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Preface 
In 2000, Professor Co de Vries (at that time head of the Hydrology department of 
the VU University in Amsterdam), published a paper entitled ‘Groundwater level 
fluctuations - the pulse of the aquifer’ at the occasion of a symposium on the 
evaluation and protection of groundwater resources [de Vries, 2000]. That paper 
was the first to raise my curiosity about the subject of time series analysis in 
groundwater hydrology: the pulse of the aquifer as a metaphor for groundwater 
level fluctuations suggested the possibility of time series analysis of groundwater 
levels to physically characterize and interpret groundwater level fluctuations. 

When I started working as a free-lance groundwater hydrologist in 2004, the 
need to determine consistent groundwater model calibration targets (from 
measured groundwater level time series) led me again towards time series 
analysis. The combination of time series analysis and groundwater modeling was 
not a common practice at that time (and it still is not at the publication time of 
this thesis) but the complementarity of these two modeling approaches was clear 
to me. Later, Jos von Asmuth, the main author of the time series modeling 
software Menyanthes, tipped me about a PhD position to investigate how 
groundwater model parameters can be derived from time series analysis.  I 
grabbed that chance and applied for it at the end of 2008. The position was partly 
at KWR (Kiwa Watercycle Research institute) and partly at the Technical 
University of Delft, in the Netherlands. 

The interview with Mark Bakker made me even more enthusiastic about this 
research project: the subject and the supervising were promising.  Mark 
confirmed my appointment for the position sometime later, with a mail starting 
with ‘Welcome on-board Christophe’. Research can indeed be reminiscent to a 
sail journey where your position needs to be updated continuously. In a research 
project, the route is updated based on experimental results, which consisted here 
on the results of new models. Fortunately, my supervisors have been excellent 
pilots, allowing me the freedom to explore while intervening from time to time to 
adjust the course. This thesis is a distillate of the findings of the journey.  
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Summary 
The objective of this thesis is twofold: to develop time series analysis methods for 
the estimation of aquifer parameters and recharge to be used in groundwater 
models and to develop time series analysis methods for the identification and 
quantification of a regime change. 

In Chapter 2, a pumping test is replaced by time series analysis of heads 
measured in the vicinity of a well field with a strongly varying pumping regime. 
The step response function obtained with time series analysis provides an 
estimate of the steady response to pumping that would be achieved if the 
pumping rate was constant. The resulting virtual steady state cone of depression 
of the well field allows for a straightforward calibration of a regular groundwater 
model to estimate aquifer parameters. In addition, time series analysis can be 
used to determine the type of reaction, phreatic or semi-confined, in the different 
monitoring wells.  

In Chapter 3, stream-aquifer interaction is analyzed with a time series 
model using a response function that is a solution to the groundwater flow 
equation. Head fluctuations in the vicinity of a river are analyzed, which result 
directly in estimates of aquifer parameters, including the resistance to flow at the 
interface between the stream and the aquifer. For the study site, the resistance to 
flow between the stream and the aquifer can be explained by stream line 
contraction rather than by the presence of a semi-pervious layer at the bottom of 
the river. 

In Chapter 4, time-averaged groundwater recharge is estimated from 
time series models of groundwater heads that are fitted under an additional 
constraint that aims at better identifying the influence of evaporation. The 
constraint is that the seasonal harmonic of the observed head is reproduced as 
the response of the seasonal harmonics of precipitation, evaporation, and 
pumping. Better identification of the influence of evaporation results in more 
reliable recharge estimates to be used in regular groundwater flow models. 

In Chapter 5, time series analysis is applied to identify and analyze a 
transition in the groundwater regime of an aquifer. The groundwater regime is 
defined as the range of head variations of a time series throughout the seasons. A 
new time series modeling approach is proposed to simulate the transition from an 
initial regime to an altered regime. In the case study, the estimated timing and 
magnitude of the transition provides strong evidence that the transition is the 
result of dredging works in the main river draining the aquifer. The existence of 
the transition of the groundwater regime had gone unnoticed, despite intensive 
groundwater monitoring. 

This thesis showed how time series analysis can be applied to estimate 
the magnitude of groundwater model parameters or recharge and be applied as a 
tool to gain insight in the functioning of groundwater systems. 
A crucial issue when estimating aquifer parameters or recharge from time series 
models is the uncertainty of the estimates. A modified Gauss Newton approach 
was used in this thesis. This approach converges quickly and provides an estimate 
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of confidence intervals of the estimated parameters. The systematic comparison 
of different estimation procedures, including Markov Chain Monte Carlo, is 
recommended for future study. 

Groundwater modeling is based on a conceptual model of a groundwater 
system to simulate groundwater flow, while time series analysis can be used to 
estimate groundwater model parameters and identify possible changes in regimes 
for use in groundwater models. Both modeling approaches are complementary 
and it is recommended that they be applied together in a systematic fashion. 
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Chapter 1 General introduction 
 

1.1 Time series analysis of groundwater levels 

The topic of this thesis is the physical interpretation of time series analysis of 
groundwater levels measured in one or more monitoring wells. The most 
straightforward analysis of a time series of measured groundwater levels (which 
will be further referred to as groundwater heads, or simply as ‘heads’) is to 
calculate its mean, standard deviation and the 0.05 and 0.95 quantiles. These 
statistical characteristics are useful as a first description of the groundwater 
regime over a given period of time; groundwater regime is defined here as the 
range of groundwater levels measured over the seasons. The mean groundwater 
flow direction can be estimated if these statistics are known at different positions 
in the aquifer over the same period of time. Additional information can be drawn 
from a time series of heads by explaining the head fluctuations as a result of 
external stresses such as precipitation, evaporation, pumping, or river stage 
variations, for example using transfer function noise (TFN) modeling [Box and 
Jenkins, 1969]. In TFN models, the head at a certain time is simulated as the sum 
of autoregressive terms and a weighted average of past heads and past 
precipitation, evaporation, or other stresses. TFN models have been widely 
applied since the 1980s in groundwater hydrology in the Netherlands [e.g. , 
Baggelaar, 1988; Van Geer et al., 1988]. TFN models can be attributed a physical 
meaning by deriving the model coefficients from difference equations that 
approximate simple groundwater flow solutions [e.g., Bierkens, 1998; Berendrecht 
et al., 2006]. 

Alternatively, head measurements can be explained using a weighted 
average of past stresses only. In such a simplified TFN model, the influence of the 
stresses is traced back as far as detectable in the past and the auto-regressive 
terms are omitted. Mathematically, such an approach is the convolution of a time 
series of a stress with the impulse response function for this stress. The impulse 
response function for a stress describes how the groundwater head reacts to an 
impulse of that stress [e.g. ,Von Asmuth et al., 2002]. This approach of time series 
modeling is adopted in the present thesis because it relies completely on 
response functions (estimated for each stresses), which, play a key role in the 
physical interpretation of time series models and in the interplay between time 
series models and groundwater flow models. 
 

1.2 Objectives and scope of the research  

In current groundwater hydrology practice, groundwater flow modeling is used 
for a variety of tasks, including to dimension pumping activity, simulate hydro 
chemical mass transport, or answer questions regarding the groundwater 
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balance. On the other hand, time series modeling is used to characterize 
groundwater regimes and to relate head fluctuations to stresses such as 
precipitation and evaporation. Groundwater flow modeling and time series 
modeling are often considered as two different tools, that can be used for two 
different types of problems.  

Advances in groundwater flow modeling and time series analysis are to 
be expected from a synergy between both modeling approaches.  An important 
step in this direction was the development of a theoretical framework for 
groundwater flow model calibration based on the results of time series models 
[Bakker et al., 2008]. The topic of this thesis is to further explore the 
complementarity of time series modeling.  

The objective of this thesis is twofold: develop time series analysis 
methods for the estimation of aquifer parameters and recharge to be used in 
groundwater models, and develop time series analysis methods for the 
identification and quantification of a regime change.  

A common thread in the investigations presented in this thesis is that the 
focus is on the quantification of model parameters or on a better understanding 
of groundwater systems function, instead of a focus on the forecasting of 
groundwater heads. 
 

1.3 Methodology 

In this thesis, groundwater heads are simulated as weighted averages of the past 
stresses on the groundwater system. Two main stresses (sometimes also referred 
to as forcings) are precipitation, evaporation. Other possible stresses include 
pumping and river stage variations. The weighted average of a past stress is 
computed as the convolution integral of the stress time series with a 
corresponding impulse response function, where the impulse response function 
acts as the weighing function. 

In physical terms, the impulse response function of a stress describes the 
reaction of the groundwater head in response to an impulse of unit magnitude of 
this stress. An important assumption of this approach is that the groundwater 
heads react approximately linearly to the impulses of stresses. 

The method of time series modeling used here was developed by von 
Asmuth et al. [2002], which in turn was initiated by the study of convolutional 
processes by Maas [1994]. Interestingly, Besbes and de Marsily [1984] applied 
similar convolution techniques in the context of groundwater flow modeling to 
model the delayed reaction of the water table to precipitation as a result of the 
passage through the unsaturated zone.  
 

1.4 Thesis outline 

Chapters 2 to 5 are adapted from four peer reviewed papers published in 
international journals. As such, there is some overlap as the method of time series 
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is explained in each chapter. In Chapters 2 and 3, groundwater flow model 
parameters are derived from the response functions of time series models, in a 
way reminiscent to pumping tests (Chapter 2) or flood wave tests (Chapter 3). In 
Chapter 4, time series analysis is applied to estimate groundwater recharge to be 
used in groundwater flow models. In Chapter 5, a change in groundwater regime 
is identified and explained; such a regime change typically goes unnoticed in a 
groundwater flow modeling project. Finally, a synthesis is presented in the last 
chapter.
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Adapted from C. Obergfell, M. Bakker, W.J. Zaadnoordijk, and K. Maas, Deriving 
hydrogeological parameters through time series analysis of groundwater head 
fluctuations around well fields, Hydrogeology Journal, Volume 21, Issue 5, pp 
987–999 , doi: 10.1007/s10040-013-0973-4, 2013. 

 

Chapter 2 Deriving hydrogeological parameters 
through time series analysis of groundwater head 
fluctuations around well fields 
 

 

 

___________________________________________________________________ 

Abstract 
A method is presented by which time series analysis is applied to support 
groundwater system conceptualization and provide calibration targets for a 
steady groundwater model. The method is illustrated for heads measured in the 
vicinity of a drinking-water well field. The estimated steady response to pumping 
was used to classify the monitoring wells as semi-confined or phreatic. Based on 
this conceptualization, the aquifer system was represented by two layers 
separated by a leaky bed, which represents the resistance to vertical flow of the 
layers. The model could be calibrated satisfactorily using the drawdowns 
estimated by time series analysis. This approach was more successful than 
deriving the aquifer parameters directly from the analytical well function of 
Hantush, which was successful for a limited number of monitoring wells only and 
required the a-priory choice of the elevation of a confining layer which was not 
clear from bore logs. This study illustrates how time series analysis can lead to 
qualitative and quantitative insights regarding the local hydrogeology, providing 
complementary information to available bore logs to design a conceptual 
groundwater model. Time series analysis provides a cost-effective alternative to 
pumping tests when measured head fluctuations influenced by pumping wells are 
available. 
___________________________________________________________________
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2.1 Introduction 

Pumping tests, also referred to as aquifer tests, are a standard approach to 
estimate pumping influences and aquifer parameters [Kruseman and de Ridder, 
1970]. Aquifer parameters are needed to quantify groundwater flow and well 
capacities, and to facilitate the quantification of groundwater recharge [Ferris et 
al., 1962]. Basically, a pumping test consists of withdrawing groundwater in a 
controlled way, usually during a few days, while measuring the groundwater head 
in monitoring wells. The observed head variations are subsequently matched with 
an analytical model, or with a numerical model when the conceptual model is too 
complex to be described by a mathematical expression [Lebbe et al., 1992]. 
Pumping tests are expensive and usually only justified in cases where exploitation 
of the aquifer is considered [Freeze and Cherry, 1979]. 

As an alternative, Van Geer et al. [1988] and Baggelaar [1988] showed 
how pumping influences can be derived from time series analysis. Using Box-
Jenkins transfer function noise models [Box and Jenkins, 1969], they separated 
long term groundwater fluctuations caused by pumping from other stresses like 
precipitation and evaporation. In turn, they used the transfer function of the time 
series model, which describes the response to pumping, to estimate the steady 
drawdowns at the locations of monitoring wells. The steady drawdown is defined 
as the drawdown that results from application of a stress (in this case pumping) at 
a constant rate for an infinitely long time. Drawdowns were estimated within 
relatively large confidence intervals, probably due to the coarse time resolution of 
pumping data. Von Asmuth et al. [2002] developed a time series analysis method 
that is able to deal with variable measurement time steps. The method is based 
on predefined impulse response functions which can be seen as continuous 
equivalents of the Box-Jenkins transfer functions. Von Asmuth et al. [2008] 
applied this method to estimate pumping influences around a well field using the 
well function of Hantush as a response function. More recently, Harp and 
Vesselinov [2011] presented a method closely related to time series analysis to 
estimate regional values of aquifer transmissivity and storativity. They estimated 
the influences of individual wells of a well field using the well function of Theis as 
a response function. They worked with time series of daily head measurements 
and daily pumped volumes. Regional values of aquifer transmissivity and 
storativity were obtained directly from the fitted response functions. As this 
assumes that the simple hydrogeological schematization and boundary conditions 
used for the derivation of the formula of Theis applies to the aquifer, the obtained 
aquifer parameters are indicative values [Harp and Vesselinov, 2011].  

In order to derive optimum parameters for a groundwater model, Bakker 
et al. [2008] proposed to calibrate groundwater models on temporal moments of 
impulse response functions inferred from time series analysis. The method was 
presented with groundwater fluctuations caused by variations in areal recharge 
and canal stages using synthetic data.  
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Based on the same principle, the objective of this study is to illustrate how 
time series analysis of groundwater heads measured in the vicinity of a well field 
1) can be used to support the conceptualization of a groundwater model, and 2) 
provide estimates of steady drawdowns for the calibration of the groundwater 
model; the method is presented through application to a case study. The 
proposed method can be seen as an alternative for pumping tests; model 
parameters are not derived directly from a well function, but indirectly, by 
applying time series analysis to compute calibration targets for a groundwater 
model.  

This chapter is organized as follows. First, the application of time series 
analysis to estimate steady pumping drawdowns is presented. Next, the 
hydrogeological setting and groundwater model of the case study are described. 
Results of time series analysis are presented, followed by an interpretation of the 
estimated steady pumping drawdowns and their application as groundwater 
model calibration targets. Issues regarding the significance of the estimated 
parameters are discussed towards the end.  
 

2.2 Time series analysis 

2.2.1 Convolution of stress time series with response functions  

Time series analysis is performed by the method of predefined impulse response 
functions, developed by von Asmuth et al. (2002). In this method, an impulse 

response function ( )t , depending on a few shape parameters, is defined for 

each stress. The groundwater head fluctuation ( )h t , at time t , resulting from a 

time varying stress ( )N t  is calculated by convoluting ( )N t with ( )t [Besbes and 

de Marsily, 1984; Maas, 1995; Von Asmuth et al., 2002] 
 

0

( ) ( ) ( )

t

h t N t d   = −   (2.1) 

 
In practice, stress intensities are commonly measured for a certain period of time

t . The fluctuation ( )h t  resulting from a stress of intensity N applied between 

time 0 =  and t =   is given by: 

 

0

( ) ( ) ( )  for  

t t

t

h t N t d t d t t     


 
= − − −   

 
   (2.2) 
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In equation (2.2),  the integral 
0

( ) ( )

t

S t t d  = −  is called the step response and 

describes the response of groundwater head to a unit step input beginning at 
time 0 = . 

The parameters of the impulse response functions are optimized to 
obtain the best fit with the observed fluctuations. It is a linear method similar in 
many ways to the unit hydrograph in surface water hydrology. Although the 
linearity of the method might appear restrictive in the view of non-linear 
phenomena like groundwater recharge, experience strongly suggests that it 
results in many cases in

 
a good approximation of the observed head variations 

[Von Asmuth et al., 2008; Manzione et al., 2012] 

2.2.2 Signal decomposition 

The method of time series analysis by predefined impulse response functions 
attempts to decompose the measured head fluctuations into partial fluctuation 
series, each of which is caused by one of the applied stresses [Von Asmuth et al., 
2008].  The sum of the partial fluctuations and a constant called the ‘drainage 
base’ form the deterministic part of the time series model. The drainage base is 
the head reached when all stresses are set to zero. The difference between the 
time series of observed heads and the time series computed with the 
deterministic model forms a residual time series. The decomposition of a time 

series of observed heads ( )oh t can be summarized as follows:  

 

( ) ( ) ( )o i

i

h t d h t n t= + +  (2.3) 

 

where d is the drainage base, ( )ih t  represents the fluctuations explained by 

stress i , and ( )n t   represents the residual time series of differences between 

observed heads and heads calculated by the deterministic model [Von Asmuth et 
al., 2008]. If the characteristics of the residual time series substantially depart 
from white noise, modeling the residual time series might be necessary [Von 
Asmuth and Bierkens, 2005] 
 

2.2.3 Predefined response functions  

Response functions are predefined for each stress to simulate their specific 
influence on the head. In this study, the response functions for precipitation and 
evaporation proposed by Von Asmuth et al. [2008] are used. These functions are 
also implemented in the computer program Menyanthes [von Asmuth et al., 
2012]. The impulse response function ( )p t describing the influence of 

precipitation is a scaled gamma density function: 
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 (2.4) 

where A  is a scaling factor, a  and n define the shape of the function, t denotes 

time, and ( )n  is the gamma function of n . The corresponding step response is a 

scaled incomplete gamma function: 
 

1

0
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t
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which may be written as 
 

1

0

( ) ( , )
( ) ( )

at

n

p

A A
S t e d n at

n n

 − −= = 
   (2.6) 

 

where ( , )n at is the lower incomplete gamma function of n at time at . To limit 

the number of parameters to fit, parameters a and n  are the same for the 

precipitation response and evaporation response. 

The impulse response function ( )w t describing the response to pumping 

is chosen as: 
 

 

*
( ) exp( )w t t

t t

 
 


= − − −  (2.7) 

 

where  is a scaling factor, and *  and   define the shape of the function. The 

corresponding step function is given by: 
 

*

0

( ) exp( )

t

wS t t dt
t t

 



= − − −  (2.8) 

 
This choice is inspired by Hantush’s well function. To limit the number of 
parameters,  and  are attributed the same value for all pumping wells and 

parameter *  is taken as
2 2

*

4

r
 = , where r  is the distance between the 

pumping well and the monitoring well, and   is a shape parameter that is the 

same for all pumping wells.  
 

2 2

0

( ) exp( )
4

t

w

r
S t t dt

t t

 



= − − −  (2.9) 
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Integral (2.9) can be transformed into a form reminiscent to the well function of 
Hantush which can be evaluated efficiently by a method proposed by Veling and 
Maas [2010] (see Appendix). 
 

2.2.4 Steady state drawdown 

The area under the impulse response function ( )t is referred to as the moment 

of order zero and denoted 0M : 

 

0

0

( )M d  


=   (2.10) 

 

0M represents the steady effect of a continuous unit stress at a given monitoring 

well.  For groundwater withdrawal, the moment of order zero, denoted 
0

wM , is 

the steady drawdown resulting from a constant unit pumping rate, as shown in 
Figure 2-1. 

