and
thus the robot will never have to replan and communicate a new
trajectory. In case c), the robot has terminated the computation
and thus it will not send any more INFORM messages in the
future. We see that after robots stopped sending
messages, also robot eventually ceases to send messages.
Corollary 6: SD-(R)PP always terminates.

Proof: We have that all robots in the system will eventu-
ally stop sending messages. Assume that the last message is
broadcast during round . In round , no robot changes
its trajectory, otherwise, a message would have to be broadcast
which is a contradiction. If no robot changes its trajectory during
the round, the global termination condition is satisfied and the
system terminates.
Unless a failure is reported by one of the robots, the solution

computed when SD-(R)PP terminates is sound.
Proposition 7: When SD-(R)PP successfully terminates, all

robots hold trajectories that are mutually conflict-free.
Proof: Let be the trajectory of robot after the algorithm

has terminated. We need to show that

-

Take two arbitrary, but different robots , . Since the conflict-
free relation is symmetrical, we can assume w.l.o.g. If
robot stopped computing without a failure, it must have re-
ceived the INFORM message from a higher priority robot
carrying its last trajectory at some point before its termina-
tion. Since there are no further INFORMmessages broadcast by
robot , the trajectory store of robot will contain from that
point on. Every trajectory returned by Find-consistent
function for robot from that point on will be conflict-free with

and thus also its last trajectory will be conflict-free with
.
The synchronized decentralized implementations of PP and

RPP inherit completeness properties from the respective cen-
tralized implementations. In general, both SD-PP and SD-RPP
are incomplete. However, if an -avoiding and -avoiding
satisfying path exists for each robot, then the SD-RPP is guar-
anteed to terminate successfully.
Lemma 8: If there is a -avoiding and -avoiding sat-

isfying path for every robot and a complete algorithm is used
for the single-robot trajectory planning in Best-traj func-
tion, then SD-RPP is guaranteed to terminate with a conflict-free
solution.

Proof: The argument used in the proof of Theorem 3,
which shows that RPP will never fail during planning, can
be extended to decentralized implementations of RPP: Take
an arbitrary replanning request for robot . All trajectories of
each higher priority robot have been generated to be

-avoiding and thus such trajectory will be also -avoiding.
All trajectories in the trajectory store of robot are therefore
-avoiding. An -avoiding satisfying trajectory consistent

with trajectories of higher priority robots can be constructed
as follows: Wait at the starting position until all higher
priority robots reach their goal position and then follow the

-avoiding -avoiding satisfying path from the assump-
tion. Since such a trajectory is guaranteed to exist for robot and
a complete replanning algorithm is used, the replanning cannot
report failure. The algorithm must terminate with success.

C. Asynchronous Decentralized Implementation

Due to its synchronous nature, the SD-(R)PP algorithm does
not fully exploit the computational resources distributed among



ČÁP et al.: PRIORITIZED PLANNING ALGORITHMS FOR TRAJECTORY COORDINATION OF MULTIPLE MOBILE ROBOTS 843

Fig. 8. Example problem in which AD-(R)PP converges faster than SD-(R)PP. Left: The task of robots 1, 2, and 3. Robot travels from to . The gray
area represents an obstacle. Middle: Sequence diagrams showing the planning process in (R)PP, SD-(R)PP, and AD-(R)PP. Suppose that robot 2 needs to plan
longer, because it has to plan around the gray obstacle. In SD-(R)PP, robot 3 starts resolving the conflict with robot 1 only when robot 2 has finished computing its
trajectory in the first round. In AD-(R)PP, robot 3 stars resolving the conflict with robot 1 immediately after it becomes aware of it, therefore it finds the solution
faster. Right: The final solution.

individual robots. In every iteration, the robots that finished their
trajectory planning routine earlier, or did not have to replan at
all, idle while waiting for the slower computing robots in that
round. However, they could use the time to resolve some of the
conflicts among themselves and speed up the overall process.
An example of a situation, where the asynchronous algorithm
would be beneficial is illustrated in Fig. 8.
To deal with such an inefficiency, we propose an asyn-

chronous decentralized implementation of classical prioritized
planning, abbreviated AD-PP, and revised prioritized planning
scheme, abbreviated AD-RPP. The AD-(R)PP abbreviation is
used when a statement holds for both variants.
The pseudocode of AD-(R)PP is shown in Algorithm 4.

