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A B S T R A C T

By installing a battery storage system in the power grid, Distribution Network Operators (DNOs) can solve
congestion problems caused by decentralized renewable generation. This paper provides the necessary theory to
use such a community battery for grid congestion reduction, backed up by experimental results. A simple net-
work model was constructed by linearizing the load flow equations using a constant impedance load model.
Using this model, an accurate estimate of voltage and overload problems is fed into a receding horizon charge
path optimizer. The charge path optimization problem is posed as a linear problem and subsequently solved by
an LP solver. The algorithms have been applied and validated on a real-world community battery installation. It
was found that the voltages and currents can be controlled to a great degree, increasing the grid capacity
significantly. The proposed control framework can be used to safeguard network constraints and is compatible
with other battery control goals, such as energy trading or energy independence. Network design formulas are
described with which a DNO can quickly estimate the potential (de) stabilization of a community battery on the
steady-state voltages and currents in the grid.

1. Introduction

The energy landscape is expected to change significantly in the
Netherlands over the next decades, as the share of renewable energy is
increasing. This poses a significant challenge for Distribution Network
Operators (DNOs), which are responsible for maintaining a reliable and
affordable electricity distribution grid. Especially the rise of residential
solar power is challenging, as these installations can cause local voltage
problems which can be cost intensive to solve.

A potential solution to this problem is congestion control using
energy storage. By locally storing the energy generated by the solar
power installations, the voltage and current in the low voltage network
can be kept within the desired bounds. The most common version of
this solution is a home battery system. However, it is more efficient to
use a community battery since the home batteries are often not fully
utilized [1,2]. A community battery also requires less space and can be
serviced more efficiently.

However, DNOs do generally not have the knowledge to design and
employ a community battery, which results in both newly planned and
currently installed storage capacity not being used for congestion con-
trol. This paper provides the necessary theory to solve this problem,
backed up by experimental results. With the principles developed in
this paper, a DNO can quickly estimate the potential (de) stabilization

of a community battery on the steady-state voltages and currents in the
grid. The control framework provided can be used to safeguard network
constraints and is compatible with other battery control goals, such as
energy trading or energy independence.

For experimentation purposes Liander, the largest DNO of the
Netherlands serving over three million customers, placed a community
battery in Rijsenhout, a suburban village close to Amsterdam, the
Netherlands. A schematic overview of the network of Liander DNO is
displayed in Fig. 1. The battery is connected to the low voltage network
and has a peak power of 55 kW and a capacity of 126 kW h. The main
goal of placing the battery was the broad goal of obtaining practical
knowledge how a community battery can benefit the DNO.

This paper reports on various aspects of DNO community battery
utilization. It contains control strategies for using a community battery
for LV network congestion management. It is the first study to combine
a battery control system with a real time grid model. It also analyses the
battery’s (de) stabilization potential and provides design guidelines for
new community batteries.

2. Related work and contributions

Using batteries in addition to a regular connection to the power grid
is a relatively new phenomenon in Western Europe, because grid
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connections are very stable and relatively cheap. With the rise of de-
centralized renewable power generation in the power grid however,
grid investment costs are expected to rise sharply [3–5]. This is a strong
motivation for the DNOs to explore innovative solutions, such as bat-
tery storage.

Many studies try to find interesting new business cases for batteries.
Using electric vehicles for electricity storage purposes is not yet feasible
[6]. Most work regarding Battery Energy Storage Systems (BESS) fo-
cuses on residential applications [7–11]. However, Parra [1,2] calcu-
lates that a community battery is 56% cheaper than separate residential
batteries for a 100-home community.

The field of battery load path optimization has been studied in the
literature quite extensively. For example, the battery scheduling pro-
blem for microgrid operation is investigated by [12–14]. Some of the
studies also assume a connection to a larger grid [12] or mainly focus
on the optimal size of a battery [15,16].

