
 
 

Delft University of Technology

Test them all, is it worth it? Assessing configuration sampling on the JHipster Web
development stack

Halin, Axel; Nuttinck, Alexandre; Acher, Mathieu; Devroey, Xavier; Perrouin, Gilles; Baudry, Benoit

DOI
10.1007/s10664-018-9635-4
Publication date
2018
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
Halin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G., & Baudry, B. (2018). Test them all, is it worth it?
Assessing configuration sampling on the JHipster Web development stack. Empirical Software Engineering,
24, 674–717. https://doi.org/10.1007/s10664-018-9635-4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/s10664-018-9635-4


Empir Software Eng (2019) 24:674–717
https://doi.org/10.1007/s10664-018-9635-4

Test them all, is it worth it? Assessing configuration
sampling on the JHipster Web development stack

Axel Halin1 ·Alexandre Nuttinck2 ·Mathieu Acher3 ·
Xavier Devroey4 ·Gilles Perrouin5 ·Benoit Baudry6

Published online: 17 July 2018
© The Author(s) 2018

Abstract Many approaches for testing configurable software systems start from the same
assumption: it is impossible to test all configurations. This motivated the definition of
variability-aware abstractions and sampling techniques to cope with large configuration
spaces. Yet, there is no theoretical barrier that prevents the exhaustive testing of all config-
urations by simply enumerating them if the effort required to do so remains acceptable. Not
only this: we believe there is a lot to be learned by systematically and exhaustively test-
ing a configurable system. In this case study, we report on the first ever endeavour to test

Communicated by: Sven Apel

� Xavier Devroey
x.d.m.devroey@tudelft.nl

Alexandre Nuttinck
alexandre.nuttinck@cetic.be

Mathieu Acher
mathieu.acher@irisa.fr

Gilles Perrouin
gilles.perrouin@unamur.be

Benoit Baudry
baudry@kth.se

1 PReCISE, NaDI, Faculty of Computer Science, University of Namur, Namur, Belgium

2 CETIC, Charleroi, Belgium

3 Inria, CNRS, IRISA, University of Rennes, Rennes, France

4 SERG, Delft University of Technology, Delft, The Netherlands

5 (FNRS research associate) PReCISE, NaDI, Faculty of Computer Science, University of Namur,
Namur, Belgium

6 KTH Royal Institute of Technology, Stockholm, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9635-4&domain=pdf
http://orcid.org/0000-0002-0831-7606
mailto: x.d.m.devroey@tudelft.nl
mailto: alexandre.nuttinck@cetic.be
mailto: mathieu.acher@irisa.fr
mailto: gilles.perrouin@unamur.be
mailto: baudry@kth.se


Empir Software Eng (2019) 24:674–717 675

all possible configurations of the industry-strength, open source configurable software sys-
tem JHipster, a popular code generator for web applications. We built a testing scaffold for
the 26,000+ configurations of JHipster using a cluster of 80 machines during 4 nights for
a total of 4,376 hours (182 days) CPU time. We find that 35.70% configurations fail and
we identify the feature interactions that cause the errors. We show that sampling strategies
(like dissimilarity and 2-wise): (1) are more effective to find faults than the 12 default con-
figurations used in the JHipster continuous integration; (2) can be too costly and exceed the
available testing budget. We cross this quantitative analysis with the qualitative assessment
of JHipster’s lead developers.

Keywords Configuration sampling · Variability-intensive system ·
Software testing · JHipster · Case study

1 Introduction

Configurable systems offer numerous options (or features) that promise to fit the needs of
different users. New functionalities can be activated or deactivated and some technologies
can be replaced by others for addressing a diversity of deployment contexts, usages, etc.
The engineering of highly-configurable systems is a standing goal of numerous software
projects but it also has a significant cost in terms of development, maintenance, and testing.
A major challenge for developers of configurable systems is to ensure that all combinations
of options (configurations) correctly compile, build, and run. Configurations that fail can
hurt potential users, miss opportunities, and degrade the success or reputation of a project.
Ensuring quality for all configurations is a difficult task. For example, Melo et al. compiled
42,000+ random Linux kernels and found that only 226 did not yield any compilation warn-
ing (Melo et al. 2016). Though formal methods and program analysis can identify some
classes of defects (Thüm et al. 2014; Classen et al. 2013) – leading to variability-aware test-
ing approaches (e.g., Nguyen et al. 2014; Kim et al. 2011, 2013) – a common practice is
still to execute and test a sample of (representative) configurations. Indeed, enumerating all
configurations is perceived as impossible, impractical or both. While this is generally true,
we believe there is a lot to be learned by rigorously and exhaustively testing a configurable
system. Prior empirical investigations (e.g., Medeiros et al. 2016; Sanchez et al. 2014, 2017)
suggest that using a sample of configurations is effective to find configuration faults, at low
cost. However, evaluations were carried out on a small subset of the total number of configu-
rations or faults, constituting a threat to validity. They typically rely on a corpus of faults that
are mined from issue tracking systems. Knowing all the failures of the whole configurable
system provides a unique opportunity to accurately assess the error-detection capabilities of
sampling techniques with a ground truth. Another limitation of prior works is that the cost of
testing configurations can only be estimated. They generally ignore the exact computational
cost (e.g., time needed) or how difficult it is to instrument testing for any configuration.

This article aims to grow the body of knowledge (e.g., in the fields of combinatorial
testing and software product line engineering Medeiros et al. 2016; Meinicke et al. 2016;
Hervieu et al. 2011; Henard et al. 2014; Cohen et al. 2008; Sanchez et al. 2014) with a new
research approach: the exhaustive testing of all configurations. We use JHipster, a popular
code generator for web applications, as a case study. Our goals are: (i)] to investigate the
engineering effort and the computational resources needed for deriving and testing all con-
figurations, and (ii) to discover how many failures and faults can be found using exhaustive



676 Empir Software Eng (2019) 24:674–717

testing in order to provide a ground truth for comparison of diverse testing strategies. We
describe the efforts required to distribute the testing scaffold for the 26,000+ configura-
tions of JHipster, as well as the interaction bugs that we discovered. We cross this analysis
with the qualitative assessment of JHipster’s lead developers. Overall, we collect multiple
sources that are of interest for (i) researchers interested in building evidence-based theo-
ries or tools for testing configurable systems; (ii) practitioners in charge of establishing a
suitable strategy for testing their systems at each commit or release. This article builds on
preliminary results (Halin et al. 2017) that introduced the JHipster case for research in con-
figurable systems and described early experiments with the testing infrastructure on a very
limited number of configurations (300). In addition to providing a quantitative assessment of
sampling techniques on all the configurations, the present contribution presents numerous
qualitative and quantitative insights on building the testing infrastructure itself and compares
them with JHipster developers’ current practice. In short, we report on the first ever endeavour
to test all possible configurations of the industry-strength open-source configurable soft-
ware system: JHipster. While there have been efforts in this direction for Linux kernels, their
variability space forces to focus on subsets (the selection of 42,000+ kernels corresponds to
one month of computation Melo et al. 2016) or to investigate bugs qualitatively (Abal et al.
2014, 2018). Specifically, the main contributions and findings of this article are:

1. a cost assessment and qualitative insights of engineering an infrastructure able to auto-
matically test all configurations. This infrastructure is itself a configurable system and
requires a substantial, error-prone, and iterative effort (8 man*month);

2. a computational cost assessment of testing all configurations using a cluster of dis-
tributed machines. Despite some optimizations, 4376 hours (∼182 days) CPU time and
5.2 terabytes of available disk space are needed to execute 26,257 configurations;

3. a quantitative and qualitative analysis of failures and faults. We found that 35.70% of
all configurations fail: they either do not compile, cannot be built or fail to run. Six
feature interactions (up to 4-wise) mostly explain this high percentage;

4. an assessment of sampling techniques. Dissimilarity and t-wise sampling techniques
are effective to find faults that cause a lot of failures while requiring small samples of
configurations. Studying both fault and failure efficiencies provides a more nuanced
perspective on the compared techniques;

5. a retrospective analysis of JHipster practice. The 12 configurations used in the contin-
uous integration for testing JHipster were not able to find the defects. It took several
weeks for the community to discover and fix the 6 faults;

6. a discussion on the future of JHipster testing based on collected evidence and feedback
from JHipster’s lead developers;

7. a feature model for JHipster v3.6.1 and a dataset to perform ground truth comparison
of configuration sampling techniques, both available at https://github.com/xdevroey/
jhipster-dataset.

The remainder of this article is organised as follows: Section 2 provides background
information on sampling techniques and motivates the case; Section 3 presents the JHip-
ster case study, the research questions, and methodology applied in this article; Section 4
presents the human and computational cost of testing all JHipster configurations; Section 5
presents the faults and failures found during JHipster testing; Section 6 makes a ground
truth comparison of the sampling strategies; Section 7 positions our approach with respect
to studies comparing sampling strategies on other configurable systems; Section 8 gives the
practitioners point of view on JHipster testing by presenting the results of our interview

https://github.com/xdevroey/jhipster-dataset
https://github.com/xdevroey/jhipster-dataset


Empir Software Eng (2019) 24:674–717 677

Fig. 1 JHipster reverse engineered feature model (only an excerpt of cross-tree constraints is given)

with JHipster developers; Section 9 discusses the threats to validity; and Section 10 wraps
up with conclusions.

2 Background and related work

Configurable systems have long been studied by the Software Product Line (SPL) engineer-
ing community (Pohl et al. 2005; Apel et al. 2013a). They use a tree-like structure, called
feature model (Kang et al. 1990), to represent the set of valid combinations of options:
i.e., the variants (also called products). Each option (or features1) maybe decomposed into
sub-features and additional constraints may be specified amongst the different features.

For instance, Fig. 1 presents the full feature model of JHipster. Each JHipster variant has
a Generator option that may be either a Server, a Client, or an Application; may also have
a Database that is SQL or Cassandra or MongoDB; etc. Additional constraints specify for
instance that SocialLogin may only be selected for Monolithic applications.

2.1 Reverse engineering variability models

The first step required to reason on an existing configurable system is to identify its vari-
ability. There are some approaches in the literature that attempt to extract variability and
synthesize a feature model. For example, She et al. devised a technique to transform the
description language of the Linux kernel into a representative feature model (She et al.
2011). The inference of parent-child relationships amongst features proved to be problem-
atic as the well as the mapping of multi-valued options to boolean features. As a result,
feature models extracted with such a technique have to be further validated and corrected
(Henard et al. 2013a). Abbasi et al. (2014) designed an extraction approach that first look
for variability patterns in web configurator tools and complete extracted information using
a web crawler. In this case, the feature model is not synthesised. Indeed, static analysis
has been largely used to reason about configuration options at the code level (e.g., Rabkin

1In the remaining of this paper, we consider features as units of variability: i.e., options.



678 Empir Software Eng (2019) 24:674–717

and Katz 2011; Nadi et al. 2015). Such techniques often lie at the core of variability-aware
testing approaches discussed below. As we will detail in our study, the configurator imple-
mentation as well as variation points of JHipster are scattered in different kinds of artefacts,
challenging the use of static and dynamic analyses. As a result, we rather used a man-
ual approach to extract a variability model. Though automated variability extraction can be
interesting to study JHipster evolution over the long term, we leave it out of the scope of the
present study.

2.2 Testing a configurable system

Over the years, various approaches have been developed to test configurable systems (da
Mota Silveira Neto et al. 2011; Engström and Runeson 2011; Machado et al. 2014). They
can be classified into two strategies: configurations sampling and variability-aware testing.
Configuration sampling approaches sample a representative subset of all the valid con-
figurations of the system and test them individually. Variability-aware testing approaches
instrument the testing environment to take variability information and reduce the test
execution effort.

2.2.1 Variability-aware testing

To avoid re-execution of variants that have exactly the same execution paths for a test case,
Kim et al. and Shi et al. use static and dynamic execution analysis to collect variability infor-
mation from the different code artefacts and remove relevant configurations accordingly
(Kim et al. 2013; Shi et al. 2012).

Variability-aware execution approaches (Kim et al. 2011; Nguyen et al. 2014; Austin and
Flanagan 2012) instrument an interpreter of the underlying programming language to exe-
cute the tests only once on all the variants of a configurable system. For instance, Nguyen
et al. implemented Varex, a variability-aware PHP interpreter, to test WordPress by running
code common to several variants only once (Nguyen et al. 2014). Alternatively, instead
of executing the code, Reisner et al. use a symbolic execution framework to evaluate how
the configuration options impact the coverage of the system for a given test suite (Reisner
et al. 2010). Static analysis and notably type-checking has been used to look for bugs in
configurable software (Kastner and Apel 2008; Kenner et al. 2010). A key point of type-
checking approaches is that they have been scaled to very large code bases such as the Linux kernel.

Although we believe that JHipster is an interesting candidate case study for those
approaches, with the extra difficulty that variability information is scattered amongst dif-
ferent artefacts written in different languages (as we will see in Section 4.1), they require
a (sometimes heavy) instrumentation of the testing environment. Therefore, we leave
variability-aware testing approaches outside the scope of this case study and focus instead
on configuration sampling techniques that can fit into the existing continuous integration
environment of JHipster developers (see Section 8.1).

2.2.2 Configurations sampling

Random sampling This strategy is straightforward: select a random subset of the valid
configurations. Arcuri and Briand (2012) demonstrate that, in the absence of constraints
between the options, this sampling strategy may outperform other sampling strategies. In
our evaluation, random sampling serves as basis for comparison with other strategies.



Empir Software Eng (2019) 24:674–717 679

T-wise sampling T-wise sampling comes from Combinatorial Interaction Testing (CIT),
which relies on the hypothesis that most faults are caused by undesired interactions of a
small number of features (Kuhn et al. 2004). This technique has been adapted to variability-
intensive systems for more than 10 years (Cohen et al. 2008; Lopez-Herrejon et al. 2015).