 
Figure 2-1: interpreted as steady drawdown at a monitoring well resulting from of a 

constant unit pumping rate 

 

In this study, 
0

wM is obtained by taking the limit to infinity of equation 

(2.9) [Gradshteyn and Ryzhik, 1965, equation 3.471-9]: 
 

0 02 ( )wM r =   (2.11) 

 

where 0K denotes the modified Bessel function of the second kind and of order 

zero. The steady drawdown s corresponding to a constant pumping rate Q is 

given by the product 
 

0 02 ( )ws QM Q r = =   (2.12) 

 

0

wM
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2.2.5 Parameter estimation of time series models 

Model parameters need to be estimated for each monitoring well by fitting the 
time series model to the observed groundwater heads. All parameters are log-
transformed during optimization to ensure parameter values remain positive, 
with the exception of the drainage base, which can take negative values. The sum 
of squares of the residuals is  minimized through application of a modified Gauss-
Newton algorithm [Hill, 1998].  

Under the assumption that time series model residuals are normally 
distributed, homoscedastic, uncorrelated, and that the time series model can be 
linearized around the optimal parameters, the covariance matrix 

pC of the 

optimized parameters can be calculated as [Hill, 1998] 
 

( )
1

2 T

p rC J J
−

=  (2.13) 

 

where 2

r  is the variance of the residuals of the time series model and J is the 

Jacobian matrix of the derivatives of calculated heads with respect to the 
parameters. The elements of the Jacobian matrix are: 
 

(ln )

i

ij

j

dh
J

d p
=  (2.14) 

 
for log-transformed parameters 

jp and 

 

i

ij

j

dh
J

dp
=  (2.15) 

 
for non-transformed parameters 

jp . 

Confidence intervals of optimized parameters are estimated assuming a 
normal distribution around the optimum, scaled by the variance of the parameter 

as given by the covariance matrix. For an optimal value ln( )ip of log-transformed 

parameter i , the lower and upper limits of the 95% confidence interval are: 

 

)ln(ln( ) 1.96
ii pp   (2.16)  

 
while for the drainage base, which is not transformed, the lower and upper limits 
of the 95% confidence interval are: 
 

1.96 dd   (2.17) 
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The confidence intervals of the back-transformed parameters are obtained by 
taking the exponential of the lower and upper bounds of the log-transformed 
parameters. 

Equation (2.12) gives the relation between time series model parameters 
and the estimated steady drawdown for pumping rate Q . The confidence interval 

of the estimated drawdown is computed using Monte-Carlo simulations; 
parameters  and  are drawn from a multi-normal distribution located at the 

optimal parameter values and scaled by the covariance matrix of the log-
transformed parameters. The estimated drawdowns are used as calibration 
targets in a numerical groundwater model, as illustrated in the following case 
study. 

2.3 Site description 

2.3.1 Hydrogeology 

The presented approach is applied to a well field of the drinking water supply 
company Brabant Water. The well field is situated in Waalwijk, a little city in the 
province of North-Brabant, in the south of the Netherlands. Geologically, 
Waalwijk is situated in the southeast-northwest oriented Dutch Central Graben. 
The graben is separated at the west from the Massif of Brabant by the Gilze Rijen 
fault zone and at the east from the Peel horst by the Peel border fault zone. The 
graben has been subsiding since the beginning of the Tertiary resulting in deposits 
of thick sediment layers [Lekahena, 1983]. At the end of the Pliocene, the area 
became an estuary for the river Rhine. The corresponding sediments are referred 
to as the formation of Peize-Waalre for its lowest part and Waalre for its upper 
part. The lower 20 m of the formation are mainly composed of sand. Between 
approximately 80 and 50 m below ground level (bgl), the formation of Waalre 
takes the form of a thick clay layer. From the available data, this clay layer 
appears over the whole surface of the study area and can be considered as the 
hydrological basis of the groundwater model. Above this clay layer, the Rhine 
deposited mainly sand over approximately 30-40 m corresponding to the 
formation of Sterksel, or locally to the formation of Kreftenheye. Drinking water is 
pumped from the aquifer formed by the formation of Sterksel at a depth of 
approximately 25m bgl. A borehole near the well field reveals the presence of a 
clay layer at about 20 m bgl. This layer, further referred to as the clay layer of 
Sterksel, is expected to constitute an aquitard above the well field. During the 
Pleistocene glaciations, aeolian fine sands with local silt sub-layers were 
deposited over approximately 10-15m and constitute the formation of Boxtel. The 
hydrogeological situation is summarized in Table 2-1. 
 
Table 2-1: Site stratigraphy 

Formation 
name 

Age** 
Depth  (m 
bgl)* 

Lithology 
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Boxtel 
Middle Pleistocene to 
Lower Holocene (0.6-
0.01Ma) 

0-10 
Middle coarse sand with 
local interspersed silt 
sub-layers  

Sterksel*** 
Lower to Middle 
Pleistocene (1.0-0.6 
Ma) 

10-40 
Fluvial coarse sand with 
one main interspersed 
clay sub-layers 

Waalre**** 
Lower Pleistocene (1.8-
1.0 Ma) 

40-80 Fluvial clay 

* bgl = below ground level, with ground level at about 2.5mNAP 
(NAP is the Amsterdam Ordnance Datum)    

** 1Ma=one million years  
***  Formation of the drinking water wells 
****  Groundwater model hydrological basis 

 

2.3.2 Observed time series 

The well field is composed of seven wells with screens at depths of 25-30 m bgl. 
Heads in monitoring boreholes around the well field and in pumping wells were 
registered with automatic pressure transducers from May 2009 until April 2010 
with a time interval of 5 min. The locations and depths of the monitoring wells are 
given in Figure 2-2 together with the location of the seven pumping wells. Time-
series simulations were performed with a time-step of one hour. The dataset was 
reduced to one measurement per hour by taking the nearest measurement to 
each hour. Calibration points for time series analysis were selected by taking the 
lowest and highest head measured within time intervals of one and a half days. 

Precipitation and potential evaporation series are obtained from stations 
of the Royal Dutch Meteorological Institute, respectively in Giersbergen, 5 km 
from the site, and Eindhoven, 40 km from the site.  

 
Figure 2-2: Locations and depths of monitoring wells and pumping wells 
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2.4 Groundwater flow model 

2.4.1 Schematization of aquifers 

Based on the geological description of the site, it is expected that some 
monitoring wells react as semi-confined, and some react as phreatic. The 
groundwater model has to account for these two responses, which means that at 
least a two-layer model is needed. Although the Sterksel clay layer 20m bgl is 
expected to cause most of the resistance to vertical flow, its extent is uncertain. In 
addition, more shallow silt sub-layers, interspersed in the top formation of Boxtel, 
can locally contribute to the resistance to vertical flow. It follows from these 
considerations that the Sterksel clay cannot be considered as the boundary 
between semi-confined and unconfined flow. Instead, a quasi-three dimensional 
two-layer model is used. The two layers are defined by their transmissivity and 
are separated by an abstract aquitard with zero thickness representing the 
vertical flow between the two layers. To limit the number of parameters to 
optimize, the same horizontal conductivity was used for both model layers. The 
pumping wells are screened in the semi-confined layer.  

The head fluctuations in the monitoring wells were analyzed with time 
series analysis as described above. Steady state drawdowns (calibration targets) 
were estimated based on the parameters of the well response function following 
equation (2.12). Monitoring wells were assigned based on their reaction to 
pumping which can be semi-confined or phreatic as determined by time series 
analysis.  

2.4.2 Numerical model 

The well field lies at the transition between an infiltration area to the south 
consisting of the Holocene sand dunes of Loon and Drunen and an artificially 
drained region along the river Maas to the north. Drainage ditches are present 
around the well field within a radius of a few kilometers and constitute a head-
dependent top boundary. The steady form of the calculated cone of depression 
depends on the choice of the boundary conditions. Given the presence of the 
dense network of ditches, it is assumed that leakage from surface water mainly 
determines the steady cone of depression and that no fixed head needs to be 
used at the model boundary. The objective of the model is to simulate 
drawdowns resulting from pumping, so that no recharge from precipitation needs 
to be entered. Furthermore, the drawdown at the head dependent boundaries is 
zero. 

The model extent was determined by considering the drawdown caused 
by steady pumping in a semi-confined aquifer of infinite extent which was first 
derived by de Glee [de Glee, 1930]: 
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0K ( )
2

Q r
s

T 
=  (2.18) 

 

where 2[ ]T  L /T  is the aquifer transmissivity,   [L] is the leakage factor defined 

as ,Tc  and c [T] is the hydraulic resistance of the aquitard.   

Drawdown is negligible at a distance of approximately 3 . At the site, an 

upper limit for the leakage factor is 1500m. Model boundaries are consequently 
chosen at least 5000m from the well field. The hydrogeological situation and the 
corresponding conceptual model are presented in Figure 2-3. 

 
Figure 2-3: a) Hydrogeological setting, and b) conceptual model 
 

The conceptual model was implemented in a finite difference model using 
MODFLOW-2000 [Harbaugh et al., 2000], with Groundwater Vistas [Rumbaugh 
and Rumbaugh, 1996] as interface. The model covers a domain of 10,000x10,000 
m around the well field with a uniform grid spacing of 25m. Ditches were 
imported as general head boundaries based on a shape file, with zero fixed head.  

2.5 Results  

2.5.1 Simulation of groundwater head fluctuations 

Pumping influence is strongest in the closest and deepest monitoring wells M6 
and M7, and becomes weaker with increasing distance from the well field and 
decreasing depth. This is shown in Figure 2-4 for monitoring well M7 for which 
pumping influence is strong, and in Figure 2-5 for monitoring well M11 for which 
pumping influence is weak.  The simulated time series are shown for October 
2009, together with the observed heads and the points used to optimize the 
parameters of the time series models. The decomposed responses to 
precipitation, evaporation, and the seven pumping wells are shown in Figure 2-4 
for monitoring well M7, with the observed and simulated heads in the lower 
panel.  Green bars represent stress intensities (values on right vertical axis) and 
lines represent groundwater heads (values on left vertical axis). The deviation 
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between modeled and observed heads is likely due to the difference between 
precipitation at the well field and the values measured at the weather station 
5km from the site. 

2.5.2 Goodness of fit 

Visually, the time series models result in good fits for all monitoring wells. The 
percentage of explained variance, also referred to as coefficient of determination 
or Nash-Sutcliffe coefficient, is more than 90% for all monitoring wells. The 
statistical aspects of the residuals are analyzed in three ways. First, the normality 
of the distribution of the residuals is evaluated. Applying the Shapiro-Wilk test, 
the hypothesis that the residuals are normally distributed can be rejected with 
more than 95% confidence in all time series models. However, comparison of a 
histogram of the residuals to the closest normal distribution suggests that 
departure from normality is moderate (Figures 2-6a and 2-7a). Second, the 
residuals are plotted against the groundwater head fluctuation for a visual 
assessment of dependence of residual variance on fluctuation amplitude (Figures 
2-6b and 2-7b). The magnitude of the residuals increases only moderately with 
the amplitude of the fluctuations, suggesting that the assumption of 
homoscedasticity is reasonable: the variance of the residuals is approximately the 
same at all measurement points of the time series. Finally, correlation of the 
residuals in time is evaluated using the experimental autocorrelation plots. All 
time series models indicate a moderate degree of autocorrelation (Figures 2-6c 
and 2-7c), but remain mostly within the 5% upper and lower confidence bands of 
a time independent random process. 

2.5.3 Time series parameter uncertainty 

The confidence intervals of the time series model parameters are computed 
following standard regression theory, as given in the methodology section, even 
though the assumptions of normality, homoscedasticity and independence of the 
residuals are only moderately satisfied. An alternative and possibly better method 
to estimate parameter variance and confidence intervals is discussed later and 
leads to comparable results. 

For all time series models, the coefficient of correlation between 
parameters of the pumping response and parameters of the responses to 
precipitation and evaporation, and the drainage base were smaller than 0.5, 
indicating the absence of correlation between the parameters of the response to 
pumping and other time series model parameters. Consequently, uncertainty and 
correlation of the parameters of the response to precipitation and evaporation 
and the drainage base do not have to be taken into account to estimate pumping 
drawdowns. Correlation coefficients for the parameters of the well response 
function exceed 0.9, and confidence intervals are large for parameters of all time 
series models with the exception of the two closest and deepest wells M6 and 
M7.  Pumping response parameters, associated 95% confidence intervals and 
correlation coefficients are given in Table 2-2 for monitoring wells M7, M3 and 
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M11, representing monitoring wells with strong, moderate and weak responses to 
pumping, respectively. An explanation for the inaccurate parameter estimation in 
most pumping response functions is the relatively small effect of pumping in most 

monitoring wells (see, e.g., Figure 2-5), which does not allow accurate 
determination of the shape of the response function. However, the confidence 
intervals of estimated steady drawdowns, computed with equation (2.12), are 
reasonable as shown in the next section. 
Figure 2-4:

 
Decomposition of groundwater heads for monitoring well M7 in October 2009. 

Green bars represent stress intensities (discharge; values on right vertical axis) and lines 

represent groundwater heads (values on left vertical axis). ‘ref’ means relative to NAP 
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Figure 2-5: Observed and simulated groundwater heads for monitoring well M11 in 

October 2009 

 

Figure 2-6: a) Residuals distribution, b) residuals versus deviation from mean groundwater 
head, and c) experimental residual autocorrelation, for time-series model M7 
 

Figure 2-7: a) Residuals distribution, b) residuals versus deviation from mean groundwater 
level and c) experimental residuals autocorrelation, for time-series model M11 
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Table 2-2: Optimal pumping response parameters with corresponding 95% confidence 
interval and correlation coefficients of the log-transformed parameters for monitoring 
wells M7, M3 and M11 

monitoring 
well  

  
 


 

correl. 

/ 
 

correl. 

/ 
 

correl. 

/ 
 

M7 
3.6e-5 

[3.2e-5, 4.1e-5] 
2.1e-3 

[1.9e-3, 2.4e-3] 
6.4 

[6.2, 8.9] 
0.86 0.52 0.03 

M3 
5.6e-5 

[3.2e-5, 9.9e-5] 
1.9e-3 

[1.4e-3, 2.4e-3] 
3.7 

[2.8, 4.9] 
0.99 0.93 0.89 

M11 
3.2e-5 

[3.2e-6, 3.1e-4] 
2.1e-3 

[8.4e-4, 5.4e-3] 
2.3 

[9.1e-1, 5.9] 
>0.99 0.98 0.98 

 

2.5.4 Virtual steady pumping tests 

As stated in the methodology section, equation (2.12) may be used to compute 
the steady drawdown of any monitoring well. This constitutes, in essence, a 
virtual pumping test. Applying this idea, the drawdowns are calculated for seven 
virtual pumping tests. For each test, 100m3/h is pumped from one of the seven 
wells. The resulting drawdowns are computed with (2.12) at each monitoring 
well. Confidence intervals are calculated by a Monte-Carlo procedure as explained 
in the methodology section. The lower bound of the confidence interval is 
strongest impacted by the uncertainty in response parameters.  

Drawdowns at monitoring wells are plotted versus the distance from the 
pumping well (e.g., Figure 2.8). Examination of these plots reveals that the largest 
drawdowns are found in monitoring wells M3, M4, M6 and M7. For these four 
monitoring wells, the drawdown curves are typical for semi-confined aquifers, 
while all other monitoring wells exhibit a smaller steady drawdown suggesting 
phreatic response. The formula of the well function of de Glee for steady 
drawdown in a semi-confined aquifer is fitted to the computed drawdowns in 
monitoring wells M3, M4, M6 and M7; the plot of computed drawdowns versus 
distance between monitoring well and pumping well 6 is given in Figure 2.8. 
Square markers are used for the apparently semi-confined monitoring wells M3, 
M4, M6 and M7 whereas circles are used for other monitoring wells. The 
drawdown in well screen M5 is too small to identify it as semi-confined or 
phreatic, but it is considered phreatic as its depth is only 1.9 m. The dotted line is 
the best fit of the formula of de Glee to semi-confined monitoring wells. The 
transmissivity and vertical resistance from the best fit of the well function of de 
Glee are given for each virtual pumping test in Table 2-3. 
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Figure 2-8: Estimated drawdown versus distance to pumping well with 95% confidence 

intervals for virtual pumping test from pumping well 6. Square markers are the semi-

confined monitoring wells M3, M4, M6 and M7 and circles are the other monitoring wells. 

The dotted line is the de Glee best-fit through monitoring wells M3, M4, M6 and M7 

Figure 2-9: Drawdown versus distance to pumping well with 95% confidence intervals for 

monitoring wells M3, M4, M6 and M7 for all virtual pumping tests; dotted line is best-fit of 

de Glee 

The seven pumping wells result in different aquifer parameters but all 
confidence intervals overlap over a range of [1610, 2880] for the transmissivity, 
and over a range of [66,250] for the hydraulic resistance. The differences in 
parameter values between the seven virtual pumping tests can be explained by 
the different relative position of the monitoring wells with respect to the pumping 
well which constrains the interpretation of the form of the cone of depression. 
For example, in the case of virtual pumping tests 2, 3 and 4, which exhibit the 
highest parameter uncertainty, the distance between the monitoring wells and 



Chapter 2  21 
 

__________________________________________________________________________ 

the pumping well range from 200m to 500m, while in the four other cases, the 
distances range from 150 to more than 600m. 

 
Table 2-3: optimal transmissivity and vertical resistance of the fit of the well function of de 
Glee to the assumed semi-confined monitoring wells M3, M4, M6 and M7; 95% confidence 
interval given between square brackets 

Pumped well T  (m2/day) c  (days) 

Well 1 2070 [1370,3130] 128 [60,270] 

Well 2 2440 [1230,4820] 167 [57,4940] 

Well 3 3980 [1390,11390] 401 [30,5170] 

Well 4 3130 [1440,6810] 252 [51,1240] 

Well 5 2450 [1470,4090] 167 [60,460] 

Well 6 2040 [1450,2880] 123 [60,250] 

Well 7 2230 [1610,3080] 145 [66,316] 

 
In Figure 2-9, a plot is shown of the drawdown versus distance to the 

pumping well for all semi-confined monitoring wells as determined by the seven 
virtual pumping tests. Again, the dotted line gives the best fit by the well function 
of de Glee. The seven points on the right of the figure are all above the fitted line 
of de Glee. These points correspond to monitoring well M3 for which the 
schematization of de Glee appears more approximate than for monitoring wells 
M4, M6 and M7.  

The transmissivity and vertical resistance corresponding to the fit shown 
in Figure 2-9 are T =2260 m2/d and c =148 d. The 95% confidence intervals are 

[1916, 2667] and [109, 201], respectively, both overlapping the intervals found by 
fitting the drawdowns of the four semi-confined monitoring wells for each virtual 
pumping test separately (Table 2-3). 

2.5.5 Groundwater model calibration 

The drawdowns computed in the virtual pumping test from pumping well 6 are 
used as calibration targets for the numerical groundwater model. The drawdowns 
for monitoring wells 3, 4, 6 and 7 are assigned to the semi-confined model layer, 
while the drawdowns for the other monitoring wells are assigned to the phreatic 
layer. The discharge of well 6 is set to 100 m3/h and all other wells are inactive. 

Three parameters are optimized: the horizontal hydraulic conductivity hK  of 

layers 1 and 2, the vertical hydraulic conductivity vK of layers 1 and 2, and the 

conductance C of the bottom of the ditches. The horizontal conductivity is the 

same for both layers based on available hydrogeological data. The transmissivity 
of layer 2 is approximated as three times as high as the transmissivity of layer 1, 

which is entered in the model by setting the thicknesses 1H  and 2H of layers 1 and 

2 to 10m and 30m, respectively. In the presentation of the calibrated parameters,
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hK  is expressed as transmissivity of layer 2, 2hT K H= . The vertical hydraulic 

conductivity is expressed as resistance between the layers 1 2( ) (2 )vc H H K= + .  

