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Abstract

A significant growth of the railway transportation demand is forecasted in the next
decades which needs an increase of network capacity. Where possible, infrastructure
upgrading can provide extra capacity; although in some cases, this is not enough to
satisfy the entire transportation demand even if optimised timetabling is performed.
We propose a heuristic model to develop a stable timetable which maximises the
satisfaction of transportation demand in situations where network capacity is lim-
ited. In case the demand cannot be fully satisfied, the model relaxes the given line
plan and timetable design parameters. The aim is to keep as many train services as
possible and reduce the level of service minimally. We develop a mixed integer lin-
ear programming (MILP) model for minimising the cycle time to find an optimised
stable timetable for the given line plan. The heuristic iteratively solves the MILP
model and applies relaxation measures. We tested the model on the Dutch network.
The results showed that the model can generate stable timetables by removing train
services from the critical circuit, and also, higher transportation demand can be sat-
isfied by additionally relaxing timetable design parameters.

Keywords Timetabling - Periodic event scheduling problem (PESP) - Instability -
Minimum cycle time

1 Introduction

A significant increase in the demand of passenger and freight transportation is
expected to load railway networks in the near future. In this context, infrastructure
managers strive to find operational and/or infrastructural solutions to allow higher traf-
fic volumes running on the network to satisfy the forecasted transportation demand.
The set of train services designed to meet such expected transportation demand is
called the target line plan. To meet the demand, railway planners have the objective to
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design a timetable that possibly runs all trains of the target line plan within a scheduled
cycle time 7, usually coinciding with one hour. In railway planning, it is usual to have
train services repeating every cycle T in a so-called periodic timetable. Network capac-
ity is, however, not always sufficient and infrastructure upgrades are often necessary
to accommodate a denser train service plan. The possibility of installing additional
tracks, platforms and/or flyovers in bottleneck areas such as stations and junctions, is
mostly restricted by budget constraints and the lack of physical space, especially for
stations and junctions located in densely built urban areas. A more convenient and
sustainable alternative would instead be upgrading the conventional signalling system
with technologies suitable for running high-capacity high-speed (HCHS) railway traf-
fic, such as the European Train Control System (ETCS) (Stanley 2011). For instance,
the UK railway infrastructure manager Network Rail is currently opting for these types
of improvements with the delivery of the Digital Railway programme Digital Rail-
way Programme (2016). The Digital Railway aims at deploying advanced technolo-
gies in the area of control, command and signalling (e.g. optimal timetabling tools,
driver advisory systems, traffic management systems, automatic train operation, ETCS
signalling) to meet a 40% increase in transportation demand forecasted to load the UK
network within the next 30 years.

Installation of advanced control and signalling systems, however, is not going
to be sufficient if train services are not planned effectively to maximise the utili-
sation of the additional capacity enabled by these new technologies. In this con-
text, enhanced timetabling models are necessary to be applied to lay out the target
line plan smoothly on the network under the control of advanced HCHS control
and signalling technologies. In case the target line plan is incompatible with the
residual capacity of the network (i.e. not all planned train services can actually
run on the network within cycle time T), such timetabling models shall be able
to fit in as many train lines as possible while providing efficient train operations
and a mitigation of delay propagation. In other words, timetabling shall focus on
maximising utilisation of infrastructure capacity while providing robustness to
stochastic disturbances. We define the minimum cycle time A as the minimum
amount of time over which all train events (i.e. arrivals, departures, passings) in
the target line plan can be scheduled without conflicts. According to Heidergott
et al. (2005) and Goverde (2007), network-level capacity occupation (stability)
of a periodic timetable can be expressed by the minimum cycle time A of the
timetable. A timetable that satisfies the condition 4 < T is called structurally sta-
ble Goverde (2007). Planners always aim to identify a stable timetable which can
accommodate the entire target line plan with the scheduled cycle time so as to
satisfy the forecasted demand. Instead, the question is how to tackle scheduling
problems when a stable timetable cannot be found because the increased demand
is higher than the additional capacity gained with the deployed enhanced control
and signalling systems. In such a situation, additional timetabling solutions and/
or measures shall be considered so as to minimise penalties for partially satisfy-
ing the transportation demand, i.e. minimise deviations from the target line plan.
Therefore, is it necessary to cancel some of the train services in the target plan? If
needed, how to cancel services while minimising the impact on level of service?
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In this paper, we propose a mathematical model for resolving timetable instability
A > T caused by an overly ambitious target line plan. In particular, the model finds
an optimised stable timetable (structure) that satisfies the transportation demand as
much as possible. To do so, a heuristic approach has been developed that integrates
an optimisation model and relaxation rules to minimise necessary corrections to the
target line plan. A timetable structure is defined as an ordered sequence of train event
times on a railway network during a basic period that provides feasible operations
with respect to the minimum process times (e.g. running, dwell, turnaround times).
In essence, it can be represented by a compressed timetable with 7 = 1. We design a
mixed integer linear programming (MILP) model for solving a timetabling problem
that minimises the cycle time A for a given line plan. This MILP model finds an opti-
mal timetable structure, which uses the network capacity minimally. If the optimal
timetable structure is unstable, A > T, then the line plan is relaxed. Three relaxation
measures are proposed to adjust the target line plan and timetable design parame-
ters. The latter include relaxing regularity constraints and relaxing train-related con-
straints, and the former reducing line frequencies. The iterations between the mini-
mal cycle time optimisation and relaxations are repeated until the optimised stable
timetable structure has been found. When a stable timetable (structure) is obtained,
time allowances can be optimally allocated to maximise robustness versus stochas-
tic disturbances. An application of the proposed approach is performed for a part
of the Dutch railway network and for a forecasted increased transportation demand.
Results show that the presented model produces a stable timetable that minimise
impacts on the transportation demand to satisfy.

