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Abstract
Communicating is crucial for cells to coordinate their behav-
iors. Immunological processes, involving diverse cytokines and
cell types, are ideal for developing frameworks for modeling
coordinated behaviors of cells. Here, we review recent studies
that combine modeling and experiments to reveal how immune
systems use autocrine, paracrine, and juxtacrine signals to
achieve behaviors such as controlling population densities and
hair regenerations. We explain that models are useful because
one can computationally vary numerous parameters, in
experimentally infeasible ways, to evaluate alternate immuno-
logical responses. For each model, we focus on the length-
scales and time-scales involved and explain why integrating
multiple length-scales and time-scales in a model
remain challenging. We suggest promising modeling strategies
for meeting this challenge and their practical consequences.
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Cells often communicate with each other to coordinate
their behaviors, as seen in bacterial biofilms [1] and

groups of immune cells. Despite the wide number of
cell types and signaling molecules in nature, one can
group quantitative models that describe cellecell
communication into a few classes, thereby raising the
Current Opinion in Systems Biology 2019, 18:44–52
hope that synthesizing a generalized modeling frame-
work that is applicable to any organism is a feasible goal.
Immune cells, given their diversity of cytokines and
distinct cell types, are ideal test beds for developing
models of cellecell communication [2e4]. In this
article, we describe several classes of models that have
so far been applied to immune systems, the lessons to be
learned from them, and some major challenges that

remain for modeling cellecell communications.

There are broadly three types of cellecell communica-
tionsdautocrine, paracrine, and juxtacrine signaling
(Figure 1aec). In autocrine signaling (Figure 1a) [5,6], a
cell secretes a cytokinedsuch as Interleukin-2 (IL-2)
[7,8] and Interferon-g (IFN-g) [9]dand also has the
cognate receptor, thereby allowing the cell to commu-
nicate with itself and other cells of the same type
[10,11]. Paracrine signaling involves at least two types of
cells (Figure 1b)done cell type, without the cognate

receptor, secretes a cytokine such as the Colony-
Stimulating Factor-1 (CSF-1) [12] and Platelet-
Derived Growth Factor (PDGF) [13], whereas another
cell type has the cognate receptor but does not secrete
the cytokine. Juxtacrine signaling involves two cells in
which one cell has a membrane-bound ligand (e.g.,
peptide-bound Major Histocompatibility Complex
(pMHC)) and another cell has a cognate receptor (e.g.,
T-Cell Receptor (TCR) for pMHC) [14] (Figure 1c).
Modeling an immunological process can be challenging
because the process may involve any of the three types

of communications, contain multiple cell types, and use
multiple cytokines (Figure 1d). Even when an immu-
nological process involves just a single cell type, if the
spatial location of each cell matters, then the model
would contain a total number of equations that scales up
with the total number of cells involved (Figure 1d), thus
leading to an unmanageably large number of equations
even for a modest population size (e.g., 100 cells).
Another complication is that cellecell communication
often spans vast length-scales, depending on the diffu-
sion length-scale of each cytokine and the cells’ motility

(Figure 1e). Moreover, the time-scale at which cells
respond to cytokines can vary and there can be a variety
of responses to each cytokine (Figure 1e). A challenge
then is to sift through the numerous equations and
variables in a model to extract the core principles that
guide the immunological process of interest. To put
simply, a challenge is to reduce the complexitydthe
www.sciencedirect.com
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Figure 1

