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Adaptive Control for Autonomous Ships with
Uncertain Model and Unknown Propeller Dynamics

Ali Haseltalab, Rudy R. Negenborn

Department of Maritime and Transport Technology, Delft University of Technology, Delft,
the Netherlands. Emails: {a.haseltalab,r.r.negenborn}@tudelft.nl

Abstract

Motion control is one of the most critical aspects in the design of autonomous

ships. During maneuvering, the dynamics of propellers as well as the craft hy-

drodynamical specifications experience sever uncertainties. In this paper, an

adaptive control approach is proposed to control the motion and trajectory

tracking of an autonomous vessel by adopting neural networks that is used for

estimating the dynamics of the propellers and handling hydrodynamical uncer-

tainties. Considering that the maneuvering model of a vessel resemble a non-

linear non-affine-in-control system, the proposed neural-based adaptive control

algorithm is designed to estimate the nonlinear influence of the input function

which in this case is the dynamics of propellers and thrusters. It is also shown

that the proposed methodology is capable of handling state dependent uncer-

tainties within the ship maneuvering model. A Lyapunov-based technique and

Uniform Ultimate Boundedness are used to prove the correctness of the algo-

rithm. To assess the method’s performance, several experiments are considered

including trajectory tracking simulations in the port of Rotterdam.

Keywords: Adaptive Control, Autonomous Vessels, Neural Networks,

Propeller Dynamics.

1. Introduction

Autonomous Surface Vessels (ASVs) are types of ships that are capable

of observing and sensing their surrounding environment to maneuver or carry
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out dynamic positioning operations without intervention of human operators.

Recently, the maritime industry has started to investigate the possibility of5

bringing ASVs into operation. Rolls Royce expects to be able to introduce

a fully autonomous vessel by 2035 [1]. ASVs can be beneficial from several

points of view such as crew cost and safety. Many dangerous operations can be

carried out by ASVs where there is no operator on-board. ASVs are extensively

investigated by the scientific community to address numerous existing challenges10

on the way of having an operational fully-autonomous ship. These researches

fall into topics such as motion control of ASVs [2, 3], coordination between

multiple ASVs [4, 5], and interaction of components inside ASVs [6].

One of the major challenges within the control of ASVs is the problem of

uncertainties in the craft and its components model. Recently, several research15

works have been published to address this problem. In [7], a maneuvering model

for a ship is extracted and an adaptive controller is implemented to control

and estimate the ship parameters. In [8], the trajectory tracking problem is

investigated using neural-adaptive control schemes where there exist several

output constraints and parameter uncertainties in the craft model. A neural20

learning control strategy is adopted in [9] to guarantee trajectory tracking of

an ASV with uncertainties in the model. In [10], a robust adaptive control

strategy in combination with back-stepping and Lyapunov techniques is adopted

to control the position of a ship in the presence of system uncertainties and

unknown environmental disturbances. The use of fuzzy control approaches for25

adaptive track keeping is investigated in [11]. In [12], the performance of two

different popular adaptive control algorithms for ASVs is compared where it is

assumed that the vessel model is uncertain. Adoption of adaptive schemes for

dynamic positioning is investigated in [13, 14] in the presence of uncertainty and

unknown environmental disturbances. In [15], an adaptive scheme is proposed30

for pitch control of propellers to reduce fuel consumption. Adaptive control of

ASVs with input constraints is investigated in [16]. Despite all these research

projects, the use of adaptive control schemes in the maritime industry is still at

its infancy.
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The problem of uncertainty within propeller dynamics is not considered in35

any of the above works. It has been shown in the literature that the dynamics

of propellers experience a relatively large amount of uncertainty during maneu-

vering of the vessel [17]. This makes the speed and position control of ASVs

challenging. Considering the propellers shaft speed as the system input, the

governing dynamical equation of the system is a non-affine in control system.40

As a result, the objective is to design a control algorithm that carries out the

motion and position control of the ship by on-line approximation of propellers

dynamics and handling hydrodynamical uncertainties within the vessel model.

The adaptive control of systems with uncertain dynamical models has re-

ceived extensive consideration by the academic community in the recent decades.45

Among the diverse methodologies to control a nonlinear uncertain system us-

ing adaptive strategies, adaptive control using Neural Networks (NN) has been

recognized as a feasible scheme where the unmodeled dynamics are estimated

by NN [18, 19]. In most of the published researches, the common assumption

is that the system is affine-in-control, i.e., the control inputs appear linearly in50

the dynamical equations of the system. Notable works are [20, 21] where the

proposed methodologies are designed based on feedback linearization. The dif-

ficulty with the control of non-affine uncertain systems where the control input

appears as a nonlinear function g(·), is that the inverse of g(·), in general, does

not have an explicit form, even if its existence can be shown with the Implicit55

Function Theorem [22]. Several strategies to control such non-affine systems

have been proposed in the literature. In [22] and [23], the non-affine control

problem is converted into an affine-in-control problem by defining a new control

input that contains an integrator. On the other hand, in [24], NN is used to

design an inverse controller while in [25], the inversion error is approximated60

using NN. Moreover, time-scale separation methods were applied in [26, 27].

Considering the vessel model and by building up on our previous research re-

sults in [28], an adaptive control methodology for a class of non-affine-in-control

systems is proposed where the unknown nonlinear influence of the system input

is estimated using NN, so that the ASV can follow the given trajectory with the65
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desired speed. In this paper, it is also shown that the proposed methodology is

capable of handling state dependent uncertainties within the hydrodynamical

model of the ship. To achieve these goals, the results in [21] for adaptive control

of affine-in-control systems are extended to control of partially unknown non-

affine systems. An algorithm is proposed to address the problem of controlling70

a class of non-affine systems where the dynamics of the input function g(·) is

unknown or uncertain where g(·) is the generated thrust by the propeller. By

the adoption of NN, particularly the results in [29] and the Weierstrass approx-

imation theorem [30], the inverse of g(·) is calculated and by adopting a control

law the stability of the system is guaranteed. For the stability analysis, the Lya-75

punov technique as well as Uniform Ultimate Boundedness are employed and it

is then shown that the reference trajectory tracking error converges to a resid-

ual set. The algorithm transforms the system to an affine-in-control system and

then, by approximating g−1(·), estimates the feasible control input. It is also

shown that this strategy is capable of handling state dependent uncertainties80

within the hydrodynamical model of the ship. In order to evaluate the perfor-

mance of the algorithm, several experiments are carried out. Based on actual

Automatic Identification System (AIS) data received from the Port of Rotter-

dam Authority, a maneuvering experiment is carried out. It is assumed that

the ship model embeds a Direct Current (DC) power and propulsion system [31]85

in order to assess the interaction of the proposed algorithm with the on-board

power and propulsion system. Moreover, a dynamic positioning experiment and

a circular trajectory tracking experiment are performed. Compared to [28], this

paper contains several novelties. Some of the significant novel aspects are:

