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A B S T R A C T

Electric travelling appears to dominate the transport sector in the near future due to the needed
transition from internal combustion vehicles (ICV) towards Electric Vehicles (EV) to tackle urban
pollution. Given this trend, investigation of the EV drivers’ travel behaviour is of great im-
portance to stakeholders including planners and policymakers, for example in order to locate
charging stations. This research explores the Battery Electric Vehicle (BEV) drivers route choice
and charging preferences through a Stated Preference (SP) survey. Collecting data from 505 EV
drivers in the Netherlands, we report the results of estimating a Mixed Logit (ML) model for those
choices. Respondents were requested to choose a route among six alternatives: freeways, arterial
ways, and local streets with and without fast charging. Our findings suggest that the classic route
attributes (travel time and travel cost), vehicle-related variables (state-of-charge at the origin and
destination) and charging characteristics (availability of a slow charging point at the destination,
fast charging duration, waiting time in the queue of a fast-charging station) can influence the BEV
drivers route choice and charging behaviour significantly. When the state-of-charge (SOC) at the
origin is high and a slow charger at the destination is available, routes without fast charging are
likely to be preferred. Moreover, local streets (associated with slow speeds and less energy
consumption) could be preferred if the SOC at the destination is expected to be low while arterial
ways might be selected when a driver must recharge his/her car during the trip via fast charging.

1. Introduction

The transport sector is recognised as one of the primary drivers of energy consumption and Greenhouse Gas (GHG) emissions with
23% of the total emissions in Europe in 2015 (EuroStat Greenhouse Gas Emission Statistics, 2017) and also the only sector which
demonstrates an increase in the last years (European Commission, 2016; McKinsey, 2016; Taefi et al., 2016). This is contributing to
climate change which might be aggravated in the future if the trend is not controlled.

According to an urgent need to address fossil fuel dependency, air pollution, global warming, and mitigate public concerns on
health issues a transition from internal combustion vehicles (ICV) towards alternative technologies is required. Electrification of
vehicles is a major measure to increase travel energy efficiency as well as resource security and decarbonisation of transport leading
to climate protection and less pollution.

In recent years, the electric vehicles (EV) market share has significantly grown. Researchers, policymakers, and the involved
business firms try massively to stimulate travellers to adopt electric mobility. Based on the technical specification, EVs are categorised
into Hybrid Electric Vehicles (HEV), Plug-in Hybrid Electric Vehicles (PHEV), Battery Electric Vehicles (BEV), Fuel-Cell Electric
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Vehicles (FCEV) (Cavallaro et al., 2018; Gong et al., 2016; Li et al., 2020).
PHEVs and BEVs have been dominating the EV market share. PHEVs are similar to HEVs with having a more powerful battery

which can also be charged at a station while BEVs use high-capacity electric engines that must always be recharged through a
charger. Compared with HEVs and PHEVs, BEVs have the highest battery capacity, therefore, the greatest range with the lowest local
emission due to not burning any fuel. BEV models are mostly found on the market as small and mid-size cars which reflects the fact
that BEVs are usually used for short-distance commuting trips, while PHEVs are bigger and used for long-distance trips since the
range is always guaranteed by the internal combustion engine.

In some countries, such as the Netherlands, policymakers incentivised users to purchase PHEVs at early stages of electric tra-
velling, then the strategy shifted towards phasing out the sale of PHEVs, due to their size and limited impact on lowering emissions,
and promoting BEVs given the higher battery capacity and lower emissions (International and Agency, 2018). However, BEVs have
several restrictions such as lower driving range, higher recharging duration, and lack of charging infrastructure. That is why low
State-of-Charge (SOC) and lack of charging opportunities are the main concerns of the EV drivers. It is the so-called “range anxiety”
which refers to the concern that the battery would get depleted during a trip before arriving at the destination or reaching a charging
station (Esmaili et al., 2018; Guo et al., 2018; Noel et al., 2019; Pearre et al., 2011).

