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Abstract: Estimation of impulsive wave loading and runup on a cylinder upon a shoal, typified by an 
offshore lighthouse on a partially emerged rock with a steep foreshore, poses a unique challenge to 
marine structural engineers. The foreshore geometry enables large waves to break at the base of the 
structure or in close proximity. The bore generated from the breaking wave has much higher velocities 
compared to oscillatory velocities in offshore conditions, and the highly aerated and turbulent nature 
of the flow makes it difficult to simulate using existing numerical models. Furthermore, most of the 
existing force models used to estimate impulsive forces acting on vertical cylinder are not directly 
applicable. Therefore, physical modelling investigations are the most feasible methods to study this 
phenomenon. This paper presents the data analysis techniques and the key findings of a series of 
small-scale wave flume tests conducted as a part of on-going research project: STORMLAMP – 
STructural behaviour Of Rock Mounted Lighthouses At the Mercy of imPulsive waves. This project is 
a collective effort of three UK universities: the University of Plymouth, the University of Exeter and 
University College London, which brings together expertise in both fluid and structural dynamics. 
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1 Introduction 

Experimental investigations to determine impulsive wave loads and wave runup on offshore 
cylindrical structures has a history stretching back several decades. Several research studies on wave 
runup on vertical cylinders have been documented in the literature (Fig. 1). Those studies can be 
divided into analytical (e.g. Kim and Hue, 1989; Kriebel, 1990, 1992a; McCamy and Fuchs, 1954), 
experimental (e.g. De Vos et al., 2007; Hallermeier, 1976; Lykke Andersen et al., 2011; Martin et al., 
2001; Niedzwecki and Duggal, 1992; Ramirez et al., 2013, Bonakdar et al. 2016, Cao et al. 2017) and 
numerical (e.g. Ramirez, 2012) studies. The current ‘state of the art’ numerical models generally 
produces accurate predictions of wave runup for typical offshore applications, but they are 
computationally expensive. Therefore, the semi empirical and analytical formulae are widely used for 
the estimation of the wave runup. These formulae (e.g. De Vos et al., 2007; Lykke Andersen et al., 
2011) are based on maximum wave crest elevation (ηmax) and horizontal particle velocity at the top of 
the wave crest (u). Therefore, in order to estimate the wave runup, estimation of wave kinematics 
using appropriate wave theories or numerical modelling is required. This paper focuses on wave runup 
and forces on a cylinder upon a shoal such as offshore rock lighthouses. The foreshore geometry of a 
shoal enables large waves to break at the base of the structure or in close proximity. This will make 
the wave kinematics at the base of the cylinder significantly different from previous scenarios and 
hence, available models will not be able to accurately predict the wave runup.  
 
Similarly, seminal force models have been developed to estimate wave loading on cylinders using 
experimental data by Goda et al. (1966), Campbell and Weynberg (1980), Cointe and Armand (1987), 
Wienke and Oumeraci (2004), Burmester et al. (2017), Tu et al. (2018a and 2018b), Khansari and 
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Oumeraci (2018) and Khansari (2018). There is a significant difference between most of the previous 
studies on impulsive wave loads on offshore structures and the current study. In the current study as 
illustrated in Fig. 1, waves are not slamming into the cylinder with a near vertical face, rather waves 
are either breaking into the base of the cylinder or bores generated from broken waves are hitting the 
structure. The highly nonlinear phenomena make the study complex, with only a few experimental 
investigations having been carried out (e.g. Banfi, 2018). According to published bathymetric data 
(e.g. www.navionics.com) and recent bathymetric surveys carried out around prominent rock 
lighthouses in the UK, most of the rock shoals have slopes around 1:2 ~ 1:5 until they reach depths 
around 40m to 50m. (Trinity House, 2019a and 2019b). Therefore, the current research study 
considered steep slopes between 1:1 and 1:5. 
 

Fig 1: Comparative model setups of previous and current experimental investigations on wave forces and runup. 

2 Physical Model Set-Up 

The complicated foreshore bathymetry is simplified in the physical model to be a single slope, topped 
by a horizontal berm. The lighthouse is modelled as a vertical cylinder and incorporates several 
instruments. Model tests were performed in a wave flume (35 m long x 0.6 m wide x 1.2 m high) in 
the COAST Laboratory at the University of Plymouth (Fig. 2), using regular waves and focused wave 
groups. Regular wave tests enabled the simplest parametrization of conditions leading to wave 
breaking and the subsequent impact and wave runup on the cylinder, and are reported on here. The 
shoal width was 3Rc (where Rc = radius of the cylinder) and the cylinder was placed at the centre of 
the shoal. Three different foreshore slopes (1:1, 1:2.5 and 1:5) were used.  
 