Parameter estimation was performed using MODFLOW-2000 [Harbaugh 
et al., 2000]. Drawdowns calculated for the phreatic and semi-confined layers 
with the calibrated groundwater model are shown in Figure 2-10. Each calibration 
point is shown together with the monitoring well depth and the residual. The 
residual is the target (drawdown estimated with time series analysis) minus the 
simulated drawdown.  

 
Figure 2-10: Steady drawdown calculated with the calibrated groundwater model when 
pumping 100m3/h from pumping well P6 

 
A plot of the drawdowns calculated with the groundwater model versus the 
calibration targets derived from time series analysis, with their confidence 
intervals, is shown in Figure 2-11.  
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Figure 2-11: Drawdown (in meters) calculated with the groundwater model versus 
drawdown derived from time series analysis with their respective 95% confidence interval 

 
The root mean square error of the calibrated model is 0.017m, while the 

maximum drawdown in the model is 0.84m. The calibrated model parameters are 
(with the 95% confidence interval given in brackets): 

- Transmissivity of semi-confined layer T : 2120 m2/day [1570-2870] 
- Vertical resistance c : 130 days [70-260]  

- Bottom conductance of ditches C : 195 m2/day [60-620] 

The correlation between the groundwater model parameters is given in Table 2-4. 
 
Table 2-4: Correlation coefficient of groundwater flow model parameters 

 T  c  C  

T  1 0.80 0.77 

c   1 0.54 

C    1 

 
The calibrated transmissivity of layer 2 and vertical resistance are in good 
agreement with the values found with the well function of de Glee.  
 

2.6 Discussion 

2.6.1 Groundwater model transmissivity values 

In the calibration of the groundwater model, the same horizontal and vertical 
hydraulic conductivity is used for the two model layers, while the thicknesses of 
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the layers are fixed to approximate values. Fixing layer thicknesses while 
calibrating hydraulic conductivities is equivalent to calibrating transmissivities and 
vertical resistance. Calibration of the horizontal conductivities for the two layers 
separately resulted in over-parameterization: the hydraulic conductivity of the 
upper layer was highly correlated with the bottom conductance of the ditches. 
The horizontal conductivity of the lower layer has little correlation with other 
parameters. The horizontal conductivity of the top layer was set equal to the 
horizontal conductivity of the bottom layer, which means, for this case, that the 
transmissivity of the top layer is one third the transmissivity of the bottom layer. 

2.6.2 Hydrogeological insights 

Time series analysis of the observed heads combined with the use of the steady 
well function for semi-confined aquifers provides qualitative insight into the 
hydrogeological system. 
It was shown that monitoring wells M3 and M4, at depths of 13.0 and 7.6 m bgl, 
respectively, have a semi-confined response. This indicates that the clay layer of 
Sterksel at a depth of about 20m bgl is not a semi-confining layer for the whole 
model area as first expected. The silty sub-layers interspersed in the formation of 
Boxtel appear to play a semi-confining role locally. The fact that monitoring well 
M4, at a depth of 7.6 m bgl, has a semi-confined response while monitoring well 
M2, at a depth of 9m bgl, does not, highlights the spatial variability of these silty 
sub-layers.  
 

2.6.3 Validity of the confidence intervals 

The efficient modified Gauss-Newton algorithm used to minimize the sum of the 
squares of the residuals may not result in accurate confidence intervals of the 
estimated parameters. The calculated confidence intervals are reasonable when 
the first-order approximation of the time series model is valid [Vrugt and Bouten, 
2002] and when the residuals are uncorrelated, homoscedastic and Gaussian 
distributed [Schoups and Vrugt, 2010]. As illustrated in Figures 5 and 6, the latter 
assumptions are moderately satisfied.  

More robust confidence intervals can be obtained with a Monte Carlo 
Markov Chain (MCMC) optimization algorithm [Vrugt and Bouten, 2002] but at 
significant computational costs [Keating et al., 2010], as the model needs to be 
run tens of thousand of times to reach stationary Markov chains. As a test, the 
optimal parameters and their covariance obtained with the Gauss-Newton 
algorithm for monitoring well M7 are compared to those found with SCEM-UA 
(Shuffled Complex Evolution Metropolis-University of Arizona) , a MCMC 
algorithm [Vrugt et al., 2003]. SCEM-UA does not require linearization of the 
model and explores the whole parameter space avoiding confinement in local 
minima. The optimal model parameters and associated covariance found by the 
modified Gauss Newton method and SCEM-UA were in good agreement. 
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2.6.4 Deriving aquifer parameters directly from the pumping response 
function 

In the presented method, groundwater model parameters are derived from time 
series models in an indirect way. Time series models provide estimations of 
steady drawdowns that are used as calibration targets for the groundwater 
model. Alternatively, aquifer parameters can be derived directly from the 
pumping response function of the time series model, in a way similar to 
interpretation of pumping tests. The step response (2.9) can be replaced by the 
Hantush well function [Hantush and Jacob, 1955]:  
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This is achieved by replacing parameters  ,   and   by the following 

combination of aquifer parameters T , c  and S : 
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where S  represents aquifer storativity. 

Time series analysis was repeated using the Hantush well function as 
pumping response function and the optimal parameters are given in Table 2-5. 
The transmissivity and resistance found for monitoring wells M6 and M7 are in 
good agreement with the values found with the groundwater model. These two 
monitoring wells can adequately be represented by the conceptual model of 
Hantush and exhibit the most pronounced response to pumping. Parameters of 
the two other semi-confined monitoring wells, M3 and M4, are estimated with 
more uncertainty, but the calibrated value of the transmissivity lies within the 
confidence intervals of the transmissivities of monitoring wells M3 and M4 
presented in Table 2-5.  

The parameters found for the phreatic monitoring wells, with the 
exception of monitoring well M10, have larger confidence intervals. These 
monitoring wells are not in the pumped aquifer so the conceptual model of 
Hantush does not apply. In addition, pumping influences are damped as shown in 
Figure 2-5 for monitoring well M11. These shapes can be approximated by many 
pumping response functions and many combinations of well function parameters, 
resulting in high parameter uncertainty. 
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Table 2-5: Hantush parameters obtained from response functions with corresponding 95% 
confidence interval 

Piezometer 
name 

T (m2/day) c (day) S (-) 

M1 2480 [67.7, 89500] 52.9 [15.3, 183] 8.80e-3 [7.46e-4, 1.11e-1] 

M2 3130 [595, 15000] 105 [93.1, 119] 2.25e-3 [8.93e-4, 5.90e-3] 

M3 1400 [820, 2420] 202 [186, 220] 1.33e-3 [9.24e-4, 1.89e-3] 

M4 2800 [1560, 5020] 148 [101, 218] 1.94e-3 [1.54e-3, 2.48e-3] 

M5 742 [7.10e-4, 9.27e8] 262 [3.96e-2, 2.32e6] 7.73e-4 [8.54e-9, 5.37e1] 

M6 2000 [1790,2250] 144 [116, 180] 1.10e-3 [8.15e-4, 1.47e-3] 

M7 2190 [1960, 2450] 99.3 [85.3, 116] 1.35e-3 [1.03e-3, 1.78e-3] 

M8 4050 [2370, 6840] 13.5 [11.0, 16.7] 3.10e-2 [2.01e-2, 4.88e-2] 

M9 4750 [104, 2.24e5] 12.4 [5.66, 27.2] 3.46e-2 [3.36e-3, 3.63e-1] 

M10 2650 [1680, 4190] 54.8 [50.6, 59.4] 8.90e-3 [6.63e-3, 1.20e-2] 

M11 2520 [274, 24500] 87.3 [57.1, 135] 4.91e-3 [1.30e-3, 1.92e-2] 

 
It is noted that the distinction between semi-confined and phreatic 

monitoring wells is made by fitting the steady well function of de Glee to the 
steady drawdowns estimated from time series analysis. Estimation of aquifer 
parameters directly from the well function of Hantush is only possible for semi-
confined monitoring wells, which are not known a priori. Aquifer parameters for 
filter M10 also have acceptable confidence intervals but are definitely not 
screened in the semi-confined layer. The parameters of the Hantush pumping 
response function cannot be used to distinguish semi-confined from phreatic 
monitoring wells. 

More generally, deriving groundwater model parameters directly from 
physically based pumping response functions requires that the hydrogeological 
setting can be satisfactorily described by the aquifer schematization implicit in the 
pumping response function. As pointed out by Harp and Vesselinov (2011), 
aquifer parameters derived directly from a well function provide at best indicative 
values for the aquifer parameters. The advantage of the method presented in this 
study is that it does not assume a priori a certain hydrogeological setting. On the 
contrary, it can increase hydrogeological insight and may be used to develop a 
conceptual model of the aquifer system. 
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2.6.5  Estimation of long term stationary drawdowns 

A well known issue with pumping tests lasting no more than a few days is the 
underestimation of drawdowns as a result of the delayed response of the water 
table [Neuman, 1975]. Although first described for unconfined aquifers, the 
delayed response of the water table can also be observed for semi-confined 
aquifers [Hemker, 1999; Narasimhan, 1999]. As the response to pumping in the 
presented case study was determined over a few hours with a maximum of half a 
day, delayed water table response can result in a possible bias in the estimated 
drawdowns, whether in the semi-confined or in the phreatic layer. How this 
relates to longer pumping tests is a subject for future investigations.

 

2.7 Conclusion 

In this study, a method was presented to use time series analysis to develop a 
conceptual model of the aquifer system and to generate calibration targets for a 
steady groundwater model. Time series analysis of heads measured in the vicinity 
of a well field were used to estimate the response to pumping, which was used to 
classify the monitoring wells as semi-confined or phreatic. A two-layer 
groundwater model was calibrated, satisfactorily reproducing the drawdowns 
derived from time series analysis.  

The presented method is a way to derive aquifer parameters indirectly by 
estimating steady pumping drawdowns from time series analysis and use those as 
calibration targets in a groundwater model. Alternatively, direct derivation of 
aquifer parameters from the Hantush well function, when used as a response 
function for time series analysis, was successful for only two monitoring wells out 
of eleven. A necessary condition for deriving aquifer parameters directly from an 
analytical expression is that the conceptual groundwater model implicit in the 
analytical well function is an adequate description of the real hydrogeological 
situation. Further research is needed to develop a method that incorporates the 
delayed response of the water table in time series analysis. 

In this study, it is shown that time series analysis can lead to qualitative and 
quantitative insights regarding the local hydrogeological system, possibly offering 
complementary information to the available bore logs. In the case of groundwater 
head fluctuations influenced by pumping wells, the method presented here allows 
for the systematic use of data collected around a well field to estimate 
drawdowns that can be used to calibrate a steady groundwater model. It 
constitutes, in essence, a virtual steady pumping test. Model parameters are 
obtained from the calibration of a groundwater model on drawdowns estimated 
by time series analysis. The use of steady drawdowns as calibration targets 
drastically simplifies the necessary input data and boundary conditions of the 
groundwater model. Pumping is the only stress that needs to be entered. 
Although precipitation and evaporation time series are needed for time series 
analysis, no recharge needs to be entered in the groundwater model, which 
eliminates an important source of uncertainty. Head values of head dependent 
boundaries are set to zero thereby eliminating another source of uncertainty.  
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2.8 Appendix: derivation of the well step response 

 
The well function of Hantush is defined as: 
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where T , c  and S  represent respectively aquifer transmissivity [L2/T], hydraulic 

resistance of the aquitard [T] and aquifer storativity [-]. 
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the derivative of which is 
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framework for the flood-wave method to estimate groundwater model 
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Abstract 

The flood wave method is implemented within the framework of time series 
analysis to estimate aquifer parameters for use in a groundwater model. The 
resulting extended flood wave method is applicable to situations where 
groundwater fluctuations are affected significantly by time varying precipitation 
and evaporation. Response functions for time series analysis are generated with 
an analytic groundwater model describing stream-aquifer interaction. Analytical 
response functions play the same role as the well function in a pumping test, 
which is to translate observed head variations into groundwater model 
parameters by means of a parsimonious model equation. An important difference 
as compared to the traditional flood wave method and pumping tests is that 
aquifer parameters are inferred from the combined effects of precipitation, 
evaporation, and stream stage fluctuations. Naturally occurring fluctuations are 
separated in contributions from different stresses. The proposed method is 
illustrated with data collected near a low-land river in the Netherlands. Special 
emphasis is put on the interpretation of the stream bed resistance. The resistance 
of the stream bed is the result of stream line contraction instead of a semi-
pervious stream bed, which is concluded through comparison with the head loss 
calculated with an analytical two-dimensional cross-section model. 
___________________________________________________________________ 
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3.1 Introduction 

The development of methods to estimate aquifer parameters from stream-
aquifer interaction dates back to the 1960s and the early application of computers 
in hydrology [Cooper and Rorabaugh, 1963; Pinder et al., 1969; Venetis, 1970]. 
The approach proposed at that time, referred to as the flood wave method, is 
similar to a pumping test, as the groundwater head in an aquifer is perturbed by a 
single stress, in this case a flood wave in a stream adjacent to the aquifer. The 
aquifer diffusivity is obtained by fitting a simple equation for stream-aquifer 
interaction to the observed heads. This equation fulfills the same function as the 
well functions of pumping tests. Hall and Moench [1972] refined the method by 
using convolution integrals to relate stream stage fluctuations and head 
fluctuations. Later, Moench and Barlow [2000] extended the method by adding 
equations for a set of different stream-aquifer configurations. Alternatively, 
groundwater head response to a time series of stream stage fluctuations can be 
obtained analytically by replacing the time series of observed stream stage by a 
series of basis splines [Knight and Rassam, 2007; Rassam et al., 2008]. 

A limitation of the flood wave method is that it is applicable only to 
situations where head fluctuations can be clearly related to river stage 
fluctuations [Ha et al., 2007]. In many cases, however, this is not possible as 
fluctuations due to other stresses, like recharge and evaporation, interfere with 
fluctuations due to stream stages variations. To solve this issue, the influence of 
each stress needs to be identified separately. This is where time series analysis 
can improve the flood wave method. 

The objective of this study is to embed the flood wave method into a 
time series analysis framework in order to derive aquifer parameters for use in 
distributed groundwater models. The framework is the method of predefined 
response functions [Von Asmuth et al., 2008], in which a specific response 
function (also referred to as a transfer function) is  chosen for each stress. Each 
function is able to simulate the head response due to an impulse of a specific 
stress. Convolution of each response function with the corresponding stress time 
series results in the separate fluctuations caused by each stress, where it is 
assumed that the system’s response is linear. The method of pre-defined 
response functions has recently been extended to simulate non-linear reactions 
of the phreatic water table in Australia [Peterson and Western, 2014; Shapoori et 
al., 2015a]. An evaluation of the method using synthetic data was presented by 
Shapoori et al. [2015c]. Another extension of the method concerns the estimation 
of aquifer parameters from time series analysis in the vicinity of well fields 
[Obergfell et al., 2013; Shapoori et al., 2015b]. 

Typically, the selected response functions do not depend on physical 
parameters. For example, a scaled gamma distribution function is commonly used 
as the impulse response function for groundwater recharge. The novelty in this 
study is two-fold. First, an analytical groundwater model is used as the predefined 
response function similar to the functions used in the flood wave method. 
Second, the flood wave method is placed in the framework of time series analysis.  
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The resulting approach is an extension of the flood-wave method in the sense 
that it is applicable to situations in which other time-varying stresses than stream 
stage variations have a significant effect on head fluctuations. 

This study is organized as follows. First, the method of time series analysis 
by predefined response functions is reviewed and it is explained how the flood 
wave method can be placed in a time series framework. Next, a description of the 
hydrogeological situation of the field site is given for which response functions are 
developed. The time series model is fitted to data collected near the Dutch 
lowland river ‘Aa’, and aquifer parameters are estimated. These parameters are 
then entered into a numerical distributed groundwater model to evaluate their 
adequacy as parameters estimates. The physical significance of the parameter 
values is discussed, with a special emphasis on the interpretation of the resistance 
of the stream bed. 

3.2 Review of time series analysis with pre-defined response 
functions  

3.2.1 Response functions 

In this study, the flood wave method is placed in a time series analysis framework. 
Time series analysis is performed with the method of  predefined response 
functions [Von Asmuth et al., 2002]. Transfer functions, a term widely used in 
system theory and time series analysis, can be considered as synonymous to 
response functions. Similar to linear systems theory [Hespanha, 2009], output 
signals are obtained by convolution of response functions with input signals. 
Response functions are mathematical expressions relating input and output 
signals [Box and Jenkins, 1969]. In this study, groundwater systems are 
approximated as linear in the sense that output signals are proportional to input 
signals. Hydraulic stresses like precipitation, evaporation, river stage variations, 
and pumping are the input signals and head fluctuations form the output signal. 
Conditions for when the approximation of linearity is reasonable are reviewed in 
Barlow et al. [2000]. 

A time series of head fluctuations ( )t  at a specific point in space can be 

obtained by convolving a stress time series ( )p t  with the corresponding impulse 

response function ( )t : 

 

    = −
0

( ) ( ) ( )
t

t p t d     (3.1) 

 
where t  is time. In this study, ( )t is used for head fluctuations caused by one 

specific stress while ( )h t is used to refer to the head fluctuations caused by the 

superposition of all stresses. The dimension of ( )t is determined by the 

dimension of the stress so that the product ( ) (t )p d   −  has the dimension 
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length, like heads (in contrast to linear system theory, where transfer functions 
are dimensionless [Hespanha, 2009]). Note that the dependence of the response 
function on spatial coordinates is omitted in this notation. The response function 
can also be interpreted as the weighting function in a moving average process 
[Olsthoorn, 2008]. As a comparison, in runoff hydrology, the familiar unit 
hydrograph is the response function relating precipitation (the input signal) to 
stream discharge (the output signal).  

The response function of precipitation represents the passage through 
the unsaturated zone, followed by a recession curve describing the subsurface 
drainage of the infiltrated water [e.g.,Besbes and de Marsily, 1984]. A first 
approximation for the response function of evaporation is the response function 
of precipitation multiplied by a negative scale factor. Alternatively, evaporation 
can be attributed its own response function describing, for example, how the root 
zone reacts to a drought period [Peterson and Western, 2014]. The response 
functions for river stage variations and pumping represent the propagation of the 
head change from the river or the pumping well to a point in the aquifer.  

 

3.2.2 Discrete inputs and continuous transfer functions 

In this section, it is described how time series of groundwater heads are modeled 
given discrete time series of stresses and continuous transfer functions. The unit 
step function ( )s t is obtained from the impulse response function ( )t as 

 

  = −
0

( ) ( )
t

s t t d   (3.2) 

 

The step function has the dimension of length per dimension of stress. 
The function   
 

  = − −( , ) ( ) ( )t t s t s t t  (3.3) 

 

is called the block response and represents the response to a unit stress applied 
from 0t =  to t t=  . In this study, the block function is used as the response 

function of a given stress. Time is discretized in stress periods, where it  is the 

length of stress period i  . Stress ip  is constant over stress period i   from it t=  

to i it t t= +  . Since the system is approximated as linear, the head at time 
jt

can be obtained by summing the effects at time jt  of all past stress periods: 
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The heads ( )h t  in the aquifer are obtained as the following sum: 

 

( ) ( ) ( ) ( )j p e sh t d t t t n(t)= + + + +     (3.6) 

 

where ( )h t  is the head, d  is the drainage base which is defined as the head that 

is reached when all stresses are zero, and ( )p t , ( )e t , and ( )s t represent the 

contributions of precipitation, evaporation, and stream stage respectively. ( )n t  

represents the residual time series defined as the difference between observed 
and simulated heads. If the characteristics of the residual time series substantially 
depart from white noise, modeling the residual is recommended [Von Asmuth and 
Bierkens, 2005]. In this study, an exponentially decreasing noise model is adopted. 
 