Ingredients for modeling cell–cell communication. (a) Autocrine signaling involves one cell type and cytokines such as IL-2 and IFN-g. (b) Paracrine
signaling involves at least two cell types, one that secretes a cytokine (e.g., CSF-1 and PDGF) without a cognate receptor and another cell type has the
cognate receptor but does not secrete the cytokine. (c) Juxtacrine signaling involves at least two cell types communicating by a physical contact through a
membrane-bound ligand (such as pMHC) and a receptor (such as TCR). (d) Models that describe communications among cells typically have as many
equations as the number of cells involved. (e) Elements that enter a model for cell–cell communication. (Top left) Cell circuit that describes which cell
secretes and which cell senses a cytokine; (Top right) Distinct responses to cytokines; (Bottom left) Distinct length-scales involved in cytokine-mediated
communication; (Bottom middle) Distinct time-scales involved in cytokine-mediated communication; (Bottom right) cell motility.
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46 Systems immunology & host-pathogen interaction
large number of parameters and the vast range of spatial
and temporal scalesdby going beyond exhaustive
computer simulations of every cytokine and cell, to find
what makes the immune system “work.”
Examples of modeling cell–cell
communication in immune systems
An immune system’s primary task is to distinguish the
antigens that belong to the body from those of foreign
cells, to eliminate the invading pathogens. Eliminating
pathogens typically involves several types of immune
cells that coordinate their actions by communicating
across wide spatial and temporal scales with myriad cy-

tokines [15,16]. As an example, consider a skin inflam-
mation that occurs because of the skin being injured or
invaded by pathogens (Figure 2a) [17]. Here, kerati-
nocytes that reside in the epidermis sense the invasion
and then respond by secreting cytokines such as IL-1a.
Upon sensing IL-1a, macrophages, which are strategi-
cally positioned close to the blood vessels underneath
the skin, recruit other cells such as the dendritic cells,
CD8þ T-cells, and neutrophils to the infected site. In
this way, a short-range communication initially clusters
nearby immune cells to halt the spread of pathogens,

and a long-range communication results in initially
distant immune cells being recruited to the site of injury
to eliminate the trapped pathogens. A mathematical
model that integrates all these processes, which does
not yet exist, would likely enable one to determine
whether there is any advantage to why certain parame-
ters such as the secretion rate of IL-1a is set the way
they are and how tuning such parameters may optimize
the immune systems’ response to skin infections.

Several recent studies serve as insightful case studies for
revealing design principles of immune responses by

coupling mathematical models of cellecell communi-
cation with experiments. In one study, researchers
showed that an autocrine-signaling cytokine, IL-2,
controls the population density of CD4þ T-cells
(Figure 2b) [18]. IL-2 simultaneously promotes the T-
cells’ proliferation and death, which seems wasteful and,
as the study’s authors put it, paradoxical. But a mathe-
matical model revealed why this dual action by IL-2 is
beneficial. The researchers devised a minimal mathe-
matical model that treats IL-2 as uniformly mixed (i.e.,
well-mixed) throughout the celleculture medium, thus

negating the need to treat any spatial arrangements of T-
cells on the cell culture plate. The authors also focused
on steady-state concentrations of IL-2 because they
assumed that IL-2 diffuses much faster than response
time of the cells. On the basis of their experiments, the
model posits that increasing the IL-2 concentration
nonlinearly increases the T-cells’ proliferation rate (i.e.,
as a sigmoidal function of IL-2 concentration), whereas
linearly increasing their death rate (Figure 2b, see
graph). Because the cells’ death rate is higher than their
Current Opinion in Systems Biology 2019, 18:44–52
proliferation rate at low IL-2 concentrations, the T-cell
populations go extinct when IL-2 is scarce. But the IL-2
nonlinearly increasing the proliferation rate entails that
when the IL-2 concentration is above a certain threshold
value (Figure 2b, see “threshold”), then the prolifera-
tion rate becomes higher than the death rate, which
causes net proliferation of T-cells until their population
density reaches and stabilize at a valuedwhere the

proliferation and death rates matchdthat is below the
carrying capacity (Figure 2b, see “homeostasis”).
Because IL-2 is secreted and sensed by the T-cells as an
autocrine signal, the authors’ model shows that when
the T-cell population size is above a certain threshold
value, then the population avoids extinction and its
density is stably maintained at a level that is below the
carrying capacity, which the authors then experimentally
confirmed [18,19]. The mathematical model was useful
because the authors could then arbitrarily tune the
various parameters in their modeldsuch as the death

rate’s dependence on IL-2dover a range that is too
wide to be experimentally feasible. Through such a
computational tuning of parameters, the authors could
determine why the IL-2’s paradoxical control is more
beneficial for T-cells than having two separate cytoki-
nesdone to control the proliferation and another to
control the death. Namely, having IL-2 control both
processes is less error-prone for controlling a population
density than having two separate cytokines [18].

