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Dirac-like Hamiltonians, linear in momentum k, describe the low-energy physics of a large set of novel
materials, including graphene, topological insulators, and Weyl fermions. We show here that the inclusion of
a minimal k2 Wilson’s mass correction improves the models and allows for systematic derivations of appropriate
boundary conditions for the envelope functions on finite systems. Considering only Wilson’s masses allowed
by symmetry, we show that the k2 corrections are equivalent to Berry-Mondragon’s discontinuous boundary
conditions. This allows for simple numerical implementations of regularized Dirac models on a lattice, while
properly accounting for the desired boundary condition. We apply our results on graphene nanoribbons (zigzag
and armchair), and on a PbSe monolayer (topological crystalline insulator). For graphene, we find generalized
Brey-Fertig boundary conditions, which correctly describe the small gap seen on ab initio data for the metallic
armchair nanoribbon. On PbSe, we show how our approach can be used to find spin-orbital-coupled boundary
conditions. Overall, our discussions are set on a generic model that can be easily generalized for any Dirac-like
Hamiltonian.

DOI: 10.1103/PhysRevB.100.205111

I. INTRODUCTION

The Dirac-like Hamiltonians play an ubiquitous role in
novel materials, ranging from graphene [1–3] to topological
insulators (TI) [4–9], its crystalline [10–15] and higher-order
[16–19] TI counterparts, and Weyl semimetals [20,21]. The
Dirac cone structure of their low-energy band dispersion leads
to great interest for possible optoelectronic and spintronic
devices [22–25]. Since the Dirac cone itself is well described
by linear-in-momentum k Hamiltonians, bulk models could
be limited to this leading-order contribution. However, the
k2 Wilson’s terms [26–29] are required to regularize the
models for the calculation of topological invariants [8,9,30].
Moreover, numerical (finite-differences) implementations of
k-linear models face the fermion-doubling problem [31–33].
For finite systems (e.g., nanoribbons), the Dirac models al-
low for a variety of possible nontrivial boundary conditions
[34–36], depending on the broken symmetry that imposes
the confinement [37,38], as initially discussed by Berry and
Mondragon [39]. However, if the k2 corrections are included
in the model, one expects that the only allowed boundary
condition is that of a vanishing envelope function at the
edges. Therefore, we ask the following: How can the different
k-linear boundary conditions be translated to models that
account for the k2 corrections?

In this paper, we investigate this question to show that
the proper choice of the k2 Wilson’s correction induces the
desired boundary conditions on Dirac-like (k-linear) Hamilto-
nians. In the first part of the paper we establish our results on
a generic model that applies for all Dirac-like materials. We
formulate this discussion using group-theory arguments, thus
emphasizing its generality, while providing a recipe on how
to apply our ideas to different materials. For the Bernevig-

Hughes-Zhang (BHZ) model [4], the relation between the
hard-wall boundary condition and the k2 terms was shown
in Ref. [30]. Here, we apply our method to the well-known
graphene zigzag and armchair nanoribbons, and to the PbSe
monolayer topological crystalline insulator. Indeed, graphene
is an ideal material to test our findings due to (i) the formation
of edge-state bands connecting the K and K ′ valleys on the
zigzag case; and (ii) the contrast between gapped and gapless
dispersions of armchair nanoribbons with different widths.
We show that our systematic approach allows us to derive
and generalize the Brey and Fertig boundary conditions [40]
from symmetry constraints, which is more general than the
usual analysis of the atomistic terminations, thus extending
the derivation of boundary conditions to naturally include
spinful systems (e.g., PbSe and SnTe TCIs).

In a previous paper [41], our group has shown that the k2

Wilson’s mass term [26] allows for a simple elimination of
the numerical fermion-doubling problem on finite-differences
implementations [31–33]. A similar proposal is established in
Ref. [33], however, their choice of Wilson’s term undesirably
breaks time-reversal symmetry. In Ref. [41], it was suggested,
and shown as a conjecture, that the proper choice of the k2

term avoids this undesired broken symmetry. Here, we prove
this conjecture and extend it to show how it can be used to
either (i) derive nontrivial boundary conditions for Dirac-like
materials on k-linear models, or (ii) properly regularize the
Dirac models on a lattice by choosing the appropriate k2

Wilson’s term that accounts for the desired type of boundary
condition.

The band structures from the effective Hamiltonians are
compared with ab initio results obtained from density func-
tional theory (DFT). The effective Hamiltonians are obtained
with support from QSYMM python’s package [42], and the
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tight-binding models are implemented with KWANT python’s
package [43]. All codes, input, and data files are available
as Supplemental Material [44]. For the DFT simulations, we
use the generalized gradient approximation (GGA) for the
exchange and correlation functional [45]. Fully relativistic
j-dependent pseudopotential, within the projector augmented
wave method [46], was used in the noncollinear spin-DFT
formalism self-consistently. We use the Vienna ab initio sim-
ulation package (VASP) [47,48], with plane-wave basis set
with a cutoff energy of 400–500 eV. The Brillouin zone is
sampled using a number of k points such that the total energy
converges within the meV scale. The optimized force criteria
for convergence was less than 0.01 eV/Å.

II. GENERIC MODEL

Effective models can be obtained from symmetry con-
straints imposed by method of invariants [49], which is equiv-
alent to a k · p envelope function approach, yielding a matrix
expansion of the Hamiltonian H ≡ H (k) in powers of the
momentum k. For Dirac-like materials, one might truncate the
expansion on the leading order (k-linear terms), for which the
confinement is set by nontrivial boundary conditions [37–41]
(see Sec. II B). However, the k2 corrections play a significant
role in numerical simulations, allowing for a simple elimina-
tion of the fermion-doubling problem [31,32,41]. Moreover, a
conjecture introduced in Ref. [41] states that the matrix form
of the k2 term is related to the hard-wall boundary conditions
[39]. In this section, we prove this conjecture on a generic, yet
complete, formulation in terms of a minimal model.

To guide our discussions, let us consider a one-dimensional
system given by the generic Hamiltonian

H = h̄vFUkk + mUwk2 + UcV (x), (1)

which is defined along x, and k = −i∂x. The k-linear term
gives the Dirac-like dispersion at low energies with Fermi
velocity vF . The k2 correction introduces the Wilson’s mass
m [26,41]. The last term is a soft-wall confining poten-
tial given by a symmetric profile V (x) = V0[1 − �(x + L) +
�(x − L)], where �(x) is the Heaviside step function, and V0

is the intensity. This profile defines the physical system within
the inner region |x| < L, while on the outer region (|x| � L) it
opens a gap 2|V0|. Later, we will consider the hard-wall limit
|V0| → ∞, which excludes the outer region from the physical
domain. The Uk,Uw,Uc are Hermitian matrices defined by the
symmetry constraints imposed on H , which will be discussed
throughout the next sections. Namely, Uk defines the kinetic
energy term, Uw sets the type of Wilson’s mass, and Uc sets
the form of confinement.