The main contribution of the paper is that it presents the first timetabling model
that tackles timetable instability of periodic timetables in (over)saturated networks.
We do not assume that all train lines from the given line plan can be scheduled. This
makes the model more general, provides more flexibility to find a stable solution and
allows a wider application in railway timetable planning. In particular, the model
could be used in dense networks where the capacity use (i.e. minimum cycle time)
is already becoming critical, A ~ T’; also, the model could evaluate infrastructure
improvements projects. Second, the proposed procedure for computing an initial
solution and stronger upper bound for A in MILP significantly reduced its compu-
tation time. Third, natural measures to relax the given line plan were successfully
implemented and contributed to creating stable timetable structures. Fourth, the
algorithm for resolving instability shows the importance of relaxing train lines that
are part of the critical circuit (consisting of the critical events and processes defining
the minimum cycle time 1) opposed to relaxing random train lines. These extensions
to timetabling model make it a very useful support tool for timetable planning in
areas with high demand and/or scarce infrastructure capacity and can help in finding
a maximal set of train lines and corresponding frequencies that satisfies (most of)
the transportation demand.

In Sect. 2, we give a literature review on timetabling models and stability-related
research. Section 3 introduces the periodic event scheduling problem (PESP) and
the PESP-based model for minimising cycle time, PESP-A. Section 4 defines first the
assumptions and priority rules and then, the heuristic algorithm for resolving insta-
bility and improvements for PESP-A. Section 5 gives the computation results of the
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proposed heuristic for two test scenarios on the Dutch network. Finally, Sect. 6 gives
conclusions and main observations.

2 Literature review

A target line plan defines a set of requested train lines with its origin and destina-
tion, stopping stations and its frequency in number of train services per scheduled
cycle time. A timetable consists of event times such as arrival and departure times
in stations and processes between events like running, dwelling and transfer times.
Process times also include infrastructure constraints (i.e. headways) between events
that guarantee safe operations. In periodic timetabling, a cycle time 7 is given and
all events are selected in the interval between 0 and 7.

Timetable feasibility is the ability that a timetable exists for a given line plan
without violating any train- and passenger- and safety constraints. Timetable stabil-
ity is the ability of a timetable to absorb initial and primary delays, so that delayed
trains return to their scheduled train paths without rescheduling. Timetable effi-
ciency is the ability to run trains as fast as possible and thus allocate only limited
running and dwell time supplements.

Aiming at timetabling efficiency may create a significant speed difference
between train lines of different types. For example, if two train lines, a fast and slow
(e.g. intercity and local), on a corridor are scheduled with minimal time supple-
ments, then the speed difference between the two will be significant and the two
trains together would need more infrastructure capacity. On the other hand, if a
faster train is allowed to run slower and thus, allow a more homogeneous service,
then less capacity will be used (Hansen and Pachl 2014).

Figure 1 shows the influence of heterogeneity on the minimum cycle time. It gives
the minimum cycle times of two train lines with a frequency of two in a period of
length 7 running in the same direction over a single track. The dashed line is the first
train repeated in the next period. Figure 1a, b represents heterogeneous (more homo-
geneous) services with minimum cycle time 4, (4;,). The running time difference
between train services in Fig. 1a is evident, while the running times of the fast services
in Fig. 1b are extended and more similar to the one of the slower services. Clearly, 4,
is smaller than A, due to smaller necessary headways between train services.