3.3 Field site 

The field site is located in the area managed by the Dutch Water Board Aa and 
Maas in the southeastern part of the Netherlands (Figure 3-1). Piezometers were 
placed by the Water Board, perpendicular to the river Aa, as part of a larger 
monitoring program of groundwater levels. The Aa is a small, 67 km long low-land 
river, with an average flow of 11 m3/s at its mouth. 

The field site is situated near the eastern edge of the Dutch Central 
Graben. The edge of the graben is a fault zone of low permeability, referred to as 
the Peel border fault zone. The graben is subsiding since the beginning of the 
Oligocene (ca 25 millions years ago) and is filled  with sediments over a thickness 
of approximately 2000 m. Regional bore logs from the Dutch Geological Survey in 
the vicinity of the field site suggest that a clay layer is present at a depth of 
approximately 30 m bgl. This clay layer belongs to the fluvial formation of Waalre, 
deposited by the Rhine about 2 millions years ago. The clay layer is approximately 
1 m thick and can be considered as the impermeable base of the hydrogeological 
system. The system above the clay layer consists of a main aquifer separated from 
a thin phreatic top layer by an ensemble of fine silty layers. The stratigraphy of 
the site is given in Table 3-1. It is noted that the course of the river Aa has been 
modified in the twentieth century, which explains the absence of alluvial strata 
corresponding to the river Aa itself. 
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Figure 3-1: Location of the field site at different scales: in the Netherlands, in respect to 
local streams, in respect to the river Aa 

Table 3-1: site stratigraphy 

Formation 
name 

Indicative age Indicative top- 
bottom depth  
(m bgl)* 

Lithology 

Boxtel 
Middle Pleistocene-Lower 
Holocene (0.1-0.01 Ma) 

0-5 
Fine sand with 
interspersed silt sub-
layers  

Beegden 
Middle Pleistocene (0.6-
0.1 Ma) 

5-15 
Fluvial (Meuse) medium 
coarse sand 

Sterksel 
Lower-Middle Pleistocene 
(0.8-0.6 Ma) 

15-20 
Fluvial (Rhine) coarse 
sand 

Stramproy 
Lower Pleistocene (2.2-
0.8 Ma) 

20-30 
Eolian and fluvial (Rhine) 
sands with interspersed 
peat /silt sublayers 

Waalre** 
Upper Pliocene-lower 
Pleistocene (3.6-2.2 Ma) 

30-32 Fluvial (Rhine) clay 

* bgl = below ground level, with ground level at 2.5 m NAP (NAP is the Dutch 
datum, approximately corresponding to mean sea level)    

**  Base of groundwater model 
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Based on head data of the Dutch Geological Survey within 5 kilometers of the field site, the 
groundwater system is a recharge area, drained by the river Aa and its tributary streams. It 
is a rural area, mainly covered by crop fields and meadows, with occasional patches of 
woods.  

A map of the river Aa and the piezometers is shown in Figure 3-1. Heads 
and stream levels were measured with pressure transducers. Piezometers P7 and 
P8 were screened at 4 m bgl and are located at a distance of 25 and 50m from the 
river bank, respectively. Piezometers P11 and P12 were screened at 1.5 m bgl and 
are located at a distance of 25 and 70 m from the river bank, respectively. The 
head regularly dropped below the bottom of piezometer P11.  

The river stage was recorded 300 m upstream of the piezometers. The 
precipitation time series was obtained by interpolating the measurements at 
three weather stations within 15 km from the investigation site. The evaporation 
time series was obtained from a weather station 11 km from the field site. The 
evaporation values correspond to the Makkink reference evaporation, which is 
representative for Dutch meadow land cover under average meteorological 
conditions [Bartholomeus et al., 2014].  The measurements in the piezometers, 
the measured rainfall, evaporation and river stage are used to estimate aquifer 
parameters to be used in a numerical model of the area.  

 

3.4 Method  

3.4.1 Response function from a one-dimensional model schematization 

For application of the flood wave method in a time series framework, a vertical 
cross-section is considered along the dashed line in Figure 3-1. The cross-section 
is shown in Figure 3-2. 

The conceptual model consists of a thin, phreatic top layer consisting of 
relatively low permeable material underlain by a semi-pervious layer (aquitard), 
and a semi-confined layer. The following approximations are adopted. 

• The stream fully penetrates the aquifer. Head loss due to stream line 
contraction or due to a semi-pervious stream bed are lumped in the 
specific resistance of the stream bed (resistance per unit length of 
stream bed) w  [TL-1] defined as: 

 

( 0) s
s

h x h
Q

w

= −
=     (3.7) 

 

where sQ  [L2T-1] is the flux from the aquifer to the stream per unit 

length of stream, ( 0)h x =  [L] is the head at the interface between the 

semi-pervious stream bank and the aquifer, and sh [L] is the stream 

stage. 
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• The boundary opposite to the river is approximated by a zero constant 

head boundary, at a distance 2L   from the stream. For the case of 
precipitation and evaporation, this is equivalent to a water divide at a 
distance L  from the stream.  

• The piezometers are approximately positioned along a flow line.  

• Precipitation surplus reaches the groundwater table instantaneously (the 
depth to the water table is about 1m). 

• The base of the system is impermeable. 

• The storage of the semi-confined layer is negligible with respect to the 
phreatic storage of the phreatic layer. 

• The semi-confined layer has a uniform transmissivity. 

• Flow in the top layer is vertical. 

• The resistance to vertical flow is neglected in the semi-confined layer 
(Dupuit approximation). 

• The river stage variations result in negligible changes in the distance 
between the river bank and the piezometers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-2: Conceptual model of the vertical cross-section for response to 
recharge. 
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The heads in the two layers satisfy the following set of two linked differential 
equations:  
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where 

1( )h t and 
2 ( )h t  are the heads in the phreatic and semi-confined layers, 

respectively, x  is the distance from the stream bank, R  [LT-1] is the areal 

recharge, T  [L2T-1] is the transmissivity of the semi-confined layer, S [-] is the 

storage coefficient of the phreatic layer, c  [T] is the resistance to vertical flow of 

the aquitard.  For the step response to recharge, the boundary conditions are: 
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where the stream stage

sh [L] is 0 m. For the step response to stream stage 

fluctuations, the boundary conditions are: 
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with 1sh =  for 0t  . For both step responses, the initial conditions are: 

 

1 2( , 0) ( , 0) 0h x t h x t= = = =  (3.11) 

 
Solutions for the two step responses are obtained with a Laplace Transformation. 
The Laplace Transformation of the differential equation and associated boundary 
conditions are given in appendix 1. The solution in the Laplace domain for the 
step response to precipitation is 
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where 

1h  and
2h are the Laplace transformed step responses in layers 1 and 2,  p 

is the Laplace parameter, and   is  
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The responses to precipitation and evaporation are assumed to be equal in 
magnitude but opposite in sign. 

For the step response to the river stage, 
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These solutions can be verified by substituting them in the corresponding 
differential equations and boundary conditions. Back transformation of the step 
functions from the Laplace domain to the time domain is performed numerically 
by the method of Stehfest [Stehfest, 1970].  
 

3.4.2 Time series modeling  

The extended flood wave method, now in a time series framework, is run by 
calculating the groundwater heads at each time step and at each piezometer 
using equation (3.6). The parameters of the time series model are estimated by a 
modified Gauss-Newton algorithm [Hill, 1998] by maximizing the Nash-Sutcliff 

coefficient E  [Nash and Sutcliffe, 1970] defined as: 
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where  

,o ih  is the observed head at time i  , 
,m ih is the modeled head at time i  , 

and 
o  is the average observed head.  

It is recalled that the parameters of the extended flood wave method are 
the transmissivity of the semi-confined layer T  [L2T-1], the storage coefficient of 
the phreatic layer S  [-], the resistance to vertical flow of the aquitard c  [T], the 

specific resistance of the stream bed w  [TL-1], the distance between the river bank 

and the constant head boundary 2L [L] and the drainage base d [L], and 
parameter   of  the exponentially decreasing noise model. These parameters are 

estimated by maximizing the Nash Sutcliffe coefficient (3.17). The drainage base is 
fixed to the average stream stage over the simulation period. The river stage time 
series was consequently modified by taking the stage relative to the average stage 
instead of taking the absolute stage value. 

3.5  Analysis and interpretation  

The observed heads and the heads explained by the deterministic part of the time 
series model are presented in Figure3-3. The separate contributions of the three 
stresses are presented in Figure 3-4. The observed heads indicate that the 
average head and the amplitude of the fluctuation increases with the distance 
from the draining stream and is the largest for the phreatic piezometer P12 
located 70 m from the stream bank (Figure 3-1). This is satisfactorily reproduced 
by the time series model. The peaks observed for P12 caused by precipitation 
cannot be simulated by the time series model. For the semi-confined piezometers 
P7 and P8, the influence of the stream stage dominates the fast fluctuations while 
precipitation and evaporation cause slower fluctuations. Within the modeled time 
period (October 2011 - February 2012), evaporation decreases which is reflected 
by the decreasing contribution (in absolute value) of the evaporation component 
for all 3 piezometers. Note also that the contribution of the stream stage to the 
head fluctuations in piezometer P8 is damped compared to piezometer P7 and is 
almost absent in the case of the phreatic piezometer P12. 

The Nash-Sutcliffe coefficients are given for each piezometer in Table 3-
2. The second column gives the coefficients including the noise model. The third 
column gives the coefficients for the deterministic part only. 
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Table 3-2 Nash-Sutcliffe coefficient of the modeled fluctuations using the extended flood 
wave method 

Piezometer 
Nash-Sutcliffe  

with noise model 
Nash-Sutcliffe 
deterministic 

P7 0.96 0.89 

P8 0.95 0.82 

P12 0.90 0.76 

 

The optimal parameters are given below. The estimates of the 95% 
confidence intervals are given in brackets. The estimated correlation coefficients 
are given in Table 3-3. 

- Transmissivity semi-confined layer T   : 108 m2d-1  [80-147] 
- Resistance to vertical flow of the aquitard c   : 79 d [48-127] 

- Phreatic storage coefficient S  : 0.14  [0.11-0.17] 

- Stream bed specific resistance w  : 0.044 dm-1  [0.031-0.065] 

- Distance L  : 640m [420-986] 
- Exponent of noise model  : 0.15 [0.11,0.19] 

The confidence intervals vary from +/- 21% to +/- 50%, which is similar to 
confidence intervals obtained with pumping tests. The distance   is strongly 
correlated with the noise decay parameter. Note, however, that the two 
parameters are not estimated for use in a distributed numerical groundwater 
model, like the other estimated parameters. 
 
Table 3-3: Correlation coefficients for the parameters of the extended flood wave method 

 T   c   S   w   L      

T   1 -0.20 -0.38 0.22 -0.53 0.80 

c   1 -0.72 -0.52 -0.17 0.10 

S     1 0.35 0.29 -0.43 

w      1 -0.64 0.48 

L       1 -0.92 

        1 
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Figure 3-3: Time series model of the head at piezometers P7, P8, and P12 with 
observed head, observed river stage, and observed precipitation 
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Figure 3-4: Modeled contributions of the different stresses to the fluctuations of the 
groundwater head at piezometers P7, P8, and P12, as inferred from the time series model 
 

Transmissivity 
The value of the transmissivity of the semi-confined layer is lower than a priori 
expected. The layer thickness as described in Table 3-1 is estimated as 25 m, and 
from the bore log descriptions, a hydraulic conductivity of a least 10 m/d is 
expected. An estimated transmissivity of 108 m2/d suggests an aquifer thickness 
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less than 15 m. An explanation for an apparently thinner aquifer is the presence 
of silt and peat layers in the formation of Stramproy, constituting the lower 10 m 
of the semi-confined layer. These semi-pervious layers were assumed to be 
discontinuous with no confining effect, but the results suggest that the formation 
of Stramproy acts as a semi-pervious layer reducing the thickness of the 
investigated semi-confined layer. 

 
Storage coefficient 
The value of the storage coefficient obtained for the phreatic layer is 0.14, which 
is a reasonable value for phreatic layers. It is interesting to mention that Barlow et 
al. [2000] applied the flood wave method to find a specific storage coefficient of 
9.8x10-5  m-1 for a shallow water table aquifer with a thickness of about 20m. The 
explanation given for this apparent elastic storage was that the thick capillary 
fringe confines the aquifer. This does not seem to be the case in the present 
study. An important difference is that the monitoring well in Barlow et al. [2000] 
is much deeper than the monitoring well used in this study. 

 
Specific stream bed resistance 
The response functions lump the head loss due to a semi-pervious stream bed 
and head loss due to the significant vertical flow component in the vicinity of the 
stream; the latter is referred to a stream line contraction. The estimated value of 
the specific stream bed resistance is 0.044 dm-1. This low value suggests that the 
head loss is exclusively the result of stream line contraction. This is supported by 
field observation of the stream bed which did not reveal the presence of a semi-
pervious river bed. This hypothesis is tested by evaluating the magnitude of the 
head loss due to stream line contraction using an analytical, two-dimensional 
cross-sectional model of an aquifer discharging into a stream.   

The two-dimensional cross-section shown in Figure 3-5 represents an 
aquifer fed with areal recharge R , discharging into a shallow stream. The aquifer 
is a finite strip of thickness D  [L], with horizontal and vertical hydraulic 

conductivities xk  and yk , respectively. The bottom and top boundaries are 

impermeable, except along the stream bed. The width of the stream is 2B  [L]. 
The origin of the coordinate system is at the stream-aquifer boundary.  
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Figure 3-5: Two-dimensional groundwater flow of precipitation discharging into a stream  

 

The stream is in direct contact with the aquifer, with no semi-pervious stream 
bed. Aquifer discharge into the stream is assumed to be equally distributed over 
the stream bed.  

The solution is: 
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    (3.19) 
The derivation of this solution is given in appendix 2. 

The two-dimensional head distribution is plotted in Figure 3-6 for an 
isotropic situation with a recharge rate of R =  0.001 md-1 , L =  640m, thickness 

D =  15m, and x yk k= =  6.7md-1. 
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Figure 3-6: Groundwater head (in meter) in a two dimensional cross-section of an aquifer 
discharging into a stream, obtained from equation (18) with a recharge rate of R =  0.001 

md-1 , L =  640m, thickness D =  15m, and x yk k= =  6.7md-1; the contour line h=0 is 

the approximate bottom of the stream. 

The two-dimensional cross-sectional model is used to estimate the 
magnitude of the head loss due to stream line contraction. The one-dimensional 
(Dupuit) solution to the stated problem with boundary condition (3.9) and 0sh = , 

is well known and equals  
 

2
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2 x x

x Lx
x R Lw

k D k D

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= − + +  

 
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Head loss by stream line contraction is accounted for by the specific 

stream bed resistance w  . Different values of w  correspond to different values of 

the vertical anisotropy factor. For example, consider an aquifer of thickness D =  
15m and horizontal permeability xk = 6.7 m.d-1 (transmissivity T = 108 m2.d-1) . 

The head calculated by the one-dimensional and two-dimensional models are 
compared in Figure 3-7. Blue corresponds to the head of the one-dimensional 
model, red corresponds to the head of the isotropic two-dimensional model at a 
depth of half of the layer thickness. The value of w   in the one-dimensional 

model is adjusted so that the one-dimensional and two-dimensional models 
coincide for large values of x , which gives w = 0.04 d.m-1. This value is 

approximately equal to the value obtained by parameter estimation of the time 
series model so that it may be concluded that the specific stream bed resistance 
estimated with the extended flood wave method can be used to represent head 
losses due to stream line contraction.  
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Figure 3-7: Heads for one-dimensional model with w = 0.04 d.m-1 and recharge R = 0.001 

m.d-1 (blue) and two-dimensional model (red) at depth of half of layer thickness. 

 

3.6 Use of the derived parameters in a numerical groundwater 
model  

In this section, the aquifer parameters estimated with the extended flood wave 
method are used in a distributed numerical groundwater flow model to evaluate 
their adequacy as first estimates. This is to be compared with using parameters 
obtained from a pumping test or from the original flood wave method into a 
numerical groundwater model.  

A distributed numerical groundwater model of the field site was built 
using the same schematization and approximations. The numerical model was 
implemented with the finite element code Microfem [Hemker and de Boer, 1997], 
which allows for the refinement of the mesh along the streams which were 
imported from a GIS-shape file. The numerical model consists of a phreatic, low 
permeable top layer overlying a semi-confined layer where the Dupuit 
approximation is adopted.  Horizontal flow in the phreatic layer is made negligible 
by fixing the transmissivity to a small value. Model boundaries are either head-
dependent when corresponding to a stream, or no-flow boundaries when 
approximately corresponding to a water divide.  Head-dependent boundaries are 
attributed a head value of zero assuming that stream fluctuations do not 
influence each other. The modeled area is shown in Figure 3-1. 

The stream bed resistance w  [T] in the numerical model is obtained 

through multiplication of the specific resistance w  [TL-1] obtained with the 

extended flood wave method through multiplication with the half width B of the 
stream with B = 7 m. 
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Parameters of the numerical model that were not estimated with the extended 
flood wave method are: 

- stream bed resistance for streams other than the river Aa: 0.5 d; 
- width of streams other than the river Aa: 2 m; 
- transmissivity of the phreatic layer:  0.1 m2d-1;  
- specific storage coefficient of the semi-confined layer: 10-4 m-1. 

Trying other realistic values for these parameters had only a minor impact on the 
calculated heads. 

Groundwater heads are calculated with Microfem as suggested by Olsthoorn 
[2008] by first evaluating the step responses at the place of the piezometers, after 
which head fluctuations are obtained by convolution of the block response 
functions with their corresponding stress time series. Finally, the simulated 
groundwater heads are obtained by adding the drainage base (which is the mean 
river stage here) as given in (3.6). The fit obtained from the numerical 
groundwater model is satisfying for the semi-confined piezometers, with Nash-
Sutcliff coefficients of 0.87 and 0.80 for P7, P8 respectively. The fit for the 
phreatic piezometer P12 is less good, with a Nash-Sutcliffe coefficient of 0.73, 
similar to the value of 0.76 obtained with the extended flood wave method (Table 
3-2). As with the extended flood wave method, the model failed to reproduce the 
fluctuation peaks in piezometer 12 (Figure 3-8). 

3.7 Discussion and conclusion 

The objective of this study is to derive aquifer parameters for use in groundwater 
models from naturally fluctuating heads observed in the vicinity of a stream. The 
original flood wave method cannot be applied when the effects of stream stage 
variations cannot be distinguished from those of precipitation and evaporation by 
simple inspection of the groundwater head hydrograph. To deal with this 
problem, the flood wave method is implemented in the framework of time series 
analysis to identify the fluctuations associated with each of the stresses (in this 
study precipitation, evaporation, and stream stage variations). The method is 
called the extended flood wave method. Convolution of a stress with its 
corresponding response function provides the effect of that stress on the head. 
From a time series modeling perspective, the method proposed is a variation of 
the method of predefined response functions (Von Asmuth, et al.,2002). The 
response functions of the extended flood wave method are to be compared with 
the well function of a pumping test: they translate observed heads into aquifer 
parameters with a minimum of parameters. An important difference with the 
original flood wave method and pumping tests is that aquifer parameters are 
estimated from the superimposed effects of precipitation, evaporation, and 
stream stage fluctuations. 