A t-wise algorithm samples a set of configurations such that all possible t-uples of
options are represented at least once (it is generally not possible to have each t-uples rep-
resented exactly once due to constraints between options). Parameter t is called interaction
strength. The most common t-wise sampling is pairwise (2-wise) (Yilmaz et al. 2006; Cohen
et al. 2008; Perrouin et al. 2011; Johansen 2016; Hervieu et al. 2011). In our evaluation, we
rely on SPLCAT (Johansen et al. 2012a), an efficient t-wise sampling tool for configurable
systems based on a greedy algorithm.

Dissimilarity sampling Despite advances being made, introducing constraints during t-
wise sampling yields scalability issues for large feature models and higher interaction
strengths (Medeiros et al. 2016). To overcome those limitations, Henard et al. developed
a dissimilarity-driven sampling (Henard et al. 2014). This technique approximates t-wise
coverage by generating dissimilar configurations (in terms of shared options amongst these
configurations). From a set of random configurations of a specified cardinality, a (1+1)
evolutionary algorithm evolves this set such that the distances amongst configurations are
maximal, by replacing a configuration at each iteration, within a certain amount of time. In
our evaluation, we rely on Henard et al.’s implementation: PLEDGE (Henard et al. 2013c).
The relevance of dissimilarity-driven sampling for software product lines has been empiri-
cally demonstrated for large feature models and higher strengths (Henard et al. 2014). This
relevance was also independently confirmed for smaller SPLs (Al-Hajjaji et al. 2016).

Incremental Sampling Incremental sampling consists of focusing on one configuration
and progressively adding new ones that are related to focus on specific parts of the con-
figuration space (Uzuncaova et al. 2010; Oster et al. 2010; Lochau et al. 2012b). For
example, Lochau et al. (2012b) proposed a model-based approach that shifts from one prod-
uct to another by applying “deltas” to statemachine models. These deltas enable automatic
reuse/adaptation of test model and derivation of retest obligations. Oster et al. extend combi-
natorial interaction testing with the possibility to specify a predefined set of products in the
configuration suite to be tested (Oster et al. 2010). Incremental techniques naturally raise
the issue of which configuration to start from. Our goal was to compare techniques that
explore the configuration space in the large and therefore we did not include incremental
techniques in our experiments.

One-disabled sampling The core idea of one-disabled sampling is to extract configura-
tions in which all options are activated but one (Abal et al. 2014; Medeiros et al. 2016). For
instance, in the feature diagram of Fig. 1, we will have a configuration where the SocialLogin
option is deactivated and all the other options (that are not mandatory) are activated.

This criterion allows various strategies regarding its implementation: in our example, one
may select a configuration with a Server xor Client xor Application option active. All those
three configurations fit for the one-disabled definition. In their implementation, Medeiros
et al. (2016) consider the first valid configuration returned by the solver.

Since SAT solvers rely on internal orders to process solutions (see Henard et al. 2014)
the first valid solution will always be the same. The good point is that it makes the algorithm
deterministic. However, it implicitly links the bug-finding ability of the algorithm with the



680 Empir Software Eng (2019) 24:674–717

solver’s internal order and to the best of our knowledge, there is no reason why it should be
linked.

In our evaluation (see Section 6.2), for each disabled option, we choose to apply a random
selection of the configuration to consider. Additionally, we also extend this sampling criteria
to all valid configurations where one feature is disabled and the others are enabled (called
all-one-disabled in our results): in our example, for the SocialLogin option deactivated,
we will have one configuration with Server option activated, one configuration with Client
option activated, and one configuration with Application option activated.

One-enabled sampling This sampling mirrors one-disabled and consists of enabling each
option one at a time (Abal et al. 2014; Medeiros et al. 2016). For instance, a configuration
where the SocialLogin option is selected and all the other options are deselected. As for
one-disabled, for each selected option, we apply a random selection of the configuration
to consider in our evaluation; and the criteria are extended to all-one-enabled, with all the
valid configurations for each selected option.

Most-enabled-disabled sampling This method only samples two configurations: one
where as many options as possible are selected and one where as many options as possible
are deselected (Abal et al. 2014; Medeiros et al. 2016). If more than one valid configuration
is possible for most-enabled (respectively most-disabled) options, we randomly select one
most-enabled (respectively most-disabled) configuration. The criteria are extended to all-
most-enabled-disabled, with all the valid configurations with most-enabled (respectively
most-disabled) options.

Other samplings Over the years, many other sampling techniques have been developed.
Some of them use other artefacts in combination with the feature model to perform the
selection. Johansen et al. (2012b) extended SPLCAT by adding weights on sub-product
lines. Lochau et al. combine coverage of the feature model with test model coverage, such
as control and data flow coverage (Lochau et al. 2012a). Devroey et al. switched the focus
from variability to behaviour (Devroey et al. 2014; Devroey et al. 2016) and usage of the
system (Devroey et al. 2017) by considering a featured transition system for behaviour and
configurations sampling.

In this case study, we only consider the feature model as input for our samplings
and focus on random, t-wise, dissimilarity, one-enabled, one-disabled, and most-enabled-
disabled techniques.

2.3 Comparison of sampling approaches

Perrouin et al. (2011) compared two exact approaches on five feature models of the SPLOT
repository w.r.t to performance of t-wise generation and configuration diversity. Hervieu
et al. (2011) also used models from the SPLOT repository to produce a small number of
configurations. Johansen et al. (2012b) extension of SPLCAT has been applied to the Eclipse
IDE and to TOMRA, an industrial product line. Empirical investigations were pursued on
larger models (1000 features and above) notably on OS kernels (e.g., Henard et al. 2014;
Johansen et al. 2012a) demonstrating the relevance of metaheuristics for large sampling
tasks (Henard et al. 2015; Ochoa et al. 2017). However, these comparisons were performed
at the model level using artificial faults.

Several authors considered sampling on actual systems. Oster et al. (2011) applied the
Moso-Polite pairwise tool on an electronic module allowing 432 configurations to derive



Empir Software Eng (2019) 24:674–717 681

metrics regarding the test reduction effort. Additionally, they also exhibited a few cases
where a higher interaction strength was required (3-wise).

Finally, in Section 7, we present an in-depth discussion of related case studies with
sampling techniques comparison.

2.4 Motivation of this Study

Despite the number of empirical investigations (e.g., Ganesan et al. 2007; Qu et al. 2008)
and surveys (e.g., Engstrȯm et al. 2011; Thu̇m et al. 2014; Da Mota Silveira Neto et al.
2011) to compare such approaches, many focused on subsets to make the analyses tractable.
Being able to execute all configurations led us to consider actual failures and collect a
ground truth. It helps to gather insights for better understanding the interactions in large
configuration spaces (Meinicke et al. 2016; Yilmaz et al. 2006). And provide a complete,
open, and reusable dataset to the configurable system testing community to evaluate and
compare new approaches.

3 Case study

JHipster is an open-source, industrially used generator for developing Web applications
(JHipsterTeam: JHipster website 2017). Started in 2013, the JHipster project has been
increasingly popular (6000+ stars on GitHub) with a strong community of users and around
300 contributors in February 2017.

From a user-specified configuration, JHipster generates a complete technological stack
constituted of Java and Spring Boot code (on the server side) and Angular and Bootstrap (on
the front-end side). The generator supports several technologies ranging from the database

Listing 1 Variability in DatabaseConfiguration.java



682 Empir Software Eng (2019) 24:674–717

used (e.g., MySQL or MongoDB), the authentication mechanism (e.g., HTTP Session or
Oauth2), the support for social log-in (via existing social networks accounts), to the use
of microservices. Technically, JHipster uses npm and Bower to manage dependencies and
Yeoman2 (aka yo) tool to scaffold the application (Raible 2015). JHipster relies on condi-
tional compilation with EJS3 as a variability realisation mechanism. Listing 1 presents an
excerpt of class DatabaseConfiguration.java. The options sql, mongodb, h2Disk, h2Memory
operate over Java annotations, fields, methods, etc. For instance, on line 8, the inclu-
sion of mongodb in a configuration means that DatabaseConfiguration will inherit from
AbstractMongoConfiguration.

JHipster is a complex configurable system with the following characteristics: (i) a variety
of languages (JavaScript, CSS, SQL, etc.) and advanced technologies (Maven, Docker, etc.)
are combined to generate variants; (ii) there are 48 configuration options and a configurator
guides user throughout different questions. Not all combinations of options are possible
and there are 15 constraints between options; (ii) variability is scattered among numerous
kinds of artefacts (pom.xml, Java classes, Docker files, etc.) and several options typically
contribute to the activation or deactivation of portions of code, which is commonly observed
in configurable software (Jin et al. 2014).

This complexity challenges core developers and contributors of JHipster. Unsurpris-
ingly, numerous configuration faults have been reported on mailing lists and eventually
fixed with commits.4 Though formal methods and variability-aware program analysis can
identify some defects (Thüm et al. 2014; Classen et al. 2013; Nguyen et al. 2014), a signif-
icant effort would be needed to handle them in this technologically diverse stack. Thus, the
current practice is rather to execute and test some configurations and JHipster offers oppor-
tunities to assess the cost and effectiveness of sampling strategies (Medeiros et al. 2016;
Meinicke et al. 2016; Hervieu et al. 2011; Henard et al. 2014; Cohen et al. 2008; Sanchez
et al. 2014). Due to the reasonable number of options and the presence of 15 constraints, we
(as researchers) also have a unique opportunity to gather a ground truth through the testing
of all configurations.

3.1 Research questions

Our research questions are formulated around three axes: the first one addresses the feasi-
bility of testing all JHipster configurations; the second question addresses the bug-discovery
power of state-of-the-art configuration samplings; and the last one addresses confronts our
results with the JHipster developers point of view.

3.1.1 (RQ1) What is the feasibility of testing all JHipster configurations?

This research question explores the cost of an exhaustive and automated testing strategy. It
is further decomposed into two questions:

(RQ1.1) What is the cost of engineering an infrastructure capable of automatically
deriving and testing all configurations?

2http://yeoman.io/
3http://www.embeddedjs.com/
4e.g., https://tinyurl.com/bugjhipster15

http://yeoman.io/
http://www.embeddedjs.com/
https://tinyurl.com/bugjhipster15


Empir Software Eng (2019) 24:674–717 683

To answer this first question, we reverse engineered a feature model of JHipster based on
various code artefacts (described in Section 4.1), and devise an analysis workflow to auto-
matically derive, build, and test JHipster configurations (described in Section 4.2). This
workflow has been used to answer our second research question:

(RQ1.2) What are the computational resources needed to test all configurations?

To keep a manageable execution time, the workflow has been executed on the INRIA
Grid’5000, a large-scale testbed offering a large amount of computational resources
(Balouek et al. 2012).

Section 4.4 describes our engineering efforts in building a fully automated testing
infrastructure for all JHipster variants. We also evaluate the computational cost of such
an exhaustive testing; describe the necessary resources (man-power, time, machines); and
report on encountered difficulties as well as lessons learned.

3.1.2 (RQ2) To what extent can sampling help to discover defects in JHipster?

We use the term defect to refer to either a fault or a failure. A failure is an “undesired
effect observed in the system’s delivered service” (Mathur 2008; Society et al. 2014) (e.g.,
the JHipster configuration fails to compile). We then consider that a fault is a cause of
failures. As we found in our experiments (see Section 5), a single fault can explain many
configuration failures since the same feature interactions cause the failure.

To compare different sampling approaches, the first step is to characterise failures and
faults that can be found in JHipster:

(RQ2.1) How many and what kinds of failures/faults can be found in all configurations?

Based on the outputs of our analysis workflow, we identify the faults causing one or more
failures using statistical analysis (see Section 5.2) and confirm those faults using qualitative
analysis, based on issue reports of the JHipster GitHub project (see Section 5.3).

By collecting a ground truth (or reference) of defects, we can measure the effectiveness
of sampling techniques. For example, is a random selection of 50 (says) configurations as
effective to find failures/faults than an exhaustive testing? We can address this research
question:

(RQ2.2) How effective are sampling techniques comparatively?

We consider the sampling techniques presented in Section 2.2.2; all techniques use the fea-
ture model as primary artefact (see Section 6) to perform the sampling. For each sampling
technique, we measure the failures and the associated faults that the sampled configurations
detect. Besides a comparison between automated sampling techniques, we also compare the
manual sampling strategy of the JHipster project.

Since our comparison is performed using specific results of JHipster’s executions and
cannot be generalized as such, we confront our findings to other case studies found in the
literature. In short:

(RQ2.3) How do our sampling techniques effectiveness findings compare to other case
studies and works?

To answer this question, we perform a literature review on empirical evaluation of sampling
techniques (see Section 7).



684 Empir Software Eng (2019) 24:674–717

3.1.3 (RQ3) How can sampling help JHipster developers?

Finally, we can put in perspective the typical trade-off between the ability to find
configuration defects and the cost of testing.

(RQ3.1) What is the most cost-effective sampling strategy for JHipster?

And confront our findings to the current development practices of the JHipster developers:

(RQ3.2) What are the recommendations for the JHipster project?

To answer this question, we performed a semi-structured interview of the lead developer
of the project and exchanged e-mails with other core developers to gain insights on the
JHipster development process and collect their reactions to our recommendations, based on
an early draft of this paper (see Section 8).

3.2 Methodology

We address these questions through quantitative and qualitative research. We initiated the
work in September 2016 and selected JHipster 3.6.15 (release date: mid-August 2016). The
3.6.1 corrects a few bugs from 3.6.0; the choice of a “minor” release avoids finding bugs
caused by an early and unstable release.

The two first authors worked full-time for four months to develop the infrastructure capa-
ble of testing all configurations of JHipster. They were graduate students, with strong skills
in programming and computer science. Prior to the project’s start, they have studied feature
models and JHipster. We used GitHub to track the evolution of the testing infrastructure.
We also performed numerous physical or virtual meetings (with Slack). Four other people
have supervised the effort and provided guidance based on their expertise in software test-
ing and software product line engineering. Through frequent exchanges, we gather several
qualitative insights throughout the development.