Hereafter, we assume that the Uk , Uc, and Uw matrices are
nonsingular. Neglecting the k2 correction by setting m = 0,
Uk defines the unbounded Dirac-like spectrum of the Hamil-
tonian, i.e., its eigenvalues give the positive and negative
velocities of the Dirac cone. Thus, we require det(Uk ) �= 0,
otherwise, one would have a flat branch in the energy dis-
persion. In turn, the Uc matrix defines the confinement gap
on the outer region where V (x) �= 0. Within this region, we
demand that Eq. (1) does not have any propagating modes at
zero energy. To guarantee this, we demand that U −1

k Uc has

no purely real eigenvalues, which implies det(Uc) �= 0. The
anticommutation condition {Uk,Uc} = 0 is sufficient, but not
necessary, to fulfill this. A similar argument applies to the case
with a Wilson’s mass term in the interior of the sample, where
V (x) = 0 and m �= 0. We demand that the Wilson’s mass term
does not introduce any new propagating modes at zero energy
beyond the ones in the original Dirac model. This results
in the identical conditions for Uw as for Uc (for details, see
Appendix A).

A. Symmetry constraints: Uw ≡ Uc

Let us consider that our generic system, i.e., H from
Eq. (1), is invariant under a symmetry group G, which is
composed by two types of symmetry operations: S+ and
S−. The S+ operators leave x invariant, while S− takes x →
−x. Therefore, it follows the transformations S±xS−1

± = ±x,
S±kS−1

± = ±k, S±V (x)S−1
± = V (x). The last one is a conse-

quence of the symmetric form of V (x) introduced previously.
Imposing that H is invariant over the full group G (i.e.,
S±HS−1

± = H), one obtains the symmetry constraints for the
matrices of H :

[Uw, Dψ (S±)] = [Uc, Dψ (S±)] = 0, (2)

[Uk, Dψ (S+)] = {Uk, Dψ (S−)} = 0, (3)

which defines the symmetry-allowed matrices Uk , Uw, and Uc.
Here [·, ·] and {·, ·} are the commutator and anticommutator
operations, and Dψ (S±) are the matrix representations of
S± in the Hilbert space. Since Uw and Uc satisfy the same
constraints, it follows that they are equivalent (Uw ≡ Uc), i.e.,
both are in the same linear space of allowed matrices. This
equivalence between Uw and Uc was assumed truthful, but not
rigorously proven in Ref. [41].

B. Hard-wall boundary conditions

The appropriate hard-wall boundary condition depends on
the order of the differential equation. For our generic effective
model H in Eq. (1), the Schrödinger equation HF (x) =
EF (x) has order 2 if m �= 0, or order 1 if m = 0. Here,
F (x) is an envelope spinor function [49]. In all cases, the
energy E = 〈F |H |F 〉 must be bounded and well defined.
Consider H from Eq. (1), with a simplified single bound-
ary profile V (x) = V0�(x). On the outer region x > 0 the
gap |2V0| yields evanescent solutions at low energies, i.e.,
F (x > 0) ∼ F0e−x/λ, where F0 is the spinor at x = 0. If the
k-linear term dominates the low-energy band structure, the
penetration length is λ ∝ h̄vF /|V0|. In the hard-wall limit
|V0| → ∞ and λ → 0, thus, near the interface x ≈ 0 we can
write F (x) ≈ F0[1 − �(x)]. Considering only the x ≈ 0 range
on the integrals in E = 〈F |H |F 〉, it can be shown that the
contributions from the k-linear and potential V (x) terms are
finite, while m〈F |Uwk2|F 〉 ≈ −mF †

0 UwF0δ(0) is ill defined
due to the δ(0). Therefore, either m = 0 or F0 = 0. In the first
case, one gets a k-linear model with discontinuous F (x), while
the second case yields a k2 model with a continuous F (x) that
vanishes at the hard-wall interface.

The discontinuous behavior of F (x) in k-linear Hamilto-
nians (m = 0) was first introduced in the neutrino billiards
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by Berry and Mondragon (BM) [39], and further discussed
in Refs. [50,51]. Later, it was applied to graphene [37,38]
and topological insulators [30,41,52]. Here, we cast the BM
hard-wall boundary condition for H in Eq. (1) in a form that
explicitly shows Uk and Uc as

(
iU −1

k Uc
)
F0 = h̄vF

λV0
F0. (4)

This is an eigenvalue equation for the matrix iU −1
k Uc

with eigenvalue α = h̄vF /(λV0). The solutions with Reλ > 0
(Reα > 0) describe states decaying outside the boundary.
Defining M = α−1(iU −1

k Uc), the boundary condition becomes

MF0 = F0. (5)

If Uc and Uk are chosen such that M is traceless, unitary,
and Hermitian, this reproduces the most general current-
conserving boundary conditions [37–39]. We derive formally
the same boundary condition replacing Uc with Uw for the
case of a hard wall with Wilson’s mass term (for details, see
Appendix A). In the remaining of the paper we choose the
Hamiltonian terms such that (iU −1

k Uc) has at least one pair of
eigenvalues α = ±1, equivalently det (Uk ∓ iUc) = 0. Using
this, we cast the boundary conditions (5) for a finite system
with |x| < L as (Uk ∓ iUc)F (±L) = 0.

C. Summary of the models

From the considerations above, we conclude that one can
choose to work with either the k-linear formulation with
nontrivial boundary conditions, or the k2 model with trivial
hard walls:

H = h̄vFUkk with (Uk ∓ iUc)F (±L) = 0, (6)

H = h̄vFUkk + mUwk2 with F (±L) = 0. (7)

These two approaches are equivalent, due to the analytical
properties of the boundary conditions discussed above, and
the equivalence Uw ≡ Uc shown in Sec. II A. Thus, for the k-
linear model of Eq. (6), the characteristics of the confinement
appear on the BM boundary condition, while on the k2 model
of Eq. (7), it enters through Wilson’s k2 term. For the k2

model, the Wilson’s mass can be set within

δ2
x δε

2
� |m| � (h̄vF )2

δε

, (8)

which ensures that the k-linear term dominates the low-
energy spectrum within the δε energy range and eliminates the
fermion-doubling problem on a lattice [41]. In the analytical
limit, the pure Dirac-like model is restored as m → 0 [53].

We explicitly show in Appendix A that the envelope
functions of the two models match far from the boundaries.
Near the boundary, the k2 model has an additional localized
contribution that decays quickly away from the boundary in
the limit of small m [53].

III. GRAPHENE NANORIBBONS

Graphene nanoribbons (Fig. 1) are ideal cases to present
our findings on a concrete system since its band structure
and boundary conditions are well known [3,40]. In Ref. [40],

(a)

az 

(b)

(c)

(d)

aa

aA 

a1 

a2 

42

5

31

NA

...ND

4

2
3

1

...