The method is illustrated with a case study for an aquifer drained by a low-
land river in the Netherlands. The response functions of the time series model 
represent a cross-section of an aquifer underlying a low permeable phreatic layer, 
discharging into a stream. The model describes the essential features of the 
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hydrogeological situation, while keeping it as simple as possible to restrict the 
number of parameters to optimize. The time series model results in a good fit for 
the semi-confined piezometers, reproduces the slow fluctuations of the phreatic 
top layer, but fails to reproduce the quick reactions in the top layer, probably due 
to non-linear processes which are not taken into account by the model. 

The order of magnitude of the estimated parameters gives qualitative insight 
into the groundwater system considered. The value of the transmissivity, for 
example, suggests a new interpretation of the bore logs. The intercalated silt and 
peat sub layers, revealed by the bore logs at a depth of about 15 m below ground 
level, might practically form the aquifer bottom instead of a deeper clay layer as 
initially assumed. The low value found for the resistance of the stream bed 
suggests the absence of a semi-pervious river bed. Head loss is the result of 
stream line contraction in the vicinity of the river, as confirmed by comparing 
head losses evaluated with an analytical solution for two-dimensional flow in a 
vertical cross section of an aquifer discharging into a stream.  

 As for pumping tests, aquifer parameters that are estimated with the 
extended flood wave method can be used in a numerical distributed groundwater 
flow model as prior estimates. It is essential that the numerical model shares the 
same schematization and assumptions as used in the extended flood wave 
method, similar to what is done with pumping tests. A numerical groundwater 
model, parametrized in this way, results in a pretty good fit, except again for the 
quick reactions in the top layer. 

Some evaluative remarks are made about the methodology proposed in this 
study. First, the time series model was fitted over a relatively short time period 
which did not allow the observations time series to be split into a calibration and 
a validation period. Note that this is similar to pumping tests that are usually 
conducted over a short period of time. A validation period is particularly 
recommended when a time series model is used for predictions.  

Second, the conceptual model needs to be kept as simple as possible while 
incorporating sufficient complexity to match the hydrogeological situation. In an 
early phase of this study, a simpler groundwater model without the phreatic layer 
was used, but no reasonable fit with the observed head was possible. The 
minimum complexity that needs to be incorporated is the additional layer with 
phreatic storage. Third, the extended flood wave method relies on a simplification 
of the reality like any model. The validity of the approximations needs to be 
considered by the practitioner for each new situation. For example in this study, 
the fluctuations of the river had negligible impact on the distance between the 
observation wells and the river bank. This might not be the case for other rivers. 
The parallel should be drawn again with pumping tests requiring the choice of an 
adequate well function. Different contexts require different solutions. Barlow et 
al., 2000 offer a number of solutions that could be used as an alternative. 
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Figure 3-8: Comparison of heads simulated with the time series model and heads 
calculated with the numerical groundwater flow model with the same parameters as the 
time series model 
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3.8 Appendix 1: Laplace transform of the boundary value 
problem leading to the step functions 

Laplace transformation of the set of equations (3.8) with boundary conditions 
(3.9) and (3.10) initial conditions (3.11) yields the following relations: 
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Boundary conditions for recharge:  
 

2

22

d
0,  

d

d
,  0

d

h
x L

x

h s
T x

x w

= =

= =

     (3.22) 

 
Boundary conditions for stream stage variation: 
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where 1h  and 2h  are respectively the Laplace transforms of the head in the 

phreatic and semi-confined aquifer, and p  denotes the Laplace domain variable 

[T-1]. 
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3.9 Appendix 2: Derivation of the equation for the two-
dimensional cross-sectional flow 

In this appendix, the equation for the two-dimensional flow system presented in 
section 3.5 is derived. The corresponding conceptual model was shown in Figure 
3-5. It features a two-dimensional groundwater flow, fed by precipitation and 
discharging into a stream. The origin of the coordinate system in Figure 3-5 is the 
top of the stream bank on top of the flow system. In the derivation of the 
solution, by means of a cosine transformation, the origin of the coordinate system 
needs to be located on the water divide on top of the aquifer, as shown in Figure 
3-9.  

 

Figure 3-9: Two-dimensional groundwater flow of precipitation discharging into a stream 
with water divide as origin of coordinates system (red) 

 

As shown in Figure 3-9, the coordinate X  used in Figure 3-5 is transformed into 
the coordinate Xx L= − . 

The head ( , )x y  satisfies Laplace’s equation: 

2 2

2 2
0x yk k

x y
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+ =
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                    (3.24) 

with boundary conditions 
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Defining the vertical anisotropy factor as: 
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a new parameter n  is defined to condense the notation in the Fourier 

transformation:  
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The Fourier cosine transformation, with period 2L , of the head ( , )x y is: 
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The transformation of the differential equation is: 
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Transformation of the boundary conditions for 0n   gives 
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For  n>0, the solution of the cosine transformed function is  
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which allows to determine all terms of the cosine except for n=0: 
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For n=0, the differential equation (3.29) implies that 0d

dy


is a constant, which in 

turns, from the 4th condition in (3.25), results in  the following implications: 
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This constant can be determined from the 1st condition in (3.25):  
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The Fourier series is now completely defined resulting in the solution: 
 

 

( )
( ) ( )

1

( 0)
( )

( , ) cosh ( ) cos os cosh
sinh

n

n n
n n

n n
n

d
y

x L Bdy
x y D y c D

D a a



=


=

      −
 =  + −            

  

         (3.34) 
 



54   Chapter 3 
__________________________________________________________________________ 

with ( 0) 2( 1) sin
nnn

y n

d R a B
y

dy k B a

  
= = − −  

  
. 

 



Chapter 4  55 
 

__________________________________________________________________________ 

__________________________________________________________________________ 

Adapted from C. Obergfell, M. Bakker, and K. Maas, Estimation of Average Diffuse 
Aquifer Recharge Using Time Series Modeling of Groundwater Heads, Water 
Resources Research, 55(3), 2194-2210, doi: 10.1029/2018WR024235, 2019 

 

Chapter 4 Estimation of average diffuse aquifer 
recharge using time series modeling of groundwater 
heads 
 

 

 

___________________________________________________________________ 

Abstract 
A new method is presented to estimate average diffuse aquifer recharge of water 
table aquifers in temperate climates using time series analysis of water table level 
fluctuations. An accurate estimate of the recharge caused by rainfall requires an 
accurate estimate of the influence of evaporation. In temperate climates, 
evaporation imprints a seasonal component in the water table fluctuations. As 
such, recharge is estimated from time series models fitted to observed heads 
under the additional constraint that the seasonal harmonic of the observed head 
is reproduced as the sum of the transformed seasonal harmonics present in 
precipitation, evaporation, and pumping. An explicit equation is presented, in 
terms of the model parameters, for the damping and phase shift of the response 
to the seasonal harmonic of the stresses. Taking into account the seasonal 
harmonic of the observed heads results in more reliable recharge estimates 
compared to standard time series analysis. The method is limited to systems that 
are sufficiently linear and that remain unaltered over the analysis period. Head 
fluctuations and stresses should contain a seasonal harmonic that can be 
estimated with accurately. Runoff must be negligible or quantifiable. The method 
is applied to measured heads obtained from piezometers situated on and around 
the ice-pushed sand ridge of Salland in the Netherlands and compares well with 
recharge estimates based on the saturated zone chloride mass balance. 
___________________________________________________________________ 
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4.1 Introduction 

Natural groundwater recharge, the replenishment of aquifers from precipitation, 
is one of the major subjects of investigation in hydrology, but still remains a 
difficult component to estimate in the water balance of an area [e.g., Healy, 2012; 
Bakker et al., 2013]. A large number of techniques exist to try to quantify 
groundwater recharge for various time and space scales [Healy and Cook, 2002]; 
each technique requires different input data, from simple head measurements to 
detailed hydrochemistry. Scanlon et al. [2002] review the various techniques and 
propose an iterative approach to recharge estimation, refining the estimates as 
additional data are gathered. A wide variety of approaches is recommended in 
order to increase the confidence in recharge estimates. The topic of this study is 
to add a new approach to estimate average diffuse aquifer recharge over large 
time periods (years to tens of years). It is based on time series analysis of 
measured head variations combined with measured stresses on the aquifer, 
including rainfall, reference evaporation and pumping.  

One approach to estimate recharge from measured head variations and 
rainfall is the water table fluctuation method. In its original form, it is applicable 
to short-term water level rises that occur in response to individual storm events 
[Meinzer, 1923; Healy and Cook, 2002; Healy, 2012], neglecting the slow but 
continuous water table recession that may take place in response to previous 
recharge events. Recent developments aimed at applying the water-table 
fluctuation method over longer time periods, while systematically taking into 
account the effect of aquifer drainage and cumulating the effect of successive rain 
events. This can be achieved using the master recession curve (MRC) method 
[Heppner and Nimmo, 2005; Nimmo et al., 2015], either by quantifying the 
drainage intensity [Crosbie et al., 2005], or by using an analytical groundwater 
model [Cuthbert, 2010]. In all these methods, identification of the drainage 
parameters and the specific yield remain a challenge.  

In groundwater hydrology, time series analysis has been used primarily to 
model and predict groundwater heads. Different methods are employed: transfer 
function noise models of the Box and Jenkin's type [e.g.,  Baggelaar, 1988; 
Gehrels et al., 1994; van Geer and Zuur, 1997], models based on the convolution 
of response functions [e.g., Von Asmuth et al., 2002; Manzione et al., 2012; 
Peterson and Western, 2014], or physically based models  [e.g., Berendrecht et al., 
2006]. A common issue in many of these methods is the correlation between 
model parameters that determine the influence of evaporation and pumping [e.g. 
Shapoori et al., 2015c]. Equally good fits of the observed heads can be obtained 
when, for example, the effects of groundwater pumping are compensated by the 
effects of evaporation, or vice versa [Shapoori et al., 2015c]. This problem of 
equifinality is undesirable, especially when the model parameters are intended to 
be used to quantify physical quantities like groundwater recharge  [e.g., Beven, 
1993].  

The objective of this study is to estimate time-averaged groundwater 
recharge using time series analysis of groundwater heads. A reliable estimate of 
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the recharge requires an accurate identification of the influence of evaporation 
on groundwater head fluctuations. In temperate climates, evaporation, more than 
any other stress, dictates the seasonal behaviour of the water table fluctuation. It 
stands to reason that if two parameter sets of a time series model give a similar 
fit, the evaporation is better estimated by the parameter set that matches the 
seasonal behaviour better. The seasonal behaviour of the water table can be 
characterized by the sinusoidal component with a period of one year, referred to 
here as the seasonal harmonic. The approach presented in this study uses the 
seasonal harmonic as an additional signature that is implemented in the form of a 
model optimization constraint. The inclusion of multiple signatures of the 
hydrological response when calibrating a model is also applied in other parts of 
hydrology [e.g.,  Koutsoyiannis, 2010; Euser et al., 2013; Hrachowitz et al., 2014].  

This study is organized as follows. First, time series analysis by the method of 
predefined response functions is reviewed briefly. Second, equations are derived 
for the seasonal harmonic response caused by rainfall, evaporation, and pumping; 
these equations are used as a constraint when estimating the time series model 
parameters. Third, a case study is presented to illustrate the efficacy of the 
presented approach. In the discussion, recharge estimates obtained with the 
proposed approach are compared to results from standard time series analysis 
where the seasonal harmonic is not used as a constraint, recharge estimates for 
time periods with different mean heads are compared, and the possible effects of 
the uncertainty in the seasonal harmonic are discussed. Finally, the estimated 
long-term recharge is compared with an estimate obtained from the saturated 
zone chloride mass balance method.  

 

4.2 Methods 

4.2.1 Time series analysis with pre-defined response functions  

The method of time series analysis with predefined response functions is 
described in several papers [e.g.,  Von Asmuth et al., 2002; Peterson and Western, 
2014; Obergfell et al., 2016]. It is briefly reviewed here. The head fluctuations 

( )t  due to stress time series q( t )  at a point in space is obtained by convolution 

of q( t )  with the corresponding impulse response function ( )t  : 

 

    = −
0

( ) ( ) ( )
t

t q t d   (4.1) 

 

where t is time. In this study, ( )t  is used for the head fluctuation caused by one 

specific stress, while h( t ) is used for the head fluctuation caused by the 

superposition of all stresses. The dependence of the response function on spatial 
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coordinates is omitted in this notation. ( )t has the shape of the response of the 

groundwater head to an instantaneous stress event of unit strength (for example 

an instantaneous shower of unit height). The dimension of −( )t  is determined 

by the dimension of the stress so that the product   −( ) ( )q t  has the dimension 

length, like heads.  
Stress time series are commonly piecewise continuous (daily rainfall, for 

example) while response functions are continuous, so that relation (4.1) needs to 

be modified as follows. The unit step response function ( )s t  is obtained from the 

impulse response function( )t as 

 

  = −
0

( ) ( )
t

s t t d   (4.2) 

 
The step response function has the dimension of length per dimension of stress. 
From the step response function, the block response function is derived as   
 

  = − −( , ) ( ) ( )t t s t s t t   (4.3) 

 
and represents the response to a unit stress distributed uniformly from 0t =  to 

t t=  . Time is discretized in stress periods, where it  is the length of stress 

period i . Stress iq  is approximated as  uniform over stress period i  from 

i it t t= −  to it t= . The head at time it is obtained by summing the effects at 

time jt  of all past stress periods 

( )1

1

( ) ,
j

j i j i i

i

t q t t t  −

=

= −    (4.4) 

where  

1

j

j i

i

t t
=

=    (4.5) 

 

This is a discrete form of convolution. Alternatively, the series ( )it can be seen 

as a weighted moving average of the series q ,   being the weighting function. 

The modeled heads h( t )  are obtained by adding the contributions of all stresses 

i ( )t  plus a reference level 

i( ) ( )

i

h t t d= +   (4.6) 

where d  is called the drainage base here. 
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The observed heads ( )oh t  are equal to the modeled heads plus a residual ( )r t : 

 

i( ) ( ) ( )o

i

h t t d r t= + +   (4.7) 

 
Autocorrelation in the residuals is removed by modeling them with an 
exponential decay process [Von Asmuth and Bierkens, 2005].  The residual at time 

it is related to the residual at time 1it − as: 

 

( )( )1 1( ) ( )exp ( )i i i i ir t r t t t n t− −= − − +   (4.8) 

 

where  is the residual decay factor and ( )in t represents approximate white 

noise. 
Three types of stresses are considered here to simulate head 

fluctuations: precipitation, evaporation, and pumping. The impulse response 
function considered for these stresses is a scaled gamma distribution: 

 

1

( ) e
( )

n n
ata t

t M
n


−

−=


  (4.9) 

 

where M  is a scaling factor, a  and  n define the shape of the function, and ( )n  

is the gamma function of n . This response function is commonly applied for 

precipitation and evaporation [e.g. von Asmuth et al., 2012]. It is also appropriate 
to simulate the slow response to pumping in a phreatic aquifer when piezometers 
are not in the direct vicinity of the pumping wells. The corresponding step 

response function s( t )  is a scaled incomplete gamma function of the form: 

 

1

0

( ) ( , )
( )

t

n n aM
s t a e d M n at

n

− −= = 
 

    (4.10) 

 

where ( , )n at  is the lower incomplete gamma function of n  and at  [e.g., 

Abramowitz and Stegun, 1964]. The parameters M , a  and n  are referred to here 

as the first, second and third parameter of the incomplete gamma function.  
The observed heads and stresses are written with respect to their means, 

so that (4.7) becomes  
 

( )i( ) ( ) ( )o o i o i

i i

h t h t d h r t− = − + − + +      (4.11) 



60   Chapter 4 
 

__________________________________________________________________________ 

 

 

The drainage base is set equal to the mean observed head oh  minus the sum of 

the mean contributions of the stresses (similar to Von Asmuth et al. [2002]) 
 

io

i

d h= −   (4.12) 

so that 

( )i( ) ( ) ( )o o i

i

h t h t r t− = − +     (4.13) 

 

The mean response i  to stress i  is computed, using (4.9) as the response 

function, as 
 

0

( )i i i i iq t d q M



= − =      (4.14) 

 

The scaling parameter iM  corresponds to the final response of the groundwater 

head when stress i  is applied continuously with unit intensity. 

 

4.2.2 Estimation of the mean recharge 

In this study, the responses to precipitation and to reference evaporation are 
assumed to have the same shape, sharing the same parameters a  and n  defined 

in (4.9), and differ only by their final response magnitudes pM  and eM , 

respectively. The ratio of the magnitudes is called f  

e

p

M
f

M
=   (4.15) 

further referred to as the evaporation factor.  
In the absence of run-off,  R  represents the diffuse, time averaged 

groundwater recharge, approximated as precipitation minus all forms of 
evaporation, which is the sum of interception, transpiration, and soil evaporation, 
expressed by the relation: 

 

R P fE= −   (4.16) 

 
where P  and E  are measured precipitation and measured reference 
evaporation [LT-1], respectively. Possible seasonal dependence of the evaporation 
factor is not taken into account. The passage through the unsaturated zone is 
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taken into account by the response to recharge, which mimics a dispersion 
process [Besbes and de Marsily, 1984; Gehrels et al., 1994]. 

 

4.2.3 Seasonal harmonic 

Accurate identification of the influence of evaporation on head fluctuations is a 
crucial requirement for a reliable estimation of the recharge. In the proposed 
method, this is achieved by taking the best estimate of the seasonal harmonic of 
the observed heads into account as an additional signature. The seasonal 

behaviour is represented by the seasonal harmonic component ( )y t  defined as: 

 

sin( ( ))y A t T= −   (4.17) 

 
where A  is the amplitude, T is the phase shift (in days),  and  is 2 / 365.25 (d-

1). Since  is already known, the parameters A  and T  of a measured time series 

can be determined with a least squares procedure. A discrete Fourier 
transformation of the signals using for example a Fast Fourier Transform scheme 
is an equivalent alternative if all time series are available at equidistant points in 
time. 

Convolution of the seasonal harmonic of a stress time series with 

amplitude sA  and phase shift sT  with an impulse response function ( )t  results 

in a seasonal harmonic with a transformed amplitude sA and a phase shift sT  , as 

demonstrated in Appendix 1: 
 

( )( ) ( )( )
0

( ) sin ( ) sins s s sy t A t T d A t T     


= − − = −             (4.18) 

 
When the scaled gamma function (4.9) is used for the impulse response function 

( )t , the amplitude ratio 
s sA A  and phase shift st are (Appendix 1):  
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  (4.19) 

 

arctans
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 = − =




  (4.20) 
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Addition of the seasonal harmonics of the responses to precipitation (amplitude 

pA  and phase shift pT  ) and evaporation (amplitude eA  and phase shift eT  ) 

results in a new seasonal harmonic given by 
 

2 2sin( ( )) sin( ( )) sin( ( ))p p e eA t T A t T A t T  − + − = −      (4.21) 

 

where amplitude 
2A and phase shift 2T  are given by: 

 

( )( )2 2

2 2 cosp e p e e pA A A A A= + +  −   (4.22) 

 

( )
( )

2

sin ( )1
arctan

cos ( )

e e p

p

p e e p

A
T

A A

  −
 = + 
 +  −
 



 
  (4.23) 

 

where pt is the time delay between the seasonal harmonic of the measured 

time series of precipitation and the seasonal harmonic of the response to 
precipitation, calculated by relation (4.20). In the derivation of (4.22) and (4.23) it 

is used that e p e pT T T T− = −  , which holds because e pt t =   and the response 

of precipitation and evaporation have the same parameters a and n (see Eq. 