Various receding horizon controllers for battery charge path opti-
mization have been developed [17,18]. Recently, battery controllers
using Model Predictive Control (MPC) have been proposed [7,12].
These controllers can be deployed both centralized or decentralized.
However, these controllers generally do not guarantee a stable grid
operation as the currents and voltages in the grid are not taken into
account. This is also due to the fact that the non-linear load flow
equations cannot be directly applied in the quadratic MPC framework.
Furthermore, these MPC controllers have yet to be tested in a real world
test bed. This paper contributes to the literature by proposing and va-
lidating a network model which is directly integrable into the MPC

framework.
This is the first study that enhances the load path optimization

problem by adding a real time network model, making it more inter-
esting for a real world application. Most of the current algorithms work
with predefined congestion points, i.e. network nodes which are ex-
pected to be most vulnerable to capacity or voltage problems. However,
in practice the points are often hard to clearly define for large networks
in which the loads are constantly changing. Therefore adding a network
model which is able to monitor all network nodes and lines simulta-
neously is a valuable addition to the current literature.

Furthermore, not much literature is available on applying and va-
lidating proposed algorithms on real world batteries. The community
battery subject of this study is only the second ever in the Netherlands.
The first one was placed by the Dutch DNO Enexis and has been used
for validating a charge path optimization algorithm, reducing network
losses and reducing transformer peak load [19–21]. However, since the
battery was located next to the DT transformer, the ability to influence
the LV network was very limited in contrary to the community battery
subject of this paper.

Most DNOs have design rules regarding LV network design, but do
not have policies available regarding electricity storage as it is a rela-
tively new phenomenon in MV/LV grids. This paper contributes to lit-
erature by both providing a battery controller and describing commu-
nity battery network design guidelines, specifically aimed at DNOs.

3. Methodology

Fig. 2 contains a schematic of the battery controller. The rest of this
paper is structured as follows: To calculate the characteristics of the LV
network, a linear low voltage network model is constructed in Section
3.1 and 3.2. After the linearization is motivated in Section 3.3, the
battery control problem is formulated in Section 3.4. The models are
applied to the community battery of Rijsenhout and the results and
accuracy of these models is investigated in Section 4. The results of the
experiments are used to formulate battery design principles in Section 5
and are again applied in Section 6.

3.1. Low voltage network model

For monitoring overheating due to large currents and meeting vol-
tage regulations, it is generally sufficient to model on a time scale of
several minutes. The standard way to model such an electricity grid on
this time scale is the load flow model [22,23]. A load flow problem is
generally nonlinear, due to its power constraints. This makes solving
the necessary equations computationally expensive.

The standard approach for modeling DNO power grids is for-
mulating a load flow problem and solving it using a Newton-Raphson
methodology [22,23]. Usually the load is modeled as a combination of a
constant power, constant impedance and constant current [23]. This
paper however proposes a simple linear load flow approach by only
using a constant impedance load model and investigates its feasibility in
a real world situation.

To create the constant impedance model as in Fig. 3, it is necessary
to convert the power use of a customer into an equivalent resistance.
This can be done by the following formula:

= ∀ ∈Z U P n/neq ,ref
2

user N (1)

Here Zeq is the equivalent resistance of the customer, Puser the real

Fig. 1. A schematic overview of the voltage levels of the network of Liander
DNO. Liander operates the Low Voltage (LV) and Medium Voltage (MV) net-
works. These networks operate on 400 V/230 V and 10 kV respectively. The
High Voltage (HV) network is not operated by Liander DNO. The LV network is
the main subject of this study.

Fig. 2. Schematic view of the Community Battery
controller.

W. van Westering and H. Hellendoorn Electrical Power and Energy Systems 114 (2020) 105349

2



power consumption of the customer, n is a bus which represents a
customer connection and Un,ref is the voltage at the customer location.
Since the voltage at the customer is usually not known, the reference
voltage is be assumed to be the nominal voltage.

From Fig. 3 it can be observed that all nodes on the end of the
network are now defined as swing buses, i.e., fixed voltage points. As
the power constraints are replaced by resistances, the network now only
consists of voltage sources, ground connections and resistors, resulting
in a fully linear model.

The network is modeled as a graph. A standard way to define such a
graph is by defining graph G as =G ( , )N E , where N are the nodes
and E are the network edges. In case of an electricity network N re-
present the network buses andE are the network cables. The goal of the
model is to determine the cable currents IE and the nodal voltages UN .

