
 
 

Delft University of Technology

Rethinking Online Action Detection in Untrimmed Videos
A Novel Online Evaluation Protocol
Baptista Ríos, Marcos; Lopez-Sastre, Roberto J.; Caba Heilbron, Fabian; van Gemert, Jan C.; Acevedo-
Rodriguez, F. Javier; Maldonado-Bascon, Saturnino
DOI
10.1109/ACCESS.2019.2961789
Publication date
2019
Document Version
Final published version
Published in
IEEE Access

Citation (APA)
Baptista Ríos, M., Lopez-Sastre, R. J., Caba Heilbron, F., van Gemert, J. C., Acevedo-Rodriguez, F. J., &
Maldonado-Bascon, S. (2019). Rethinking Online Action Detection in Untrimmed Videos: A Novel Online
Evaluation Protocol. IEEE Access, 8, 5139 - 5146. Article 8939455.
https://doi.org/10.1109/ACCESS.2019.2961789
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ACCESS.2019.2961789
https://doi.org/10.1109/ACCESS.2019.2961789


Received December 9, 2019, accepted December 16, 2019, date of publication December 23, 2019, date of current version January 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2961789

Rethinking Online Action Detection in Untrimmed
Videos: A Novel Online Evaluation Protocol
MARCOS BAPTISTA-RÍOS 1, ROBERTO J. LÓPEZ-SASTRE 1, FABIAN CABA HEILBRON 2,
JAN C. VAN GEMERT 3, F. JAVIER ACEVEDO-RODRÍGUEZ 1,
AND SATURNINO MALDONADO-BASCÓN 1, (Senior Member, IEEE)
1GRAM, Department of Signal Theory and Communications, University of Alcalá, Alcalá de Henares 314100, Spain
2Adobe Research, Media Intelligence Lab, Deep Learning Group, San Jose, CA 95110, USA
3Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2628 Delft, The Netherlands

Corresponding author: Marcos Baptista-Ríos (marcos.baptista@uah.es)

This work was supported in part by the Project PREPEATE, Spanish Ministry of Economy, Industry and Competitiveness,
under Grant TEC2016-80326-R, and in part by the NVIDIA Corporation with the donation of a GPU.

ABSTRACT The Online Action Detection (OAD) problem needs to be revisited. Unlike traditional offline
action detection approaches, where the evaluation metrics are clear and well established, in the OAD
setting we find very few works and no consensus on the evaluation protocols to be used. In this work we
propose to rethink the OAD scenario, clearly defining the problem itself and the main characteristics that the
models which are considered online must comply with. We also introduce a novel metric: the Instantaneous
Accuracy (IA). This new metric exhibits an online nature and solves most of the limitations of the previous
metrics. We conduct a thorough experimental evaluation on 3 challenging datasets, where the performance
of various baseline methods is compared to that of the state-of-the-art. Our results confirm the problems of
the previous evaluation protocols, and suggest that an IA-based protocol is more adequate to the online
scenario. The baselines models and a development kit with the novel evaluation protocol will be made
publicly available.

INDEX TERMS Computer vision, deep learning, evaluation, instantaneous accuracy, online action detection.

I. INTRODUCTION
In this work, we focus on the problem of localizing actions in
untrimmed videos as soon as they happen, which was coined
as Online Action Detection (OAD) by De Geest et al. [1].
Action detection in video has been widely studied, but

mainly from an offline perspective, e.g. [2]–[12], where it is
assumed that all the video is available to make predictions.
Few works address the online setting, e.g. [1], [4], [13], [14].
Think of a robotic platform that must interact with humans in
a realistic scenario, or an intelligent video surveillance appli-
cation designed to raise an alarm when an action is detected.
All previous offline methods make the described applications
impossible because they would detect action situations way
later they have occurred.

On the contrary, in an OAD approach, action detections
must be given over video streams, hence working with partial
observations, where the action segments are possibly the
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exception rather than the rule, comparedwith the background.
Moreover, this online definition allows for an important prop-
erty: the anticipation to the action. In other words, for anOAD
model the objective is to anticipate the action even before the
action is fully completed.