(4.20)). 
Addition of the seasonal harmonics of the combined response to 

precipitation and evaporation (amplitude 2A  and phase shift 2T  ) to the seasonal 

harmonic of the response to pumping (amplitude wA  and phase shift wT ) results in 

a new seasonal harmonic with amplitude 3A  and phase shift 3T given by: 

 

( )( )2 2

3 2 2 22 cosw w wA A A A A T T= + + −   (4.24) 
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 −
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

 
  (4.25) 

 

where wt is the time delay between the seasonal harmonic of the measured 

pumping time series and the seasonal harmonic of the response to pumping. 

The amplitude hA and phase shift hT of the seasonal harmonic of the 

measured heads is set equal to the sum of the seasonal harmonics of the 
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responses of all stresses in the time series model. When precipitation and 
evaporation are the only stresses, this gives the constraint 

 

2

2

h

h

A A

T T

 =


=

   (4.26) 

 
When pumping is also included, this gives the constraint 
 

3

3

h

h

A A

T T

 =


=

  (4.27) 

 

4.2.4 Parameter estimation 

The time series model is fitted to the available observed heads as given in (4.13), 
under the constraints (4.26) or (4.27). Parameter optimization is performed by 

minimizing the objective function ( )S p  defined as half of the sum of the squared 

noise terms in defined in (4.8):  

 

( ) 2

1

1

2

oN

i

i

S n
=

= p   (4.28) 

 

where oN  is the number of observations, p is the vector of 
pN  model 

parameters, corresponding to the parameters of the scaled incomplete gamma 
function of each response function as defined in (4.10) plus the noise decay 
parameter as defined in (4.8). The search for the minimum of the objective 
function is performed using a modified Gauss-Newton algorithm [e.g.,  Hill, 1998] 
starting from initial values selected by applying a preliminary Latin Hypercube 
sampling of the parameters space [Iman et al., 1981]. Note that starting the 
optimization from different initial parameter values does not affect the 
estimation outcome, suggesting the identification of a global optimum. 

The constraints (4.26) or (4.27) constitute a system of non-linear 

equations solved at each iteration of the optimization process for parameters pn  

and f  applying the modified Powell method, implemented in the MINPACK 

routines package [Moré et al., 1980], and  called from  the open-source Python 
package Scipy [Jones et al., 2001]. The constraints imposed on the model 
parameters limit the search for the optimal parameters to a sub-region that is 
unlikely to contain the optimum of the unconstrained models but it corresponds 
to parameters sets that lead to models that are physically more realistic. 
The covariance matrix C  of the logarithm of the optimized parameters is 

approximated as [e.g., Yuen, 2010]: 
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2 1−=C H   (4.29) 

 
where H  is the Hessian of the objective function, and 2 is the variance of the 

noise. The Hessian is approximated as T
H J J  where J   is the Jacobian matrix. 

Confidence intervals of optimized parameters are estimated assuming a Normal 
distribution around the optimum, scaled by the variance of the parameter as 

given by the covariance matrix. For an optimal value ln( )ip of log-transformed 

parameter ip , the lower and upper limits of the 95% confidence interval are: 

 

)ln(ln( ) 1.96
ii pp   (4.30)  

 
The confidence intervals of the back-transformed parameters are obtained by 
taking the exponential of the lower and upper bounds of the log-transformed 
parameters. The confidence interval of the estimated recharge is computed using 
Monte-Carlo simulations of parameters 

pM  and 
pa  based on the covariance 

matrix of the optimized time series models. For each realization, parameters pn  

and f  are obtained by the constraints described in 4.2.3, using the approach 

described above. Recharge is inferred from parameter f by applying relation 

(4.16). The confidence intervals are therefore consistent with constraints (4.26) 
and (4.27). 
 

4.3 Site description 

4.3.1 Hydrogeology 

The proposed method is applied to a field site in the ice-pushed ridge of Salland, 
in the Dutch province of Overijssel, in the vicinity of a drinking water supply well 
field (Figure 4-1). 
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Figure 4-1. Field site location 

 

Ice-pushed ridges, also referred to as push moraines, build up at the margin of 
glaciers. The ice-pushed ridge of Salland was formed during the second to last ice 
age called the Saalian ice age, from about 200,000 to 130,000 years ago. This 
period corresponds to the southernmost advance of the ice sheet in Northern 
Europe during the Pleistocene time. The highest elevation point of the ridge is 
about 60 m above NAP (the datum used in the Netherlands). 

Ice-pushed ridges consist of thrust sheets, the strikes of which generally 
dip 30-40o towards a glacial basin. In the Netherlands, the thrust sheets consist 
mainly of sandy formations with possible intercalations of less permeable 
formations. This internal structure can result in an anisotropic permeability field 
which is difficult to simulate in a groundwater model due to its heterogeneous 
character. In Salland, the strike direction is North-South with thrusts dipping to 
the west.  

Both sides of the sand ridge are drained areas corresponding to former 
water-logged bogs. These zones have been drained in the Middle Ages and are 
now flat meadows drained by a network of small canals and ditches (Figure 4-2). 
The vegetation on the ridge consists of heather, grassland, deciduous trees and 
rather sparse coniferous woods. 
 

4.3.2 Data 

Measurements at five piezometers are analyzed. The location of the piezometers 
is shown in Figure 4-2. Their characteristics are listed in Table 4-1. Heads were 
recorded twice a month. In the second half of the 1990’s, the head fluctuation 
regime changes as a result of massive dredging works in the main river draining 
the aquifer investigated. Time series analysis is therefore performed up to that 
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moment, over the period 1982-1995, which is a period for which measurements 
are available for all piezometers except piezometer 4 for which data were only 
available after 1984. 

Table 4-1.  Piezometers analyzed to estimate groundwater recharge 
PN ID X Y  Z  SELEV MH Dist 

1 28AP0093 224550 488100 2.10 11.60 9.24 2750 

2 28AL0019 224668 488474 8.07 10.32 9.15 2900 

3 28CP0197 227398 485958 4.70 15.26 8.52 825 

4 28CP0204 226894 485364 2.83 21.26 9.59 1025 

5 28AP0134 226181 488081 -2.50 22.40 8.46 1800 

PN: piezometer number 
ID: piezometer identification code of the Dutch Geological Survey Institute. 
X (resp. Y): Easting (resp. Northing) in meters, EPSG:28992 Amersfoort/New geographical 
coordinates system. 
Z: depth of the middle of the screen (m NAP) 
SELEC: Surface elevation (meter NAP) 
MH: Median observed heads (meter NAP) 
DIST: Distance to middle of well field (meter) 

 

Daily precipitation and reference evaporation are obtained from the 
Royal Netherlands Meteorological Institute (KNMI). The reference evaporation is 
Makkink reference evaporation, defined as the evaporation of well-watered short 
grass on a regional scale [De Bruin, 1987]. Precipitation was measured at the 
meteorological station of Hellendoorn (Figure 4-2). Daily reference evaporation, 
which varies much less in space than precipitation, was measured at the 
meteorological station of de Bilt, about 85 km to the south-west of the field site. 
A drinking water production well field is in operation on the ridge of Salland since 
1954, with pumping records available from 1974 onwards. The average 
groundwater extraction is 5.106 m3/year. The location of the well field is shown in 
Figure 4-2.  
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Figure 4-2. Field site 

 

The stress time series and the corresponding seasonal harmonics are 
plotted in Figure 4-3, together with the hydrographs of piezometers 1 and 3. As 
the parameters of the response to separate wells could not be identified, the 
combined discharge of all wells was added in one stress time series, which is a 
common approximation. The combined pumping time series shows a significant 
trend, but no significant difference was found between the seasonal harmonics of 
the pumping time series estimated before and after detrending so detrending was 
omitted here. Piezometer 1 is a relatively shallow well with a faster reaction to 
recharge while piezometer 3 is a deeper well with a slower reaction to recharge. 

4.4 Results 

4.4.1 Model parameters and recharge  

The proposed time series modeling approach is applied to the five piezometers 
given in Table 4-1. For each piezometer, the 9 model parameters are fitted, of 
which 2 parameters are obtained from the constraint on the seasonal harmonic 
and  the drainage base  is computed with (4.12). The effect of pumping was 
negligible for piezometers 1 and 2, so that only 6 parameters were fitted. The 
observed and modeled head fluctuations are shown in figure 4-4. The optimal 
parameters, together with their 95% confidence intervals, are presented in Table 
4-2. The corresponding recharge estimates are given in Table 4-3. 
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Figure 4-3. Observed heads in piezometers 1 and 3 and stresses (blue) with their seasonal 
harmonic component (red lines and right axis) 

 
The goodness of fit of the time series models is expressed as the Nash-Sutcliffe 
coefficient [Nash and Sutcliffe, 1970] defined as  
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where oN is the number of observed heads, m,ih is the modeled head at time i , 

o,ih is the observed head at time i , and oh  is the mean observed head. The Nash-

Sutcliffe coefficient exceeds 90% for all piezometers, which indicates good fits of 
the observed heads.  Besides the Nash-Sutcliffe coefficient, the standard 

diagnostics checks on model errors were applied. The resulting noise ( )n t , defined 

in (4.8), is uncorrelated with a distribution close to Normal. 
 

 

Figure 4-4. Observed heads (blue) and modeled heads (red) of the 5 piezometers, with 
corresponding Nash-Sutcliffe coefficients  
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Table 4-2. Estimated parameters with 95% confidence intervals for models optimized 

under constraints (4.26) or (4.27); 
p

M , 
pa , 

pn are the first, second and third parameter of 

the response function to precipitation; wM , 
wa , 

wn are the first, second and third 

parameter of the response function to pumping, f is the evaporation factor,   is the 

exponential decay factor of the noise model, and d is the drainage base. 

 Estimated parameters values per piezometer 
 

Symbol Unit 1 2 3 4 5 
 

pM  

.10e3 

 
m 
 
 

1.56 
[1.51,1.60] 

1.53 
[1.48,1.59] 

2.09 
[2.05,2.12] 

2.17 
[2.12,2.22] 

1.80 
[1.75,1.82] 

pa  

x 10e-3 
d-1 

2.37 
[2.30,2.44] 

1.93 
[1.84,2.02] 

2.43 
[2.40,2.47] 

3.29 
[3.24,3.35] 

4.42 
[4.34,4.50] 

pn
* 

 
- 
 

1.11 
[1.11,1.12] 

0.97 
[0.96,0.98] 

1.55 
[1.54,1.56] 

2.02 
[2.01,2.03] 

2.41 
[2.40.2.42] 

f
* - 

1.03 
[1.01,1.05] 

0.97 
[0.95,0.99] 

0.67 
[0.65,0.68] 

0.73 
[0.71,0.74] 

0.88 
[0.87,0.88] 

wM  

x 10e-4 
m - - 

1.34 
[1.30,1.38] 

1.12 
[0.90,1.14] 

- 

wa  

x 10e-4 
d-1 - - 

1.37 
[1.21,1.56] 

0.96 
[0.64,1.42] 

- 

wn  - - - 
1.06 

[0.97,1.16] 
1.13 

[1.11, 1.58] 
- 

  

x 10e-2 
d-1 

4.31 
[3.65,5.14] 

5.78 
[4.65,7.21] 

0.73 
[0.54,0.98] 

0.26 
[0.22,0.95] 

1.80 
[1.59,2.03] 

d
** 

m above 
datum 

8.05 7.87 7.62 8.47 6.57*** 

 *:  inferred from constraints (4.19) and (4.20) 
**:  relation (4.12) 
***:  sum of pumping effects and drainage base  
 

Table 4-3. Estimated mean yearly recharge for period 1982-1995 based on the optimized 
seasonal harmonic under constraints (4.26) or (4.27) 

Piezometer 1 2 3 4 5 

R  (m/year) 
0.250 

[0.243,0.256] 
0.296* 

[0.286,0.306] 
0.447 

[0.440,0.454] 
0.416 

[0.406,0.421] 
0.333 

[0.329,0.337] 

 (*): for period 1984 to 1995 
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4.5 Discussion 

4.5.1 Estimated groundwater recharge  

The estimated recharge values for piezometers 1 and 2 represent shallow water 
table conditions (resp.  0.250 m/year and 0.296 m/year), and are lower than the 
recharge estimated for piezometers 3 and 4 (resp.  0.447 m/year and 0.416 
m/year), representing deep water table conditions. Shallow water tables  are 
favorable for evaporation and transpiration [Doble and Crosbie, 2017] which can 
explain this difference. Different vegetation covers constitute a second 
explanation. In particular, the extended heather field near piezometers 3 and 4 
favor water table replenishment. 

Piezometer 5 lies on the sand ridge and characterizes deep water table 
conditions, like piezometers 3 and 4. Identification of the pumping influence is 
difficult in this piezometer due to the relatively large distance (1800 m) from the 
center of the well field. The heads measured in this piezometer have 
consequently been simulated without pumping influence; The effect of pumping 
at this piezometer is relatively constant and included in the drainage base. 
 

4.5.2 Comparison with standard time series analysis 

In this study, groundwater recharge is estimated with time series models where 
parameters are fitted with the constraint that the observed seasonal harmonic 
matches the sum of the seasonal harmonics of the stresses after transformation 
by the convolution relations of the time series model. This constraint 
distinguishes the proposed approach from standard time series. The model 
parameters obtained by the proposed method are expected to provide more 
reliable estimates of the mean groundwater recharge. The proposed approach is 
compared to the standard approach for piezometers 1 and 3. The results are 
given in Table 4-4. In both cases, the fits in terms of Nash Sutcliffe coefficients are 
similar. In contrast, the model parameters estimated with the proposed method 
lead to lower recharge estimates for piezometer 1 and 3. The difference between 
both approaches regarding the modeling of the seasonal harmonic is illustrated in 
Figure for piezometers 1 and 3. The two graphs at the top show the seasonal 
harmonic of the observed heads and the seasonal harmonic calculated with the 
proposed method and the standard method. The seasonal harmonic modeled 
with the proposed method matches the seasonal harmonic of the observed heads 
exactly while the seasonal harmonic modeled with the standard method shows a 
clear discrepancy. The other graphs in Figure show the stress-specific seasonal 
harmonics calculated with the proposed and standard methods. The largest 
difference is caused by the amplitude of the seasonal harmonic of the response to 
evaporation, as expected. 
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Table 4-4: Comparison of proposed approach with standard time series analysis 

 
Piezo. 1 

Standard 
method 

Piezo. 1 
Proposed 
method 

Piezo. 3 
Standard 
method 

Piezo. 3 
Proposed 
method 

 

Nash Sutcliffe 
% 

94.7 97.8 96.9 96.5 

pM  

.10e3 

1.62 
[1.56,1.68] 

1.56 
[1.51,1.60] 

2.19 
[2.08,2.31] 

2.09 
[2.05,2.12] 

pa   

x 10e-3 

2.18 
[2.05,2.32] 

2.37 
[2.30,2.44] 

2.26 
[2.13,2.41] 

2.43 
[2.40,2.47] 

 pn   1.07 
[1.05,1.09] 

1.11 
[1.11,1.12] 

1.51 
[1.49,1.54] 

1.55 
[1.54,1.56] 

f   
0.92 

[0.88,0.97] 
1.03 

[1.01,1.05] 
0.54 

[0.65,0.68] 
0.67 

[0.65,0.68] 

wM  

.10e-4 
- - 

1.39 
[1.34,1.44] 

1.34 
[1.30,1.38] 

wa   

x 10e-4 
- - 

1.17 
[0.98,1.44] 

1.37 
[1.21,1.56] 

wn   - - 
1.17 

[0.98,1.44] 
1.06 

[0.97,1.16] 

  (d-1) 

x 10e-2 

7.06 
[5.94,8.52] 

4.31 
[3.65,5.14] 

2.71 
[2.34,3.17] 

0.73 
[0.54,0.98] 

d  (m NAP) 7.76 8.05 7.14 7.62 

R  (m/y) 
0.306 

[0.282,0.332] 
0.250 

[0.243,0.256] 
0.515 

[0.501,0.531] 
0.447 

[0.440,0.454] 
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Figure 4-5. Comparison of the seasonal harmonics obtained with the proposed 
and standard methods 

 

4.5.3 Mean recharge for different time periods 

The mean recharge for a period of multiple years depends on the specific time 
period unless the period is very long. It is expected that the estimated recharge is 
lower for a multi-year period with a relatively low mean head while the estimated 
recharge is expected to be higher for a multi-year period with a relatively high 
mean head. In fact, if the draining resistance of the aquifer remains constant, a 
linear relation is expected between the estimated mean recharge for a period and 
the mean groundwater head for that same period. To test this hypothesis, the 
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mean recharge is estimated for several multi-year periods. Each investigated 
period is a multiple of whole years in order to equally represent all seasons. 
Furthermore, the heads at the beginning and end of the period do not deviate 
more than 0.2 m so that the mean head is a reasonable representation of the 
head in the period, and the period contains a balanced number of head rises and 
head declines. Each selected time period is at least 3 years long for the fast head 
fluctuations (piezometers 1 and 2) and 5 years for the slow head fluctuations 
(piezometers 3, 4 and 5). 

Time periods conforming to the above stated conditions were generated 
with a computer script. When two intervals share the same mean head (+/- 
0.05m), the longest interval is used. In this fashion, 8 time periods were identified 
for piezometer 1, and 7 time periods for piezometer 3. The mean recharge is 
estimated for each period with the proposed method and is plotted versus the 
mean head in the corresponding period in Figure. Linear regression lines can be 
fitted through the estimates obtained with the proposed method with an r2 of 
0.94 for piezometer 1 and 0.96 for piezometer 3. Note that for piezometer 5, no 
significant regression line could be found (not shown).  
 

 

Figure 4-6: Estimated recharge with the proposed method over different time periods for 
piezometers 1 and 3 and best fit straight line.  

 

4.5.4 Uncertainty of constraints 

The main idea of the proposed method is that a better estimate of the recharge is 
obtained with time series analysis when the best estimate of the seasonal 
component of the measured heads is equal to the sum of the responses of the 
best estimates of the seasonal components of the stresses. It is shown, for the 
case study, that the proposed approach leads to more reasonable estimates of 
the recharge with narrower confidence intervals than the standard approach 
without the constraint. 

The question arises whether the proposed method can be further 
improved. In the proposed method, the best estimates of the seasonal harmonics 
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of the measured heads and measured stresses are used. The uncertainty of these 
estimates is presented in Tab. The relative uncertainty of the seasonal harmonics 
of the heads is smaller for piezometers 1 and 2 than for the other piezometers. 
For the stresses, the relative uncertainty of the seasonal harmonic of the 
evaporation is the smallest while it is the largest for the precipitation. This is 
encouraging, as the evaporation has the largest influence on the seasonal 
variation of the head. A better estimate of the recharge may be obtained when 
the uncertainty in the seasonal harmonics is taken into account during the 
parameter estimation process. One way to do this is to perform parameter 
estimation with a multi-objective function where both the objective function 
(4.28) and the constraint (4.26) or (4.27) are minimized simultaneously [e.g., 
Efstratiadis and  Koutsoyiannis, 2010]. Another approach is to estimate 
parameters with a soft constraint (e.g., a range) by penalizing the objective 
function based on the extent that the condition is not met. In both approaches, 
the uncertainty of the seasonal harmonic may be taken into account in either 
assigning weights in the multi-objective optimization or in penalizing the objective 
function when applying a soft constraint, but this is the topic of further research. 

 

Table 4-5: Uncertainty in the seasonal harmonic of the different time series; the 
uncertainty of the amplitude is given as the ratio of the estimated amplitude and the 
associated standard deviation; the uncertainty of the time-lag is expressed in days. 