1. The problem of uncertainty in the propeller model is discussed in-detail90

and reasons behind the adoption of an adaptive control scheme for trajec-

tory tracking are discussed.

2. A more complex ship model is considered which comprises all maneuvering

model elements in 3 degrees of freedom.

3. The problem formulation and the correctness proof of the algorithm are95
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carried out for Multi-Input Multi-Output (MIMO) systems, while in [28]

the problem formulation was carried out for Single-Input Single-Output

(SISO) systems.

4. In this paper, it is also shown that this strategy is capable of handling

state dependent uncertainties.100

5. For evaluating the performance of the algorithm, more sophisticated sce-

narios are considered where a trajectory of a real ship in the port of

Rotterdam is used as a reference trajectory. Moreover, the interaction of

the proposed methodology with on-board power and propulsion system of

ships is evaluated.105

The remainder of this paper is organized as follows. In Section 2, the problem

of uncertainty in propeller dynamics is explained. In Section 3, the overall

system is described and the problem is formulated. In Section 4, the algorithm

is presented and its proof of correctness is given. Simulation experiments and

results are discussed in Section 5. Concluding remarks and future research110

directions are given in Section 6.

2. Propellers Model and The Problem of Uncertainty

The propellers and thrusters are the main components for the generation of

required forces to propel a ship aligned to its given referenced trajectory. Based

on the propeller model, the required forces can be determined by introducing

a proper shaft speed to the propellers and thrusters. As a result, the propeller

shaft speed is treated as the system input. These actuators are also the main link

between on-board power and propulsion system and surrounding environment of

the ship. The relationship between the propeller shaft speed and the generated

thrust and torque can be established based on the following relationships [32]:

Tp = KTρD
4|np|np (1)

Qp = KQρD
5|np|np, (2)

5



where Tp is the generated thrust, Qp is the generated torque, np is the propeller

shaft speed, D is the propeller diameter, and ρ is the water density. Parameters

KT and KQ are thrust and torque coefficients, which are functions of propeller

structure and advance ratio J [33], defined as:

KT = fKT
(J, P/D,Ae/Ao, Z,Rn, tc)

KQ = fKQ
(J, P/D,Ae/Ao, Z,Rn, tc),

where P/D is the pitch ratio, Ae/Ao is the blade area ratio, Z is the number

of propeller blades, Rn is the Reynolds number of a characteristic ratio and

tc is the ratio of maximum propeller thickness to the length of the cord at a

characteristic radius. Moreover, the advance ratio is defined as:

J =
Va
npD

,

where Va is the advanced speed that is the speed of water passing through

propellers found using the following equation:

Va = (1− w)U, (3)

with U the forward speed of the vessel and w the wake friction, depending on

the shape of the hull.

Functions fKT
and fKQ

were estimated in [33, 34] in terms of very long and115

complex polynomials. However, typically, these functions are approximated us-

ing J and open water diagram where the performance of propellers are assessed,

i.e., KT and KQ are functions of J . Figure 1 shows an open water diagram of

a fixed pitch propeller belonging to the Wageningen B systematic series.

The modeling of propellers has always been a challenge in the maritime120

industry where a thorough model has not been proposed so far (for more infor-

mation on this please refer to [17] and references therein). During maneuvering

of a vessel, the propellers behave differently compared to when sailing straight.

When a ship turns, due to the presence of lateral velocity, the inflow to the pro-

pellers is slanting and not axial. As a result, the advance ratio J will decrease125
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Figure 1: Open water diagram for Wageningen B 5 75 with pitch ratio 0.96 where ηo is the

open water efficiency [35].

and more load is applied to propellers. Since, the open water diagram (and

any other performance diagrams) is based on axial flow, they can not be used

directly [36, 17]. Several analytical approaches have been proposed to solve this

problem, however each of them contains a great amount of uncertainty.

Moreover, in a turn, the wake factor is also influenced. During straight130

courses, the wake is uniformly distributed but in a turn, the transversal velocity

component is not dispersed uniformly and in the lower half of the propeller

blade, the transversal velocity is way larger than the upper half [37, 17]. Figure 2

represents for a particular vessel the difference between the results of a propeller

model and measured values [17], indicating the significant uncertainty in the135

model. In conventional ships, this problem might not be very critical since the

control inputs are given by human operators. However in ASVs and during

autopilot modes, this problem might result in inaccurate guidance. Since it

has been shown in the literature that having an accurate and simple model for

propellers is challenging, in this paper, the objective is to design an algorithm to140

control the ship maneuvering by on-line approximation of propellers dynamics.
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Figure 2: The difference between measured propeller torque and the outcome of the model

during a turn [17].

3. System Description and Problem Formulation

In this section, the ship motion dynamics in 3 Degrees of Freedom (DoF) is

presented where actuators (propellers and thrusters) shaft speeds are regarded

as control input variables and ship position and speed are output variables. In145

this section, it is assumed that the relationship between propellers shaft speeds

and generated torque and thrust is unknown. Then, the problem is formu-

lated where the aim is to control the ship motion by estimating the propellers

dynamics.