Periodic railway timetabling problems are often presented as a periodic event
scheduling problem (PESP) introduced by Serafini and Ukovich (1989). Afterwards,
a significant amount of research has been assigned to solving timetabling based on
PESP. For solving PESP, Schrijver and Steenbeek (1994) applied constraint pro-
gramming to find a feasible timetable, while Kiimmling et al. (2015) used SAT
solvers to the same problem. By adding an objective function to the PESP formu-
lation, the timetabling problem can be solved using mixed integer programming
(MIP) techniques as elaborated in Peeters (2003). Other papers that further devel-
oped PESP-based models for timetabling are Caimi et al. (2011), Kroon and Peeters
(2003), Kroon et al. (2013), Liebchen (2009), Nachtigall (1993) and Nachtigall and
Opitz (2008). In addition, Cacchiani and Toth (2012) give an overview of railway
timetabling models.
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Distance

Time

Fig. 1 Effect of speed on the minimum cycle time

Most of the models for solving timetabling problems (PESP) assume that it is possi-
ble to schedule all services from the line plan. Only recently, Kiimmling et al. (2015),
Polinder (2015) and BeSinovi¢ et al. (2016) presented approaches for solving prob-
lems of local infeasibility in periodic timetabling problems. Polinder (2015) resolves
conflicts reported in the planning model DONS Schrijver and Steenbeek (1994) by
relaxing neighbouring processes. Kiimmling et al. (2015) proposed a similar approach
to support the planning model TAKT (Kiimmling et al. 2015). Differently, BeSinovi¢
et al. (2016) proposed an iterative micro—macro approach for designing (microscopi-
cally) conflict-free, stable and robust timetables. The macro-model computes a timeta-
ble, which is evaluated on microscopic conflict-freeness and (local) stability. Here, sta-
bility is defined at the local (station or corridor) level as a minimum necessary amount
of buffer times. Still, Kiimmling et al. (2015), Polinder (2015) and BeSinovi¢ et al.
(2016) assume that all train services will be possible to schedule after applying small
adjustments to the process times. Thus, more general timetabling models for dealing
with potential instability should be considered.

The idea of minimising the cycle time for measuring stability was introduced
by Bergmann (1975) for a single-track line and homogeneous fleet. Heydar et al.
(2013) extended this model to a single-track unidirectional line that adheres to a
cyclic timetable and considered two types of trains. The objective was to minimise
the capacity occupation and minimise the total dwelling time of local trains at all
stations. Petering et al. (2015) extended the model of Heydar et al. (2013) to allow
selection of stop platforms in a station and schedule train overtakings. Sparing and
Goverde (2017) developed an extension to the PESP model that minimises the cycle
time and train running times which is applicable to both lines and networks. Zhang
and Nie (2016) further expanded Sparing and Goverde (2017) by adding flexible
overtaking constraints and heuristics to speed up the computations. In addition,
authors analysed the effect of some timetable design parameters on the minimum
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cycle time. Output of these models is an (near) optimal timetable structure, i.e. a
compressed timetable and not a final one.

To translate a timetable structure to an actual timetable, BeSinovi¢ and Goverde
(2016) proposed a two-stage model for computing a stable and robust timetable. In
particular, the first stage solved the minimal cycle time problem, while the second
stage distributed time allowances to improve the timetable robustness. In addition,
several objective functions were proposed and tested for the second stage.

The concept of timetable stability is often unrecognised in the literature on rail-
way timetabling which is partly due to the common assumption that a given line
plan naturally provides a stable timetable structure. Therefore, it is crucial to make a
distinction between timetable stability and timetable feasibility. In general, a model
for minimising the cycle time 4 finds an optimal timetable structure to a given input.
Such timetable structure is unstable if A > 7. If A = T, the timetable is called criti-
cal (Goverde 2007). Any T-feasible timetable (i.e. feasible with cycle time T) satis-
fies A < T, so it may be stable or critical. A is the smallest T for which a timetable
(structure) is T-feasible. Each periodic timetabling problem becomes 7-feasible for
a sufficiently large 7. To make a timetable that can be operated, A has to be smaller
than desired T which could be done only by relaxing certain input constraints. In this
paper, we extend the approach of Sparing and Goverde (2017) and define a more
general approach to resolve timetable instability and design optimised stable time-
tables. Finally, we limit ourselves to finding an optimised stable timetable structure,
while the final timetable can be generated by applying the approach from BeSinovi¢
and Goverde (2016).

3 Model formulation
3.1 Periodic event scheduling problem (PESP)

The timetabling approach is based on a periodic event-activity network (PEAN) rep-
resented by a weighted directed graph N = (E, A, T, [, u), which is associated with a
target line plan Q. A train line g € Q defines a requested periodic train service char-
acterised by its origin and destination, stopping pattern and frequency f, within a
given scheduled cycle time 7. The set E of events consists of periodic arrival, depar-
ture and pass-through events for each train line in Q in each station along its route.
This means that if an event i is scheduled at time x; then it will also occur at times
w;+k-T for k=1,2,... For each event, we determine the event time in the basic
period z; € [0, 7).