The water level corresponded with the top of the shoal, i.e. 0.5 m. The cylinder was suspended from 
the top of the flume, acting as a vertical cantilever, leaving a minimal gap between the bottom of the 
cylinder and horizontal top plate of the shoal, to ensure the cylinder was physically disconnected from 
the shoal but with no significant flow occurred beneath the cylinder. The top of the cylinder was 



connected to a six-axis load cell. This setup enabled force measurement along three perpendicular 
axes, with three simultaneous torque measurements about those axes. 

 Fig 2: Experimental setup in 35m flume 
 
A wave gauge array with 4 wave gauges was used for wave reflection analysis and a further 12 wave 
gauges measured water level around the model. The model setup consisted of a high-speed camera 
(125fps), a second digital video camera (50 fps), and a GoPro camera mounted near the top of the 
cylinder recorded each model tests (Fig 3). The high-speed and other digital video cameras were 
synchronised with the data acquisition system and those data were processed to obtain wave breaking 
location and wave runup along the cylinder. 

 
Fig. 3. Model setup for wave flume tests (left panel) and an exemplary force record (right panel) 

Each model configuration was tested with a range of regular wave parameters as shown in Table 1. 
These parameters were carefully selected after analysis of probable extreme wave conditions 
occurring around exposed lighthouses such as Fastnet lighthouse (Antonini et al. 2019) and Wolf 
Rock lighthouse (Raby et al. 2019). 

Tab. 1. Wave parameters 

Model Scale [1:81] Prototype Scale 

H [m] T [s] H [m] T [s] 

0.050 1.200 4.050 10.8 

0.075 1.500 6.075 13.5 

0.100 1.850 8.100 16.65 

0.125 1.960 10.125 17.64 

0.150 2.440 12.150 21.96 

Cylinder diameter = 0.12m (9.72m in prototype scale) 



3 Data Acquisition and Analysis 

The wave force acting on the cylinder has two force components: a rapidly-varying 
(impulsive/dynamic) component and a quasi-static component. When a test rig is exposed to a rapidly-
varying wave forces, typically the dynamic responses of the test rig is measured, rather than the actual 
wave forces. The load cell with six-degrees of freedom hence measured the Total Force Responses 
(TFR) of the cylinder rather than the actual wave force. Therefore, careful data processing was 
required to separate force components from the measured signal. The TFR were analysed, firstly to 
separate the Total Force (TF) from recorded TRF signal and secondly to separate the impulsive and 
quasi-static force components of the extracted TF. The raw TFR signals were initially filtered in the 
frequency domain using a low-pass filter to remove high frequency electronic noises. The cut-off 
frequency of the low pass filter was set to 100Hz to make sure the cut-off limit was appropriately 
large compared to the useful frequencies in the measured TRF signal.  

 
Prior to the wave tests, impact hammer tests were conducted to identify the natural frequency of the 

cylinder (the test rig). A calibrated PCB impulse force hammer (model 086C03) was used for these 
tests. The hammer was connected to the same data acquisition system and test data were recorded at a 
sampling frequency of 5 kHz. The frequency spectrum of the Total Force Response (TFR) signal 
recorded during the hammer tests were analysed and determined that the natural frequency of the 
cylinder was approximately 12 Hz). 

 
A comparative study of the different data processing techniques in force measurements was 

performed using a wider data set and the Hilbert–Huang transform (HHT) technique was identified as 
the most suitable approach for the separation of the TF from TFR signals. The Hilbert–Huang 
transform (HHT) is an empirically based data-analysis method, which consists of two parts: Empirical 
Mode Decomposition (EMD) and Hilbert Spectral Analysis (HSA). TFR data acquired during the 
experiments are predominately nonlinear and they are generated by a nonstationary process. HHT is a 
proven technique to handle nonlinear nonstationary data. The Ensemble Empirical Mode 
Decomposition (EEMD) method (Wu and Huang, 2009), which is an improved technique based on 
HHT, was adopted for force separation. Once the TF was separated from the TFR, impulsive and 
quasi-static components were separated by the LOESS method (Locally Estimated Scatterplot 
Smoothing) e.g. Tu et al. (2018a and 2018b). A detailed description of the force analysis methodology 
followed during the current study and its validation were reported in Dassanayake et al. (2019). 

3.1 Wave Runup Analysis 

The high-speed camera captured wave impacts and wave runup along the cylinder at a rate of 125 fps. 
Each regular wave test consisted of 50 - 100 waves depending on wave period with a total test 
duration of 120s. However only the first 10 fully developed waves were captured using high-speed 
camera. The camera was synchronised with both the wave generation and data acquisition systems 
and to save hard disk space only 3,500 frames captured between time t = 20s and t = 50s of each test 
were saved (t = 0s is the start of the wave generation and data acquisition). A MATLAB code was 
developed to extract wave runup time series from these high-speed video records. 
 