The asynchronous algorithm replaces the concept of globally
synchronized rounds (while loop in Algorithm 3) by a reactive
approach in which every robot reacts merely to incoming
INFORM messages. Upon receiving an INFORM message
(Handle-message routine in Algorithm 4),
the robot simply replaces the information about the trajectory
of the sending robot in its trajectory store and checks whether

its current trajectory is still consistent with the new contents
of its trajectory store. If the current trajectory is inconsistent,
the robot triggers replanning and informs other robots about its
new trajectory. Otherwise, the robot keeps its current trajectory
and remains silent.

D. Properties
AD-(R)PP inherits all the desirable properties from its syn-

chronized and centralized counterparts, i.e., it terminates and
if it terminates with success, then all the robots will hold con-
flict-free trajectories. Further, AD-RPP is guaranteed to solve
instances that admit an -avoiding and -avoiding path
for each robot.
Proposition 9: AD-(R)PP always terminates.
Proof: Recall that the inductive argument demonstrating

that robots running SD-(R)PP will eventually stop sending mes-
sages (Lemma 5) does not make use of the synchronization
points in SD-(R)PP and thus it is also valid for AD-(R)PP. By
this argument, we know that there is a finite number of mes-
sages being sent.We can observe that a robot runningAD-(R)PP
performs computation only during initialization or when it pro-
cesses an incoming message. When all robots process their last
incoming messages, the system terminates.
Proposition 10: WhenAD-(R)PP successfully terminates, all

robots hold trajectories that are mutually conflict-free.
Proof: The proof of soundness of SD-(R)PP (Proposition

7) is directly applicable also to AD-(R)PP.
Proposition 11: If an -avoiding, -avoiding satisfying

path exists for each robot and a complete algorithm is used for
the single-robot trajectory planning in Best-traj function,
then AD-RPP terminates.

Proof: The proof of Proposition 8, where this property is
demonstrated to hold for SD-RPP, is directly applicable also for
AD-RPP.

V. EXPERIMENTS

In this section, we report the results of empirical comparison
between algorithms discussed in the previous sections (i.e., PP,
RPP, SD-PP, SD-RPP, AD-PP, and AD-RPP). The effectiveness
of the algorithms is compared by: a) measuring their ability
to successfully solve a set of randomly generated problem in-
stances (i.e., instanceset coverage) in three real-world environ-
ments and b) measuring the quality of the returned solutions.



844 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 12, NO. 3, JULY 2015

Fig. 9. Empty hall environment. (a) Empty hall environment. The endpoints
used to create a well-formed infrastructure in the environment are shown as red
circles. (b) A selected part of the roadmap used for trajectory planning. (c) Ex-
ample instance with free-formed tasks for 25 robots. Task of each robot shown
in blue. (d) Example instance with tasks for 25 robots in the well-formed infra-
structure. Task of each robot shown in blue.

Their efficiency is compared a) by measuring the wall-clock
time each algorithm requires to compute a valid solution and
b) by counting the number of messages communicated by each
algorithm.
These performance criteria are compared both a) on gen-

eral “free-formed” instances that do not guarantee existence
of -avoiding, -avoiding satisfying path for each robot
and b) on instances, where robots move between endpoints of
a well-formed infrastructure, i.e., on instances where existence
of -avoiding, -avoiding satisfying path for each robot is
guaranteed.

A. Environments

The comparison was performed in three real-world envi-
ronments [see Fig. 9(a), 11(a), and 10(a)]. For each of the
environments, we generated two sets of problem instances: a)
In the free-formed tasks instance set, each robot is assigned
a task to move from a randomly selected start position to a
randomly selected goal position. b) In the tasks in well-formed
infrastructure instance set, we generated a set of endpoints
that together with a particular roadmap discretization of the
environment form a well-formed infrastructure; each robot
is then assigned a random endpoint as a start position and a
randomly chosen endpoint as a destination position.
1) Empty Hall Environment: Themap of the empty hall envi-

ronment and the endpoints of the well-formed infrastructure em-
bedded in the environment are shown in Fig. 9(a). The roadmap
used during trajectory planning is depicted in Fig. 9(b). For both
instance sets and each number of robots ranging from to