The network voltages and currents can be obtained by using Ohm’s
law:

=I Y UN N (2)

Here IN is the current entering a network bus and Y is the so-called
admittance matrix. The admittance matrix can be directly obtained
from the network lay-out using the following formula [24]:

= ′−Y AZ A1
E (3)

Here A is a directional connection matrix. Every row corresponds to a
network bus. Every column of A corresponds to a network cable. Each
cable should have exactly one starting point denoted by a ‘1’ and one
end point denoted by ‘− 1’. It does not matter which bus of A contains
the minus sign, as the resulting admittance matrix Y will stay the same.
ZE is a square matrix and has the corresponding impedance of each
cable and the equivalent resistance of the customers (Zeq) on its diag-
onal. Since the matrix is diagonal, its inverse can be easily calculated by
taking the inverse of every diagonal element.

However, (2) cannot be solved directly, because not all elements are
known in neither vector IE and UN . To overcome this problem, it is
practical to segment the problem in two equations which can be solved
separately. This can be done by sorting the rows of the matrices IN , Y
and UN in such a way that all swing buses are ∈ U1. The segments are
then defined as:

= ⎡
⎣

⎤
⎦

= ⎡
⎣ ′

⎤
⎦

= ⎡
⎣

⎤
⎦

I
I
I Y K L

L M
U

U
U, ,1

2

1

2
N N

(4)

Since the network is modeled as a set of voltage sources and re-
sistances, Kirchoff’s law dictates that =IΣ 0 on every bus in U2.
Therefore I2 is equal to 0̄. All the voltages on the end nodes, represented

byU1 are known. The voltages inU1 are zero, except for the transformer
voltage. The load flow equations now become:

⎡
⎣

⎤
⎦

= ⎡
⎣ ′

⎤
⎦

⎡
⎣

⎤
⎦

I K L
L M

U
U0̄

1 1

2 (5)

A natural way to solve for U2 is:

= − ′−U M L U( )2
1

1 (6)

However, matrix M is usually too large and too costly to invert.
Fortunately, it is not necessary to compute −M 1. Instead, it is more
practical to solve:

′ = −L U MU1 2 (7)

Since this equation is in the form =Ax B it can be solved in many
practical ways e.g. a sparse QR decomposition. Finally after computing
the voltages, the cable currents can be directly calculated by:

= ′I Z A UE E N (8)

3.2. Simulating reactive power in terms of only real numbers

Not all simulation environments can solve complex numbers. For
example, the programming language R and the Matlab PLC compiler
have out-of-the-box support for solving matrices which are both sparse
and complex. In these cases, it is beneficial to simulate the imaginary
parts of the load flow simulation in terms of only real numbers.

To add reactive power to the load flow simulation, the cable re-
actances are added to ZE , such that elements of ZE , Y , U and ∈I . To
include these efficiently in (2), it can be expanded [25,26] to:
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where the subscripts ,  are used to indicate respectively the real and
imaginary part of the matrix. Thus, = = ′−Y Y A Z ARe( ) Re( )1

 , and
correspondingly =Y YIm( ) .

Using the same method as before this can be simplified to:
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 (10)

which is the complex variant of the equation =MU LU2 1. By solving this
equation, the voltages can be determined. Eq. (9) can be used to find
the currents through the cable-segments. ThenUN and IN can be found
by:

= + = +U U U I I I2 2 2 2
N N    (11)

3.3. Motivation for linear modeling

The LV networks are generally very well conditions for linear si-
mulations. Compared to the MV network, they consist of relatively
short cables with a low X/R ratio. As can be derived from (1), the
difference between the non linear constant power model and the con-
stant impedance model is caused by the voltage drop i.e. the difference
of the estimated voltage Un,ref and the actual voltage Un. According to
Dutch law and Alliander DNO policies, the voltage drop in the LV
network is not allowed to be more than 4.5%, resulting in a worst case
difference in absolute voltage of less than 1 V in a network which op-
erates on 230 V and has a 4.5% voltage drop. However, the lineariza-
tion quickly loses its accuracy as the voltage drop gets higher and is
only to be applied on networks with a relative small voltage drop.

On a side note, it can be argued that modeling the customers as a
constant impedance load model is not necessarily less accurate as a
constant power load model. In reality, customers will have a mix of
devices which require a constant power load, such as home computers
and TVs, and devices which are in reality a constant impedance load,

Fig. 3. A small example low voltage network. The network has two customers
modeled as resistors and a single connection to the medium voltage grid.
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such as boilers and heaters.
The main reasons for linearizing the load flow model are the im-

provement in speed and stability regarding a non linear model. Because
since the load flow equations can be solved without iterative methods,
it can be solved for large networks in a very short time span [25]. This
makes it viable for control purposes, as it can be used to evaluate many
different control strategies. Computational power is often an expensive
resource in a control environment. For example, the local controller of
the community battery has a clock speed of 500MHz and 64MB RAM,
which is very slow compared to a modern PC.