FIG. 1. (a) Hexagonal cell of monolayer graphene with the A
(blue) and B (red) sublattices emphasized. The K-point basis func-
tions ϕμ(r) (with μ = A, B) for each sublattice is composed by
pz orbitals multiplied by the Bloch phases indicated at each site,
with φ = 2π/3. For K ′, ϕμ′ (r) are composed replacing φ → −φ.
(b) Projections of the K , K ′, and � points of the Brillouin zone into
its one-dimensional counterparts for zigzag (ky) and armchair (kx)
nanoribbons. Lattices for (c) zigzag and (d) armchair nanoribbons
with ND (NA) dimers (atoms) from edge to edge. Their primitive vec-
tors aZ/A and unit cells are highlighted. The carbon-carbon distance
is a/

√
3 ≈ 0.142 nm. The empty circles at the edges indicate the

lattice sites that were removed to form each nanoribbon, defining
the effective dimensions W = W0 + 2a/

√
3 and L = L0 + a, where

W0 = (3ND/2 − 1)a/
√

3 and L0 = (NA − 1)a/2.

Brey and Fertig (BF) have shown that the graphene k-linear
boundary conditions depend on the nanoribbon atomic ter-
mination. Particularly, their boundary condition predicts a
metallic armchair nanoribbon with an identically zero gap for
NA = 3p + 2 (with integer p), while the ab initio data from
Ref. [54] show a vanishing, but finite, gap. Indeed, the null
gap is not consistent with its symmetry group (∼D2h, see
Appendix B) of the nanoribbons.

In this section we systematically revise the BF boundary
conditions. We find that it is equivalent to the BM boundary
condition, given by a proper choice of Uc, which is imposed by
symmetry [37,38]. However, for the metallic armchair case,
we find that Uc diverges, which is a consequence of the zero-
gap inconsistency mentioned above. Therefore, we propose
a generalization of the BF boundary condition that fixes this
inconsistency in both k-linear and k2 approaches.

Initially, let us consider the usual k-linear Dirac model of
a full monolayer graphene. Later in Sec. III C, we introduce
the k2 model for the nanoribbons. The k · p expansion for
graphene considers basis functions given by its solutions at
K and K ′ valleys, i.e., ϕA(r), ϕB(r), ϕA′ (r), and ϕB′ (r), where
A and B label the sublattices. These are illustrated in Fig. 1(a).
Within the envelope function approximation [55–57], the
expansion reads as

ψ (r) =
∑

μ

[ fμ(r)eiq·rϕμ(r) + fμ′ (r)eiq′ ·rϕμ′ (r)], (9)

205111-3



A. L. ARAÚJO et al. PHYSICAL REVIEW B 100, 205111 (2019)

where fμ(r) and fμ′ (r) are the envelope functions, μ = {A, B}
label the sublattices, q = k − K and q′ = k − K ′ are the devi-
ations from the K and K ′ valleys in k space. Bloch theorem
requires ψ (r + R) = eik·Rψ (r), where R = n1a1 + n2a2 (with
n1, n2 integers) is a Bravais translation of the monolayer. Since
the Bloch phase in ϕμ(′) (r + R) = eiK (′)·Rϕμ(′) (r) cancels out
the opposite phase in the q exponentials, Bloch theorem is
satisfied for a periodic fμ(′) (r + R) = fμ(′) (r). Up to leading
order in k, the usual effective Dirac-like Hamiltonian is

HG(k) = h(q) ⊕ h∗(q′), (10)

h(q) = h̄vF σ · q. (11)

The 4 × 4 HG(k) Hamiltonian acts on the envelope spinor
F (r) = [ fA(r), fB(r), fA′ (r), fB′ (r)]. Notice that we write
HG(k) in terms of the deviations q and q′, such that the Dirac
cones occur at k ∼ K and K ′. This notation will be useful to
keep track of the nanoribbon confinement projections onto
the kx (armchair) or ky (zigzag) axis in the next sections.
There, the projections will retain the overall form of the
ψ (r) expansion above, but they will change the definitions of
q and q′.

A. Revised Brey and Fertig boundary conditions

An elegant approach to the boundary conditions for
graphene nanoribbons was introduced in Ref. [40] by Brey
and Fertig. There, they propose that the envelope function
must vanish at the sites that were removed to form the nanorib-
bons. Consequently, it depends on the atomic terminations,
rendering different boundary conditions for the zigzag and
armchair cases. We have recently used this approach to ob-
tain boundary conditions for topological crystalline insulators
[58].

Next, we revise and generalize these boundary conditions
for zigzag and armchair nanoribbons, and in the next section
we show their equivalence to the Uk and Uc matrices on the
BM approach. Complementarily, the boundary conditions for
confinement in arbitrary directions (beyond the zigzag and
armchair) and different atomistic terminations were studied in
Ref. [38]. Their results can be used to define general Uk and
Uc matrices.

1. Zigzag nanoribbons

To model the zigzag nanoribbons, we start from the bulk
basis functions ϕμ,μ′ (r), but with a modified ψ (r) expansion.

Namely, replace q(′) → k − K̄ (′) in Eq. (9), where K̄ (′) are the
K and K ′ projections into the zigzag ky axis, as shown in
Fig. 1(b). These k projections also apply to q(′) in HG(k) from
Eq. (10). For simplicity, here we consider only this pristine
form of HG(k). However, for narrow ribbons, symmetry-
allowed corrections due to the finite size of the nanoribbons
are relevant for an improved fit with ab initio data (see
Appendix B).

The zigzag nanoribbon lattice is illustrated in Fig. 1(c).
The right (left) edge (x = ±W0/2) is composed only of atoms
from the A (B) sublattice. The length W0 = ( 3

2 ND − 1)a/
√

3,
where ND is the number of dimers. The next line of atoms,
removed to form the ribbon, would have been located in

x = ±W/2, which defines the effective length W = W0 +
2a/

√
3. Since the pz orbitals are highly localized at each

carbon atom, the absence of B atoms at the left edge x =
−W/2 yields ϕB(′) (R−) ≈ 0, where R± = (±W/2, y). Impos-
ing ψ (R−) = 0 in Eq. (9), we get fA(R−)e−iK̄·R−ϕA(R−) +
fA′ (R−)eiK̄ ′·R−ϕA′ (R−) = 0. Moreover, the phase factors [see
Fig. 1(a)] and orbitals cancel out, i.e., e−iK̄·R−ϕA(R−) =
eiK̄ ′ ·R−ϕA′ (R−). Similar considerations follow for the B sub-
lattice on the right edge, r = R+. Due to translational invari-
ance along y, we can simplify fμ(r) → eikyy fμ(x). Therefore,
the boundary conditions for the zigzag nanoribbon envelope
functions are

fA

(
−W

2

)
= − fA′

(
−W

2

)
,

fB

(
+W

2

)
= − fB′

(
+W

2

)
. (12)

In the original discussion by BF [40], they consider only a
single valley (K or K ′) on the ψ (r) expansion. Indeed, near
the K valley fμ′ (r) ≈ 0 (with μ = A, B). Neglecting these
contributions in Eq. (12), one immediately recovers their well-
known result fA(−W/2) = fB(+W/2) = 0. Similarly, for the
K ′ valley, one gets fA′ (−W/2) = fB′ (+W/2) = 0. Therefore,
Eq. (12) is a generalization of the original BF boundary
condition for the zigzag nanoribbon.