Charging stations can be categorised into private, semi-public, and public ones. Private and semi-public charging refers to the
charging points installed at home or workplace while public chargers are installed at public places including airports, railway
stations, shopping malls, traffic hotspots, highways, parking lots. Charging points are also classified into slow and fast charging based
on the recharging time. The former takes longer to recharge an EV. On average, a BEV needs 6–8 h and 20–40 min to be recharged
with a slow charger and a fast charger, respectively (Botsford and Szczepanek, 2009).

Route choice as one of the central topics in transport research has been studied for decades. Empirical research on route choice
behaviour shed light on the attributes influencing the route selection of drivers (Abdel-Aty et al., 1997; Arnott et al., 1992; Gao et al.,
2010; Wu et al., 2018; Xu et al., 2011). Discrete choice modelling is the the most frequently used methodology in the literature to
unravel the route choice behaviour of individuals (Dalumpines and Scott, 2017; Emmerink et al., 1996; Habib et al., 2013; Pillat
et al., 2011; Prato, 2009; Tawfik and Rakha, 2013). The identified factors can be categorized into route attributes, traffic information,
trip specifications, drivers’ attitudes and socio-demographic characteristics. Li et al. (2005) studied commute route choice of 182
drivers. They reported that commuters are usually more flexible in terms of departure time and route choice in the evening than in
the morning commute. Estimating a hybrid choice model, Alizadeh et al. (2019) examined the heterogeneity amongst drivers and
concluded that frequent car users have different route choice behaviour compared to occasional ones. They also pointed out that
incorporating drivers’ characteristics and latent variables significantly increase the model explanatory power. These results could
highlight the importance of exploring the EV drivers’ route choice behaviour due to the heterogeneity between EV and ICV drivers.

Charging specific to the behaviour of EV drivers (Azadfar et al., 2015). The charging behaviour of EV drivers has been in-
vestigated in two dimensions: slow charging and fast charging. Slow charging is usually used when a driver intends to stay (possibly
for a longer periods) at a particular place such as his/her home or job location while fast charging points have been mostly installed in
the main streets and freeways to enable EV drivers to recharge their cars during their trips which are similar to today’s gas stations
(Azadfar et al., 2015; Morrow et al., 2008). According to the findings of Chang et al. (2012), fast charging opportunity is the crucial
element for the development and adoption of EVs. It was observed that fast charging could potentially reduce range anxiety and
increase driving distance. Using stated preference experiments, Jabeen et al. (2013) explored the charging preferences of EV drivers
in the Western Australia Electric Vehicle pilot. They concluded that charging at home or work is generally preferred while drivers
who need to pick up/drop off a family member tend to use fast charging. Overall, it was found that drivers are sensitive to charging
costs and duration. This shows the necessity of including both fast charging and slow charging in the analysis of EV drivers’ charging
behaviour.

There is a growing body of literature that explores the implications of electric travelling in both demand and supply sides of
transport systems. On the demand side, some studies have investigated the mode choice of travellers in the era of electrification
(Carley et al., 2013; Jensen et al., 2013; Liao et al., 2017; Lieven et al., 2011; Nazari et al., 2019; Rasouli and Timmermans, 2016;
Rezvani et al., 2015). Furthermore, many researchers have focused on the supply side and the role of EV specifications and corre-
sponding infrastructure needs in the EV adoption where most of them assume that the EV drivers’ route choice behaviour is similar to
ICV car drivers (Cavadas et al., 2015; Çetinkaya, 2018; Csiszár et al., 2019; Sun et al., 2018; Zhu et al., 2016).

In general, several factors including cruising range limitation, recharging duration and frequency, charging methods, availability
and accessibility of charging points can lead to a distinctive travel behaviour of EV drivers when compared to ICV which is fairly
missing in the literature. This uncertainty can lead to challenges for policymakers and service suppliers. Given the growth in the fleet
of EVs all around the world, more insights into the behaviour of EV drivers are needed in order to address the existing issues and also
plan the required measures.