Besides, we decided not to report faults whenever we found them. Indeed, we wanted
to observe whether and how fast the JHipster community would discover and correct these
faults. We monitored JHipster mailing lists to validate our testing infrastructure and charac-
terize the configuration failures in a qualitative way. We have only considered GitHub issues
since most of the JHipster activity is there. Additionally, we used statistical tools to quan-
tify the number of defects, as well as to assess sampling techniques. Finally, we crossed our
results with insights from three JHipster’s lead developers.

4 All configurations testing costs (RQ1)

4.1 Reverse engineering variability

The first step towards a complete and thorough testing of JHipster variants is the modelling
of its configuration space. JHipster comes with a command-line configurator. However, we
quickly noticed that a brute force tries of every possible combinations has scalability issues.
Some answers activate or deactivate some questions and options. As a result, we rather

5https://github.com/jhipster/generator-jhipster/releases/tag/v3.6.1

https://github.com/jhipster/generator-jhipster/releases/tag/v3.6.1


Empir Software Eng (2019) 24:674–717 685

considered the source code from GitHub for identifying options and constraints. Though
options are scattered amongst artefacts, there is a central place that manages the configurator
and then calls different sub-generators to derive a variant.

We essentially consider prompts.js, which specifies questions prompted to the user dur-
ing the configuration phase, possible answers (a.k.a. options), as well as constraints between
the different options. Listing 2 gives an excerpt for the choice of a databaseType. Users can
select no database, sql, mongodb, or cassandra options. There is a pre-condition stating that
the prompt is presented only if the microservice option has been previously selected (in a
previous question related to applicationType). In general, there are several conditions used
for basically encoding constraints between options.

We modelled JHispter’s variability using a feature model (e.g., Kang et al. 1990) to
benefit from state-of-the-art reasoning techniques developed in software product line engi-
neering (Benavides et al. 2010; Classen et al. 2011; Apel et al. 2013a; Thüm et al. 2014;
Acher et al. 2013). Though there is a gap with the configurator specification (see Listing
2), we can encode its configuration semantics and hierarchically organize options with a
feature model. We decided to interpret the meaning of the configurator as follows:

1. each multiple-choice question is an (abstract) feature. In case of “yes” or “no” answer,
questions are encoded as optional features (e.g., databaseType is optional in Listing 2);

2. each answer is a concrete feature (e.g., sql, mongodb, or cassandra in Listing 2). All
answers to questions are exclusive and translated as alternative groups in the feature
modelling jargon. A notable exception is the selection of testing frameworks in which
several answers can be both selected; we translated them as an Or-group;

3. pre-conditions of questions are translated as constraints between features.

Based on an in-depth analysis of the source code and attempts with the configurator, we
have manually reverse-engineered an initial feature model presented in Fig. 1: 48 identified
features and 15 constraints (we only present four of them in Fig. 1 for the sake of clarity).
The total number of valid configurations is 162,508.

Our goal was to derive and generate all JHipster variants corresponding to feature model
configurations. However, we decided to adapt the initial model as follows:

1. we added Docker as a new optional feature (Docker) to denote the fact that the deploy-
ment may be performed using Docker or using Maven or Gradle. Docker has been

Listing 2 Configurator: server/prompt.js (excerpt)



686 Empir Software Eng (2019) 24:674–717

Fig. 2 JHipster specialised feature model used to generate JHipster variants (only an excerpt of cross-tree
constraints is given)

introduced in JHipster 3.0.0 and is present by default in all generated variants (and
therefore does not appear in the feature model of Fig. 1). However, when running JHip-
ster, the user may choose to use it or not, hence the definition of Docker as optional for
our analysis workflow: when the option is selected, the analysis workflow performs the
deployment using Docker;

2. we excluded client/server standalones since there is a limited interest for users to con-
sider the server (respectively client) without a client (respectively server): stack and
failures most likely occur when both sides are inter-related;

3. we included the three testing frameworks in all variants. The three frameworks do not
augment the functionality of JHipster and are typically here to improve the testing
process, allowing us to gather as much information as possible about the variants;

4. we excluded Oracle-based variants. Oracle is a proprietary technology with technical
specificities that are quite hard to fully automate (see Section 4.2).

Strictly speaking, we test all configurations of a specialized JHipster, presented in Fig. 2.
This specialization can be thought of a test model, which focusses on the most relevant open
source variants. Overall, we consider that our specialization of the feature model is conser-
vative and still substantial. In the rest of this article, we are considering the original feature
model of Fig. 1 augmented with specialized constraints that negate features Oracle12c, Ora-
cle, ServerApp, and Client (in red in Fig. 2) and that add an optional Docker feature and
make Gatling and Cucumber features mandatory (in green in Fig. 2). This specialization
leads to a total of 26,256 variants.

4.2 Fully automated derivation and testing

From the feature model, we enumerated all valid configurations using solvers and FAMIL-
IAR (Acher et al. 2013). We developed a comprehensive workflow for testing each
configuration. Figure 3 summarises the main steps (compilation, builds and tests). The first
step is to synthesize a .yo-rc.json file from a feature model configuration. It allows us to skip
the command-line questions-and-answers-based configurator; the command yo jhipster can
directly use such a JSON file for launching the compilation of a variant. A monitoring of
the whole testing process is performed to detect and log failures that can occur at several
steps of the workflow. We faced several difficulties for instrumenting the workflow.



Empir Software Eng (2019) 24:674–717 687

Feature
Model

Gen.

jhipster.csv

Configurations

Config 1

Config 2

Config n

.

.

.

.yo-
rc.json

Logs
Publishing

Unit
Testing

Tests

App
Generation

Compilation

Entities
Generation

Entities
Populating

Build
Maven/Gradle

Sucess

Sucess

Sucess

Build
Docker

Entities
Populating

Sucess
Tests

Failure

More variants
Last one

Fig. 3 Testing workflow of JHipster configurations

4.2.1 Engineering a configurable system for testing configurations

The execution of a unique and generic command for testing JHipster variants was not
directly possible. For instance, the build of a JHipster application relies either on Maven or
Gradle, two alternative features of our variability model. We developed variability-aware
scripts to execute commands specific to a JHipster configuration. Command scripts include:
starting database services, running database scripts (creation of tables, keyspaces, genera-
tion of entities, etc.), launching test commands, starting/stopping Docker, etc. As a concrete
example, the inclusion of features h2 and Maven lead to the execution of the command:
“mvnw -Pdev”; the choice of Gradle (instead of Maven) and mysql (instead of h2) in pro-
duction mode would lead to the execution of another command: “gradlew -Pprod”. In total,
15 features of the original feature model influence (individually or through interactions with
others) the way the testing workflow is executed. The first lessons learned are that (i) a
non-trivial engineering effort is needed to build a configuration-aware testing workflow –
testing a configurable system like JHipster requires to develop another configurable system;
(ii) the development was iterative and mainly consisted in automating all tasks originally
considered as manual (e.g., starting database services).

4.2.2 Implementing testing procedures

After a successful build, we can execute and test a JHipster variant. A first challenge is
to create the generic conditions (i.e., input data) under which all variants will be executed



688 Empir Software Eng (2019) 24:674–717

Listing 3 JHipster generated JUnit test in AccountResourceIntTest.java

and tested. Technically, we need to populate Web applications with entities (i.e., structured
data like tables in an SQL database or documents in MongoDB for instance) to test both
the server-side (in charge of accessing and storing data) and the client-side (in charge of
presenting data). JHipster entities are created using a domain-specific language called JDL,
close to UML class diagram formalism. We decided to reuse the entity model template given
by the JHipster team.6 We created 3 entity models for MongoDB, Cassandra, and “others”
because some database technologies vary in terms of JDL expressiveness they can support
(e.g., you cannot have relationships between entities with a MongoDB database).

After entities creation with JDL (Entities Generation in Fig. 3), we run several tests:
integration tests written in Java using the Spring Test Context framework (see Listing 3
for instance), user interface tests written in JavaScript using the Karma.js framework (see
Listing 4 for instance), etc., and create an executable JHipster variant (Build Maven/Gradle
in Fig. 3). The tests run at this step are automatically generated and include defaults tests
common to all JHipster variants and additional tests generated by the JDL entities creation.
On average, the Java line coverage is 44.53% and the JavaScript line coverage is 32.19%.

We instantiate the generated entities (Entities Populating in Fig. 3) using the Web
user interface through Selenium scripts. We integrate the following testing frameworks to
compute additional metrics (Tests in Fig. 3): Cucumber, Gatling and Protractor. We also
implement generic oracles that analyse and extract log error messages. And finally, repeated
two last steps using Docker (Build Docker, Entities Populating, and Tests in Fig. 3) before
saving the generated log files.

Finding commonalities among the testing procedures participates to the engineering of
a configuration-aware testing infrastructure. The major difficulty was to develop input data
(entities) and test cases (e.g., Selenium scripts) that are generic and can be applied to all
JHipster variants.

4.2.3 Building an all-inclusive testing environment

Each JHipster configuration requires to use specific tools and pre-defined settings. Without
them, the compilation, build, or execution cannot be performed. A substantial engi-
neering effort was needed to build an integrated environment capable of deriving any
JHipster configuration. The concrete result is a Debian image with all tools pre-installed
and pre-configured. This process was based on numerous tries and errors, using some
configurations. In the end, we converged on an all-inclusive environment.

6https://jhipster.github.io/jdl-studio/

https://jhipster.github.io/jdl-studio/


Empir Software Eng (2019) 24:674–717 689

Listing 4 JHipster generated Karma.js test in user.service.spec.ts

4.2.4 Distributing the tests

The number of JHipster variants led us to consider strategies to scale up the execution of the
testing workflow. We decided to rely on Grid’5000,7 a large-scale testbed offering a large
amount of computational resources (Balouek et al. 2012). We used numerous distributed
machines, each in charge of testing a subset of configurations. Small-scale experiments
(e.g., on local machines) helped us to manage distribution issues in an incremental way.
Distributing the computation further motivated our previous needs of testing automation
and pre-set Debian images.

4.2.5 Opportunistic optimizations and sharing

Each JHipster configuration requires to download numerous Java and JavaScript depen-
dencies, which consumes bandwidth and increases JHipster variant generation time. To
optimise this in a distributed setting, we downloaded all possible Maven, npm and Bower
dependencies – once and for all configurations. We eventually obtained a Maven cache of
481MB and a node modules (for JavaScript dependencies) of 249MB. Furthermore, we
build a Docker variant right after the classical build (see Fig. 3) to derive two JHipster
variants (with and without Docker) without restarting the whole derivation process.

4.2.6 Validation of the testing infrastructure

A recurring reaction after a failed build was to wonder whether the failure was due to
a buggy JHipster variant or an invalid assumption/configuration of our infrastructure. We
extensively tried some selected configurations for which we know it should work and some
for which we know it should not work. Based on some potential failures, we reproduced
them on a local machine and studied the error messages. We also used statistical methods
and GitHub issues to validate some of the failures (see next Section). This co-validation,
though difficult, was necessary to gain confidence in our infrastructure. After numerous tries
on our selected configurations, we launched the testing workflow for all the configurations
(selected ones included).

7https://www.grid5000.fr

https://www.grid5000.fr


690 Empir Software Eng (2019) 24:674–717

4.3 Human Cost

The development of the complete derivation and testing infrastructure was achieved in about
4 months by 2 people (i.e., 8 person * month in total). For each activity, we report the
duration of the effort realized in the first place. Some modifications were also made in
parallel to improve different parts of the solution – we count this duration in subsequent
activities.

Modelling configurations The elaboration of the first major version of the feature model
took us about 2 weeks based on the analysis of the JHipster code and configurator.

Configuration-aware testing workflow Based on the feature model, we initiated the
development of the testing workflow. We added features and testing procedures in an
incremental way. The effort spanned on a period of 8 weeks.

All-inclusive environment The building of the Debian image was done in parallel to the
testing workflow. It also lasted a period of 8 weeks for identifying all possible tools and
settings needed.

Distributing the computation We decided to deploy on Grid’5000 at the end of Novem-
ber and the implementation has lasted 6 weeks. It includes a learning phase (1 week), the
optimization for caching dependencies, and the gathering of results in a central place (a
CSV-like table with logs).

4.4 Computational cost

We used a network of machines that allowed us to test all 26,256 configurations in less than
a week. Specifically, we performed a reservation of 80 machines for 4 periods (4 nights)
of 13 hours. The analysis of 6 configurations took on average about 60 minutes. The total
CPU time of the workflow on all the configurations is 4,376 hours. Besides CPU time,
the processing of all variants also required enough free disk space. Each scaffolded Web
application occupies between 400MB and 450MB, thus forming a total of 5.2 terabytes.

We replicated three times our exhaustive analysis (with minor modifications of our test-
ing procedure each time); we found similar numbers for assessing the computational cost on
Grid’5000. As part of our last experiment, we observed suspicious failures for 2,325 con-
figurations with the same error message: “Communications link failure”, denoting network
communication error (between a node and the controller for instance) on the grid. Those



Empir Software Eng (2019) 24:674–717 691

failures have been ignored and configurations have been re-run again afterwards to have
consistent results.

5 Results of the testing workflow execution (RQ2.1)

The execution of the testing workflow yielded a large file comprising numerous results for
each configuration. This file8 allows to identify failing configurations, i.e., configurations
that do not compile or build. In addition, we also exploited stack traces for grouping together
some failures. We present here the ratios of failures and associated faults.

5.1 Bugs: A quick inventory

Out of the 26,256 configurations we tested, we found that 9,376 (35.70%) failed. This fail-
ure occurred either during the compilation of the variant (Compilation in Fig. 3) or during its
packaging as an executable Jar file (Build Maven/Gradle in Fig. 3, which includes execution
of the different Java and JavaScript tests generated by JHipster), although the generation
(App generation in Fig. 3) was successful. We also found that some features were more
concerned by failures as depicted in Fig. 4. Regarding the application type, for instance,
microservice gateways and microservice applications are proportionally more impacted
than monolithic applications or UAA server with, respectively, 58.37% of failures (4,184
failing microservice gateways configurations) and 58.3% of failures (532 failing microser-
vice applications configurations). UAA authentication is involved in most of the failures:
91.66% of UAA-based microservices applications (4114 configurations) fail to deploy.