Set A represents processes (i,j) € A, where i and j are two consecutive events and
can interpret various rules and restrictions. Running times are the times needed for a
train to run between two timetabling points. A lower bound /; for the running time rep-
resents the nominal running time, which is the minimum running time increased by
a certain percentage to satisfy stochastic train behaviour. The upper bound u;; is the
maximum running time extension with respect to the passenger quality of service. The
set of running processes is denoted as A_,,,. Dwell times are the durations of a train stop
in a station. The minimum represent a time needed to board and alight the train, while
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the upper bound u;; limits the waiting time for passengers. The set of dwell processes is
denoted as Ay A passenger connection is a transfer of passengers from a feeder to a
connecting train in a station. The minimum transfer time /; defines the necessary time
to alight from the first train, walk to the departure platform, and board the second train.
A set of connection processes is denoted as A_,,. Safety constraints between two trains
based on the given signalling system are defined as A,,,,. Formally, these constraints
can be written as:

infra*

—m+ ;T € [l uyl, VG, )j) € A=Ay UAgyen VA UA;

ij° run connection infra*

The binary variable z; represents a modulo parameter that determines the order of
events i and j within a period 7 for given bounds [/;;, u;] and equals 1 if z; < z; or
0, otherwise. This binary property of z; holds assuming li <uy, 0< 1y < T and
0 <w; —1; <T. This constraint can also be written as z; — x; € [1;, u;ly.

We also define subsets of events and processes for each train line £, and A, respec-
tively. Each train line ¢ € Q with f, =1 consists of a sequence of process times
a = (i, j), where i and j are two consecutive events. For f, > 1, the train line g consists
of f, train services. In that case, events and processes of a train line g are replicated
Jf, times and g, depicts the kth repetition of the train service in a basic period where
k={l,....f,;}. Subsets of events i assigned to the train service g, are defined as E,
and subsets of processes (i, j) as A, . To secure the regular train services of the same
line, meaning that services g, are equally separated in time, we introduce regularity
constraints A,,. These constraints are defined between services of one line, where i and
Jj are events of two following services. The time separation between two consecutive
services is equal to 7'/f, and can be written as:

7 — 7w+ z;T = T/fq, Vg € O :fq > 1,(,)) eAreg

Here, i and j are events of two consecutive services of the same train line. Figure 2
gives a small example of a periodic event-activity network with two trains stopping
at a station.
PESP is originally a feasibility problem, and we adopt the common mathematical
formulation as:
(PESP) [ <m —m+z;T <uy, V(Gj€EA 1)

gy =

0<r7m<T-1, VieE )

Fig.2 An extract of a periodic event-activity network for two trains arriving (a) at and departing (d)
from a station with running (dashed line), dwell (solid), transfer (dotted) and headway (dash-dotted) con-
straints
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z; €{0,1}, V(G,j)eA 3)

Constraint (1) defines bounds on the process times. Constraint (2) gives the perio-
dicity of the events and schedules them in the interval [0, T). Constraint (3) defines
the modulo constraint as a binary decision variable.

3.2 PESP for minimising cycle time

We aim at finding the optimal timetable structure over N by minimising the cycle time
A. To find the optimal timetable structure over N, we introduce the timetabling model
that minimises the cycle time A.

The difference between minimum and scheduled cycle time defines the available
time allowances (time supplements and buffers). Therefore, the computed optimal
timetable structure gives the train orders that use the infrastructure in the most optimal
way and leave the most time allowance. Note that time allowances may be negative if
A> T. This means that although the model finds the optimal structure for the given
line plan, it cannot be scheduled within the scheduled cycle time 7, and thus, the time-
table structure is unstable. The allocation of time allowances plays an important role
in designing robust timetables and may depend on typical types of delays occurring in
the network, e.g. primary delays caused by extra running/dwelling times and second-
ary delays propagated from other delayed trains. For distributing time allowances in a
defined timetable structure, we refer to Sparing and Goverde (2017) and BeSinovi¢ and
Goverde (2016).

The problem of finding the optimal timetable structure is formulated based on PESP
and consists of solving the problem of minimising the cycle time. In addition, minimi-
sation of journey times is used as a secondary objective term to prevent an excessive
extension of journey times. The new MILP formulation of minimising the cycle time is
then the following:

(PESP — 4) Minimise A+ ) 7;(m— 7+,

(1) €A VA e @
subject to
ly<mj—m+y; <u; V(ij€E€A 5)
7= 7Yy = Afy V@) €A, Vg €0 (6)
0Lrm<A-1, VieE @)
0<4< Anaes (8)
0<y; <A VijeA ©)
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Vi 2 A= (1 = 2;), VG, j) €A (10)
Yij < Zi/"lmaw V(i,j) €A (11)
z; € {0,1}, V(@ €A (12)

The objective function (4) represents minimising the cycle time and total journey
times. Here, 7;; defines a process-dependent weight that may differ for running and
dwell processes. The weights are defined in such a way that the sum of weighted
journey times is significantly smaller than A to maintain the first term of the objec-
tive function dominant. In addition, the weights can reflect the practitioner’s needs
to prioritise running versus dwelling processes. Constraint (5) defines bounds on the
process times. Constraint (6) synchronises train services of train lines. Constraint
(7) sets the events in a periodic interval [0, 4). Constraint (8) defines A to be strictly
positive and smaller than a given upper bound 4,,,. Since the scheduled cycle time
T from (1) to (2) is substituted with a decision variable A, the constraint (1) would
become nonlinear because of the new nonlinear term z,_»,»ﬂ. Hence, this is linearised
by introducing new variables y; = z;;4 and constraints (9)—(11) according to Sparing
and Goverde (2017). Here, 4,,,, is a suitable upper bound for the objective value A.
In the remainder of the paper, we refer to the model for minimising cycle time as
PESP-A. The output of PESP-4 is the minimum cycle time A and the optimal time-
table structure (x, z) where x; are event times for all i € E and Z; modulo parameters
for each arc (i, ) € A.