In this study, a stated preference survey is conducted to investigate the BEV drivers’ route choice and charging behaviour. Routes
are divided into freeways, arterial ways, and local streets. They can be equipped with a fast-charging point which can be the
underlying reason for different route preferences. Therefore, three experiments with unique specifications have been set up to
identify the most effective factors including route attributes, vehicle-related specifications, and charging characteristics that influence
the drivers to select routes with/without fast charging. The next sections describe the study specifications, survey design and
structure, data collection, modelling, results, and conclusions.
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2. Study specifications

We categorised route alternatives into three groups: freeways, arterial ways, and local streets. On the other hand, slow charging
and fast charging are currently two common charging methods. Literature shows that fast charging may affect route choice behaviour
while slow charging has a minimal effect (Yang et al., 2016). This is because fast charging increases the flexibility of users in terms of
charging time and location similar to what happens with ICV cars. However, the charging frequency and duration of a BEV is still
higher than refuelling an ICV car and what is more charging points are available on a relatively lower number when compared to gas
stations nowadays. Therefore, routes can be divided into routes with and without fast charging. It should be noted that statistics show
that EVs are mostly used for making short commuting trips at the present time in the Netherlands (Centraal Bureau voor de Statistiek
(CBS), 2016). Therefore, respondents were requested to consider a commuter trip and to select between six routes namely freeway,
arterial way, and local streets (different speeds and consumptions associated) with and without fast charging.

SOC at the origin, electricity consumption, travel time, and travel cost were considered as attributes of all routes while recharging
duration, waiting time in the queue of a charging point, and charger location were alternative-specific attributes of the routes for
which respondents could opt for a fast-charging station in the middle of the way. Since the driving range and refuelling duration of
BEVs are significantly different from ICV cars, BEV drivers are expected to show a route choice behaviour that is different from ICV.
For example, Yang et al. (2016) suggest that the most efficient electricity consumption is derived at the speed range of 30–70 km/h in
a congested area thanks to Regenerative Braking System (RBS). Furthermore, range anxiety is another determinant that may limit the
possible trip chain and route selection. To illustrate, one might either select a route with lower consumption but higher travel time in
order to ensure that a certain minimum level of battery power is available at the end of the trip or deviate and choose another route
because of the availability of a fast charging point.

Therefore, we hypothesise that SOC at the origin and destination of a trip are important indicators that can influence the drivers’
decision on the route and charging behaviour. In the survey instrument, the SOC at the destination is derived from subtracting the
initial SOC and the electricity consumption. When the SOC at the destination approaches zero a significantly different driving
behaviour is expected to be observed, especially for those who have high range anxiety.

On the other hand, the availability of a charging point at the destination may play an important role in route and charging choices
of drivers, especially in commuting trips. This is because when people park their cars for several hours in a particular location, they
may prefer to take advantage of that time for recharging their BEVs. Otherwise, they must ensure that they have sufficient battery
power for performing the return trips. Therefore, the availability of a slow charger at the destination is incorporated in the survey as a
context variable.

If one prefers to recharge his/her vehicle during a trip, fast charging can be a possible option. Fast charging increases the
flexibility of drivers in charging time and location. It can be located closer to the origin, in the middle of the way, or closer to the
destination. Therefore, fast charging duration, waiting time in the queue and charging station location were considered in the routes
with fast charging as relevant attributes.

Travel time and travel cost are classic route attributes whereas EV attributes and charging characteristics are specific to electric
mobility. Respondents were explained that if they select a route with fast charging, they must recharge their car during the trip.
Moreover, since fast charging cost is higher than slow charging (roughly twice depending on charging speed and capacity of the
infrastructure), the associated cost was embedded in the travel cost of those routes.