2. Armchair nanoribbons

For the armchair nanoribbons, confinement along y
projects both K and K ′ valleys into �̄ on the kx armchair axis
[Fig. 1(b)]. Therefore, the ψ (r) expansion in Eq. (9) is defined
by q = q′ → k. As in the zigzag case above, these projections
also apply to HG(k) in Eq. (10).

The armchair lattice is shown in Fig. 1(d). Confinement
along y defines the length L0 = (NA − 1)a/2, where NA is
the number of atoms along the ribbon. The line of atoms
removed to form the ribbon defines the effective length L =
L0 + a. Differently from the previous case, here both edge
terminations contain atoms from the A and B sublattices.
Consequently, all orbitals ϕμ(x,±L/2) �= 0. In this case, the
system has translational invariance along y, thus fμ(r) →
eikxx fμ(y). Imposing ψ (x,±L/2) = 0 for all x in Eq. (9), we
get

fμ

(
±L

2

)
= −e±iθ f ′

μ

(
±L

2

)
, (13)

where e±iθ = ϕμ′ (x,±L/2)/ϕμ(x,±L/2) is the phase differ-
ence between the K and K ′ solutions at the edges. On the BF
approach [40], they consider the bulk Bloch phase difference,
yielding θ → θBF = �KL = (NA + 1)2π/3. However, since
confinement breaks the Bloch periodicity along y, deviations
from θBF should be expected for narrow ribbons. Therefore,
hereafter we consider Eq. (13) with an arbitrary θ as a
generalization of the original BF boundary condition.

B. Equivalence between Brey and Fertig
and Berry and Mondragon

The Brey-Fertig boundary condition discussed above can
be equally understood via the Berry-Mondragon formalism
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summarized in Eq. (5). To verify this equivalence, let us com-
pare the BF and BM boundary conditions for the zigzag and
armchair nanoribbons. Within the BM approach, the matrix Uk

multiplies the momentum k along the confinement direction,
while Uc must satisfy the symmetry constraints presented
previously. For the zigzag nanoribbons, these are

U Z
k =

(
σx 0

0 σx

)
, U Z

c (η) =
(

σyη σy(1 − η)

σy(1 − η) σyη

)
,

(14)

where σν (with ν = 0, x, y, z) are Pauli matrices acting on the
sublattice A/B subspace, and σ0 is the 2 × 2 identity matrix.
The parameter η is restricted to η = {0, 1}, which identifies
the particular boundary condition, as it is discussed below. In
turn, for the armchair confinement,

U A
k =

(
σy 0

0 −σy

)
, U A

c (θ ) =
(

σy cot θ σy csc θ

σy csc θ σy cot θ

)
.

(15)

Armchair nanoribbons. Substituting U A
k and U A

c (θ ) from
Eq. (15) into Eq. (5), one obtains Eq. (13) after straightfor-
ward manipulations. This establishes the equivalence between
the BF and BM approaches. Interestingly, these are two
drastically distinct approaches for the boundary condition. On
the BF approach, one uses the atomistic terminations of the
lattice to motivate the boundary condition. On the other hand,
the BM approach is based solely on the symmetries of the
lattice.

Zigzag nanoribbons. First, for η = 0, replacing U Z
k and

U Z
c (0) from Eq. (14) into Eq. (5), we reproduce our boundary

conditions shown in Eq. (12), plus an additional pair of
equations fB(R−) = fB′ (R−), and fA(R+) = fA′ (R+), which
are trivially satisfied since ϕA(′) (R+) ≈ 0 and ϕB(′) (R−) ≈ 0.
Second, for η = 1 the same procedure gives us the original
BF boundary condition for the zigzag confinement. Therefore,
the two possible values of η = {0, 1} label our generalized
boundary condition, and the original BF result. A comparison
between the band structures of these two cases will be shown
in the next section.

C. k2 model for graphene nanoribbons

To construct the k2 model for the nanoribbons, we consider
the symmetries of the armchair and zigzag lattices [Figs. 1(c)
and 1(d)]. They are both invariant under the D2h group.
Additionally, we consider that the system is time-reversal
symmetric and chiral. The matrix representations of these
symmetry operations are built from the ψ (r) expansion in
Eq. (9). These, and the corresponding most general symmetry-
allowed Hamiltonian, are shown in Appendix B. Next, we first
discuss a minimal k2 model, which matches the usual k-linear
model, but allows for simpler numerical implementations.
Later, we use the full k2 model to fit and compare the results
with the DFT data.

(e) (e)

(d)

FIG. 2. Zigzag bands (ND = 24) from the k2 model for different
boundary parameters η and Wilson’s masses mZ . (a) For η = 0
and finite mZ , the generalized BF boundary condition returns the
expected zigzag band structure. (b) For smaller mZ → 0.15mZ the
doublers appear near X̄ as hybridized extra cones. (c) For η = 1
(original BF) the doublers at kdoubler

y ≈ ±[K̄ − 2mZ/(h̄vF δ2
x )] cannot

be eliminated (dotted lines). The arrows in (a) and (c) point to the
state (E , ky ) used to plot the envelope functions F(x). Near K̄ , F(x)
for both (d) η = 0 and (e) η = 1 are similar and smooth (solid lines).
(e) The F(x) for the doublers (dotted lines) show nonphysical phase
oscillations on the scale of the numerical discretization.

1. Minimal k2 models

A minimal model for the nanoribbons must contain only
the bulklike k-linear terms and the necessary k2 corrections,
which read as

HZ = h(k+) ⊕ h∗(k−) + mZ

2
U Z

c (η)k2
x , (16)

HA = h(k) ⊕ h∗(k) + mA

2
U A

c (θ )k2
y , (17)

for zigzag and armchair nanoribbons, respectively. The Dirac-
like term h(k) is given in Eq. (10), and k± = (kx, ky ±
K̄ ) centers the Dirac cones into the K and K ′ projections
[Fig. 1(b)]. The k2 terms are defined by the Wilson’s matrices
U Z (A)

w ≡ U Z (A)
c and masses mZ (A). Since the k2 terms allow

for a trivial boundary condition, i.e., ψ = 0 at the edges, it
can be numerically implemented via simple finite-differences
schemes [41]. Hereafter, all results were obtained discretizing
the coordinates with ∼100 points, and the Wilson’s masses
are chosen on the mid-range of Eq. (8).