However, there are important weaknesses among the online
approaches in two fundamental aspects: 1) the evaluation
metric; and 2) the treatment of the background category
by the models and in the evaluation. Regarding the former,
we have noticed that there is no consensus on the evaluation
protocols. In each dataset a different metric is proposed for
the very same problem. Moreover, used metrics cannot be
said to be of an online nature. In other words, metrics such
as the mean Average Precision (mAP) [15] or the Calibrated
Average Precision (cAP) [1], do not provide information
about the instantaneous performance of the solutions over
time. They need to be computed entirely offline, accessing the
whole set of action annotations in a given test video, to sort,
for instance, all frame predictions. Even the novel point-
level Action Start detection mAP metric, proposed in [16] to
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FIGURE 1. Online Evaluation Protocol. Previous evaluation protocols for Online Action Detection (OAD) were based on: 1) running the online
methods through all videos; 2) applying the offline metric on the obtained results. Additionally, offline metrics proposed so far do not consider
the background in their evaluation. We propose an Online Evaluation Protocol based on our new Instantaneous Accuracy metric (IA). OAD
approaches are evaluated online considering the background and regardless of the length of the video.

evaluate the different problem of online detection of action
start, has the same limitation.

Regarding the second aspect, the OAD setting is char-
acterized by long untrimmed videos where actions appear
sparsely and the background predominates. Consequently,
the online problem should demand the background category
to be treated as a first-class citizen. However, if we analyze
the online methods published to date, almost all have been
designed to cast a specific prediction for the background
category: given a test video, every frame is categorized with
an action class. For this reason, some propose to modify the
evaluation metric, as in [1], where a calibrated version of
the average precision is proposed to mitigate the penalty with
the background frames. Furthermore, when the background
class is not considered in the evaluation, but it is considered
in the annotation, all the proposed metrics cannot saturate to
the maximum which they have been designed for. In other
words, the maximum of a precision-based metric will never
be of 100% even if the method cast for every action frame the
correct category.

In this paper we address all the described limitations. Our
scientific contributions are as follows:
• First, we introduce an evaluation protocol, with a novel
online metric: the Instantaneous Accuracy (IA) (see
Figure 1). This metric has been designed not only to
overcome the limitations, but to allow for fair and effec-
tive comparisons between OAD methods.

• Second, we propose a thorough experimental evalua-
tion on three challenging datasets (Thumos’14 [17],
TVSeries [1] and ActivityNet [18]), where a comparison
between baselines and the state-of-the-art approaches is
offered. The results show that an IA-based evaluation
protocol is more adequate to the OAD problem, because
it is able to offer a detailed evolution of the performance
of OADmodels when the video stream grows over time.

• We will publicly release the implementations of the
baseline models as well as a development kit with the
novel evaluation protocol.

II. RELATED WORK
We summarize here some contributions on related problems:
offline action detection, early action detection and online
action detection.

A. OFFLINE ACTION DETECTION
In offline action detection, the whole video is known before-
hand and the goal is to detect when and where actions occur.
There are works that apply classification on action proposals
segments, e.g. [2]–[4], [8], [19], [20]. However, other works
[5]–[7], [21] train models to directly detect action segments,
without the proposal stage. All the previously mentioned
works propose fully supervised approaches. Since it is more
complicated each day to have labels for such big amount of
videos, the community is exploring also weakly supervised
alternatives [22]–[29]. In any case, our analysis focuses on
the different problem of online action detection.

B. EARLY ACTION DETECTION
In this setting, the objective of the approaches (e.g. [25], [30],
[31]) is to predict the action label of an action video before
the ongoing action execution ends. They assume the video
stream contains only one action instance and once the video
has ended, they decide start and end frames. AnOnlineAction
Detection (OAD) scenario makes no assumption on the video
and actions must be detected as soon as they happen. F1-score
is used for evaluation, but this metric does not meet our online
evaluation protocol conditions since it is a class-level metric
and background is not considered.

C. ONLINE ACTION DETECTION
There exist few recent works on OAD [1], [13], [14], [32].
De Geest et al. [1] set the OAD conditions and introduced
some frame-level baselines models which do not explicitly
discriminate action from background. They also proposed
two evaluation metrics: a per-frame mean Average Preci-
sion and a calibrated Average Precision. In their follow-up
work [14], they designed a two-stream LSTM network to
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capture better temporal dependencies. Li et al. [32] trained
a method which predicts skeleton-based action classes (plus
background) and regresses the start and end frames. This
scenario is simpler and in the lack of an established evaluation
protocol, they evaluate their method by adapting traditional
offline action detection metrics. Gao et al. [13] present a
LSTM-based Reinforced Encoder Decoder network which
anticipates future frame labels and representations. As a side
experiment, they address the OAD task as a special case
of anticipation where the anticipation time is set to zero.
Therefore this type of network cannot be considered as a pure
OAD approach. In our work, we explain why the metrics
proposed so far are not suitable for online evaluation in
streaming videos and propose a new protocol. We also imple-
ment a simple method for OAD capable of explicitly distin-
guishing action and background. There is also the work of
Shou et al. [16] which focuses on the problem of Online
Detection of Action Start (ODAS). ODAS can be seen as a
variant of OAD where only the starting point of actions is of
interest. An OAD method must always find the start and end
of an action. The OAD and ODAS evaluation protocols have
in common that both use class-level metrics that are computed
offline.