Regarding model stability, a linear network model it is not prone to
finding unfeasible solutions or numerical difficulties, which can occur
in normal load flows [23]. Given that stability of a controller is es-
sential, this property makes the linear method more suitable for control.

While in most cases the LV network is radial, this is not necessarily
always the case. There are low voltage networks in Liander DNO area
which are operated in a non-radial manner and sometimes span over a
thousand kilometer of cable and supply tens of thousands of house-
holds. It happens that the load flow equations as formulated in this
paper are directly applicable to these large LV grids, while maintaining
good performance [5].

A final advantage of a linear network model is its linear additive
property, which means that each network load configuration can be
simulated independently. In practice this means that all loads can be
simulated separately and the resulting voltage drop and cable currents
can be obtained by simply taking the sum of all solutions. This property
will be exploited in next section to efficiently determine the maximum
power the battery supply to or draw from the network.

A small downside of the constant impedance model is that it is
prone to computational errors when a customer’s power consumption is
very close to zero. As can be seen in (1), if the power consumption is
zero, the equivalent resistance is infinite. In practice, this problem can
be easily solved by ensuring that the power consumption of each cus-
tomer is always a few watts, which has a negligible influence on the
outcome of the simulation.

3.4. Formulating the battery control problem

Given the model of the LV network and the framework of Fig. 2, the
next step is to formulate a battery controller which safeguards the
voltage and current constraints of the network while being compatible
with other control goals, such as day-trading. Furthermore the algo-
rithm has to be stable and operable in real-time.

The controlled variable is the battery power at each time step Pt . The
final goal of the controller is to keep the battery at a certain given
charge level Et,ref . This desired charge level is given by another entity,
like a day-trader who is using the battery for energy trading. The op-
timization function is now posed as a discrete receding horizon pro-
blem. The objective function becomes:

∑ −
=

E Eminimize
P t

T

t t
1

,ref
t (12)

The power the battery can inject in or draw from the network is limited
by its rated power Pbat, but also by the network voltages at each cus-
tomer bus ( ∀ ∈U cc N ) and network currents IE. These constraints
have to be satisfied at every time step t in prediction horizonT . Et is the
energy in the battery at time step t . The first step is to apply the load
flow model to this optimization problem.

Because the constructed load flow model is linear, network states
can be evaluated independently using the principle of superposition.
This is useful, as the impact of the network load on the voltages and
currents can be calculated separately from the impact of the battery
power. The maximum and minimum battery power can therefore be
obtained by dividing the available voltage drop by the voltage drop
caused by the battery at 1W. Since the network is only as strong as its

weakest connection; the weakest cable or bus determines the bound-
aries of the battery. These boundaries can be calculated with the fol-
lowing formulas:
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−
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N
(13)

Here PU t,max, and PU t,min, are the maximum and minimum power the
battery is allowed to inject into the network at time t without violating
any voltage limits, Umax and Umin are the maximum and minimum al-
lowed voltage at each customer by law. Un t, is the voltage at each
customer which can be calculated by solving (2).

UΔ P nW, is the voltage drop by applying 1W of battery power to the
grid in V/W. This variable is time-invariant and only depends on the
network properties. The number can be obtained by solving by setting
the battery power to 1 W, setting the customer power to a low but
nonzero value and solving (2). The customer load cannot be set to zero
as most QR solvers cannot cope with infinite resistances. UΔ P nW, is
network-dependent and does not vary over time.

For monitoring currents similar formulas exists:
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−
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I I
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(14)

Here PI t,max, and PI t,min, are the maximum and minimum power the
battery is allowed to inject into the network at time t without violating
any current limits. I emax, and I emin, are the maximum and minimum al-
lowed currents at cable e. IP e t, ,t is the current at each cable which can be
calculated by solving (2) and applying (8). I PΔ eW, is the current change
per 1W of battery power applied to the grid in A/W. Just like the

UΔ P cW, this variable is time-invariant and only depends on the network
properties.