As seen in the previous example, we can simplify models

if the cytokines are uniformly mixed in the environment
because one can then ignore any spatial arrangements of
cells. In this case, the number of cells becomes just a
single variable and thus the number of variables would
not scale with the number of cells (Figure 2b). Taking
this simplified approach, another recent study combined
a mathematical model with experiments to show how
two cell-typesdfibroblasts and macrophagesethat ex-
change two growth factors, CSF1 and PDGF, stably and
robustly maintain a fixed ratio of their cell densities
(Figure 2c) [20]. Here, PDGF and EGF are autocrine
signals for the fibroblast, whereas CSF1 is a paracrine

signal that macrophages sense. PDGF is a paracrine
signal that the fibroblasts sense (Figure 2cdsee cell
circuit). Sensing these cytokines promotes the cells’
proliferation. An important feature of this two-cell cir-
cuit is a negative feedback that constrains the fibro-
blasts’ growth. In addition, the receptors for CSF1 and
PDGF are endocytosed after binding their ligands, with
CSF1 inhibiting the PDGF production. As evident here,
the numerous competing interactions (Figure 2c) chal-
lenge our intuition and thus necessitate a mathematical
model to understand how the abundances of macro-

phages and of fibroblasts, which evidently depend on
each other, would change over time. The authors’
model, which assumes well-mixed concentrations of
CSF1 and PDGF, revealed three possible ratios of
macrophage-population density to fibroblast-population
www.sciencedirect.com
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Figure 2

Case studies for modeling cell–cell communication in immunological processes. (a) Schematic showing skin injury by invading pathogens. Left
panel shows the immunological processes that occur soon after the skin injury, and the right panel shows how the skin injury is repaired [17]. (b)
Population density of murine CD4+ T-cells controlled by their secreted IL-2 that they sense with the receptor (IL-2R). IL-2 simultaneously controls the
proliferation rate (purple curve) and the death rate (orange curve) as shown in the graph. The graph shows two population densities that can be stably
maintained (nearly zero and a value below a carrying capacity) and one that can be unstably maintained (“threshold” value) [18,19]. (c) Stable and robust
maintenance of a ratio between two population densities (densities of fibroblasts and of macrophages). Fibroblasts secrete the autocrine and paracrine
growth factor CSF1 and express the receptor, PDGFR, to sense the PDGF and the receptor, CSF1R, to sense the CSF1. Macrophages secrete the
paracrine growth factor, PDGF, and express the receptor, CSF1R, to sense the CSF1. The graph shows three ratios of population densities that can be
stably maintained and one that is an unstable, steady-state ratio [20,21]. (d) Regeneration of hair follicles on mouse skin by quorum-sensing. Plucked,
distressed hair follicles secrete CCL2 which is sensed by M1 macrophages that are in turn recruited to the distressed follicles. Then, macrophages
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48 Systems immunology & host-pathogen interaction
density that can remain stable over time (Figure 2cdsee
graph). For one such ratio, the fibroblasts and the mac-
rophages are both abundant (Figure 2cdindicated by
dashed line). In another, the fibroblasts are abundant,
whereas the macrophages are nearly extinct. The final
option is that both cell types go extinct [21]. Crucially,
the model revealed that these ratios can be stable over
time because of the negative regulationsdthe endocy-

tosis of the ligand-bound receptors and the CSF1 and
PDGF cross-inhibit each other. With a model that as-
similates all parameters, the authors computationally
screened all 144 possible circuit topologies that one can
have with two cell types by assigning various values to
each parameter. They then found that only 48 of the
topologies allow a mixture of two cell types to stably
maintain a ratio of the two population sizes for a wide
range of parameter values, one of which is the circuit
used by the fibroblasts and macrophages (Figure 2c).
Such computational evaluations of myriad circuit to-

pologies can help one determine whether a particular
circuit topology that nature has chosen for an immune or
other cellular system is optimal [22].