III. ONLINE EVALUATION PROTOCOL FOR ONLINE
ACTION DETECTION
Despite the many practical applications Online Action
Detection (OAD) offers, it has been barely explored. As the
pioneer work of De Geest et al. [1] stated, OAD needs a solid
definition and a strong evaluation protocol, which we revisit
in this section.

A. ONLINE ACTION DETECTION
The established properties of the OAD task in realistic sce-
narios are summarized as follows:

1) Streaming videos are assumed, where neither length
nor content are known.

2) Actions must be detected as soon as they happen,
ideally in real-time.

3) Detections must be causal. Future cannot be used,
simply because it is not known.

Note that even though OAD is naturally characterized by
untrimmed streaming videos where actions appear sparsely,
we found state-of-the-art models that do not consider the
background as a category. They treat the OAD problem as
a per-frame labeling task where detecting ground truth action
frames is what only matters. Mislabeled background frames
are dismissed. This means that these methods will not achieve
the maximum of a precision-based metric even if the method
cast for every action frame the correct category, as we show
later in Section IV.

In our exercise of revisting the OAD problem, we propose
to add the following properties for OAD methods:

• Methods will explicitly discriminate action from
background.

• No post-processing or posterior thresholding to action
label scores can be applied.

• Methods cannot revisit past detections.

B. ONLINE EVALUATION PROTOCOL
A true online evaluation protocol is needed. It is necessary
to revisit the evaluation protocol and establish a new one
that is in line with the online nature of the OAD problem.
We argue an evaluation protocol for OAD must comply with
the following conditions:

(C1): An online video-level metric is needed. So method’s
performance can be evaluated as a video grows with-
out having to wait to an unknown end.

(C2): If the OAD task requires methods that are able to
detect background, the evaluation protocol must mea-
sure such ability.

(C3): The value of a true, true positive (action) and true
negative (background), should be conditioned to the
negatives vs. positives ratio, which must be dynamic
and based only on the seen portion of the video.

1) PREVIOUS METRICS
All previous evaluation protocols use class-level metrics
which have to be applied offline, i.e. at the end of the test
time, accessing the whole set of action annotations in a given
test video. Hence, condition (C1) is directly violated. These
protocols are mainly based on using the per-frame mean
average precision (mAP) or its calibrated version (cAP).

Regarding mAP, it measures the precision, defined by
Prec = TP

TP+FP , across all classes. As can be seen in its
definition, only positives factors (actions) are considered
and their value is always the same regardless of any ratio.
Conditions (C2) and (C3) are not complied.

Precision in cAP is defined by cPrec = wTP
wTP+FP . This

metric was introduced in [1] and balances the precision with
the w parameter, which is the ratio between negative vs.
positive frames. It is basically a modification of mAP metric
so conditions (C1) and (C2) are still not complied. It would
solve condition (C3) but w is computed a priori (not dynami-
cally) using previous information about all videos and action
categories.

2) INSTANTANEOUS ACCURACY METRIC
We introduce a new metric which meets all the afore-
mentioned conditions: the Instantaneous Accuracy (IA(t)).
Considering a set of N test streaming videos, for each
video Vi, where i = 1 . . .N , an OAD method generates a set
of action detections defined by their initial and ending times.
IA metric takes as input these detections to build a dense
temporal prediction of background or action for every time
slot1t in the test video. Note1 is the unique parameter of our
IA metric and it measures how often the metric is computed.
In section IV we give details on choosing this value.