The battery has also a maximum rated power. The full network-
related constraints are now defined as:

=

=

P P P P P

P P P

min( , , )

max( , , )
t t U I t t t

t U t I t

max, max, , ,max, bat,max, min,

min, , min, , bat,min, (15)

The optimization problem with added constraints becomes:

∑ −

⩽ ⩽ ∀ ∈
⩽ ⩽

= E E

P P P t T
E E

minimize

subject to
0

P t
T

t t

t t t

t t

1 ,ref

min, max,

max,

t

(16)

Here Pt is the real power the battery supplies to the electricity network
at timestep t . E is the energy stored in the battery, which cannot exceed
Emax. The first constraint corresponds to the network-related power
limit. The second constraint ensures that the battery will not discharge
when it is empty and not charge when it is full. If all the currents and
voltages are within their boundaries, the battery does not need to act.
However, if an undesired value is found, the battery will try to mitigate
the problem.

However, the formulated problem can not directly be put in a linear
solver in its current form. To solve the problem using a linear solver, it
is necessary to incorporate the absolute term of the objective function
into the constraint function. This is achieved by adding an extra dummy
variable E .

Also, the required voltage and current boundaries may be un-
attainable, because of the practical limitations of the battery. In such a
situation, the linear solver will not find a feasible solution and the
battery will be inactive. A more desirable behaviour is in a practical
case to meet the required voltage and current constraints as much as
possible.
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To this end, a barrier function has been implemented. The barrier
function gives a large penalty for violating the voltage and current
boundaries, barely influencing the regular optimization. In case of un-
attainable requirements, the solver will still find a solution which vio-
lates the constraints as little as possible. The variable corresponding to
the barrier function is Pover. This function is given a large weight c,
where ≫c E .

The definitive optimization problem now becomes:

+

+ ⩾ ∀ ∈
− ⩽

⩽ ⩽
− − ⩽
− + ⩾

=

+

+

E c P

E E E t T
E E E

E E
E E P P
E E P P
E E

minimize ·

subjectto

0

E E P

t

t

t t

t t t t

t t t t

, ,
over

ref

ref

max,

1 over, max,

1 over, min,

1 start

t t over

(17)

This problem can be directly solved by a linear optimization solver.
Since the problem is linear, the solution will be optimal if it is found. If
the constraints do not conflict with each other, the solution always
exists.

Since the battery controller is designed with a horizon of several
days, the energy lost by the self-discharging of the battery is neglected.
Furthermore, the load cycle efficiency of the battery is also neglected,
as it is known to be over 90% in normal operating ranges. To mitigate
the inaccuracies caused by these assumptions, Estart has to updated at
every optimization step using the measurement of the state of charge of
the battery provided by the battery management system.

4. Experimental setup part I: The community battery of
Rijsenhout

Liander, the largest DNO of the Netherlands serving over three
million customers, placed a community battery in Rijsenhout, a sub-
urban village close to Amsterdam, the Netherlands. The battery is
connected to the low voltage power grid as can be seen in Fig. 4. The
community battery has a usable energy rating of 126 kWh and a 55 kW
peak power rating. The battery itself is capable of a higher power
output, but safety regulations required the 55 kW limit.

Using the conventional load flow software and modeling assump-
tions of Liander DNO, an analysis of the network of Rijsenhout showed
that the network was expected to have no voltage or capacity problems.
However, during the experiments it became clear that the conventional
modeling assumptions were incorrect and the network was subject to
voltages which were too high according to regulations. Sensor data
proved that the voltage problems were caused by fluctuations of the
voltage on the medium voltage grid, which directly influenced the
voltage of the low voltage power grid and exceeded the modeling as-
sumptions. However, this situation provided an excellent opportunity
to prove that the battery could also mitigate the voltage problems.
Dutch inverters are required to automatically switch off in the event the
voltage is above 250 V to mitigate voltages and this threshold was ex-
ceeded on a regular basis.

During the experiment, only active power was considered because
very little reactive power could be expected to be present in this LV
network. The customers in this network are regular households, which
are known to consume little reactive power. Also, the X/R ratio of the
cables in the network is very low, making the phase angle nearly con-
stant in the entire network. There is also a practical reason for ne-
glecting reactive power as the installed sensors only logged real power.

To make the experiment broader than just the DNO perspective, an
additional control objective was formulated. Most of the customers
have their own PV installation, and by aggregating their consumption
and defining it as Eref , the customers can ‘live on their own solar energy’
as much as possible. This is also of interest to the DNO as it mitigates
peak loads from other network areas.