3.1. ASV Dynamics150

In the context of this paper, the 3DoF motion of the ship is considered. The

ship model can then be represented as:

η̇s(t) = R
(
ηs(t)

)
V (t)

MsV̇ (t) + Cs
(
V (t)

)
V (t) +Ds

(
V (t)

)
V (t) = τs,

(4)

where ηs(t) = [xs(t), ys(t), δs(t)] is a vector with the position and orientation of

the ship at time t, V (t) = [u(t), v(t), r(t)]T is the 3DoF ship speed and τs is the

vector of forces applied to the ship center of gravity. Ms is the Inertial Mass
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matrix which consists of Rigid Body matrix MRB and Added Mass matrix MA,

Ms = MRB +MA (5)

where

MRB =


ms 0 0

0 ms msxg

0 msxg Iz

 ,MA =


−Xu̇ 0 0

0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ

 . (6)

ms is the mass of the vessel, xg is the distance between the center of gravity of

the vessel to the center of the body-fixed coordinate frame.

Cs(·) represents Coriolis and Centrifugal matrices which consists of rigid-

body and added Coriolis and centripetal parts as:

Cs(V ) = CRB(V ) + CA(V ), (7)

where

CRB(V ) =


0 0 −ms(xgr + v)

0 0 msu

ms(xgr + v) −msu 0



CA(V ) =


0 0 c13(V )

0 0 c23(V )

−c13(V ) −c23(V ) 0

 ,
(8)

with c13(V ) = Yv̇v + 1
2 (Nv̇ + Yṙ) and c23(V ) = −Xu̇u.

The Damping matrix Ds is constructed by addition of two linear and non-

linear matrices, i.e.,

Ds(V ) = DL +DNL(V ) (9)
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where

DL =


−Xu 0 0

0 −Yv −Yr
0 −Nv −Nr



DNL(V ) =


−d11(V ) 0 0

0 −d22(V ) −d23(V )

0 −d32(V ) −d33(V )

 .
(10)

with d11(V ) = X|u|u|u|+Xuuuu
2, d22(V ) = Y|v|v|v|+Y|r|v|r|, d23(V ) = Y|v|r|v|+

Y|r|r|r|, d32(V ) = N|v|v|v|+N|r|v|r| and d33(V ) = N|v|r|v|+N|r|r|r|. For more155

information on the model and the parameters, the reader is referred to [3, 7].

Matrix R(η) is a Jacobian matrix that transforms ship velocity from body-

fixed to inertial velocities, defined as:

R(ηs) =


cos(δ) − sin(δ) 0

sin(δ) cos(δ) 0

0 0 1

 , (11)

in which δ is the ship heading angle, τs is the vector of forces applied to the

ship center of gravity, i.e.,

τs =


τx

τy

τδ

 , (12)

where τx and τy are surge and sway forces and τδ is yaw moment, all applied to

the gravity center of the ship.

For the sake of simplicity, it is assumed that the propellers are not rotat-

able. As a result, the relationship between the produced thrust by actuators

(propellers and thrusters) and the vector of forces is [3]:

τs = T3×m


g1(n1)

...

gm(nm)

 , (13)
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Figure 3: An ASV with two propellers (F1 and F2), one side thruster (F3) and a bow thruster

(F4).

where g1, . . . , gm are actuators dynamics, n1, . . . , nm are actuators shaft

speeds, m is the number of actuators, and T is the thrust configuration matrix

defined as:

T =
[
t1 ... tm

]
, (14)

with t1, t2, ..., tm column vectors for standard actuators. If the actuator is a

propeller, then:

ti =


1

0

−ly

 ; (15)

if the actuator is a stern or bow thruster, then:

ti =


0

1

lx

 , (16)

where ly and lx are actuator positions in the ASV reference frame (Figure 3).

Since, generally, T is not a square matrix the solution to the problem of un-

constrained thrust allocation to non-rotatable actuators can be found using the

pseudo-inverse of T :

τac = TT(TT−1)−1τs. (17)

where τac is the vector of generated thrust by propelling actuators.
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In this paper, it is assumed that g1, . . . , gm are unknown functions. For the

algorithm design, the first step is to represent (4) in state space format. As a

result, we have:

V̇ = −M−1s

(
Cs(V )V +Ds(V )V − τs

)
η̇ = T (ηs)V.

(18)

Equation (18) can be rewritten in the following form:

ẋs = fs(xs) +

M−1s

03×3

 τs, (19)

where xs =
[
vT ηTs

]T
is the vector of states, f : R6 → R6 is a nonlinear

function. By combining (13) and (19) we obtain:

ẋs = fs(xs) +

M−1s T

03×m



g1(n1)

...

gm(nm)

 , (20)

ẋs = fs(xs) + gs(us). (21)

where gs : Rm → R6 is a nonlinear function that contains the influence of input160

variables to the system and us = [n1, n2, ..., nm]T is the vector of actuators shaft

speeds. In the remainder of this paper, (21) is considered as the dynamics of

the ASV, a Multi-Input Multi-Output (MIMO) non-affine in control system.

3.2. Problem Formulation

Consider the following class of non-affine systems:

ẋ(t) = f(x(t)) + g(u(t)) + ω(t), (22)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm is the system input,165

ω(t) ∈ Rn is the disturbance applied to the system, f : Rn → Rn is a Lipschitz

continuous nonlinear function and g : Rm → Rn is a nonlinear continuously

differentiable function with g1(0) = 0, · · · , gn(0) = 0. In the context of this

paper, it is assumed that the function g(·) is unknown but satisfies the following

assumption:170
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Assumption 1. There exists a lower bound and an upper bound γl, γu ∈ R,

such that

0 < γl <
∣∣∣J(g(u(t)

))∣∣∣ < γu (23)

for all t ≥ 0.

Using the Implicit Function Theorem and assumptions on g(·), the existence

of g−1(·) can be demonstrated [22]. The above assumptions on the system dy-

namics are moderately mild and can be concluded for broad classes of nonlinear

systems [22, 38].175

Assumption 2. The overall disturbance acting upon the system is bounded,

i.e., there exists ωM > 0 such that ‖ω(t)‖ ≤ ωM for all t ≥ 0.

Suppose xR(t) is the desired trajectory of the system. Then, one can write

the trajectory tracking error of the system as:

e(t) = xR(t)− x(t). (24)

The objective is to design an adaptive controller that adopts state feedback to

ensure that x(t) follows xR(t) for all t > 0.