, we generated 50 random instances of the problem con-
taining the given number of robots.
2) Office Corridor Environment: The map of the office

corridor environment and the endpoints of the well-formed
infrastructure embedded in the environment are shown in
Fig. 11(a). The roadmap used during trajectory planning is
depicted in Fig. 11(b). The map of the environment is based
on the laser rangefinder log of the Cartesium building at the
University of Bremen.1 For both instance sets and each number
of robots ranging from to , we generated 50
random problem instances containing the given number of
robots.
3) Warehouse Environment: The map of the warehouse

environment and the endpoints of the well-formed infrastruc-
ture embedded in the environment are shown in Fig. 10(a).
The roadmap used during trajectory planning is depicted in
Fig. 9(b). For both instance sets and each number of robots
ranging from to , we generated 50 random
problem instances containing the given number of robots. The
tasks in the well-formed infrastructure instance set represent
a scenario of an automated logistic center where robots move
goods between the gates and the storage shelves.
4) Experiment Setup: For each problem instance, we create

a simulated multirobot team and let all the robots coordinate
the trajectories from the given start positions to given goal po-
sitions using each of the tested algorithms. For the centralized
algorithms (PP and RPP), the robots communicate their start
position and goal position to a central solver that uses the in-
formation to compute a coordinated solution on 1 CPU and,
consequently, sends a message with the resulting trajectory to
each robot. For the decentralized algorithms (SD-PP, SD-RPP,
AD-PP, and AD-RPP), we assume that each robot uses its own
on-board CPU to compute its trajectory. To measure the runtime
characteristics of the execution of decentralized algorithms, we
emulate the concurrent execution of the algorithms using a dis-
crete-event simulation. The simulation measures the execution
time of each message handling and uses the information to sim-
ulate the concurrent execution of the decentralized algorithm
as if it were executed on independent CPUs, where is the

1We thank Cyrill Stachniss for providing the data through the Robotics Data
Set Repository [6].



ČÁP et al.: PRIORITIZED PLANNING ALGORITHMS FOR TRAJECTORY COORDINATION OF MULTIPLE MOBILE ROBOTS 845

Fig. 10. Warehouse environment. (a) Warehouse environment. The endpoints used to create a well-formed infrastructure in the environment are shown as red
circles. (b) A selected part of the roadmap used for trajectory planning. (c) Example instance with free-formed tasks for 30 robots. Task of each robot shown in
blue. (d) Example instance with tasks for 30 robots in the well-formed infrastructure. Task of each robot shown in blue.

Fig. 11. Office corridor environment. (a) Office corridor environment. The
endpoints used to create a well-formed infrastructure in the environment are
shown as red circles. (b) A selected part of the roadmap used for trajectory
planning. (c) Example instance with free-formed tasks for 25 robots. Task of
each robot shown in blue. (d) Example instance with tasks for 25 robots in the
well-formed infrastructure. Task of each robot shown in blue.

number of robots. The individual robots communicate via an
idealized simulated communication channel modeled as a per-
fectly reliable channel with zero latency. All compared algo-

rithms use an identical best trajectory planner. The best trajec-
tory for each robots is obtained by searching a roadmap ex-
tended with a discretized time-dimension using the algo-
rithm, where the heuristic function is the time to travel along
the shortest path on the roadmap from the given node to the
goal node when dynamic obstacles are ignored. The simulation
of the decentralized system was implemented using the Alite
multiagent simulation toolkit. The test instances, the simulator,
and Java implementation of individual algorithms can be down-
loaded from http://agents.cz/~cap/adpp/. A video demonstrating
the performance of ADPP and ADRPP algorithms on six se-
lected instances is available at https://youtu.be/dFm-JJhyuv0.
The experiments have been performed on a computer with

AMD Opteron 8356 2.3GHz CPU and 8 GB RAM. For each
algorithm, we measure the following characteristics.
Coverage: We waited until each algorithm returns either a

success or a failure and counted the number of instances each
of the algorithm successfully solved.
The following average characteristics were computed on all

instances that were successfully solved by all compared algo-
rithms. To obtain reasonably precise estimate of the average, the
values were computed only when there were at least ten such in-
stances for a particular number of robots.
Avg. time to solution: We measured the wall-clock run-

time needed to compute a solution. For the centralized
planner we recorded the time of termination of the cen-
tralized planner. For the decentralized algorithms, we
recorded the time when the last robot detected global termina-
tion of the computation.
Avg. speed-up: In order to be able to judge the effect of asyn-

chronous execution of AD-(R)PP algorithm we also computed
the speed-up ratio for both decentralized algorithms over their
centralized counterparts. The speed-up for the algorithm on
an instance is computed as

where the centralized variant of AD-PP and SD-PP is PP, and
the centralized variant of AD-RPP and SD-RPP is RPP.
Avg. messages sent: Every time a robot running a decentral-

ized algorithm adopts a new trajectory (replans), the trajectory is
broadcast to all other robots. Therefore, the number of INFORM
messages sent by a robot directly corresponds to the number of
replannings performed by the robot.