4.1. Optimization results

At the distribution transformer and the community battery both
power and voltage are measured. The modeled part of the network
consists of 34 customers. At 12 households, the power was measured.
For privacy reasons, their exact location could not be displayed, but
they are almost uniformly distributed along the cable. The data which is
displayed in this section is averaged on the time scale of one minute.

Fig. 5 shows the result of the attempt to make the LV network self-
sufficient. The community battery did most work in August, nearly
doubling the self-consumption of the generated solar energy within the

Fig. 4. GIS view of Liander’s low voltage network of Rijsenhout [27]. The
outlined modeled network is the feeder that is considered for the LV model. The
unmodeled cables are not physically connected to the modeled network, except
for a connection in de DT transformer.

Fig. 5. Source of the electricity of a single average customer in the community
battery LV grid from August 2017 to November 2017.
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LV grid. Still 77 kW h per household could not be stored in the battery
because of capacity limits in this months. August and September are the
two last months of the summer in the Netherlands. In October and
November, there was much more power consumption on average and
less solar power generation. It can be observed from Fig. 5 that in
October and November almost no power was delivered to the grid for
this reason. Battery losses (and other transportation losses in general)
are not part of Fig. 5, because they have to be compensated by the DNO.

Fig. 6 shows the maximum measured voltage from all available
sensors. The battery controller keeps all voltage within the set bounds
of 245 V and 215 V. In September and November, the community bat-
tery did not need to act to keep the voltages within the required bounds.
During the months the community battery and its controller were ac-
tive, the maximum network voltage was lowered from previously ob-
served voltage peaks of 250 V to voltage peaks of 245 V, mitigating the
voltage problems.

For solving (17), the optimizer depends on a prediction of the power
consumption and solar power generation. This prediction is obtained by
training a regression model using historical data and was provided by
an external party. The model has a Mean Absolute Percentage Error
(MAPE) of 5% for predicting household load and 10% for PV power
24 h ahead. During the experiment it was discovered that the accuracy
of the energy consumption predictions is relatively unimportant. The
controller anticipates on high demand or load by reserving capacity of
the battery. Using this available energy and the available real-time
measurements, the controller then reacts to the voltage/current pro-
blems once they actually arise. It turns out that the most important
prediction feature is the required amount of energy to mitigate voltage/
current problems, not the exact peak loads.

4.2. Checking for linearity

This sections investigates how well the linear constant impedance
load flow model applies to low voltage networks. The LV model con-
structed in the previous sections relies on a main assumption: The load
model is assumed to behave as a constant impedance.

To determine if the constant-impedance model is indeed accurate on
the voltage range of the LV network, a short experiment was performed.
As can be observed in Fig. 7, the battery was given a significant ‘saw
tooth’ shaped load profile as a reference. The charging experiment was
performed in a few hours around noon, which is the time with the least
power consumption during the day because of the presence of solar
panels. The customer power consumption is significantly less than the
battery power.

As can be seen in Fig. 7, the battery ramped up and down from
50 kW, its maximum rated power. It can also be concluded that the
battery can control the voltage at the end of the LV network either 12 V
up or down, covers the entire range of the allowed 4.5% voltage drop
on LV networks. To determine the exact relation between battery power
and voltage drop, the plot in Fig. 8 was constructed. From this figure, it
can be concluded that the relation between battery power and voltage
drop can indeed be approached by a linear function within the

operating range of the battery.
The deviations around zero battery power, which can be observed in

Fig. 7, are caused by the imperfect inverter. The battery inverter cannot
behave linearly at very low battery power levels. It can also be observed
in Fig. 8 that the linear fit has a slight additive bias. This is caused by
the small residual load which also can be observed in Fig. 7.

5. Community battery design specifications

The following section contains design principles to quickly de-
termine the key properties of a community battery for network con-
gestion reduction purposes, in new or existing grids. Using the ob-
servation of the previous sections, generalized rules have been
established. These rules have been designed to be used by network
planners and have been kept as simple as possible. It has been assumed
that a standard load flow simulation is unavailable to maximize the
simplicity of the network analysis. A drawing of the low voltage net-
work is sufficient to apply the proposed rules, once the problem and its
size are known.