3.3 Critical circuit

As mentioned before, A is a network stability measure. To identify processes that
restrict having a smaller A, we introduce additional terms. A circuit is a closed
sequence of events in N. We focus only at elementary circuits, i.e. circuits in which
each vertex (i.e. events) has exactly one incoming and outgoing arc. Note that we con-
sider directed circuits. We refer to a circuit that builds the minimum cycle time as to a
critical circuit C,. Determining the critical circuit is performed by the function getCrit-
icalCircuit, which consists of three steps: (1) find all strongly connected components
using a depth-first search algorithm, (2) compute all circuit times and corresponding
cycle means (i.e. the sum of all processes in a circuit divided by the number of periods
needed to perform all processes) over all components, and (3) assign the circuit with
the biggest cycle mean as the critical circuit. Such computed biggest cycle mean cor-
responds to the minimum cycle time 4. Alternatively, the critical circuit can be com-
puted using the policy iteration algorithm (Goverde 2007, 2010).

To determine the most constraining events in the network, we compute and ana-
lyse the critical circuit C,. If an event i is in C,, we refer to it as a critical event and
include it in the set E,. Events on the critical circuit identify the critical processes
A, in the network. In addition, we make a set of critical services Q, where g, is in Q,
if it has at least one event in E,. The corresponding processes in the critical circuit
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Fig. 3 Example of a critical cir- 1C100

cuit including three arrival (a) @

and three departure (d) events of // N

three different train hr}es. .(Llne 1C100 L701
types are the same as in Fig. 2)

|
IC100 @ IC300

I1C300

can be running, dwell, connection, regularity or headway processes. Figure 3 gives
an example of a critical circuit that comprises six arrival and departure events over
four train lines.

To obtain a stable timetable, the timetable must be operated with a scheduled
cycle time T > A. To tackle instability of the timetable, i.e. reduce A, we need to make
changes (at least) on the critical circuit C, and in particular, relax critical lines. Other-
wise, relaxing a random train line, that is not being part of the critical circuit may not
affect the stability of the whole system, and the value of A would stay unchanged. For
example, removing a train service in a low-dense network area, the events of which
are not part of the critical circuit may result in unchanged (in)stability of the timetable.

4 Resolving timetable instability
4.1 Assumptions and priority rules

When relaxing the target line plan Q, we want to choose a most suitable train line
(one or more) g € Q, to relax, which affects transportation demand the least. Thus,
after discussions with planners, we introduce a set of priority rules and assump-
tions that allows to incorporate the unsatisfied demand implicitly. Such rules
suggest which train line should be adjusted first and are based on the train line
characteristics.

Before generating the rules, we make the underlying assumptions. First, all train
lines of the same service type (i.e. stopping pattern) have the same passenger capac-
ity between two stops and are treated as equally important. Second, as a consequence
of the previous, overall transport capacity of a train line differs when changing the
number of stations, i.e. a longer train line of the same service type transports more
passengers; hence, it is more important to maintain train lines that stop at more sta-
tions. Third, intercity long-distance trains have higher capacity than regional trains.
Fourth, each train line should be maintained in the timetable, meaning that the fre-
quency for any given line ¢ € Q may be relaxed at most to f, = L.

We select four train line characteristics for determining their priorities: the cov-
ered distance from origin to destination, line type, number of stops and line fre-
quency. In general, the goal is to relax the train line that would affect less passengers
in the network. Hence, we define four lexicographic rules that should be followed
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in the given order: first, choose the line type with less passenger demand; second,
choose a line that covers the shortest distance; third, choose the line that has the
least number of stops, and fourth, choose a line with the highest frequency. Finally,
if two (or more) lines have all criteria equal, then the one is selected randomly.

These assumptions and priority rules could be easily extended or substituted
with realistic passenger loads, representing either current or expected transportation
demand. In addition, these assumptions should be adjusted to the concerned case
study. For example, some shorter services may be crowded and almost impossible to
be substituted by alternative transport systems. So, cancelling certain train lines may
be forbidden given the passenger demand. However, such data were not available
and thus out of the scope for this research. Note that priority of a line ¢ is translated
to corresponding train services g;.