4. The Adaptive Control Strategy180

In this section, the proposed control strategy for the aforementioned class

of non-affine systems is explained and the stability analysis and the proof of

correctness are carried out.

4.1. Proposed Control Strategy

The control strategy is based on transforming the non-affine system to an

affine nonlinear system and then, keeping e(t) in a residual set by approximating

g−1(.) and adopting a proper control law. Let

U(t) = g
(
u(t)

)
, (25)
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where U ∈ Rn is treated as the control signal for the affine-in-control system,

i.e.,

ẋ(t) = f(x) + U(t) + ω(t). (26)

Similarly as earlier research works in adaptive control (such as [19, 39]), we

define the following control law for the above system:

U(t) = ke(t)− f(x), (27)

where k is the controller gain, which will be determined below using a Lyapunov185

technique. By adopting the above control rule, it can be shown that (26) can

follow the desired trajectory xR(t). However, in the problem considered in

this paper, one of the main challenges is that U(t) is not recognizable for the

non-affine system (22), i.e., generally, u(t) cannot be computed using U(t).

Therefore, the objective is to estimate u(t) using the trajectory tracking error190

of the system and a well-tuned controller gain.

Based on the results in the literature [29] and similar to the methodology

used in [21], feed-forward NNs with one hidden layer are capable of approximat-

ing any continuous function on a compact set, regardless of the nature of NN

activation functions and input space dimensions. Assume g−1(·) as the inverse

of g(·). Let us define g−1(·) as:

g−1(U) = diag−1
(
WTψ(U)

)
+ ε, (28)

where ψ(U) ∈ RN×n is known as the vector of NN activation functions, W ∈

RN×n is the ideal approximation weight vector, ε is the approximation error

and N is the number of neurons. In the presented methodology, the controller

updates its set of weights Ŵ based on the tracking error e(t) to approximate

g−1(·). As a result, at each time t ≥ 0, the estimation of g−1(·) can be written

as:

ĝ−1
(
U
)

= diag−1
(
ŴTψ(U)

)
, (29)

where ĝ−1(.) and Ŵ are estimates of g−1(·) and W , respectively. The diag(.)

14



operator is defined as:

diag
(
A
)

=


a1 0 ...

0 a2 ...

0 0
. . .


where A = [a1, a2, ...]

T and diag−1
(
diag(A)

)
= A. The error in the estimation

of g−1(·) can be defined as:

g̃−1(U) = g−1(U)− ĝ−1(U) = diag
(
W̃Tψ(U)

)
+ ε, (30)

where

W̃ = W − Ŵ (31)

is the weight approximation error. Furthermore, using (29), the error dynamics

of system (22) can be determined as:

ė(t) = −
(
f
(
x(t)) + g

(
diag−1

(
ŴTψ(U)

))
+ ω(t)− ẋR(t)

)
. (32)

Consider the following update rule for Ŵ :

˙̂
W = −Γψ(U)diag

(
e(t)

)
− µΓŴ , (33)

where Γ is a diagonal N ×N matrix with positive diagonal elements and µ ∈ R

is the NN tuning gain. The complete proposed adaptive control algorithm for

the non-affine system (22) is described in Algorithm 1.

4.2. Stability Analysis and the Algorithm Design195

In this section, the stability analysis of the algorithm is carried out. By em-

ploying uniform ultimate boundedness, it is shown that the error e(t) converges

to a residual set and states stay bounded for all t ≥ 0.

Definition 1 (Uniform Ultimate Boundedness). The solution to system

(22) is Uniformly Ultimately Bounded with the ultimate bound b ∈ R, if there

exists a positive constant c ∈ R, independent of t0 ≥ 0, and if for all a ∈ (0, c),

there is τ = τ(a, b) such that:

‖x(t0)‖ ≤ a⇒ ‖x(t)‖ ≤ b,∀t ≥ t0 + τ.

15



Algorithm 1 Adaptive Control Algorithm for Non-Affine Systems:

Initialization: Obtain x(0) and xR(t). Assign initial values to the elements in

the vector of weights.

1: Calculate e(t) using (24).

2: Compute U using (27) at each time t.

3: Estimate u by adopting (29).

4: Apply u to the system.

5: Update the vector of weights based on (33).

6: Obtain the state of the system and go to 1.

If the above statement holds for arbitrarily large a then the slution is Globally

Uniformly Ultimately Bounded.200

The above definition can be extended also to the trajectory tracking error

e(t). Indeed, our intention is to show that the error is uniformly ultimately

bounded and that the state x(t) is contained for all t ≥ 0. Therefore, considering

the boundedness of ε, i.e., there exists a positive real value εM such that ε(t) <

εM for all t ≥ 0 [30], there exists a vector of activation functions ψ(.) and a set205

of weights, both with dimension N × 1, such that as N → ∞, ε converges to

zero [21, 29, 30].

Before presenting the main result of the paper, the following assumptions

must be considered, in order to prove the correctness of Theorem 1.

Assumption 3. The desired trajectory xR(t) and its derivative ẋR(t) are bounded,210

i.e., there exists xM ∈ R such that max{|xR(t)|, |ẋR(t)|} ≤ xM , for all t ≥ 0.

Assumption 4. The elements in the vector of ideal weights W are bounded,

i.e., there exists WM ∈ R such that ‖W‖ ≤WM .

Assumption 5. The NN activation functions are bounded. As a result, there

is a positive real value ψM such that ‖ψ(.)‖ ≤ ψM .215
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It is worthy to mention that for designing the controller, having the knowl-

edge over the bounds discussed in Assumptions 1-4 is not required.

Next, we analyze the stability of the proposed method and demonstrate the

feasibility of the choices for control law (27) and the update rule for the NN

weights (33).220

Theorem 1. Suppose the control and the NN weight update laws are:

U = ke(t)− f(x(t))

˙̂
W = Γψ(U)diag

(
e(t)

)
+ µΓŴ .

If

k >
1
4 (M + 1)2ψ2

M

µ
, (34)

where M is the Lipschitz constant of g(·), then the trajectory tracking error

e(t) and NN weights estimation error W̃ are UUB and there exists a set of NN

activation functions and a vector of weights with which the nonlinearities of

g−1(.) can be approximated.