There are two main motivations considered to place a community
battery for network congestion reduction: to control the community
voltage and to control the community currents. While it is theoretically
possible to also control the network power factor to some extend, this is
currently not a priority for distribution network operators, because of
its rare occurrence.

A simple but realistic situation is assumed. The network has a re-
latively simple radial structure and its cable locations and properties
are known. It is also assumed that the location and size of the voltage
problems are roughly known. These either have been determined using

Fig. 6. Measured voltages at the community battery in the network from
August 2017 to November 2017. The LV voltage never exceeds the bounds of
245 V and 215 V as required.

Fig. 7. To determine the characteristics of the voltage drop the battery was
given a ‘saw tooth’ shaped charging profile. It can be observed that there is an
approximate linear relation between the battery power and the voltage drop
between the transformer and the battery.

Fig. 8. The relation between the Battery Power and the measured voltage drop
from the DT to the Battery. The time span of this figure is the same as in Fig. 7.
It can be observed that the relation between battery power and voltage drop can
be approximated by a linear function.
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smart meter data or direct (temporary) measurements.
As will be motivated in the following paragraphs, the most im-

portant properties of a community battery are:

• The location of the connection of the battery to the low voltage
power grid.

• The battery power rating.

• The battery capacity.

The first step in designing a community battery is determining its
location. The size of a large battery and its control installation is sig-
nificant, which strongly limits the number of available placement lo-
cations. For example, in the case of the community battery of
Rijsenhout the battery size is half a standard shipping container and
only a single placement location was available.

Given is the network model of Fig. 9 and the linear relation between
battery power and voltage drop as seen in Fig. 8. If one assumes that the
customer load is not significantly influenced by the voltage drop, simple
approximate formulas can be constructed for battery placement.

In the previous section it was shown that there is a linear relation
between battery power and voltage level, which motivates the next
formula. Once the location is determined, one can determine the
minimal required power rating of the battery with the following for-
mula:

=P α U
l

Δ
Umin, (18)

Here P Umin, is the minimal battery power required to solve the voltage
problem (W), UΔ is the size of the largest voltage problem (V) i.e. the
node which has the largest gap between the allowed voltage (Umax) and
its maximum measured voltage. l is the length of the part of the cable
which is shared by both the customer with the largest voltage problem
and the community battery (m). For example, if in Fig. 9 UΔ is located
at customer 2, then = +l l lCable1 Cable2. α is a cable dependent factor
( m

W·V
) which represents the average cable resistance per meter. It can be

obtained by the formula: =α U ρ/ref . Here Uref is the reference voltage
(V) and ρ is the cable specific resistance (Ω/m). α is used instead of
adding Uref and ρ to (18), making it easier to construct a look-up table
for engineers. As a general guideline, a community battery should be
connected with the longest possible path to the MV/LV transformer. Or
to put in another way, the community battery should share as much
meters of cable with the customers as possible.

To determine the minimum power required to mitigate current
problems and given the network model’s assumptions, the following
formula is proposed, assuming that the power will mainly flow between
the DT transformer and the battery:

=P U I·ΔImin, ref (19)

Here IΔ is the size of the largest current problem, i.e. the difference
between the actual current and the maximum cable capacity. It is es-
sential that this current problem is situated on the cable between the
battery and the distribution transformer or else the battery power will
have negligible effect on this particular current. For example, if in
Fig. 9 IΔ is located at customer 3, then the community battery cannot
solve this problem.

The minimal required battery power now becomes:

=P P Pmax ,U Imin min, min, (20)

It can be concluded from (18) and its underlying equations, that the

location of the battery is its most critical aspect. (20) shows that the
location has great impact on the required amount of battery power
regarding voltage problems. Because of the linear property of (18), a
battery placed twice as far away from the MV/LV connection generally
needs only half the power rating. Current problems cannot be influ-
enced at all if the battery is not in the correct position, as (19) requires
the overcurrent to be between the transformer and the battery itself.

Once the minimal required battery power has been determined, one
can determine the required battery storage capacity. The storage ca-
pacity should meet two criteria; it should be sufficiently large to pro-
vide the requested power and solve the voltage or current problem.
These criteria are displayed in (21) and (22) respectively.