4.2 Measures for resolving timetable instability

Relaxation measures that are considered in this paper are relaxing the given target
line plan and timetable design parameters. A target line plan represents a transport
demand; however, it may happen that not all services can run due to limited avail-
able infrastructure. Also, a desired level of service (LoS) is determined by a given
set of timetable design parameters (i.e. a given amount of transfer times, a maximum
rate of running and dwell time supplements). Hence, apart from relaxing line fre-
quencies, relaxing timetable design parameters can provide a smaller A for the same
size of the line plan. Even more, relaxing timetable design parameters may enable
more demand to be satisfied. In practice, planners strive to accept all train service
requests from railway undertakings since each additionally scheduled train brings
additional profit to the infrastructure manager. Thus, the infrastructure manager may
tend to sacrifice the LoS to some extent to schedule as many trains as possible. In
particular, we propose the following measures: relax train line frequency M1, relax
regularity constraints M2, and relax train-related constraints M3.

Measure M1 Measure M1 reduces the frequency of a train line while at least one
service of each train line is maintained. Using M1 essentially lowers the total number
of trains in the network and provides more possibility to fit remaining trains in the
timetable. It is important to tackle train lines that exist on the critical circuit and not
a random one. Otherwise, if a random train service has been selected, then it may
happen that the critical circuit remains the same and does not affect the cycle time
A. Since the target line plan represents the transportation demand, we want to ensure
that the least number of train services is removed and thus have a limited unsatisfied
demand. In practice, the critical circuit C, typically includes (one or more) events from
multiple train lines. We choose to remove one train service at a time.

In each iteration, the frequency of the train line with the lowest priority is
decreased by one train service per scheduled cycle time 7 and the periodic event-
activity network N is rebuilt. In particular, we first choose a critical service from
Q, with the lowest priority based on the defined rules and refer to it as g, Then,
all events and processes of g, i € E, and (i,j) € A, , are removed from E and
A, respectively. Additional constraints like headways, connections and regularities
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related to g, are also removed from A. Finally, the train line frequency is updated
(i.e. reduced) in the priority list.

Measure M2 The first timetable design parameter, regularity, initially restricts
the separation of train services of a line exactly to 7/f,. However, by allowing
some degree of freedom to these constraints, we may achieve a better timetable
stability. Thus, measure M2 introduces a relaxation parameter S, which is defined
as a certain tolerance time that relaxes the regularity constraints. Constraints (6) are
extended to:

T/fq—SSﬂ]—ﬂl+y,] < T/fq+S, V(l,J) EAreg’qu Q

Measure M3 The second timetable design parameter that can influence timetable
stability is the maximum allowed running time supplement rate. For a train run-
ning between events i and j, a running time bound u;; represents the sum of technical
minimal running time and the maximum time supplements, where the latter is often
defined as a certain rate of the former. In essence, u; prevents that excessive time is
scheduled which could lead to inefficient service. Both /; and u;; are computed by
given timetable design parameters and their values are decided by timetable plan-
ners which may have a significant impact on A. Based on Fig. 1, more homogenised
transport services may lead to smaller necessary headways between train services.
Thus, allowing more time supplements to fast trains may result in a smaller mini-
mum cycle time for the whole network. To provide more flexibility and use more
time supplements when needed, we increase available running time supplements
(measure M3). Thus, we introduce the relaxation parameter for running time supple-
ments W and apply it to all upper bounds on A,,,. The parameter W > 1 presents the
multiplication factor for maximum allowed running times. Constraints (5) become:

In summary, measure M1 implies that the total number of train services will be
reduced and transport demand may not be completely satisfied. Measures M2 and
M3 suggest slight reduction in the expected LoS by relaxing planning rules. The lat-
ter two measures are always more acceptable and easier to implement than reducing
the line frequencies. Based on the experts experience, we determined a quantitative
value of three proposed measures and applied them when developing the algorithm
for resolving timetable instability. In particular, it is preferable to relax first regular-
ity constraints, then running time constraints and if no other options, then eventually
train line frequencies.

4.3 Algorithm for resolving A > T

Minimising cycle time is an NP-hard problem (Sparing and Goverde 2017) and solv-
ing PESP-A once for the given line plan may result in high and even unacceptable run-
ning times. Hence, Sparing and Goverde (2017) proposed an algorithm to dynamically
adjust bounds on A during the optimisation run to speed up the computation times.
Even with these improvements, the computation times for bigger instances were sev-
eral hours. In our paper, the considered problem has an additional degree of freedom
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being that it is unknown whether the given line plan even provides a stable solution.
And if not, the model would need to be extended with additional decision variables
and constraints to allow defined relaxation measures. These extensions could make a
PESP-1 significantly more complex and possibly unsolvable even for small instances.
Another difficulty may arise regarding dynamical reassigning priorities of train lines.
Therefore, we propose a heuristic approach that iteratively solves PESP-A and applies
the most appropriate relaxation measure. Algorithm 1 gives the workflow of the pro-
posed heuristic for resolving instability and finding a stable timetable structure. Note
that in each iteration an (intermediate) solution of PESP-4 given by (4)—(12) is optimal
for a given instance. In general, the output of PESP-A can be referred to as an optimal
timetable structure, and only if A < T as an optimal stable timetable structure. In our
case, due to a heuristic nature of applying relaxation measures, we refer to the solution
of Algorithm 1 as an optimised stable timetable structure.