3. Survey design

It is desirable to define attributes and attribute levels in the SP experiment based on real circumstances. To achieve this, attribute
levels are pivoted on the analysis of the real data provided by CBS for conducting a commuting trip of 40 km with a BEV.

Fiori et al. (2017) concluded that BEV energy consumption increases in the routes with higher speed. Based on the speed range,
we assumed that travel time is lower in freeways compared to arterial ways and local streets while electricity consumption and travel
cost are higher in freeways than arterial ways and local streets assuming a similar distance in the alternatives. Moreover, fast charging
during a trip increases total charging time and cost in the freeway compared to arterial way and local streets due to lower SOC at the
time of charging.

Based on the SOC at the origin and electricity consumption, three possible scenarios can be considered:

1. SOC at the origin is much higher than electricity consumption during the trip (designated as Green Zone).
2. SOC at the origin and electricity consumption are roughly equivalent (designated as Grey Zone).
3. SOC at the origin is lower than or equal to electricity consumption (designated as Red Zone).

We named the first case as “Green Zone” because drivers are not obliged to recharge their vehicles during the trip according to the
SOC they will have at the destination which is equal to or more than 50% in the case they do not use fast charging. It implies that they
can make the return trip without charging. However, the availability of a slow charger at the destination can be a determinant to
choose fast charging in the return trip in order to ensure that that trip can be done.

In the second scenario, which we called “Grey Zone”, SOC at the destination is between 0 and 35% without fast charging. In this
condition, users may prefer only the routes with fast charging depending on the range anxiety level, attitudes, and socio-economic
characteristics.

On the other hand, there is no option for selecting a route where no fast charging takes place on what is designated as “Red Zone”,
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which is the third scenario. In this case, a trip cannot be done without fast charging since the car would run out of power.
To address all the aforementioned scenarios, three different experiments were designed: Green, Grey and Red zones. It is pos-

tulated that a commuting trip is performed between a certain origin-destination pair in all experiments, so travel distance and
purpose are assumed to be fixed. SOC at the origin differs significantly in each experiment, for example, 90% in Green Zone, 30% in
Grey Zone, and 15% in Red Zone. It is assumed that if a traveller selects a route with fast charging, he/she has to recharge his/her car
with the fast charger point. Each experiment has 24 treatment combinations in 6 blocks of 4 choice tasks. Several constraints were
imposed to ensure all choice sets are feasible. Tables 1–3 show the characteristics of the experiments and the associated attribute
levels.

Due to the number of attributes and attribute levels, fractional factorial experimental design is used in order to decrease the total
number of choice sets per experiment. The efficient design was selected to minimise the standard errors of the parameter estimates in

Table 1
Characteristics of Experiment 1 (green zone).

Attributes     

Alternatives Routes without fast charging Route with fast charging

Mostly 
freeway

Mostly 
Arterial way

Mostly Local 
Streets

Mostly freeway with
charging

Mostly Arterial way with
charging

Mostly Local Streets with
charging

Percentage of battery 
capacity consumed for 
making your trip

20,25,30 15,20,25 10,15,20 20,25,30 15,20,25 10,15,20

Travel Costs (euro) 3,3.5,4 2,2.5,3 1,1.5,2 6,6.5,7 5,5.5,6 4,4.5,5

Travel Time excluding
charging time (min) 20,25,30 25,30,35 30,35,40 20,25,30 25,30,35 30,35,40

Charging time to be fully
charged (min) 10,12,14 8,10,12 6,8,10

Waiting time in the 
charging queue 3,6,9 3,6,9 3,6,9 

Charging Location
Close to origin, in the 

middle, close to
destination

Close to origin, in the 
middle, close to

destination

Close to origin, in the 
middle, close to

destination

Level of battery at origin [80%, 85%, 90%]
Availability of slow charger at the destination [YES, NO]

1Experiment

Table 2
Characteristics of Experiment 2 (grey zone).