Proof. Consider the following Lyapunov function:

V =
1

2
eT e+

1

2
Tr
(
W̃TΓ−1W̃

)
(35)

with Tr(·) as the trace operator. Then, the derivative of V is:

V̇ = ėT e+ Tr
(

˙̃WTΓ−1W̃
)
. (36)

From (32),

V̇ = −
(
f
(
x(t)) + g

(
diag−1

(
ŴTψ(U)

))
+ ω(t)− ẋR(t)

)T
e

+ Tr
(

˙̃WTΓ−1W̃
)
. (37)

Since, in this paper, it is assumed that f(x) is determined, using (25) and (27),

17



the above equation can be rewritten as:

V̇ =−
(
ke− g(u) + g

(
diag−1

(
ŴTψ(U)

))
+ ω(t)− ẋR(t)

)T
e

+ Tr
(

˙̃WTΓ−1W̃
)

=− keT e+
(
g(u)− g

(
diag−1

(
ŴTψ(U)

)))T
e+ ω(t)T e

− ẋR(t)T e+ Tr
(

˙̃WTΓ−1W̃
)
.

Using (33), we have:

V̇ = −keT e+
(
g(u)− g

(
diag−1

(
ŴTψ(U)

)))T
e+ ω(t)T e

−ẋR(t)T e+ Tr
((
ψ(U)diag

(
e(t)

)
+ µŴ

)T
W̃
)

and by adopting (31),

V̇ = −keT e+
(
g(u)− g

(
diag−1

(
ŴTψ(U)

)))
e+ ω(t)T e

−ẋR(t)T e+ Tr
((
ψ(U)diag

(
e(t)

)
+ µ(W − W̃ )

)T
W̃
)
.

Taking into account the smoothness of g(.) which indicates its Lipschitz conti-

nuity and Assumptions 2, 4 and 5, it can be concluded that

V̇ ≤ −k ‖e‖2 +M ‖e‖
∥∥∥u− ŴTψ(U)

∥∥∥
F

+ ωM ‖e‖+ xM ‖e‖

+ ψM ‖e‖
∥∥∥W̃∥∥∥

F
+ µWM

∥∥∥W̃∥∥∥
F
− µ

∥∥∥W̃∥∥∥2
F
, (38)

where M is the Lipschitz constant and ‖.‖F is the Frobenius norm operator.

Considering (28), one can rewrite the above equation as:

V̇ ≤− k ‖e‖2 +M ‖e‖
∥∥∥WTψ(U) + ε− ŴTψ(U)

∥∥∥
F

+ ωM ‖e‖+ xM ‖e‖+ ψM ‖e‖
∥∥∥W̃∥∥∥

F

+ µWM

∥∥∥W̃∥∥∥
F
− µ

∥∥∥W̃∥∥∥2
F

(39)

V̇ ≤− k ‖e‖2 +MψM ‖e‖
∥∥∥W̃∥∥∥

F
+MεM ‖e‖+ ωM ‖e‖

+ xM ‖e‖+ ψM ‖e‖
∥∥∥W̃∥∥∥

F
+ µWM

∥∥∥W̃∥∥∥
F
− µ

∥∥∥W̃∥∥∥2
F
.

(40)
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The above non-equality can be represented in matrix form, i.e.,

V̇ ≤ −

 ‖e‖∥∥∥W̃∥∥∥
F

T  k − 1
2 (M + 1)ψM

− 1
2 (M + 1)ψM µ

 ‖e‖∥∥∥W̃∥∥∥
F


+
[
MψM + ωM + xM µWM

] ‖e‖∥∥∥W̃∥∥∥
F

 (41)

which can be rewritten as:

V̇ ≤ −zTQz + Pz. (42)

The necessary and sufficient conditions for correctness of V̇ ≤ 0 are Q to be

positive definite and

‖z‖ > ‖P‖
σm(Q)

(43)

where σm(Q) is the minimum singular value of Q. For positive definiteness of

Q,

k >
1
4 (M + 1)2ψ2

M

µ
.

The minimum singular value Q can be calculated as:

σm(Q) =

√
S1 − S2

2
,

where

S1 = k2 +
1

2
(M + 1)2ψ2

M + µ2

S2 =
√

(k2 − µ2)2 + (k + µ)2(M + 1)2ψ2
M .

For ease of calculation, take µ = k. Then,

σm(Q) = k +
1

2
(M + 1)ψM . (44)

From (44) and (43),

‖z‖ > MψM + ωM + xM + µWM

k + 1
2 (M + 1)ψM

. (45)

Therefore, if ∥∥∥W̃∥∥∥
F
>
MψM + ωM + xM + µWM

k + 1
2 (M + 1)ψM

(46)
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or

‖e‖ > MψM + ωM + xM + µWM

k + 1
2 (M + 1)ψM

(47)

then (45) holds. (47) and (46) specify that e and/or W̃ will always converge225

to a residual set if (34) holds. Moreover, the size of the residual set can be de-

creased by increasing k. The above result indicates that e and W̃ are uniformly

ultimately bounded. Therefore, it can be concluded that the state is bounded

for all t ≥ 0. Based on the results in [29, 30] there exists a set of activation

functions and a vector of weights that can approximate the nonlinearities of230

g−1(·).

Theorem 1 implies the correctness of the method and shows that trajectory

tracking and weight estimation errors will converge to the set provided in (45)

for all t ≥ 0. Moreover, the size of the set can be reduced by increasing the

controller gain.235

There are several cases where the input function is partially known, i.e., it

consists of a known part with an explicit inverse and an unknown part, such as

vessels where the unknown part appears, mostly, during turns. As a result, the

inverse of g(.) can be written as:

g−1(U) = g′−1(U) + diag−1
(
ŴTψ(U)

)
(48)

where g′−1(.) is the inverse of the known part of g(.) and U is calculated using

(27). It can be shown that Theorem 1 is extendable to this case.

Corollary 1. With the control law and the NN weights update rule defined in

Theorem 1, the unknown part of g−1(.) in (48) can be estimated and the trajec-

tory tracking and the weight estimation errors are uniformly ultimately bounded.240

Proof. Taking into account the Lipschitz continuity of g(.) and by combining

(48) and (38), (39) can be concluded. The remainder of the proof is similar to

the proof of Theorem 1.