For zigzag nanoribbons, Fig. 2 compares the general-
ized (η = 0) and original (η = 1) BF conditions. Indeed,
the ideal results are given by η = 0 in Fig. 2(a). Here, the
absence of fermion doublers is due to their hybridization
near X̄ [Fig. 2(b)], which drives the doublers toward high
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FIG. 3. (a) The DFT gaps (circles) as a function of L (log scale)
fall into straight lines on a wide range 3 � NA � 50. The dashed
lines are fits used to obtain the linear coefficients that yield the
constraints between (b) the Fermi velocity and the correction �θ to
the BF boundary conditions. (c) Comparison between the gaps in
DFT (circles), k-linear (dotted lines) and k2 models (solid lines). The
dotted match the solid ones, but are shifted for clarity.

energies as mZ increases. On the other hand, for η = 1 the
Hamiltonian HZ splits into uncoupled K̄ and K̄ ′ blocks, each
showing an independent doubler [Fig. 2(c)]. Since there is
no hybridization, the doublers will always occur at kdoubler

y ≈
±[K̄ − 2mZ/(h̄vF δ2

x )]. Not even staggered-lattice implemen-
tations are able to fully eliminate the doublers in this case
[31,32]. Notice that in the analytical k-linear limit δx → 0 and
the doublers are eliminated as kdoubler

y → ±∞, thus justifying
the use of the original BF boundary conditions in analytical
calculations. For ky ≈ K̄ , the envelope functions F(r) for
η = {0, 1} match well, as shown in Figs. 2(d) and 2(e). For
η = 0, a small K̄ − K̄ ′ hybridization occurs, which is absent
for η = 1 due to the block form of HZ . In contrast, the F(r)
of the doublers show nonphysical oscillations with a period
given by the numerical step size δx [dotted lines in Fig. 2(e)].

For the armchair nanoribbons, the boundary condition is
set by θ . The original BF θ → θBF = (NA + 1)2π/3 gives
a qualitatively correct picture for the armchair gap ∝1/L.
However, it predicts that the bands for NA = 3p and 3p + 1
(for integer p) are degenerated, while for NA = 3p + 2 they
are identically gapless [54]. However, as discussed above, the
confinement breaks Bloch periodicity and a deviation from
θBF is expected. Therefore, in Fig. 3 we consider θ = θBF +
�θ . Within the k-linear model, the armchair gaps are

E3p ≈ h̄vF

L

[
2π

3
− 2�θ

]
, (18)

E3p+1 ≈ h̄vF

L

[
2π

3
+ 2�θ

]
, (19)

E3p+2 ≈ h̄vF

L

[
2�θ

]
. (20)

Indeed, the DFT data for the gaps obey these expressions,
i.e., ENA ∝ 1/L, as shown in log-log scale in Fig. 3(a). The
linear coefficient of these lines gives us constraints between
vF and �θ , which we use to establish the correction �θ to
the BF boundary condition shown in Fig. 3(b). Considering
vF = 0.8 × 103 nm/ps (see fits in the next section), we solve
the k-linear and k2 models with the corresponding �θ ≈ 20◦,
and both match well the DFT gaps in Fig. 3(c). Here, we
have used a constant vF for all NA for simplicity. However,
vF may change as a function of NA due to finite-size effects.
Consequently, �θ must also be NA dependent, while obeying
the constraints from Figs. 3(a) and 3(b).

The comparisons above show that our k2 models [Eqs. (16)
and (17)] generalize the usual graphene Dirac model and the
BF boundary conditions. On the zigzag case, the η = 0 model
couples the K̄ and K̄ ′ valleys, such that the edge-state branch is
restricted to its correct interval in Fig. 2(a), while in the usual
BF case they are uncoupled, yielding edge-state branches that
extend toward ky → ±∞. Indeed, both models would match
identically if the valley projections are driven far apart in
Eq. (16). For the armchair case, the BF model is recovered for
�θ → 0, yielding the zero gap for the NA = 3p + 2 metallic
case, and degenerate 3p and 3p + 1 gaps.

2. Full k2 model: Fitting the DFT data

While the minimal k2 model above provides a sufficient
approach to regularize the Dirac models on a lattice, it is also
insightful to investigate the full k2 model in comparison with
DFT results. The derivation of the most general symmetry-
allowed Hamiltonian for graphene up to k2 is shown in
Appendix B. In a general compact notation, it reads as

H = h(k+) ⊕ h∗(k−) +
[

mA1

2
U0y + mA2

2
Uxy

]
k2

y

+
[

mZ1

2
U0y + mZ2

2
Uxy

]
k2

x

+ �Uxy + h̄μUxxkx + mxyUzxkxky. (21)

The matrices Ui j = τi ⊗ σ j are set in terms of the Pauli
matrices τν (with ν = 0, x, y, z) acting on the K/K ′ valley
subspace, and σν acting on the sublattices A/B. The first
line in Eq. (21) contains the Dirac-like terms. For armchair
k± = k, while for zigzag it sets the valley projections as
discussed in the previous section. The second line shows the
most general form of the k2 terms. For armchair ribbons,
the BM boundary conditions constrain mA1 = mA cot θ and
mA2 = mA csc θ . Similarly, for zigzag mZ1 = mZη and mZ2 =
mZ (1 − η). The third line shows the extra terms that allow for
a fine tuning of the band structure. The � term couples the
projected cones from K and K ′ valleys, the velocity μ couples
the dispersions at finite k, and mxy is a trigonal correction for
the masses. To illustrate the results from the full k2 model,
we have considered a medium-sized armchair nanoribbon
with NA = 48 (type 3p), as shown in Fig. 4. The parameters
used to obtain the figures, and equivalent results for NA = 49
(3p + 1), NA = 50 (3p + 2), and for the zigzag case are shown
in Appendix B.

In Figs. 4(a)–4(c) we compare the DFT band structure with
the k-linear BF model, tight-binding model (implemented
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FIG. 4. Comparison between the DFT band structures and (a) the
k-linear, (b) tight-binding, and (c) k2 models for NA = 48. At low en-
ergy all models agree, while for |E | � 0.5 eV parabolic corrections
become relevant and broken chirality starts to develop. The envelope
densities (colored symbols) match well the DFT data for (d) the first
and (e) second conduction bands at kx = 0.

with the KWANT code [43]), and our full k2 model, respec-
tively. As expected, at low energies all models agree reason-
ably well with the DFT data. However, for |E | � 0.5 eV, dis-
crepancies are visible in all cases. The DFT data show two sets
of quantized cone dispersions with different parabolicities.
This is not captured by the k-linear model. The tight-binding
model captures these features, but the band edges are shifted.
The k2 model provides a better fit up to |E | ∼ 0.75 eV.

The densities of the first and second conduction sub-
bands are shown in Figs. 4(c) and 4(d). The DFT data
show peaks at atomic positions. For the models, the envelope
functions are extracted from Eq. (9), |ψ (y)|2 ∝ | fμ(y)eiθy/L +
fμ′ (y)e−iθy/L|2, where the phase factors arise from the ϕμ(′) (r)
phases in Fig. 1(a). These are highly oscillating envelopes,
thus, in Figs. 4(c) and 4(d) we plot them only at the atomic
positions, showing an excellent agreement with the DFT data.
These also agree with the tight-binding densities [59] for the
low-energy subbands.