Fig 4 illustrates the key steps of wave runup measurement procedure. Fig 4a shows the field of view 
of the high-speed camera, and the calibration pattern used for the distortion correction and for scaling-
up the images. The top surface of the horizontal berm was considered as the baseline for wave runup 
measurements. The water level was coincident with the top the shoal, i.e. 0.5m above the flume bed 
level. Fig 4b depicts wave runup. Both the high-speed images and the cylinder were grey scale, which 
limits the options for filtering the images. Hence, absolute difference between two images were used 
for detection of wave runup (Fig 4c); these absolute difference images provided wave runup 
corresponding to the second image. A mask was applied to each image to reduce the computational 
time while keeping only the interested area for further processing. The absolute difference image 
shown in Fig 4c was further filtered based on pixel thresholds, to obtain a cleaner image (Fig. 4d) to 
extract wave runup.  

 
 



Fig. 4. Wave runup calculation using high-speed camera images 

The MATLAB code searches for the highest non-zero pixel in the filtered absolute difference 
images along the reference line (vertical red line in Fig. 4) and records the pixel coordinates against 
the frame number. These data are then converted to wave runup time series. Raw runup time series 
were filtered using the MATLAB Locally Estimated Scatterplot Smoothing (LOESE) function to 
remove any unwanted “spikes” in the time series. Fig. 6 depicts a typical wave runup time series 
extracted from the process. In order to verify the MATLAB procedure, peak runup values were 
manually identified from timestack images (Fig. 5). The timestack image consists of pixel values 
extracted along the reference line from each high-speed camera image. These pixel values were then 
sequentially arranged with the x-axis representing the frame number and the y-axis representing the 
runup height. The red continuous line marks the base of the cylinder. Peak runup values captured by 
the procedure were compared with the manually selected peaks as shown in Fig. 6. 

 

Fig. 5.  A typical timestack of images recorded using the high-speed camera  

 

The upper panel of Fig. 6 shows raw time series from the image analysis (green line) and filtered 
time series using LOESE. The figure also contains data from of wave gauge 13 and 14, which were 
aligned with the centre of cylinder, perpendicular to the wave direction and placed halfway between 
the cylinder and the glass walls of the flume (Fig. 2 and the upper panel of Fig. 6). Since the wave 
gauges were therefore one radius (Rc) of the cylinder behind the front face of the cylinder, there is a 
slight difference in the time where peaks are recorded. Nevertheless, water surface elevation from 
these two gauges were used for quality controlling of the wave runup analysis. Maximum wave runup 
for each wave within the selected time frame was extracted from the images. Even though the waves 
were generated as regular waves, note that there is a difference between each individual wave.  



 

Fig. 6. A wave runup time series from image analysis and comparison of manually digitises and computer selected 

maximum runup 

 
Approximately the first 10 fully developed waves were considered for each regular wave test. 
Individual wave runup measurements of those waves show fluctuations around ±10% of the mean 
wave runup. Therefore, mean values of the first 10 peak runup values corresponding to the first fully 
developed 10 waves were considered in the subsequent analysis. Fig. 7 compares the manually and 
computer selected mean runup values. Fig.7 shows good agreement for runup values up to 300mm 
beyond which the wave interactions usually resulted from violent wave breakings in front of the 
cylinder. This wave breaking will generate green water runup as well as spray. Often the MATLAB 
code was unable to pick the highest green water marks alone the reference line, instead, picking some 
spray just above. This limitation causes an overestimation of runup. Therefore, those peaks were 
manually digitised. Moreover, it is evident that agreement is less good as the slope becomes gentler. 
This behaviour is mainly related to the nature of the breaking wave generated on the gentler slope. On 
the 1:5 slope the waves break farther from the lighthouse than in the other cases, generating a very 
aerated bore where the colour of the flow is almost white, making it harder to be automatically 
detected. 

 

Fig. 7. Comparison of max. wave runup results from the MATLAB code and manually digitised values. 

 



 
Fig. 8 illustrates the behaviour of wave runup measurements against wave period where solid black 

lines show the best fit to the data. In general, wave runup increases with wave height for all cases, 
with data points, particularly for smaller wave heights, showing a clear separation of best-fit lines. 
Incident wave height were obtained from wave reflection analysis performed at the wave gauge array 
located more than one wave length upstream from the toe of the shoal. The scatter towards the higher 
wave heights might result from wave runup measurement errors.   

 
The steeper slopes (1:1 and 1:2.5) show a slight downward trend in wave runup measurement as 

the wave period increases. The larger wave tests with 1:2.5 slope resulted in the largest wave runup 
measurements for the entire test series. The 1:5 slope shows a light upward trend in wave runup 
measurements as illustrated in the right panel of Fig. 8. 