The algorithm takes as an input the target line plan Q, the train events and pro-
cess times and corresponding headways represented as N, scheduled cycle time 7, and
parameters for S and W such as minimum and maximum values and relaxation steps. It
also initialises 4 to an infinitely large value, and S and W to the minimum values. The
output of the algorithm is the optimised stable timetable structure (z, z, 1) and statis-
tics on applied measures such as individual use of each measure and their final values.
In general, let us consider one line plan Q, determined by the total number of services
as a search neighbourhood, then the Algorithm 1 first uses M1 as long as the solution
is far from a stable solution and seeks good (and relaxed) neighbourhoods. Once it
reaches a potentially promising neighbourhood, it delves into this area and searches
nearby solutions (i.e. the same line plan) by relaxing on M2 and M3. If a stable solu-
tion is found, then the algorithm terminates; otherwise, it continues the search in the
new neighbourhood with a further relaxed line plan. It is also more important to pre-
serve running time constraints over the regularity constraints. Thus, we always relax
on M2 first, and M3 second. Applying relaxation measures in a relatively strict manner
closely replicates their priorities determined by planning experts.

In each iteration, PESP-A is solved first and the solution (x,z, A) is obtained.
Then, the choice of applied measure has been made based on the size of 4. If 1 is not
significantly bigger than 7, but still hold A > T, then regularity or train running is
relaxed in a strictly defined order. The algorithm first relaxes regularity constraints
M2 and applies it in subsequent iterations until S reaches S,,,. Once S = S, then
the algorithm relaxes running constraints M3 and it may be also repeated in sev-
eral consecutive iterations until W reaches W,,.. If A > T, then neither relaxations
on regularity nor train running times can provide a stable solution, and the algo-
rithm opts for the measure M1. Section 5.2 gives empirical experiments to quantify
A>T for the given network and to determine a cycle time threshold that enables
to obtain stable solutions when applying M2 and M3. The critical circuit C, is com-
puted by getCriticalCircuit for (r, z, A) and, respectively, sets of critical events and
critical lines are determined, E_; and Q. Then, we choose a train service with
the lowest priority g, and remove the corresponding events and processes from N.
If S and/or W reached their maximum values, then we reset them to the minimum
ones. This allows the algorithm to use again one of these two measures in following
iterations. Algorithm 1 terminates when A < T is found.
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Algorithm 1 incorporates a hot-start procedure for PESP-A in each iteration to
improve its computational efficiency. In the first iteration, the upper bound for the
minimum cycle time A,, is set to infinity, while in every other iteration, 4, takes
the value of A from the previous iteration. Since a current iteration includes some
relaxation of the input (compared to the previous iteration), it holds that a solution
from previous iteration is feasible in the current. Exceptionally, when the algorithm
returns from exploring M2 or M3, i.e. reached their maximum values, to using M1
again, an initial solution (x, z) and A for PESP-A is assigned from the last iteration
in which measure M1 has been previously applied. This is to prevent obtaining an
infeasible solution after resetting S and W to stricter (non-relaxed) values. Thus,
using the computed solution in the previous iteration as the initial/starting one in
the current iteration makes the PESP-A model more computationally efficient. For
example, in the ith iteration, M1 is used and the solution (z,7z’) and A’ is gener-
ated. Then, in subsequent iterations, measures M2 and M3 are applied until jth itera-
tion in which regularity and running times constraints are being relaxed maximally,
S =S, and W=W,_ . and the corresponding solution becomes (z/,z) and #.
Note that solutions of ith and jth iteration have the same number of trains (i.e. the
same number of events and processes), and A > A while S and W for jth are relaxed.
Then, in the j + 1th iteration, the algorithm uses (z/, z') and A’ as a starting solution,

while S and W are reset to S;, and W, respectively.

Algorithm 1 Computing a stable timetable

Input: Line requests Q, N = (E, A, T, 1, ), minimum and maximum regularity relaxation
Siin and Smax, regularity step Sstepv minimum and maximum running relaxation Wi,;n
and Wmax, running relaxation step Wstep
Output: stable timetable structure (7, z), minimum cycle time A, removed trains R,
regularity parameter S, running time parameter W
Initialise: A\ < +oo, (7,2) < infeasible, S + S,
while A > T do
(m,2,\) < solve PESP-\
if A > T OR (S = Smax AND W = Wmax) then
if S = Smax AND W = Wmax then
Reset relaxation parameters: S < S i, W+ Wiin
(m,2,\) < (m,2,A) from the last known iteration where M1 was applied
end if
C < getCriticalCircuit ((7, ), A)
M1: Relax train line frequency of a critical service C)
Choose q.pit € QA
Update events E: E < E\ Eq it
Update processes A: A+ A\ A
Update R: R+ R+1
else if A > T then
if S < Smax then
M2: Relax regularity times S < S + Sgtep
else
M3: Relax running times W <= W + Wgtep
end if
end if
end while
return (m, 2), A\, R, S, W.