=E P C| |·min min (21)

In this formula Emin is the minimal required storage capacity (kW h).
C is the so-called C-value [28], a factor which expresses the relation
between battery power and capacity (kW h/kW). This factor is mostly
technology dependent and can be as high as 3 for lithium-ion batteries
[29]. The second criterion is:

∑=
=

E
t

P1
s i

n

imin
1

min,
(22)

Here ts is the sampling period, n the number of samples and P imin, the
required battery power at time step i. The formula should be applied for
the duration of the voltage/current largest problem. Since community
batteries are generally not meant for seasonal storage, it is sufficient to
sample several days.

Using the newly determined properties of the community battery, a
cost-benefit analysis can be easily obtained because location, power
rating and capacity are also the most important factors for battery costs.
The exact break down of the operational and capital costs of the battery
and its comparison to conventional network strengthening methods are
beyond the scope of this paper.

6. Experimental setup part II: Dimensioning the community
battery of Rijsenhout

In this section, the previously proposed formulas are applied on the
community battery of Rijsenhout as an example. While studying the
network of Rijsenhout, it was discovered that the largest voltage pro-
blem is 5 V. The location of this problem is at the customer closest to the
community battery. Applying (18) results in a required battery power of
15 kW. This is much less than the battery’s rated power of 50 kW. No
current problems were measured in the network of Rijsenhout, so (19)
does not need to be applied.

At its worst, the voltage problem was present for several hours.
Determining the required capacity by applying (22) yielded a required
capacity of 35 kW h. However, given a C-value of 3 and using (21), the
minimal required capacity turns out to be at least 45 kW h. This is also
much less than the rated capacity of 125 kW h. It turns out the com-
munity battery of Rijsenhout could have been approximately 50%
smaller.

It is interesting to note that the optimal location for stabilizing the
battery is the inverse of the optimal location for day trading. (18) shows
that a battery has a larger influence on the voltage if it is further away
from the transformer. While this is a desirable trait if the battery is used
for network stabilization, a battery used primarily for day trading
should be placed as close to the transformer as possible to minimize the
impact on the grid. However, regarding voltage problems the negative
impact of day trading can be partly mitigated by using the reactive
power control capabilities of a battery inverter. These capabilities were
not available in this field test and are therefore beyond the scope of this
paper.

Furthermore, (18) can also be used to determine the potential de-
stabilization of the grid. For example: Given the fact that the

Fig. 9. A battery placement example. If a battery is placed at between customer
2 and 3, it can control the currents and voltage drops in cable 1, 2 and 3.
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community battery of Rijsenhout can control the voltage 12 V and that
the maximal measured voltage in the LV network is already 250 V, the
community battery can easily cause voltages of over the legal limit of
253 V. To be able to estimate this problem is of great use for DNOs, as it
proves that the battery power levels cannot be left unmonitored.

7. Conclusion

This paper provides a solid foundation for integrating residential
and community-level storage in the existing LV network. A fast linear
LV model was developed and applied to the LV feeder of the commu-
nity-battery in Rijsenhout. The model was proven to be sufficiently
accurate for network stabilization purposes.

The battery control theory was formulated as a linear optimization
problem. A receding horizon controller was developed to be used in a
continuous way. The controller is suited very well to be integrated with
other battery control goals, while still securing the voltages and cur-
rents within the network. It has been shown that a community battery is
able to stabilize and control the loads in a real world low voltage net-
work to a large extend.

A step-by-step method was proposed for quickly modeling the im-
pact of new and existing batteries on the LV grid. Both the stabilizing
and destabilizing potential regarding steady-state voltages and currents
of the battery can be quickly estimated. By unlocking the potential of
battery storage on a DNO level, a fast and secure energy transition is
one step closer.

7.1. Future research

Being able to control such a large battery to freely test control al-
gorithms provides many opportunities for future research. Next steps
will include the application of state estimation algorithms to optimize
the estimates of the voltages and currents and also properly account for
uncertainties in network measurements and properties.

Furthermore, relatively little is known about the exact nature of low
voltage network load. It is the author’s ambition to create an accurate
load model by applying system identification methods, using the
community battery as a means to ‘excite’ the network to find the vol-
tage and current dependability of the power loads. This could result in a
general method for DNOs to identify the load types of their networks.

As additional validation, the theoretical network design formulas
proposed in this paper will be tested on more test beds. A test bed of 50
residential batteries is currently in development. Researchers are wel-
come to contact the corresponding author of this paper to see if their
own algorithms can be tested at our facility.
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