For a particular instant of time 0 < t ′ ≤ Ti, the IA(t ′) is
computed as the time slot-level accuracy for the classification
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between action and background:

IA(t ′) =

∑
j=0:1t:t ′ Etp(j)+

∑
j=0:1t:t ′ Etn(j)

K ′
, (1)

where Etp and Etn are two vectors encoding the true posi-
tives (action) and true negatives (background), respectively,
according to the predictions and ground truth. K ′ represents
the total population considered until time t ′, which is dynam-
ically obtained as follows:

K ′ =
⌊(

t ′

1t

)⌋
. (2)

To meet condition (C3), and to enable easy and fair com-
parisons across different OAD approaches, we propose a
weighted version of the IA: the wIA. Technically, we scale
the true factors by the background vs. action slots as follows:

wIA(t ′) =

∑
j=0:1t:t ′ w(t

′) · Etp(j)+
∑

j=0:1t:t ′
1

w(t ′) ·
Etn(j)

K ′
(3)

where w(t ′) represents the dynamic ratio between back-
ground and action slots until time t ′ in the ground truth,
i.e. in Vi(0 : t ′).
The metric described so far only uses information from the

past and is capable of adapting its parameters in each itera-
tion. It would be sufficient to evaluate an OAD method on a
single video stream of any length. Additionally, we introduce
the mean average Instantaneous Accuracy (maIA) shown
in equation 4 to summarize a method’s performance across
a large dataset. In this way, researchers can compare their
methods.

maIA =
1
N

∑
i=1:N

1t
Ti

∑
j=0:1t:Ti

IA(j)

 . (4)

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASETS
We use three datasets for all our experiments. All of them
provide untrimmed videos where action and background seg-
ments coexist, suiting our OAD scenario. Thumos’14 [17]
dataset has temporal annotations for a set of 413 videos,
covering 20 sport classes. On average, every video contains
15 action annotations. For training, we use the 200 videos
from the validation set, while the remaining 213 from the
test set are used for testing. TVSeries [1] is an OAD-specific
dataset. It contains 27 episodes from 6 popular TV series with
30 realistic action categories annotated. Its large variability
(occluded, multiple persons or non-relevant actions, among
others), makes it a really challenging dataset. Finally, we also
integrate in the OAD experiments, ActivityNet v1.3 [18],
which is a large scale dataset specifically designed for Tem-
poral Action Localization. It contains about 20K untrimmed
videos for 200 action classes. The average number of action
instances per video is of 1.5. For this dataset, we follow

the standard procedure: we use the training set and the val-
idation set during training and test respectively. While both
Thumos’14 and TVSeries have been already used within the
OAD context, we are the first in integrating the challenging
ActivityNet into the online setting.

2) EVALUATION METRICS
On all datasets, we report our novel IA for each video
and provide maIA to evaluate methods across each dataset.
Following the setup detailed in [13], we analyze the per-frame
mAP on Thumos’14 and TVSeries datasets. And finally, for
the TVSeries, we analyze the proposed Calibrated Average
Precision (cAP) [1].

B. BASELINES
In our study, we use three baselines:
1) All background (All-BG). It simply simulates a model

which never outputs an action class, helping to under-
stand the difficulty of the datasets.

2) Perfect Model (PM), that always assigns correct labels
to ground truth action frames and produces a random
action label for every background frame. PM helps to
reveal the limitations of the mAP and cAP evaluation
metrics for OAD, showing they cannot saturate to the
maximum.

3) 3D-CNN. As shown in Figure 2, it consists of a 3DCNN
network trained to discriminate between all action labels
plus the background category. Our goal is to establish
baseline results for the new online evaluation protocol
for OAD with a model capable of explicitly detecting
actions and background for the first time.

Our 3D-CNN is based on the C3D network [33]. Techni-
cally, we adapted the dimension of the last fully connected
layer of C3D model so that it coincides with the number
of classes of interest plus the background category. The
architecture is fed with 16-frame length chunks. For train-
ing, we extract 16-frame length contiguous chunks. Those
whose intersection with ground truth is greater than 0.8 are
marked as positive, otherwise they are considered negative
(background). The training data T is balanced by matching
the number of samples in each class: NT =

Nchunks
C , being

C the total number of classes including background. We ini-
tialize our network with Sports-1M [34] weights and SGD
is configured with learning rates 10−3, 10−4 and 10−5 for
Thumos’14, ActivityNet and TVSeries respectively. For all
datasets, momentum is 0.9 and learning rate decreases every
2 epochs. The model is trained for 15 epochs. During test,
we simulate the online process on each video by gathering
16 non-overlapping frames and input them to the network,
which will cast a prediction. We take the softmax value
corresponding to the background class and if it is above
0.8 we consider the detection as background. Otherwise,
the detection will be the action class with highest softmax
score.