846 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 12, NO. 3, JULY 2015

Avg. prolongation: The objective criterion we minimized is
the sum of goal arrival times for each robot. We measured the
duration of the trajectory for each robot and computed the pro-
longation coefficient for each instance as

(1)

where is the time robot needs to reach its goal position
when it follows the trajectory computed by the algorithm and
is the time robot would need to reach its goal following the

shortest path on the roadmap if the collisions with other robots
were ignored.

B. Comparison With Reactive Planning

In order to evaluate the practical advantages of the proposed
planning approaches, we also compared their coverage against
a popular reactive technique ORCA in our environments. When
using ORCA, each robot continuously observes positions and
velocities of other robots in a defined neighborhood. Should
any potential collision be detected, a linear program is solved
to obtain a new collision averting velocity that the robot should
follow. If there are no eminent collisions, the robot follows its
preferred velocity. In our implementation the preferred velocity
vector points at the shortest path from the robot’s current posi-
tion to the goal.

C. Results

The plots showing the results of the comparison on instances
with free-formed tasks are in Fig. 12. The results in the respec-
tive well-formed infrastructures are in Fig. 13.

D. Coverage

On instances with free-formed tasks, all tested algorithms
exhibit incomplete coverage of the instance space. Generally,
RPP-based algorithms solved fewer instances than the PP-based
algorithms due to the requirement on an -avoiding path used
in RPP. Unlike PP, RPP requires that each robot follows a path
that avoids regions occupied by lower priority robots at their
start position. Since the start positions for all robots were ran-
domly generated, it can indeed happen that the generated start
positions block some higher priority robot from reaching its
goal. For an example instance where such a phenomena occurs
consult Fig. 6.
For tasks in well-formed infrastructures, the existence of an
-avoiding path for each robot is guaranteed and thus the

RPP-based algorithms show full-instance coverage in accor-
dance with our theoretical findings. Further, we can see [best
in Fig. 13(a)-1] that some of those instances remain unsolved
both by PP-based algorithms and ORCA.
Note that in the Office Corridor andWarehouse environments

with free-formed tasks, all tested algorithms exhibit low success
rates on instances with high number or robots. That is, it is in-
creasingly hard to randomly generate an instance on which all
tested algorithms succeed. Therefore, the following aggregate
characteristics are only computed if there is enough data from
successfully solved instances.

E. Time to Solution/Speed-Up

The asynchronous decentralized implementation of both
PP and RPP consistently achieves higher speed-up than the
synchronized implementation in accordance with our predic-
tion. The higher speed-up is exhibited on instances with higher
number of robots, where it is more likely that several indepen-
dent conflict clusters will occur. On such instances, it is often
beneficial that the conflict clusters can resolve conflicts between
the individual robots at different pace and thus converge faster.
The phenomena can be seen clearly in Figs. 12(a)-4, 13(a),-4
13(b)-4, and 13(a)-4.

F. Replannings/Communication

AD-(R)PP broadcast higher number of messages than
SD-(R)PP. To see how this can be explained, suppose that at
some point of the computation new conflicts arise between the
trajectory of one particular robot and the trajectories of two
other higher priority robots. If the two conflicts occur in a single
round, SD-(R)PP solves both conflicts during one replanning at
the end of the round and therefore broadcasts only a single IN-
FORM message. However, in such a situation AD-(R)PP may
need to replan twice because it triggers replanning immediately
after each of the conflicts is detected and thus it will broadcast
two INFORM messages.

G. Prolongation

There are two phenomena influencing the quality of returned
solutions. First, RPP-based algorithms generate slightly longer
trajectories than PP-based algorithms. This is due to the fact
that RPP preemptively avoids start positions of the lower pri-
ority robots. Second, decentralized approaches generate slightly
longer trajectories than the centralized approaches. The reason
lies in the replanning condition used by the decentralized algo-
rithms. The condition states that a robot should replan its tra-
jectory only if the trajectory is inconsistent with the trajectories
of other robots. Thus, the robot may receive an updated trajec-
tory from a higher priority robot that allows an improvement in
its current trajectory, but since its current trajectory may be still
consistent, the robot will not exploit such an opportunity for an
improvement.