IV. SPINFUL CASE: TOPOLOGICAL
CRYSTALLINE INSULATORS

Graphene has a very weak spin-orbit coupling [1–3].
Therefore, to illustrate our results on a spinful system, let
us instead consider a monolayer of PbSe, which is a topo-
logical crystalline insulator (TCI) [13,60,61]. The effective
model for this material was derived in Ref. [58] up to k2.
Hereafter, we follow the notation from this reference. For
simplicity, we restrict the discussion to the PbSe nanoribbons
of types A, B and C (Fig. 5), while generalizations for ribbons

FIG. 5. Lattices of PbSe ribbons of types (a) A, (b) B, and
(c) C, as defined in Ref. [58]. (d)–(f) PbSe band edges at kx = 0
varying the boundary condition parameters ρ and θ . (d) For m > 0,
the system is trivial, there are no states within the gap |E/�| < 1.
(e) For m < 0, a pair of degenerate topological Dirac crossings
appear, and its crossing point at kx = 0 is controlled by ρ: (e1) for
ρ > 0 the crossing is downshifted, and (e2) for ρ < 0 it shifts up
in energy. (f) A finite θ or �C splits the Dirac crossings as shown
in (f1).

D and E (defined in Ref. [58] and not shown here) are
straightforward.

The lattices from ribbons A and B are invariant under
the point group D2h, while for ribbon C the symmetry is
reduced to C2v . Therefore, the sole difference between ribbons
A and B is their atomic termination (see Fig. 5), which shall
reflect on their boundary conditions. For ribbon C, one edge is
equivalent to that of ribbon A, and the other is of the B type.
Consequently, due to the reduced symmetry, ribbon C admits
extra terms in the Hamiltonian.

The model of PbSe monolayers [58] around the X point
of the Brillouin zone is defined on the basis functions
{ϕxz,↑(r), ϕxz,↓(r), ϕx,↑(r), ϕx,↓(r)}, where the xz and x indices
refer to the symmetries of the orbitals, and ↑,↓ label the
spin states along z. Thus, similarly to Eq. (9), the wave
function ψ (r) expansion is given by these basis functions
multiplied by the k phase ei(k−X )·r and the envelope spinor
F(x, y) = eikxx[ fxz,↑(y), fxz,↓(y), fx,↑(y), fx,↓(y)]T . Here, we
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already assume a plane wave along x since the confinement
in along y in Figs. 5(a)–5(c).

Considering an isotropic limit for simplicity, the minimal
k2 effective model for ribbons A, B, and C, confined along y
and extended along x, is

H = �Uz0 + α(Uxxky − Uxykx ) + m

2
Uc(ρ, θ )k2

y + �CUyx,

(22)

Uc(ρ, θ ) = cos θ [cosh(ρ)Uz0 + sinh(ρ)U00] + sin(θ )Uyx.

(23)

The matrices Ui j = τi ⊗ σ j are set by Pauli matrices acting
on the orbital (τν) and spin (σν) subspaces, � is the gap
at k = 0, α defines the Fermi velocity, and m is Wilson’s
mass. The coupling �C is only allowed for ribbon C. Since
the confinement is along y, the kinetic matrix Uk = Uxx,
yielding det[Uk ± iUc(ρ, θ )] = 0, as expected. The boundary
conditions are defined by the continuum parameters ρ and θ .
For ribbons A and B, θ ≡ 0.

The effects of the boundary condition parameter ρ and θ

on the band structure are shown in Figs. 5(d)–5(f). Here, we
consider � and α/� as the energy and distance units. For
m > 0 the system is trivial, thus there are no states within the
gap |E/�| < 1 in Fig. 5(d). For m < 0 the system becomes
topologically nontrivial with a mirror Chern number nM = −2
[58], yielding two Dirac cones (degenerate for θ = 0). In this
case, the states seen within the gap in Fig. 5(e) refer to the
crossing point of the Dirac dispersion seen in Figs. 5(e1)
and 5(e2). The system is chiral for ρ = 0, while for finite ρ

the broken chirality is a consequence of the distinct atomic
terminations of ribbons A and B [58]. For ribbon C we can
consider ρ = 0 for simplicity and allow θ to vary. This is
shown in Fig. 5(f). In this case, both θ �= 0 or �C �= 0 break
the degeneracies between the Dirac crossings, as seen in
Fig. 5(f1). These results are equivalent to those from Ref. [58],
where a BF-type boundary condition was proposed.

Complementarily, within the k-linear model (m = 0), the
BM approach for the boundary conditions [Uk ± iUc(ρ, θ )] ·
F(x,±L/2) = 0 yields

fx,+σ

(
±L

2

)
= ∓ ieρ cos θ

1 ± sin θ
fxz,−σ

(
±L

2

)
. (24)

Interestingly, this boundary condition implies a spin-orbital
admixture, as it couples opposite spins ±σ and orbitals x/xz
[62]. In Ref. [52], this type of constraint leads to a spin texture
across the ribbon.

V. CONCLUSIONS

We have shown how the k2 Wilson corrections not only
regularize the Dirac-like models on a lattice, but are directly
related to the boundary conditions of finite systems. Consid-
ering the symmetries of the finite-size system (e.g., nanorib-
bons), the choice of Wilson’s corrections is not arbitrary.
Indeed, we show that the symmetry-allowed k2 terms are
equivalent to the nontrivial boundary conditions from Berry
and Mondragon [39], thus providing a recipe to regularize
the Dirac model by including the k2 term compatible with the
desired boundary condition. This hidden connection between
Wilson’s k2 term and the boundary conditions was taken as

a conjecture in Ref. [41] to propose a simple method to
eliminate the fermion-doubling problem. Here, our systematic
derivation now proves this conjecture.

Applying this methodology for graphene, we have found a
generalization of the Brey-Fertig boundary conditions [40].
For the zigzag nanoribbons, the K-K ′ coupling induced by
the boundary condition restricts the edge-state bands to lie
within these valleys. More interestingly, for the armchair
case, it introduces �θ as a deviation from the bulk Bloch
phases. Particularly, for the “metallic” armchair case a finite
�θ eliminates the nonphysical gapless band structure [54].
Additionally, for the spinful systems (e.g., PbSe TCI) our
approach allows for simple derivation of the spinful boundary
conditions.
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APPENDIX A: RIGOROUS PROOFS OF THE HARD-WALL
BOUNDARY CONDITIONS

Section II B of the main text presents an illustrative picture
on how the boundary conditions change from the k-linear
to the k2 model. Here, we provide more rigorous proofs of
the equivalence of these boundary conditions for the general
case of N × N (for even N) Hamiltonians with Dirac-like
spectrum.