As the previous two examples suggest, stably maintain-
ing population densities through cellecell communica-
tion and, conversely, population size influencing T-cell
signaling are important topics in immunology for which
quantitative models can provide insights [23]. The ef-
fects of secreted cytokines can propagate across vast
distances, in part because of the body’s endocrine sys-

tems [23e25]. T-cells rely on signals from both their
immediate surroundings (e.g., contact-dependent
TCR) and more distant surroundings (e.g., diffusing
IL-2) to distinguish multiple antigens [26]. Thus,
discriminating body’s own antigens from foreign ones
often involves multiple cells. At times, an immune cell
needs to sense multiple cytokines from cells far away
(e.g., via the body’s endocrine system) as in the case of
cytokines controlling the proliferation of T-effector cells
[27] or the survival of resting T-cells [28]. At other
times, immune cells locally interact, by creating a local
niche of diffusing IL-2 around themselves, as in the case

of CD4þ memory T-cells controlling their proliferation
and differentiation by interacting with their immediate
neighbors [29]. Such local cytokine niches have a size
that depends on the diffusivity of cytokines and the
cytokine consumption rate of surrounding
cellsdtogether enabling sizes of 30e150 microns that
surround a cytokine-secreting cell [25,32]. The
involvement of niches and interaction among the
different niches that may be far apart from each other
secrete TNF-a which then activates regeneration of the distressed hair follicles
of the skin area from which 200 hairs are plucked—only high density (small a
mechanism to explain how a T-cell can distinguish between self and foreign pe
binding time of the CAR (TCR) to LOV2 (pMHC) was optogenetically controll
occurring only when the pMHC-TCR complex lives longer than a certain thre

Current Opinion in Systems Biology 2019, 18:44–52
necessitates models that explicitly treat the spatial ar-
rangements of each cell.

Treating spatial arrangements of each cell often neces-
sitates treating multiple length and time-scales because
of the cytokines’ diffusion and cellular response often
taking different length-scales and time-scales. An
example of such a model comes from a recent study that

revealed how hair follicles on the mouse skin regenerate
plucked hairs by using a complex form of quorum-
sensing that involves cytokines and chemo-taxing cells
on a scale of 1 mm [30] (Figure 2d). Here, the re-
searchers discovered that a hair follicle regenerates its
plucked hair if and only if enough of its neighboring
follicles have lost their hairs. Namely, if the density of
plucked hairs on a skin is above a certain value
(Figure 2ddsee “threshold”), then all the hair follicles
in that region regenerate, whereas they do not regen-
erate otherwise (Figure 2d). The authors found that

when one plucks a sufficient density of hairs on patch of
skin, the damaged hair follicles secrete the chemo-
attractant, CCL2, which in turn recruits M1 macro-
phages to the damaged follicles and their nearby
follicles. The macrophages then secrete TNF-a which
then triggers the regeneration of plucked and unplucked
hairs in a near millimeter-diameter field that encloses
the damaged follicles. Deducing that the quorum-
sensing acts over a millimeter-scale rather than on a
microscopic scale required a mathematical model. The
model treated hair follicles as points on a hexagonal grid

and analyzed the steady-state concentrations of both the
diffusible factors (CCL2 and TNF-a) and the diffu-
sively moving macrophages. By eliminating the pointlike
hair follicles at various locations hexagonal grid and then
experimentally testing the resulting predictions, the
authors established that the quorum-sensing occurs over
a millimeter-diameter skin patch. As in the previous
examples, the model was indispensable in revealing a
design principledquorum-sensing enables worthwhile
hair regenerations to occur (i.e., only in major hair
losses) while ignoring one or a few lost hairs.