H. Sensitivity of Results

The experiments were performed using a multirobot simula-
tion that uses an idealized model of communication and trajec-
tory tracking. The first issue is that in our model the message ex-
change among the robots is assumed to be reliable and instant.
In the context of indoor multirobot systems, the reliable com-
munication can be realized by covering the entire workspace by
a wireless LAN network and ensuring that a reliable protocol
on MAC or transport layer (e.g., TCP) is used. In other con-
texts, e.g., when robots communicate using ad-hoc peer-to-peer
communication, such a reliable wireless network might not be
available and the robots will face communication unavailability
or message loss. In practice, the ADPP algorithm can be altered



ČÁP et al.: PRIORITIZED PLANNING ALGORITHMS FOR TRAJECTORY COORDINATION OF MULTIPLE MOBILE ROBOTS 847

Fig. 12. Results: free-formed tasks (bars indicate standard error). (a) Empty hall environment. (b)Office corridor environment. (c)Warehouse environment.

to fit such systems by making each robot to periodically broad-
cast its current trajectory. Due to the asynchronous stateless na-
ture of the ADPP protocol, the algorithm is able to recover from
the message loss and resolve conflicts with another robot imme-
diately after at least one of the periodically broadcast messages
from that robot is successfully delivered.
Further, real-world communication has latency. If the latency

cannot be neglected relative to the time required to replan a tra-
jectory, one should expect a lower speed-up ratio than the one
reported by our simulation.
The second issue is that real robots suffer from imprecise

sensing and actuation, which leads to errors in localization and
trajectory tracking. This problemmust be addressed by all open-
loop planning algorithms and can to a certain extent be resolved

by accounting for such uncertainties during the planning. A
simple approach is to consider a sufficiently large buffer around
the body of the robot that will empirically embed the uncertainty
in localization and tracking.

VI. CONCLUSION

Prioritized planning is a practical approach for multirobot
trajectory planning. In this paper, we have summarized proper-
ties and compared the performance of six different algorithms
employing the idea of prioritized planning. While PP and
SD-PP are existing algorithms that have previously appeared
in the literature, the remaining four algorithms are our novel
contributions.



848 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 12, NO. 3, JULY 2015

Fig. 13. Results: Tasks in well-formed infrastructures (bars indicate standard error). (a) Empty hall environment. (b) Office corridor environment. (c)
Warehouse environment.

The first contribution of this paper is the revised version of
prioritized planning (RPP) and a formal proof that this algo-
rithm is guaranteed to provide a solution if there exists a path
for every robot that reaches its goal position, avoids start po-
sitions of lower priority robots, and avoids goal positions of
higher priority robots. We have shown that this condition is
satisfied if the individual robots move between two endpoints
of a well-formed infrastructure. The significance of this re-
sult lies in the fact that human-made environments are usually
build as well-formed infrastructures and thus the RPP algo-
rithm can be used to efficiently find coordinated trajectories
for the robots operating in such environments. We have ex-
perimentally demonstrated that in well-formed infrastructures,

the RPP algorithm solves instances that would otherwise be
unsolvable by state-of-the-art techniques such as the classical
prioritized planning or ORCA.
The second contribution of this paper is a novel asynchronous

decentralized implementation of both the classical and the re-
vised prioritized planning scheme and a formal proof that the al-
gorithm is guaranteed to terminate. Furthermore, we proved that
the asynchronous decentralized implementation of the revised
prioritized planning is guaranteed to provide a solution under
the same conditions as its centralized counterpart and thus it can
be used to reliably plan coordinated trajectories in well-formed
infrastructures. Finally, using extensive experimental evalua-
tion in simulation on three real-world maps, we have shown that



ČÁP et al.: PRIORITIZED PLANNING ALGORITHMS FOR TRAJECTORY COORDINATION OF MULTIPLE MOBILE ROBOTS 849

the asynchronous approach converges up to 2x-faster than the
previously known synchronized approach.
In the future, we plan to study extensions of the presented

decentralized algorithms to large-scale multirobot systems with
local communication.