Remark 1. Since the weight matrix Ŵ is being updated online, the presented

algorithm is capable of handling the possible changes that might happen in g−1(.)245
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during the ship operation. As a result, the algorithm can be used for both fixed

pitch propellers and controllable pitch propellers.

4.3. The Case of State Dependent Uncertainty

In the previous sections, it is assumed that the knowledge over f(x) is certain

and there is no state dependent uncertainty in the system. However, in many

applications, this is not the case, as the ship hydrodynamical model may face

some degrees of uncertainty during sailing. Moreover, hyrodynamical modeling

of ships for maneuvering purposes is a laborious process. In this section, it

is shown that using the same strategy and by making a small change in the

previously presented algorithm, state dependent uncertainties can be handled

as well. This is also proved by presenting a theorem. For this purpose let us

rewrite the governing equation of the system (22) as follows:

ẋ(t) = f̂(x(t)) + g(u(t)) + ω(t) + ωf
(
x(t)

)
, (49)

where f̂ is an estimate of f (which is known) and ωf is the state dependent

uncertainty (that is unknown). It can be concluded that:

f(x(t)) = f̂(x(t)) + ωf (x(t)). (50)

The above equation indicates that ωf (x(t)) is also Lipschitz continuous. Similar

to g−1, let us introduce an approximation method for f , i.e.,

f(x(t)) = diag−1
(
Wf

Tψ(x(t))
)

+ εf (51)

and

f̂(x(t)) = diag−1
(
ŴT
f ψ(x(t))

)
, (52)

where Wf is the approximation weight matrix, Ŵf is its estimate and εf is the

estimation error. Then, similar as in the previous section, it can be deduced

that,

ωf (x(t)) = diag
(
W̃T
f ψ(x(t))

)
, (53)
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where W̃f is the weight approximation error. As a result, the error dynamics

are:

ė(t) = −
(
f
(
x(t)) +g

(
diag−1

(
ŴT
f ψ(x(t))

))
+ωf

(
x(t)

)
+ω(t)− ẋR(t)

)
. (54)

Theorem 2. Suppose that the adaptive control law for system (49) is:

U = ke(t)− f̂(x(t)). (55)

Using the NN weights update rule (33) and the following update rule for Ŵf :

˙̂
Wf = −Γfψ(x(t))diag

(
e(t)

)
− µfΓfŴf , (56)

if

k >
1
4 (M + 1)2ψ2

M

µ
+
ψ2
M

µf
,

then the trajectory tracking error e(t) is UUB.

Proof. Let us consider the following Lyapunov function:

V =
1

2
eT e+

1

2
Tr
(
W̃TΓ−1W̃

)
+

1

2
Tr
(
W̃T
f Γ−1f W̃f

)
(57)

After derivation we obtain:

V̇ =−
(
f̂
(
x(t)) + g

(
diag−1

(
ŴT
f ψ(x(t))

))
+ ωf (x(t))

+ ω(t)− ẋR(t)
)T
e+ Tr

(
˙̃WTΓ−1W̃

)
+ Tr

(
˙̃WT
f Γ−1f W̃f

)
.

(58)

Using a similar approach as for the proof of Theorem 1 and by adopting (53)

and (55), the following relationship can be obtained:

V̇ ≤− k ‖e‖2 +MψM ‖e‖
∥∥∥W̃∥∥∥

F
+ (MεM + ωM ) ‖e‖

+ xM ‖e‖+ 2ψM ‖e‖
∥∥∥W̃f

∥∥∥
F

+ ψM ‖e‖
∥∥∥W̃∥∥∥

F

+ µWM

∥∥∥W̃∥∥∥
F
− µ

∥∥∥W̃∥∥∥2
F

+ µfWfM

∥∥∥W̃f

∥∥∥
F
− µf

∥∥∥W̃f

∥∥∥2
F
.

(59)
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By representing the above inequality in matrix form, we have:

V̇ ≤ −


‖e‖∥∥∥W̃∥∥∥

F∥∥∥W̃f

∥∥∥
F


T 

k − 1
2 (M + 1)ψM −ψM

− 1
2 (M + 1)ψM µ 0

−ψM 0 µf



‖e‖∥∥∥W̃∥∥∥

F∥∥∥W̃f

∥∥∥
F

+


MεM + ωM + xM

µWM

µfWfM


T 

‖e‖∥∥∥W̃∥∥∥
F∥∥∥W̃f

∥∥∥
F

 . (60)

which can be rewritten in the following form:

V̇ ≤ −zTf Qfzf + Pfzf . (61)

If matrix Qf is positive definite then V̇ ≤ 0 holds. As a result,

k >
1
4 (M + 1)2ψ2

M

µ
+
ψ2
M

µf
.

The remainder of the proof can be carried out with the same approach as used250

in the proof of Theorem 1.

It can be concluded from the above theorem that the overall system can

be uncertain and that with a small change in Algorithm 1, using the same

strategy, the state dependent uncertainties can also be handled. The proposed

methodology for this case is represented in Algorithm 2. In the next section,255

the presented algorithm is applied to an ASV with unknown actuator dynamics

and state dependent uncertainties.

4.4. Application to ASVs

In this part, the proposed adaptive control strategy is presented for control

of ASVs with uncertainty in the maneuvering model and unknown propellers260

dynamics.

Suppose the desired trajectory, the initial position of the vessel, and its initial

speed in 3DoF are denoted by ηd(t), ηs(0) and V (0), respectively. If ∆t is the
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Algorithm 2 Adaptive Control Algorithm for Non-Affine Systems with State

Dependent Uncertainties:

Initialization: Obtain x(0) and xR(t). Assign initial values to the elements in

the vector of weights.

1: Calculate e(t) using (24).

2: Compute U using (55) at each time t.

3: Estimate u by adopting (29) and f by (52).

4: Apply u to the system.

5: Update the matrices of weights based on (33) and (56).