 
Fig. 8. Wave runup results for different slopes 

Wave runup results from all three foreshore slopes were also plotted against offshore surf similarity 
parameter. Fig. 9 (left panel) shows the non-dimensional runup calculated by dividing the runup by 
the incident wave height. Fig 9 (right panel) shows the non-dimensional runup calculated by dividing 
wave runup by water depth. The right panel again indicates the large runup events recorded on the 
1:2.5 slope. Note that the current study considered only a single water depth, hence d is a constant. 
Dotted lines in the figures shows the best-fit line of each data set. 

Fig. 9. Non-dimensional wave runup for all three slopes: runup divided by offshore incident wave heights (left) and 
runup divided by water depth at the toe of the shoal (right)  



 
Both panels clearly illustrate that plunging breakers (0.5 < ξ0 < 3.3) cause large runup events 

particularly for 1 < ξ0 < 2. In this range, wave runup could reach as much as 3 times the wave height. 
Wolf Rock lighthouse is on a rocky shoal with approximately 1:2.5 slope towards the main wave 
direction according to published bathymetric data. Therefore, findings of this physical modelling will 
help to understand the wave parameters that cause damage to the helideck in Bishop Rock, Longship 
and Wolf Rock lighthouses in the UK, which are more than 40m above the mean sea level.  

 

3.2 Wave Load Analysis 

A load cell with six-degrees of freedom measured the Total Force Responses (TFR) of the cylinder. 
The TFRs along the direction of wave propagation were extracted and processed to obtain Total 
Forces. A comparative study of empirical and physically based methods to extract TF from TFR were 
performed and Ensemble Empirical Mode Decomposition (EEMD) method (Wu and Huang, 2009, 
Huang et al., 2014) was selected as the most appropriate method to extract TFs as it is 
computationally less expensive compared to deconvolution technique without any loss of accuracy. A 
sensitivity analysis was performed to find optimum amplitude for white noise (which is defined as the 
ratio of the standard deviation of the added noise and that of pre-processed signal, Nstd) and 
“Ensemble number” (NE) for the EEMD. Nstd=0.06 and NE=100 were used for the current analysis. 
Measured raw Total Force Responses (TFR) signal was filtered using a 100Hz low pass filter to 
remove a large portion of electronic noise. This pre-processed signal was then further processed using 
the EEMD technique. Intrinsic Mode Functions (IMFs) 6 onwards were summed to generate the total 
Force (TF) signal. Total Force signals of each test were truncated to consider the first 10 fully 
developed regular waves. Then the mean value of these 10 peaks were used for further analysis 
described below. 

 
Mean values of the maximum Total Forces were plotted against the surf similarity parameter as 

shown in Fig. 10. The Total Force increases as surf similarity parameter decrease, for the same wave 
period. Total Forces showed higher peaks when the surf similarity parameter is around 1 to 2, except 
1:1 slope. Fig. 11 shows the non-dimensional Total Forces plotted against wave steepnesses (left 
panel) and surf similarity parameters (right panel). Higher non-dimensional Total Forces were 
recorded when wave steepness was higher, however, the large scatter of the data indicate a poor 
correlation between the Total Forces and the wave steepness. Generally, non-dimensional Total 
Forces were also higher when surf similarity parameter is between 1 and 5 indicating wave cases with 
potential plunging breakers cause maximum Total Forces at the cylinder as expected even in condition 
of broken wave loadings. 

 

Fig. 10. Max. Total Forces for different shoal geometries 



Fig. 11. Non-dimensional max non-dimensional total wave forces (TFmax*=TFmax/ρgRcH2) 

4 Concluding Remarks 

This paper presents the key findings of an on-going research study on wave loading and runup on a 
cylinder upon a rocky shoal. The study mainly focuses on wave runup and Total Forces on a cylinder 
under the action of broken waves from regular wave tests. High-speed video records were analysed to 
obtain time series of wave runup on the front face of the cylinder. Total Force measurements and 
wave runup were further studied to understand the influences of wave parameters and steepness of 
foreshore slope. 
 

New MATLAB code was developed to extract wave runup time series from high-speed video 
records. This code shows a good agreement with the manually digitised peaks, particularly for the low 
runup events. Therefore, the code will be used for the analysis of a wider data set. Furthermore, the 
code will assist in extracting wave runup alone several lines around the cylinder, which is essential for 
validation of CFD models. 
 
As illustrated in this paper, both wave runup and Total Force increase as the surf similarity parameter 
decreases. This is mainly due to different breaker types and differences in residual energy in the bore 
generated from the wave breaking. In the case of a plunging breaker, as seen in most of the model 
tests discussed in this paper, impulsive loadings occur on the structure. The impact duration is much 
larger compared to slamming waves experienced by offshore structures in deeper water. This type of 
loading has a high potential to resonate cylindrical structures on rocky shoals such as lighthouses. 
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