3D-CNN baseline not only is simple but it also requires
neither refinement nor post-processing, and can run in
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FIGURE 2. 3D-CNN baseline model. Our model closely follows C3D [33] but trained to discriminate between
all action categories plus background. We simply adapted the dimension of the last fully connected layer
so that it coincides with the number of categories of interest and the background class. The model makes
predictions in an online fashion, avoiding to peek into the future for adjusting or post-processing these
detections. In short, 3D-CNN generates action and background predictions as the video evolves.

real-time (at more than 100 fps). The experimental evaluation
shows that it is a strong baseline. Caffe [35] is used for its
implementation and it will be publicly available.

C. A COMPARISON BETWEEN THE METRICS
It is important for us that the reader understands the main
weaknesses of the previous evaluation protocols. For this
reason, and though it might be unfair, we make a comparison
in this section of the performance of all methods with all the
metrics on TVSeries dataset.

Table 1 shows the results for all the baselines and the state-
of-the-art model in [1]. First, the fact that the PM baseline
performance is not the maximum for both cAP and mAP,
confirms that using methods and metrics that are not capable
of managing the background category is not appropriate for
the OAD task. Even though the cAP metric seems to alleviate
this problem, it is not enough to achieve a 100% and it is
based on diminishing background errors. Second, All-BG
baseline reveals: a) that previous metrics are not able to
measure method’s ability to distinguish both action and
background and b) the need of having a metric such as IA,
capable of weighting the relevance of errors in both action
and background. This last fact is especially important when
dealing with very unbalanced datasets like TVSeries. Third,
results from 3D-CNN are competitive when compared to the
state-of-the-art. So it is confirmed as a strong baseline for the
OAD problem. It is only with the cAP metric that CNN [1]
really outperforms it. The reason is that this method does
not cast predictions of background category (while 3D-CNN
does) and, as said before, cAP has been designed to minimize
the importance of such errors.

TABLE 1. Analysis of all the metrics on TVSeries.

In the OAD problem, it is fundamental to consider the
background as one more category in the video. While our

3D-CNN baseline does explicitly consider it, most state-
of-the-art online models do not. How does this fact affect
performances? We analyze this on Thumos’14.

Table 2, shows the per-frame mAP achieved by all state-
of-the-art models and our 3D-CNN. The poor performance of
the perfect model confirms again the limitation of the mAP
metric. Additionally, 3D-CNN results on this dataset also
demonstrate this model is a good baseline for OAD. It is
important noticing that all state-of-the-art methods assign
an action category to every frame in the video, including
those frames that belong to background segments. Moreover,
the metric is not considering background errors. This means
that mAP does not encourage methods to correctly discrimi-
nate background segments. To be precise, RED [13] does use
the background during training to predict sequences of labels.
But at test time, in no case is the background separated from
the action. Furthermore, RED is designed for anticipation and
these results are obtained when taking a very short anticipa-
tion time. So, it cannot be considered as a pure online action
detection method, because it violates the causality condition.
In any case, from this perspective, the performance reported
by 3D-CNN is even more relevant: while our model has been
trained to deal with a harder problem, it is able to maintain a
state-of-the-art performance.

TABLE 2. Per-frame mAP performance on Thumos’14.

Finally, we want to emphasize that neither mAP nor cAP
are online metrics. Results in Tables 2 and 1 for these two
metrics can only be reported once the methods have been
executed on all the videos. Instead, our IA metric is online.
It can perform a true online comparison between OAD mod-
els, as we show in the next section.

Overall, we conclude that a novel online metric with an
adequate evaluation protocol is needed.

D. EVALUATION WITH INSTANTANEOUS ACCURACY
We analyze our IA metric with the 3D-CNN baseline and the
CNN [1] approach. We have not found any code or results of
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other OAD state-of-the-art methods, except for CNN [1] and
LSTM [1]. Since the performance of CNN [1] and LSTM [1]
are similar, we have decided to generate the results of the
first for its simplicity. We have exactly reproduced the code
provided by the authors. Note that these methods do not
recognize background. Additionally, we tried to use results
from offline temporal action detection methods but did not
find a fair adaptation of them.

1) INSTANTANEOUS ACCURACY FOR EVALUATION IN
ONLINE STREAMING VIDEOS
In a nutshell, our novel IA measures in an online way how
accurate a certain OAD method is being along the streaming
video, based only on what has been seen up to the instant of
evaluation.