6: Obtain the state of the system and go to 1.

duration from one time step to the next, then the preferred speed of the vessel

in its body-fixed coordinates can be calculated as:

Vd(t) =
1

∆t
R−1(ηs)

(
ηd(t)− ηs(t)

)
. (62)

Using this, the speed error vector is found as:

es(t) = Vd(t)− V (t). (63)

By adopting (27) and (18), the control law is established as:

τs = kes(t) +M−1s
(
Cs(V )V +Ds(V )V

)
. (64)

If the system model contains state dependent uncertainty then:

τs = kes(t)− f̂(x(t)). (65)

The thrust allocation problem is solved using (17) with which the vector of

desired forces generated by actuators is found, denoted by τd. Based on the

length of the NN, the matrix of squashing functions ψ(τd) is computed. Note

that the NN weight matrix Ŵ and ψ(τd) have similar sizes, i.e., N ×m, where

m is the number of actuators. The estimated actuators shaft speeds are found
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Algorithm 3 Adaptive Control Algorithm for ASVs:

Initialization: Obtain ηs(0), V (0) and ηd(t). Initialize NN weight matrix.

1: Compute Vd(t) using (62).

2: Calculate e(t) by adopting (63).

3: By use of (64) and (65), compute the ship control law.

4: By exploiting (66), estimate the required actuators shaft speeds and apply

them to the system.

5: Update the NN weights matrix.

6: Obtain the system states and go to 1.

as follows:

n =


n1
...

nm

 = diag−1
(
ŴTψ(τd)

)
. (66)

After this step, the NN weight matrices are updated. The NN weight matrix

update rules are regulated as below:

Ẇ = −Γψ(U)diag
(
TT (TT−1)−1es(t)

)
− µΓŴ

˙̂
Wf = −Γfψ(x(t))diag

(
es(t)

)
− µfΓf

(67)

The overall algorithm for the adaptive control of ASVs is presented in Al-

gorithm 3.

Remark 2. The proposed control approach in this paper requires position and

speed information. However, this is not a disadvantage as speed information265

can be derived by taking the difference quotient of position information.

5. Simulation Experiments and Evaluation Results

The chosen ASV for evaluating the performance of the algorithm is Cyber-

ship II from [7], which is a 1:70 scale replica of an Offshore Support Vessel. It
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is assumed that the ASV has four actuators: two propellers, one stern thruster

and a bow thruster as illustrated in Figure 3. As a result,

τs = T3×4


KT1ρD

4
1|np1 |np1

KT2
ρD4

2|np2
|np2

KT3
ρD4

3|np3
|np3

KT4
ρD4

4|np4
|np4

 (68)

and

T =


1 1 0 0

0 0 1 1

−0.1 0.1 0.2 0.5

 . (69)

Note that the vector of actuator dynamics in (68) is unknown to the con-

troller. Moreover, it is supposed that the knowledge over inertial mass, Coriolis

and centrifugal and damping matrices are uncertain. The parameters of the270

model vessel are summarized in Table 1.

To assess the performance of the algorithm, three simulation scenarios are

considered. The first and second scenarios are trajectory tracking scenarios

and the third scenario is a dynamic positioning case. For these experiments the

length of the NN is opted to be N = 300 and the chosen activation function with

which the matrix of activation functions ψ(.) is constructed, is as the following:

y = 0.05
(1− e−x

1 + e−x
)
. (70)

For all experiments, based on (34), k = 500 is considered for the control law

and µ = 0.1 and Γ is chosen to be an identity matrix. Simulations are carried

out with a computer which has a core i7 2.6 GHz CPU and 8 GB of RAM.

Experiment I: Circular Trajectory Tracking275

For the first experiment, the considered trajectory is assumed to be circular

with the following specifications:

ηd(t) =


ηdx(t)

ηdy (t)

atan2(η̇dx , η̇dy )

 (71)
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Table 1: The model ASV parameters.

Parameter Value

m 23.8

xg 0.046

Iz 1.76

Xu̇ -2

Yv̇ -10

Yṙ 0

Nv̇ 0

Xu -0.722

Yv -0.889

X|u|u -1.327

Y|v|v -36.472

Xuuu -5.866

Nv 0.03130

N|v|v 3.956

ρ 1024

Parameter Value

Y|r|v -0.805

N|r|v 0.13

Yr -7.25

Nr -1.9

Y|v|r -0.845

N|v|r 0.08

Y|r|r -3.45

N|r|r -0.75

KT1 0.08

KT2 0.08

KT3
0.07

KT4
0.07

Dp1 0.08

Dp2 0.08

Dp3 0.05

Dp4 0.05
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ηdx(t) = α cos(βtα ), ηdy (t) = α sin(βtα ) (72)

where α and β are the radius of the circular trajectory and traveling speed,

respectively. It is assumed that V (0) =
[
0, 0, 0

]T
, ηs(0) =

[
10, 0, 1.57

]T
,

α = 10 and β = 0.2 m/s. Note that in this experiment the reference speed is

constant.

The results for the circular trajectory tracking case are shown in Figure 4. It280

can be inferred from the figures that after the transient and training time of the

NN that take few seconds, the ship can smoothly follow the reference trajectory

and actuators generated thrust as well as ship speed converge to steady state

values.

In this experiment, the proposed algorithm is compared with MIMO nonlin-285

ear PID control scheme [3] where the control law is:

τ = −KmV̇ +R−1
(
ηs(t)

)
τPID (73)

and

τPID = −Kp(ηd − η)−Kdη̇ −Ki

∫ t

0

(ηd − η)dτ. (74)

Parameter Km is the acceleration feedback. As suggested in [3], Ki = 0. Other

parameters are chosen as Kp = 0.8, Kd = 1 and Km = 4. As explained in

Section 2, it is assumed that the precise knowledge over actuators model is not

available during the operation. As a result, thrust coefficients are presumed290

to be KT1
= KT2

= 0.12 and KT3
= KT4

= 0.1. On the other hand, for the

adaptive control simulations, it is assumed no knowledge about the model exist.

The experiment results are shown in Figure 5. Simulation results are represented

in terms of Root-Square Error (RSE). It can be inferred that by using the

proposed methodology the ship can stay closed to the reference trajectory.295

As mentioned in the previous section, as k increases the size of the residual

sets (45) and (46) decreases which leads to the decrease in error. Figure 6 shows

the value of RSE for different k values. It is seen that as k increases, the bounds

of error decreases.
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Figure 4: Results of Experiment 2.
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(b) Heading RSE during the maneuver.