Attributes     

Alternatives Routes without fast charging Route with fast charging

Mostly 
freeway

Mostly 
Arterial way

Mostly Local 
Streets

Mostly freeway with 
charging

Mostly Arterial way with 
charging

Mostly Local Streets with 
charging

Percentage of battery 
capacity consumed for 
making your trip

25,30,35 20,25,30 15,20,25 25,30,35 20,25,30 15,20,25

Travel Costs (euro) 3.5,4,4.5 2.5,3,3.5 1.5,2,2.5 6.5,7,7.5 5.5,6,6.5 4.5,5,5.5

Travel Time excluding 
charging time (min) 20,25,30 25,30,35 30,35,40 20,25,30 25,30,35 30,35,40

Charging time to be fully 
charged (min) 14,16,18 12,14,16 10,12,14

Waiting time in the 
charging queue 3,6,9 3,6,9 3,6,9

Charging Location
Close to origin, in the 

middle, close to 
destination

Close to origin, in the 
middle, close to 

destination

Close to origin, in the 
middle, close to 

destination

Level of battery at origin [30%, 40%, 50%]
Availability of slow charger at the destination [YES, NO]

2Experiment 
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case the asymptotic variance-covariance (AVC) matrix is determined (ChoiceMetrics, 2012). This method aims at minimising so-
called −D errorp (Bliemer and Rose, 2010):

− =D error X βdet(Ω ( , ))p
K

1
1/

where K indicates the number of parameters to be estimated. β is set to the best estimation of parameters, assuming they are correct.
To obtain priors, a pilot study was conducted, then the survey was redesigned accordingly. The choice experiments have been
constructed using the software package NGENE (ChoiceMetrics, 2012).

4. Survey structure

The questionnaire consists of three parts including: individual mobility behaviour, stated choice experiments, and socio-economic
characteristics of the participants. Each respondent was confronted with four choice tasks for each experiment. To achieve more
reliable results, only EV users were incorporated into this study. Thus, two screening questions were asked at first to filter the
respondents: if they had a driving license and if they drove an EV frequently. To avoid bias in the responses, the blocks of each
experiment were randomly distributed among participants. Fig. 1 illustrates an example of a choice set that as shown to each
respondent.

5. Data

It was challenging to obtain the required number of complete responses given that EV drivers are still a low percentage. Although
we set up an SP survey to consider a commuting trip being performed with a BEV, the data obtained from BEV, PHEV, and HEV
drivers were incorporated due to the fact that the number of BEV drivers is significantly lower than the hybrid (PEHV and HEV). In
total, the data of 505 respondents were collected. Fig. 2 shows the data composition in some key variables.

As shown, male respondents outnumber the female ones. The respondents are mostly between the ages of 18 and 45 years old,
having a (advanced) diploma and earning 1000–5000 euros monthly net income. This would suggest the characteristics of EV
adopters in the population. We achieved a sample of 140, 231, 107, and 27 of the BEV, PHEV, HEV, FCEV drivers. BEV and PHEV
drivers who are the ones who have to recharge their cars were asked about their car specifications such as driving range and their
current charging behaviour including charging method, location, time, etc, depicted in Fig. 3.

Table 3
Characteristics of Experiment 3 (red zone).

Attributes             

Route WITH fast charging

Mostly freeway with 
charging

Mostly Arterial way with 
charging

Mostly Local Streets with 
charging

Percentage of battery capacity 
consumed for making your trip 30,35,40 25,30,3 25 0,25,30

Travel Costs (euro) 7,7.5,8 6,6.5, 57 ,5.5,6

Travel time excluding charging 
time (min) 20,25,30 25,30,3 35 0,35,40

Charging time to be fully 
charged (min) 20,22,24 18,20,2 12 6,18,20

Waiting time in the charging 
queue 3,6,9 3,6,9 3,6,9

Charging Location
Close to the origin, in the 

middle, close to the 
destination

Close to the origin, in the
middle, close to the destination

Close to the origin, in the middle, 
close to the destination

Level of battery at origin [30%, 40%, 50%]
Availability of slow charger at the destination [YES, NO]