Regarding the parameters of the metric, the slot duration
represents how often the evaluation is applied and it should
be 0. Since such an ideal duration is technically not achiev-
able, we have configured it to be the shortest possible. Most
action detection approaches use chunk-level features. The
chunk length is typically in the interval [16, 64] frames, with
a 25/30 frame rate, representing each chunk about 0.6 to
2 seconds. Thus, we choose a 0.5 seconds for slot duration
parameter 1t . The IA metric considers correct predictions
of both true positives (action categories) and true negatives
(background). The value of a true prediction is dynamically
weighted according to the ratio of negative/positive slots seen
so far. Figure 3 shows this dynamic behaviour of the weights.
The weight applied to TP (the weight of the TN is the inverse)
changes throughout the video. Action and background are
not always balanced at each instant of evaluation during the
video stream. For this reason, the weight of the true positive
predictions (finding action) increases in those portions of
the video in which there is no action annotated. This fact
represents how the IA metric is modulating the importance
of a good prediction and it is a very relevant difference with
previous protocols.

FIGURE 3. Dynamic weights. It can be seen how the value of a True
Positive (TP) is weighted according to the ratio of negative/positive slots
seen up to the instant of evaluation. As Equation 3 shows, TN weights
offer the inverse effect.

In Figure 4 we show qualitative results for two different
videos. Only a section of the videos is shown. Note that
an accuracy value for a certain slot does not depend on

FIGURE 4. Qualitative Results. We showcase the evolution of the
weighted IA on two different Thumos’14 videos. Each instant of
evaluation depends on the current model’s prediction. IA metric is an
online video-level metric which measures the ability of methods to
discriminate actions and background.

that of the previous slot. Those values rely only on the pre-
dictions and the weights for each correct prediction. These
dynamic weights can lead to situations where the accuracy
value decreases (not much) even if a method is getting right
predictions. This effect is seen in the upper example of
Figure 4, in the segment between the ground truth annota-
tions. However, that is exactly what we want: since nothing
about the video is known before, the importance of detecting
action or background must vary throughout the streaming.

Figure 5 shows the evolution of the weighted IA on the
7 videos of the test subset of TVSeries dataset. Note how it
allows for a true online comparison between OAD models,
in this case, CNN [1] and 3D-CNN.

2) maIA AS IA CONSOLIDATION FOR EVALUATION ACROSS
DATASETS
Despite the fact that IA metric can be directly used as it is in a
video stream, we propose also the maIA to compare methods
on a certain dataset.

Table 3 presents the performance with the weighted
and non-weighted versions of maIA on the three datasets.
Results from All-BG baseline reveal the relevance of hav-
ing a weighted metric. Thumos’14 and TVSeries are very
unbalanced datasets and when introducing the weighting,
the performance drops a lot. OnActivityNet All-BG performs
similar with the two versions of the metric due to the fact
that the dataset is more balanced. These results confirm the
consistency of our metric, which is capable of making a fair
evaluation in all kind of datasets.

TABLE 3. Weighted an non-weighted maIA on Thumos’14, TVSeries and ActivityNet.
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FIGURE 5. Online IA based evaluation in videos of the TVSeries dataset.

The low numbers of 3D-CNN on TVSeries and Activi-
tyNet are caused by different reasons. TVSeries is a specially
very unbalanced and challenging dataset. With such a lot of
background, amodel as simple as 3D-CNN is not able to learn
well to discriminate action from background. ActivityNet is
balanced but has many classes to distinguish. Finally, our
reproduced CNN [1] performs poorly according to maIA
due to it does not handle background. Thus, its perfor-
mance is alleviated when weighted with the positive/negative
ratio.

V. CONCLUSION
Online Action Detection in untrimmed streaming videos is
a challenging task with few contributions. We have found
that a) the task itself needs a solid definition of its properties,
b) there is no clear consensus on how the methods should deal
with this type of videos and c) a proper evaluation protocol is
not defined.

In this work, we solved the first two problems by revising
and establishing the properties of the OAD task itself as well
as those for the methods designed for it. Regarding the third,
we noticed that there are limitations in the metrics used so far.
Therefore, we have clearly defined the conditions of a proper
evaluation protocol: i) it has to be online, for consistency
with the metric; ii) it must measure the ability of methods
to discriminate both action and background and iii) it must
be based only on the seen portion of video.

Since none of the previously used metrics complies with
these conditions, we have introduced a newmetric: the Instan-
taneous Accuracy (IA). IA is an online video-level metric
which computes the accuracy for every instant of evaluation.
Our results have proved the limitations of the previousmetrics
and the robustness of our novel IA.

We expect in the future more methods will be analyzed
with our IA. Thanks to its characteristics, it will be possible
to study the situations in which methods should perform
better.

The baseline models and a development kit with the novel
evaluation protocol will be made publicly available.
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