Figure 5: Performance comparison of the proposed algorithm vs a conventional control scheme.
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Figure 6: The effect of k on error bounds.
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Experiment II: Dynamic Positioning300

The second experiment is a dynamic positioning scenario where the ship has

to maintain its position at ηd(t) =
[
0, 0, 1.57

]T
. Furthermore, it is assumed

that there exists a current in the environment with the inertial velocities Vc(t) =[
0.1, 0.1, 0

]T
.

Figure 7 shows the experiment results. Similar to the previous case, the305

position of the ship is stabilized and actuators shaft speeds converge after the

transient time and the training time of NN. This indicates that the NN-based

adaptive controller succeeded in handling the uncertainties within propellers

dynamics and the ship model.

Experiment III: Trajectory Tracking in The Port of Rotterdam310

In the third experiment, the real trajectory of a vessel is considered in Oude

Maas river in port of Rotterdam using AIS data received from the Port of Rot-

terdam authority. The considered path is the trajectory of an inland tanker

vessel during two hours of voyage. Using Froude scaling the trajectory is scaled

down to be aligned with the dimentions of the model ship with CFroude = 70.315

During this voyage, the ship should sail with different course speeds. In simu-

lations, it is also assumed that there is a stream in the river which applies force

to the replica model ship hull. This force is considered to be τc = [0.1,−0.1, 0]T

in global reference frame. The trajectory of the ship is depicted in Figure 8.

The experiment results are shown in Figure 10. The trajectory tracking320

performance of the vessel is depicted in Figure 10a and the course speed of the

vessel is compared with the scaled reference speed of the ship in Figure 10b.

The applied thrust by the actuators are represented in Figure 10c. It is seen

that after the transient and NN training time the ship can follow the planned

trajectory.325

One of the main concerns regarding novel methods for trajectory tracking

control of ships is the applicability of these algorithms to real ships and the

interaction of the on-board power and propulsion system with the trajectory

tracking algorithm. In this regard, the power and propulsion system should be
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Figure 7: Dynamic positioning performance of the ship.
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able to generate requested thrust by the controller with a rough approximation.330

To examine this issue, a model of a power and propulsion system has been

adopted. The applied thrust in Figure 10c is scaled up using Froude scaling to

be fitting for a real size vessel and then, it is used as the reference thrust for

the power and propulsion system. The propellers and thrusters of the on-board

propulsion system should be able to follow the reference thrust roughly.335

The architecture of the considered power and propulsion system is presented

in Figure 9. The prime movers are connected to a DC-link through converters.

The electric motors that rotate the actuators are fed and controlled by motor

inverter-controllers. The reader is referred to [31] for more information regarding

configuration and modeling of the power system. In this model, the propulsion340

drive-train specifications are as follows:

Port side and starboard side propellers: KT = 0.8, KQ = 0.08, D = 2m, 1.8

MW, 60 Hz, 460 v.

Bow and stern thrusters: KT = 0.8, KQ = 0.08, D = 1m, 500 kW, 60 Hz,

460 v.345

Matlab Simscape toolbox is partially used for the modeling. Due to highly

demanding data logging of this toolbox, the simulation can not be done for the

whole voyage time which is approximately 6400 seconds. As a result, the focus

is on period which fastest transients with highest peaks happen and in this case,

this period is at the beginning of the simulation.350

The simulation results are shown in Figure 11. Figures 11a to 11d show the

generated thrust by the actuators vs the requested thrust by the controllers. The

angular speed of electric motors is shown in Figure 12. The results suggest that

the transients are traceable by the propulsion system and it can generate the

requested thrust. Therefore, the algorithm is potentially applicable to real-size355

vessels.
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Figure 8: The considered trajectory in the port of Rotterdam waterways.

Figure 9: Architecture of the considered power system [31].
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Figure 10: Simulation results of Experiment 1.

35



0 10 20 30 40 50 60 70 80 90 100
Time (s)

-2

-1

0

1

2

3

4

5

T
hr

us
t (

N
)

105

Generated Thrust
Reference Thrust

(a) Port side propeller: generated thrust vs requested thrust.

0 10 20 30 40 50 60 70 80 90 100
Time (s)

-1

0

1

2

3

4

5

T
hr

us
t (

N
)

105

Generated Thrust
Reference Thrust

(b) Starboard side propeller: generated thrust vs requested thrust.
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(c) Stern thruster: generated thrust vs requested thrust.

0 10 20 30 40 50 60 70 80 90 100
Time (s)

-1

0

1

2

3

4

5

6

7

T
hr

us
t (

N
)

104

Generated Thrust
Reference Thrust

(d) Bow thruster: generated thrust vs requested thrust.

Figure 11: Performance of the power and propulsion system.
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Figure 12: Angular speed of propellers and thrusters.

6. Conclusions

The propellers dynamics and hydrodynamical specifications of ASVs undergo

sever uncertainties during maneuvering which makes the position and speed

control of ASVs challenging. In this paper, a novel NN-based adaptive control360

algorithm has been proposed for motion and position keeping control of ASVs

with unknown actuators dynamics and state dependent uncertainties. For the

correctness proof of the algorithm, uniform ultimate boundedness, a Lyapunov

technique and Weierstrass approximation theorem have been adopted. For the

numerical analysis, three cases have been considered; trajectory following and365

dynamic positioning. It has been illustrated that the algorithm is successful

in terms of keeping the overall system stable and fulfilling the objective of the

operation.

Acquiring knowledge about the future state of the vessel is useful and fa-

vorable for the control of ASVs. The benefits of predictive control techniques370

for the control of ASVs are discussed in [31], [40], [41] where the prediction

of future power demand would be advantageous for the power and propulsion

system. Using this prediction, not only the energy conservation issues can be

addressed [31] but also, it can lead to increased stability of the power and propul-

sion system. In this regard, the objective for the future researches is to combine375

this algorithm with receding horizon techniques in order to gain more accurate
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predictions for the control of ASVs.
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