min> W < Wiin

derit
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4.4 Computing the initial solution for Algorithm 1

The defined PESP-A model within Algorithm 1 performed well and reported small
computation times in initial tests on instances of a few train lines. However, after
applying PESP-4 on real-life instances tested in Sect. 5 (e.g. over 20 train services
with frequency 2 and 7 = 1800 s), the model had difficulties to find a feasible
solution within a reasonable time. To speed up computation times of PESP-4, we
develop a procedure to find an initial solution for PESP-A and a good upper bound
Amax DY solving the original PESP model with a fixed scheduled cycle time 7. PESP
is solved multiple times and each time with an increased value of T until a solution
is found. Algorithm 2 describes the procedure for computing the initial solution for
Algorithm 1. The input for Algorithm 2 is the line plan Q, periodic event activity
network N, an initial value for the scheduled cycle time 7, and the incremental step
for the scheduled cycle time 6;. The output is a feasible solution for a certain 7. If
a feasible solution was not found in the first iteration of PESP, T} is increased for 6,
and the model is rerun. Algorithm 2 stops when a feasible solution is found. The
obtained 7 from the last iteration is used to strengthen the upper bound on 4 in Con-
straint (7), i.e. A, < Ty This new 4, together with the initial solution (7, Zgeas)
notably reduce computation times of PESP-A.

Algorithm 2 Computing an initial solution for PESP-)\

Input: Line requests Q, N = (E, A, T,1,u), é1
Initialise: Ty < T, (m,z) 4 infeasible
while (7,z) infeasible do

solve PESP for given T’

if no solution found then

Tf +— Tf + o7

end if
end while
out: (Tfeas,Zfeas)s Amax — Ty

5 Experimental results
5.1 Scenarios

We evaluate the capabilities of the model for resolving timetable instability on a
highly utilised railway network in the central Netherlands. The considered net-
work is bounded by the four main stations Utrecht (Ut), Eindhoven (Ehv), Tilburg
(Tb) and Nijmegen (Nm), with a fifth main station ’s-Hertogenbosch (Ht) in the
middle and 20 additional smaller stations and stops. Four corridors connect Ht to
the other main stations. Figure 4 depicts the passenger line plan of this network
with 20 train lines.

For the experiment scenarios, we consider variants of target line plans with dif-
ferent numbers of train lines ranging from 14 to 30 and with frequencies between
1 and 2 train services per scheduled cycle time 7. The scheduled cycle time equals
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Fig. 4 Passenger line plan show-
ing 20 train lines

T = 1800 s for all cases, with an exception of a test case for describing the effect of
relaxation measures (Sect. 5.2), then 7 = 1200 s. The real-life scenario serves as a
representative scenario that reflects the current demand on the network with 20 train
lines all with frequency 1 and 7' = 1800 s. Weights z;; for all processes equal 1075,
We do not consider station capacity. Following empirical experiments with A > T,
we determined the cycle time threshold that allows reaching stable solutions apply-
ing measures M2 and M3, see Sect. 5.3. We adopt cycle time threshold equal to
1.12 - T. Thus, while 4 > 1.12 - T, then measure M1 is always used. In a different
network, this cycle time threshold may take a different value. The maximum num-
ber of iterations for Algorithm 1 is set to 40 iterations. The maximum CPU time
for solving PESP-4, i.e. one iteration of Algorithm 1, is set to 500 s. To compute
the upper bound 4, and a feasible solution (r, z) quickly, the time limit for Algo-
rithm 2 is set to 50 s. This may lead to a slightly more relaxed upper bound 4,,,,, but
it satisfies the more important criterion that it provides a feasible solution to PESP-4
in Algorithm 1. Table 1 summarises characteristics of defined scenarios.

Table 2 defines parameters for relaxing measures M2 and M3 of Algorithm 1
such as minimum, step and maximum values. In addition, for M1, we chose to
remove one critical train service at the time. Values for relaxing regularity and run-
ning time constraints are defined so as to allow up to two consecutive iterations of
each relaxation measure.

In the following, we perform three types of analyses. First, the effect of single
measures on the behaviour of Algorithm 1 is explained (Sect. 5.2). Second, the
cycle time threshold has been determined (Sect. 5.3). Third, the performance of
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Table 1 Characteristics for

. Parameter Notation (unit) scO  Experiments
tested scenarios
Number of lines 10l 20 [14, 30]
Average frequency Jq 1 [1,2]
Total number of train services Z'Q‘ f 20 [20, 60]
g=1/4q
Scheduled cycle time T (s) 1800 1800
Time step for Algorithm 2 o7 (s) - 100
Table 2 Input parameters for Parameter Notation (unit) Value
Algorithms 1 and 2
M2 minimum Snin (8) 0
M2 step Ssep (8) 60
M2 maximum Snax (8) 120
M3 minimum Wiin 1
M3 step Witep 