3Experiment 

Alternatives
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Participants experience various driving ranges from less than 100 km to more than 500 km. Around 80% of those who use slow
charging take 4–8 h on average to recharge their vehicle. They mostly recharge their car at home and workplace by 50% and 29%,
respectively. 65% of the EV drivers plug in their cars when SOC is above 50%. It might represent their high range anxiety or their
charging pattern to recharge their vehicle when they arrive at the destination regardless of the SOC.

Dataset analysis represented in Fig. 4 shows that 57% of the respondents prefer the routes with fast charging in the green zone
where SOC at the origin is always equal or higher than 50%. In the grey zone, the number of drivers choosing the routes with fast
charging increases, as expected. However, if a driver tends to select routes without fast charging, local streets are more likely to be
chosen. This is because the consumption is lower in local street resulting in higher SOC at the destination. While freeways are
favoured in the case of preference for selecting a route with fast charging owing to lower travel time. On the other hand, arterial ways
are preferred in the red zone. This might be because of the median travel time and cost.

6. Discrete choice modelling

Random Utility Maximization (RUM) which is a sub-category of discrete choice modelling is one of the most popular frameworks
to explore the travellers’ preference towards route choice. It hypothesizes that each individual chooses a specific alternative i when
the associated utility is the highest compared to the other options (McFadden, 1974; Ortúzar and Willumsen, 2011). The utility
functions for all alternatives are defined using Eq. (1).

∑ ∑= + +U β x β x ε. .i
m

im im
k

ik ik i
(1)

where the first component of the utility function is associated with the instrumental attributes that were presented in the SP choice
sets such as route, vehicle-related, and charging attributes as depicted in Tables 1–3. It should be mentioned that SOC at the origin

Fig. 1. Example of a choice set in Experiment 1.
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and the availability of slow charger are included as context variables of each choice experiment as shown above in Fig. 1. βim is a
vector of coefficients that indicates the importance of the instrumental variable xm corresponding to alternative i. The second term
pertains to the factors that are related to the individuals including gender and age. βik is vector of coefficients that implies the
importance of socio-economic variable xk incorporated into the utlity function of alternative i.

The error term, the last component in the utility function, represents unexplained variation. MNL is the simplest logit model with
ignoring all covariances (McFadden, 1974; Ortúzar and Willumsen, 2011). It hypothesizes that the random variables are in-
dependently and identically distributed (IID) following Extreme Value type 1. Therefore, it neglects the taste heterogeneity amongst
individuals as well as the correlation between choices made by the same individual across time. In order to overcome these lim-
itations, more complex models with higher degrees of freedom have been estimated. Using the software package PythonBiogeme
(Bierlaire, 2003), we estimated a mixed logit model with panel effects resulted in the best model fit.

7. Results

Table 4 shows the results of the maximum likelihood estimation of the mixed logit model with considering the panel effects and
1000 Halton draws. The total number of observations and estimated coefficients are 6060 and 22, respectively. Model estimation
parameters including rho-square and final log likelihood are summarised in Table 4. We have concluded that the signs of all estimated

0 5 10 15 20 25 30 35 40 45

Freeways

Arterial ways

Local streets

Freeways with fast charging

Arterial ways with fast charging

Local streets with fast charging

Red Zone Grey Zone Green Zone

Fig. 4. Choice sets analysis.

Table 4
Results of the mixed logit model.