5.2 Statistical analysis

Previous results do not show the root causes of the configuration failures – what features
or interactions between features are involved in the failures? To investigate correlations
between features and failures’ results, we decided to use the Association Rule learning
method (Hahsler et al. 2005). It aims at extracting relations (called rules) between variables
of large data-sets. The Association Rule method is well suited to find the (combinations of)
features leading to a failure, out of tested configurations.

Formally and adapting the terminology of association rules, the problem can be defined
as follows.

– let F = {f t1, f t2, . . . , f tn, bs} be a set of n features (f ti) plus the status of the build
(bs), i.e., build failed or not;

– let C = {c1, c2, . . . , cm} be a set of m configurations.

8Complete results are available at https://github.com/xdevroey/jhipster-dataset/tree/master/v3.6.1.

https://github.com/xdevroey/jhipster-dataset/tree/master/v3.6.1


692 Empir Software Eng (2019) 24:674–717

Cassandra

DiskBased

Docker

Ehcache

EnableSocialSignIn

EnableTranslation

Gradle

Hazelcast

InMemory

Jwt

Mariadb

Maven

Mongodb

Mysql

NoDocker

Oauth2

Postgresql

Session

Spring−websocket

Uaa

UseSass

0 25 50 75 100

Percentage of variants

Build

Failed

Succ.

Fig. 4 Proportion of build failure by feature

Each configuration in C has a unique identifier and contains a subset of the features in F

and the status of its build. A rule is defined as an implication of the form: X ⇒ Y , where
X, Y ⊆ F .

The outputs of the method are a set of rules, each constituted by:

– X the left-hand side (LHS) or antecedent of the rule;
– Y the right-hand side (RHS) or consequent of the rule.

For our problem, we consider that Y is a single target: the status of the build. For example, we
want to understand what combinations of features lead to a failure, either during the compilation
or the build process. To illustrate the method, let us take a small example (see Table 1).

The set of features is F = {mariadb, gradle, enableSocialSignIn, websocket, failure }
and in the table is shown a small database containing the configurations, where, in each
entry, the value 1 means the presence of the feature in the corresponding configuration, and
the value 0 represents the absence of a feature in that configuration. In Fig. 1, when build
failure has the value 1 (resp. 0), it means the build failed (resp. succeeded). An example rule
could be:

{mariadb, graddle} ⇒ {build failure}
Meaning that if mariadb and gradle are activated, configurations will not build.
As there are many possible rules, some well-known measures are typically used to select

the most interesting ones. In particular, we are interested in the support, the proportion



Empir Software Eng (2019) 24:674–717 693

Table 1 An example of JHipster data (feature values and build status for each configuration)

Conf. gradle mariadb enableSocialSignIn websocket ... build failure

1 1 0 0 0 ... 0

2 0 1 0 0 ... 0

3 0 0 1 1 ... 0

4 1 1 0 0 ... 1

5 1 0 0 0 ... 0

6 1 1 0 0 ... 1

... ... ... ... ... ... ...

We want to extract association rules stating which combinations of feature values lead to a build failure (e.g.,
gradle)

of configurations where LHS holds and the confidence, the proportion of configurations
where both LHS and RHS hold. In our example and for the rule {mariadb, graddle} ⇒
{build failure}, the support is 2/6 while the confidence is 1.

Table 2 gives some examples of the rules we have been able to extract. We parametrized
the method as follows. First, we restrained ourselves to rules where the RHS was a failure:
either Build=KO (build failed) or Compile=KO (compilation failed). Second, we fixed the
confidence to 1: if a rule has a confidence below 1 then it is not asserted in all configurations
where the LHS expression holds – the failure does not occur in all cases. Third, we lowered
the support in order to catch all failures, even those afflicting smaller proportion of the
configurations. For instance, only 224 configurations fail due to a compilation error; in spite
of a low support, we can still extract rules for which the RHS is Compile=KO. We computed
redundant rules using facilities of the R package arules.9 As some association rules can
contain already known constraints of the feature model, we ignored some of them.

We first considered association rules for which the size of the LHS is either 1, 2 or 3. We
extracted 5 different rules involving two features (see Table 2). We found no rule involving
1 or 3 features. We decided to examine the 200 association rules for which the LHS is of
size 4. We found out a sixth association rule that incidentally corresponds to one of the first
failures we encountered in the early stages of this study.

Table 2 shows that there is only one rule with the RHS being Compile=KO. According
to this rule, all configurations in which the database is MongoDB and social login feature is
enabled (128 configurations) fail to compile. The other 5 rules are related to a build failure.
Figure 5 reports on the proportion of failed configurations that include the LHS of each
association rule. Such LHS can be seen as a feature interaction fault that causes failures. For
example, the combination of MariaDB and Gradle explains 37% of failed configurations (or
13% of all configurations). We conclude that six feature interaction faults explain 99.1% of
the failures.

5.3 Qualitative analysis

We now characterize the 6 important faults, caused by the interactions of several fea-
tures (between 2 features and 4 features). Table 2 gives the support, confidence for each
association rule. We also confirm each fault by giving the GitHub issue and date of fix.

9https://cran.r-project.org/web/packages/arules/

https://cran.r-project.org/web/packages/arules/


694 Empir Software Eng (2019) 24:674–717

Ta
bl
e
2

A
ss

oc
ia

tio
n

ru
le

s
in

vo
lv

in
g

co
m

pi
la

tio
n

an
d

bu
ild

fa
ilu

re
s

Id
L

ef
t-

ha
nd

si
de

R
ig

ht
-h

an
d

si
de

Su
pp

or
t

C
on

f.
G

itH
ub

Is
su

e
R

ep
or

t/C
or

re
ct

io
n

da
te

M
O

S
O

D
at

ab
as

eT
yp

e=
“m

on
go

db
”,

E
na

bl
eS

oc
ia

lS
ig

nI
n=

tr
ue

C
om

pi
le

=
K

O
0.

48
8%

1
40

37
27

A
ug

20
16

(r
ep

or
t

an
d

fi
x

fo
r

m
ile

st
on

e
3.

7.
0)

M
A

G
R

pr
od

D
at

ab
as

eT
yp

e=
“m

ar
ia

db
”,

bu
ild

To
ol

=
“g

ra
dl

e”
B

ui
ld

=
K

O
16

.1
79

%
1

42
22

27
Se

p
20

16
(r

ep
or

t
an

d
fi

x
fo

r
m

ile
st

on
e

3.
9.

0)

U
A

D
O

D
oc

ke
r=

tr
ue

,
au

th
en

tic
at

io
n-

Ty
pe

=
“u

aa
”

B
ui

ld
=

K
O

6.
82

5%
1

U
A

A
is

in
B

et
a

N
ot

co
rr

ec
te

d

O
A

SQ
L

au
th

en
tic

at
io

nT
yp

e=
“u

aa
”,

hi
be

rn
at

eC
ac

he
=

“n
o”

B
ui

ld
=

K
O

2.
43

8%
1

42
25

28
Se

p
20

16
(r

ep
or

t
an

d
fi

x
fo

r
m

ile
st

on
e

3.
9.

0)

U
A

E
H

au
th

en
tic

at
io

nT
yp

e=
“u

aa
”,

hi
be

rn
at

eC
ac

he
=

“e
hc

ac
he

”
B

ui
ld

=
K

O
2.

19
4%

1
42

25
28

Se
p

20
16

(r
ep

or
t

an
d

fi
x

fo
r

m
ile

st
on

e
3.

9.
0)

M
A

D
O

pr
od

D
at

ab
as

eT
yp

e=
“m

ar
ia

db
”,

ap
pl

ic
at

io
nT

yp
e=

“m
on

ol
ith

”,
se

ar
ch

E
ng

in
e=

“f
al

se
”,

D
oc

ke
r=

“t
ru

e”

B
ui

ld
=

K
O

5.
59

0%
1

45
43

24
N

ov
20

16
(r

ep
or

ta
nd

fi
x

fo
r

m
ile

st
on

e
3.

12
.0

)



Empir Software Eng (2019) 24:674–717 695

MoSo

Test−Env

OASQL

MaDo

UaEh

UaDo

MaGr

0 1000 2000 3000

Failures

Fig. 5 Proportion of failures by fault described in Table 2

MariaDB with Docker This fault is the only one caused by the interaction of 4 fea-
tures: it concerns monolithic web-applications relying on MariaDB as production database,
where the search-engine (ElasticSearch) is disabled and built with Docker. These vari-
ants amount to 1468 configurations and the root cause of this bug lies in the template file
src/main/docker/ app.yml where a condition (if prodDB = MariaDB) is missing.

MariaDB using Gradle This second fault concerns variants relying on Gradle as build
tool and MariaDB as the database (3519 configurations). It is caused by a missing
dependency in template file server/template/gradle/ liquibase.gradle.

UAA authentication with Docker The third fault occurs in Microservice Gateways or
Microservice applications using an UAA server as authentication mechanism (1703 Web
apps). This bug is encountered at build time, with Docker, and it is due to the absence of
UAA server Docker image. It is a known issue, but it has not been corrected yet, UAA
servers are still in beta versions.

UAA authentication with Ehcache as Hibernate second level cache This fourth fault
concerns Microservice Gateways and Microservice applications, using a UAA authentication
mechanism. When deploying manually (i.e., with Maven or Gradle), the web application is
unable to reach the deployed UAA instance. This bug seems to be related to the selection of
Hibernate cache and impacts 1667 configurations.

OAuth2 authentication with SQL database This defect is faced 649 times, when trying
to deploy a web-app, using an SQL database (MySQL, PostgreSQL or MariaDB) and an
OAuth2 authentication, with Docker. It was reported on August 20th, 2016 but the JHipster
team was unable to reproduce it on their end.

Social Login with MongoDB This sixth fault is the only one occurring at compile time.
Combining MongoDB and social login leads to 128 configurations that fail. The source of
this issue is a missing import in class SocialUserConnection.java. This import is not in a
conditional compilation condition in the template file while it should be.

Testing infrastructure We have not found a common fault for the remaining 242 configu-
rations that fail. We came to this conclusion after a thorough and manual investigation of all



696 Empir Software Eng (2019) 24:674–717

logs.10 We noticed that, despite our validation effort with the infrastructure (see RQ1), the
observed failures are caused by the testing tools and environment. Specifically, the causes
of the failures can be categorized in two groups: (i) several network access issues in the grid
that can affect the testing workflow at any stage and (ii) several unidentified errors in the
configuration of building tools (gulp in our case).

Feature interaction strength Our findings show that only two features are involved in
five (out of six) faults, and four features are involved in the last fault. The prominence of 2-
wise interactions is also found in other studies. Abal et al. report that, for the Linux bugs they
have qualitatively examined, more than a half (22/43) are attributed to 2-wise interactions
(Abal et al. 2018). Yet, for different interaction strengths, there is no common trend: we do
not have 3-wise interactions while this is second most common case in Linux, we did not
find any fault caused by one feature only.

6 Sampling techniques comparison (RQ2.2)

In this section, we first discuss the sampling strategy used by the JHipster team. We then use
our dataset to make a ground truth comparison of six state-of-the-art sampling techniques.

6.1 JHipster team sampling strategy

The JHipster team uses a sample of 12 representative configurations for the version 3.6.1,
to test their generator (see Section 8.1 for further explanations on how these were sam-
pled). During a period of several weeks, the testing configurations have been used at each
commit (see also Section 8.1). These configurations fail to reveal any problem, i.e., the
Web-applications corresponding to the configurations successfully compiled, build and run.
We assessed these configurations with our own testing infrastructure and came to the same
observation. We thus conclude that this sample was not effective to reveal any defect.

6.2 Comparison of sampling techniques

As testing all configurations is very costly (see RQ1), sampling techniques remain of inter-
est. We would like to find as many failures and faults as possible with a minimum of
configurations in the sampling. For each failure, we associate a fault through the automatic
analysis of features involved in the failed configuration (see previous subsections).

10Such configurations are tagged by “ISSUE:env” in the column “bug” of the JHipster results CSV file
available online https://github.com/xdevroey/jhipster-dataset.

https://github.com/xdevroey/jhipster-dataset


Empir Software Eng (2019) 24:674–717 697

We address RQ2.2 with numerous sampling techniques considered in the literature (Per-
rouin et al. 2010b; Johansen et al. 2012a; Abal et al. 2014; Medeiros et al. 2016). For each
technique, we report on the number of failures and faults.

6.2.1 Sampling techniques

t-wise sampling. We selected 4 variations of the t-wise criteria: 1-wise, 2-wise, 3-wise
and 4-wise. We generate the samples with SPLCAT (Johansen et al. 2012a), which has the
advantage of being deterministic: for one given feature model, it will always provide the
same sample.

The 4 variations yield samples of respectively 8, 41, 126 and 374 configurations. 1-
wise only finds 2 faults; 2-wise discovers 5 out of 6 faults; 3-wise and 4-wise find all
of them. It has to be noted that the discovery of a 4-wise interaction fault with a 3-wise
setting is a ‘collateral’ effect (Petke et al. 2013), since any sample covering completely
t-way interactions also yields an incomplete coverage of higher-order interactions.

One-disabled sampling Using one-disabled sampling algorithm, we extract configura-
tions in which all features are activated but one.

To overcome any bias in selecting the first valid configuration, as suggested by Medeiros
et al. (2016), we applied a random selection instead. We therefore select a valid random
configuration for each disabled feature (called one-disabled in our results) and repeat exper-
iments 1,000 times to get significant results. This gives us a sample of 34 configurations
which detects on average 2.4 faults out of 6.

Additionally, we also retain all-one-disabled configurations (i.e., all valid configurations
where one feature is disabled and the other are enabled). The all-one-disabled sampling
yields a total sample of 922 configurations that identifies all faults but one.

One-enabled and most-enabled-disabled sampling In the same way, we implemented
sampling algorithms covering the one-enabled and most-enabled-disabled criteria (Abal
et al. 2014; Medeiros et al. 2016).