1. Constraints on Uc and Uw

In the linear model, to define a hard wall, Uc needs to open
a gap at zero energy in the outside region. Consequently, the
Hamiltonian (h̄vFUkk + V0Uc) should have no propagating
modes at zero energy, meaning the determinant cannot have
any zeros for real k. Using that Uk is nonsingular, this is
equivalent to U −1

k Uc having no real eigenvalues, which shows
that Uc cannot be singular. Demanding that Uc anticommutes
with Uk is sufficient to fulfill this condition, as this ensures that
U −1

k Uc is skew-Hermitian with purely imaginary eigenvalues.
Similarly, in the quadratic case, the Wilson’s mass term

cannot introduce any new modes, i.e., (h̄vFUkk + mUwk2)
should have no propagating modes at zero energy beyond the
N original k = 0 modes of the linear model. Furthermore,
the Wilson’s mass term should ensure that in the discretized
model [k → sin(δxk)/δx] has no fermion doubling at k =
π/δx, requiring nonsingular Uw. Dividing the Hamiltonian
by k we get (h̄vFUk + mUwk) whose determinant should not
vanish for any real k. Using that Uk and Uw are nonsingular,
this is equivalent to U −1

k Uw having no real eigenvalues.
Hence, we showed that Uc and Uw obey the same con-

straint, and demanding anticommutation with Uk is sufficient
to fulfill it.
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2. Boundary conditions for the k-linear model

Consider the general model Hamiltonian from Eq. (1) in
the k-linear case (m = 0), i.e., H = h̄vFUkk + UcV (x), and
its corresponding Schrödinger equation HF (x) = EF (x). Let
us assume that V (x) = V0�(x) defines a single wall at x =
0, opening a gap |2V0| for x > 0. On the outer region, the
hard-wall limit (V0 → ∞) allows us to neglect E � V0, and
considering the ansatz F (x > 0) ∼ F0e−x/λ (Reλ > 0), we get(

ih̄vF

V0λ
Uk + Uc

)
F0 = 0. (A1)

Nontrivial solutions will only exist if the determinant of the
matrix in parentheses vanishes, which can be cast as

det
(
U −1

k Uc − ω
) = 0 (A2)

since Uk is nonsingular. Here, ω = −ih̄vF /V0λ plays the role
of the eigenvalues of U −1

k Uc. The restriction Reλ > 0, im-
posed by the evanescent solution for x > 0, implies Imω < 0.
Next, one must check that U −1

k Uc admits eigenvalues with
Imω < 0.

First, notice that Eq. (A1) is formally identical to the
constraint on Uc derived in the previous section, requiring that
there are no solutions with purely real ω. Second, using that
U −1

k Uc is a product of two Hermitian matrices, it is easy to
prove that its eigenvalues come in complex-conjugate pairs,
i.e., simply take the complex conjugate of Eq. (A2) to find

0 = det(Uc − ωUk ) = det(Uc − ωUk )∗

= det[(Uc − ωUk )†] = det(Uc − ω∗Uk ). (A3)

Therefore, both ω and ω∗ are eigenvalues of U −1
k Uc, and ∗

labels complex conjugation. This guarantees that there are
always exactly N/2 solutions with Imω < 0.

Finally, we check that all solutions of this boundary con-
dition obey current conservation, meaning vanishing normal
current for any solution of a hard-wall boundary condition.
The current operator normal to the boundary is given by

J = ∂H

∂ (h̄k)
= vFUk, (A4)

and the expectation value of the current is

F †
0 JF0 = vF F †

0 UkF0

= ω−1vF F †
0 Uk

(
U −1

k Uc
)
F0

= ω−1vF F †
0 UcF0, (A5)

where we used that F0 is a solution of the boundary condition.
The left-hand side is the expectation value of a Hermitian
operator and is real, while the right-hand side is a nonzero,
not real number times another real expectation value. This is
only possible if F †

0 UkF0 = F †
0 UcF0 = 0. This shows that the

boundary condition is current conserving.

3. Boundary conditions for the k2 model

For the full model Hamiltonian from Eq. (1), we expect
that the hard-wall boundary condition becomes F (0) = 0
at the hard-wall set at x = 0. This is only possible if the
bulk solutions in the inner region [x < 0, thus V (x) = 0] are

linearly dependent, thus allowing for a linear combination that
vanishes at the boundary.

To verify this condition, consider a plane-wave ansatz
F (x < 0) ∼ Fkeikx, with Imk � 0 to avoid divergent states for
x → −∞. The Schrödinger equation for x < 0 becomes

(h̄vFUkk + mUwk2 − E )Fk = 0. (A6)

Nontrivial solutions require det[S(k, E )] = 0, with S(k, E ) =
h̄vFUkk + mUwk2 − E , yielding a 2N th-order polynomial
equation for k, where N is the size of the matrix S(k, E ). For
a fixed E , this provides 2N complex roots kn, which are either
purely real, or come in complex-conjugate pairs, as shown by
a similar argument to Eq. (A3). Together with the constraint
on Uw this guarantees that there are N bulk states at a given
E with purely real kn, and a total of N + N/2 roots with
Imkn � 0. Since the nullity of S(k, E ) cannot be larger than N ,
this implies that the set of zero eigenvectors Fkn with Imkn < 0
is linearly dependent, thus validating the criteria stated above.

4. Relation between the wave functions
of the k-linear and k2 models

To further validate the equivalence between the k-linear
and k2 models, we show that their envelope functions F (x)
are closely related in the limit of small energies E ≈ 0 and
momentum k ≈ 0, for which the linear spectrum dominates.

First, consider the linear model H from Eq. (6), and
a plane-wave ansatz F (x) = Fneikx. Since [H,Uk] = 0, they
share a common set of eigenmodes Fn, which does not depend
on k. The set Fn spans the full internal Hilbert space, thus
allowing for a linear combination that satisfies the boundary
condition from Eq. (6) (see Appendix A 2).

Second, for the k2 model from Eq. (7), the boundary
condition changes to F (0) = 0 (see Appendix A 3). However,
in the small-k limit we can neglect the k2 term, hence,
the small-k eigenmodes are approximately the same set Fn

from the k-linear case. Since this set is a complete basis,
the boundary condition F (0) = 0 can only be set by the
trivially zero linear combination. Therefore, this boundary
condition requires the modes from higher momentum states.
To obtain these, consider the small energy limit (E → 0) on
the Schrödinger equation for the k2 model, and simplifying k
in the equation to eliminate the small-k solutions, we get

(h̄vFUk + mUwk)Fk = 0. (A7)

As shown in Appendix A 3, this equation is guaranteed to
provide evanescent solutions that decay toward the interior of
the sample, where ke = h̄vF /(mω) with Imke > 0, and ω is a
complex eigenvalue of U −1

k Uw with Imω > 0. This equation
is formally identical to the boundary condition of the k-linear
model (4). Since the small-k modes Fn form a complete set,
the addition of these Fke evanescent modes makes the set
linearly dependent, allowing a vanishing combination at the
boundary. For small m, ke is large and the evanescent solutions
decay quickly, while the propagating part of the solution with
small k satisfies the same boundary condition as the linear
model.

The analysis above shows that the envelope functions of the
two models match far from the boundaries. Near the boundary,
the k2 model has an additional localized contribution that
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decays quickly away from the boundary in the limit of small
m [53].

APPENDIX B: FULL k2 MODEL FOR GRAPHENE

The full monolayer graphene honeycomb lattice is invari-
ant under the (P6/mmm) symmorphic space group. Eliminat-
ing the trivial Bloch translations group TB, its factor point
group is (P6/mmm)/TB ∼ D6h. On the other hand, once the
monolayer is cut to form the nanoribbons, the sixfold rota-
tion symmetry is broken, such that the zigzag and armchair
nanoribbons may transform as either the Pmmm or Pmma
space groups, depending on their widths.