Ignoring the spatial distribution of cells does not
necessarily mean that the model is simple. A model for a
single cell can be highly complex if it includes multiple
signals as variables. For example, T-cells perform com-
putations to combine multiple signals into a coordinated
response [31e35], as recently modeled for CD8þ T-
cells controlling their proliferation by linearly summing
TCR-mediated juxtacrine signals and ligands bound to
other receptors (e.g., CD27, CD28) [36]. Different
types of cells may also compete for multiple signals in
. Graph shows the number of regenerated hairs (blue curve) as a function
rea) leads to appreciable regenerations [30]. (e) Kinetic proofreading as a
ptides. Top cartoon shows a schematic of a recent experiment in which the
ed. Graph shows the downstream activation in T-cell (CAR signaling)
shold duration [43].
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Figure 3

Prospects for modeling cell–cell communication in immune systems. (a) A promising modeling strategy for reducing complexity—combining
reaction–diffusion equations and cellular automata. Schematics here summarize two recent studies [46,47]. Two cell types (OFF-cell and ON-cell)
communicate via an autocrine-signaling cytokine (bottom left shows a paracrine signal that one of the studies [47] also treats). Two fields of cells are
shown. On the left is a disordered field of cells that, after some time, becomes more spatially organized (right field) because of cells coordinating their
gene expressions through cytokine-mediated communications. (Rightmost picture): This self-organization dynamics can be quantitatively mapped to
intuitive dynamics in which a ball (representing a field of cells) rolls down a Waddington-like landscape whose shape is determined by the various
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their shared environment as in the case of T-helper and
T-regulatory cells that compete for the extracellular IL-
2 and other cytokines [32,37].

A model with spatially distributed cells is complex
because it typically has multiple equations to incorpo-
rate the short length-scale set by diffusing cytokines
with larger length-scales set by the spatial arrangements

of cells. Similarly, a model of signal transduction within a
single cell that involves multiple time-scales can high-
light the challenges in treating multiple scales [38]. An
example is the modeling of kinetic proofreadingda
mechanism by which T-cells are thought to distinguish a
small difference in the amount of time that peptides
(pMHC) on the body’s own cells spend being bound to
T-cell’s receptor (TCR) from the amount of time that
pMHC on foreign cells spend being bound to TCR
[39,40] (Figure 2e). Originally, John Hopfield and
Jacques Ninio proposed kinetic proofreading as a

mechanism for accurately synthesizing desired bio-
chemicals by avoiding thermodynamically allowed, un-
desired reaction pathways that are in the way [41,42].
Immunologists now believe that T-cells achieve kinetic
proofreading by amplifying the small differences in the
pMHC-TCR lifetimes through a cascade of biochemical
reactions that are triggered by the pMHC-TCR com-
plex. Each step of the cascade involves two competing
processes of differing time-scales: (1) a relatively slow
progression to the next reaction with a rate that in-
creases with the half-life of the pMHC-TCR complex

and (2) a relatively faster return to the starting point of
the cascade. In short, this leads to longer lasting pMHC-
TCR complex activating the T-cell’s response rather
than a higher number of pMHC-TCR leading to the
activation (Figure 2e). A recent experiment that opto-
genetically controlled the half-life of the LOV2-CAR
complex partly supports the idea that kinetic proof-
reading occurs in T-cells [43]. A separate study that
selectively controlled the ligand-binding to TCR with
light supports the idea as well [44]. These and other
experimental results together with the model for kinetic
proofreading can explain why a T-cell that encounters