As for one-disabled, we choose to randomly select valid configurations instead of taking
the first one returned by the solver. Repeating the experiment 1,000 times: one-enabled
extracts a sample of 34 configurations which detects 3.15 faults on average; and most-
enabled-disabled gives a sample of 2 configurations that detects 0.67 faults on average.

Considering all valid configurations, all-one-enabled extracts a sample of 2340 config-
urations and identifies all the 6 faults. All-most-enabled-disabled gives a sample of 574
configurations that identifies 2 faults out of 6.

Dissimilarity sampling We also considered dissimilarity testing for software product
lines (Henard et al. 2014; Al-Hajjaji et al. 2016) using PLEDGE (Henard et al. 2013c).

We retained this technique because it can afford any testing budget (sample size and
generation time). For each sample size, we report the average failures and faults for 100
PLEDGE executions with the greedy method in 60 secs (Henard et al. 2013c). We selected
(respectively) 8, 12, 41, 126 and 374 configurations, finding (respectively) 2.14, 2.82, 4.70,
4.66 and 4.60 faults out of 6.

Random sampling Finally, we considered random samples from size 1 to 2,500. The
random samples exhibit, by construction, 35.71% of failures on average (the same percent-
age that is in the whole dataset). To compute the number of unique faults, we simulated 100



698 Empir Software Eng (2019) 24:674–717

random selections. We find, on average, respectively 2.18, 2.7, 4.49, 5.28 and 5.58 faults
for respectively 8, 12, 41, 126 and 374 configurations.

6.2.2 Fault and failure efficiency

We consider two main metrics to compare the efficiency of sampling techniques to find
faults and failures w.r.t the sample size. Failure efficiency is the ratio of failures to sample
size. Fault efficiency is the ratio of faults to sample size. For both metrics, a high efficiency is
desirable since it denotes a small sample with either a high failure or fault detection capability.

The results are summarized in Table 3. We present in Fig. 6a (respectively, Fig. 6b)
the evolution of failures (respectively, faults) w.r.t. the size of random samples. To ease
comparison, we place reference points corresponding to results of other sampling tech-
niques. A first observation is that random is a strong baseline for both failures and faults.
2-wise or 3-wise sampling techniques are slightly more efficient to identify faults than
random. On the contrary, all-one-enabled, one-enabled, all-one-disabled, one-disabled and
all-most-enabled-disabled identify less faults than random samples of the same size.

Most-enabled-disabled is efficient on average to detect faults (33.5% on average) but
requires to be “lucky”. In particular, the first configurations returned by the solver (as done in
Medeiros et al. 2016) discovered 0 fault. This shows the sensitivity of the selection strategy
amongst valid configurations matching the most-enabled-disabled criterion. Based on our
experience, we recommend researchers the use of a random strategy instead of picking the
first configurations when assessing one-disabled, one-enabled, and most-enabled-disabled.

Table 3 Efficiency of different sampling techniques (bold values denote the highest efficiencies)

Sampling technique Sample size Failures (σ ) Failures eff. Faults (σ ) Fault eff.

1-wise 8 2.000 (N.A.) 25.00% 2.000 (N.A.) 25.00%

Random(8) 8 2.857 (1.313) 35.71% 2.180 (0.978) 27.25%

PLEDGE(8) 8 3.160 (1.230) 39.50% 2.140 (0.825) 26.75%

Random(12) 12 4.285 (1.790) 35.71% 2.700 (1.040) 22.5%

PLEDGE(12) 12 4.920 (1.230) 41.00% 2.820 (0.909) 23.50%

2-wise 41 14.000 (N.A.) 34.15% 5.000 (N.A.) 12.20%

Random(41) 41 14.641 (3.182) 35.71% 4.490 (0.718) 10.95%

PLEDGE(41) 41 17.640 (2.500) 43.02% 4.700 (0.831) 11.46%

3-wise 126 52.000 (N.A.) 41.27% 6.000 (N.A.) 4.76%

Random(126) 126 44.995 (4.911) 35.71% 5.280 (0.533) 4.19%

PLEDGE(126) 126 49.080 (11.581) 38.95% 4.660 (0.698) 3.70%

4-wise 374 161.000 (N.A.) 43.05% 6.000 (N.A.) 1.60%

Random(374) 374 133.555 (8.406) 35.71% 5.580 (0.496) 1.49%

PLEDGE(374) 374 139.200 (31.797) 37.17% 4.620 (1.181) 1.24%

Most-enabled-disabled 2 0.683 (0.622) 34.15% 0.670 (0.614) 33.50%

All-most-enabled-disabled 574 190.000 (N.A.) 33.10% 2.000 (N.A.) 0.35%

One-disabled 34 7.699 (2.204) 0.23% 2.398 (0.878) 0.07%

All-one-disabled 922 253.000 (N.A.) 27.44% 5.000 (N.A.) 0.54%

One-enabled 34 12.508 (2.660) 0.37% 3.147 (0.698) 0.09%

All-one-enabled 2,340 872.000 (N.A.) 37.26% 6.000 (N.A.) 0.26%

ALL 26,256 9,376.000 (N.A.) 35.71% 6.000 (N.A.) 0.02%



Empir Software Eng (2019) 24:674–717 699

�

�

�

�

�

�
0

250

500

750

0 500 1000 1500 2000 2500

Configurations

F
a
il
u
r
e
s
 f
o
u
n
d

�

�
�

�

�

�

1−wise

2−wise

3−wise

4−wise

All−most−en.−dis.

All−one−dis.

All−one−en.

Most−en.−dis.

One−dis.

One−en.

PLEDGE(12)

PLEDGE(126)

PLEDGE(374)

PLEDGE(41)

PLEDGE(8)

Random

�

�
�

�

�

�

2

4

6

0 500 1000 1500 2000 2500

Configurations

F
a
u
lt
s
 f
o
u
n
d

�

�
�

�

�

�

1−wise

2−wise

3−wise

4−wise

All−most−en.−dis.

All−one−dis.

All−one−en.

Most−en.−dis.

One−dis.

One−en.

PLEDGE(12)

PLEDGE(126)

PLEDGE(374)

PLEDGE(41)

PLEDGE(8)

Random

Fig. 6 Defects found by sampling techniques



700 Empir Software Eng (2019) 24:674–717

PLEDGE is superior to random for small sample sizes. The significant difference
between 2-wise and 3-wise is explained by the sample size: although the latter finds all the
bugs (one more than 2-wise) its sample size is triple (126 configurations against 41 for 2-
wise). In general, a relatively small sample is sufficient to quickly identify the 5 or 6 most
important faults – there is no need to cover the whole configuration space.

A second observation is that there is no correlation between failure efficiency and fault
efficiency. For example, all-one-enabled has a failure efficiency of 37.26% (better than
random and many techniques) but is one of the worst techniques in terms of fault rate due of
its high sample size. In addition, some techniques, like all-most-enable-disabled, can find
numerous failures that in fact correspond to the same fault.

6.2.3 Discussion

Our results show that the choice of a metric (failure-detection or fault-detection capability)
can largely influence the choice of a sampling technique. Our initial assumption was that the
detection of one failure leads to the finding of the associated fault. The GitHub reports and
our qualitative analysis show that it is indeed the case in JHipster: contributors can easily
find the root causes based on a manual analysis of a configuration failure. For other cases,
finding the faulty features or feature interactions can be much more tricky. In such contexts,
investigating many failures and using statistical methods (such as association rules) can be
helpful to determine the faulty features and their undesired interactions. As a result, the
ability of finding failures may be more important than in JHipster case. A trade-off between
failure and fault efficiency can certainly be considered when choosing the sampling technique.

7 Comparison with Other Studies (RQ2.3)

This section presents a literature review of case studies of configuration sampling
approaches to test variability intensive systems.

Specifically, we aim to compare our findings with state-of-the-art results: Are sampling
techniques as effective in other case studies? Do our results confirm or contradict findings



Empir Software Eng (2019) 24:674–717 701

in other settings? This question is important for (1) practitioners in charge of establishing
a suitable strategy for testing their systems; (ii) researchers interested in building evidence-
based theories or tools for testing configurable systems.

We first present our selection protocol of relevant papers and an overview of the selected
ones. We then confront and discuss our findings from Section 6.2 w.r.t. those studies.

7.1 Studies selection protocol

We consider the following criteria to select existing studies: (i) (ii) configuration sampling
approaches are evaluated regarding defects detection capabilities; (iii) evaluation has been
performed on an industrial size (open source or not) system (i.e., we discard toy examples);
and (iv) evaluation has been performed on the system (possibility to analyse the source code
and/or to run the variants to reproduce bugs and failures). We thus discard evaluations that
are solely based on feature models such as Perrouin et al. (2011).

We looked for studies in previous literature reviews on product line testing (Engström and
Runeson 2011; da Mota Silveira Neto et al. 2011; Machado et al. 2014). They are a common
way to give an overview of a research field: e.g., they organise studies according to topic(s)
and validation level (for instance, from Machado et al. (2014): no evidence, toy example,
opinions or observations, academic studies, industrial studies, or industrial practices).

Before 2014 (i.e., before the publication of the systematic literature review from
Machado et al. 2014), empirical evaluations of configurations sampling approaches are
focused on their capability to select a sampling satisfying t-wise criteria in a reasonable
amount of time or with fewer configurations Ensan et al. 2012; Henard et al. 2013b; Hervieu
et al. 2011; Johansen et al. 2011, 2012a; Kim et al. 2013; Lochau et al. 2012a; Perrouin et al.
2010a; Perrouin et al. 2011. We discarded them as they do not match our selection criteria.

To select relevant studies without performing a full systematic literature survey, we
applied a forward and backward snowballing search (Jalali and Wohlin 2012). Snowballing
is particularity relevant in our case, given the diversity of terms used in the research literature
(product line, configurable systems, etc.) and our goal to compare more than one sampling
approach. Searching and filtering studies from literature databases would require a large
amount of work with few guarantees on the quality of the result. We started the search with
two empirical studies known by the authors of the paper: Medeiros et al. (2016) and Sánchez
et al. (2017). Those studies are from two different research sub-communities on variability-
intensive system testing, configurable systems research (Medeiros et al. Medeiros et al.
2016) and software product line research (Sánchez et al. 2017), which mitigates the risk of
missing studies of interest. Eventually, we collected 5 studies presented in Table 4 and we
discuss them below.

7.2 Selected studies

Medeiros et al. (2016) compared 10 sampling algorithms using a a corpus of 135 known
configuration-related faults from 24 open-source C systems. Like for JHipster, the systems
use conditional compilation (#ifdef) to implement variability.

Sánchez et al. (2017) studied Drupal,11 a PHP web content management, to assess test
case prioritization, based on functional and non-functional data extracted from Drupal’s Git

11https://www.drupal.org

https://www.drupal.org


702 Empir Software Eng (2019) 24:674–717

Table 4 Evaluation of configuration sampling techniques in the literature

Reference Samplings Validation

Medeiros et al. (2016) Statement-coverage, 135 configuration-related faults in 24

one-enabled,one-disabled, open-source C (#ifdef)

most-enabled-disabled, configurable systems

random, pair-wise, three-wise, four-wise,

five-wise, six-wise

Sánchez et al. (2017) Pairwise Drupal (PHP modules based

Web content management system)

Parejo et al. (2016) Multi-objective Drupal (PHP modules based

Web content management system)

Souto et al. (2017) random, one-enabled, 8 small SPLs + GCC (50 most used options).

one-disabled, most-enabled Samplings’ sizes and number of

enabled disabled and pairwise failures were considered.

computed from SPLat

(Kim et al. 2013)

Apel et al. (2013b) one-wise, pairwise, three-wise 3 configurable systems written in

compared to a family-based C and 3 in JAVA

stategy and enumeration

of all products

repository. Sánchez et al. assimilate a Drupal module to a feature and performed extensive
analysis of Drupal’s Git repository and issue tracking system to identify faults and other
functional and non-functional attributes (e.g., feature size, feature cyclomatic complexity,
number of test for each feature, feature popularity, etc.).

Sánchez et al. consider 2-wise to sample the initial set of configurations to prioritize.
Parejo et al. (2016) extend (Sánchez et al. 2017) work by defining multi-objectives test

case selection and prioritization. The algorithm starts with a set of configurations sam-
ples, each satisfying 2-wise coverage, and evolves them in order to produce one prioritized
configuration sample that maximize the defined criteria. Since new configurations may be
injected during the evolution, the algorithm does not only prioritize (unlike for Sánchez et
al. 2017), but modifies the samples. Objectives are functional (e.g., dissimilarity amongst
configurations, pairwise coverage, cyclomatic complexity, variability coverage, etc.) and
non-functional (e.g., number of changes in the features, feature size, number of faults in
previous version, etc.).

Souto et al. (2017) explore the tension between soundness and efficiency for configurable
systems. They do so by extending SPLat (Kim et al. 2013), a variability-aware dynamic
technique that, for each test, monitors configuration variables accessed during test execution
and change their values to run the test on new configurations, stopping either when no new
configurations can be dynamically explored or a certain threshold is met. The extension,
called S-SPLAT (Sampling with SPLat) uses dynamically explored configurations in the
goal of meeting a particular sampling criterion. Six heuristics are considered: random, one-
enabled, one-disabled, most-enabled-disabled and 2-wise in addition of the original SPLat
technique. Experiments carried out on eight SPLs and the GCC compiler considered efficiency
(number of configurations explored per test) and efficacy (number of failures detected).



Empir Software Eng (2019) 24:674–717 703

Apel et al. investigated the relevance of family-based model checking (thanks to the
SPLVerifier tool chain developed by the authors) with respect to t-wise sampling strategies
and analysis all products independently on C and JAVA configurable systems (Apel et al.
2013b). The metrics used were the analysis time and the number of faults founds statically.
While both the family-based strategy and the product-based (all-products) strategies covered
all the faults (by construction), there is a clear advantage in favour of the former with respect
to execution time. Sampling strategies were in between these two extremes in which 3-wise
appears to the best compromise.