Armchair nanoribbons with odd NA transform as the sym-
morphic Pmmm space group, while for even NA, it transforms
as the nonsymmorphic Pmma. Nevertheless, since the mono-
layer Dirac cones are projected into �̄ for the armchair con-
finement, both have the same factor group under trivial Bloch
translations, thus, Pmmm/TB ≡ Pmma/TB ∼ D2h. Similarly,
zigzag nanoribbons with even (odd) ND belong to the Pmmm
(Pmma) space group. In this case, the K and K ′ monolayer
valleys fall into the K̄ and K̄ ′ under the confinement pro-
jection. Consequently, the Pmma nonsymmorphic symme-
tries yield an extra phase into the representation matrices.
Fortunately, this phase matches that of a single Bloch trans-
lation, thus, it also follows Pmmm/TB ≡ Pmma/TB ∼ D2h.
Therefore, hereafter it is sufficient to analyze the symmorphic
lattices and the point group D2h. This allows us to build
a single model for both armchair and zigzag nanoribbons,
considering a basis set that contains both K and K ′ basis
functions.

The D2h point group can be generated by its mirror op-
erations Mx, My, and Mz. Here, Mx reflects x → −x, and
similarly for My and Mz. Under the basis vector r = (x, y, z),
the coordinate representation from the O(3) group is given by
the matrices

Dr(Mx ) = diag(−1,+1,+1), (B1)

Dr(My) = diag(+1,−1,+1), (B2)

Dr(Mz ) = diag(+1,+1,−1), (B3)

where diag(. . . ) labels a diagonal matrix with elements given
by its arguments.

To obtain the Hilbert space representation H we con-
sider the basis functions {ϕA(r), ϕB(r), ϕA′ (r), ϕB′ (r)} shown
in Fig. 1(a). These are built from pz orbitals of the carbon
atoms centered at the A or B lattice sites and Bloch phases
related to the K or K ′ valleys. Namely, the representation

TABLE I. Parameters used for the k-linear, k2, and tight-binding
models for the armchair nanoribbons.

Armchair Zigzag

NA 48 49 50 ND 48

k-linear model
vF (103 nm/ps) 0.8 0.8 0.8 vF 0.8
�θ (deg) 21.7 23.1 19.8

k2 model
vx = vy (103 nm/ps) 0.8 0.8 0.8 vx = vy 0.8
mA (meV nm2 ) 50 50 50 mZ 50
�θ (deg) 21.7 23.1 19.8 η 0
mZ1 = mZ2 (meV nm2 ) 0 0 0 mA1 = mA2 0
μ (103 nm/ps) 0.1 −0.05 0 μ 0
� (meV) 0 0 0 � 0
mxy (meV nm2 ) −50 −50 −50 mxy 0

Tight binding
Hopping (eV) 2.4 2.4 2.4 Hopping 2.4

matrices for the D2h generators are

DH(Mx ) = −τ0 ⊗ σy, (B4)

DH(My) = +τx ⊗ σ0, (B5)

DH(Mz ) = −τ0 ⊗ σ0, (B6)

where σ = (σ0, σx, σy, σz ) are Pauli matrices acting on the
A/B lattices subspace, and τ = (τ0, τx, τy, τz ) acts on the
K/K ′ valley subspace.

Additionally, we consider that the system is chiral C
and time-reversal T invariant. Since our graphene model is
spinless, T = K is simply the complex conjugation. The C
symmetry labels the sublattices. Under the r representation
Dr(T ) = Dr(C) = 1, while on k space Dk(T ) = −1 and
Dk(C) = 1. Within the H representation,

DH(T ) = τx ⊗ σzK, (B7)

DH(C) = τ0 ⊗ σz. (B8)

To obtain the effective Hamiltonian H , we consider the
method of invariants [49]. Thus, we seek the most general
form of H ≡ H (k) as an expansion in powers of k = (kx, ky )
that is invariant, i.e., [H,S] = 0 for all S symmetries above.
This can be easily implemented in using the QSYMM Python’s
package [42]. Splitting the resulting terms as H = H0 + HA +
HZ + Hft , we obtain

H0 = h̄vx

(
σx 0
0 σx

)
kx + h̄vy

[(
σy 0
0 −σy

)
ky +

(
σy 0
0 σy

)
�K

]
, (B9)

HA = mA1

2

(
σy 0
0 σy

)
k2

y + mA2

2

(
0 σy

σy 0

)
k2

y −→ HA = mA

2

(
σy cot θ σy csc θ

σy csc θ σy cot θ

)
k2

y , (B10)

HZ = mZ1

2

(
σy 0
0 σy

)
k2

x + mZ2

2

(
0 σy

σy 0

)
k2

x −→ HZ = mZ

2

(
ησy (1 − η)σy

(1 − η)σy ησy

)
k2

x , (B11)

Hft = �

(
0 σy

σy 0

)
+ h̄μ

(
0 σx

σx 0

)
kx + mxy

(
σx 0
0 −σx

)
kxky. (B12)
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FIG. 6. Comparison between the DFT band structures and (a) the k-linear, (b) tight-binding, and (c) k2 models for armchair nanoribbons
with (a1)–(c1) NA = 49, (a2)–(c2) NA = 50, and (a3)–(c3) zigzag nanoribbons with ND = 48. The envelope densities (colored symbols) match
well the DFT data for (d) the first and (e) second conduction bands at kx = 0 in all cases.

Here, H0 represents a minimal Dirac-like model with
anisotropic Fermi velocities vx and vy, with the monolayer
projected cones at ky = ±�K = ±K̄ for the zigzag confine-
ment, and �K = 0 for armchair. The HA and HZ show the
most general k2

x and k2
y terms on the left-hand side. On the

right-hand side, the second form of HA and HZ is written as the
Uc ≡ Uw confinement or Wilson’s matrices for the minimal
armchair and zigzag models, respectively. Additionally, Hft

contains fine-tuning terms that were neglected on the minimal
models [Eqs. (16) and (17)].

We have fit the full k2 model to the DFT data, trying
to use a minimal set of finite parameters (see Table I).
The results for the NA = 48 armchair ribbon were shown

in the main text, Fig. 4. Here, we show equivalent re-
sults for NA = 49 in Figs. 6(a1)–6(e1), for the metallic
case NA = 50 in Figs. 6(a2)–6(e2), and for a zigzag rib-
bon with ND = 48 in Figs. 6(a3)–6(e3). In all cases, the
agreement between the models and the DFT data at low
energies is satisfactory. At higher energies, the k2 model
provides slightly better results. Since all models are based
on low-energy expansions, the agreement with DFT must
improve for wider ribbons. However, the main conclusion
to be extracted from the comparison is that the k2 model
provides a better approach for numerical simulations in
comparison to the k-linear model, which requires complex
handling [31,32].
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