Time series  Amplitude with relative 
standard deviation 

Time-lag with standard 
deviation (days) 

Piezometer 1 0.30 m [rel. stdev=2.3%] 340 [stdev=1.5] 

Piezometer 2 0.30 m [rel. stdev=2.7%] 325 [stdev=1.5] 

Piezometer 3 0.13 m [rel. stdev=6.0%] 3 [stdev=4.0] 

Piezometer 4 1.00 m [rel. stdev=10.0%] 41 [stdev=5.0] 

Piezometer 5 0.10 m [rel. stdev=8.0%] 66 [stdev=5.0] 

Precipitation 3.8E-4 m/d [rel. stdev=26.0%] 211 [stdev=14.0] 

Evaporation 1.5E-3 m/d [rel. stdev=1.0%] 255 [stdev=0.5] 

Pumping 1.3E+3 m3/d [rel. stdev=3.0%] 246 [stdev=1.7] 

 

4.6 Recharge estimation by the chloride mass balance method 

The recharge estimates obtained from time series analysis are compared with 
recharge estimates obtained with the saturated zone chloride mass balance 
method, assuming that the chloride in the groundwater is exclusively of 
atmospheric origin (rainwater and dry deposition) [e.g. Eriksson and Khunakasem, 
1969; Allison and Hughes, 1978; Simmers, 1988]. In the present case study, this 
condition is reasonable because infiltration from surface water, chloride 
dissolution of minerals in the soil matrix, and chloride from anthropogenic 
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sources can all be neglected. Furthermore, chloride originating from vegetation 
decomposition can be assumed to be entirely recycled during the growing season. 

Under steady state conditions, the atmospheric chloride deposition flux 
equals the vertical chloride flux arriving at the groundwater table at the bottom of 
the root zone: 

 

a gwP[Cl] =R[Cl]   (4.32) 

 

where P  and R are the mean precipitation and recharge rates [LT-1], respectively 

, a[Cl]  is the mean concentration of atmospheric chloride (including dry 

deposition) [ML-1], and 
gw[Cl] is the mean chloride concentration in the 

groundwater at the groundwater table [ML-1]. 
The atmospheric chloride concentration in the Netherlands may be 

computed from the chloride concentration of the precipitation 
p[Cl]  as  [Ridder 

et al., 1984]: 
 

p

a

[Cl]
[Cl]

fdp

=   (4.33) 

 
where fdp

equals  0.83 with standard deviation of 0.10, which is applicable for 

open field deposition rates [Ridder et al., 1984]. The chloride concentration of the 
precipitation is taken as the average of the three closest stations of the Dutch 
National Precipitation Chemistry Monitoring Network [van der Swaluw et al., 
2010] which equals 1.9 mg/l with a standard deviation of 0.3 mg/l. The mean 
recharge can now be computed as: 
 

p

gw

P[Cl]
R

f [Cl]dp

=   (4.34) 

 
Chloride concentrations where measured in a monitoring well (code B28C0263) 
situated in a heather field at the western side of the ridge of Salland (Figure). The 
well is screened approximately 2 m below the highest measured water table and 
measurements were taken at four times between 1982 and 1995. Measured 
chloride concentrations are assumed to represent a mixture of the rainfall of the 
two years prior to the sampling date (based on a recharge of approximately 300 

mm/year and a porosity of 0.3), so that the value of P in (4.34) is the mean 
precipitation of the two years prior to the sampling date.  

The recharge is estimated for four two-year periods based on four 
chloride measurements (Table 4-6). A confidence interval for the estimated 
recharge is generated by a Monte Carlo simulation where all variables were 
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assumed to follow a Normal distribution centered on their measured values. Note 
that generating confidence intervals for recharge estimates obtained with the 
chloride mass balance is not common but has recently been advocated [e.g. 
Alcalá and Custodio, 2014; 2015; Crosbie et al., 2018]. A standard deviation of 5% 
of the mean was used for the mean precipitation and for the measured 
groundwater chloride concentration in addition to the standard deviations of 

p[Cl]  and fdp
mentioned above. 

The mean recharge over the period 1989-1995, estimated with the 
chloride mass balance, equals 0.345 m/year, with an estimated confidence 
interval of [0.240,0.500]. The piezometer used for the chloride mass balance is 
located in an area with soil and vegetation cover similar to piezometers 3 and 4 
but with a shallower groundwater table.  

Considering the uncertainties associated with the chloride mass balance 
method and the difference in water table depth at the location of the piezometer 
considered, it is concluded that the results obtained using time series analysis are 
in reasonable agreement with the results obtained with the chloride mass 
balance. 

Table 4-6: Estimated mean yearly recharge for two-year periods prior to  
sampling date and 95% confidence intervals 

Sampling [Cl] Mean P Estimated 

Date groundwater (mm/year) recharge 

  mg/l   (m/year) 

2-10-1989 5.7 820 
0.325 
[0.230,0.460] 

4-11-1993 6.7 920 
0.310 
[0.220,0.480] 

15-9-1994 6.4 960 
0.340 
[0.240,0.480] 

31-8-1995 5.5 995 
0.410 
[0.285,0.580] 

Average     
0.345 
[0.240,0.500] 

 

4.7 Conclusion 

Time series analysis of measured heads was applied to estimate the long-term 
mean recharge of water table aquifers in temperate climates where the seasonal 
trend of the evaporation results in a significant seasonal trend in the head. The 
proposed approach can be used to estimate the diffuse recharge with time series 
models that fit the observed heads as well as possible while requiring that the 
sum of the transformed seasonal harmonics present in the time series of the 
stresses equals the seasonal harmonic of the observed heads.  In standard time 
series analysis, model parameters often exhibit a high degree of correlation, 
leading to problems of equifinality which may result in poor and unreliable 
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recharge estimates. Taking into account the seasonal harmonic of the observed 
heads as additional constraint results in more reliable and physically meaningful 
recharge estimates.  

The proposed method is applied to head observations obtained from 
piezometers situated on and around the ice-pushed sand ridge of Salland in the 
Netherlands, using the best estimate of the seasonal harmonics of the observed 
time series. Recharge estimates over different time periods yield consistent 
results; the estimated mean recharge is linearly related to the mean head in the 
time period. A comparison with the saturated zone chloride mass balance yields 
recharge estimates of comparable magnitude. 

There are four major requirements for application of the proposed method. 
First, the seasonal harmonic of the observed series can be estimated accurately. 
Second, the response of the system to recharge does not change over time, which 
precludes areas with significant land use changes or areas where the draining 
conditions of the aquifer are altered. Third, the aquifer system must be 
sufficiently linear. This condition can be considered as fulfilled when good model 
fits are obtained. And fourth, runoff is negligible or quantifiable.  

The proposed method of time series analysis allows for the estimation of 
time averaged diffuse recharge that can be used in groundwater modeling or 
catchment water balances. Where the density of piezometers is large, like in the 
Netherlands, the method opens the possibility to estimate the recharge at many 
points which can be interpolated to generate a recharge map; such a map was 
generated by Alcalá and Custodio [2014] for Spain or Crosbie et al. [2018] for 
parts of Australia, using the chloride mass balance method.  

 

4.8 Appendix 

In this appendix, a derivation of equations (4.19) and (4.20) is given. The seasonal 
harmonic (4.17) is written as the real part of a complex function: 
 

( )( ) ei t Ty t A −=    (4.35) 

  
The response of the seasonal harmonic is obtained from the convolution as 
 

0

( ) ( ) ( )y t y t d



= −       (4.36) 

 

Substitution of (4.35) for ( )y t and (4.9) for gives 

 

1
( )

0

( ) e e
( )

n n
i t T aa

y t AM d
n

 −
− − − −=


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   (4.37) 
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Defining a new variable  
 

a i= −    (4.38) 

 
and rearrangement of terms gives 
 

( )
1

0

e
( ) e

( )

n i t T
na

y t AM d
n

− −
− −=

 


    (4.39) 

 
which may be rewritten as 
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  (4.40) 

 
The integral equals the gamma function of n  [e.g., Abramowitz and Stegun, 1964] 

so that  
 

( )e
( )

n i t T

n

a
y t AM

− −

=



  (4.41) 

Replacing   again by a i−  and division of the numerator and denominator by
na  give 
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Rewriting the denominator as  
 

2 2 arctan
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  (4.43) 

 
And combining terms gives: 
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  (4.44) 

 
Comparison of (4.44) with (4.18) gives equations (4.19) and (4.20). 
 



Chapter 5  81 
 

__________________________________________________________________________ 

__________________________________________________________________________ 

 
Adapted from C. Obergfell, M. Bakker, and K. Maas Identification and explanation 
of a change in the groundwater regime using time series analysis, Groundwater, 
doi: 10.1111/gwat.12891, 2019 

 

Chapter 5 Identification and explanation of a change 
in the groundwater regime using time series analysis  
 

 

 

___________________________________________________________________ 

Abstract 
Time series analysis is applied to identify and analyze a transition in the 
groundwater regime in the aquifer below the sand ridge of Salland in the 
Netherlands, where groundwater regime refers to the range of head variations 
throughout the seasons. Standard time series analysis revealed a discrepancy 
between modeled and observed heads in several piezometers indicating a 
possible change in the groundwater regime. A new time series modeling approach 
is developed to simulate the transition from the initial regime to the altered 
regime. The transition is modeled as a weighted sum of two responses, one 
representing the initial state of the system, the other representing the altered 
state. The inferred timing and magnitude of the change provided strong evidence 
that the transition was the result of significant dredging works that increased the 
river bed conductance of the main river draining the aquifer. The plausibility of 
this explanation is corroborated by an analytical model. This case study and the 
developed approach to identify a change in the groundwater regime, are meant 
to stimulate a more systematic application of time series analysis to detect and 
understand changes in groundwater systems which may easily go unnoticed in 
groundwater flow modeling. 
___________________________________________________________________ 
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5.1 Introduction 

The worldwide increase in groundwater demand requires increased care in 
assessing groundwater reserves, especially in the context of a changing climate 
[e.g.Wada et al., 2017]. The awareness of the vulnerability of groundwater 
systems has motivated recent studies to better understand groundwater table 
dynamics and detect signs of over-exploitation by searching for correlations 
between hydrological variables and climate forcings or land use changes  [Stoll et 
al., 2011; Witte et al., 2015; Luo et al., 2016].  

In groundwater hydrology, time series analysis has been applied to quantify 
decreasing trends in groundwater head [Weider and Boutt, 2010],  the effect of 
groundwater pumping [e.g. Baggelaar, 1988; Van Geer et al., 1988; Von Asmuth 
et al., 2008; Harp and Vesselinov, 2011; Obergfell et al., 2013; Shapoori et al., 
2015b] or to quantify the effects of river stage fluctuations [Barlow et al., 2000; 
Obergfell et al., 2016]. The use of time series analysis to identify the effect of land 
use changes [e.g. Gehrels et al., 1994] or civil engineering interventions remains 
marginal, in spite of the sophistication of groundwater monitoring networks and 
the development of new analysis softwares [e.g., von Asmuth et al., 2012; 
Peterson and Western, 2014; Collenteur et al., 2019]. 

The objective of this study is to present a case study to illustrate how time 
series analysis can be applied to identify and analyze a transition in the 
groundwater regime and help detect its cause. In this study, the term 
groundwater regime refers to the range of head variations of a time series 
throughout the seasons. 
The field site is a phreatic aquifer under a Pleistocene sand ridge in the 
Netherlands, where measured heads were indicative of a change in the regime. 
This study is organized as follows. After a presentation of the field site, a standard 
time series analysis is presented, which clearly indicate a discrepancy between 
modeled and observed heads as the result of a regime change. A new modeling 
approach is then presented in which the response to recharge changes over time. 
The insights of the magnitude and timing of the change in the regime were the 
start of a search for a physical explanation. At the end of the study, an 
explanation is found and an analysis is presented to corroborate the proposed 
explanation. 
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5.2 Study area 

 

Figure 5-1: Field site at the ice-pushed ridge of Salland 

 

The study area is located in the Eastern part of the Netherlands (Figure 5-1). The 
middle of the study area is formed by the ice-pushed ridge of Salland which is 
approximately 12 km long and 2-5 km wide, with a maximum elevation of about 
60 m NAP (Dutch datum, approximately equal to mean sea level).  The ridge built 
up at the margin of a glacier during the southernmost advance of the ice sheet in 
Northern Europe in the Pleistocene time (Saalian ice-age, from about 200,000 to 
130,000 years ago). The ridge consists of sand and the vegetation on the ridge 
consists of heather, grassland, deciduous trees, and coniferous woods. 
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Measurements at two representative piezometers in the area are used in 
this study. Their characteristics are listed in Table 5-1.  Piezometer 1 represents 
head fluctuations at a relatively short distance from draining ditches, with a fast 
reaction to recharge. Piezometer 2 represents head fluctuations on the sand 
ridge, with a much slower reaction to recharge (Figure 5-2). Heads were recorded 
twice a month. 

 

Table 5-1.  Description of piezometers 

Piezometer Geological 
Survey id 

Screen 
level (m 

NAP) 

Surface 
elevation (m 

NAP) 

Median 
observed head 

(m NAP) 

1 28AP0093 2.10 11.60 8.86 

2 28CP0197 4.70 15.26 8.59 

 

Daily precipitation and reference evaporation are obtained from the Royal 
Netherlands Meteorological Institute [KNMI, 2018]. The reference evaporation is 
Makkink reference evaporation, defined as the evaporation of well-watered short 
grass on a regional scale [De Bruin, 1987]. Precipitation was measured at the 
meteorological station of Hellendoorn (Figure 5-1). Daily reference evaporation, 
which varies much less in space than precipitation, was measured at the 
meteorological station of de Bilt, about 85 km to the south-west of the field site. 
A drinking water production well field is in operation on the ridge of Salland since 
1954 (Figure 5-1). The average groundwater extraction is 5.106 m3/year. The time 
series of the stresses are shown in Figure 5-2 and the location of the well field is 
shown in Figure 5-1. 



Chapter 5  85 
 

__________________________________________________________________________ 

 

Figure 5-2: Time series of heads and stresses 
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5.3 Time series modeling 

5.3.1 Standard approach 

As a first step, a standard time series model is fitted to the observed heads, using 
the method of predefined response functions [Von Asmuth et al., 2002]. In this 

method, the head fluctuation ( )t  at an observation well, resulting from a stress 

applied on a groundwater system (precipitation, evaporation or pumping) is 

obtained by convolution of the time series q( t ) of the stress with a corresponding 

impulse response function ( )t : 

    = −
0

( ) ( ) ( )
t

t q t d   (5.1) 

 
where t is time. The dependence of the response function on spatial coordinates 

is omitted in this notation.  The response function ( )t describes the reaction of 

the groundwater head to an instantaneous stress event of unit magnitude. In this 
study, the scaled Gamma distribution is used as the impulse response function 
 

1

( ) e
( )

n n
ata t

t M
n

−
−=


   (5.2) 

 

where M  is a scaling factor, a  and n define the shape of the function, and ( )n  

is the Gamma function of n . The Gamma distribution is used frequently to 

simulate the response to recharge in time series models [e.g., Von Asmuth et al., 
2002; Manzione et al., 2012; Obergfell et al., 2013; Peterson and Western, 2014]. 
The use of a Gamma distribution for the impulse response to recharge, including 
passage through the unsaturated zone,  was pioneered by Besbes and de Marsily 
[1984], and theoretically represents a succession of identical linear reservoirs 
[Nash, 1957]. The Gamma distribution is also applied here to simulate the slow 
response to pumping in a phreatic aquifer when piezometers are not in the direct 
vicinity of the pumping wells. Closer to the wells or in semi-confined aquifers, well 
functions such as Hantush may be more appropriate as pumping response 
functions [e.g., Von Asmuth et al., 2008; Obergfell et al., 2013]. 

The mean   and standard deviation  of the response function  are 

related to parameters a  and n  as [Weisstein, 2018b]:  

 

n

a
 =   (5.3) 

n

a
 =   (5.4) 
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The observed heads are modeled as the sum of the response to recharge, the 

response to pumping and a reference level d : 

 

o r wh d r= + + +    (5.5) 

 

where ( )r t is the remaining residual, and r is the response to recharge R : 

 

0

( ) ( ) ( )

t

r rt R t d= −       (5.6) 

 

where r is the impulse response function of recharge. The recharge in (5.6) is 

approximated as [e.g. Von Asmuth et al., 2002] 
 

( ) ( ) ( )R P fE= −     (5.7) 

 

where ( )P   is the measured precipitation, ( )E   is the measured reference 

evaporation, and f  is a scaling factor. Run off is neglected given the absence of 

streams on the ridge, the high permeability of the soil,  the flat to gently sloping 
relief of the sand ridge and its surroundings, and the moderate climate [Meinardi 

et al., 1998]. The term w  in (5.5) is the response to pumping discharge ( )Q  : 

 

0

( ) ( )

t

w wQ t d= −       (5.8) 

 

where w is the impulse response function of pumping.  Modeling the residuals 

with an exponential decay process transforms the time series of residuals into a 

noise time series n( t )  that is approximately white  [Von Asmuth and Bierkens, 

2005]. The residual at time it is related to the residual at time 1it − as 

 

( )( )1 1( ) ( )exp ( )i i i i ir t r t t t n t− −= − − +   (5.9) 

 

where is the residual decay factor and ( )in t is the remaining noise at time it . 

The observed heads and stresses are written with respect to their arithmetic 
means over the considered time period, so that (5.5) becomes  
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( ) ( ) ( )r wo o r w r w oh h h d r− = − + − + + − + +                  (5.10) 

 
where the overbar indicates the arithmetic mean. The drainage base is set equal 

to the mean observed head oh  minus the sum of the mean contributions of the 

stresses (similar to Von Asmuth et al. [2002]) 
 

( )r wod h= − +    (5.11) 

so that 

( ) ( )r wo o r wh h r− = − + − +      (5.12) 

 

The mean response r is computed, using (4.9) as the response function, as 

 

0

( )r r rR t d RM



= − =      (5.13) 

 

rM  is the final response of the groundwater head when the recharge is applied 

continuously with unit intensity. Similarly, w wQM= . 

Parameter optimization is performed by minimizing the objective 

function ( )S p defined as half of the sum of the squared noise terms in defined in 

(4.8): 

( ) 2

1

1

2

oN

i

i

S n
=

= p   (5.14) 

 

where p  is the vector of pN  log-transformed model parameters and oN  is the 

number of observations. The search for the minimum of the objective function 
was performed using a modified Gauss-Newton algorithm [e.g.,  Hill, 1998]. The 
covariance matrix C  of the optimized parameters is approximated as [e.g., 

Carrera and Neuman, 1986; Yuen, 2010]: 
 

( )
1

2 1 2 T
−

−
C H J J    (5.15) 

 
where H  is the Hessian of the objective function, J   is the Jacobian matrix, and 

2 is the sample variance of the noise 
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( )
2

2

1

1 oN

i

io

n n
N =

= −   (5.16) 

 
where n  is the arithmetic mean of the noise. 

In the parameter optimization process, all parameters are log-scaled 
except for the drainage base to prevent parameters going negative during the 
estimation process. The optimum is used as the starting point for a second 
optimization without log-scaled parameters to compute a covariance matrix. 
 

5.3.2 Results of standard time series analysis 

Standard time series analysis is applied to the entire observation period from 
1982 to 2005. The model parameters for the standard model consist of five 
parameters  r rM , a  and 

rn  of the response function to recharge, the factor f  and 

the exponential noise decay factor  . For piezometer 2, three additional 

parameters are optimized: the parameters  w wM , a  and 
wn of the response 

function to pumping. For piezometer 1, the effect of pumping could not be 
identified. The goodness of fit of the time series models is expressed as the Nash-
Sutcliffe coefficient [Nash and Sutcliffe, 1970] defined as  

 

( )

( )

2

1

2

1

1

o

o

N

m,i o,i

i

N

o,i o

i

h h

NS

h h

=

=

−

= −

−




  (5.17) 

 

where m,ih is the modeled head at time i and o,ih is the observed head at time i . 