7.3 Comparison of findings

7.3.1 Sampling effectiveness

Souto et al. reported that one-disabled and a combination involving one-enabled, one-
disabled, most-enabled-disabled as well as pairwise appeared to be good compromises for
detecting failures. Regarding GCC, one-enabled and most-enabled-disabled were the most
appropriate choices. On the one hand, our findings concur with their results:

– 2-wise is indeed one of the most effective sampling technique, capable of identifying
numerous failures and the 5 most important faults;

– most-enabled-disabled is also efficient to detect failures (34.15%) and faults (33.5% on
average).

On the other hand, our results also show some differences:

– one-enabled and one-disabled perform very poorly in our case, requiring a substantial
number of configurations to find either failures or faults;

– despite a high fault efficiency, most-enabled-disabled is only able to capture 0.670
faults on average, thus missing important faults.

Medeiros et al. ’s results show that most-enabled-disabled offers a good compromise
for faults finding ability. On the one hand, our findings concur with their results – most-
enabled-disabled is indeed efficient to detect faults (33.5% on average). On the other hand,
our experiments reveal an important insight. Amongst valid configurations matching the
most-enabled-disabled criterion, some may not reveal any fault. It is the case in our study:
the first configurations returned by the solver (as done in Medeiros et al. 2016) discovered 0
fault. For a fair comparison, we thus caution researchers to use a random strategy instead of
picking the first configurations when assessing most-enabled-disabled. Besides Medeiros et
al. reported that 2-wise is an efficient sampling technique. We concur with this result.

Putting all together our findings and results of Souto et al. and Medeiros et al. , we can
recommend the following: most-enabled-disabled is an interesting candidate to initiate the
testing of configurations; 2-wise can be used to complement and continue the effort in order
to find further faults.

Sánchez et al. have chosen 2-wise (using the ICPL algorithm (Johansen et al. 2012a) and
CASA Garvin et al. 2011) to sample the initial set of configurations of Drupal. Their results
suggest that 2-wise is an efficient sampling technique (though we ignore how pairwise com-
petes with other sampling strategies). As a follow up of their work on Drupal, Parejo et al.
concluded that a combination of 2-wise and other objectives (e.g., based on non-functional
properties) is usually effective.



704 Empir Software Eng (2019) 24:674–717

In our case, 2-wise is more efficient to identify faults than random, offering a good
balance between sample size and fault detection. Overall our findings on 2-wise concur with
the results of Sánchez et al. and Parejo et al.

Apel et al. considered various sampling strategies. 3-wise appears to be the best com-
promise, offering a good balance between execution time and fault-detection ability. In our
case, 3-wise is slightly more efficient to identify faults than random and can identify the 6
most important faults. However, the important size of 3-wise sampling (126 configurations)
degrades its fault efficiency. In particular, 2-wise offers a better trade-off between sampling
size and fault detection – it only misses one fault despite having divided the number of
configurations to assess by three (41).

Overall, we concur with the findings of Apel et al. There is no need to consider all
configurations and t-wise samplings offer a good trade-off between sampling size and fault
detection. The value of t (e.g., 2-wise or 3-wise) and the underlying trade-off should then
be debated along the specificities of the software engineering context – it is the role of the
next section in which we gather qualitative insights from JHipster community.

7.3.2 Failure vs fault

In our case study, we have made an explicit effort to compute and differentiate failures from
faults. We have shown there is no correlation between failure efficiency and fault efficiency.
Some of the prior works tend to consider either failures or faults, but very rarely both.
There are actually very good reasons for that. On the one hand, the identification of failures
requires to execute the configurations in real settings – the process can be very costly and
hard to engineer even for a scientific experiment. On the other hand, some works succeed
to produce and collect many failures but ignore the actual correspondences with faults.

Though we understand the underlying reasons and difficulties, our point is that the
assessment of sampling techniques may highly vary depending on the metric considered
(failure or fault efficiency). For example, all-one-enabled has a failure efficiency of 37.26%
but is one of the worst techniques in terms of fault rate due of its high sample size. Our
recommendation for researchers is to properly report and investigate the distinction (if any)
between failures and faults. It is actually an open research direction to further characterize
this distinction in other software engineering contexts than JHipster.

7.3.3 Fault corpus

For the assessment of sampling techniques, one need is to define a correspondence between
configurations and faults. As reported in the literature and in this study, this task is not
trivial, time-consuming, and error-prone. A typical attitude is to manually build a corpus of
faults with results confirmed by the developers, or from issues reported in mailing list or
bug tracking systems. For example, Sánchez et al. performed extensive analysis of Drupal’s
Git repository and issue tracking system to identify faults. A possible and important threat
is that the corpus of faults is incomplete. It can bias the empirical results since some faults
may not be considered in the study.

In our case study, we had a unique opportunity to collect all faults through the testing
of all configurations. Meanwhile we have been able to check whether these faults have
been reported by JHipster developers. Our findings show that 6 important faults have been
reported (see Table 2). Though some of the faults were missing and required a manual



Empir Software Eng (2019) 24:674–717 705

investigation, they only impact a few configurations comparatively to faults reported on
GitHub issues.

Overall, our findings suggest that a corpus of faults coming from an issue tracking system
is a good approximation of the real corpus of faults. It is a positive result for other studies
based on a manually collected corpus.

8 Practitioners viewpoint (RQ3)

We interviewed the JHipster lead developer, Julien Dubois, for one hour and a half, at the
end of January. We prepared a set of questions and performed a semi-structured interview on
Skype for allowing new ideas during the meeting. We then exchanged emails with two core
developers of JHipster, Deepu K Sasidharan and Pascal Grimaud. Based on an early draft of
our article, they clarified some points and freely reacted to some of our recommendations.
We wanted to get insights on how JHipster was developed, used, and tested. We also aimed
to confront our empirical results with their current practice.

8.1 JHipster’s testing strategy

8.1.1 Continuous testing

JHipster relies on a continuous integration platform (Travis) integrated into GitHub. At the
time of the release 3.6.1, the free installation of Travis allowed to perform 5 different builds
in parallel, at each commit. JHipster exploits this feature to only test 12 configurations.
JHipster developers give the following explanations: “The only limit was that you can only
run 5 concurrent jobs so having more options would take more time to run the CI and hence
affect our turn around hence we decided on a practical limit on the number [...] We only test



706 Empir Software Eng (2019) 24:674–717

the 12 combinations because we focus on most popular options and leave the less popular
options out.” Julien also mentioned that his company IPPON provides some machines used
to perform additional tests. We can consider that the testing budget of JHipster 3.6.1 was
limited to 12 configurations. It has a strong implication on our empirical results: Despite
their effectiveness, some sampling strategies we have considered exceed the available test-
ing budget of the project. For example, a 2-wise sample has 41 configurations and is not
adequate. A remaining solution is dissimilarity sampling (PLEDGE) of 12 configurations,
capable of finding 5 failures and 3 faults.

8.1.2 Sampling strategy

How have these 12 configurations been selected? According to Julien, it is both based on
intimate technical knowledge of the technologies and a statistical prioritization approach.
Specifically, when a given JHipster installation is configured, the user can send anony-
mous data to the the JHipster team so that it is possible to obtain a partial view on the
configurations installed. The most popular features have been retained to choose the 12 con-
figurations. For example, this may partly explain that configurations with Gradle are buggier
than those with Maven – we learned that Gradle is used in less than 20% of the installa-
tions. There were also some discussions about improving the maintenance of Gradle, due to
its popularity within a subset of contributors. The prioritization of popular configurations is
perfectly understandable. Such a sample has the merit of ensuring that, at each commit, pop-
ular combinations of features are still valid (acting as non-regression tests). However, corner
cases and some feature interactions are not covered, possibly leading to high percentage of
failures.

8.2 Merits and limits of exhaustive testing

Julien welcomed the initiative and was seriously impressed by the unprecedented engineer-
ing effort and the 36% failures. We asked whether the version 3.6.1 had special properties,
perhaps explaining the 36% of failures. He refuted this assumption and rather stated that
the JHipster version was a major and stable release. We explained that most of the defects
we found were reported by the JHipster community. The lead developer was aware of some
interactions that caused problems in JHipster. These are known mostly from experience and
not via the application of a systematic process. However, he ignored the significance of the
failures. The high percentage of failures we found should be seriously considered since a
significant number of users may be impacted given the popularity of the project. Even if
faults involve rarely used configurations, he considered that the strength of JHipster is pre-
cisely to offer a diverse set of technologies. The effort of finding many failures and faults is
therefore highly valuable.



Empir Software Eng (2019) 24:674–717 707

We then discussed the limits of testing all configurations. The cost of building a
grid/cluster infrastructure is currently out of reach for the JHipster open-source project, due
to the current lack of investments. JHipster developers stated: “even if we had limitless test-
ing infrastructure, I do not think we will ever test out all possible options due to the time it
would take”. This observation is not in contradiction with our research method. Our goal
was not to promote an exhaustive testing of JHipster but rather to investigate a cost-effective
strategy based on collected evidence.

Another important insight is that “the testing budget was more based on the time it would
take and the resource it would use on a free infrastructure. If we let each continuous inte-
gration build to run for few hours, then we would have to wait that long to merge pull
request and to make releases etc. So, it adds up lag affecting our ability to release quickly
and add features and fixes quickly. So, turn around IMO is something you need to consider
for continuous integration”.

Finally, Julien mentioned an initiative12 to build an all-inclusive environment capable of
hosting any configuration. It is for JHipster developers and aims to ease the testing of a
JHipster configuration on a local machine. In our case, we built a similar environment with
the additional objective of automating the test of configurations. We have also validated this
environment for all configurations in a distributed setting.

8.3 Discussions

On the basis of multiple collected insights, we discuss trade-offs to consider when testing
JHipster and address RQ3.

8.3.1 Sampling strategy

Our empirical results suggest using a dissimilarity sampling strategy in replacement to the
current sampling based on statistical prioritization. It is one of the most effective strategy for
finding failures and faults and it does not exceed the budget. In general, the focus should be
on covering as much feature interactions as possible. If the testing budget can be sufficiently
increased, t-wise strategies can be considered as well. However, developers remind us that
“from a practical standpoint, a random sampling has possibility of us missing an issue in a
very popular option thus causing huge impact, forcing us to make emergency releases etc.,
where as missing issues in a rarely used option does not have that implication”. This applies
to t-wise and dissimilarity techniques as well. Hence, one should find a trade-off between
cost, popularity, and effectiveness of sampling techniques. We see this as an opportunity to
further experiment with multi-objective techniques (Sayyad et al. 2013; Parejo et al. 2016;
Henard et al. 2015).

8.3.2 Sampling size

Our empirical results and discussions with JHipster developers suggest that the testing
budget was simply too low for JHipster 3.6.1, especially when popular configurations
are included in the sampling. According to JHipster developers, the testing budget “has
increased to 19 now with JHipster 4, and we also have additional batch jobs running daily

12https://github.com/jhipster/jhipster-devbox

https://github.com/jhipster/jhipster-devbox


708 Empir Software Eng (2019) 24:674–717

tripling the number of combinations [...] We settled on 19 configurations to keep build times
within acceptable limits”.13

An ambitious and long-term objective is to crowdsource the testing effort with contribu-
tors. Users can lend their machines for testing some JHipster configurations while a subset
of developers could also be involved with the help of dedicated machines. In complement to
continuous testing of some popular configurations, a parallel effort could be made to seek
failures (if any) on a diversified set of configurations, possibly less popular.

8.3.3 Configuration-aware testing infrastructure

In any case, we recommend developing and maintain a configuration-aware testing infras-
tructure. Without a ready-to-use environment, contributors will not be able to help in testing
configurations. It is also pointless to increase the sample if there is no automated procedure
capable of processing the constituted configurations. The major challenge will be to follow
the evolution of JHipster and make the testing tractable. A formal model of the configurator
should be extracted for logically reasoning and implementing random or t-wise sampling.
New or modified features of JHipster should be handled in the testing workflow; they can
also have an impact on the tools and packages needed to instrument the process.

9 Threats to validity

Our engineering effort has focused on a single but industrial and complex system. We expect
more insights into characteristics of real-world systems than using diverse but smaller or
synthetic benchmarks. With the possible consideration of all JHipster configurations, we
gain a ground truth that allows us to precisely assess sampling techniques.

Threats to internal validity are mainly related to the quality of our testing infrastructure.
An error in the feature model or in the configuration-aware testing workflow can typically
produce wrong failures. We also used the Java and JavaScript tests generated by JHipster,

13Discussions are available at https://github.com/jhipster/generator-jhipster/issues/4301

https://github.com/jhipster/generator-jhipster/issues/4301


Empir Software Eng (2019) 24:674–717 709

as well as the data from only one entity model template (the one provided by the JHipster
team). As reported, the validation of our solution has been a major concern during 8 man-
months of development. We have used several strategies, from statistical computations to
manual reviews of individual failures to mitigate this threat. Despite those limitations, we
found all faults reported by the JHipster community and even new failures.

For the other remaining 242 configurations that fail due to our test infrastructure (see
Section 5.3), there might be false positives. Since they only represent 0.9% of all JHip-
ster configurations, such false positives would have a marginal incidence on the results. In
fact, this situation is likely to happen in a real (continuous integration) distributed testing
environment (e.g., as reported in Beller et al. 2017). We thus decided to keep those con-
figurations in the dataset. Additionally, they can serve as a baseline to improve our testing
infrastructure for the next versions of JHipster.

To mitigate the threat related to missed studies comparing findings of configuration sam-
pling techniques, we used a snowballing approach. We started from mapping studies and
systematic literature reviews known by the authors. Selected studies have been reviewed by
at least three authors.

10 Conclusion and perspectives

In this article, we reported on the first ever endeavour to test all configurations of an
industrial-strength, open-source generator: JHipster. We described the lessons learned and
assessed the cost of engineering a configuration-aware testing infrastructure capable of
processing 26,000+ configurations.