Name Value Robust Std err Robust t-test

Alternative Specific Coefficients
ASC_FREEWAY_C 4.85 0.717 6.77
ASC_ARTERIAL WAY_C 4.80 0.659 7.29
ASC_LOCAL STREET_C 3.67 0.584 6.28
Estimated Marginal Value of Parameters
B_TT −0.0310 0.00644 −4.81
B_TC −0.178 0.0417 −4.27
B_CT −0.0818 0.0225 −3.63
B_WT −0.0271 0.0102 −2.65
B_SOC_C −0.0345 0.00462 −7.48
B_CP_C −0.365 0.0821 −4.44
B_E1_FREEWAY 0.120 0.0939 1.28
B_E2_LOCALSTREET 0.225 0.112 2.00
B_E3_ARTERIAL WAY 0.568 0.120 4.73
B_GENDER_W/C −0.849 0.213 −3.99
B_AGE_W/C 0.0233 0.00724 3.22
B_INCOME_W/C −0.140 0.0474 −2.96
B_EDUCTATION_W/C −0.663 0.207 −3.20
Standard Deviation of Random Parameters
SIGMA_FREEWAY_C 1.03 0.156 6.59
SIGMA_ARTERIAL WAY_C 0.922 0.109 8.48
SIGMA_LOCAL STREET_C 0.887 0.139 6.39
SIGMA_CT 0.171 0.0118 14.43
SIGMA_TC 0.316 0.0502 6.31
SIGMA_TT −0.104 0.00655 −15.93
Model Specifications
Number of observations 6060
Number of estimated parameters 22
Number of Halton draws 1000
Final log likelihood −8163.21
Rho-square 0.186
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coefficients are according to expectation.
Each parameter has been labelled by a prefix and a suffix in order to enable readers to grasp the type of the estimated parameter

and the associated utility function. As prefix, B, indicates the estimated marginal value of a parameter while SIGMA represents the
standard deviation of a random parameter. On the other hand, the suffix W/C and C show that the corresponding exploratory
variables pertain to the routes without and with fast charging, respectively. Furthermore, when a parameter ends with a road
category such as freeway, arterial ways, and local streets, it represents the associated utility function in which the variable has been
incorporated.

The coefficients of Alternative Specific Characteristics (ASCs) are significant and positive. They are included in the routes with
fast charging, so the positive sign supports the existence of unobserved preferences towards routes with fast charging. This tendency
might be due to various attitudinal factors such as range anxiety, trust in electric travelling, and so on. Furthermore, the significant
SIGMAs represent the heterogeneity amongst observed as well as unobserved utility.

Unsurprisingly, travel time (B_TT) and travel cost (B_TC) as being classic route attributes have a negative effect on the utility of all
route alternatives. It means that users prefer routes with lower travel time and cost. However, the marginal utility of travel cost
(−0.178) is more negative than that of the travel time utility (−0.031) indicating that travellers are likely more sensitive towards
cost than time. Furthermore, Value of Travel Time Saving (VTTS) which is a concept indicating the willingness of travellers to pay for
a unite of travel time saving (Jara-Diaz, 2007) is estimated at 10.45 Euros/h in this research. This value which is derived by dividing
the marginal value of travel time by the marginal value of travel cost is in line with the estimated VTTS in other research conducted in
the Netherlands (Homem et al., 2019; Yap et al., 2016).

In the case of fast charging, the charging time (B_CT) and waiting time (B_WT) coefficients add to the disutility of the associated
routes. In general, any stop for recharging or refuelling a car during a commuting trip is not desirable.

A significant different charging behaviour can be observed based on the available battery power at the origin which is the main
difference between the three designed experiments. Having a negative sign, SOC at the origin can be a crucial determinant to select a
route with/without fast charging. Given that initial SOC has been incorporated into the utility functions of routes with fast charging
as a context variable, the higher the SOC at the origin, the higher the probability of choosing a route without fast charging.