the myriad pMHCs that belong to the body remains
inactive, whereas encountering a few rare foreign
pMHCs would become active [45].
Outlook
Here we used examples from immune cells to highlight
models of cellecell communication that vary in
complexity. Models with simplifying assumptions such as
treating cytokines as well-mixed, which allows one to
ignore spatial arrangements of cells, can yield valuable
parameters in the model (e.g., secretion rate of the cytokines) [47]. (b) Schem
communication—of the type for which no suitable models exist yet because mu
step process (following the numbers in order) that occurs after Staphylococcus
that go into engineering T-cells (e.g., CAR-T) for cancer immunotherapy. Qua
cells [53–55].
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insights. But such simplifications cannot describe immune
andnonimmune systems that involvemesoscopic numbers
(tens to hundreds) of interacting cells forwhich spatial and
temporal dynamics are important. There are currently few
models that can describe such settings. Developing
models that incorporate multiple length-scales and time-
scales is an important future endeavor as such situations
are ubiquitous in, for example, hostepathogen in-

teractions and activations of immune responses.

A promising strategy for bridging various scales of cyto-
kine and cellular dynamics is combining reactione
diffusion equationsdwhich describe short time-scales
and length-scalesdwith cellular automatadwhich
describe longer time-scales and length-scales
(Figure 3a) [46,47]. Recently, researchers used such a
hybrid model to show how mesoscopic numbers of cells
use autocrine and paracrine signals to regulate each
other’s gene expression to form spatial patterns

(Figure 3a) [46,47]. Here, the authors allowed the
concentrations of secreted cytokines to momentarily
reach steady-state values, which then caused each cell
to respond to these cytokines by either secreting more
or less cytokines, leading to new steady-state concen-
trations of the cytokines around each cell. The model
then iterated this back-and-forth process until every cell
and the cytokine concentrations reach their steady
states (Figure 3a). Such hybrid models that combine
cellular automata with reactionediffusion equations can
lead to new metrics for immune systems that reduce the

number of parameters and thus the complexity of the
system to just a few “macrostate” parameters, akin to
the situation in statistical physics in which myriad mi-
crostates are reduced to a few macrostates. Such re-
ductions can yield an emergent, predictive picture such
as a ball (representing a field of communicating cells)
rolling down a pseudo-energy landscape (a Waddington-
like landscape for spatial patterns) until it sticks at a
given location, which represents the final spatial pattern
that the cells maintain.

Another challenge for the future is modeling immune

systems in which cells move and interact across vast
distances and involve multiple time-scales. Such phe-
nomena include quorum-sensing bacteria invading a
host [48,49], swarming neutrophils fighting the invading
pathogens [50,51], and the series of cellular interactions
that follow after bacteria (e.g., Staphylococcus aureus)
infecting the skin (Figure 3b) [52]. In the case of
S. aureus infecting the skin, various forms of cellular
communicationdincluding short- and long-range
signaling (autocrine, paracrine, endocrine)doccur as
atic showing an example of a multistep process—niche-to-niche
ltiple length-scales and time-scales are involved. Picture shows a step-by-
aureus infects the skin [49,52]. (c) Various ingredients, shown in each box,
ntitative models will likely provide blueprints for better engineering CAR-T
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well as multiple events that are spatially separate
(indicated by dashed arrows in Figure 3b) [49]. A single
model that incorporates all these processes and signaling
events is currently lacking and thus, unlike in the
examples mentioned in Figure 2, a design principle for
this multistep phenomenon remains elusive.

A practical use of quantitative models for immune

systems, which can yield design principles that tell us
why certain topologies of signaling circuits are more
beneficial than others, would be as a blueprint for en-
gineering T-cells for cancer immunotherapy [53e55].
An important question now is how one can tune features
such as secreting and sensing of cytokines, cell prolif-
eration, apoptosis, differentiations, cell movements, and
checkpoint inhibitors (Figure 3c). Finding optimal ways
to coordinate these processes would benefit from a
model that incorporates all these processes under one
roof and may lead to more effective means to target

cancer cells in CAR-T therapies.
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