10.1 Synthesis of lessons learned

Infrastructure costs Building a configuration-aware testing infrastructure for JHipster
requires a substantial effort both in terms of human and computational resources: 8
man-months for building the infrastructure and 4376 hours of CPU time as well as 5.2
terabytes of disk space used to build and run JHipster configurations. The most difficult
part of realising the infrastructure was to validate it, especially in a distributed setting.
These costs are system-dependent: for example, the Linux project provides tools to compile
distinct random kernels, which can be used for various analyses (e.g., Melo et al. 2016;
Henard et al. 2013d), and ease the realisation of a testing infrastructure.

Comparing sampling techniques Almost 36% of the 26,0000 configurations fail. More
than 99% of these failures can be attributed to six interaction faults up to 4-wise. The
remaining failures are false positives. As a result, in our case, t-wise testing techniques pro-
vide guarantees to find all the faults. Nevertheless, such guarantees come at a price, i.e.,
the number of configurations to sample (126). Still, only a small subset of the total number
of configurations is necessary, validating the relevance of sampling techniques. Dissimilar-
ity sampling is slightly better at finding failures though offering generally good efficiencies
w.r.t t-wise with a flexible budget. Most-enabled-disabled can bevery efficient regarding
the very small number of configurations it requires but should incorporate randomness
in the sampling algorithm to not rely on a SAT solver’s internal order (Henard et al. 2014).
Indeed, random sampling remains a strong baseline for failure and faults. Finally, investi-
gation of both faults and failures efficiencies shows that they are not correlated and that
it is difficult to optimise them for a single sampling technique. Without the effort of testing



710 Empir Software Eng (2019) 24:674–717

all configurations, we would have missed important lessons or have superficially assessed
existing techniques.

Comparison with other studies Our assessment of sampling techniques on JHipster con-
firm findings of the literature: most-enabled-disabled is a relevant technique in order to
initiate testing, while t-wise techniques with low values of t provide interesting fault and
failure detection ratios.

However, ranking sampling techniques is highly sensitive to the metrics considered,
which complicates the “comparison of comparing studies”. Yet, fault corpora issued from
issue tracking systems such as GitHub seem to contain almost all issues, adding relevance
to fault mining efforts.

Comparison with JHipster team testing practice Confronting our results to the core
JHipster developers was extremely valuable. First, the testing budget is key: even for
26,000+ configurations the developers did not have the possibility to test more than twelve
of them continuously. Additionally, their strategy based on popular configurations did not
find any fault. Such a stringent budget is a challenge for sampling techniques and combi-
natorial interaction testing ones in particular. In this case, dissimilarity is our recommen-
dation. Cost, popularity and fault-finding abilities appeared as important factors in the
determination of samples. This pushes for experimenting with multi-objective techniques in
such contexts. Finally, our effort in providing an automated configuration-aware testing
infrastructure is mandatory for viable JHipster testing.

10.2 Test them all, is it worth it?

Our investigations allow us to answer to the key question we raised in the title of this article:
Is it worth testing all configurations? Obviously, there is no universal ‘yes’ or ‘no’ answer
to this question as it typically depends on the audience to which the question is asked.

From a researcher’s perspective, the answer is definitely ‘yes’. This effort enabled us
to obtain a ground truth notably on the faults for this specific version of JHipster. Sampling
techniques can then be compared with respect to an absolute value (all the faults), which is
a stronger evidence than a comparison on a configuration subset. Building and running con-
figurations also gave insights on failures that are not frequently analysed. This enthusiasm
should be tempered with respect to the high costs of building a testing infrastructure capa-
ble of handling all configurations. Finally, JHipster has the interesting properties of being
widely used as an open-source stack, non-trivial but still manageable in terms of configura-
tions, which made this study possible. For example, researchers working on Linux kernels
cannot envision to answer this question in the current state of computing since Linux has
thousands of options (Nadi et al. 2015; Abal et al. 2014; Melo et al. 2016).

From a practitioner’s perspective, the answer is a resounding ‘no’. The JHipster com-
munity cannot afford computing and human costs involved with such an initiative. In the
improbable event of having the sufficient resources, validation time at each release or com-
mit would still be a no-go, point that is also likely to hold in other cases. Moreover, we have
shown that sampling 126 configurations (out of 26,000+) is enough to find all the faults.
While the absolute ranking between sampling methods is variable amongst studies and cases
analysed, sampling techniques are more efficient at faults and failures than exhaustive test-
ing, as illustrated by the poor 0.02% of fault efficiency when sampling all configurations.
Though testing all configurations is not worth it, we recommend to develop a testing infras-
tructure able to handle all possible configurations; it is a mandatory prerequisite before
instrumenting a cost-effective sampling strategy.



Empir Software Eng (2019) 24:674–717 711

10.3 Perspectives

Our empirical study opens opportunities for future work, both for practitioners and researchers.
Future work will cover fitting the test budget in continuous integration setting and devise
new statistical selection/prioritisation sampling techniques, including how techniques like
association rules work in such settings. We plan to continue our collaboration with the JHip-
ster community. Contributors involvement, testing infrastructure evolution and data science
challenges (e.g., Kim et al. 2016) are on the agenda. Our long-term objective is to provide
evidence-based theories and tools for continuously testing configurable systems.

Acknowledgements We would like to thank Prof. Arnaud Blouin for his comments and feedback on the
paper. This research was partially funded by the EU Project STAMP ICT-16-10 No.731529 and the Dutch
4TU project “Big Software on the Run” as well as by the European Regional Development Fund (ERDF)
“Ideas for the future Internet” (IDEES) project.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Abal I, Brabrand C, Wasowski A (2014) 42 variability bugs in the linux kernel: a qualitative analysis. In:
Proceedings of the 29th ACM/IEEE international conference on automated software engineering, ASE
’14. ACM, New York, pp 421–432

Abal I, Melo J, Stanciulescu S, Brabrand C, Ribeiro M, Wasowski A (2018) Variability bugs in highly
configurable systems: A, qualitative analysis. ACM Trans Softw Eng Methodol 26(3):10:1–10:34

Abbasi EK, Acher M, Heymans P, Cleve A (2014) Reverse engineering web configurators. In: 2014 software
evolution week - IEEE conference on software maintenance, reengineering, and reverse engineering,
CSMR-WCRE 2014, Antwerp, pp 264–273

Acher M, Collet P, Lahire P, France RB (2013) FAMILIAR: a domain-specific language for large scale
management of feature models. Sci Comput Programm (SCP) 78(6):657–681

Al-Hajjaji M, Krieter S, Thu̇m T, Lochau M, Saake G (2016) IncLing: efficient product-line testing using
incremental pairwise sampling. In: Proceedings of the 2016 ACM SIGPLAN international conference
on generative programming: concepts and experiences - GPCE 2016. ACM, pp 144–155

Apel S, Batory D, Kästner C, Saake G (2013a) Feature-oriented software product lines. Springer, Berlin
Apel S, von Rhein A, Wendler P, Größlinger A, Beyer D (2013b) Strategies for product-line verification: case

studies and experiments. In: Proceedings of the 2013 international conference on software engineering,
ICSE ’13. IEEE, Piscataway, pp 482–491

Arcuri A, Briand L (2012) Formal analysis of the probability of interaction fault detection using random
testing. IEEE Trans Softw Eng 38(5):1088–1099

Austin TH, Flanagan C (2012) Multiple facets for dynamic information flow. ACM SIGPLAN Not 47(1):165
Balouek D, Carpen-Amarie A, Charrier G, Desprez F, Jeannot E, Jeanvoine E, Lèbre A, Margery D, Niclausse

N, Nussbaum L, Richard O, Pérez C, Quesnel F, Rohr C, Sarzyniec L (2012) Adding virtualization
capabilities to Grid’5000. Research Report RR-8026, INRIA. https://hal.inria.fr/hal-00720910

Beller M, Gousios G, Zaidman A (2017) Oops, my tests broke the build: an explorative analysis of Travis
CI with GitHub. In: Proceedings of the 14th international conference on mining software repositories,
MSR ’17. IEEE Press, Piscataway, pp 356–367

http://creativecommons.org/licenses/by/4.0/
https://hal.inria.fr/hal-00720910


712 Empir Software Eng (2019) 24:674–717

Benavides D, Segura S, Ruiz-Cortés A (2010) Automated analysis of feature models 20 years later: a
literature review. Inf Syst 35(6):615–636

Classen A, Boucher Q, Heymans P (2011) A text-based approach to feature modelling: syntax and semantics
of TVL. Sci Comput Program 76(12):1130–1143

Classen A, Cordy M, Schobbens PY, Heymans P, Legay A, Raskin JF (2013) Featured transition systems:
foundations for verifying variability-intensive systems and their application to LTL model checking.
IEEE Trans Softw Eng 39(8):1069–1089

Cohen M, Dwyer M, Shi J (2008) Constructing interaction test suites for highly-configurable systems in the
presence of constraints: a greedy approach. IEEE Trans Softw Eng 34(5):633–650

da Mota Silveira Neto PA, do Carmo Machado I, McGregor JD, de Almeida ES, de Lemos Meira SR (2011)
A systematic mapping study of software product lines testing. Inf Softw Technol 53(5):407–423

Devroey X, Perrouin G, Legay A, Cordy M, Schobbens PY, Heymans P (2014) Coverage criteria for
behavioural testing of software product lines. In: Margaria T, Steffen B (eds) Leveraging applications
of formal methods, verification and validation. Technologies for mastering change: 6th international
symposium, ISoLA 2014, proceedings, Part I, LNCS, vol 8802. Springer, Corfu, pp 336–350

Devroey X, Perrouin G, Legay A, Schobbens PY, Heymans P (2016) Search-based similarity-driven
behavioural SPL testing. In: Proceedings of the tenth international workshop on variability modelling of
software-intensive systems - VaMoS ’16. ACM Press, Salvador, pp 89–96

Devroey X, Perrouin G, Cordy M, Samih H, Legay A, Schobbens PY, Heymans P (2017) Statisti-
cal prioritization for software product line testing: an experience report. Softw Syst Model 16(1):
153–171

Engström E, Runeson P (2011) Software product line testing - A systematic mapping study. Inf Softw
Technol 53(1):2–13

Ensan F, Bagheri E, Gašević D (2012) Evolutionary search-based test generation for software product line
feature models. In: Ralyté J, Franch X, Brinkkemper S, Wrycza S (eds) Advanced Information Systems
Engineering: 24th International Conference, CAiSE ’12. Springer, pp 613–628

Ganesan D, Knodel J, Kolb R, Haury U, Meier G (2007) Comparing costs and benefits of different test
strategies for a software product line: a study from testo ag. In: Software product line conference, 2007.
SPLC 2007. 11th international. IEEE, pp 74–83

Garvin BJ, Cohen MB, Dwyer MB (2011) Evaluating improvements to a meta-heuristic search for
constrained interaction testing. Empir Softw Eng 16(1):61–102

Hahsler M, Grün B, Hornik K (2005) arules – A computational environment for mining association rules and
frequent item sets. J Stat Softw 14(15):1–25

Halin A, Nuttinck A, Acher M, Devroey X, Perrouin G, Heymans P (2017) Yo variability! JHipster: a play-
ground for web-apps analyses. In: Proceedings of the eleventh international workshop on variability
modelling of software-intensive systems, VAMOS ’17. ACM, New York, pp 44–51

Henard C, Papadakis M, Perrouin G, Klein J, Le Traon Y (2013a) Towards automated testing and fix-
ing of re-engineered feature models. In: Proceedings of the 2013 international conference on software
engineering, ICSE ’13. IEEE Press, Piscataway, pp 1245–1248

Henard C, Papadakis M, Perrouin G, Klein J, Traon YL (2013b) Multi-objective test generation for software
product lines. In: Proceedings of the 17th international software product line conference, SPLC ’13.
ACM Press, pp 62–71

Henard C, Papadakis M, Perrouin G, Klein J, Traon YL (2013c) Pledge: a product line editor and test
generation tool. In: Proceedings of the 17th international software product line conference co-located
workshops, SPLC ’13 Workshops. ACM, New York, pp 126–129

Henard C, Papadakis M, Perrouin G, Klein J, Traon YL (2013d) Towards automated testing and fixing of
re-engineered feature models. In: Notkin D, Cheng BHC, Pohl K (eds) 35th international conference on
software engineering, ICSE ’13. IEEE Computer Society, San Francisco, pp 1245–1248

Henard C, Papadakis M, Perrouin G, Klein J, Heymans P, Le traon Y (2014) Bypassing the combinatorial
explosion: using similarity to generate and prioritize t-wise test configurations for software product lines.
IEEE Trans Softw Eng 40(7):650–670

Henard C, Papadakis M, Harman M, Traon YL (2015) Combining multi-objective search and constraint solv-
ing for configuring large software product lines. In: 2015 IEEE/ACM 37th IEEE international conference
on software engineering - ICSE ’15, vol 1, pp 517–528

Hervieu A, Baudry B, Gotlieb A (2011) PACOGEN: Automatic generation of pairwise test configurations
from feature models. In: IEEE 22nd international symposium on software reliability engineering - ISSRE
’11, i. IEEE, pp 120–129



Empir Software Eng (2019) 24:674–717 713

Jalali S, Wohlin C (2012) Systematic literature studies: database searches vs. backward snowballing.
In: Proceedings of the ACM-IEEE international symposium on empirical software engineering and
measurement - ESEM ’12. ACM, p 29

JHipsterTeam: JHipster website (2017) Https://jhipster.github.io, Accessed Feb 2017
Jin D, Qu X, Cohen MB, Robinson B (2014) Configurations everywhere: implications for testing and

debugging in practice. In: Companion Proceedings of the 36th international conference on software
engineering - ICSE companion 2014. ACM, pp 215–224

Johansen MF, Haugen Ø, fleurey F (2011) Properties of realistic feature models make combinatorial testing
of product lines feasible. In: Whittle J, Clark T, Ku̇hne T (eds) Model driven engineering languages and
systems: 14th international conference, MODELS ’11, Section 3. Springer, pp 638–652