We examined the route choice behaviour of BEV drivers in terms of selecting one of the road categories (freeway, arterial way,
local street) within the designed experiments. Experiment design is intrinsic to the interaction of SOC at the origin and the electricity
consumption (SOC at the destination). In the green zone where SOC at the destination (without fast charging) is higher than 50%,
freeways are preferred (0.120) although it is not significant at the 95% level. Local streets appear to be favoured by travellers who
end up with running out of battery power in the grey zone (0.225). This cautious behaviour may be due to the tendency of selecting a
route with the lowest consumption in the case of no fast charging, therefore, yielding a greater residual SOC at the destination. In the
red zone in which users must recharge their car during the trip, they may tend to select arterial ways (0.568). Arterial ways are
assumed to have lower consumption than freeways and lower travel time than local streets, so travellers may select them in order to
ensure that they can arrive at a fast charging point while total travel time including route travel time and charging time is taken into
account.

The negative marginal value of B_CP shows that the availability of a slow charging point at the destination is a significant factor to
selecting a route without fast charging. This is because when a charging opportunity is provided at the destination, drivers may feel
more comfortable to perform their trip without fast charging.

Socio-demographic characteristics of the drivers included in the utility function of the routes without fast charging appear to be
important to explain their choices. The gender coefficient has a negative value of −0.849 which is the most effective factor amongst
other SDC variables. It suggests that female drivers are more likely to select routes with fast charging probably owing to their higher
sensitivity to the battery power level than men. Age has an inverse relationship with selecting routes with fast charging so older
people might prefer slow charging. This could be due to a lower trust in fast charging which can be supported by several remarks
received in this survey from mostly older drivers stating that fast charging might be harmful to the battery health.

Since fast charging is more expensive than slow charging, drivers’ income level is expected to be a significant parameter. Results
show that a person with higher income tends to choose the routes with fast charging. Furthermore, individuals with a higher
education level have a tendency towards routes with fast charging.

8. Conclusions

This study intends to demonstrate the impact of electric driving on the route choice and charging behaviour of BEV drivers.
Collecting the data of 505 respondents through an SP survey, we estimated a mixed logit model expressing the underlying factors in
the BEV drivers’ decisions. The results suggest that the BEV drivers’ route and charging preferences are dependent on the route
attributes, vehicle-related variables, charging characteristics, and socio-economic factors.

Classic route attributes including route travel time and travel cost as well as fast charging-related variables such as charging time
and waiting time are significant determinants in that any increase in their value on a specific route leads to a negative effect on the
selection of that route.

According to the estimation results, a higher SOC at the origin can stimulate drivers to select a route without fast charging. This is
because the high level of initial SOC gives more confidence to the driver in order to make the trip without fast charging. On the other
hand, routes without fast charging might be preferred if a slow charging opportunity is provided at the destination next to the
workplace of the respondent. Therefore, developing a trip planner application which is able to estimate the electricity consumption in
different routes between a pair of OD and also show the availability of slow charging points at the destination could be a promising
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tool helping EV users to select an efficient route and charging method.
Local streets are preferred over freeways and arterial ways when SOC at the destination is estimated to be zero. This is because we

assumed the local streets having the lowest consumption level compared to the other streets. Thus, drivers have a tendency to select a
route with the lowest consumption even with the highest travel time to ensure that they can arrive at either a fast charging point in
the case of charging during the trip or a slow charging point at the destination when a route without fast charging is selected.
Whereas arterial ways with intermediate fast charge are favoured when charging is really necessary in order to arrive at the des-
tination. This is because arterial ways stand between freeways and local streets in terms of travel time and consumption level which
might be valued equivalently by travellers in this scenario.

Our findings underpin the implications of socio-economic characteristics. Young female drivers with a higher level of income and
education are the ones who favour routes with fast charging. This could be further explained by exploring the attitudinal factors of
this social group.

Similar to other studies, some limitations can be noted. Since the number of BEV drivers is relatively low, we involved HEV,
PHEV, and BEV drivers in this research. While we know that BEV drivers would have had more realistic stated behaviour. Therefore,
the target group can be limited to the BEV drivers for further research. Furthermore, we fixed travel purpose and trip distance which
can be varied as well in future studies.
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