ACKNOWLEDGMENT

The authors greatly appreciate access to computing and
storage facilities owned by parties and projects contributing to
the National Grid Infrastructure MetaCentrum, provided under
the program “Projects of Large Infrastructure for Research,
Development, and Innovations” (LM2010005).

REFERENCES
[1] M. Bennewitz, W. Burgard, and S. Thrun, “Finding and optimizing

solvable priority schemes for decoupled path planning techniques for
teams of mobile robots,” Robot. Auton. Syst., vol. 41, no. 2, pp. 89–99,
2002.

[2] M. Cap, P. Novak, J. Vokrinek, and M. Pechoucek, “Asynchronous
decentralized algorithm for space-time cooperative pathfinding,”
in Spatio-Temporal Dynamics Workshop (STeDy)SFB/TR 8 Spatial
Cognition Center Rep. 030-08/2012, 2012.

[3] M. Erdmann and T. Lozano-Pèrez, “On multiple moving objects,” Al-
gorithmica, vol. 2, pp. 1419–1424, 1987.

[4] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, and P.
Dubey, “Clearpath: Highly parallel collision avoidance for multi-agent
simulation,” in Proc. ACM SIGGRAPH/Eurograph. Symp. Comput.
Animation, SCA’09, New York, NY, USA, 2009, pp. 177–187, ACM.

[5] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of
motion planning for multiple independent objects; PSPACE-hardness
of the “warehouseman's problem”,” Int. J. Robot. Res., vol. 3, no. 4,
pp. 76–88, Dec. 1984.

[6] A. Howard and N. Roy, “The robotics data set repository (radish),”
2003. [Online]. Available: http://radish.sourceforge.net/, accessed:
May 20, 2015

[7] E. Lalish and K. A. Morgansen, “Distributed reactive collision avoid-
ance,” Auton. Robot., vol. 32, no. 3, pp. 207–226, 2012.

[8] V. Narayanan, M. Phillips, and M. Likhachev, “Anytime safe interval
path planning for dynamic environments,” inProc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS’12), 2012, pp. 4708–4715.

[9] D. Silver, “Cooperative pathfinding,” in Proc. 1st Artif. Intell. Interac-
tive Digital Entertainment Conf., 2005, pp. 117–122.

[10] P. G. Spirakis and C.-K. Yap, “Strong np-hardness of moving many
discs,” Inf. Process. Lett., vol. 19, no. 1, pp. 55–59, 1984.

[11] T. S. Standley, “Finding optimal solutions to cooperative pathfinding
problems,” in Proc. 24th AAAI Conf. Artif. Intell. (AAAI), M. Fox and
D. Poole, Eds., Jul. 2010, pp. 173–178.

[12] T. S. Standley and R. E. Korf, “Complete algorithms for cooperative
pathfinding problems,” in Proc. 22nd Int. Joint Conf. Artifi. Intell.
(IJCAI/AAAI), T. Walsh, Ed., 2011, pp. 668–673.

[13] J. Van Den Berg, S. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” Robot. Res., pp. 3–19, 2011.

[14] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity ob-
stacles for real-time multi-agent navigation,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA’08), 2008, pp. 1928–1935, IEEE.

[15] J. van den Berg and M. Overmars, “Prioritized motion planning for
multiple robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot., 2005, pp.
430–435.

[16] J. van den Berg and M. Overmars, “Kinodynamic motion planning on
roadmaps in dynamic environments,” in Proc. IEEE/RSJ Int. Conf. In-
tell. Robot., 2007, pp. 4253–4258.

[17] M. Čáp, P. Novák, M. Selecký, J. Faigl, and J. Vokřínek, “Asyn-
chronous decentralized prioritized planning for coordination in
multi-robot system,” in Proc. Intell. Robot. Syst. (IROS’13), 2013.

[18] P. Velagapudi, K. P. Sycara, and P. Scerri, “Decentralized prioritized
planning in large multirobot teams,” in Proc. IEEE/RSJ Int. Conf. In-
tell. Robot., 2010, pp. 4603–4609.

[19] G. Wagner and H. Choset, “Subdimensional expansion for multirobot
path planning,” Artif. Intell., vol. 219, pp. 1–24, 2015.

Michal Čáp, photograph and biography not available at the time of publication.

Peter Novák, photograph and biography not available at the time of publication.

Alexander Kleiner, photograph and biography not available at the time of pub-
lication.

Martin Selecký, photograph and biography not available at the time of publi-
cation.