Johansen MF, Haugen Ø, Fleurey F (2012a) An algorithm for generating t-wise covering arrays from large
feature models. In: Proceedings of the 16th international software product line conference on - SPLC
’12 -volume 1, vol. 1. ACM, p 46

Johansen MF, Haugen Ø, Fleurey F, Eldegard AG, Syversen T (2012b) Generating better partial covering
arrays by modeling weights on sub-product lines. In: France RB, Kazmeier J, Breu R, Atkinson C (eds)
Proceedings of the 15th international conference on model driven engineering languages and systems -
MoDELS ’12, Lecture notes in computer science, vol 7590. Springer, pp 269–284

Johansen MF (2016) Pairwiser. https://inductive.no/pairwiser/
Kang K, Cohen S, Hess J, Novak W, Peterson AS (1990) Feature-oriented domain analysis (FODA)

feasibility study. Technical report, Carnegie-Mellon University Software Engineering Institute
Kastner C, Apel S (2008) Type-checking software product lines-a formal approach. In: 2008 23rd IEEE/ACM

international conference on automated software engineering - ASE ’08. IEEE, pp 258–267
Kenner A, Kästner C, Haase S, Leich T (2010) Typechef: toward type checking #ifdef variability in c. In:

Proceedings of the 2nd international workshop on feature-oriented software development, FOSD ’10.
ACM, New York, pp 25–32

Kim CHP, Batory D, Khurshid S (2011) Reducing combinatorics in testing product lines. In: Proceed-
ings of the tenth international conference on aspect-oriented software development, AOSD ’11. ACM,
pp 57–68

Kim CHP, Marinov D, Khurshid S, Batory D, Souto S, Barros P, d’Amorim M (2013) Splat: lightweight
dynamic analysis for reducing combinatorics in testing configurable systems - esec/fse ’13. In:
Proceedings of the 2013 9th joint meeting on foundations of software engineering. ACM, pp 257–267

Kim M, Zimmermann T, DeLine R, Begel A (2016) The emerging role of data scientists on software devel-
opment teams. In: Proceedings of the 38th international conference on software engineering, ICSE ’16.
ACM, New York, pp 96–107

Kuhn D, Wallace D, Gallo A (2004) Software fault interactions and implications for software testing. IEEE
Trans Softw Eng 30(6):418–421

Lochau M, Oster S, Goltz U, Schu̇rr A (2012a) Model-based pairwise testing for feature interaction coverage
in software product line engineering. Softw Qual J 20(3-4):567–604

Lochau M, Schaefer I, Kamischke J, Lity S (2012b) Incremental model-based testing of delta-oriented
software product lines. In: Brucker A, Julliand J (eds) Tests and proofs, LNCS, vol 7305. Springer,
pp 67–82

Lopez-Herrejon RE, Fischer S, Ramler R, Egyed A (2015) A first systematic mapping study on combinatorial
interaction testing for software product lines. In: 2015 IEEE eighth international conference on software
testing, verification and validation workshops (ICSTW). IEEE, pp 1–10

Machado IdC, McGregor JD, Cavalcanti YC, de Almeida ES (2014) On strategies for testing software
product lines: a systematic literature review. Inf Softw Technol 56(10):1183–1199

Mathur AP (2008) Foundations of software testing. Pearson Education, India
Medeiros F, Kästner C, Ribeiro M, Gheyi R, Apel S (2016) A comparison of 10 sampling algorithms for

configurable systems. In: Proceedings of the 38th international conference on software engineering -
ICSE ’16. ACM Press, Austin, pp 643–654

Meinicke J, Wong CP, Kästner C, Thüm T, Saake G (2016) On essential configuration complexity: mea-
suring interactions in highly-configurable systems. In: Proceedings of the 31st IEEE/ACM International
conference on automated software engineering - ASE 2016, 2. ACM Press, Singapore, pp 483–494

Melo J, Flesborg E, Brabrand C, Waşowski A (2016) A quantitative analysis of variability warnings in
linux. In: Proceedings of the tenth international workshop on variability modelling of software-intensive
systems, VaMoS ’16. ACM, pp 3–8

Nadi S, Berger T, Kästner C, Czarnecki K (2015) Where do configuration constraints stem from? an
extraction approach and an empirical study. IEEE Trans Softw Eng 41(8):820–841

Https://jhipster.github.io
https://inductive.no/pairwiser/


714 Empir Software Eng (2019) 24:674–717

Nguyen HV, Kästner C, Nguyen TN (2014) Exploring variability-aware execution for testing plugin-based
web applications. In: Proceedings of the 36th international conference on software engineering - ICSE
’14. ACM, pp 907–918

Ochoa L, Pereira JA, González-Rojas O, Castro H, Saake G (2017) A survey on scalability and performance
concerns in extended product lines configuration. In: Proceedings of the eleventh international workshop
on variability modelling of software-intensive systems, VAMOS ’17. ACM, pp 5–12

Oster S, Markert F, Ritter P (2010) Automated incremental pairwise testing of software product lines. In:
Software product lines: going beyond. Springer, pp 196–210

Oster S, Zorcic I, Markert F, Lochau M (2011) Moso-polite: tool support for pairwise and model-based
software product line testing. In: Proceedings of the 5th workshop on variability modeling of software-
intensive systems, VaMoS ’11. ACM, New York, pp 79–82

Parejo JA, Sánchez AB, Segura S, Ruiz-Cortés A, Lopez-Herrejon RE, Egyed A (2016) Multi-objective test
case prioritization in highly configurable systems: a case study. J Syst Softw 122:287–310

Perrouin G, Sen S, Klein J, Baudry B, Le Traon Y (2010a) Automated and scalable t-wise test case gener-
ation strategies for software product lines. In: 2010 third international conference on software testing,
verification and validation, ICST ’10. IEEE, pp 459–468

Perrouin G, Sen S, Klein J, Baudry B, Traon Y (2010b) Automated and scalable t-wise test case genera-
tion strategies for software product lines. In: Proceedings of the 2010 third international conference on
software testing, verification and validation, ICST ’10. IEEE Computer Society, Washington, pp 459–
468

Perrouin G, Oster S, Sen S, Klein J, Baudry B, Le Traon Y (2011) Pairwise testing for software product lines:
comparison of two approaches. Softw Qual J 20(3-4):605–643

Petke J, Yoo S, Cohen MB, Harman M (2013) Efficiency and early fault detection with lower and higher
strength combinatorial interaction testing. In: Proceedings of the 2013 9th joint meeting on foundations
of software engineering, ESEC/FSE 2013. ACM, pp 26–36

Pohl K, Böckle G, Van Der linden F (2005) Software product line engineering: foundations, principles, and
techniques. Springer, Berlin

Qu X, Cohen MB, Rothermel G (2008) Configuration-aware regression testing: an empirical study of sam-
pling and prioritization. In: Proceedings of the 2008 international symposium on software testing and
analysis - ISSTA ’08. ACM, pp 75–86

Rabkin A, Katz R (2011) Static extraction of program configuration options. In: Proceedings of the 33rd
international conference on software engineering, ICSE ’11. ACM, pp 131–140

Raible M (2015) The JHipster mini-book. C4Media
Reisner E, Song C, Ma KK, Foster JS, Porter A (2010) Using symbolic evaluation to understand behavior

in configurable software systems. In: Proceedings of the 32nd ACM/IEEE international conference on
software engineering, ICSE ’10, vol 1. ACM Press, p 445

Sanchez AB, Segura S, Ruiz-Cortes A (2014) A comparison of test case prioritization criteria for soft-
ware product lines. In: 2014 IEEE seventh international conference on software testing, verification and
validation - ICST. IEEE, pp 41–50

Sánchez AB, Segura S, Parejo JA, Ruiz-Cortés A (2017) Variability testing in the wild: the drupal case study.
Softw Syst Model 16(1):173–194

Sayyad AS, Menzies T, Ammar H (2013) On the value of user preferences in search-based software
engineering: A case study in software product lines. In: ICSE’13. IEEE, pp 492–501

She S, Lotufo R, Berger T, Wasowski A, Czarnecki K (2011) Reverse engineering feature models. In: Pro-
ceedings of the 33rd international conference on software engineering, ICSE ’11. ACM, New York,
pp 461–470

Shi J, Cohen MB, Dwyer MB (2012) Integration testing of software product lines using compositional sym-
bolic execution. In: Proceedings of the 15th international conference on fundamental approaches to
software engineering, LNCS, vol 7212. Springer, pp 270–284

Society IC, Bourque P, Fairley RE (2014) Guide to the software engineering body of knowledge (SWE-
BOK(r)): version 3.0, 3rd edn. IEEE Computer Society Press, Los Alamitos

Souto S, D’Amorim M, Gheyi R (2017) Balancing soundness and efficiency for practical testing of con-
figurable systems. In: 2017 IEEE/ACM 39th international conference on software engineering (ICSE).
IEEE, pp 632–642

Thüm T, Apel S, Kästner C, Schaefer I, Saake G (2014) A classification and survey of analysis strategies for
software product lines. ACM Comput Surv 47(1):6:1–6:45

Uzuncaova E, Khurshid S, Batory D (2010) Incremental test generation for software product lines. IEEE
Trans Softw Eng 36(3):309–322

Yilmaz C, Cohen MB, Porter AA (2006) Covering arrays for efficient fault characterization in complex
configuration spaces. IEEE Trans Softw Eng 32(1):20–34



Empir Software Eng (2019) 24:674–717 715

Axel Halin received his masters degree in Computer Science from the University of Namur, Belgium in
2017. During his final year, he studied configurable systems and studied JHipster as a case study in his master
thesis. Since September 2017, he works as a software engineer in the industry.

Alexandre Nuttinck is a research engineer at CETIC, an applied research center in Belgium since Septem-
ber 2017. His main field of activity concerns cloud computing. He received a masters degree in Computer
Science, from the University of Namur, Belgium in 2017. In his last year of study, he carried out a research
internship at INRIA Rennes where he focused on the automation of testing JHipster configurations.



716 Empir Software Eng (2019) 24:674–717

Dr. Mathieu Acher is Associate Professor at University of Rennes 1 / Inria, France since 2012. His research
focuses on reverse engineering, modelling and learning software variability. He has authored papers in top
international venues (ESEC/FSE, ASE, SPLC, MoDELS, IJCAI, etc.). He is the scientific leader of VaryVary,
a research project about machine learning and configurable software systems.

Dr. Xavier Devroey is a post-doctoral researcher at the Delft University of Technology, where he is involved
in the EU Software Testing AMPlification (STAMP) and the 3TU Big Software on the Run (BSR) projects.
He received his Ph.D. in Computer Science from the University of Namur. His main research interests are
mutation testing, search-based and model-based software testing, test suite augmentation, and variability-
intensive systems.



Empir Software Eng (2019) 24:674–717 717

Dr. Gilles Perrouin received the joint PhD degree from the University of Luxembourg and Namur. Since
2017, he is an FNRS research associate (tenured scientist) hosted at the Faculty of Computer Science, Uni-
versity of Namur, Belgium. He is a member of the PReCISE research center and the Namur Digital Institute,
in which he explores software product lines, modelling and model-based testing.

Dr. Benoit Baudry is a Professor in Software Technology at the Royal Institute of Technology (KTH) in
Stockholm, Sweden. He received his PhD in 2003 from the University of Rennes and was a research scientist
at INRIA from 2004 to 2017. His research is in the area of software testing, code analysis and automatic
diversification. His work is published in software engineering top journals and conferences, and it is funded
by the European Union, the Wallenberg foundation and software companies.


	Test them all, is it worth it? Assessing configuration sampling on the JHipster Web development stack
	Abstract
	Introduction
	Background and related work
	Reverse engineering variability models
	Testing a configurable system
	Variability-aware testing
	Configurations sampling
	Random sampling
	T-wise sampling
	Dissimilarity sampling
	Incremental Sampling
	One-disabled sampling
	One-enabled sampling
	Most-enabled-disabled sampling
	Other samplings


	Comparison of sampling approaches
	Motivation of this Study

	Case study
	Research questions
	(RQ1) What is the feasibility of testing all JHipster configurations?
	(RQ2) To what extent can sampling help to discover defects in JHipster?
	(RQ3) How can sampling help JHipster developers?

	Methodology

	All configurations testing costs (RQ1)
	Reverse engineering variability
	Fully automated derivation and testing
	Engineering a configurable system for testing configurations
	Implementing testing procedures
	Building an all-inclusive testing environment
	Distributing the tests
	Opportunistic optimizations and sharing
	Validation of the testing infrastructure

	Human Cost
	Modelling configurations
	Configuration-aware testing workflow
	All-inclusive environment
	Distributing the computation


	Computational cost

	Results of the testing workflow execution (RQ2.1)
	Bugs: A quick inventory
	Statistical analysis
	Qualitative analysis
	MariaDB with Docker
	MariaDB using Gradle
	UAA authentication with Docker
	UAA authentication with Ehcache as Hibernate second level cache
	OAuth2 authentication with SQL database
	Social Login with MongoDB
	Testing infrastructure
	Feature interaction strength



	Sampling techniques comparison (RQ2.2)
	JHipster team sampling strategy
	Comparison of sampling techniques
	Sampling techniques
	t-wise sampling.
	One-disabled sampling
	One-enabled and most-enabled-disabled sampling
	Dissimilarity sampling
	Random sampling

	Fault and failure efficiency
	Discussion


	Comparison with Other Studies (RQ2.3)
	Studies selection protocol
	Selected studies
	Comparison of findings
	Sampling effectiveness
	Failure vs fault
	Fault corpus


	Practitioners viewpoint (RQ3)
	JHipster's testing strategy
	Continuous testing
	Sampling strategy

	Merits and limits of exhaustive testing
	Discussions
	Sampling strategy
	Sampling size
	Configuration-aware testing infrastructure


	Threats to validity
	Conclusion and perspectives
	Synthesis of lessons learned
	Infrastructure costs
	Comparing sampling techniques
	Comparison with other studies
	Comparison with JHipster team testing practice


	Test them all, is it worth it?
	Perspectives

	Acknowledgements
	Open Access
	Publisher's Note
	References