The observed and modeled heads for piezometers 1 and 2 are shown in Figure 5-

3. The blue line corresponds to the observed head and the red line corresponds to 

the best fit obtained over the whole period 1982-2005. The Nash-Sutcliffe 

coefficient is 77.3% for piezometer 1 and 77.2% for piezometer 2. 
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Figure 5-3: Observed heads (blue) and modelled heads (red) over the period 1982-2005, 
standard time series analysis 

 

The models that are fitted over the entire period 1982-2005 structurally 
underestimate the observed heads before 1997 and overestimate the observed 
heads after 1997.  One of the reasons for the poor fit could be a linear decreasing 
trend resulting from the intensification of groundwater use and land use changes 
in the Netherlands [Witte et al., 2015]. Fitting a trend to the observed time series 
only results in a slight improvement of the fit for piezometer 1 but not for both 
piezometers, so this hypothesis is rejected. 

As a next step in the investigation, the model is fitted separately over the 
period 1982-1997 and over the period 1997-2005 (Figure 5-4). In both cases, 
excellent fits are obtained over the calibration period but the model structurally 
departs from the observed heads outside the calibration period. The model 
calibrated over the period 1982-1997 clearly overestimates the observed heads 
after 1997 and the model calibrated over the period 1997-2005 clearly 
underestimates the observed heads before 1997.  
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Figure 5-4: Observed heads in piezometers 1 and 2 (blue), models calibrated over the 
period 1982-1997 (magenta) and models calibrated over the period 1997-2005 (green)   

 

Further analysis showed that no trend in the precipitation or evaporation 
time series can be detected that may contribute to the observed head decline. 
The only significant reported land-use change that affects the recharge rate is an 
ecohydrological project involving the yearly conversion of 100 ha of woods into 
heather. This project aimed at restoring wetter conditions as heather reportedly 
results in lower evaporation than woods. However, this project started after 2001 
and cannot explain a change in the regime in the mid 1990’s. Furthermore, this 
intervention is expected to result in a rising trend of the heads while the opposite 
is observed. Regarding other factors, no increase of pumping or decline of stream 
stages were reported in the mid 1990’s. At this point, it is concluded that the 
groundwater regime over the period 1982-1997 underwent a substantial change 
in the middle of the 1990s. 

 

5.4 Modeling of the transition period 

A new method is proposed to simulate the transition from one system response 
to another system response (possible physical reasons for such a transition are 
discussed in the next sections). The main idea is to replace the response to 
recharge by a weighted sum of two responses, one representing the initial state 
and the other representing the altered state.  
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The transition from one response to another response is implemented as 

follows. Suppose that the response function changes from 1 ( )t to 2 ( )t . 

Convolution of these response functions with the recharge time series results in 

two different responses, 1( )t and 2 ( )t . The transition from the first to the 

second state can be described by a weighted sum of the two responses: 
 

1 2( ) ( ) ( ) (1 ( )) ( )t t t t t= + −       (5.18) 

 

where ( )t is the weighted sum of the two responses and ( )t is the weighting 

function. The weighing function ( )t  is chosen to be an S-shaped curve that 

varies from 1 to 0: 
 

( )

1
( )

1
i t

t
e −

=
+ 

   (5.19) 

 
where   is a shape factor that determines the smoothness of the transition and 

 is the middle of the transition time, when the function takes a value of 0.5. 

A new time series model is fitted to the entire observation period. Nine 

parameters are fitted for piezometer 1:  r rM , a  and rn  of the response function to 

recharge before the transition,  r rM , a  and rn  of the response function to 

recharge after the transition, the factor f , the exponential noise decay factor  , 

and the parameter   of the transition function (5.19). The solution is not 

sensitive to the sharpness of the transition for piezometer 1 so that the shape 
factor  was fixed to 50 which corresponds to a sharp transition. For piezometer 

2, parameters  w wM , a  and wn  of the response function to pumping are also 

included for a total of 13 parameters. 
 The new model gives a good fit for the entire measurement period for 

both piezometers (Figure 5-5). The Nash-Sutcliffe has increased from 75.3% to 
93.5% for piezometer 1 and from 66.4% to 95.5% for piezometer 2. The sum of 
squared residuals has decreased by 73 % for piezometer 1 and by 87% for 
piezometer 2. An improvement of the fit was expected, of course, as the 
complexity of the model, and hence the number of parameters, was increased. 
The question arises whether the improvement of the fit is significant enough to 
justify the increase in complexity. One way to answer this question is to compare 
the values of the Akaike Information Criterium (AIC) for the model residuals [e.g., 
Banks and Joyner, 2017, Eq 6]: 

 

( )2 1 log( / )AIC k N S N= + +   (5.20) 

 

where k  is the number of parameters, N  is number of data points, and S  is the 

sum of squared residuals. The AIC drops from -1889 to -2690 for piezometer 1 and 
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from -1629 to -2775 for piezometer 2, indicating that the additional complexity of 
including the transition in regime is justified. It is noted, however, that the 
residuals are correlated, while the AIC theory is developed assuming uncorrelated 
residuals. A second evaluation of the AIC was performed with a time interval 
between residuals which is sufficiently long to consider the resulting residuals 
uncorrelated (based on the noise decay factor). For piezometer 1, a time interval 
of 4 months leads to approximately uncorrelated residuals while for piezometer 2, 
a time interval of 23 months must be used. With approximately uncorrelated 
residuals, the AIC drops from -229 to -306 for piezometer 1 and from -25 to -55 
for piezometer 2, which confirms that using the model with the regime transition 
is justified. 
 

 

Figure 5-5: Fit obtained with a weighted sum of responses to recharge. Observed head 
(blue) and modeled head (red)  

 

The transition time was identified with reasonable confidence intervals for 
both piezometers. The sharpness of the transition was determined with statistical 
significance for piezometer 2 and was fixed for piezometer 1, as stated. The 
resulting weighting function for piezometer 2, including the 95% limits, is shown 
in Figure 5-6. 
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Figure 5-6: Weighting function ( t ) for piezometers 2 with 95% confidence limits (dotted 

lines); the transition time corresponds to the time at which the weighing function ( t )

takes the value 0.5.  

 

The response functions that prevails before and after the transition are shown in 

Figure 5-7. The corresponding parameters are shown in Table 5-2 in terms of rM , 

r  and r  .  

 

Table 5-2: Comparison of the parameters of the response function to recharge that prevails 
before and after the system transition time; numbers in brackets are lower and upper 
limits of the 95% confidence intervals. 

 
Piezometer 1 

before transition 
Piezometer 1 

after transition 
Piezometer 2 

before transition 
Piezometer 2 

after transition 

rM  

x10e3 

1.59 
[1.54,1.64] 

1.18 
[1.15,1.21] 

2.06 
[2.03,2.09] 

1.60 
[1.58,1.62] 

  

x 10e2 

4.89 
[4.7,5.08] 

3.69 
[3.53,3.87] 

6.50 
[6.43,6.56] 

5.16 
[5.10,5.21] 

  

 x 10e2 
4.71 

[4.50,4.92] 
3.57 

[3.37,3.78] 
5.15 

[5.08,5.21] 
4.06 

[3.99,4.11] 
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Figure 5-7: Comparison of the impulse response functions before (blue) and after the 
transition (red) for piezometers 1 and piezometer 2; Time zero corresponds to the time of 
a short recharge event of unit magnitude. 

 

The quicker recession of the response to recharge after the transition 
indicates that groundwater is drained faster. The next step is to search for an 
underlying physical reason.  

 

5.5 Physical explanation 

The local waterboard reported that significant dredging works had been carried 
out in the river the ‘Regge’ (Figure) between 1992 and 1994 as part of an 
environmental cleanup project. Archived documents indicated that 250,000 m3 of 
sediments (contaminated with heavy metals) were removed from the river bed 
over a distance of 8 kilometers. A probably unintentional consequence was an 
increase of the river bed conductance and thus of the draining capacity of the 
river. This explanation is consistent with the reduction of the response to 
recharge shown in Figure 5-7.  

As a final step in the investigation, a short theoretical analysis is presented to 
determine whether a change in the river bed conductance can indeed result in the 
change in the response function presented in Table 5-1. A simplified East-West 
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cross section over the sand ridge is shown in Figure 5-8. The hydraulic 
conductivity is k , approximate saturated thickness is D , storage coefficient is S

and length of the cross section is L . The aquifer is bounded on the left by a fixed 
head representing the drained meadows to the west of the study area. The 
aquifer is bounded to the right by a river representing the river ‘Regge’. 

 

 
Flow into the stream is computed as: 
 

( )sQ C x L= =  (5.21) 

 
where sQ  [L2T-1] is the flux from the aquifer to the river per unit length of river, 

( )x L=  is the head in the aquifer relative to the stream stage at the semi-

pervious stream bank , and C is the river bed conductance [LT-1]. The base of the 

aquifer is impermeable and aquifer parameters are uniform and constant. Heads 
are measured with respect to the heads on the left and right sides of the cross-
section (which are equal). Initially, the head is zero everywhere. The analytical 
solution for the response function due to a constant recharge starting at time 

0t = is given by Bruggeman [1999, eq 137-48]. The response function ( t )  is 

characterized by its moments of order k  defined as:  

 

0

k

kM t (t )dt



=    (5.22) 

 

The three first moments are considered here and evaluated by numerical 
integration of the solution of Bruggeman. Alternatively, the moments can be 

Figure 5-8: Simplified cross-section of study area 



Chapter 5  97 
 

__________________________________________________________________________ 

 

obtained by solving the differential equation for the moments of the response 
function [e.g., Bakker et al., 2007; Carr and Simpson, 2018]. 
The moments are recombined and expressed as the mean response time   and 

the standard deviation of the response function [Weisstein, 2018a]:  

 

1

0

M

M
 =   (5.23) 

2 22

0

M

M
 = −   (5.24) 

 
In the simplified model, precipitation reaches the groundwater table 

instantaneously, which implies that the time it takes for infiltrated water to 
percolate through the unsaturated zone is neglected. This approximation does not 

affect the estimation of parameter rM  which determines the final response to 

recharge. Values obtained for this parameter with the analytical solution should 
therefore correspond approximately to the values obtained with the time series 
model. In contrast, neglecting the passage through the unsaturated zone results 

in a smaller mean response time r  and standard deviation r . However, the 

change of these two parameters as a result of variations of the river bed 
conductance remains comparable to the time series model.  

Values that approximate the situation of piezometer 2 are chosen with k

=40 m/day, D =30 m, S  =0.3, and L =4000 m. The values corresponding to the 

magnitude of the final response to precipitation rM  , the mean time r  and 

standard deviation r  are  evaluated for river bed conductance values C ranging 

from 10 to 80 m/d, at a distance 2x L /= . The results are plotted in Figure 5-9. 

An increase of the river bed conductance from C = 10 m/d to C = 50 m/d 

leads to a theoretical reduction of approximately 5 to 10% of the parameters rM , 

r  and r  of the response function to recharge. These reductions support the 

conjecture that the observed transition in groundwater regime is the result of 
dredging works that increased the conductance of the river bed. 
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Figure 5-9: Influence of the river bed conductance C on the characteristics of the impulse 

response function to recharge 

 

5.6 Conclusion 

In this study, it is shown how time series analysis can be used as an investigative 
tool to identify and analyze changes in the groundwater regime that are 
otherwise unnoticed. Standard time series analysis revealed a systematic 
discrepancy between modeled and observed heads in the phreatic aquifer under 
the sand ridge of Salland in the Netherlands. The investigated piezometers exhibit 
two different fluctuation regimes that can be modeled accurately when 
considered separately.  A new time series modeling approach is developed that 
incorporates a weighted sum of two modeled responses to recharge, one 
representing the initial state and the other representing the altered state. The 
new approach results in excellent fits of the heads over the entire observation 
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period. The results of the new approach initiated a search for the physical causes 
of the regime change, leading to the conclusion that dredging works in the river 
draining the aquifer are most likely the cause of the groundwater regime change. 
The local water board was not aware of this change to the groundwater regime 
and the change had not been incorporated in any of the groundwater models 
used for water management purposes. 

Finally, it is pointed out that changes in climate, land use, or groundwater 
pumping, which are the usual suspects when changes in head variations are 
observed, do not appear to be involved here. Time series analysis of observed 
heads is an instrumental tool to understand the history of the dynamics of an 
aquifer and deserves a more systematic application in the analysis of groundwater 
systems. 
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Chapter 6 Synthesis 

6.1 Introduction 

The objective of this thesis was to develop time series analysis methods for the 
estimation of aquifer parameters and recharge to be used in groundwater models 
and to develop time series analysis methods for the identification and 
quantification of a regime change. The methods developed to meet this objective 
have been presented in the four preceding chapters. This concluding chapter 
reflects on two themes related to all methods presented: the complementarity of 
groundwater flow modeling and time series modeling and the issue of parameter 
uncertainty. 

 

6.2 The complementarity of groundwater flow modeling and 
time series modeling 

The complementarity of groundwater flow modeling and time series analysis was 
explored in this thesis in different case studies. In Chapters 2, the virtual steady 
cone of depression of a well field obtained from time series analysis was used to 
calibrate a steady state groundwater flow model. In Chapter 3, groundwater 
model parameters were obtained directly from the response functions of the time 
series model, which were an analytical solution to a groundwater flow model 
describing stream-aquifer interaction. In Chapter 4, average groundwater 
recharge was estimated from time series analysis, using the same data as is 
available for a groundwater hydrologist when setting up a groundwater flow 
model. Note that recharge rates are obtained independently from a groundwater 
flow model, as such circumventing the correlation between recharge and aquifer 
transmissivity [e.g., Strack, 1989]. Finally, in Chapter 5, an analytical groundwater 
flow model was used to corroborate that dredging works had probably resulted in 
a regional drop of the water table, as identified in first instance by means of time 
series analysis. 

In addition to estimates of model parameters, the interpretation of time 
series models provides physical insight regarding the functioning of the 
groundwater system. This was especially apparent in Chapter 5, where time series 
analysis was used as a detective tool to determine the timing and magnitude of a 
change in the groundwater regime and explain its origin. In Chapter 2, the 
position of a semi-confining layer relative to the screen depth of the monitoring 
wells was inferred from the time series models. In Chapter 3, the resistance to 
flow at the stream/aquifer interface was identified as resulting from stream line 
contraction.  

The complementarity between time series modeling and groundwater flow 
modeling encourages a systematic application of both modeling approaches. 
Groundwater modeling can be used to simulate groundwater flow based on a 
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conceptualization of the groundwater system. Time series analysis can be used for 
example to estimate groundwater model parameters, derive calibration targets to 
be used in groundwater models, or identify changes in regimes that need to be 
incorporated in a groundwater model. 

6.3 Parameters uncertainty 

Unambiguous estimation of the parameters of the response functions is crucial 
for a reliable physical interpretation of time series models. In this research, 
parameter estimation was performed using a modified-Gauss-Newton algorithm 
to minimize the sum of the squares of the differences between modeled and 
observed heads. The modified Gauss-Newton optimization algorithm is a local 
search in the sense that the minimum is sought within a single valley of the 
objective function landscape.  

A first limitation of this method is that if the objective function landscape 
contains multiple valleys, the global minimum may be missed when the initial 
vector of parameters is chosen too far from the global optimum. Although 
preliminary Latin Hypercube sampling can be performed to investigate the 
possible presence of multiple optima (as was the case in Chapters 3), the 
possibility to miss the global optimum cannot be excluded. 

A second limitation of the Gauss Newton optimization approach is that 
the confidence intervals of the parameters are derived assuming that the time 
series model can be reasonably described near the optimum by a first order 
approximation of the model [Vrugt and Bouten, 2002]. There is no clear-cut 
criterium to assess the applicability of this first order approximation. One 
approach is to compare the confidence intervals obtained with the Gauss-Newton 
approach with the confidence intervals obtained with an algorithm involving 
massive parameters sampling, such as Monte Carlo Markov Chain (MCMC) 
methods [e.g. , Vrugt and Bouten, 2002]. However, the application of massive 
parameter sampling is not straightforward either.  

First, they require sufficient computational capacity [Keating et al., 2010] 
as the model must be run thousands of times to approach the posterior 
probability distribution of the parameters. Second, the lack of consensus about 
how to start and end the parameter chain is in itself a source of uncertainty. It is 
indeed not clear in practical applications how long the ‘burn-in’ part of the chain 
should be. This corresponds to initial parameters values that are too far from the 
most probable parameter values (and as such, should be rejected). Regarding the 
ending of the chain, it is often not clear how long the chain should be so that an 
even longer chain would result in negligible changes of the statistical properties of 
the chain. 

Hence, there is a tension between on one side an efficient parameter 
estimation method such as a modified Gauss-Newton algorithm  assuming that 
the first order approximation of the time series model is reasonable, and, on the 
other side, a computationally demanding sampling of the posterior probability 
distribution of the parameter vector, which is not immune to uncertainty either. 
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Schweder and Hjort [2016] argue that the confidence (of estimated parameters) 
derives from the transparency of the method of constructing the confidence 
intervals. As long as the procedures to apply massive parameter sampling, such as 
MCMC, remain so diverse, this argument for transparency plead in favor of a 
relatively simple modified Gauss Newton algorithm. Improvement of the 
uncertainty estimates of time series analysis is recommendable for future 
research. 

6.4 Future prospects 

Linearity of the groundwater system is an essential assumption in the modeling 
approach in this thesis, so that groundwater levels can be computed as the 
convolution of a time series of a stress with the impulse response function for this 
stress. This approach is inadequate when non-linear reactions of the unsaturated 
zone are no-longer negligible. An alternative approach is needed for those 
situations, for example the application of a vertical soil moisture module [e.g., 
Berendrecht et al., 2006; Peterson and Western, 2014]. Such an approach was 
investigated during this thesis research but did not lead to satisfying results as a 
consequence of model over-parametrization. The difficulty is to find a tradeoff 
between model complexity and parameter parsimony. 

Regarding the estimation of groundwater recharge as proposed in Chapter 
4, additional work is needed for situations in which the seasonal signals are weak 
and relatively uncertain. In these situations, the propagation of the uncertainty in 
the estimated recharge must be considered, for example using multi-objective 
optimization. Furthermore, when runoff is not negligible, recharge can possibly be 
estimated with a bucket model, as proposed by Peterson and Western [2014].  
 

6.5 Epilogue 

Science is about trying to understand how nature works and technology is about 
applying science to cope with nature. Purposeless curiosity drives the scientific 
mind while the need to control nature (which to some extent is a condition to 
survive), drives technology. Groundwater hydrology, in that sense, can be 
considered as mainly a technological discipline, applied initially to ensure 
satisfying primary needs such as drinking water, and is now also applied to save 
water and energy, for example using aquifer storage and recovery or aquifer 
thermal energy storage. 

The question arises whether time series analysis offers the opportunity 
to widen the perspective of groundwater hydrologists and provide the 
opportunity to gain insight in how nature works.  There were a few moments 
during the investigations conducted as part of this thesis that had the flavor of 
curiosity driven research. This was the case in Chapter 4 with the introduction of 
the seasonal components of time series. Taking into account seasonal 
components of time series relates groundwater hydrology to the influence of 
seasons and their damped and delayed imprints on water table fluctuations. In 
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Chapter 5, the elucidation of a change in the groundwater regime involved the 
consultation of forest and agriculture scientists, as well as civil engineers, which is 
reminiscent of the connection of groundwater hydrology to a wide range of earth 
science and engineering topics.  

The application of time series analysis to better understand how nature 
works is an exciting perspective that may lead to insights that are worth 
discussing beyond the groundwater hydrology community. 
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